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W e address the modeling and analysis of abandonments from a queue that is invisible 
to its occupants. Such queues arise in remote service systems, notably the Internet and 

telephone call centers; hence, we refer to them as tele-queues. A basic premise of this paper is 
that customers adapt their patience (modeled by an abandonment-time distribution) to their 
service expectations, in particular to their anticipated waiting time. We present empirical 
support for that hypothesis, and propose an M/M/m-based model that incorporates adaptive 
customer behavior. In our model, customer patience depends on the mean waiting time in 
the queue. We characterize the resulting system equilibrium (namely, the operating point in 

steady state), and establish its existence and uniqueness when changes in customer patience 
are bounded by the corresponding changes in their anticipated waiting time. The feasibility 
of multiple system equilibria is illustrated when this condition is violated. Finally, a dynamic 
learning model is proposed where customer expectations regarding their waiting time are 
formed through accumulated experience. We demonstrate, via simulation, convergence to 
the theoretically anticipated equilibrium, while addressing certain issues related to censored- 

sampling that arise because of abandonments. 

(Exponential Queues; Abandonment; Invisible Queues; Tele-Queues; Adaptive Customer Behavior; 
Tele-Services; Call Centers) 

1. Introduction 
Customer characteristics in service systems are largely 
dependent upon the system performance characteris- 
tics as perceived by its users. For example, the arrival 
rate is likely to increase as the typical waiting time 
decreases. This dependence interacts with the queue- 
ing process to determine the system operating point, 
and may have a considerable effect on performance. 

Our focus in this paper is on the modeling of cus- 
tomer abandonments and their interplay with the 

system performance. We consider a queueing sys- 
tem with impatient customers, who may abandon 
the queue if not admitted to service soon enough. 
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We assume that the queue is invisible, in the sense 
that waiting customers do not obtain any information 

regarding the queue size or their remaining waiting 
time before admitted to service. Queues of this type 
are especially relevant to remote service systems, such 
as telephone call centers or Internet-based services; 
hence, we refer to them as tele-queue. For a discus- 
sion of the central role that customer patience plays 
in tele-queues see Garnett et al. (1999). 

The foundation for our model is the hypothesis that 
customers' patience significantly depends on their 

expectations regarding the waiting time in the sys- 
tem. These expectations, in turn, are formed through 
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accumulated experience and affected by subjective 
factors-time perception, the importance of the ser- 
vice being sought, and so on. As an example, cus- 
tomers who expect to wait a few seconds will behave 

differently, in terms of their abandonment time, in 
case they expect to wait several minutes or even 
hours. These expectations, in turn, conceivably dif- 
fer if past experience consists of short waits, or long 
waits, or short and long waits intertwined. Patience 
is obviously influenced by numerous factors related 
to customer profiles and environment characteristics 
(see, for example, Maister 1985, Zakay and Hornik 
1996, Levine 1997). However, for the purpose of per- 
formance analysis, most of these factors can be taken 
as a priori given and fixed. The waiting time distri- 
bution is singled out in this respect since it is the out- 
come of the queueing process (hence, in fact, itself is 
influenced by the patience profile). 

Empirical Support-A Preview. Inconsistent with 
the above adaptivity hypothesis, the prevalent 
assumption in traditional queueing theory is that 

patience (the time-to-abandon or its probability 
distribution) is "assigned" to individual customers 

independently of any system performance character- 
istic (see Garnett et al. 1999 for a recent literature 
review). In particular, patience is unaltered by pos- 
sible changes in congestion. Such models, however, 

cannot accommodate the scatterplot in Figure 1 that 
exhibits remarkable patience-adaptivity. 

The data is from a bank call center as reported 
in Mandelbaum et al. (2000); see also ?4. We are 

scatterplotting abandonment fraction against average 
delay, for delayed customers (positive waiting time) 
who seek technical Internet support. It is seen that 

average delay during 8:30-8:45 A.M., 17:45-18:00 P.M., 
18:30-18:45 P.M., and 23:30-23:45 P.M. is about 100, 
140, 180, and 240 seconds, respectively. Nonetheless, 
the fraction of abandoning customers (among those 

delayed) is remarkably stable at 38%, for all periods. 
This stands in striking contrast to traditional queue- 
ing models, where patience is assumed unrelated to 

system performance: Such models would predict a 
strict increase of the abandonment fraction with the 

waiting time, as in Figure 3. The behavior indicated 
in Figure 1 clearly suggests that customers do adapt 
their patience to system performance. 

A Descriptive Approach. Several recent papers 
have proposed an optimization-based model for cus- 
tomer patience, where abandonment decisions are 
based on a personal cost function that balances service 

utility against the cost associated with the expected 
remaining time to service. In particular, Hassin and 
Haviv (1995) and Haviv and Ritov (2001) analyze 

Figure 1 Adaptive Behavior of IN (Experienced) Customers-Abandonment Probability vs. Average Wait (of Customers Who Waited a Positive Time) 
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systems with a single customer type, and Mandel- 
baum and Shimkin (2000) consider a heterogeneous 
customer population, in terms of utility functions and 
the resulting abandonment profiles. In these models, 
the optimal abandonment decision depends on the 
entire waiting-time distribution offered by the system. 

Unlike this prescriptive approach, we consider here 
a descriptive model, where the dependence of patience 
on system performance is explicitly specified within 
the model primitives, in much the same way that a 
demand function is assumed to be given in economic 
models. Such an explicit model can be more directly 
related to experimental data, and is not restricted by 
the assumption and consequences of strictly rational 
behavior of the customers. 

Our model is highly simplified by assuming that 
customers' patience depends on the waiting time in 
the queue only through its average, namely the mean 

wait; thus, the patience depends on a single perfor- 
mance parameter rather than an entire distribution. 
The motivation for this simplified model is threefold. 

First, the mean arguably presents a natural parame- 
ter that summarizes customers' expectations regard- 
ing their waiting time; indeed, a typical customer 
can hardly be expected to form a clear estimate of 
the entire waiting time distribution based on lim- 
ited experience. Second, the dependence on a single 
parameter makes it much easier to relate the model 
to empirical data; see ?4. And third, it offers a con- 
siderable simplification in performance analysis (com- 
pared, say, with Mandelbaum and Shimkin 2000). 

Outline of the Paper. Section 2 presents the basic 

queueing model, which incorporates the dependence 
of the patience profile on the average waiting time, 
and defines the system equilibrium point.' We dis- 

tinguish between the average waiting time assumed 

by the customers (denoted x), which determines the 

patience profile, and between the actual quantity, 
namely the offered expected wait that results from this 

patience profile. Simply put, equilibrium is achieved 
when the two coincide. 

The term equilibrium in this paper refers to an operating point of 

the system, as used in standard market and supply-demand mod- 

els, and should not be confused with the Nash equilibrium or other 

game-theoretic concepts. 

In ?3, we analyze the equilibrium and its properties, 
focusing first on existence and uniqueness. Assum- 

ing that customer patience decreases as the (assumed) 
average wait x increases, existence and uniqueness 
of equilibrium follow from basic monotonicity con- 
siderations, as shown in ?3.1. The more interesting 
case is when patience is allowed to increase with x 

(?3.2). Here customers adjust their behavior to com- 

ply with their expectations. When patience can grow 
not more than proportionally with x, existence and 

uniqueness of the equilibrium can still be established 
and the equilibrium point may be calculated. When 
this growth condition is violated, multiple equilibria 
are feasible, as we explicitly demonstrate there. 

In ?3.3, we apply the proposed model to address 
the following question: What is the required depen- 
dence of customer patience, so that the abandonment 
fraction is kept constant despite varying congestion 
conditions. This question is motivated by the relative 

insensitivity of the abandonment fraction that was 
revealed in Figure 1. 

Section 4 presents additional empirical support for 
the dependence of customer patience on the antici- 

pated waiting time. Section 5 provides a brief survey 
of the literature on patience modeling. 

Our basic equilibrium model assumes that the sys- 
tem is in steady state, in the sense that the system 
characteristics are stationary and the customers are 
well acquainted with those characteristics that are rel- 
evant to their behavior. In ?6, we complement the 
static equilibrium viewpoint with a dynamic learning 
model, which incorporates the additional ingredient 
of learning by the customers, and traces the sys- 
tem evolution towards a possible equilibrium. Indeed, 
the average waiting time parameter x is not initially 
known, but may be estimated by the customers based 
on their accumulated experience. We briefly address 
the issue of censored sampling that arises here: In those 
customer's visits that end up with abandonment, the 
offered wait itself is not observed but rather a lower 
bound on it, namely the abandonment time. As con- 
sistent estimation of the mean is quite complicated 
in this case, we also consider a simpler nonconsis- 
tent estimator and its effect on the equilibrium point. 
The dynamics of the queueing system which incor- 

porates the proposed learning process is examined 
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via simulation, and its convergence to the anticipated 
equilibrium is demonstrated. We conclude in ?7 with 
a brief summary and comments concerning future 
work. 

2. Model Formulation 
Consider an M/M/m queue with Poisson arrivals at 
rate A, and an exponential service time with mean /-~ 
at each of the m servers. The service discipline is first- 
come-first-served. Waiting customers may abandon 
the queue at any time before admitted to service. 
Potential abandonment times of individual customers 
are assumed independent and identically distributed, 
according to a probability distribution G(.) over the 

nonnegative real line. We shall refer to G as the 

patience distribution function. Let G = 1- G denote 
the survival function; thus G(t) is the probability that 
a waiting customer will not abandon within t time 
units. We allow G to depend on a parameter x to be 

specified below, so that G(t) = G(x, t). When conve- 
nient, we shall suppress the dependence on x. While 
we assume here for simplicity that the arrival rate A 
is constant, our model and analysis easily extend to 
the case where A depends on the same parameter x; 
see the remark at the end of ?3. 

Let V denote the offered waiting time, or offered 
wait, which is the time that a (nonabandoning) cus- 
tomer would have to wait until admitted to service. 
We assume throughout that the system is in steady 
state, so that the distribution of V is the same for 
all customers. Under the stability condition mAu > 

AG(oo), the density Fv of V is given by (Baccelli and 
Hebuterne 1981) 

F,(t) = APm_1 exp(J(t)), t >0, 

with Pm-_ specified below, and 

J(t) = - (mA -AG(s)) ds. (2) 

Let Pj denote the stationary probability for exactly 
j occupied servers; thus, V has an atom at 0, with 
P(V = 0) = E-1 pj. The normalization condition is 

m-1 

EPj+ Fv(t)dt=1, 
j=o 

It follows that 

F ) - exp(J(t)) 
V(t) K + f exp(J(s)) ds 

where 

m-1 ( -i -m+ 
Km=Y ., W 

A 

(3) 

(4) 

We shall also refer to the distribution Fo of (VIV > 0), 
namely the distribution of the waiting time V given 
that the customer is not immediately admitted to ser- 
vice; the corresponding density is obviously given by 
the expression (3) with Km set to zero. 

Consider next the dependence of the patience func- 
tion G on system performance. As discussed in the 
introduction, we focus here on a simplified model 
which assumes that this dependence is expressed 
through a single parameter x, corresponding to the 

average offered wait in the system. Specifically, we 
shall consider the following two alternatives: 

1. x = E(V), the expected wait. 
2. x = E(VIV > 0), the expected wait given that the 

wait is nonzero (all servers busy upon arrival). 
These two options correspond to slightly different 
evaluations of the waiting time, and lead to some 
differences in the analysis. The expected waiting 
time may be the most natural single parameter that 
comes to mind as a summary of waiting time perfor- 
mance. Still, the probability of finding a vacant server 

upon arrival becomes irrelevant to customers who are 

required to wait, and therefore the second option may 
turn out to be more appropriate. 

We remark that for modeling purposes, it may be 
useful to specify the dependence of G on x in two 

steps. First, let Gn be some parameterized family of 

probability distributions. For example, Gn may be the 
set of exponential distributions, with /q the expected 
value. Or it may the set of degenerate distributions, 
where now q7 is the deterministic time of abandon- 
ment. Further, let the parameter 7 be determined by 
the value of the performance parameter x, namely 
T = rj(x). The actual patience distribution G is thus 
selected out of the family G, and it depends on x 

according to G = G(X). This parameterization will be 

employed in some of our examples. 
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We have thus parameterized the patience distri- 
bution G in terms of the performance parameter x, 
which may be one of the two options itemized above. 
This completes the model description. We can now 
consider the ensuing operating point of the system 
in equilibrium. Note that the operating point is fully 
specified once the value of the parameter x has been 
determined. 

We proceed to characterize the equilibrium condi- 
tions explicitly. Of the two options specified above, 
first consider the case of x = E(V). For each x > 0, 
define 

vz(x) = E(V), 

where Ex is the expectation induced by the distribu- 
tion (3), with G = G(x, .). Thus, vl(x) is the expected 
waiting time that would be induced by the patience 
distribution associated with x. The equilibrium con- 
dition requires that the customers' evaluation of the 

expected waiting time (x) coincide with the actual 

value, namely 
x =vl(x). (5) 

This gives a scalar equation in the single variable x. 
The questions of existence and uniqueness of an equi- 
librium point are thus equivalent to the existence and 

uniqueness of a fixed point in Equation (5). 
Similarly, when the performance parameter x is 

taken as the conditional waiting time E(VIV > 0), 
define 

v2(x) = E(VIV > 0). 

The equilibrium condition is then 

x = v2(x). (6) 

We assume throughout that the stability condition 

G(x, oo) < m,i holds for some x. Both expected values 

vi(x) are finite at these values of x. 

3. Equilibrium Analysis 
We now turn to examine the system equilibrium and 

analyze its properties-focusing first on the questions 
of existence and uniqueness of the equilibrium point. 
We shall then employ the model to address some per- 
formance analysis issues, related to the feasibility of 

maintaining a constant abandonment fraction despite 
different load conditions, as depicted in Figure 1. 

The equilibrium analysis proceeds in two steps. 
Recall that the customer patience distribution depends 
on a performance parameter x, which represents the 

expected wait in the queue. In ?3.1, we address the 

relatively simple case where patience is decreasing in 
the performance parameter x (Assumption 1). This 

dependence may be interpreted as intolerance of the 
customer population to service degradation: When 
the waiting time becomes longer, customers find it 
less appealing to keep waiting and react by aban- 

doning earlier. This behavior can also be explained 
within a "rational" model for abandonments as pre- 
sented in Mandelbaum and Shimkin (2000), since the 

expected return per unit wait becomes smaller as 
time progresses. Still, in practice one often observes 
an opposite tendency of customers who adapt their 

patience to comply with the expected waiting time in 
the system. This was indeed observed in the empiri- 
cal results of ?4. In ?3.2, we extend our analysis to the 

"increasing patience" case. 

3.1. Decreasing Patience 
We assume first that the customer patience is decreas- 

ing in the performance parameter x, in the sense of 
stochastic ordering. Recall the following definitions 

(Shaked and Shanthikumar 1994). Given two real- 
valued random variables Y1 and Y2 with distributions 
F1 and F2, we say that Y1 stochastically dominates Y2, 
denoted Y1 ,st Y2, if Fl(t) > F2(t) for all t (here Fi = 
1 - Fi). Y1 strictly dominates Y2, denoted Y1 >st Y2, if, 
in addition, F1 : F2. We shall also adopt the corre- 

sponding notations F1 -st F2 and F1 >st F2 to denote 
these relations. Note that E(Y1) > E(Y2) is implied in 
the former case, and E(Y1) > E(Y2) in the latter. A set 
of random variables IT(x)} in the real parameter x 
is said to be decreasing in stochastic order if xl < x2 

implies T(xl) >st T(x2), and is strictly decreasing if the 
latter dominance relation is strict. 

ASSUMPTION 1. The set of patience distribution func- 
tions {G(x, -)} is decreasing in x in stochastic order. That 

is, x1 > X2 implies that G(x1, t) < G(x2, t),for all t > 0. 

PROPOSITION 3.1. Let Assumption 1 hold. 

(i) Let G1 and G2 be two patience distributions, with 
F1 and F2 the corresponding distributions of the offered 
waiting time V, specified in (3). Then G1 -st G2 implies 
F1 <st <F 
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(ii) A similar implication holds for Fo, the distribution 

function corresponding to the conditional waiting times 

(VIV > O) as specified following (3). 

PROOF. For each Gi, i = 1, 2, denote: 

t 
Ji(t) = - (m/- - AG,(s)) ds, (7) 

and let D(t) = G2(t)- G (t). By our assumption, D > 0. 
Thus, 

t 
J2(t) = J1 (t) +A D(s)ds > J (t). (8) 

The hazard rate functions Hi corresponding to these 

waiting time distributions are given by 

Hi(t) = F-(t) exp(Ji(t)) 
F (t) ft exp(J(v))dv' 

t>0. 

To establish F1 <st F2, we shall in fact prove the 

stronger property that Fl(t)/F2(t) is (weakly) decreas- 

ing in t. The latter is equivalent to dominance in 
the hazard rate order; see Shaked and Shanthikumar 

(1994, Chapter 1). To establish that F1/F2 is a decreas- 

ing function, it suffices to show that H (t) > H2(t) for 
all t > 0, and that at the discontinuity point at t = 
0, we have F1(0)/F2(0) < 1. By substituting (8) in the 

expression for H1, we obtain: 

H2(t) = 7[exp(J (t)) exp(A fo D(s) ds) (10) 

At [exp(J(v))exp(A /o D(s) ds)] dv 

But by the assumed positivity of D, we have that 

exp(A fo D(s) ds) > exp(A fo D(s) ds) for all v > t, which 

immediately implies 

H(^ (t) exp(J1 (t)) =H (t). 2(t) < 
exp(J,(v))dv= 

It remains only to show that F(O)/F2(0) < 1, or 

equivalently that Fl(0) > F2(0). This follows from 
J (t) < J2(t) by noting from (3) that 

Fi(O) = +/ p+ exp(Ji(t))dt. 

The proof of (ii) follows similarly to the first part of 
the proof above, since V and (VIV > 0) have identi- 
cal hazard rate functions for t > 0, while Fo(0) = 1 by 
definition. O 

Uniqueness of the equilibrium follows easily from 
the last result, as shown next. For existence, some 
basic continuity and stability conditions are natu- 

rally required. The parameterized family of distri- 
butions G(x, ) is weakly continuous in x if g(x) := 

f +(t) dG(x, t) is continuous in x for every bounded 
continuous function 4. Note that this allows the dis- 
tributions G to contain point masses which depend 
continuously on x. 

THEOREM 3.2. Let Assumption 1 hold. Assume further 
that the patience distributions G(x, .) are weakly contin- 
uous in x. Then for either one of the equilibrium equa- 
tions (5) or (6), a solution exists and is unique. 

PROOF. Recall that X <st Y implies E(X) < E(Y). 
From the last proposition, we therefore obtain that 
both functions v (x) and v2(x) are decreasing in x, and 

uniqueness of the solution follows immediately. As 
for existence, the assumed continuity condition is eas- 

ily shown to imply the continuity of v1 and v2. Since 
our model assumes that both functions are finite for 
some x, existence follows. O 

3.2. Increasing Patience 
We shall now relax the decreasing-patience assump- 
tion, and replace it by a bound on the growth rate 
of the patience distribution (Assumption 2). The main 
result here is Theorem 3.3, which extends the results 
of the previous section while relying on them for the 

proof. 
Assumption 2 allows an increase in the customer's 

patience with the performance parameter x, but 

essentially requires that the rate of increase of the 
former does not exceed that of the latter. That is, 
when x (the anticipated average wait) increases by 
8, the patience (willingness to wait) of the customer 
population will increase by 8 at the most. Some 
growth condition of that nature is essential to guaran- 
tee uniqueness, as demonstrated by the example that 
closes this subsection. 

ASSUMPTION 2. Let T(x) be a random variable with 
distribution G(x, .). Then the family of random variables 
{T(x) - x} is decreasing in x, in stochastic order. 

An equivalent statement of the last condition is 
that T(x + y) <st T(x) + y for every y > 0. In terms 
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of the distribution functions, it may be expressed as 

G(x + y, .) <st G(x, + y). It implies, in particular, that 

E(T(x)) -x is decreasing in x. 
We establish below that under Assumption 2, the 

functions vi(x)- x (i = 1, 2) are strictly decreasing in 
x. This immediately implies uniqueness of the corre- 

sponding equilibria defined in (5) or in (6). To estab- 
lish existence, it is further required to show that 

vi(x) - x < 0 for x large enough (note that vi(O) > 0). 
However, Assumption 2 alone may not suffice here 
(as may be verified via a simple example, e.g., with a 
deterministic T(x) = x). The existence claim will thus 

require an additional condition, which is either a sys- 
tem stability requirement or a slight strengthening of 

Assumption 2, as specified below. 

THEOREM 3.3. Let Assumption 2 hold. Consider the 

equilibrium defined in (5) or in (6). 
(i) Uniqueness: The equilibrium point, if one exists, is 

unique. 
(ii) Existence: Assume, in addition, that the patience 

distribution functions G(x, -) are weakly continuous in x, 
and that either one of thefollowing conditions hold: 

a. A < mu, or 
b. [T(x) - (1 - e)x] is decreasing in x in stochastic 

order, for some e > 0. 
Then the equilibrium exists. 

The proof proceeds through some lemmas. We start 

by establishing the uniqueness of the equilibrium 
defined through v2 in (6), which turns out to be sim- 

pler, and follows directly from the next proposition. 
In the following, W stands for the random variable 

(VIV > 0) with distribution F0. 

LEMMA 3.4. Let Assumption 2 hold. Then {W(x)-x} 
is strictly decreasing in stochastic order. In particular, the 

function [v2(x) - x] is strictly decreasing in x. 

PROOF. For any x and y > 0, we need to show that 

W(x +y) <st W(x) +y. Our basic Assumption 2 is that 

T(x + y) <st T(x)+ y. Since W is increasing in T, as 
established in Proposition 3.1(ii), it is clearly sufficient 
to prove the lemma under the assumption that T(x + 

y) = T(x) + y. 
Assume, then, that the latter holds. In terms of 

the distribution functions, our assumption is that 

G(x + y, t) = G(x, t - y), and we wish to show that 

Fo(x + y, t) Fo(x, t- y) for all t. As in the proof of 
Proposition 3, it is convenient to work here with the 

corresponding hazard rate functions. Since the distri- 
butions Fo are absolutely continuous, namely the den- 

sity Fo exists at every point, it suffices to show that 
for all t, 

F(x + y, t) Fo(x, t-y) 

Fo(x + y, t) - Fo(x, t- y) 

Now, from (1), 

Fo(x, t-y) = C(x) exp( K(x, s) ds), 

(11) 

t>y, 

where K(x, t) := /uG(x, t) - mA, and C(x) is a normal- 
ization constant. Note that Fo(x, t - y) = 0 for t < y. 
On the other hand, 

F(x + y,t) =C(x+y)expf K(x+y,s)ds), t>O. 

But our assumption on G implies that K(x + y, s) = 

K(x, s-y). We thus obtain 

Fo(x + y, t) = C(x +y) exp(Y K(x, s) ds) 

= C(x+y) exp(f K(x, s) ds 

x exp( K(x, s) ds). 

Comparing the expressions above, it is apparent that 

(11) holds with equality for t > y. For t < y the right- 
hand side of (11) is null, so that inequality holds triv- 

ially. Moreover, since the left-hand side is nonzero for 
0 < t < y, then strict inequality holds on that interval. 
This implies that Fo(x + y, t) < Fo(x, t- y), with strict 

inequality holding on some interval; hence Fo(x + 

y, .) <st Fo(x, .). This establishes the main claim of this 
lemma. Since v2(x) = E(W(x)), the second claim fol- 
lows immediately. C 

We proceed to establish the uniqueness of the equi- 
librium defined in (5), with vl(x) = Ex(V). To relate 
this case to the previous one, observe that vl(x)= 

po(x)v2(x), where po(x) = P{V > 0} is the probability 
that an arriving customer does not find an available 
server. It was shown above that v2(x + y) < v2(x) + y. 
However, as G(x, ) increases so does po(x), and we 
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cannot infer from the above equality a similar rela- 
tion for vl(x). On the technical side, the distribution 

Fv(x, *) of V obviously contains a jump at t = 0 (with 
magnitude po(x)), and this prevents the application 
of the hazard-rate comparison argument which was 
used in Lemma 3.4. We therefore resort in the analysis 
below to direct calculation of vl(x) and its derivative. 

LEMMA 3.5. Let Assumption 2 hold. Then [vl(x) -x] 
is strictly decreasing in x. 

PROOF. It is required to establish the assertion 
under Assumption 2, namely G(x + y, t) < G(x, t - y) 
for y > 0. By the monotonicity result in Proposi- 
tion 3.1, it is sufficient to consider the extreme case 
where G(x + y, t) = G(x, t - y), which we henceforth 
enforce. 

We introduce some further notations. From (3), we 
have that vl(x) = A), with 

A(x)= t exp[/(x, t)] dt, 

B(x) = km + Jexp[J(x, t)] dt 

t 
J(x, t) = K(x, s) ds, 

K(x, s) = AG(x, s) - m,L, 

and km = Km/A. Note that our assumption concerning 
G implies that K(x + y, t) = K(x, t - y). We proceed to 
evaluate v1 (x + y) for y > 0. First, 

J(x+y, t)= K(x,s-y)ds 

= 1o K(x,s)ds + K(x,s)ds 
-y 0 

= by + J(x, t - y), t>y, 

since K(x, s) = b for s < 0, with b = A - m,L. Similarly, 
J(x+y, t) = bt for 0 < t < y. Thus, 

00 
A(x+y) = texp[(x +y, t)] dt 

= tebt dt + eby f(t + y) exp[J(x, t)] dt 

= g(y) + ebY[A(x) +y(B(x) - km)], 

where g(y) stands for the first integral. Note that 

limy,og(y)/y = 0, which we denote by g(y) = o(y). 
Similarly, 

B(x + y) = km + ebt dt + eby exp[(x, t)] dt 

= km +yeby + o(y) + ebY[B(x) - km] 

= ebY[B(x) + (1 - bkm)y] + o(y). 

It follows that 

v(x + y) - v(x) 

A(x+y) A(x) 
B(x + y) B(x) 

A(x) + y[B(x)-km] +o(y) A(x) 
B(x) + (1 -bkm)y + o(y) B(x) 

y (1 kmB(x)+ (1-bkm)A(x +o(y) , 

which implies 

d 
[l(x) -X] = 

kmB(x) + (1- bkm)A(x) 

B(x)2 

Obviously, the proof may be concluded if we show 
that the latter is negative. Since A(x), B(x), and km are 
all positive, we need only verify that (1 - bkm) > 0. 

Using the definition of km and b, this inequality is 

equivalent to (1 - mjI/A)Km < 1. This obviously holds 
when m,u/A > 1. Otherwise, we have from (4), 

m-l1 A ( 
-m+l 

Km < E mm-l-J 
j=0 IA" 

m-l m^ -l-j M1 _ -1 
= 7 (mAz < -l- 

j=O 
(12) 

which again implies the required inequality. [ 
PROOF OF THEOREM 3.3. Uniqueness of the equilib- 

rium under either definition follows from the last two 
lemmas. As for existence of the equilibrium defined 
in (6), since v2(0) > 0 and v2(x) is continuous by the 
Theorem's continuity assumption, it suffices to show 
that v2(x)- x < 0 for x large enough. If (a) holds then 
the system is stable even without abandonments so 
that v2(.) is bounded. If (b) holds, then by rescaling in 
x it follows from Proposition (3.4) that v2(x) -(1- e)x 
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is decreasing in x, hence v(x) - x < C - ex for some 
finite constant C, which clearly implies the required 
inequality. Existence of the equilibrium (5) follows 

similarly since vl(x) < v2(x). L[ 

We conclude this section with a simple example 
that shows that multiple equilibria are feasible when 

Assumption 2 is violated. 
EXAMPLE 1. MULTIPLE EQUILIBRIA. Consider an M/ 

M/1 queue with A = 1, /u = 1, and a deterministic 
abandonment time T(x) which is the same for all cus- 
tomers. Thus G(x, t) = 1 for t < T(x) and G(x, t) = 0 
for t > T(x). By (3) we have 

fo' texp(J(t)) 
v2(x) := Ex[VIV > 0] = fo exp(J(t)) 

Substituting G and m = A = u = 1 gives by explicit 
calculation 

where T = T(x). It is now simple to verify that the 
choice T(x) = x -1 + V/x2-1 gives v2(x) = x for all 
x > 1. According to the definition of the equilibrium 
in (6), this implies that every value x > 1 corresponds 
to equilibrium point, hence there is a continuum of 

equilibria. It may be seen that by slightly perturbing 
the above expression for T(x), we can also induce any 
discrete number of equilibria. 

REMARK. So far we have assumed a constant arrival 
rate A. It stands to reason that the arrival rate would 
also depend on the system performance. In our 

model, we may assume that A depends on the system 
performance parameter x, and is naturally decreasing 
as x increases. It may be verified that the offered wait- 

ing time V (possibly conditioned on V > 0) is stochas- 

tically decreasing in A, so that the previous results 
hold in this case as well. 

3.3. Maintaining a Constant Abandonment 
Fraction 

We shall briefly examine here certain aspects of 

system performance using the adaptive patience 
model and the related equilibrium framework. As 
has been observed in ?4, one possible effect of cus- 
tomer adaptation is to keep the abandonment fraction 

approximately constant, even under varying conges- 
tion conditions. It may thus be of interest to find the 

precise patience variation that would keep the aban- 
donment fraction constant. A reasonable conjecture in 
this regard, which we verify below, is that patience 
should be approximately proportional to the offered 

waiting time in order to keep the abandonment frac- 
tion fixed. This indeed conforms well with the empiri- 
cal relation that will be observed between these quan- 
tities in Figure 4. 

We shall consider as before an M/M/m + G queue, 
with m,L fixed (normalized to 1), and let the arrival 
rate A serve as a parameter that controls the system 
load. We require Pab = 3, with 3 a specified constant 

(taken as 0.3 below), and Pab is the fraction of aban- 

doning customers out of those that are not immedi- 

ately admitted to service. The patience distribution G 

depends on a system performance parameter x, taken 
as x = v2 := E(VIV > 0). We are thus considering the 

system equilibrium defined in Equation (6). We spec- 
ify G as a member of some parametric family {G }, 
where the parameter r1 is also the mean of G , and 

depends on x according to some relation 7 = 7r(x), 
which is determined below. We shall consider two 

parametric families: 
1. Deterministic: G,(t) = l{t > 7}. Thus, T . 
2. Exponential: G,(t) = 1 -exp(-t/r7). 
We now wish to compute the required dependence 

of r7 on x so that the abandonment fraction is fixed at 

Pab = 3, for all feasible A. This is done as follows. For 
each fixed A, Pab is a function of 7R, and one may solve 

(possibly numerically) for the value of 17 that gives 
Pab = P. Given r1, namely G7, we can now compute the 

corresponding x = E(VIV > 0). This procedure yields 
x and 71, parameterized by A, and hence obtains the 

required function r7(x). 
For concreteness, let us outline the computation of 

r7. We have 

Pab := P{abandonlV > 0} = P{T < VIV > 0} 

= Fo(v)G(v) dv, 
v=0 

where Fo is the density of (VIV > 0) obtained from (1). 
In the deterministic case, substituting G(t) = l{t >_ r} 
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and using (1) gives, after some calculations, 

Pab = P Fo(v) dv -= 
f 

eJ(t) dt 
J .?~fo elt) dt 

1 e-nr(mA-,) 

(1 - e-n(mA-A)) +1 e-7(m_-A) m,u-A m,u 

Solving Pab = 3 for T7 gives 

1 1- 3 (1 A 
1 log 1 +- - - 

m/p- A m+ 
- 

. 

In the exponential case a numeric computation is 

required. 
The results obtained for m,u = 1 and 13 = 0.3 for 

deterministic and exponential patience, respectively, 
are shown in Figure 2. It depicts both rq := E(T), x := 
E(VIV > 0) and their ratio rj/x as a function of A. 

(Observe that A beyond mtl/(1 -,3) = 1.43 is not fea- 
sible since it implies a service rate which is higher 
than the server capacity.) It may be seen that the ratio 
is approximately constant over the entire range of A, 
which means that indeed 7r should be approximately 

proportional to x to obtain a fixed abandonment rate. 
It is interesting to note that the required ratio of qT to 
x is significantly lower for the deterministic case. 

4. Empirical Support 
Traditional queueing theory has been naive in its 

modeling of abandonment. To wit, from the classi- 
cal Palm (1953), Riordan (1962), Daley (1965) to the 
state-of-the-art Baccelli and Hebuterne (1981), Garnett 
et al. (1999), Brandt and Brandt (2000), it has always 
been assumed that patience is assigned to customers 

only upon arrival to the system, independently and 

identically distributed among customers, and unre- 
lated to experiences of the past or anticipation of the 
future. In practical applications of the theory, further- 
more, the distribution of patience, if at all acknowl- 

edged, has been assumed exponential; see, e.g., Gar- 
nett et al. (1999). (The papers Palm 1953 and Roberts 
1979 are notable, but perhaps outdated, exceptions.) 
This is despite the fact that theory has actually accom- 
modated general patience (Daley 1965, Baccelli and 
Hebuterne 1981). A main reason for that, one deduces, 

Figure 2 Patience Profiles That Keep Pa, = 0.3, with Patience That Is Deterministic (Left) and Exponentially Distributed (Right) 
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is the lack of empirical evidence that either sup- 
ports or refutes exponentiality. More fundamentally, 
we believe that there is simply sufficient understand- 

ing of human patience in general, and of the distri- 
bution of the time to abandon while waiting in tele- 

queues in particular. 
A comprehensive empirical analysis of a telephone 

call center has been recently documehted in Man- 
delbaum et al. (2000). This center provides bank- 

ing teleservices of various types, for example balance 

inquiries, information to prospective customers, tech- 
nical Internet support, stock management, and more. 
The event history of each individual call during 1999 
was recorded, starting at the Voice Response Unit 

(VRU) and culminating in either a service by an agent 
or an abandonment from the tele-queue. 

Part of the analysis in Mandelbaum et al. (2000) 
focuses on customer patience while waiting, and 

among its relevant findings we single out the follow- 

ing three observations: 

(1) Patience definitely need not be exponential, and 
it varies significantly with service type, customer pri- 
ority, and information provided during waiting; see 

?6.2 in Mandelbaum et al. (2000). We note that the het- 

erogeneity of patience among customers has already 
been confirmed convincingly; for example, in Thierry 
(1994), Friedman and Friedman (1997), Diekmann 
et al. (1996) it is shown that patience, or value of time 
as its proxy, is affected by factors such as goal (ser- 
vice) motivation, mood, social status, and others. 

(2) The waiting time distribution, over customers 
who actually got served, is found to be remarkably 
exponential (Mandelbaum et al. 2000, Figure 11). Note 
that this result is theoretically exact for the M/M/m 

queue in steady state only when there are no aban- 
donments (cf. (1)). 

(3) Experienced callers seem to adapt their patience 
to system performance (congestion), as exhibited 
in Figure 1. Patience of novice callers, on the other 

hand, is less sensitive to system performance. 
For the rest of the section, we substantiate this last 

observation with further empirical evidence, first for 

novice and then for experienced callers. 
Calls by novice customers are denoted in Mandel- 

baum et al. (2000) by type NW (for New). An exam- 

ple of such calls is inquiries by potential customers 

on marketing campaigns. In analogy to Figure 1, the 

scatterplot in Figure 3 relates the fraction of NW aban- 
donment to their actual wait (restricted to delayed 
customers). As in Figure 1 and throughout the figures 
below, each scatterpoint corresponds to 15-minute 

periods of a day (Sunday to Thursday), starting at 
7:00 A.M., ending at midnight, and averaged over the 
whole year of 1999. 

The plotted relation in Figure 3 seems linearly 
increasing, with a positive intercept through the y- 
axis. (The line in the figure, as well as those below, are 
standard least-square fits.) We take this linearity as 

supporting the independence between patience and 

system performance. Indeed, for the G/G/m queue in 

steady state, with abandonment times that are i.i.d. 

exponential (0), the relation is exactly linear through 
the origin: 

P{abandonlwait > 0} = 0 x E[waitlwait > 0]. (14) 

For a verification, start with the fact that the 
abandonment rate equals either A x P{abandon) or 

E[queue-length] x 0. Equating these last two expres- 
sions, using Little's law E[queue-length] = A x E[wait], 
and dividing by P{wait > 0}, yields the above lin- 

earity. (For nonexponential patience, linearity holds 

asymptotically, as demonstrated in Theorem 4.2 of 
Brandt and Brandt 2000). To allow for a positive y- 
intercept, assume further that, among the abandoning 
customers, some abandon immediately upon arrival 
if forced to wait-which is commonly referred to 
as "balking." We then have P{abandon} = P{balk} + 
0 x E[wait]. Letting V denote the offered wait, one 
deduces the relation 

P{abandonlV > 0} 

= P{balk\V > 0} + x E[waitlV > 0]. (15) 

(Note that here we condition on V > 0 rather than 
wait > 0 since balking is inconsistent with the latter.) 
One can now interpret Figure 2 as portraying cus- 
tomers whose patience seems unaffected by varying 
conditions of congestion. For example, an increase in 

E[WaitlWait > 0] from 80 to 120 seconds has the same 
effect as an increase from 120 to 160 seconds: Both 

accompany an increase of about 12.5% in abandon- 

ment, out of those delayed. 
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Figure 3 Novice (NW) Customers 
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We now turn to experienced callers, denoted IN 

(technical INternet support) in Mandelbaum et al. 

(2000). As already demonstrated in the Introduction 

(Figure 1), the patience of experienced callers may 
exhibit remarkable adaptivity to system performance. 
The difference between NW customers (Figure 3) and 
IN customers (Figure 1) is clearly manifested (note the 
different time scales is the two figures). 

Finally, we examine the relation between patience 
and perceived system performance. To this end, 
Patience will be represented by E[time-to-abandon], 
while system performance will be measured by 
E[offered-waitlwait > 0]. For experienced callers, we 

expect that actual performance, represented by this 
measure, coincides with anticipated performance, the 
latter being forged through previous experience. In 
other words, with enough service (sampling) experi- 
ence, the distribution of the offered wait would be 
unraveled to experienced customers; they summarize 
this distribution via its mean, which in turn approxi- 
mates their anticipation. 

Figure 4 covers IN (experienced) customers. Each 

point corresponds to a pair (patience, anticipation), 
during a 15-minute period of a day. We see that y 
(patience) increases with x (anticipation). The slope 
of the least-square line fit is somewhat over unity. 
We take this as a confirmation for the adaptivity of 

patience to variations in anticipated system perfor- 
mance. 

REMARK. On Censoring: The data in Figures 1 and 3 
are directly observable. In Figure 4, on the other hand, 
both coordinates have to be "uncensored," since what 
is actually observed for each customer i is the actual 
wait Wi = min(Vi, Ti}, which equals Ti (the patience, 
or time-to-abandon) only when i abandons, and Vi 
(the offered wait) only if i survives to be served. We 
use for this purpose the classical Kaplan-Meier esti- 
mator (Kaplan and Meier 1958), for specific details see 
Zohar et al. (2001). 

REMARK. An analogue of Figure 4 for NW (novice) 
customers is not displayed. The reason is a lack of 
statistical confidence which is associated with data 

censoring. Some comments on the issue of robustness 
in censored estimation may be found in Zohar et al. 

(2001). 

5. Modeling Patience 
Abandonments of waiting customers are a common 
and important factor in service systems, and most 

people personally experience potential abandonment 
situations on a daily basis. Still, there appears to be 
little work concerning the modeling of the abandon- 
ment decision process and its contributing factors. We 
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Figure 4 IN Customers 
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present here a brief discussion of some of the litera- 
ture that seems relevant to abandonment modeling. 

Abandonment decisions are predominantly a psy- 
chological process, which is triggered by negative 
feelings that build up while waiting. These are cou- 

pled with various factors such as the service util- 

ity and urgency, observed queue status, time percep- 
tion, and exogenous circumstances. The exact trigger 
for abandonment remains largely unexplored. In an 

early work, Palm (1953) assumed that the abandon- 
ment rate is proportional to the momentary dissat- 

isfaction, or annoyance, of the customers. An alter- 
native model could specify an abandonment when 

annoyance (or another measure of negative feelings) 
reaches a certain threshold. A central ingredient in 
either case is the subjective disutility (or cost) of wait- 

ing, that has been addressed in a number of papers. 
A distinction can be made between the economical 

(opportunity) component of that cost and the psy- 
chological cost. The latter relies on both the sense 
of waste of invested time, and the stress caused by 
the remaining waiting time and associated uncer- 

tainty. Major factors that affect the waiting experience 
and its effect on service evaluation have been dis- 
cussed in Maister (1985) and Larson (1987). A math- 
ematical model for stress that has been introduced 
in Osuna (1985), and further developed in several 

papers, for example, Suck and Holling (1997), explic- 
itly models the dependence of stress on the distri- 
bution of the remaining waiting time. However, this 
model does not directly address the effect of customer 
service expectations. Empirical studies include Tay- 
lor (1994), Leclerc et al. (1995), Hui and Tse (1996), 
and Carmon and Kahneman (1998). The latter, in 

particular, studies the evolution of the momentary 
affect in a queue and its relation to (observed) queue 
length. 

The dependence of the subjective waiting cost on 
service expectations, and particularly on the expected 
waiting time, has been addressed qualitatively from 
several perspectives. The "first law of service" in Lar- 
son (1987) postulates that "satisfaction equals percep- 
tion minus expectation." A reasonable consequence 
is that stress picks up when the expected wait 
has been surpassed. Hueter and Swart (1998) point 
out that customer perception of waiting time in a 
fast-food establishment increases steeply beyond an 
actual wait of several minutes (with a correspond- 
ing increase in the likelihood of abandonment). The 
effect of expectations and their disconfirmation on the 

momentary affective response is discussed and indi- 
cated empirically in Carmon and Kahneman (1998). 

A normative, utility-maximizing model for aban- 
donments has been considered in several recent 
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papers (Hassin and Haviv 1995, Mandelbaum and 
Shimkin 2000, Haviv and Ritov 2001). The abandon- 
ment time of each customer is chosen to maximize a 

personal utility function, which balances the service 

utility and the expected cost of waiting. We note that 
in the basic form of these models, the customer choice 
relies on the entire distribution of the offered wait- 

ing time, rather than just on its average (x) as was 
assumed in the present paper. Still, the model may 
be appropriately reduced by allowing the customers 
to assume an exponentially distributed waiting time. 
The reduced model is presented in Zohar et al. (2001), 
and related there to the Assumptions of ?3. 

Further work is required to establish analytical 
abandonment models that are based on the integra- 
tion of a psychological framework with experimental 
and empirical data. 

6. Modeling the Learning Process 
Our equilibrium model assumes that customers know 
the average waiting time in the system. The model is 
thus static with respect to the customer's knowledge. 
In practice, however, the customer assessment of the 

waiting may be evolve through experience. 
In this section, we consider a simple model for such 

a learning process, where each customer estimates 
the average waiting time based on personal experi- 
ence, namely his own waiting times in previous vis- 
its. He then goes own to modify his abandonment 
decision according to the current estimate. Of prime 
interest to us here is the long-term or steady-state 
behavior of this learning process, which serves to val- 
idate our equilibrium analysis and examine some of 
its hypotheses. The transient behavior of the process 
may also be of considerable importance, for example 
to assess the time it takes to reach the steady oper- 
ating point after the system is considerably modified, 
but we shall not address this aspect here. 

Learning processes of similar nature have been con- 
sidered in Altman and Shimkin (1998), Ben-Shachar 
et al. (2000) in the context of bulking decisions. In 
our case, abandonments complicate the estimation 
process, since the observations of the offered waiting 
time are censored by abandonment; that is, a customer 
who abandons the queue before being admitted to 

service does not observe the required wait but rather 
a lower bound on it. We are thus faced again, as in ?4, 
with the need to estimate the mean of a distribution 
based on censored data. 

We first employ a standard nonparametric estima- 
tor for censored data, namely the Kaplan-Meier (KM) 
estimator mentioned before, which provides a consis- 
tent estimator of the mean. It will be demonstrated 
that when each simulated customer uses KM, the sys- 
tem does indeed converge to its unique equilibrium 
point. 

The KM estimator relies on complex computations, 
and in practice the customers' estimates are likely to 
be formed by much simpler procedures. It is therefore 
of interest to examine the consequences of using sim- 

pler estimators. The estimator we consider here is a 

(parametric) maximum likelihood estimator, which is 
derived based on the assumption that the estimated 

quantity (the virtual waiting time in our case) is expo- 
nentially distributed (or equivalently that the hazard 
rate of entering service is constant). This assumption, 
while false in the presence of abandonments, is a rea- 
sonable starting point from the customer's viewpoint, 
and leads to a simple estimator. It is given by (Miller 
1981, p. 22): 

(16) 
1N 

E(T)= E 
Ns i=l 

1 

where {Wl, W2,..., WN) are the collection of all the 

perceived waiting times, both from abandoned trials 
and successful ones, and N, is the number successful 
trials, namely those that ended up with a service and 
were not censored by abandonment. We shall refer to 
this estimator as the Censored MLE. If T is not expo- 
nential, the estimator is biased enough to be incon- 
sistent. Since the exponential assumption is false in 
our system, the Censored MLE turns out to be biased, 
and thus leads to a steady state of the learning sys- 
tem that differs from the previously postulated equilib- 
rium. Our simulations will demonstrate convergence 
to this alternative steady state. 

The online learning model that we propose is based 
on the following scenario. Each customer initially pos- 
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sesses some estimate x of the average waiting time, 
and his abandonment time (or distribution) is given 
by a function T(x). The queueing system is that of ?2, 
with the specific customer to enter the queue at each 
arrival is chosen randomly from a finite population. 
When the customer leaves the queue, either through 
service completion or abandonment, he updates his 
estimate x, and returns to the pool of idle customers. 

6.1. Simulation Results 
We describe here the results of two simulation exper- 
iments: The first employs the KM-based estimator, 
while the second employs the simpler Censored MLE. 
In both, the system is a single-server (M/M/1) queue, 
with A = L = 1. Each customer maintains a personal 
estimate x of the average waiting time, and deter- 
mines his abandonment time in the next trial as 

T(x) = 0.8 . x. The estimated waiting time is taken 
here as v2 = E(VIV > 0) (see (6)). Note that the cus- 
tomer population is homogeneous in terms of the 

patience function. Simulation results for heteroge- 
neous customer populations may be found in Zohar 

(2000), and lead to similar conclusions. This refer- 
ence also contains a more complete description of the 

present simulations. 
The specific customer who enters the queue is ran- 

domly and uniformly selected out of a pool of idle 
customers. If the pool is empty, a new customer is cre- 
ated. The initial knowledge base of a new customer is 
"inherited" from one of the existing customers, cho- 
sen at random. The first customer who initializes the 
simulation is arbitrarily initialized with ten "observa- 
tions" of waiting times with duration w0 = 1.5 each. 

For reference, let us first calculate the equilibrium 
point for this system as per the analysis of ?3. Note 
that the specified patience function T(x) satisfies the 

requirements of Theorem 3.3, and hence the equi- 
librium is unique. The equilibrium condition (6) is 

v2(x) = x. An expression for v2(x) is terms of T(x) has 

been obtained in (13) for this system, which gives: 

T)2/2 (x)/ + 1(x)+ 
= X. 

T(x)+l 

With T(x) = 0.8 . x, this equation indeed has a single 
positive solution at x = 1.25, which is the equilibrium 
value. 

A slight modification was implemented in these 
simulations regarding the choice of abandonment 
times. Every once in a while (on each 30th trial), 
each customer was allowed to stay in the queue until 
admitted to service, instead of abandoning at T(x). 
This allowed customers with low patience to sample 
the actual waiting time more fully, and turned out 
to be important for a reasonable convergence of the 
estimators. 

SIMULATION 1: KAPLAN-MEIER ESTIMATOR. The 

system was simulated with the KM-based estimator. 
Recall that this estimator calculates an estimate of 
the entire waiting-time distribution (from which the 
mean is extracted). The results of the simulation are 
shown in Figures 5 and 6. The number of customers 
created in this example was 8; this is just the number 
that was required in this run to prevent starvation 
in the arrival process. The simulation was run for 
over 40,000 arrivals, which amounted to about 5,200 
arrivals for each customers. Figure 5 shows the esti- 
mates of Customers 1 and 8 for the distribution of 

(VIV > 0), as obtained at the end of the simulation. 
The graphs also depict for reference the theoretical 
distribution at the equilibrium point according to (1), 
and an exponential distribution with the same mean. 
The results for the other customers were similar 

(Zohar 2000). Figure 6 shows the estimated mean 
v2= E(VIV > 0) of the offered waiting time for these 
two customers, as a function of their "iteration num- 
ber" (the number of times they visited the queue). 
We can see that the estimates tend to converge. At 
the end of the simulation the mean estimate of the 

waiting time across the eight customers was 1.2007, 
with a standard deviation of 0.0672. This agrees well 
with the theoretical equilibrium value of x = 1.25 as 
calculated above. 

SIMULATION 2: CENSORED MLE. The same system 
was simulated with the Censored MLE estimator (16). 
The number of customers created in this simulation 
was 11. The results are depicted in Figure 7. We can 
see that the estimated waiting time converges. The 
simulation yields a much higher mean waiting time of 
1.6452 across 11 customers with standard deviation of 
0.0218. This deviation may be attributed to the bias of 
this estimator, as discussed in the previous subsection, 
since the waiting time distribution here is not expo- 
nential. 
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Figure 5 Simulation 1: Estimates of the Waiting Time Distribution for Customers 1 and 8 Using the Kaplan-Meier Estimator 
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Figure 6 Simulation 1: Estimates of the Mean Waiting Time E(V\V > 0) for Customers 1 and 8 
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Figure 7 Simulation 2: Estimates of the Mean Waiting Time E(VIV > 0) for Customers 1 and 8 
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The theoretical value of the equilibrium in the last 

example can in fact be recalculated with an appro- 
priate consideration of the Censored MLE. As shown 
in Zohar et al. (2001), this calculation gives x = 5/3 z 
1.66. This is in close agreement with the estimated 
value that was obtained in the simulation. 

7. Conclusion 
This paper focused on certain adaptive aspects of cus- 
tomer behavior, namely the dependence of the cus- 
tomers' patience on the anticipated waiting time, and 
its effect on the performance of queues with invisible 
state. We have shown how the steady-state operat- 
ing point (or equilibrium) can be characterized and 

computed, and demonstrated the applicability of the 

proposed model for performance analysis. We have 
shown how the static equilibrium concept can be 

interpreted as the steady state of a dynamic learning 
process; while highly idealized, this lends in our opin- 
ion considerable credibility to the proposed equilib- 
rium solution. At the same time, the learning process 
examples demonstrate how the way that customers 
evaluate their experience can have a significant effect 
on the resulting equilibrium. 

Our model allows considerable freedom in the spe- 
cific dependence of patience on system performance 
(i.e., the dependence of G on x). To extend its use- 
fulness in queueing practice, further characterization 
of this dependence is required, specifying both trends 
and quantitative relations that hold in given classes 
of systems. This calls for further research into the 
abandonment process. Such research must combine 

empirical analysis, as in Mandelbaum et al. (2000), 
with further understanding of the triggers of aban- 

donment, as in Zakay and Hornik (1996). 
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