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Abstract

A call center is a popular term for a service operation that handles telephone calls
of customers. A call center typically consists of agents that handle incoming calls,
telephone trunk lines, an Interactive Voice Response (IVR) unit, and a switch
that routes calls to agents.

The subject of this thesis is a Markovian model for a call center with an IVR.
We calculate operational performance measures, such as the probability for a
busy signal and average wait for an agent. The calculations of these measures
are cumbersome and they lack insight. We thus approximate the measures in an
asymptotic regime known as QED (Quality Efficiency Regime), which is suitable
for moderate to large call centers. The approximations are both insightful and
easy to calculate (for up to 1000’s of agents). They yield, as special cases, known
approximations for the Erlang-B, Erlang-C and M/M/S/N queue.

Finally, we develop an algorithm for optimal staffing and trunk level. The
algorithm is then used to analyze ways for reducing the operational costs of a
call center, to understand the effect of a call center’s size on its service level, and
to investigate the effect of changes in system parameters on performance - for
example, increasing IVR functionality (which would reasonably imply fewer but
longer agent calls).
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Chapter 1

Introduction

LA call center is a popular term for a service operation that handles telephone calls
of customers. Today all Fortune 500 companies have at least one call center [14].
Each employs an average of 4,500 agents across their sites. More than $300 billion
is spent annually on call centers around the world [14]. Currently, call center
operators represent 0.5% of the workforce in France, 1.5% in Great Britain and
4% in the USA [1]. Call centers are widely used, for the purpose of sales, service,
and many other specialized transactions.

Rafaeli [27], in a recent research, reports that in Israel there are approximately
500 call centers. The number of employees in the 200 largest call centers is near
11,000 (about 1.8% of the workforce). Most Israeli call centers operate in banking,
medical care, insurance, communication, tourism, transport, emergency services
and the food industry.

Telephone calls are often characterized as either outbound and inbound. In-
bound calls are initiated by the customer to obtain information, report a malfunc-
tion, ask for help or perform a business transaction. This is substantially different
from outbound calls where the agent initiates the call to a customer, mostly with
the aim to sell a product or a service to that customer, but sometimes also to
provide information or to return a previous call by the customer.

Call centers have been aided by a range of telecommunications and computer
technologies, including automatic call distribution (ACD), interactive voice re-
sponse (IVR), and computer telephony integration (CTI), the latter allowing the
actions of the computer to be synchronized with what is happening on the phone.
In addition, customer relationship management (CRM) technologies, and other
database systems, are heavily employed in call centers. Readers are referred to
Gans, Koole and Mandelbaum [11] for explanations of call center terminology.

IParts of Chapter 1 are adapted from [3].

16



A recent Purdue University study [8] revealed that 92% of US consumers
form their image of a company based on their experience using the company’s
call center. More strikingly, the study found that 63% of the consumers stop
using a company’s products based on a negative call center experience. That
number rises to almost 100% for consumers between ages 18 and 25.

Increased competition, deregulation and rising customer acquisition costs
highlight the importance of both high-quality customer service and effective man-
agement of operating costs. To achieve both, most leading companies are deploy-
ing new technologies, such us enhanced interactive voice response (IVR), natural
speech self-service options and others. The latest internet technologies allow
“virtual” call centers to be established across a company’s telecommunications
network without physically having all the people in one office.

1.1 Call Centers with ”self-service”

Technological progress has significantly affected the development of the call-center
industry. Computer Telephony Integration (CTI) provides numerous opportuni-
ties for combining telephone service with e-mail and Internet services. Conse-
quently, many call centers have evolved to so-called “contact centers”, which
serve customers through multi-media channels.

Automated Speech Recognition techniques help extend the number of tasks
that Interactive Voice Response (IVR) units, traditionally touch tone, have been
able to perform. Thus, IVR and Internet applications are becoming essential
to the success of any contact center operation. When working properly, they
can handle most inbound telephone transactions with a level of speed, efficiency
and user-friendliness that is getting closer to matching human agents - and an
IVR/CTI call costs only about 1/16 the costs of an agent-assisted call [3].

We now elaborate on the significance and scope that IVR and Internet applica-
tions play in contact centers. To repeat, IVR and Internet systems are specialized
technologies designed to provide callers with verbal, fax or on-line answers to in-
quiries, without the assistance of people. This and other “self-service” technolo-
gies provide account information, fulfill requests for mailable items, pre-screen
callers for script customization, interact with host systems (read and write), and
produce reports.

Many organizations would benefit greatly from adding or enhancing “self-
service” environments, while other companies’ service quality would improve if
their IVR/Internet system were removed. For example, one service provider
could not afford the cost of staffing a 24-hour service environment or the cost of
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outsourcing the off-hour service. However, it could afford to implement a “self-
service” application for off-hour service. While the IVR/CTI could not answer
100% of the off-hour questions, it was able to handle 60% of these calls, decreasing
call-back requests by 60%. The savings realized from the reduced call-backs paid
for the system already during the first year [3].

Some consumers prefer to not deal with a human. eBay says that most of its
customers are that way [18]: “Our members are very comfortable on the Internet,
and an e-mail option or chat are sometimes preferred,” quoting eBay’s director
of Customer Experience [18].

However, many customers get to hate “self-service” systems. They are the
topic of angry anecdotes told around the coffee maker and the copy machine,
and all too often, they are the reason that customers shift their loyalty from one
company to another.

But it is not really the “self-service” systems themselves that the customers
hate - it is the applications some companies develop for them. Often the scripts
companies use are confusing to the customers and make it difficult for the cus-
tomers to complete their interactions with the system. For example, according
to [23], the top ten common errors in script design of IVR are the following:

1. Too many choices. Just because there are 12 buttons on the touch-tone
pad does not mean they should all be used.

2. Too many layers. A layer is a set of menus that is connected to additional
sets of choices. For example, if the first set of choices asks if the call is about
appliances or furniture and the caller selects appliances, then the second layer of
menus might list the various appliances and ask the caller to select one of them.

3. FEndless loops. An endless loop occurs when the choices provided do not
include an escape option that would take the caller to the agent (or an after-hours
recording). So if callers do not hear a choice that corresponds to their issue, they
just keep hearing that list over and over with no escape.

4. Disconnect of caller. If the caller does not make a selection the first time
through a menu, many systems replay the options again. But in some cases,
if the caller does not make a selection, the system simply disconnects. This is
incredibly rude and frustrating for the caller.

5. Use of industry jargon. 1t is unreasonable to assume that callers will
understand all of the unique terms and acronyms of one’s businesses. So, if the
caller is presented with a list of choices such as for HMO, press 1; for PPO, press
2; or for Indemnity, press 3 - it is likely that many will end up in the wrong
system or agent group.

6. Constantly changing menus. Repeat callers become familiar with the num-
bers that correspond to their common choices and move through the menus with-
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out listening to the lists. But if the options are changed, callers need to spend
more time listening, which frustrates them and costs money for call center.

7. Menu choices do not have expected results. An example of this is the menu
that asks the caller which language is preferred, but then connects the caller to
an agent group that does not speak that language.

8. Number first, menu item second. The script should provide the description
of the choice first and then tell the caller which digit to press. If the number is
given first, the caller may forget which number it was by the time the right de-
scription is heard. This results in the caller having to repeat the menu, increasing
both caller frustration and cost to the company.

9. Unprofessional voices. The scripts that are read to the caller should all be
in the same voice and should be a voice that is easy to listen to with a neutral
accent. Many companies have employees do these recordings and then mix up
male and female voices as employees come and go.

10. Unprofessional scripts. This is more of a problem with speech recognition
systems than with IVRs, but the “rule of thumb” is: do not get cute with the
script. It might work in some companies with a fun-loving brand image, but it
can come off as unprofessional.

The self-service technology itself is neutral - just as capable of making life
easier as it is of causing frustration. And many companies use successfully voice
“self-service” to create positive experiences that build customer loyalty.

If “self-service” systems seem to frustrate customers, why are so many compa-
nies using them? The answer is simple. Properly applied, “self-service” systems
yield a range of business benefits that make them worthwhile. And properly ap-
plied, they increase rather then reduce customer loyalty. Here are three sound
reasons for using “self-service” technology in the contact center [3].

eImproved customer satisfaction

Properly used, “self-service” applications can contribute to customer satisfac-
tion is several ways. For one, they can reduce queue times. If there’s anything
customers like less than dealing with “self-service” prompts, it’s waiting on hold
until an agent becomes available. Studies [3] show that 37% of all typical con-
tact center transactions are routine inquiries that can be easily automated. By
using “self-service” systems to handle these transactions, the manager frees up
agents to handle more of the kinds of transactions that require human service.
Customers spend less time on hold and abandon fewer attempts to get in touch
with the company.

Another advantage “self-service” applications offer to customers is extended
service hours. Most contact centers can’t afford to staff around the clock, but
with self-service applications, the company can deliver cost-effective 24 X 7 service.
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“Self-service” applications also offer privacy. There are some transactions
that customers would prefer not to discuss with an agent. Customers who want
to check if they have overdrawn their checking account might not want to ask
an agent about it. A health care customer who is calling to get medical test
result might be more comfortable hearing the results read by a text-to-speech
application rather than by a human agent.

elncreased revenue

Customer “self-service” applications can also be revenue generators. Extended
hours of service, for instance, also mean extended business hours. By letting
customers use “self-service” systems to order products and services, companies
create around-the-clock revenue streams.

The “self-service” systems can also become around-the-world revenue streams,
because self-service applications extend companies’ market reach. If the business
depends entirely on human-service transactions, then to do business in other
times zones a company either must maintain a 24 X 7 operation in one location
or it must build and staff contact centers in other time zones.

Last but not least, by using a “self-service” system for routine information
requests and simple service transactions, companies free their trained agents to
concentrate on more complex calls, such as closing sales, cross-selling and up-
selling.

eReduced cost

The most often cited reason for using self-service applications is reduced costs.
Staffing expenses typically account for between 60 and 70 percent of contact
center costs [28]. The typical service phone call involving a real person costs
a company $7. An Internet transaction, with a person responding, costs $2.25.
But a “self-service” phone call with no human interaction costs less than 50
cents, according to the marketing director at TelephonyAtWork, a call center
vendor [18].

Salaries are not the only expense associated with staffing. If agents do not
have all the skills they need or don’t meet a company’s service expectations, they
are costing money. If a company must compete with other contact centers to
hire competent agents, and then raise salaries frequently to keep them, that costs
money too. If a company’s training costs amount to two or three months salary
per agent and the turnover rate is 25% per year, it is spending significant sums
without getting any return.

In summary, the use of “self-service” technologies has been increasing in a
variety of industries, including banking, brokerage, insurance, sales and catalog
houses. The “self-service” technology enables call centers to keep costs from
rising (and sometimes to reduce costs), while improving service levels, revenue
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and hence profits.

21



Chapter 2

Literature Review

2.1 The QED regime

The main mathematical framework considered in this thesis is the many-server
heavy-traffic asymptotic regime identified already by Erlang [9] and Jagerman [19],
but ultimately introduced and formalized by Halfin and Whitt [17]. We refer to
this regime as the QED (Quality and Efficiency Driven) regime. Systems that
operate in the QED regime enjoy a rare combination of very high efficiency to-
gether with very high quality of service, as surveyed in Gans, Koole and Mandel-
baum [11]. This will be demonstrated in the present thesis as well.

Consider a sequence of S-server queues, indexed by n. Let the arrival-rates

A, — 00, asn T 0o, and fix p the service-rate. Define the offered load by R,, = ’\7”

The QED regime is achieved by choosing ), and S, so that v/S,,(1—p,) — 3, as
n T oo, for some finite 3. Here p, = g—:. When customers have infinite patience,
pn may be interpreted a the long-run servers’ utilization and then one must have
0 < B < oo. Otherwise, p, is the offered load per server and —oco < 3 < o0 is
allowed. Equivalently, the staffing level is approximately given by

S, ~ R, + 6\ R,, —00 < 3 < 00. (2.1)

Another equivalent characterization of the QED regime is a non-trivial limit
(within (0,1)) of the fraction of delayed customers. The latter equivalence was
established for GI/M/S [17], GI/D/S [20] and M/M/S with exponential pa-
tience [13]. The staffing rule which appears in (2.1) has been called the square-root
staffing principle (or sometimes “safety-staffing principle”).

As mentioned, the QED regime was explicitly recognized already in Erlang’s
1923 paper (that appeared in [9]) which addresses both Erlang-B (M/M/S/S)
and Erlang-C (M/M/S) models. Later on, extensive related work took place in
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various telecom companies but little has been openly documented, as in Sze [30]
(who was actually motivated by AT&T call centers operating in the QED regime).
A precise characterization of the asymptotic expansion of the blocking probability,
for Erlang-B in the QED regime, was given in Jagerman [13]; see also Whitt [31],
and then Massey and Wallace [26] for the analysis of finite buffers. The balancing
of 7service and economy” via a non-trivial delay probability is the operational
significance of the QED regime. It was first discovered and formalized by Halfin
and Whitt [17]: within the GI/M/S framework, they analyzed the scaled number
of customers, both in steady state and as a stochastic process. Puhalskii and
Reiman in [31] established convergence of the scaled queueing process in the more
general GI/PH/S setting, allowing also priorities, but not covering steady-state.

2.2 The square-root safety staffing principle

The square-root safety staffing principle has been part of the queueing-theory
folklore for a long time. This is well documented by Grassmann [15, 16], and
recently revisited by Green & Kolesar [24], where both its accuracy and appli-
cability have been convincingly confirmed. The principle was substantiated by
Whitt [31], then adapted in Jennings et.al. [21] to non-stationary models. All of
this work applies infinite-server heuristics, grounded in the fact that the steady-
state number of customers in the M /M /oo queue, say @, is Poisson distributed
with mean R = ﬁ, the offered load. It follows that ()*° is approximately nor-
mally distributed, with mean R and standard deviation v/R, when R is not too
small [5].

The square-root principle has two parts to it: first, the conceptual observa-
tion that the safety staffing level is proportional to the square-root of the of-
fered load; and second, the explicit calculation of the proportionality coefficient.
Borst, Mandelbaum and Reiman [5] develop a framework that accommodates
both of these needs. More important, however, is the fact that their approach
and framework allow an arbitrary cost structure, having the potential to gener-
alize beyond Erlang-C. For a concrete example, Garnett et.al. [13] accommodate
impatient customers: in their main result, the square-root rule arises conceptu-
ally, but the determination of the value of the proportionality coefficient is left

open. The square-root safety principle also arises in Massey and Wallace [26] for
the M/M/S/N queue.
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2.3 Analytical models of call center performance

In the detailed introduction to call centers by Gans, Koole and Mandelbaum [11],
it is explained how call centers can be modeled by queueing systems of various
characteristics. Many results and models with references are surveyed in that
paper. The authors examine models of single type customers and single skill
agents; models with busy signals and abandonment; skills-based routing; call
blending and multi-media; and geographically dispersed call centers.

Figure 2.1 depicts a schematic model of a simple inbound call center with S
agents serving one class of customers. A call at either the IVR or within the
servers’ pool occupies a trunk line. There are N trunk lines in this call center.
As shown, the waiting room is limited to N — S waiting positions and waiting
customers may leave the system due to impatience. A blocked or abandoning
customer might try to call again later (retrial). A queueing model of such an
inbound call center is characterized by customer profiles, agent characteristics,
queue discipline, and system capacity.

A
Retrials Lost customer @
Calling Busy signal
customer ( A)
» N-S 2 1
Abandonment
Retrials
Lost customer
Agents
v

Figure 2.1: Schematic model of a call center with one class of impatient customers,
busy signals, retrials and identical agents.

The simplest case with homogeneous customers and homogeneous agents is
analytically tractable only if one assumes Poisson arrivals, exponential service
times and no retrials. With these assumptions, the underlying stochastic pro-
cesses are one-dimensional Markov processes, i.e., the future behavior is condi-
tionally independent of the past, given the present state. Figure 2.2 depicts a
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schematic model of such a queueing system.

A
Lost customer
Calling Busy signal
customer (1)
» N-S 2 1
Abandonment

Lost customer

&)

v Agents

Figure 2.2: Schematic model of a queueing system with busy signals, impatient
customers but without retrials.

The basic operational question in the design of call centers is: “How to provide
an acceptable quality of service with the least costs?”, or “How many agents and
trunk lines do we need in order to provide a given service level?” In general: “How
to trade off service quality with operational efficiency?”

Frequently used measures which support decision-making are average of the
waiting time in queue, the probability to encounter a busy signal, the proba-
bility of wait, agents’ occupancy, etc. In order to analyze the staffing problem,
analytical models have been developed in order to help find the answer. The
most widely used model is M/M/S, which is also known as Erlang-C. In this
model, the arrival process is Poisson, the service time distribution is exponential
and there are S independent, statistically identical agents. It is the simplest yet
most prevalent model that supports call center staffing. Borst, Mandelbaum and
Reiman [5] determined the asymptotically optimal staffing level S that trades off
agents’ costs with service quality. They developed this rule for three regimes of
operation: quality-driven, where the focus is on service quality; efficiency-driven,
which emphasizes agents’ costs; and a rationalized regime that balances, and in
fact unifies, the other two.

The M/M/S model allows an unbounded number of customers in the system,
but in practice this number is bounded by the number of trunk lines. This
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gives rise to the model M/M/S/N (when S=N it is called Erlang-B). Massey
and Wallace [26] proposed a procedure for determining the appropriate number
of agents S and telephone trunk lines N needed by call centers. They construct
a new efficient search method for the optimal S and N-S that satisfy a given
set of SLA (Service Level Agreement) metrics. Moreover, they develop a second
approximate algorithm using steady-state, QED-based asymptotic analysis that
in practice is much faster than the search method. The asymptotically derived
number of agents and the number of waiting spaces in the buffer are found by
iteratively solving a fixed point equation.

Analytical models of a Call Center with an IVR were developed by Brandt,
Brandt, Spahl and Weber [6]. They show, and we shall use this fact later on, that
it is possible to replace the open network of their model with a closed Jackson
network. This latter model has the well known product form solution for its
stationary distribution. Such a product-form distribution was used by Srinivasan,
Talim and Wang in [29] in order to find expressions for the probability to find the
system busy and the conditional distribution function of the waiting time before
service.
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Chapter 3

Call Centers with an IVR

3.1 Model description

As mentioned already, a call center typically consists of telephone trunk lines, a
switching machine known as the automatic call distributor (AC'D), an interactive
voice response (IV R) unit and agents to handle the incoming calls.

We consider the following model of a call center: The arrival process is a
Poisson process with rate A\. There are N trunk lines and S agents in the system
(S < N). First the customer is served by the IVR processor. We assume that
the IVR processing times are independent and identically distributed exponential
random variables with rate 6. After finishing the IVR process, a call may leave
the system with probability 1—p or request service from an agent with probability
p.

We assume that there is no abandonment in our model. Agents’ service times
are considered as independent identically distributed exponential random vari-
ables with rate p, which are independent of the arrival times and IV R processing
times. If the call finds the system full, i.e. all N trunk lines are busy, it is lost.
So we consider our model as a system with two multi-server queues connected in
series. The first one represents the IV R processor. This processor can handle at
most N jobs at a time, where N represents the total number of trunk lines avail-
able. The second queue represents the agents pool which can handle at most S
incoming calls at a time. The number of agents is naturally less than the number
of trunk lines available, i.e. S < N. Moreover, N is also an upper bound for the
total number of customers in the system: IVR plus waiting to be served or are
served by the agents.
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i Interactive Voice Automatic Call E

i Response (IVR) Distributor (ACD) Pool of Agents !
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I B > Olmal

e olndl
Customers i i c
entering :< > > @ N | ustomers
the system i 4 >: g:lavmgt

! i € system

Customers leaving the system

Figure 3.1: Schematic model of a call center with an interactive voice response,
S agents and N trunk lines.

Let Q(t) = (Q1(t), Q2(t)) represent the number of calls at the IV R processor
and the agents pool, respectively. Since there are only N trunk lines then Q1 (¢) +
Q2(t) < N, for all t > 0. Note that the stochastic process @ is a finite-state
continuous-time Markov chain. We shall denote its states by the pairs {(4, j)|i +
j<N, i,j=0}
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Figure 3.2: Schematic model of a queueing system with an interactive voice
response, S agents and N trunk lines.

As shown in [6], one can consider the model as a closed Jackson network,
by introducing a fictitious state-dependent queue. Let us look more carefully at
this procedure. We can describe our original model as an open queueing network
with two nodes and state-dependent arrival and service rates. The first node is
an infinite-server node that models the IVR, whereas the second node models
the S servers and the queue in front of them. The service times in the first and
the second nodes are exponential with rates 6 and p respectively. The system
accepts new arrivals only if @ (t) + Q2(t) < N. This inequality holds if and only
if there is at least one trunk line available. Note that we will say that the system
is in the state (7,7),0 <1i,7 < N and i+ j < N, when it contains exactly i calls
in the IVR and j in the agents pool. So, the process of accepted customers by
the system has the intensity:

A j) = {)\, for i+j<N; 51)

0, otherwise.

Since the second node models the customers that are waiting or being served,
we can define the service rate u(j) in node 2 as being dependent on the number
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j of customers in node 2:
u(j) = min(j, S)p, (3.2)

where min(j, S)p is the departure rate of the actually served customers.

AG, f) u1(J)
(O i 11 O
I-p

'

Figure 3.3: Schematic model of a queueing system with an interactive voice

response, S agents and N trunk lines.

For the open network model, exact calculation of performance measures is
difficult because the network is not of a product form type. Therefore, we replace
the open network with the following closed three-node network:

exp(0) exp(u)
. ()——r—> O
N I-p S
1
\ 4
o
exp(A)

Figure 3.4: Schematic model of a corresponding closed Jackson network.

The state-dependent arrival rate is simply modeled by having only N entities
circulating in the network. Service time in the first, second and third nodes are
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exponential with rates 6, p and A respectively, and the numbers of servers are
N, S and 1 in these nodes. So we can consider our model as a three node closed
Jackson network, which is well known to have the following product form solution
for its stationary distribution:

! (a)m*(6)7° (7)
R , a+f+y=N;
70, j, k) = i+j§:Nﬂ- (i)m2(5)m3 (k) (3.3)
0 otherwise.

where 7!(i) is the steady state probability for node [, I = 1,2,3 (M/M/N, M/M/S
and M/M/1 respectively).

So, the stationary probabilities 7 (i, 7) of having i calls at the IV R and j calls
at the agents pool can be written in a product form as follows:

(1 "1 J
ros (2) L(P2) < o<itj<n
it \0) '\ ‘
w(i,j) = 1L/ 1 A o i e (3.4)
o3 (9 Sigis\ ) 125 0sitish;
\O otherwise.
where
. —1
(S0 w3 2 2 06) 5 E))
0= (2 — (£ 2) (22
i=0 j=S N8/ SIS i+j§N,j<S' ANV

3.2 Description and Derivation of Performance
Measures

3.2.1 Distribution of the waiting time

An important dimension of the service quality of an inbound call center is the
waiting time of its customers. Define the waiting time W as the time spent by
customers, who opt for service, from just after they finish the IVR process until
they start service by an agent. Now we calculate the density function of W,
following the partially heuristic derivation of Srinivasan, Talim and Wang [29].
We say that the system is in state (k,7), 0 < j < k < N, when it contains
exactly k calls, and j is the number of calls in the agents’ pool (waiting or served);
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hence, k — j is the number of calls in the IVR. Let x(k, ), 0 < j < k < N, be the
probability that the system is in state (k,7), given that a call (among the k — j
customers) is about to finish its IVR service. Let A denote the event “a call is
about to leave the IVR”. Then using Bayes Theorem we get:

x(k. ) - = im P(Q() = (k — j )] 4) =
PUAIQ = (k= 1) PRW= (=4 ) (3¢

= lim ~
> 32 P(A] Q) = (1= m.m)) P(Q(1) = (L = m.m)

t—o0

Each term in (3.6) can be rewritten as

lim P( Q(t) = (k — j,)|A)

t—o0

) 1 o
~ i e (@(t) — (k= j.j)

Qt+e)=(k—-j—1,5+1)
~ tim (e(0(k — §)(1 —p) + o(e)) + e(@p(k — 7) + o(e))) w(k — 7, 7)

e—0 g

= (k=J)m(k=j,5).

It follows from (3.6) and (3.7) that

QU +e)=(k—j—17)or )
(3.7)

x(k,j) = —E=Dmk=3d) (3.8)
S S (1= m)a(t = mm)

Let W(0) be the probability that a call starts its service immediately after
leaving the IVR. Then:

wO)=> > xlkj) (3.9)

The distribution function of the waiting time was found by Srinivasan, Talim
and Wang in [29] and it is given by:

Wt)y=1- > i
k=S+1 j=S

J S St
St 4
(usty e (3.10)

S l=0
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The expected waiting time E[W] can be derived via the tail’s formula, i.e.,

E[W]_/OOO( ))dt — / iSX’WJZSMSt =

k=S+1 j=S 1=0
N k- N k-1 j—S
St Vet , 1
S mz/ = 3 Y g =
=5+1 j=8 k=S+1 j=S l:o“
N k-
1
= — Z Z (k,7)(5 — S +1). (3.11)
’u =5+1j5=S5

The average waiting time for answered calls is often called average speed of
answer (ASA).

3.2.2 Probability of delay

One out of several measures of the waiting time is chosen to measure the service
level. This measure is defined as the percentage of calls answered within a given
waiting time limit. The service level is a widely used performance measure in call
centers. The so-called “80/20 - standard service level” means that 80% of the
customers should wait no more that 20 seconds. This 80% can also be interpreted
as the individual probability of a randomly selected customers to wait at most 20
seconds. Hence, if W represents the waiting time of a customer, an X/Y service
level can be interpreted as the probability P(W <Y) = X.

But the service level contains only information about upper bound of the
waiting time for X percent of all customers. The remaining customers may have
significantly larger waiting times than Y. Especially in cases of low service levels,
we must analyze other performance measures.

In many cases, a very interesting measure is the expectation of waiting time
E[W], which we saw in the previous section. Also we wish to know the fraction
of the customers that wait in the queue. We call this fraction the probability of
delay, which is denoted and given by

N—-S—-1N—-i—1

P(W>0)= Y x(i (3.12)

1=0 j=S

Equation (3.12) gives the conditional probability that a calling customer does
not immediately reach an agent, given that the calling customer is not blocked,
i.e., P(W > 0) is the probability of delay for served customers.

Note the following interesting property of this probability.
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Theorem 3.2.1 For the system with N trunk lines and S agents, the fraction
of customers, which are required to wait after their IVR service, coincides with
the fraction that in a system with N — 1 trunk lines and S agents, all agents are
busy. Formally,

Py(W > 0) = Py_1(Q2(00) > 5) (3.13)

PROOF. The probability of wait, following (3.12), is:

N k-1 N—S N—i
PN(W>O): Z ZX(kaj)_ X(laj)
k=S+1 j=8 i=1 j=S
NoSN=i o W\
> ﬁ 5) S157=5 <%)

(
S
S () X 0 s (2)

i+j<Niz1j<8 " i=1 j=5
N—-S N—i i1 j
AN 1 (A)z‘ 1 pA
0 Lo (i—1)! \ 0 S1S7=5 \
i=1 j=S

A 1 oayi-1 1 (pa)! NS L it )’
3 > o) )+ e (3) s (B

i+j<N,i>1,j<8 i=1 j=S
N—-S—1N-m-1 1 am 1 PA J
Z m! (5) S185=5 (7)
. m=0 j=S
S L)L (zv_A g N_S_IN_zmj_l L (2" (p_A>J
N i\ p m! \ 0 SISi=S \

m+j<N—1,5<S
N—-S—1N-m—1

= > > wlmy),
m=0 j=S

where m(m, j) is the stationary probability given in (3.4). Thus, it is now easy to
see that

which proves Theorem 3.2.1. O
Thus our conditional probabilities can be reduced to unconditional probabil-

ities.

3.2.3 Probability to find the system busy

The service level of a call center is often defined also in terms of the probability
that an arriving call finds all trunk lines busy. Let us look first at the probability
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P, 0 < k < N, that there are exactly k calls in the system (processed by IVR,
waiting for service or being serviced by an agent); it was found in [29] and has
the following form:

N1 k i 1 1 1 A\ I PA J
Po=m |2 (42 (N Ty,

(3.15)

where g~ g) is the indicator function.

One can apply these formula to derive Py, the probability of having all trunk
lines busy. This is also the loss probability due to the PASTA (Poisson Arrivals
See Time Averages) property, see [32]. The probability that there are exactly N
calls in the system takes the form

Wt op\Y R AW RRNEONY
Py =mg (ﬁ (5"’_;) +j§1(1\7—j)! (S!Sj_s_ﬁ> <5> (7)

(3.16)

3.3 Other performance measures

In many cases, it is interesting to know the expected queue length E|[L], which
can be derived via Little’s formula, i.e.,

E[L] = Ay E[W] = pAE[W](1 — P(block)). (3.17)

The operating costs in call centers are mainly driven by the costs of the agents.
Therefore, the utilization of the agents is often used as a technical measure to
approximate the economic (efficiency) performance of an inbound call center.
The expected utilization of the agents, say u, is the ratio of the effective arrival
rate Acs¢ for the pool of agents and the maximal service rate, i.e.,

Aefs  PA(L — P(block))
Su S

u =

. (3.18)
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Chapter 4

Heavy traffic limits and
asymptotic analysis

The ultimate goal of this chapter is to derive rules of thumb for solving the
staffing and trunking problems for a call center with an IVR. This will be done
analogously to Halfin and Whitt [17] and Massey and Wallace [26].

4.1 Our domain for asymptotic analysis

All the following approximations will be found for the case when the arrival rate
A tends to oco. In order for the system not to be overwhelmed, assume that the
number of agents S and the number of trunk lines N tend to infinity as well.
But now, look more carefully at this problem. Which conditions do we need to
assume further, in order to find an approximations for performance measures?

Let us consider the model of a call center with an IVR as an expanded model
of the M/M/S/N queue. As mentioned before, this latter model was investigated
by Massey and Wallace [26]. They found approximations of the performance
measures of the M/M/S/N queue when A, S and N tend to oo simultaneously
and under the following assumptions:

(1) N—S—n\/é—i-o(\/X), 0 <n < oo;

g A A
(17) S:ﬁ-Fﬂ\/;—i-O(\/X), 0< 0 < oc;

In these conditions, [ is assumed positive because [26] used the M/M/S queue

(4.1)

for finding the approximations. We shall dispose of this assumption momentarily.
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For our call center with an IVR, according to assumptions (4.1), we need S +

n % +o0 <\/X> trunk lines for the queue in the agents’ pool and % + 772\/5 +

o (vV/\) trunk lines for the IVR service pool. So, we can formulate the following

conditions for our system. Let A, S and N tend to oo simultaneously so that:

. A A A
(i) N=S=m Fp+§+7l2\/;+0<\/x>a —00 < 1y, M2 < 0O0;
(47) S:&%—ﬁ &+0<\/X), —00 < f3 < o0;

T

Note, that we ignore the restrictions, that 7;, 7o and [ are positive and assume

(4.2)

that they are of arbitrary sign. The disadvantage is that, in this case, we have
three parameters 7,7, and (. First we reduce the number of parameters to two.

Theorem 4.1.1 Let A\, S and N tend to oo simultaneously. Then the conditions

) A \/X .
(’L)N—S—T]l ?"’5"‘7]2 5+0<\/X)7_OO<77177]2<007

(4.3)
(i) szﬁw,/@ﬂ(ﬁ), 00 < f < o0;
f 1
are equivalent to the conditions
A
(1) N—S:n\/i+—+0<\/x>, —00 < 1 < o0
0 0 (4.4)

(17) S:%—l—ﬁ\/%—l—o(ﬁ), —00 < 3 < o0

where n = 77“/%9 + ns.

PRrROOF. Clearly, one can rewrite the first condition in (4.3) in the form

X 0\ A
N-—-S= — 772+771 p_ +—++O<\/X>,—OO<7717772<00-
" w) o

Setting 7 = 714/ %9 + 1 one obtains (4.4). The second condition is the same.
This proves the statement. O
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The conditions (4.4) have also the following equivalent form

o N-—s-3
(7) )\hm—:n, —00 < 1N < 00;
— 00 A
o (4.5)
(i) Alggof(l—u—sbﬁ, —00 < 8 < o0;

In this thesis we will find approximations of performance measures, where A,
S and N tend to oo simultaneously and under the conditions (4.5).

Note also that the asymptotic results, found in Halfin and Whitt [17] and
Massey and Wallace [26], require strict positivity of 5. In the case of Halfin
and Whitt [17] this is clearly understandable, because they analyzed the M/M/S
queue, which is unstable if 5 < 0. The analysis in Massey and Wallace [26] is
based on a relationship between M/M/S and M/M/S/N. So, the reason for strict
positivity of 4 in [26] is the same as in [17]. Note, that in Section (7.2) we will
find approximations for the probability to wait and the probability to find the
system busy in the M/M/S/N queue model when —oo < 3 < oc.

In the case of a call center with an IVR, we obtain a steady state regardless
of the value of 3. In other words, we can say that —oo < [ < oo. But, as it
turns out, in order to avoid technical problems in calculation, it is convenient to
distinguish two cases:

1) BA0;
2) B=0.

4.2 Four auxiliary lemmas

In this section, we would like to formulate and prove some statements, which will
be used when calculating approximations for performance measures.

Lemma 4.2.1 Let the variables A, S and N tend to oo simultaneously and satisfy
the following conditions:

(i) lim NoSo§ n, —oo < n < 00,
A—00 \/%
(ii) lim VS(1— %) =5, —co<f<oo B#0,

where 1, p, 8 are fived. Then

P e Nil 1
im — —
A—oo S I 2!




PrROOF. For convenience, let us denote the expression, which we need to approx-

_)\(%4_2) A S 1 Nfol1 A i
e H Y%
_ ~(2) . 4.6
& Sl ( ) -2 z; il (9) (4.6)

H —

imate, by &1, i.e.

In view of Stirling’s formula, S! ~ v/2575%~°, one obtains for &;:

N— | — | — —|l=]e .
TVRSrss \w) B & it \o
The last sum can be rewritten as P (X, < N — S — 1) where X, ~ Pois(3) is a
random variable with the Poisson distribution with parameter %, thus F[X,]| = %,

Var[X,] = 3. If X — oo, then § — oo (6-fixed). Note that

X,—2 N-S-—-1-2
P(X,<N-S—-1)=P|2_2< 0
A A

0 0

(4.8)

Thus, when A — oo, by the Central Limit Theorem (Normal approximation to
Poisson) we have

’ N(0,1) (4.9)

and due to assumption (i) of the lemma we get !

—S—ll )\ii
Za(a)e

=0

N

>

L P(N(0,1) < n) = ®(y), when A\ —oo  (4.11)

where N(0,1) is a standard normal random variable with distribution function
®. It follows from (4.7)-(4.11) that

es(l_p) S(D GS((I_P)+IHP) @( N )
~ S Y 12

'Here we are using the following theorem (from [7])

Theorem 4.2.1 Let (, = ¢ and F¢ - the distribution function of ¢ is everywhere continuous.
Let also x,, — oo as n — 00, where {x,} is a sequence of scalars. Here xo € [—00,00|. Then

Fe, (2n) — Fe(2oo) (4.10)
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where p = 22, Making use of the expansion

Sup”
np=In(l—(1-p)=-1-p— 5= +ol=p (p—1). (.13
one obtains , ,
S((1=p)=(1-p)=E72) e—2052
§1 ~ d(n) = (4.14)

—®(n).
V2r3 V23 ()
Recall that v/S(1 — p) — (3, then S(1 — p)> — 32, when A — oo. This implies

i ¢, £0)20)

Jim & = =22 (4.15)

where ¢(+) is the standard normal density function, and ®(-) is the standard
normal distribution function. This proves Lemma 4.2.1. O

Lemma 4.2.2 Let the variables A, S and N tend to oo simultaneously and satisfy
the following conditions:

4. N—§=2
(i) Jim T2k =, —o0 < < oo;

(ii) lim VS(1—2%) =5, —co<f<o0 B0,

where u,p,0 are fized. Then

X q, x|
1 1— g—# Sp «92—“ B
where ny =n — | /p%ﬁ.
PROOF. Again, for convenience, let us denote by & the expression

_a\(lip N-S— i
¢ :ﬂ PA SLpN*S le A (4.16)
2 Sl w) 1—p — 4l \Op) "’ '
— P

Sp”
Let us consider the asymptotic behavior of & under the assumptions of Lemma
4.2.2.

2!

lim =
A—00 S .
=0

where p
—5-1

G pa\T 1 &
e o (p N-5
_ pA — (=) . 417
& St (u) 1—p" 2 i! (9/)) @1)

1=
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Again, by applying the Stirling’s formula and using that p = E — 1,as A —
and S — o0, one obtains,

€S—>\”+Ml SR ] s
~ 418
& 5 " 5 Z il (9p> (4.18)

The last sum can be rewritten as P (Yy < N — S — 1) where Y, ~ Pois(%), and
ElY)] = ¢, Var[Y)] = 2. Note that

b

Xa—a2 N-S-1-2
PYAXN-S—-1)=P L < P (4.19)
A A

0p Op

Let us find a bound of the following fraction

A
N — _eip . 5_0p+77\/7

. VA(p—1)
Y NES =0+ Jim =
Op Op (4.20)
: Sy 0
=n—1 —(1=p)=n—,]—
n= Jim [ 2g (L= p) il
We have used the asymptotic relation
A A
N—S%E—i—n\/;, as A\ — oo. (4.21)

Denote

|
m=n p@ﬁ

Taking into account equations (4.18) and (4.20), the Central Limit Theorem and
Theorem 4.2.1 we have that

N-S5-1 i
; % (%) €% — P(N(0,1) < m) = @(m). (4.22)

It follows from the assumption (ii) and (4.21) that

5= 24 2020y Vg S )+ 251 p) = N1 = p) = S {1 )
— (5= N)(L=p)+ (1= p) = 5 (1)
= (N=S= )1 —p)~ 51— p)
T (R



Using (4.21) and the asymptotics

one obtains

AN A 1 P 1. p I
L1 =p—m/ il —p) (- = — —)E 2 _ Lak
(ep 5 )= p)" =51 =) (9,0 2 29)pﬁ ns 0
~ o2y - RS- NN VA Uy
50 (p9 ) —np 0 5 (1 +57) + 5 peﬁ)
Therefore,
‘ e~z (P +B%)+3n 2+ 32) 1,
tim & = ey = BV gy, (am)

5 NorE

and this proves Lemma 4.2.2. O

Lemma 4.2.3 Let the variables A, S and N tend to oo simultaneously and satisfy
the following conditions:

o1 N-S5—2
(i) lim =L =1, —o00 <1 < 00,
A—00 7

3

(i) Jim V(1= 28) = 8, —o0 < 8 < o0,

where 1, p,0 are fized. Then

) ; B
1 ‘1 J 1, p
lim ) = A L(p e)‘(9+u):/¢> n+(3—1t) r0 dd(t).
A—oo i\ i\ 1
i+j<N—-1,j<S o

PROOF. As in the proof of the previous lemmas, let us denote by v the expression
1 /A1 (pAY v
V= Z S\ = pa 64(%7); (4.24)
w b\ ) g\ p
i+j<N-1,5<S

and find its asymptotic behavior. For this purpose lower and upper estimates for
7v in (4.24) will be found.
Let us consider a partition {S;}!_ of the interval [0, 5].

Sj =9 —‘]CS, ] = O, 1, ceny l, Sl-i—l = 0, (425)

where 0 = [¢ ’%], € is an arbitrary non-negative real and [ is a positive integer.
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If A and S tend to infinity and satisfy the assumption (ii), then [ is less then
% for A big enough and all the S; belong to [0,5], 7 =0,1,...,1.
Emphasize that the length ¢ of every interval [S;_1, 5;] depends on A.

N-1

0 S, S S, S N-1 ]

Figure 4.1: Area of the summation of the variable ~;.

The variable + is given by the formula (4.24), where summation is spread over
the trapezoid on the Figure 4.1. Let us consider a lower estimate for v given by
the following sum with the summation over the shaded area on the Figure 4.1.

P CROR

v >
l F=0 §=5k+1 = (4.26)
= ZP(SIC—H < Z) < Sp)P(X\ < N —5Sk),
k=0
where
A A A
7, ~ Pois (p—) LBz =2 varlz) =2
u u w'
\ \ \ (4.27)
X, ~ Pois (5) , E[X,\] = E Var[X,] = 7

Analogously to Lemmas 4.2.1 and 4.2.2, applying the Central Limit Theorem and
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making use of the relations

Sp— 12
Jim b3 ke k=01,..1 (4.28)
1’7
N—S—2 0
m —* "0 ke [ k=01, (4.29)
A—00 by M

one obtains

lim P(Sp41 < Zy < Sp) = B(B—ke) = S(B— (k+1)e), k=0,1,..0-1, (4.30)

[pd
Jim P(X) < N = Sp) = ®(n+ ke %), k=0,1,..1. (4.32)

It follows from (4.26) and (4.30), (4.31), (4.32) that

lim 5 > " (n+ key/pd/p)[B(8 — ke) — B(B — (k+ 1)e)]

A—00
k=0

+ @(B —le)D(n+ le/pd/ ).

It is easy to see that (4.33) is the lower Riemann-Stieltjes sum for the integral

o0 ﬁ
—/<I> (77 + Sﬁ) dd (5 — s) :/ o <77 + (6 — t)\/%> do(t), (4.34)

0 0o

(4.33)

corresponding to the partition {3 — ke}L_, of the semi axis (—o0, 3).
Similarly let us take the upper estimate for v as the following sum

I Sp—1 j N—Ski1 i
1 /pA\ _m LAY _a
=X 350 T 2 a()
k=0 j=Sk 41 i=0

l (4.35)

P(Ski1 < Zy < Si)P(Xx < N — Siia),
k=0

where the summation is widespread over the shaded area on the Figure 4.2.
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Figure 4.2: Area of the summation of the variable vs.

The above calculations applied to the sum (4.35) give the following asymptotic
estimate for ~:

!
0
Alim v < Z@ (77 + (b + 1)y /%) [D(B —ke) —D(B— (k+1)e)] + D(B — le),
k=0
(4.36)
which is the upper Riemann-Stieltjes sum for the integral (4.34).
When € — 0 the estimates (4.33), (4.35) lead to the following equality

B

lim v = / P <7) + (6 —1) p_&) do(t). (4.37)

A—00 %
—00

This proves Lemma 4.2.3. O

Lemma 4.2.4 Let the variables A, S and N tend to oo simultaneously and satisfy

the following conditions:
_g_A
(i) lim al SA‘) =1, —o00<1n<00;

A—00 7

(ii) lim V/S(1—28) =0, (B3=0),
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where 1, p, 0 are fized, then

o N S—1N—i-1 1 Y T [
Ah_)ngoe (5+3) Z ]z: gl (—) 31555 (7> Z\/%Up—g(n@(n)ﬂL@(n))-

Proor. First denote by & the expression

- %ENSINzl 1 AV Las
- “ZZZ'_S!SJ'—S_' (4.38)
]:

1

Using Stirling’s approximations and the assumptions (i) and (ii) we have

N—S—1 N—i—1 i j
1, p 1 )\ ! 1 )\ J
— o AME+H) (A 2 (P2
f = € g Z ZS Z' (9) S'SJ_S(/JJ>
]:

N-S-1 1 i, N—S—i-1 j AN S
- 0SSR )
i=0 il st =0 H
pA SNSll(é)iNSil (Q)J
i=0 AU j=0 s

J

&
Cbl
<
S
JF
T3
Nl @
=)
nn
e T
=T
- e
=

— 2P A —S—i
- Ly () 1-p""° (4.39)
V2rS = i! 1—p
where p = 22, Under lemma’s condition (ii) # = 0 and this happens when p = 1
or p — 1. When p — 1, p# 1 we use well known approximations
1— k
Pk, (4.40)
L=p

This implies that in this case

o .
Z (N =8 —1),

When p =1 the sum ZN 5771 piin (4.39) is equal to N — S — i and this leads
to the same expression for .
Simple calculations show that

1 N-S-1 67% (A)Z N-S-1 i€,% (A)l
¢ Z il (N -85) B

Q

i=0
N-S—1 Ay A\N—S
~ ! (N—S—é) e*%(e) Led (3)
V2rS 0" — i! (N—-S5-1)



Due to the equation (4.11) the first term in (4.39) can be rewritten as follows

(N—S—%) ZO l(%)zegwn %@(n), (A — 00). (4.42)

7l

The Stirling’s formula gives the following asymptotics for the second term in (4.41)

GV Sed  N-85 (3)" e
N—S—1) _ (N—5)
N-S
27 O(N —S5)

2
&2‘
N
2
m
=
|
>
=2
2
+
>
=2
2

Q
w\s
%
™~
=

We have used in (9.1) the assumption (i) and the following approximations for
the exponent

(N —=39)[1—- — +1n

At PR (4.44)
and (4.42), (9.1) we obtain

\/ﬁ\f n) ~ \/_—\/EQ(U‘I’(U) +e(n)). (4.45)

This proves the Lemma 4.2.4. O
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4.3 Approximation of P(W > 0)

First, assume that 5 # 0. In this case we can prove the following approximation
of P(W > 0).

Theorem 4.3.1 Let the variables A\, S and N tend to oo simultaneously and
satisfy the following conditions:

4. N—§=2
(i) Jim @Gzn, —00 < 1) < 00;

where w,p, 0 are fized. Then the probability P(W > 0) that a customer will wait
after IVR process has the following asymptotic behavior:

-1

5] @ (n+ (3 -0/ anty
P(3)®(n) — o(\/ 172 + B2)exp ()

a= lim P(W>0)= |1+

where ny =n — 3, /I%.

Proor. We would like to find an approximation for the probability that a cus-
tomer will wait after service in IVR. For this purpose, look more carefully at the
definition of this probability, which appeared in (3.12):

i+j<N—1,j<S

Nig:—l]\f—i—ll(é)i 1 (p_)\>j
2 2 ii\g) 5575

= |1+

=S

- (1 + g) h : (4.46)
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where

R (0F [ C—

i+j<N—-1,5<S

NXS: INZ:I il (5) S!;ﬂ'—s (p_A)j‘ -

i
The iterated sum in (4.48) can be simplified. By changing indices [ = j — S we

have:
B B N— 1N211l A 1 p_}\ 7
4 7! S15i-5 \

=0 j=S
S—

B N—-S—1 N-— 1—1 ( )z 1 (p}\)l-f—s
=0 =0 S|Sl K

_ LS iN_iH 23 (4.49)
S\ — 41\ 6§ S '

=0 =0

n

n

Under the assumption of Theorem 4.3.1 one has 3 # 0. Therefore, the right
hand side of (4.49) can be rewritten as

S N-S-1 7 . S—i
p o LSO
ST\ p —~ il \0 1—p
1 (pA S; N—zs:—ll A i_N—S—ll A N
S\ p l—p| = il \ 0 — a\g)”
A F R e o AN Y A WA A P
P\ p l—p = AN S\ l—p &= (1N,
— B, — B, (4.50)

where p = 2_2'

Multiplying A, B; and By by e M) we have

-1
P(W > 0) = <1+ 1 ) , (4.51)
&1 — &
where < NS
2D pa\T 1 Y& Y
e
fl = a p_ T Z il 3 (4.52)
S! L l—p il \ 0
G pa\T 1 1A
[ 23
&y = pA _prS - =1 ; (4.53)
S! L 1—0p — 1! \ Op



1 /A1 /pA)’ “A(+2)
N = Z o (5) = (_) e w, (4.54)

|
i+j<N-1,j<8 JoNH
Note, that &, & and 7 are the same as in (4.6), (4.16) and (4.24), respectively.

So, it follows from Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.3, that under the
assumption of Theorem 4.3.1

Jim ¢ = £, (4.55)
Jim & = ¢(\/77QTﬁ2ﬁ)eXp§<b(m)’ (4.56)
where 1y =1 — 3, /2
8
)\ILIEOV = / d <n + (B —1) %) do(t). (4.57)

Thus, equation (4.51) and equations (4.55)-(4.57) prove Theorem 4.3.1.0

In the case when § = 0 we can find an approximation for P(W > 0) using
the following theorem.

Theorem 4.3.2 Let the variables A\, S and N tend to oo simultaneously and
satisfy the following conditions:

o N-S-2
(i) lim =L =1, —o0 <1 < 00,
A—00

(ii) lim VS(1—2E) =0, (3=0),

where u,p,0 are fired. Then the probability that a customer will wait after the
IVR process has the following asymptotic behavior:

o (n-1t\/2) da(e)
-
' NENCACIORRE0)

PROOF. In the case when 8 = 0, the probability that a customer will wait after
the IVR process has the following form

a:/\limP(W>0):

A —1
P(Wait > 0) = (1 + E) :

20



where A and B are defined in (4.47) and (4.48), respectively. Multiplying A and
1, p
B by e M%) we have

P(Wait > 0) = <1 + %) B , (4.58)

where v = Ae @450 and &= Be Mot By Lemma 4.2.3, when 3 =0

lim y = / ® (n - t\/%) dd(2). (4.59)

—0o0

Now, due to Lemma 4.2.4 we can say, that

Jim ¢ = \/;\/p% () + o) (4.60)

Combining (4.59) and (4.60), we proved Theorem 4.3.2. O

4.4 Upper and lower bounds for the approxima-
tion of P(W > 0)

Let us find a cruder approximation for P(W > 0) under the assumptions of
Theorem 4.3.1. As we showed in the proof of Theorem 4.3.1, we can represent
P(W > 0) in the following way:

P(W>O)=(1+§1z§2> .

Now, let us find upper and lower bounds for the approximation of «v. The picture
below shows domains that yield these bounds.

o1



IN
IN

N-S N-S N-S

v
v

w
Z
w2
Z

w2

Figure 4.3: Graphical comparison of v, v and 7, areas simultaneously.

Instead of a summation over the trapezoid we will examine the summation
over the rectangle (the upper bound of approximation of v) and over the paral-
lelogram (the lower bound of approximation of 7).

It is easy to see that:

TS Y S e (4.61)

N-S-1 S j j
L /A1 /pAY
" "'(5) *'(p_> I,
i=0 j=0 & Jo\H
S

=i k=t \e) gt \n

Separation of variables 7 and j in ~; leads to the equality

where

Tk

and

Y2 =

N-S-1 1 /) i N S 1 /pA J o2
T = 2_1(5) 6_927<_) effzp(X)\SS)P(Y)\SN—S—l),
=0

gt \
where
Xy ~ Pois (p_>\> E[X)] = pA Var[X,] = p—)\,
2 jz ]
(A A A
Vpos(3) ENI=5 Varlil =5

92
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Applying the Central Limit theorem, Theorem 4.2.1 and using assumptions (i)
and (ii) of Theorem 4.3.1, as in the case of {;, we can show that

lim P(YA<N—-S—-1)=®(n) and )\lim P(X\<98)=®(p). (4.62)

A—00

Thus we obtain that
lim v, = ®(n)®(3). (4.63)

A—00

The estimate v, can be rewritten as

N N-—i i j N k
1 /A 1 p)\ I “A(3+2) 1 A p)\ “A(3+2)
n=3 35 (5) 5 () =Sy (Gh) R =rasm
=0 5=0 k=0
(4.64)
where
A A A A A A
Zy ~ Pois ——i—p— EZ,\:——i-p— VarZA:—ij—.
0 u 0 u 0

Again, by the Central Limit Theorem, the assumptions (i), (ii) and Theorem
4.2.1 one obtains

N_A_p_)‘ N—S—A S_p_)‘
P(Zy<N) = o —2— |~ 0 4 L) =
Vith e i
A _ DA
. N-S-5 1 S—5 1 N

(4.65)

Consequently, we can formulate the following Remark.

Remark 4.4.1 Let the variables X, S and N tend to oo simultaneously and sat-
1sfy the following conditions:

e N—5-3
(i) lim =L =1, —o00 <1 < 00,
A—00

0

(i) lim =+/S(1— %) =5, —co<f<oo, B0,
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where p,p,0 are fired. Then the probability that a customer will wait after IVR
process has the following estimates for its asymptotic behavior:

AN A\
(1+§) SA}I_I)I;OPN(W>O)§<1+§) s

where

B, Ay=2(B)2(n)s,

_ 1 s
A =9 \/1+%9+\/1+p%

B = o(9)00) ~ (VP Presp()o(n). m =0 -5 /1

4.5 The boundary cases for P(W > 0)

Now let us consider the boundary cases of our approximations for P(IW > 0).
For this purpose we distinguish the following cases:

a) \/E(N —S—2)—mn, (n€(—o00,+00)), and VS(1 — Z—Z\L) — +o0;
b) /2N =53 —n, (1€ (00, +00), and VE(1 - B) — oo
&) /4N =5 =3) — +o0, and VE(L - ) — 8, (8 € (~00,+00));

d) (3N =5 -3) — 0o, and V(1 - B) — B, (8 € (~00, +0)

In each case we will find a limit of approximation of the probability P(W > 0)
that the customer will wait after IVR-service and before the agents’ service.

Case a. This is the case when the number of agents is bigger then the rate of
the arrival of customers to the agents’ pool. So it is reasonable to suppose that
P(W > 0) will tend to zero.

To prove this supposition consider the behavior of v, & and & from (4.15),
(4.23) and (4.37), respectively, under the assumptions (a).

It is easy to see that

lim lim & = lim @@(n) =0,

[B—00 A—00 B—o00

/2 1 32)
lim lim & = lim we%q)(m) = 0.

[B—00 A—00 B—00 ﬁ

o4



In this case 7 tends to 1, since

B
pb
lim lim v = lim P + (8=t — dd(t) = 1.

— 00

So,

-1
Y
lim a = hm =0,
B—oo ( &1 — 52)
as we supposed.

Case b. In this case the number of customers is noticeably bigger than the
number of agents. Thus, we can guess that almost all of the customers have to
wait before receiving the agents’ service. Therefore, the bound of P(W > 0) will
tend to 1.

Indeed,

R e
Jm (6 —6) = im [P Dap) - N

0, if & <1;

—= p
oo, if £ >1.

P

The variable v is infinitesimal when [ tends to —oo

B
po
lim li = 1l Q| n+(B—1t)y/— |dP(t) =0.
LU LLN <”<5 Wﬂ) "

—00

®(m)

Let us consider two cases. First, when

A
> 1,
pd =

then, clearly,

~1
. . i
lim lim (1+ =1.
[B——00 A—00 ( 51 — 62)
In the second case, when "

— < 1,
po
v, under the previous section, has the following lower bound
lim < B()(5).

A—00
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Using the well - known approximation for ®(z), when z — —oo, we have

)
i< i —EE2
In that way
)
Jim lim : 75 < lim (n)e(B)
——00 A—00 — ——00 2432) l(yh_— B2
1 2 5(@@7])—%(\/%%)62@ B/ 75) (I)(’r]—ﬂ /p%>>

1
= lim =0

Bo—o0 1 _ e%(nfﬁ\/ng)z/q)(n)

—1
1 £>1
lim nm<1+ B ) _l =
B—00 A—00 & —& 1, £ < 1.

7
So, the probability to wait for the customers which finished their IVR service and

This implies

want to continue in the agents’ service goes to 1, as we supposed.

Case c. In this case n — oco. This means there are infinite number of trunk
lines in a call center. Because of this, we can guess that the number of customers
in the IVR is not influenced by the state of the agents’ pool. So, let us consider
only the agents’ pool. As we said, there is an infinite number of trunk lines,
meaning that almost all the customers which seek to be served by an agent can
enter the system. The customers come with the rate pA. The agents’ service time
is exponential with rate . Our intuition is thus as follows:

e when 3 < 0 the model is not in a steady state and almost all the customers
are waiting, hence we can guess that P(IW > 0) tends to 1.

e when 3 > 0 we cannot give such a simple answer, but we guess that the
customer’s arrival process to the agents’ pool can be modelled by the Poisson
process, and then the system can be modelled by the M/M/S queue model,
which was analyzed by Halfin and Whitt in [17]. So in this case we guess that
our approximation will tend to Halfin and Whitt’s approximation from [17].

Now, let us look mathematically at what happens with P(W > 0) when
1N — 00. Since

lim lim & = 2.
1n—00 A—00
\/n? 2) 22 0, > 0,
lim lim & = lim w(n——i_ﬁ)eTQ)(m) = .
n—00 A—00 n—00 B —o00, <0,
B
o . pY
lim lim v = lim [ ®[n+(8—1t)/— | dP(t) = ®(5).
N—00 A—00 n—00 ,U

o6



it follows that

(4.66)

—00 —00

-1
-1 ®(B)B
) ) (1+%5) . s>0

lim a = lim ( 1+
( &1 — & 1, B <0,

Note, that the approximation for probability to wait when G > 0 coincides
with the approximation for probability to wait in the M/M/S system, which
was founded by Halfin and Whitt in [17].

Case d. This is practically an impossible case for the call center with IVR,
because in this case the number of agents is close to the number of the trunk
lines. It is obvious that almost nobody waits in the queue, so the probability to
wait tends to zero.

Actually, we have the following approximation for & — & when n — —oo

CB)e) | e plm) e

§1— &~ — i \/%5 "
_eBem) e (4.67)
A 21 B(n — B/ 11/ p9)
_eB)em) [u
n? po

Using the lower estimate for v from (4.63) and the asymptotic formulas for ®(n)
when 1 — —oo we obtain

lim lim > lim lim
77_}_00)\4)00 1 — &2 77—>—OO)\—>OO§1_§2
d(n)d
i P02(5)
P
~ im0
T 0(B) 4/ 4
This implies
-1
. . 2
lim lim (14 = 0. 4.69
A—00 N——00 < 51 - §2> ( )

So, just as expected, the probability to wait in this case tends to zero.
Analyzing the approximation of the probability to wait in the case when
£ =0, we can say that
1, when n — 400

PW
( >O)—>{O, when 1 — —oo0.
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4.6 Approximation of v/ SP(block)

Let us find an approximation for v/SP(block). As in the previous section, we
distinguish two cases

1) B#0;
2) pg=0.
In the first case this approximation is given by the following theorem.

Theorem 4.6.1 Let the variables A\, S and N tend to oo simultaneously and

satisfy the following conditions:
_g_A
(i) lirnNSA" n, —oo<n<oo;

A—00 7

(ii) lim VS(1—28) =5, —co<f <00, B#0,

where p,p, 0 are fixed. Then the probability of blocking has the following asymp-
totic behavior:

P VT Pexpt o
Jim VSP(block) = — vo () @ () + ol + P 2lm)
00 2132 n
S @ (n+(B—1)/2) do() + 22— AV ey T ()
L+B 8 8
where n, =n — 3 pﬂav ”lzn\/\/fz—g’ vy = 12?“;’ v = 11+%,

Proor. The probability that an arriving call finds all trunk lines busy is given
by the following formula:

P(block) = > w(N —j,j)

C+ Cy 67/\( ) 01 + 09

= —= , (4.70)
A+ By — B 67)\(+) Y+ & — &

o8
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where

So,

)

I

m‘
P

=

+

T
S| =
/N

i+j<N,j<S

1

A (2N B N PN

TS p) 1—p &~ il\g)"
AL 2N B NP
2 S| ) 1=, &oa\ep)
S N—j J
b= e DS 1 i(i) (_)‘>
N =i \o ’

N

G Sy L ()1 (A
? L SISiS \ ) (N—j)\ 6

Using (4.15), (4.23) and (4.37), notice that

B
== [ o (n -0/ vy

Allrﬂlogl = lim & = @‘D(n);
~ A/ 2 2 1
lim & = lim p& = Wéxl’”lz@(m);

29

(4.71)

(4.72)

(4.73)

(4.74)

(4.76)

(4.77)

(4.78)

(4.79)

(4.81)

(4.82)

(4.83)



where 3, n and 7, are the same as in the Theorem 4.6.1.
Now let us consider

5 _e“éﬂ’i)i N! AN pAY
TN (N =)l 0 m

where
p Nu
X, ~ Bin | N, & . EXy=—"— VarX, = P :
( é+§> W5+ 5) i+ 57

1 1
YANPOiS )\ ——|—£ ; EY)\:A ——|—£ ; VarY)\:)\ l_i_g .
0 u 0 u 0 u

By the Central Limit theorem and Theorem 4.2.1 one obtains

S — A2 i _
PX,<S) = &| 6D | _g (SEH+D-N)\ _

- P 7 po o o po B
S(1+ 1%)
Byfds—m
= & (4.84)
1+ 1%

N—-1-X342) V,-A3+2) N-)i42
PY,=N) — P (3 M)< » = Alg “)g G+ _
AG+ ) AG+E) G+
1 1
_ p N—)\(a—i—%)_ 1 <Z§N—)\(§+§)
Az +E) Az +E) Mg +12)
o sO(N—Mgw
AMz+12) VAG+2)
1]
1 Ny 25+ 08
~ © \/’j . (4.85)
VENGE 1+ 4



In the last case we have used the equivalences (as A tends 0o)

1 A A A pA A S
N—)\(§+§)z8+5+n\/;—5—%28+n\/;—8+5\/§zn p—g+ﬁ\/§;
1L p, _Su

N-X3+2) M/wth n+ 0/

It follows from (4.84), (4.85) that

! 77\/%"‘5 ) —5\/%—77 (4.86)

fim 1 = A=) =
© VS 1+ & 1+ 4 1+ 4

Let us find an approximation for ds.

5, — urh 3 L (Y L (N
? 18-S \ ' ) (N=j)1\6

j=S+1

D XN: 1 (A (N
I (N — ! \pS 0 B
s

j=5+1 .
“AG+E) N N-S-1 i
_ e e (p 3 Ay L (4.87)
S1S=5 \ uS —~ \bp) 1

Comparing (4.17) and (4.87) one obtains
0y = V5B, A — oo,

In the previous section (cf. (4.18) and (4.23) an approximation of & was
found, therefore

= (WP AP iy
lim 6, = 5 ¢ ®(m), (4.88)

where my =1 — 3, /z%' This proves Theorem 4.6.1. O
Now let us consider what happens in the case when = 0. Approximation for

~, gare the same as the approximation of v and & (4.59), (4.45), in the proof of
Theorem 2.2 and approximation for §; are the same as in the proof of Theorem
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3.1. So, we just need to find an approximation for d,. For this purpose one can
use the formulas (4.86) and (4.88) from the proof of Theorem 4.6.1.
1

lim li Sy = —7 4.89
Jim lim /55, Nl (4.89)

and

o 1 n U
lim lim VS8, = o )D( )
B—00 A—00 \/1_’_]% \/1+pE€ /1+2%

Now we can formulate the following theorem.

(4.90)

Theorem 4.6.2 Let the variables X\, S and N tend to oo simultaneously and
satisfy the following conditions

g N-S-3
(i) lim =L =17, —o0 <1 < 00,
A—00 =

0

(ii) lim VS(1—-25) =0, (3=0),

where p,p, 0 are fived. Then the probability of blocking has the following asymp-
totic behavior:

vo (1) ® (1) + =P
Jim VSP(block) = — P 1) 2 (o) + 7 20) ,

J @ (n—t/2) do(t) + A=\ /2 () + p(n)

whereulz% Vg = —L— p=—-L

) 2 Ay 2 e
1"‘% 1+p9 1+p9

4.7 Upper and lower bounds for the approxima-
tion of v/SP(block)

Calculations similar to those in Remark 4.2.1 yield upper and lower bounds for
approximation of v/SP(block).

Remark 4.7.1 Let the variables X\, S and N tend to oo simultaneously and sat-
i1sfy the following conditions

e N—5-3
(Z)Ah_{go \/%6:777 —00 <1 <00

(i) lim =v/S(1- &) =5, —co<f<oo, B0,
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w,p,0 are fived. Then the probability of blocking has the the following estimates
for its asymptotic behavior:

v (1) @ (vs) + 0B;
Al -+ Bl - BQ

v (1) @ (12) + BBs
A2 -+ Bl — BQ ’

< lim VSP(block) <

where

= O(B)®(n),

R

Bi= Se9)¥0), B = (—Vﬁﬁ”exp@@(m

m n— ) y V2= .
\/ po +p9
p L+ ,/1+ 1/1+ﬁ

4.8 The boundary cases for \/SP(block)

Now let us see what happens with \/§P(block) when either 3 or 7 is going to oo.
The cases are the same as in the analyzing of behavior of the approximation of
P(W > 0).

Case a. \/g(N —S—2)—=mn, (n€(—00,+00)), and VS(1 — —) — 400.

In this case the number of agents is bigger than the number of customers
which want to receive agents’ service. So, it is possible to suppose that almost
nobody waits before the agents’ service and therefore there are many vacancies
in the system, then v/SP(block) tends to zero.

As we saw when proving the Theorem 4.6.1 the probability of blocking can
be written in the following form

01 + 02

P(block) = — —
T+&—&

(4.91)

Approximations of 51, Eg, 7, 61 and 0y are given in (4.15), (4.23), (4.37), (4.86)
(4.88). It is easy to see that

®(n) =0,

lim lim fl lim
B—00 S—o00 B—00

£(5)
E

/2 2
hm hm 62 hm weén%(P(nl) — 07

B—00 S—o0 ﬁ
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M/ + 5 =
lim Shm V56, = lim ! © - ) L 0,

fr00 §—o0 P VS I+ &\ 1+ 5 JI+ 5

hm hm V50, = hm (/1 + 32)ezd(n,) = 0,
and
/ | p0
ﬁhm Shm 7= ﬁhm 0 (77 +(5—1) %) do(t) = ﬁlim E[@(n+(B—t)\/pl/p)] =
So,
Jim_ Jim VSP(block) = 0.

Case b. \/g(N— S—2)—=mn, (n€(—o0,+00)), and V/S(1 — —) — —00;

In this case the rate of customers is bigger than the number of agents and
this implies that there are many people in the queue and all the system is busy.
Thus, the probability to find the system busy multiplied by the square root from
the number of agents tends to infinity. This heuristic analysis is approved by the
following mathematical calculations.

When  — —oo then

m — o0, vV — —0Q, Vg — —OQO

As we saw in (4.61), (4.64) and (4.65)

B8
ma /\hm W—ma @(77—1—(5—75)” e)d‘b( t) < O ! - + b )
——00 A—00 ——00 B
oo s \/1+% \/1+ﬁ

(= =)
1+P 1+
— lim — Vn \//3 = lim o)
T et M
We can see also that
lim lim 6; =0, lim lim 0, =0,

[B——00 A—00 [B——00 A—00

ﬁlim lim 51 =0, hm )\lim 52 = 0.
So,

)
lim lim VSP(block) = jf—ﬁf{ = o0,
oo dmoe VA& — &
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as we supposed.

Case c. \/E(N—S— 2) — +o00, and V/S(1 — g—’;) — B, (B € (—00,+0)).

In this case we have an enormous number of places in the system. As we
saw in Section 4.3 there are two different situations in the agents’ pool. When
(£ > 0 it is not a problem to enter into the system and therefore the probability
to block tends to zero. In the case 3 < 0 it is not clearly understandable what
happens with the number of customers in the system, and we can guess that the
probability to find the system busy differs from 0. Indeed, in this case

. . V
mooe e m i o) = 22
p fm @lm) =1, i fim () =0,
i) 0, > 0;
lim lim VSP(block) — lim lim 220)202) 06 ’
1—00 A—00 N—00 A—00 v+ 51 - 52 _ﬁa ﬁ <0.

Case d. \/g(N —S—2)— —o0, and VS(1 - g—z) — B, (B € (—00,+00)).

In this case the number of places in the queue tends to zero, so it is difficult
to come into the system and the probability to find the system busy, multiplied
by v/S tends to infinity.

When n — —oo then

771—>_OO7 Vp —— —00, Vo — 0OQ,
and
lim lim ®(n) = lim —m, lim p(ry) =0, lim ®(1p) = 1.
17— —00 A——00 7—00 ™m n—00 n—00

Also we can see that

2 2
_n°+B8
. . O 24 . N~ e
lim lim &6 = lim —e 2 lim lim &G = lim
1n——00 A—00 17— —00 7]2 1N——00 A—00 17— —00 27]'7]

_1_n?
lim lim ¢(v)®(1n) = Che Pl

n——00 A—00

lim lim 5 < lim lim v = lim _(,0(1/1)’
7——00 A—00 N——00 A—00 n——00 12
where C and C does not depend on 7.
Consequently,
lim lim \/§P(block:) = lim —M = 00,

N——00 A—00 n——00 1)
v
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as we supposed.
Analyzing the approximation when § = 0 we can say that

VEP(block) — { 0, when 7 — 400

+o00, when n — —o0.

4.9 Approximation of v SE[W]

Now let us find an approximation for the expected waiting time E[W] before
service, for customers that finished their IVR process and continue to receive
service from the agents.

Theorem 4.9.1 Let the variables A\, S and N tend to oo simultaneously and
satisfy the following conditions

(i) hm :/_2—7], —00 <N < 005
[

where u, p, 0 are fized. Then the expectation of the waiting time has the following
asymptotic behavior:

lim vV SE[W]

S—o0

Y

2

B/ (n+ (8- t)\/f)f@(t) +(B)2n) — e(vVn* + 67) exp(%)q)(m)
where ny =n — ﬂ\/pza-

ProOF. It follows from (3.11) that the expectation of the waiting time is given
by

N  k—
1
E[W]:M—ZZ x(k, )G —S+1)
k=S+1 j=S
AR 1
= — x(k, 7)) (G = S8) + —=P(W >0
e ; )G = 8) + P )
- O+

66



where

C . i=1 j=S
i (A1 (pa)! NSRS i )’
= (3) ;(7) + 2 X)) s (5
i+j<N,i>1,5<8 i=1 j=S
. N-S—1N-m-1 Looam A\ J
S Z Z m) (5) S165—5 (%) (] _S)
. m=0 j=S
- Loayma () VAT o\’
i (3) ﬁ(?) + X X @) s (7)
m+j<N—-1,j<8 m=0 j=S
1 G
= —— 4.92
uS A+ B’ (4.92)
and . B
= — . 4.93
wS A+ B (4.93)

The numerator G in (4.92), can be rewritten as follow:

N—S5-1 N—m—1 ;
1 /\" 1 A\’
o= > 5() X sws(h) u-9-
j=s

1 m 1 p)\ S N—-S—m-—1 l
- 2wl w(h) X -
m= :0
~S—1 m S N—S—m—1
1 /A A
- L —(2) (& ol (4.94)
S! — m! \ 0 1 —

G = G + Gy,
where
N-5-1 S N-S—-m
1 /A 1 /pA\" p
= — | = — | — N—-S—-m-1 4.96
o= 3 u(5) () o wesmen amw



and - ; N
) %(p_A) l=p 7 _(p -, (4.97)
It follows from (4.96) that
G - N = S—1p¥s <pA SN_ZHL (i)m
Slp—1 — m!

1 pN <p/\)SN S‘li i)’” (4.98)

Sl
P A
~(¥ - )M + 2 g,

where & was defined in (4.15). Next, (4.6), (4.16) and (4.97) yield

o L 1(p ”‘fi A"
2T 1=p2St\ m! \ 0

m=0
1 ]. pN_S_l p)\ N_S_l 1 )\ m (499)
1—pS'1—p — m! \ Op
e,\(g+§)
- (& — &)

Multiplying G by e+ one obtains from (4.98), (4.99)

G = ey = (V- S)e+ (6 - &) ~
VS 7 u 1 T 1 _
_ 1 I .
= VS (flﬂ + 52(5199 n\/p; ﬂ)> : (4.100)
Since
1 G 1 B

EW|=— ——
U uSA+B+uSA+B’
and using previous calculations for A and B, we may say that

1 G 51 +&(BL% —n 9—%
,u\/_A"‘B (’Y‘f‘fl §2)

The approximations for 7, & and & and the formula (4.101) prove the statement
of Theorem 4.1. O

VSE[W] ~ (4.101)
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In the case of # = 0 we can formulate the following

Theorem 4.9.2 Let the variables X\, S and N tend to oo simultaneously and
satisfy the following conditions

1. N-S—2
(1) lim —=2 =10, —oo <1 < 00,
A—00 =

(ii) lim VS(1—2E) =0, (3=0),

where p, p, 0 are fived. Then the expectation of the waiting time has the following

1 n*L50(n) + n\/g (1 + \/,,Z@) ©(n)

lim VSE[W] = — 5 '
\@%m¢m>+wm»+wﬁ%/'<wn—t %%ﬁﬂﬂ

asymptotic behavior:

S—o00 N 2[u '

PROOF. First, let us calculate the last sum in (4.94). The condition 5 = 0 means
that p=1o0r p — 1. If p =1 it is easy to see that

N—S—m—1
N-S—m-1)(N-S5-
Y= ( m 5 I m) (4.102)
=
If p — 1 by using the Teylor’s formula and (4.13) we can say that
M?1n?
pM = eMinr 1+M1np—l—%

(4.103)

%1+M(@_D_@;W>+Mﬂzﬁi

2

Then by using the relation (4.95) the sum in (4.94) we can rewrite in the form

- MEL_1 M pM 1
S = Mt + - (4.104)
— p—1 ~p=1 (p—1)

where M = N — S —m — 1. Taking into account (4.40) and (4.103), one obtains

M(p—17 M (p—1)

M 1+M(pp—1)— -1 M
M —1
= p—1 (p—1) p—1
e M=) MM+ 1)
2 2 )
(4.105)
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Thus, (4.94) has the following form:

~ s 3 () s s
B . —-S—-1 _2x m
~ s X wle) s
) ;Ts Nmsol m;!z (%)m(N — S —m) (4.106)

In the notations used in the proof of Theorem 4.9.1 one can rewrite the last sum

N—S—lg_i<€_ 1 (g)Nsle—2>

in the form

2 26 Vor (N =S5 —-1)!
It follows from (9.1), (4.45) and the assumption (ii) that

N-S _a
Ge MNG+HE) A (N—S—i—l)é-l— (5) €’ (4.107)
2(N—-S—-1)2r

ff 2\/%\/7 (4.108)

N { 2k —5®) +n\/p79 (1 + p%) 90(77)] (4.109)

Making use of (4.107), (4.59), (4.45) one obtains

G

ﬁE[W]zMiSA
m[”q’ i (1 /B) et

m[ n®(n) + o(n )+/ @(n—t\/%)ckb(t)

1 R (4 ) e

~ 2M ’
VB (0% () + () + \/ﬁ/ O —t %Q)d@(t)

This proves the Theorem 4.9.1. O
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4.10 Upper and lower bounds for the approxi-
mation of E[W]

For the approximation of E[W], one can also identify upper and lower bounds
that are relatively simple for calculations and analysis.

Remark 4.10.1 Let the variables A, S and N tend to oo simultaneously and
satisfy the following conditions

1. N-S5-2
(i) lim =L =1, —o00 <1 < 00,
A—00 7

3

(i) lim =VS(1-7%) =5, —co<f<oo, B#0,

where p, p, 0 are fived. Then the expectation of the waiting time has the following
estimates for its asymptotic behavior:

6_1231+(Z%_L_ﬁ LyB

T ONPTE < VEW] <
1m )
A+ By — By S—oo - As + By — By

n &)
Gz © g

/2 32 n?
VI exp 2 ®(m),  m=n—B,/%.

ProOF. The proof is identical to the proof of Remark 4.4.1. Only, instead of the
approximation of v from (4.24) there is a need to take the approximation of the

where Ay = @ Ay = O(B)P(n), B = £020 B —

upper and lower bounds of v from (4.61). O

4.11 The boundary cases for v/ SE[W]

In this section let us see what happens with v/SE[IW] when either § or n goes to
o0o. The cases are the same as in the analyzing of behavior of the approximation
of P(W > 0) and v/SP(block).

As we saw when proving the Theorem 4.9.1, the expectation of the waiting
time can be written down in the following form

N 1 o1+09

VSE[W] ~ P (4.110)
where .
o1 56 = %@(n), (4.111)
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~ e WP n L L
rux g6 = ST a3 — 5 -0y [ 1) (4.112)

Case a. \/g(N —S—2)—=mn, (n€(—o0,+00)), and VS(1 — —) — +00.

As was told in the previous analysis, in this case the number of agents is
bigger than the number of customers which want to receive an agents’ service.
We see that in this case P(W > 0). So, it is possible to suppose that expectation

of the waiting time before the agents’ service will tend to zero.
It is easy to see that

lim lim oy = ﬁhm e(B)P(n) =0,

B—00 S—o0

o(\/n? +ﬁ2) 1 [0
—— (m)(ﬁ——B—n pe)

lim li li ’ S(n+(6—1) p—e)d@(t)— lim E[®(n+(6—t) p—e)]—l
Goos s T T phes - g L T e g w

So,

lim lim oy = lim p =0,

B—00 S—o0 B—00 ﬁ

lim lim VSE[V] = ~— 7112 _ g,
p—o0 S—00 py+& —&
Case b. \/g(N—S— 2) =, (n € (—o00,+00)), and VS(1 — —) — —00;
In this case the rate of customers is bigger than the number of agents and this
implies that there are many people in the queue and all the system is busy. Thus,
it is possible to suppose, that the expectation time multiplied by square root from
the number of agents tends to infinity. This heuristic analysis is approved by the
following mathematical calculations:
When  — —oo then

m — oo, vy — —00, Vg — —OO

B
llm /\hm v = ﬁlim / D+ (B —1)4/ %g)a@(t) =0.

First look at

We can see also that

lim lim oy =0, lim lim o9 =
B——00 A—0c0 B——00 A—00 6
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PV gy,

i Jim & =0, lim i & ===
So,
2 2 1
o AV et o(n)(8)
lim )\hm VSE[W] = — = lim —f = oo,
B——00 A—00 @(\/724-,3 )eér]%@(nl) B——00

as we supposed.

Case c. \/g(N—S— 2) — +o00, and V/S(1— g—i) — B, (B € (—00,+0)).

In this case we have an infinite number of places in the queue. As we saw
in Sections 4.3, in this case the behaviour of the agents’ pool system looks like
M/M/S queue system. When [ > 0 it is not a problem to come into the system
and therefore the probability to block tends to zero. So, we can suppose that the
expectation of the waiting time in queue before agent’s service tends to expecta-
tion of variate which is distributed exponential with rate uG. When g < 0 it is
an ”explosion” of the number of customers in the system, so it is not so easy to
come and almost every one wait in the queue.

There were our assumptions and now let us see mathematically what happens
with the expectation of the waiting time in queue before the agent’s service. Easy

to see that
lim lim oy =0, lim lim & =0,
7—00 A—00 [B—00 A—00
and when 5 >0
¢(B) p
lim lim VSE[W] = lim - 7 200)
7—00 A—00 nN—00
Py o6
[ a0+ (5= 0/ Bhane + £ ()
©(B)
52

= lim

o

()

-1
VSE[W] — “—15 (1 + %}E%)) , when 8 >0
~+00, when ( < 0.

So,

From this formula one can say that the conditional expectation of the waiting
time multiplied by the square root of the number of agents is following;:

lim lim VSE[W|W > 0]

7—00 A—00 - /L_ﬁ ’

(4.113)
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This fact is corresponded with the well-known asymptotic for conditional waiting
time in the M/M/S queue system.
Case d. \/g(N — S —2)— —o0, and VS(1 — 2_2) — 3, (B € (—o00,+00)).
In this case the number of places in the queue tends to zero, so it is difficult
to come in the system and the expectation of the waiting time multiplied by v/S
tends to infinity.

Using the approximation for ®(z), when z — —o0, one obtains

lim lim VSE[W] =

17— —00 A\—00

et (#5-5-n/5)
n3 2eB(n—pyJ45) \ PO P v
= lim — \/; 5
n——o0 8 0 (B)e(n) e
o(n+ (8 — )y Dyaw(r) - £ +
m /_OO (n+(8 >\/:) Q nB 2%5(77—5\/}9)
RO (ﬁﬂ - ﬂ)
B L L NG =
noo p(B)e e
ﬁ\/ﬂ 2n 3

o0) 7 (gh L ﬂ)

L BV <5p0 i)
e () e
ENCTEET

as we supposed.

Analyzing the approximation when § = 0 we can say that

lim lim VSE[W] ={ > when 7 — +00
[B——00 A—00 O, when 1 — —00.
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Chapter 5

Graphical analysis

5.1 Illustration of the approximations

The examples in this chapter illustrate the results found in the previous chapter.
For this purpose we will present some graphs, which include both the real and
approximation values. First the real values were calculated by a program written
on Visual Basic (see Appendix), and the approximations’ values were calculated
on Excel. Next, all this data was processed in Excel and the graphs were built.

For the examination of approximations we compare the performance measures
of small-, and two mid-sized call centers. The model of each call center is the
same as it was in the previous chapter: The arrival process is a Poisson process
with rate A\. There are N trunk lines and S agents in the system (S < N). First
the customer is served by the IVR processor. We assume that IVR processing
times are independent and identically distributed exponential random variables
with the rate 6. After finishing the IVR process, a call may leave the system with
the probability 1 — p or request service from an agent with the probability p. In
each of these cases the average of call handling time in IVR is 8 = 1, the average
of call-handling time by an agent is ;4 = 1, and the probability for the call to be
served by an agent is p = 1.

In the small call center the arrival rate A is 10 customers per minute and the
number of trunk lines is 50. The first mid-sized call center has an arrival rate of
A = 50 customers per minute and the number of trunk lines is 150. The second
mid-sized call center has 200 trunk lines, and the arrival rate A\ is 80 customers
per minute. In each case the number of agents S is in the domain where the
traffic intensity p = 2—2 is about 1. Namely, for the small call center the number
of agents is between 1 and 30, in the first mid-sized call center it is between 30
and 70, and in the second mid-sized call center the number of agents is between

1)



60 and 100.

5.1.1 The probability of delay P(W > 0)

First, look at the approximation for probability to wait in the small-sized call
center.

P(W>0) and its approximation

—=— exact

—A— approx

N oA 9 N D e PP

S, agents

Figure 5.1: Comparison of the exact calculated probability to wait and it’s ap-
proximation for a small-sized call center.

Figure 5.1 depicts the comparison of exact calculated probability to wait and
its approximation. Mention that, in spite of small values of S and A, the approx-
imation is good enough.

In order to show the working of approximation in all graphs in this Chapter,
we take a domain defined by the theorems about approximation.

Thus, in the case of the small-sized call center, the differences becomes no-
ticeable when the number of agents is more than 20. Actually, it is possible to
say that this is already not the domain, which was defined in the theorem. But
nevertheless, the approximation still works well.

76



P(W>0) and its approximation

1.2 4
1,
- 0.8 A
T
. 0.4 *\.\
0.2 4
o+ e —

W D P D T ® R P E LD

S, agents

Figure 5.2: Comparison of the exact calculated probability to wait and it’s ap-
proximation for a mid-sized call center with the arrival rate 50 and the number
of trunk lines 150.

P(W>0) and its approximation
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Figure 5.3: Comparison of the exact calculated probability to wait and its ap-
proximation for a mid-sized call center with the arrival rate 80 and the number
of trunk lines 200.
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In the case of mid-sized call centers, it is easy to see that the picture is
much better. One of the conclusions which can be derived is the fact that the
approximation which was founded is close to the exact value although in the
small-sized call center. Certainly, when parameters of the system are increasing,
the value of approximation goes to the exact value.

Let us note, that the calculation of the exact value is very difficult practically
in the case of a bigger call center, for example, when the arrival rate A is 500, the
number of trunk lines N is 1500, and the number of agents S is between 450 and
550 agents. But, as we see from the following picture, the approximation is very
close to the exact value. So, it can be used for the calculations of probability to
wait in such call centers. In this case one obtains the following picture.

Approximation of P(W>0)

2
= 0.6 —— approx
o

O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Q O O O Q0O O VO D O O O IO 0 VO QN DO 0 5 O v O
NSNS N SN SN T Y S S R AR R R R M C R R oo

S, agents

Figure 5.4: Comparison of the exact calculated probability to wait and it’s ap-
proximation for a big call center with the arrival rate 500 and the number of
trunk lines 1500.

It is worth mentioning that the calculation of the approximation is easy to do
in Excel, Matlab, Maple and many others well-known programs.

78



5.1.2 The probability to find the system busy P(block)

To analyze the accuracy of approximation for P(block) - probability to hear the
sound that the all trunk lines are busy, we compare the exact calculated value of
P(block), and its approximation.

P(block) and its approximation

—==— approx
—@—exact

P(block)
(6]

LN
of%mﬁ

N s A N O PP PP

S, agents

Figure 5.5: Comparison of the exact calculated probability of blocking and it’s
approximation for a small-sized call center.

Figure 3.16 depicts the probability to be blocked in a small-sized call center.
As we can see again, in spite of small values, the approximation is good enough.
Actually, it is even closer than in the case of the probability to wait.

From this graph we can see that at the beginning, when the number of agents
is too small, the probability to wait is close to 0.9. It is easy to explain in the
following way: in the case when there is only one agent in the system, it is full.
So, the customers come to the system only when someone leaves the system. In
this case, customers leave the system after servicing by an agent, i.e. with average
rate 1 in unit of time. Thus, from 10 customers, which arrive to the system only
one comes in. Therefore, the probability to be blocked is 0.9.
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P(block) and its approximation

——exact
—=—approx

P(block)

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

S, agents

Figure 5.6: Comparison of the exact calculated probability of blocking and it’s
approximation for a mid-sized call center with the arrival rate 50 and the number
of trunk lines 150.

P(block) and its approximation
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0.1
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Figure 5.7: Comparison of the exact calculated probability of blocking and it’s
approximation for a mid-sized call center with the arrival rate 80 and the number
of trunk lines 200.
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In the case of mid-sized call centers we have the analogous pictures.

As in the previous section, one can conclude that the approximation is close
to the exact value although in the small-sized call center. Certainly, when pa-
rameters of the system are increasing, the value of approximation goes closer to
the exact value. So, in the case of a call center with the arrival rate A = 500, the
number of trunk lines N = 1500, and the number of agents 450 < S < 550, one
obtains the following picture.

Approximation of P(block)

0.12 4

0.1 -

0.08 - —— approx

0.06 -

P(block)

0.04 -

0.02 -

O\\\\\\\\\\HH\\\\\\\\\\\\\\\\\\\\\\\\\\\\\HH\
S OB O O O A2 0 P N PO DL QO O R a0 oo QO D
DA S A S SIS U e o i

S, agents

Figure 5.8: Comparison of the exact calculated probability of blocking and it’s
approximation for a big call center with the arrival rate 500 and the number of

trunk lines 1500.
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5.1.3 The expected waiting time E[IV]

Finally, look at the the approximation for the F[I¥] in the small-sized call center.

E[W]

E[W] and its approximation

|
\

'\\\ : ::z:ox
O\

T T S SN S BN T SN S N SRS S G

S, agents

Figure 5.9: Comparison of the exact calculated expectation of the waiting time

and it’s approximation for a small-sized call center.

And again, in spite of small values, the approximation is good enough, when

the number of agents is equal to 8 and more. Before this the offered load p = i

Ap

is bigger than 1 and there are many places to wait. So, one can say that this is

an “explosion” in the system. On the other side, the expectation of the waiting
time is bounded from above by 49. This happens in the case, when the number
of agents is 1, and the number of trunk lines is 49. From our model it is possible

to conclude that in this case, the customers will wait on average 49 times the

average of service time. So, their waiting time has Erlang(49,1) distribution, and

the expectation is equal to 49, as we have.
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E[W] and its approximation

— 2 7
< —==— exact
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0.5

N P L D Y ® R P> E D E @

S, agents

Figure 5.10: Comparison of the exact calculated expectation of the waiting time
and it’s approximation for a mid-sized call center with the arrival rate 50 and the

number of trunk lines 150.

E[W] and its approximation

—==— exact

E[W]

—e— approx

O L
€ @ & & A AR P FF P FP PP

S, agents
Figure 5.11: Comparison of the exact calculated expectation of the waiting time

and it’s approximation for a mid-sized call center with the arrival rate 80 and the

number of trunk lines 200.
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In the case of a mid-sized call center with arrival rate A = 50 and the number
of trunk lines N = 150, one can see that the approximation of expectation of the
waiting time is close to the exact calculated value. In the call center with arrival
rate A = 80 and the number of trunk lines N = 200 the picture is more accurate.
So, it is natural to suppose, that when A\ — oo the approximation is very close

to the exact value.

Approximation of E[W]

—@— approx

E[W]

0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Q O O O QO DO VO O O OB QO O Q0 O NV DN HDd O v D
NSNS N N NN SN R I R S SR RN SR R R I oS i

S, agents

Figure 5.12: Comparison of the exact calculated expectation of the waiting time
and it’s approximation for a big call center with the arrival rate 500 and the
number of trunk lines 1500.

Thus, without long and complicated calculations in the case of the great
values, one can use the approximation formula for the expectation of the waiting

time.
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5.2 Effect of number of trunk lines on perfor-
mance measures

In the previous section we analyzed the approximation for the probability to find a
system busy P(block), the probability to wait P(W > 0) and the average waiting
time E[W] for different sized call centers with all parameters being constant exept
for the agents number. The qualitative picture is the following: all the measures
are decreasing with the growth of the number of agents. Now, let us analyze the
case of a call center with all parameters constant except for the number of trunk
lines. For this purpose, we use a mid-sized call center with the arrival rate 50,
when the number of agents S in the range 30 < .S < 70 and the number of trunk
lines is 95, 110, 150.

First, consider the behaviour of the probability to wait P(W > 0) in such a
call center.

P(W>0)

—o— N=95
—m—N=110
—A—N=150

o
T T T 1T T T T T T T T T T T T T T T T T T T T T T [ 199®

< © © O ¥ © © O N & © 0 O N ¥ © 0 O
™o O o < < ST T 0 0 0N W 0N © © © © © N~
S

, agents

o N
™ ™ <

Figure 5.13: An illustration of the exact calculated probability to wait for a call
center with arrival rate 50 and number of trunk lines 95, 110 and 150.

The figure above demonstrates that as the number of trunk lines increases so
does the probability to wait P(W > 0). Consequently, in case of increasing the
number of trunk lines, if we want to keep the probability to wait constant, we
need to increase the number of agents. For example, the probability to wait in a
call center with 95 trunk lines and 50 agents is 0.2. Adding 15 trunk lines will
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increase the probability to wait up to 0.6. In order to reduce it back to 0.2 the

call center must add 5 extra agents.
A similar behaviour we identify in the expectation of the waiting time E[IV].

E(W)
35 -
3 i
25 - —e—N=95
2 | —=—N=110
—a—N=150

E(W)

T
O M © O N I © - ¥ N O M © O N I ©
M M O O F F F 0 OO 10 © © © © ~ N~ ~
S, agents

Figure 5.14: An illustration of the exact calculated expectation of the waiting
time for a call center with arrival rate 50 and number of trunk lines 95, 110 and

150.
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E(W)

0.02 -
0.018 ~

0.016 - ‘\
0.014 -
0.012 % —e—N=95

0.01 —=—N=110

0.008 + —a—N=150
0.006 -

0.004 -

0.002 I
0,
S & F LS P LSRR

S, agents

E(W)

Figure 5.15: An illustration of the exact calculated expectation of the waiting
time for a call center with arrival rate 50 and number of trunk lines 95, 110 and
150.

In Figure 5.14 we see that as the number of trunk lines increasing, so does
the average waiting time E[W]. When the number of agents is 45 or more those
changes seems not significant. Figure 5.15 provides a closer look at those values
of agents number S and as can be seen the changes are very small. As in the
previous case, the value of expectation of the waiting time is decreasing with
decreasing of the number of trunk lines. Thus, in order to reduce the probability
to wait and the average waiting time we should reduce the number of trunk lines.
Having that, we should now examine how it will affect the probability to find the
system busy.
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Figure 5.16: An illustration of the exact calculated probability to hear a busy
sound for a call center with arrival rate 50 and number of trunk lines 95, 110 and
150.

Figure 5.16 shows that the reduction of the trunk lines number causes this
probability to be larger. Moreover, small changes in the trunk lines number
may cause a significant changes in the probability to find the system busy. For
example, taking a call center with 110 trunk lines and 60 agents, are reducing its
trunk lines number by 15, will enlarge the probability to find the system busy
from 0.03 to 0.11. Changes to this probability caused by additional agents will
be negligible.

We have considered the behaviour of performance measures just in one special
case. There is no doubt that in the case with higher value of A we will get even
better approximations, but what is important to us is the general tendency of

changing these values.
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Chapter 6

The waiting time distribution

6.1 Density of the waiting time

The distribution function of the waiting time was given in Section 3 with the
awkward expression (3.10), which is not so easy to calculate. Let us try to
simplify this formula. For this purpose, we find first the density function of the
waiting time. Start with

N—S N—i j S St 6 ,uSt
Wiy =1-3" Y xi+5)> (p
i=1 j=8 1=0
N—-S N—i
o St (uSt)i~$
—1- wst (14 222 ).
;FZSX(“FJ,])e < M TR 1

To find the density function, let us take the derivative of the distribution function
N—-S N—i 9
S ) e (14 55T D)
X(Z—l-j,j)[ uSe <1+ T + ...+ G=29)

i=0 j=S
st (uS)*t (uSt)i=S¢i=5-1
+e (S—i— 1 + ...+ G-5-1)

N—-S N—i ﬂuSt(MS)j—SJrltij

=3 > x(i+4.4) =9

i=0 j=S

Now let us find the Laplace transform of this density function:

o0
N—-S5N—i e ,uSt(lus)g S—i—lt] S

Ly(x)=E(e™) =YY x(i+jj / G5 e~"dt

i=1 j=S

N—SN-— J=S+1 T _i(uS+a) j—S+14j-8
SIS i (L) [ ey,
S + (7 —9)!

1=0 j=S 0
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Notice that

T o tuS+a) (1, 4 4)i—S+1pi—8
/6 (1S + ) dt=1, VS<j<Nand >0, (6.1)

(7 —9)!

because the expression, which is in the integral, is a density function of the
Gamma distribution.
It follows from (3.8) that, for all j > S, x(k,7) is equal to

s () (3)’

s(A+B) 7’

I OF

i+j<N—1,j<S

N—-S—1N—-i—1 i j
1 /2" 1 A\’
B - Zo Zs 5(5) - (_) | (6.4)
1= Jj=

I

x(i+7,5) =

where

Substituting (6.1) and (6.2) into (6.1) one obtains

5—1

SS S+ _qQ_ —S—i— -
. ()_§<%> DA SNSll(é)iNS 1 A J
wAE) = A+ B wS + x Z@ - 10 , wS + x

S N—-S—i
s S+ _aq_ A
B % (ouSr ) S ( PA )SN 5! 1(/\)1-1 - (,u§+x)
) aA\g S+x—pA
A+ B wS +x \ puS+z — i e b ;;ﬂp
B %f 1S (E)SNZS11<A)1 1_( PA )N—S—z‘
A+ B NS(l—ﬁ—g)‘i‘I S — 0 uS + x
By defining
a=puS, b=uS—pA _n (6.5)
= o, =K bA, p= HS, .
and S
1 wS [ pA
C:A—{—B.E'(?) 7 (6.6)
the Laplace transform can be rewritten as follows
N-5-1 N—S—i
1 1 A, a—>b
L =C- —(=)"[1— . 6.7
e BT @

To find the inverse Laplace transform we need to use the following lemma.
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Lemma 6.1.1 For alln > 0 the function

B = - (40) (635)

b+x a+zx

has an inverse Laplace transform, which is equal to

Lty =e (1 +(a—b)t+ ..+ (a znb)_n 1;” ) . (6.9)

Using this lemma one can find the inverse Laplace transform for the function

Ly (x) in (6.7):

Lyl =C Z' () (a— bty e
=0 7=0 J:
N—-S—-1 at
e~ k:' /\
k=0 j=k
N—-S—1 k
1 )\ —at
—C E(5+(a—b)) e
k=0

In view of (6.5) and (6.6), the density function of the waiting time for the cus-
tomers that finished their IVR service and continue to get agents’ service is equal

11 (pA° NE NG + 1)
fW(t):A+B'§' (%) - pSe~HSt ’; DG+l (‘)Z!p)} . (6.10)

to

When multiplying and dividing (6.10) by the expression
N-S—1 i N=S—i—1 ;
iG) % (5)
P =, (6.11)
par AN s wS

when (3 # 0 one obtains (see (4.46) and (4.50))

POV > 0)(1 — ppSe 00 NG 4] s
PO € ) B M |

where p = p—s Dividing fy (t) by P(W > 0) one gets the conditional probability

to wait in the case when [ # 0:

fw(t) =

(1= p)pSe st N

Jwiwso(t) = v

> 5 <%)"<1—pN—S—>

PG . 619
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When p < 1, this function can be written as follows:

PY<N-S
Fwpsolt) = (@) Y<N-5) (6.13)
P(Z, < N —8) — pN-S¢ 5" P(Zy < N — §)
where

1

X ~exp(p(l —p)), Y ~ POZ'S()\(g + pt)),

A oA
Zy ~ Pozs(g) Zo ~ Pozs(e—p).

When 3 = 0, a density function of the waiting time as below shows:

POV > ouse s NR (G + )"
— v e i k! '
SN G SN () S

This is a conditional density function of the waiting time when 3 = 0 can also

fw(t) = (6.14)

be rewritten as the following:

NSI

ns Z +p t)) A0 TE) e (6.15)

SR S ()

This function can be represented in the following way:

fW|W>0(t> =

uS-PY <N-—Y5)
(N=S)P(Z1 < N—-8)—2P(Zi<N-5-1)

fwiwso(t) = (6.16)

where . )
Y ~ Pois()\(é + pt)), Zy ~ Pois(g).

We have not been able, however, to find a probabilistic explanation or derivation
of (6.16).

. . 1 t
6.2 An approximation of ﬁfW|W>0(ﬁ)

Let us assume that the variables A\, S and /N tend to oo simultaneously and satisfy
the following conditions

(i) lim &

:na —00 <1 < o9

A—00 9
(i) lim =VS1-28) =5 —oco<f<oo B,
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where u,p, 0 are fixed. Under this assumptions let us consider the asymptotic
behavior of the conditional density function of the waiting time.

k
e_\/g(l_p)ﬂt N-5-1 |: l \I/)_t»)] _)\(1+ +

|
>
=

%fwww (\/%) = N_£(1A : it s,
) sy B
(6.17)
First, look at the last sum
k
= [ l pT)] A( +5%)
Y&l P(X)\ <N S)
k=0

where

X, ~ POZ‘S()\(; 4 \Z/)—%)) E[X,)] = A(l + p_t), Var[X,] = A(; + \Z/)—%).

We can say that

XA—A—M N-S-5-%
lim P(Xy < N —S) = lim P VS

A—00 A—00 A )\pt )\pt
\/ [ + \/ 0 +

The right side in the parentheses can be approximated in the following way

Nos—d-d A

T ~ (6.18)
% RN
~ 1 —/pubt.

Thus, by the Central Limits Theorem one obtains

when N(0,1) is a normal distributed random value. Then by using (6.18) and
Theorem 4.2.1, one obtains

lim P(X, < N —S5)=®(n—+/puot). (6.19)

A—00

Under our assumptions (i), (ii) in beginning of the section

lim VS(1 — p)pe VBt — gy 0= Put, (6.20)

A—00
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Now, let us consider the denominator in (6.17)

N-S—-1 6_% A % N-S-1 6_% A 7 N—-S—-1 6_% hY %
A\ (1= NS — AN AN N-S—i
2. (9) =" = 2 5 (9) ] (9) P

ZZO Z:O 1=
(6.21)
As we have seen in (4.7)-(4.11) the first sum tends to ®(n), so it remains only to

estimate the second sum

N-S-1 67% )\ 7 g g A(1—p) N-S-1 6797);3 )\ 7
A pN-S-i L N-S 5" = . 6.22
> G(p) et Y o (g) e

=0

It follows from (4.18), (4.22) that

N75716_$ A %
li — ] =@ 6.23
m > G (7)) = (6.23

A—00
I 7

L. N—§ A(1—p)
Now let us find the limit of p™* ~"e % as A — oo.

where

A(l—p) A(1—p) _
pNSeT s = o TNTS)p, (6.24)

By using (4.13) to the degree of exponent one obtains as A — oo

)\(16—;’0)+(N—S)lnpzMle—;p)—(N—S)(l—P)—%(N—S)(l—P)Q

z—(N—S—%)(l—p)—%(N—S)(l—f’)z

%—(77 %—F%_ei)( —p) =30 %(1—p)2

~ 1 %(1—p) (%—%%—)( —p)*
(%—%) Al —p)2—n\/§(1—p)
(% - %) %S(l —p)* — n\/p%\/g(l —p)
s

o lim pN =S¢ %" = 2”1V (6.25)

A—00

Combining (6.19), (6.20), (6.23) and (6.25) one obtains the following corollary.
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Corollary 6.2.1 Let the variables A\, S and N tend to oo simultaneously and
satisfy the following conditions

(1) hm%zn, —00 < 1 < 00;

(ii) lim VS(1—2%) =5, —co<f<oo (B#0);

where p, p, 0 are fived. Then the conditional density function of the waiting time,
evaluated at t/\/§ and divided by /'S, has the following asymptotic behavior:

. L L = Bue Prt ®(n — tv/pud)

wherem:'r]—ﬁ\/%e, and 1y = 2p952—775\/

Now consider the case when § = 0. As it was shown in the proof of Lemma
4.2.4, when 3 =0,1ie. p— 1lorp=1,

N—-S—i—1 1
/\ J
lim (p—) —N_—S—i
7=0

p—1

(6.26)

So, we can say that

~ nS +pt>) CG+p))" o
fW|W>0<t>NZ£\;_OS_1i1!(_) 7 5-9 ZZ:O . (6.27)

Now, let us assume that the variables A\, S and N tend to oo simultaneously
and satisfy the following conditions

(i) lim &

L=y, —o0< 1< o0

A—00 9
(i)  lim = VS(1—28) =0,

where p,p, 0 are fixed. Under this assumptions let us consider the asymptotic

behavior of the \/Lng\W>O <\/L§>

—S— k
LfW\W o( : ) = S By IM(;A(%%)
> - — - '
SIS ol gy s & P
(6.28)
Using (6.19) one obtains
N-S—-1 1 k
Al +pt (1t
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Now let us consider the denominator. According to (4.42), (4.41) and (9.1) it can
be approximated as follows

E (sl o) o

lim o

. H
A 00 Nil e“g (g)l No§—d B n\/gq)(n) + \/ngw(ﬁ)

1=

So,

(6.31)

and we can formulate the following corollary.

Corollary 6.2.2 Let the variables A\, S and N tend to oo simultaneously and
satisfy the following conditions

oA
(i) hm 0 =7, —o0 <N <00

\/Z
(ii) lim v/S(1— 28) = 0;

where 1, p,0 are fired. Then the conditional density function of the waiting time
evaluated at t/\/§ and divided by /S has the following asymptotic behavior

- (1~ Vi)

s () s

(6.32)

6.3 Graphical analysis of the approximation for

Lf t

VIWIW=0 {3
This section is devoted to investigating the behavior of the approximation for
\/Lng|W>o (\/Lg, 0, 77). For this purpose, we plotted the graphs in the cases as in

the previous section.
In order to simplify our analysis let us define

1 t
= lim — — .
9(7575777) )\1_{{)10 \/ng\W>O (\/gyﬁﬂ?)
First, look at the case, when 7 is negative, for instance n = —2. Let us take

three value of (3, specifically -1, 0 and 1. In the figure below, we can see how the
function ¢(t, 3,n) behaves in each case.
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Figure 6.1: An illustration of the function g (¢, 3,7) in the cases when n = —2
and (3 is equal to -1, 0 and 1.

We see that all the graphs have a similar form, which looks like the exponential
density function. In each case we have different functions value when ¢ = 0, and
it is easy to see that this value is increasing with an increase of 3. Let us try
to approximate these lines by the density of an exponential distribution with
parameter that is equal to the value of the function at the point ¢t = 0.

The function at the origin is equal to ¢g(0, —1,—2) = 1.798, and we have the
following figure:
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Approximation of g(#,—1,-2) by exponential density function

——exp
Z: -=— function
0.4 -
0.2 A
0 o
NI

Figure 6.2: An illustration of the ¢ (¢,3,n) approximation by an exponential
density function with rate 1.798.

When (5 = 0, the rate of the exponential density function is equal to g(0, —1, —2) =
2.675.
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Approximation of g(#,0,—2) by exponential density function
]
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-=— function
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~ 24

, time

Figure 6.3: An illustration of the g (¢, 3, n) approximation by exponential density
function with rate 2.675.

In the last case, when § = 1, the rate of an exponential density function is
equal to g(0,—1,—2) = 3.61.

Approximation of g(7,1,-2) by exponential density function

35|
5]

25

2 ——exp

15 —=function
N
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o

SR T 2P I I O, 2 K I PG L I I S R S

t, time

Figure 6.4: An illustration of the ¢ (¢,3,n) approximation by an exponential
density function with rate 3.61.
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Figures 6.2-6.4 show that the exponential approximation is working satisfac-
tory, especially in the last case. Under the condition (i) from Corollaries 6.2.1

and 6.2.2 (N — ) — 3 = 77\/; Note, that N — S is a number of customers in

a queue. In the case where n < 0 (current case), the number of customers in a
queue is smaller than the number of arrival customers. Also, under condition (ii)

from Corollaries 6.2.1 and 6.2.2 S =~ % + ﬁ\/% and in our cases —1 < 3 < 1.
Thus, the number of customers in a queue is smaller than the number of agents.
Therefore, we can say that most of customers will have to wait a little time.
Figure 6.5 shows the case when n = 0 and the values of 3 equal: -1, 0 and 1.
We see that the value of the function when ¢t = 0 is increasing with the increase
of 3. But the forms of the graphs are different. Consider also Figure 6.6. It
describes the case when n = 2. In this case, the graphs forms are different. When

(8 = —1 most of the customers will wait a time between \/Lg and %, and when
B =0or 8 =1, the larger percentage of customers will wait less than this interval
of time.
N 1
Approximation of ﬁ Swwso (& B>1)
25
2 ]
5 —— &(1,-10)
—u— 2(2,0,0)
11 —A— g(2,1,0)
0.5
0 4
t, time

Figure 6.5: An illustration of the function ¢ (¢, 5,7) in the cases when n = 0 and
(3 is equal to -1, 0 and 1.
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oo 1
Approximation of ﬁ Swwso & B,1)

1.4

1.2 4

14
—— 8(,-12)
—=— g(,0,2)
A g(tL2)

N Q?" N \Q.J v rf) i) (bG) d bf.-’ ° 9;3 © ‘b?J A /\b @ Q;.D 2 qf? \0
t, time

Figure 6.6: An illustration of the function ¢ (¢, 5,7) in the cases when n = 2 and
(3 is equal to -1, 0 and 1.

At last, let us see what happen in the case when 7 is not a small value, for
instance = 10. In this case we have the following picture.
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Conditional density function

1 t
ﬁfmwm(ﬁsﬂsn)

11 -

1 1&
0.9

0.8 -

0.7 +
——qg(t,10,-1)

0.6
05 - ——g(t,10,0)
' —A—g(t,10,1)
0.4

0.3
0.2
0.1

0

QQ’\\ fl, 'L(b‘b@b‘mbugb‘b%rb ’\,\’\‘bb&%\g‘b \a) ‘)/ Q"’),‘b‘b(b >

t, time

Figure 6.7: An illustration of the function ¢ (¢, 3,n) in the cases when n = 10
and (3 is equal to -1, 0 and 1.

Figure 6.7 shows that when 7 is high enough the density function multiplied
by VS changes in three different ways. Note that when 7 is a big value there
are a big number of trunk lines in the call centers and the system of agents’
pool can be described as the M/M/S queue model. Really, in the case when 3
is strictly positive the distribution of the waiting time seems like distribution of
the exponential random variable. This supports the assumption about M/M/S
queue model as a model for agents’ pool. When [ equals 0 or negative, we do
not know much about the waiting time distribution. In these cases there are too
many customers in the system, which waiting time is enormous and we call such
a situation an “explosion” of the system. Our example give us an approximate
picture about behaviour of the waiting time. Thus, when g = 0 we see that
this distribution is basically (till ¢ = 9) uniform with density function % When
£ < 0 it is hard to match some specific known distribution without additional
analysis. We can just say that this function looks like x or bound Normal density
distribution function.
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Chapter 7

Special cases

In this chapter some special cases of our model are presented. In all such cases our
model, under certain assumptions, becomes one of rather well-analyzed models,
such as Erlang-B, Erlang-C and others. The goal is to show that our model and
the results obtained for it coincide in these special cases with the well-known

results for the corresponding models.
To facilitate the reading, we reproduce here our general model (Figure 3.2):

“IVR” “Agents”
N servers S servers

O) ~
o
VARG RGN g

o

Figure 7.1: Schematic model of a queueing system with an interactive voice
response, S agents and N trunk lines.
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7.1 The M/G/S/S loss system

When the number of agents is equal to the number of trunk lines (N = 5), the
call center model can be presented as an M/G/S/S loss system. There is no
waiting in this model. The service time G has the Phase Type distribution which
is described on the following figure:

»  exp(6) » exp( )

l-p

Figure 7.2: Schematic model of the Phase Type distribution, which corresponds
to the service time in a call center with an IVR, when the number of agents is
equal to the number of trunk lines (N = 5).

The loss probability is then:

A1 p
N 2+
Py (block) = Z N! (9 “) , (7.1)

N —7,7)
j=0

and analogously to Halfin and Whitt [17] (see also Jagerman [19]), it is possible
to show that if

(i) A — oo

(ii) 0, p, pu are fixed;

(ii)) VN (1-4 (3+2)) =5 0 < F< oo
then B

VN Py (block) — 23)

(7.2)

where
¢(+) is the standard normal density function;
®(-) is the standard normal distribution function.
We thus recover a known result for the M/G/S/S queue.
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It is easy to see that when p = 0, i.e. no one wishes to be served by an agent,
our system is the well-known M/M/N/N queue (Erlang-B model).

Similarly, when the service time of the agents goes to 0 (u goes to infinity), the
system is equivalent to the M/M/S/S loss system with exponential service time
with the rate . Only the IVR phase is taken into account. We have precisely
the same picture if the service time in the IVR goes to 0 (6 goes to infinity). We
still have the M/M/S/S loss system, but now the service time is exponential with
the rate u. In each case, by letting u — oo, or § — oo, approximation for the
loss probability agrees with the well-known asymptotic for the Erlang-B formula
(Jagerman [19]).

7.2 The M/M/S/N system

Masey and Wallace in [26] found approximations for the following operational
characteristics for the M/M/S/N queue:

e the probability to find the system busy P(block);
e the probability to wait more than ¢ units of time P(W > t);

when A, S and N tend to oo simultaneously and:

N-—-S
(7) /\lim = =1, 0<n<oo;
I
g_2 (7.3)
m

(ii) lim =3, 0<pB<oc;

G

1
The condition 7 > 0 in assumption (i) is completely natural, because N — S
is the maximal number of places in the queue, but the condition § > 0 is not
required. The reason of strict positivity of 5 in [26] is using the M/M/S queue
for finding the operational characteristics for M/M/S/N. Thus, in this section we
find approximations for the probability to wait and the probability to find the
system busy for M/M/S/N when —oo < < co. We also find approximations
for the expected waiting time and the density of the waiting time, and show that
with some specific parameters the system can be represented as the M/M/S/N
queue.
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7.2.1 Operational characteristics for M/M/S/N

Recall that the M/M/S/N queue has the following stationary distribution:

(1 /Y

o= (—) , 0<1< S,
i\ p A

Wow(;), S <i<N;

0, otherwise.

\

where

(i) Lw()) - w

As in the previous analysis we define the waiting time by W. By using PASTA
we can find the probability to wait:

v >

e
03
N
= | >
~——

PW>0)=> m= AN : (7.6)
i=S 1/A A\’
Z (u) i ; S'Sl (u)
and the probability to find the system busy:
P(block) = my. (7.7)
The expectation of the waiting time we can find by using Little’s formula:
N
> (i—S)m
L ueue =
E[W] = Zaueve _ =54 . (7.8)

Aesr A1 = P(block))

The conditional density function of the waiting time for M/M/S/N queue has the
following form:

( A
IANPETEIC S
wS(1 ,uS)e ] N_S—1 ot (A" it
A\ — kL ’
Swiwso () = < - M_S) = (7.9)
wS e ™ (At) _
N-35 kZ X p=1
\ =0

In the case § > 0 this formula was found in [26] by Massey and Wallace. When
£ < 0 it can be obtained with the help of Laplace transform in a way similar to
that in Section 6.1.
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Theorem 7.2.1 Let the variables X\, S and N tend to oo simultaneously and
satisfy the following conditions

Jim ——=— =17, 0<7n<o0;
m
i (7.10)
(i) /\hm /\“ =03, —0c0<f3< o0;
m

where p s fized. Then

e the probability to wait in the system P(W > 0) has the following asymptotic
behavior:

Be(B)  \ .
—7] ) /6%07
Jim P(V > 0) = ( (D)1 + 6))

(1 . _) - (7.11)

e the probability to find the system busy P(block) has the following asymptotic
behavior:

Bo(B)e "’ .
| 53(5) + ()1 ey P70
lim VSP(block) = 1 B =0 (7.12)
A—00 T ) ;
Vg+"

e the expectation of the waiting time has the following asymptotic behavior

([ 0(B) {1 —e _ ne‘”’g}
g B B+ 0;
lim VSE[W] = { ®B)+e(B)1—e) (7.13)
T Y
2p(n + 5)
\
INote, that these conditions can be also rewritten in the following form
(1) 1imL— 0<n < oo
A 00 \/g =1, n )
_ A
(i7) /\lim /\“ =f, —00< < o0

m
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e the density function of the waiting time has the following asymptotic behavior:

—upBt
_ppe T pt <, B # 0;

1 t (1—e )
g <—S> =145 pt<n,  p=0, ([T
0, pt >

PRroor. Define

= Sf ei!: (i)i; (7.15)

=0 K
N-1 _2A i
e n A
=S
_A N
e w A
N _A i
1 e n A
(== (i —S) (—) . (7.18)
A S5O i H
Thus, we can rewrite operational characteristics of the M/M/S/N queue as fol-
lows: e
PW >0 7.19
w0 =t (7.19)
P(block) = i (7.20)
T+E '
¢
EW| = 7.21
W= (721

Note that v can be rewritten as P(X, < S) where X ~ Poz’s(%), and E[X,] = =
Var[X,] = % Then by the Central Limit Theorem

Xy—2

= £ = N(0,1).
w

Using condition (i7) of the Theorem and Theorem 4.2.1 one obtains

N-h 8-

Vi f
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For convenience, let us denote = 5 = P
Let us find the approximation for . In view of the Stirling’s formula, S! =

V21 SS%e~%, one obtains for ¢:

es_% N-S-1
~ S k
§~ 5= 2 p

Making use of the expansion

(1-p)?
2

Inp=In(l—(1—-p)=—(1-p) - +o(l—p)?  (p—1), (7.23)

one obtains
_ 2
GS((l p)—(1—p)— a N S—1 S(l p)

—-S—
S NG = Z’)

k=0 k=0

1 _82
2

ZS Pt (7.24)

k=0

7

Due to the conditions (i) and (i) of theorem and (7.23) the expression p¥=° can
be rewritten in the equivalent form

PN =N pm WV (p— 1) e (7.25)

When g # 0, then p # 1 and the last sum in (7.24) has the following form:

NS p o 1=pNs 1 — e
T
=0 p P
Therefore, when (§ # 0
(ﬁ) —nB
H)og =3 == (1—e). (7.26)

Now, let 5 =10,1i.e. p=1o0r p— 1. When p =1 it is easy to see that

N-1
pr=N-—-25.
i=S

When p — 1 the last sum in (7.24) can be approximate as

N-5 _1 (N=S)Inp N — S)1
p _e o )np N g
p—1 p—1 p—1

Here we have used the relation

(N —=38)Inp=o0(1), (p—1).
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The Stirling’s formula and (7.23) imply

ﬁQ

e 2

2mS

Q

S (N —=5).

Using the conditions (7) and (i) of the Theorem, one obtains

Thus, when 3 =0
lim £ = —. (7.27)
Now, consider §. By the Stirling’s formula it can be rewritten as
6 ~ eS(l—p) pSprS

V2w S

Using relations (7.23) and (7.25), one obtains

lim VS0 = o(B)e™”, (7.28)

A—00

In order to find an approximation for ¢ let us use the Stirling’s formula. Thus,
we can rewrite ¢ by the following way:

St X o St X
~ kpttt = —— kp". 7.29
Crvms M s e (729)

k=1

When ( # 0 we use the formula (4.95), which was found in Section 4.9. Recall

this formula
- P
kot = :
Dkt ="
k=1

M+1 1— M
p
M+ ———— - p.
(1—p)?

So, using formula (4.95), conditions (i) and (i7) of the theorem and relation (7.25),

one obtains

N—S+1 1 oN-S -nB 1 —e 8
P (N—-95)+ e —77\/%6 Vs + Al —e >. (7.30)

P 1 (1—p2"" 5 Fu

Taking into account equations (7.23) and (7.30) we have

]
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when 3 # 0. The case f = 0 means that p =1 or p — 1. If p = 1 it is easy to
see that

> =
DO

NZ P LN -SHN-5+1) (732)
— A 2 i '

If p — 1 then (7.32) is implied from (4.105). Thus, when $ = 0 the approximation
for \/§C has the form

2

Jm VS VS( = \/g

Now, consider the conditional density function of the waiting time for M/M/S/N
queue. When [ # 0 using condition (i) of the theorem and equation (7.25), one

(7.33)

obtains

1 F ( t ) N pS(1 _p)eﬂS(lp)tNil e_mt( Tut)k
NS W|W>0 NG ~ N—-S )

— |
1—p — k!
The last sum can be rewritten as P(X, < N — 5), where X, ~ Pois(y/Aut).
From the strong low of large numbers for the Poisson process we get

. X
/\II_)IEO N put. (7.34)
I
Thus,
X 1, ut <,
lim P(Xy <N —S)=lim P| 22X <y = e (7.35)
I

and approximation of the density function when 3 # 0 has the following form:

—{ (1—e") ' (7.36)

—upt
——=Jww>o0 | —F=
A= /S Vs 0, pt>n,  B#O0.

When § = 0 using conditions (i) and (ii) of the theorem and equation (7.35),
one obtains

12 —_N-
. 1 t no ﬂt < m, ﬁ - Oa
lim — — ) =" 7.37

Combining (7.22), (7.26), (7.27), (7.28), (7.31), (7.33), (7.36) and (7.37), we
proved Theorem 7.2.1. O

111



7.2.2 M/M/S/N queue as a particular case of a call center
with an IVR

Suppose that the IVR processing time is negligible when compared to the time
between arrivals. We capture this by letting § — co. We also need to suppose
that all of the customers wish to be served by an agent, i.e. p = 1. Show, that
in this case the system with an IVR can be presented as M/M/S/N queue. For
this purpose consider the M/M/S/N queue with parameters:

e the arrival rate equals A;

e the service rate equals y;

e the number of agents equals S

e the number of trunk lines equals V.

Let the variables A\, S and N tend to oo simultaneously and satisfy the following

conditions:
N-S
(¢) lim =n, 0<n<oo;
A—00 A
Vi
g 2 (7.38)
(i) /\lim )\“ =083, —o0o0 <3< o0;
M

and g is fixed.
Consider also a call center with an IVR where

e the arrival rate equals A;
e the IVR’s service rate equals 6;

e the agent’s service rate equals p* = %;

Al

e the number of agents equals S* = 5 — 7;

e the number of trunk lines equals V.
Thus, relations between the parameters of the system with an IVR are the fol-

lowing

lim ———0% — lim N =5 =n 0

A—00 A A—00 A m I
NG

0<n<oo;



G A A A LA
lim " — lim 0__p e—ﬁ (Q—M)’
I po

where p, p, 0 are fixed. Denote

0
n*zn\/j, p*=p O-n u)
1 0

—00 < 3 < o0;

Let us find the approximations of the operational characteristics of the call center

with an IVR with the above mentioned parameters:
e the probability P(IW > 0) that a customer will wait after the IVR has the
following asymptotic behavior (Theorems 4.3.1 and 4.3.2)

(

/\lim P(W >0) =

*

where n; =n* — 0

1+

0
g / (n+ —t>¢;>d@<t>

P3)007) - 3/ + 5 exp L)

, B #0;

ethe probability of blocking has the following asymptotic behavior (Theorems

4.6.1 and 4.6.2)

lim VSP(block) = <

S—o00

when  B*#0:

v (1) ® (1) + o (v 1 B0 D)

AT

ﬁ* * *
_{OCI)(n*_i_(B*_t) /%) dq)@)_i_sﬁ(ﬂ%‘f(n)_ - o3
when [F*=0:

v (1) @ (v2) + =@ (") |

0 )
I <I><77*—t ui) B+ =/ (2 (n 7))
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. 8" _ g
where n; = n* — %/ &, _n\/er , . V= .
m=n"—0"/% \/1+“ \/1+“ \/1+%

e the expectation of the waiting time before the agents service (Theorems
4.9.1 and 4.9.2)

when (*#0:

%<;¢w><> w—~7%—* %mmmﬂ+&%ﬁ¢%v

lim VSE[W] =
S—00 when (G =0:

*2 /’l’* * * /“L* :LL* *
[l Ll | [l
1 U W)+n\/6(-% 9>wm)

\

where n; = n* — 3* ’%.

e the conditional density function of the waiting time before the agents service
(Theorems 4.9.1 and 4.9.2)

e s g P =t/ p0) . '
t Fue™ %mﬂ—ﬁ@Wﬁ 7o
SILHOIO \/_fW|W>o (\/E) = P —ty/p*0) B* =0;

wwﬁﬁmw+¢%mw5

0

where n; = n* — ﬁ*\/: and 1y = %%*5*2 —n*pB*

As we said, we assume that the customers spend in the IVR time which is
negligible when compared to the agent’s processing time. Mathematically, this
means that 6 — oo. Thus, one obtains that

i 0 o W
limm—hmn—ﬁ —Glirgon\/;—ﬁ\/e_ﬂ\/ew_u)—oo, (7.39)

. . 77*\/%+ﬂ* . 77\/>\/ 9u)+ﬂ\/9u
911m V1 :ehm _ zghm
—00 —00 / * —00 / u

B* %*_n* ﬁ\/ \/ 9 ) [

lim vy = lim —F—— = lim —00; (7.41)

0—o00 6—o0 * 0—o00
1+ 5 Vl*mem
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24" . 0
V%%W¢MW+MW»+%ﬂ[_¢W“%V§;@@

B8 n?
W/)¢mﬂﬂﬁ—ﬂ¢%ﬁﬂﬂ+ﬂW@WU—MVW”HWEQﬂm)
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lim v = lim ——— = lim ———— (7.42)

0—o0 0—o0 / H_* 0—o0 u9
* /uL03
I ,/ = i AR
Pl UCh T 0l 006 — p)? o( 0 ,u) —np ph (0 — p)? s
I I LA, (7.44)
Jim = fim oy, = o< -
0
lim 3" = hm 51/ = 0. (7.45)
f—o0 — U

First we find the limit value of limy_,o, P(W > 0) when # — oo and [ # 0:

hm hm P(W>0)=

6—o0 S—o0

L P(5)207) = (/77 + 5)e L o)

T T (e (- [2) d0) + o800 - o7 T e o)

1 * * 1, %2 _ % g% j u*
P(37) = e BB 3 5 0%

= lim v 21
% d@t + . (*2+ﬂ*2) 177*2 77*5* }LT_i_ﬁQ#T
g [ v+ o(sr) - =
@ —em)
BR(B) + ¢(B) (1 —eP)
(7.46)
When ( = 0 one obtains:
1 /’L* * * *
o\ g o) + o))
lim lim P(W > 0) = lim
f—o00 S—o0 f—oo O
/@(n—m/ ) \/ %n@ )+ ("))
1
_ 27T77
D
2 Vo
(7.47)
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Thus, the results coincide with the probability to wait in M/M/S/N queue. Now,
consider the approximation for the probability to find the system busy when

B #0:

*2 *2 é
lim lim V/SP(block) = lim — v ) @ (va) + (Vi + 57 )exps B(mi)

: * * *2
[ @ (o (0 =) ) o) + 242000 - SV Dy )

1 e—%(ﬂ*2+ﬁ*2)6%ﬁ*2*n*5*\/@Jrﬁ*?%
= lim Y 27T*
—o00 @(ﬁ*)—i- @(ﬁﬁ ) _ 1 e*%( 2+B*2 3 \/ +32“
* V2T
o p(B)e
= lim —
0% BO(B) + () (1 — e )
(7.48)
When G = 0 we have
v (v) @ + =9
ehm Shm \/_P(block) = hm o (v1) @ (12) Vo ()
f‘I’(n —t ,%)d@ )+ g/ g () + (7))
1
_ 2T
1 N 1
2 Vo
(7.49)

We see, that the approximations for the probability to find the system busy also
convert to the probability to find the system busy in M/M/S/N queue. Check
the approximation for the expectation for the waiting time in the case 5 # 0:

hm lim VSE[W] =

0—00 S—o0
- <%e@(ﬁ*)®(n*) (0 ==y e+ ﬁ*2>e’9¢><m>>

M*

= lim
6—o00 B* 0 7]%
ﬁ*/_ (" + (6" —1) E)dq’(t) +(B)R(7) — (/2 + B+%)e> ®(m)

‘P(ﬁ) 1—e — 8
_ b { P ! }
BO(B) + p(B)(1 —e)

(7.50)
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When (= 0 we obtain:

1 *2/’6* * * /“L /1’* *
= —P \/ |1

lim lim vVSE[W] = lim

0—00 S—o0 0—o00 *

SRS

(0 (r) + o)) + V2m / 0y t\/;d@m

—0o0

(7.51)

Finally, show that the approximation for the conditional density function for the
waiting time of the call center with an IVR also coincides with the approximation
for the conditional density function for M/M/S/N. First, take a look at the case
when 3 # 0:

lim lim \/_fW|W>0 <\/t§> = hm 5 ,u*e_ﬁ*“*t 77 A

0—o0 S—o0

—e”d
R “”)
— 1 e P
= lim 9—,&9—# \/ \/7 (7.52)
d(n p ) —e™D(n)

ﬁg;e_’g“t f o

=S 1—e w
0, t> 1

i

When (G = 0 we have:

*@ _ / *
llm hm \/_fW|W>o< > = lim w0~ 1y p0)

6—00 S—o0 f—00 M* * IU’*
\/ZQ )+ 0 —p(n
( f & )
. 0—n (7.53)
f=00 0
u\ 6o 00 —u)“” N
{0, t> ﬁ
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Thus, we emphasize that the same result has been obtained for M/M/S/N
queue. In conclusion, one can say that when the IVR processing time is negligible

when compared to the talking time of the agents, a call center with an IVR may
be modelled as the M/M/S/N queue.

7.3 The M/M/S system (Erlang-C)

Note, that the M/M/S queue is an external case of M/M/S/N queue, which is
obtained when N — oo, i.e. there are infinitely many places in the system.
Thus, to our previous assumption, that IVR processing time is negligible when
compared to the talking time of the agents, i.e. § — 0o, we add that the number
of trunk lines N, tends to infinity, i.e. 7 — oo. This case was discovered in
Sections 4.5 and 4.11 with a name Case c. It was shown that when 3 > 0

e the approximation of the probability to wait has the form (see (4.66)):

m i _ (1. 208\
T}LIEOJLIEOP(W >0) = (1+ m) :

e the approximation of the conditional expectation of the waiting time is
following (see (4.113)):

1
lim lim VSE[W|[W > 0] = —.
7—00 A—00 /Lﬁ
e the approximation of the conditional density function of the waiting time it
is easy to obtain from (7.52) by letting 7 — oc:

t
b S ) -

These results coincide with the approximations of Halfin and Whitt [17] for
M/M/S system. Therefore, one can say that when the IVR processing time
is negligible when compared to the talking time of the agents and there are in-
finity number of trunk lines, the system with an IVR may be modelled as the
M/M/S queue.
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7.4 The M/M/S/c0/N system

The M/M/S/oco/N system was represented and analyzed by Vericourt and Jen-
nings in [22]. This system is a particular case of our model, when A\ — co. By
the M/M/S/o00/N system it is possible to model a call center with an IVR, when
there are exactly N customers in the system. This means that there is no pos-
sibility to leave the system after service in the IVR, i.e. p = 1, and customers
leave the system after agent’s service.

Actually, a call center with an IVR is not a good example for the M /M /S /oo /N
system. This model is more efficient for describing hospital problem or machine
breakdown problem (see [22]).

In order to illustrate our model as the M/M/S/oo/N system let us define the
states of our system when there is exactly N customers in the system and no
possibility to leave the system after IVR. The states will take the following form:
(N —4,7), where 0 < j < N — S. Thus, the stationary probabilities will be the

following:
( 1 AN
=) <9> 7l <u) =S

T(N=jj)=4 1 (N7 1 A\ (7.54)
N =)\ g S5 \p) =5

0 otherwise,

\

where

A S N A TS S AN A | MYV
= (Sw () = () nwm () 56
(7.55)
We can also write the stationary probabilities in the equivalent form:

()70 e

(N —j,7) =4 - N\ /I\Y7 gl 1\’ g (7.56)
o j 9 5155-5 ; J Z 9

0 otherwise,

where
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The equations (7.56) and (7.57) have the same form as stationary probabilities
in [22], and thus all results for M/M/S/oo/N system are contained in this par-
ticular case of our model.

Note, however, that our asymptotic analysis does not cover that in [22], since
in our case A — oo together with the quantities.

120



Chapter 8

An algorithm for finding the
optimal staffing and trunk level

This chapter is devoted to an algorithm for solution of an optimization problem.
The goal is to find the number of trunk lines and agents for a Call Center with
an IVR, so that the cost is minimal, but at the same time some constraints are
satisfied, for example the probability to wait P(W > 0) < a, or the probability of
blocking P(block) < b. Practically, P(block) < 0.05 and P(W > 0) < 0.1 mean
that at most 5% of the customers at most do not enter the system and up to 10%
of the customers wait in queue. Our objective function is taken to be based on
statistical estimator of the costs in Call Centers.

8.1 Formulating an optimization problem

'The economic performance is affected by costs and revenues. The operational
costs of a typical Call Center consist of different components, as shown below:

e Salaries - 63%

e Hiring and training costs - 6%

e Costs for office space - 5%

e Trunk costs - 5%

e IT and telecommunication equipment - 10%

Short term operational planning affects the costs for the agents and telephone
costs. As described above, the hourly cost of the agents is the main component.
The costs for telephone trunks can be split up into two parts: fixed flat costs per
trunk and variable usage costs for each trunk (telephone costs). Among different

IParts of Section 8.1 are adapted from [28].
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telephone service numbers we distinguish toll free services, shared cost services,
and value added services.

To derive the cost and revenue functions, we use the following notation for a
call center with homogeneous agents and customers:

cA = cost of an agent per time unit,

c = telephone cost per trunk and time unit,
S = number of staffed agents,

N = number of telephone trunks,

E[u"] = expected trunk utilization,

E[L] = expected queue length,

E[u] = expected utilization of the agents.

We describe the cost functions for free services, shared cost services, and value
added services below.
(i) Toll free services:

A call center can provide services with toll-free numbers, for example using
1-800-phone numbers in Israel. In this case, the call is free for the customer, and
the call canter pays the telephone cost C* per time unit foe customers on hold
and in service. Therefore, the costs per time unit are

C(S,N)=C"S + NE[u"|C" = CAS + (E[L] + SE[u])C" (8.1)

The average number of occupied trunks is NE[u"] and can be expressed as the
sum of the average number of waiting customers E[L] and the average number
of customers in service SE[u].

(ii) Shared cost services:

In some Call Centers a calling customer pays a price to the telecommunication
provider dependent on the length of the call or a fixed price per call.

If a customer has to bear a part of the telephone cost per time unit, the
call center pays C" per time unit of waiting and talk time, depending on the
telecommunication provider and the used number. In these cases costs per time
unit are given by (8.1). In fact, the structure of the cost function is identical
to that in the case (i), but usually the cost C'* for a call providing shared cost
service is lower then the cost C" of the toll free service.

(iii) Value added services:

Sometimes, call centers can provide value added services, so a calling customer
bears the whole phone cost only, i.e.

C(S,N) = C4S

We consider the cost function (ii) and try to find the optimal number of trunk
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lines N and the number of agent S so as to pay minimal cost under the following
conditions:

e the probability to wait will be less than a

e the probability of blocking will be less than b.

Note that the values a and b are any value between 0 and 1. So we have the
next problem:

min C(S, N) = CAS + NE(uM)CY;
subject to
P(W >0) < a; (8.2)
P(block) < b;
where S and N are integer and 0< S < N;

where
N min(k,S)—1
PW>0)=1-)_ x(k, j);
k=1 j=0
Worrop\Y & 1 1 1\ /N /pAY?
it = (3 (5o 1)+ S ot (s ) () ()

here x(k,7) is from formula (4) and 7y is from formula (2).

8.2 Performance measures

Let us consider in what way the changing in the number of trunk lines N and the
number of agents S influence the behaviour of the probability to wait P(W > 0)
and the probability to find the system busy P(block). Note, that

e decrease in the number of trunk lines causes decrease of the probability to
wait P(W > 0) and growth of the probability to find the system busy P(block);

e growth of the number of trunk lines causes growth of the probability to wait
P(W > 0) and decrease of the probability to find the system busy P(block);

e decrease in the number of agents causes growth of the probability to wait
P(W > 0) and growth of the probability to find the system busy P(block);

e growth of the number of trunk lines causes decrease of the probability to
wait P(WW > 0) and decrease of the probability to find the system busy P(block);

As confirmation of these facts, we wrote programs for calculating the proba-
bility to wait and the probability to find the system busy (see Appendix A) and
consider as an example the case when

e the number of agents S is between 20 and 30;
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e the number of trunk lines NN is between 20 and 60;

e the arrival rate A is equal to 20;

e the probability to be served by an agent p is equal to 1;
e the agent’s service rate p is equal to 1;

e the IVR’s service rate 6 is equal to 1;

e the problem’s restrictions are:

PW >0) < 0.2
P(block) < 0.05.

The results are in Table 8.1 and Table 8.2 below. In these tables yellow cells
correspond to appropriative values of N and S and red cells correspond to optimal
solutions.
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N\S

S=20

S=21

S=22

S$=23

S=24

S$=25

S$=26

S=27

S=28

S$=29

S=30

20

0

21

4.97E-07

5.49E-06

2.4E-07

23

3.18E-05

2.7E-06

1.13E-07

24

0.000129

1.7E-05

1.36E-06

5.4E-08

25

0.000409

6.9E-05

8.52E-06

6.7E-07

2.6E-08

26

0.001087

0.00023

3.72E-05

4.4E-06

3.3E-07

1.2E-08

27

0.002509

0.00063

0.000127

2E-05

2.2E-06

1.6E-07

5.7E-09

28

0.005173

0.0015

0.000359

7E-05

1E-05

1.1E-06

8E-08

2.7E-09

29

0.009714

0.00318

0.000883

0.0002

3.8E-05

5.5E-06

5.7E-07

3.9E-08

1.3E-09

30

0.016859

0.00614

0.001931

0.00051

0.00011

2E-05

2.8E-06

2.9E-07

1.9E-08

6E-10

31

0.027355

0.01095

0.003832

0.00116

0.0003

6.3E-05

1.1E-05

1.5E-06

1.4E-07

9E-09

3E-10

32

0.041879

0.01821

0.007004

0.00236

0.00069

0.00017

3.5E-05

5.8E-06

7.5E-07

7E-08

4E-09

33

0.060949

0.02852

0.011931

0.00442

0.00143

0.0004

9.6E-05

1.9E-05

3.1E-06

4E-07

4E-08

34

0.084849

0.04241

0.019113

0.0077

0.00275

0.00086

0.00023

5.4E-05

1E-05

2E-06

2E-07

35

0.11358

0.06024

0.029015

0.0126

0.0049

0.00169

0.00051

0.00013

3E-05

6E-06

8E-07

36

0.146843

0.08214

0.042004

0.01951

0.00818

0.00307

0.00102

0.0003

7.5E-05

2E-05

3E-06

37

0.184066

0.10802

0.058297

0.02877

0.01291

0.00522

0.00189

0.00061

0.00017

4E-05

9E-06

38

0.224445

0.13754

0.077922

0.04062

0.01937

0.0084

0.00328

0.00115

0.00036

1E-04

2E-05

0.267022

0.17014

0.1007

0.05513

0.02778

0.01281

0.00537

0.00203

0.00069

0.0002

6E-05

40

0.310764

0.20509

0.126258

0.07225

0.03826

0.01865

0.00832

0.00338

0.00124

0.0004

0.0001

41

0.354651

0.24154

0.15405

0.09173

0.0508

0.02604

0.01229

0.00531

0.00209

0.0007

0.0002

42

0.397748

0.27863

0.183414

0.11319

0.06525

0.035

0.01738

0.00795

0.00333

0.0013

0.0004

43

0.439259

0.31551

0.213622

0.1361

0.08135

0.04544

0.02362

0.01137

0.00504

0.002

0.0008

44

0.47857

0.35144

0.243945

0.15987

0.09869

0.05718

0.03098

0.01562

0.00729

0.0031

0.0012

45

0.515255

0.38579

0.273707

0.18391

0.11681

0.06993

0.03931

0.02066

0.01011

0.0046

0.0019

46

0.549074

0.41811

0.302329

0.20761

0.13522

0.08332

0.04841

0.02641

0.01348

0.0064

0.0028

47

0.579947

0.4481

0.329355

0.23047

0.607922

0.47561

0.354466

0.25205

49

0.633144

0.50061

0.377477

0.27207

0.15342

0.18753

0.09697

0.05801

0.03273

0.01735

0.0086

0.004

0.11048

0.06781

0.03941

0.02161

0.0111

0.0054

0.12349

0.07752

0.04624

0.02612

0.0139

0.007

50

0.655817

0.52317

0.398322

0.29032

0.20281

0.13571

0.08684

0.05299

0.03074

0.0169

0.0088

51

0.676177

0.54344

0.417029

0.30673

0.21663

0.14692

0.09555

0.05946

0.0353

0.0199

0.0106

52

0.694468

0.56161

0.433698

0.3213

0.22893

0.15697

0.10349

0.06547

0.03964

0.0229

0.0126

53

0.71093

0.57787

0.448477

0.33411

0.23971

0.16582

0.11054

0.0709

0.04366

0.0257

0.0145

54

0.725782

0.59243

0.461538

0.34529

0.24904

0.17346

0.11667

0.07568

0.04726

0.0283

0.0163

55

0.739226

0.60549

0.47306

0.35499

0.25703

0.17996

0.12188

0.07979

0.0504

0.0306

0.0179

0.751438

0.61722

0.483221

0.36336

0.26381

0.18541

0.12624

0.08323

0.05306

0.0326

0.0193

57

0.762569

0.6278

0.492186

0.37057

0.26952

0.18993

0.12983

0.08606

0.05527

0.0343

0.0206

58

0.772753

0.63736

0.500106

0.37678

0.27431

0.19365

0.13274

0.08835

0.05706

0.0357

0.0216

59

0.782103

0.64603

0.507115

0.38211

0.27831

0.19668

0.13507

0.09016

0.05847

0.0368

0.0224

60

0.790716

0.65392

0.513328

0.38669

0.28164

0.19913

0.13692

0.09159

0.05958

0.0377

0.0231

Table
0 =1.

8.1: P(W > 0) when 20 < S < 30,20 < N <60, A\=20,p=1, u
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N\S

S$=20

S=21

S$=22

S=23

S=24

S$=25

S=26

S=27

S=28

S$=29

S=30

20

0.52131

21

0.49824

0.4982

22

0.47531

0.4753

0.4753

23

0.45256

0.4525

0.4525

0.4525

24

0.43001

0.43

0.43

0.43

0.43

25

0.40775

0.4076

0.4076

0.4076

0.4076

0.4076

26

0.38588

0.3855

0.3854

0.3854

0.3854

0.3854

0.38538

27

0.36456

0.3637

0.3635

0.3634

0.3634

0.3634

0.36343

0.3634

28

0.34401

0.3424

0.3419

0.3418

0.3418

0.3418

0.34175

0.3418

0.3418

29

0.32445

0.3217

0.3208

0.3205

0.3204

0.3204

0.32037

0.3204

0.3204

0.3204

30

0.30612

0.3019

0.3001

0.2995

0.2994

0.2993

0.29931

0.2993

0.2993

0.2993

0.2993

31

0.28918

0.283

0.2802

0.2791

0.2787

0.2786

0.27861

0.2786

0.2786

0.2786

0.2786

32

0.2737

0.2652

0.2611

0.2593

0.2586

0.2584

0.25832

0.2583

0.2583

0.2583

0.2583

33

0.25965

0.2488

0.2429

0.2401

0.239

0.2386

0.23848

0.2384

0.2384

0.2384

0.2384

34

0.24684

0.2336

0.2259

0.2219

0.2201

0.2194

0.21916

0.2191

0.2191

0.2191

0.2191

35

0.23501

0.2196

0.21

0.2046

0.202

0.2009

0.20043

0.2003

0.2002

0.2002

0.2002

36

0.22381

0.2067

0.1952

0.1884

0.1848

0.1831

0.18237

0.1821

0.182

0.182

0.182

37

0.21289

0.1946

0.1816

0.1733

0.1686

0.1662

0.16507

0.1646

0.1645

0.1644

0.1644

38

0.20191

0.183

0.1688

0.1592

0.1534

0.1502

0.14861

0.1479

0.1477

0.1476

0.1475

39

0.19065

0.1717

0.1568

0.1462

0.1393

0.1352

0.1331

0.1321

0.1317

0.1315

0.1314

40

0.17899

0.1605

0.1453

0.1339

0.1262

0.1213

0.11858

0.1172

0.1166

0.1163

0.1162

41

0.16692

0.1492

0.1342

0.1224

0.114

0.1084

0.10511

0.1033

0.1024

0.102

0.1019

42

0.15458

0.1378

0.1233

0.1115

0.1027

0.0966

0.0927

0.0905

0.0893

0.0887

0.0885

43

0.14216

0.1264

0.1125

0.101

0.0921

0.0856

0.08135

0.0787

0.0773

0.0765

0.0762

44

0.12993

0.115

0.1019

0.0909

0.0822

0.0756

0.071

0.0681

0.0663

0.0654

0.0649

45

0.11815

0.1038

0.0916

0.0812

0.0728

0.0663

0.06162

0.0585

0.0565

0.0554

0.0548

46

0.10706

0.0931

0.0816

0.072

0.0641

0.0578

0.05313

0.0499

0.0477

0.0464

0.0457

47

0.09684

0.083

0.0721

0.0632

48

0.0876

0.0737

0.0632

0.0549

49

0.07941

0.0653

0.0551

0.0473

0.0558

0.05

0.04547

0.0422

0.04

0.0386

0.0378

0.0428

0.03859

0.0354

0.0332

0.0318

0.0309

0.0412

0.0363

0.03244

0.0295

0.0274

0.0259

0.025

50

0.07226

0.0578

0.0477

0.0404

0.0348

0.0304

0.02698

0.0243

0.0223

0.0209

0.02

51

0.06608

0.0512

0.0412

0.0342

0.0291

0.0252

0.02219

0.0198

0.018

0.0167

0.0158

52

0.06079

0.0455

0.0355

0.0288

0.0241

0.0207

0.01803

0.016

0.0144

0.0132

0.0124

53

0.05629

0.0406

0.0306

0.0241

0.0198

0.0168

0.01448

0.0127

0.0114

0.0103

0.0096

54

0.05246

0.0364

0.0264

0.0202

0.0162

0.0134

0.01148

0.01

0.0089

0.008

0.0073

55

0.04919

0.0328

0.0228

0.0168

0.0131

0.0107

0.009

0.0078

0.0068

0.0061

0.0055

56

0.04639

0.0297

0.0198

0.014

0.0106

0.0084

0.00698

0.006

0.0052

0.0046

0.0041

57

0.04396

0.0271

0.0173

0.0117

0.0085

0.0066

0.00536

0.0045

0.0039

0.0034

0.003

58

0.04185

0.0249

0.0152

0.0098

0.0069

0.0051

0.00408

0.0034

0.0029

0.0025

0.0022

59

0.03998

0.0229

0.0134

0.0083

0.0055

0.004

0.00308

0.0025

0.0021

0.0018

0.0016

60

0.03832

0.0212

0.0119

0.007

0.0045

0.0031

0.00232

0.0018

0.0015

0.0013

0.0011

Table 8.2: P(block) when 20 < S < 30, 20 < N < 60,

0=1.
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We can see that the level line of the function P(W > 0) = Fy(S, N) determines
a monotone increasing function S = fi(IN), and the level line of the function
P(block) = F5(S, N) determines monotone decreasing function S = fo(N). The
area of admissible values of S and N for problem (8.2) is shaded area on the
figure below. The number of solutions is infinite. We would like to consider the
case, when the staffing cost much more than in other cases. It means that the

optimal point is when S is the smallest.

A

Figure 8.1: The domain of pairs (S, N) which satisfy the problem (8.2) and the
optimal solution of this problem.

So, we start with the state when the probability to wait P(W > 0) is smaller
than a and the probability to find the system busy P(block) is bigger than b.
Further, by adding trunk lines we increase P(W > 0) up to the desired level and
thus check P(block). If it is bigger than the desired value, we add one more agent
and continue the process. Otherwise, we increase P(block) up to the value b by
subtracting trunk lines and stop. In this way, we receive the algorithm which is
formulated in the next section.

8.3 Algorithm

As we have said, after the analysis of the performance measure’s behavior, we
can build a method for calculation of an optimal (S, N) pair under our problem’s
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constraints. But first, we need to define the initial data for our algorithm. We
want to increase the probability to wait, so the best way to start is to put Ng = Sy,
because in this case P(W > 0) = 0. Also we want to decrease the probability
to find the system busy. It seems that we can take any number of agents which
implements the condition P(block) > b. There are many such numbers and we
want the one that helps us to reduce the quantity of iteration in our algorithm.
It is easy to see that in these cases P(block) > b. So, which initial number of
agents do we need? As we see in Section 4.8 when the number of trunk lines
goes to infinity and 3 < 0 the probability to find the system busy tends to —f.
Moreover, when the number of trunk lines is growing the probability to find the
system busy is growing as well. Thus, we can say that \/?P(block) > —f[. A
more detailed graphical confirmation of this fact we will be given in Chapter 9.
Now using this condition we get:

P(block) = b = VSbr —3 = bz_iz_(l__) - S~

VS

So, our initial agent’s number approximately equals

%= [t

Now we can formulate the algorithm for finding the optimal (S, N) pair under
our problem’s constraints.

e Step 1. Let S = [Ap/u(1+b)], N =5 and go to Step 2.

e Step 2. Add trunk lines till P(W > 0) < a, and then go to Step 3.

e Step 3. If P(block) > b add one agent and go to Step 2, else go to Step 4.

e Step 4. If P(block) < b subtract trunk lines till P(block) < b, else stop.
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Chapter 9

Recommendations to a manager
of a call center with an IVR

In previous chapters we were analyzing a call center with an IVR. We found
approximations for its performance measures and performed graphical analysis
of these measures. Now we would like to answer the following question :“What
can we recommend to a manager of such a call center?” A central goal of each
call center’s manager is to establish an appropriate balance between cost and
service level. In this chapter we demonstrate the methods that can help reach
sound decisions. We do this in the following way. First, we recall the operational
performance measures that one can calculate. Next, we analyze some ways to
reduce the cost of a call center. Then, we investigate the effect of changes in
parameters of the system on the optimal solution of the problem, which was
analyzed in the previous chapter. We also consider the effect of a call center’s
size on its service level. In addition, we demonstrate the behaviour of performance
measures when the system’s parameters are changing.

9.1 Calculating operational performance mea-

sures

In principle, we know how to calculate exact and approximate performance mea-
sures. However, the exact calculation of these measures can take a long time
because of two reasons: complicated expressions and numerical instability. More-
over, in Chapter 5 it was shown that the approximating values are very close to
the exact values. So, the use of the approximations is an easy and convenient
way to calculate performance measures of call centers with an IVR.

Let us recall the operational performance measures that we have been calcu-
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lating. Suppose we know the values of the following parameters:
e )\ - the average arrival rate;
e () - the average rate of the service in IVR;
e 1, - the average rate of the service by an agent;

e p - the probability that a customer would like to receive the service by an

agent;
e S - the number of agents;
e N - the number of trunk lines.

Then it is possible to find the exact and approximate values of the following

operational characteristics:

e the probability to find the system busy:

exact calculation (3.15):

S+1

NG S w3 ()

i+j<N,j<S
approximate calculation (Theorems 4.6.1 and 4.6.2):

.

3 T YT

v (1) ® (1) + p(V/7P T PP)es 0 ()

B

lim V'SP (block) = { —
S—oo vy (V1) o (V2) + \/%7(1)(77)

[ @ (0 (5122 dan) + 2020 _ /TP g

B

LJ’_ A
where gy =1 — 3, /25, vy = VL O !

Vo = 1% .
Vit T e g

e the probability to wait before the agent’s service:

L2636

NSlNzl

Z Z <2> SMS}J S (%\)
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approximate calculation (Theorems 4.3.1 and 4.3.2):

( —1

P
ﬁ/ (n+ t>\/:)d<1><t>

PB)0(n) — (/7P + P)exp L)

1+

, B#0

lim P(W > 0) =

/ o (7] - t\/%> dd(t)
L+ =7 : 5 =0,
Vo[ o) + o)

where n; =n — 3, /pﬂe.

e the probability to wait less than t units of time before the agent’s
service

exact calculation (3.10):

N k—1 7j—S IUSt e — St
PW<t)=1- Y > x(k.j) Z— (9.1)
k=S+1 j=S 1=

approximate calculation (Corollaries 6.2.1 and 6.2.2):

fﬁue‘ﬁ““%d“ B#0

lim P(W <

A—00

Sl

%
1@ (n—u/pud) _
Ofn L)+ ﬁw(n)du’ 6=0,

_ 0 _ 1 2
where ;= n — 08,/5, and = 3506° —nf, /5.

e the average speed of answer (ASA) by agents to the customers who

would like to be served by an agent

exact calculation (3.11):

E[W] =

2|~
—
>
SN—
3
X[
/N |
=2
~
o
4
¥
(e
AN
T
gk
AN
3|~
—
>
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0
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approximate calculation (Theorems 4.9.1 and 4.9.2):

(1 (lw(ﬁﬁ(n) IR f)sownume"?@(m))

dim VSEW] = ¢ 7T Iy Z
1 e+ [ 1+ @) ()
[T 0 |
Vg (120 + () + J%/ o0 — b/ 2 )da(0

e the number of customers in the queue:
L, =pX(1— P(block)) E[W],

where P(block) and E[W] can be calculated by the formulae which were derived
before; see (3.15) and (3.11) in the case of exact calculation and Theorems 4.6.1
and 4.6.2 and Theorems 4.9.1 and 4.9.2 in the case of approximate calculation.

e occupancy of the agents:

. pA (1 — P(block))

Sp
where P(block) can be calculated by (3.15) in the case of exact calculation and by

formulae from Theorems 4.6.1 and 4.6.2 in the case of approximate calculation.

9.2 Analyzing performance measures as func-
tions of (3, n and %9

Let us rewrite the problem for finding the optimal solution, that was formulated
in Section 8.1 as follows:

min C(S(8),N(B.n));

subject to

P(W >0) <a; (9.2)
VSP(block) < b;

—o0 < 3,1 < 00,
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As we can see from the approximations for performance measures the probability
to wait and the probability to find the system busy can be presented as functions
on 3, n and %9 (see Theorems 4.3.2-4.6.2). So, restriction (9.2) can be rewritten
as follows

min C'(3,n,c);

Bm

subject to
fi(B,m,¢) < a; (9.3)
f2(5,77>c) < b;

—o0 < f3,m<oo, 0<c<oo,

where

Jim P(W > 0) = fi(B.n,¢),  lim VSP(block) = f(3,n.¢),
_p

.
We may interpret the fraction ¢ as a ratio of the average service time by agents

C

vs. average service time by IVR. It is important to remark that this average
service time by an agent includes the service time of customers that do not
continue service by agents, i.e. service time that equals 0. Now let us consider
the behaviour of fy(/3,7,c) when we change its parameters.
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Approximations for \/\SP(block)

\iSP(block)
N
(6]

0.5

O

P PN q® 00 12,0 2 N (N0 (@ N B Y2 000 10 0,9
B

When n is equal to:

——4 A3 %2  ——- 0 1 2 -3 —4

Figure 9.1: The illustration of the changing of the approximation for v/SP(block)
when the parameters 1 and  are changing and ¢ = 1.

Figure 9.1 shows the behaviour of \/§P(block) in the changing patterns of n
and ( from -4 to 4, when ¢ = 1. We can see that with the growing of (3, the
function decreases, even if 7 is small. For n > 1 the values of the function f; are

close to each other.
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Approximations for \/SP(block)

VSP(block)
N

a

&
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B
When 1 is equal to:

——-4 —A—-3 —%—-2 ——-1 —0 —1 ——2 ——3 —4

Figure 9.2: The illustration of the changing of the approximation for v/SP(block)
when the parameters 1 and [ are changing and ¢ = 0.2.

Figure 9.2 illustrates the case for ¢ = 0.2, meaning that the average service
time in IVR is significantly higher than the average service time by agents for
all customers. For such a call center, while 3 < —2 the values of the function fs
are almost the same, however after this point the values of the functions highly
differ for n < 0. Like in the above case with ¢ = 1, when n > 1 the values of the
function f; are once again close to each other.
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Approximations for VSP(block)

VSP(block)
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v 0 @ © o 0 - 0 S ©
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p
When 7 is equal to:

——-4 —A—-3 —H—-2 ——-1 ——0 —1 —>—2 ——3 —4

Figure 9.3: The illustration of the changing of the approximation for v/SP(block)
when the parameters 1 and  are changing and ¢ = 5.

Taking the same parameters of the call center, but now with ¢ = 5, we receive
Figure 9.3. As before, when 1 > 1 the values of the function f, are very similar.
So, we can conclude that in many cases such values of n, i.e. n > 1, will not
correspond to the optimal number of trunk lines. All the cases analyzed above
(Figures 9.1-9.3) demonstrate that with the growing of /3, the function decreases,
even if 17 is small. When [ is close to -4, the values of the functions are close to
each other, and it happens because of the system being overloaded, meaning too
many customers are waiting to be served while there are not enough agents. For
such lack of the staff, the increase of the trunk lines number will not be efficient
and this is what we call “system explosion”. Actually, the above figure supports
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the conclusion of Case C in Section 4.8, i.e.

_/67 ﬁ<07

fo(B.n,¢) = lim VSP(block) %{ D

Also using the fact that when 7 decreases the probability to find the system busy
grows we can also say that v/SP(block) > —f3. This fact helps to formulate
the following rule of thumb: “Under the given average arrival rate A\, the average
service time %, and the probability that the customer will be served by an agent
p, we can find the minimal number of agents S, which satisfies the condition
P(block) < b. This number is equal to S = —22.7.

w(1+b)
The function is going to be 0, when [ is positive and growing. It can be

explained for 7 is large enough when compared with the number of arriving calls.
In case when 1 < 0, this is a less comprehensible prima facie. But on closer
examination, we can see that a small » means a small queue size. At the same
time, big values of 3 cause short waiting times. In terminology of this thesis that
means the system is working in an efficiency-driven operational regime. So, the
probability to find the system busy is really decreasing when  grows.

Now let us look at the behaviour of the approximation of the probability to
wait, which was found in Theorems 4.3.1 and 4.3.2. As we said this approximation
is a function of 3, n and ¢ = pfie. So, let us see how the function f; changes with
the various values of the parameters.
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1.2

Approximations for P(W>0)

P(W>0)

0 K.
Xoha¥ o g g2 gl 202 MM X N b P AN XN Vg2 00 02 o) 0P o
p
When 7 is equal to:
——4 a3 2 —-1 —0  —1 2 -3 ——4

Figure 9.4: The illustration of the changing of the approximation for P(W > 0)
when the parameters 1 and ( are changing and ¢ = 1.

Figure 9.4 demonstrates changes in the function fy(3,7n,c) while ¢ = 1 and
n, B € [—4,4]. For every n > 2 the values of the functions are close to each
other. For smaller values of  fi(3,7,c) decreases and this confirms supposition
regarding to the relation between the trunk lines and the probability to wait.
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1.2 4
Approximations for P(W>0)

! I“’ !AA gxx ++ -

Rt
. A X + - - X"

0.8 4

06 1 .

P(W>0)

04 . B

0.2 'S A X +

X -
Oy Aa Ky L m_m
* A X +, -
* Ay Ky Tt -
“" Ay, Xyt 4+ ==lm
- L

D S T T N T N S S R O IS T G A

p

When 7 is equal to:
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Figure 9.5: The illustration of the changing of the approximation for P(W > 0)
when the parameters 1 and ( are changing and ¢ = 0.2.

A call center with ¢ = 0.2 is demonstrated in Figure 9.5. Here we see that
the differences between the values of the functions fi(/3,7,c) for various n are
less significant than in the case of ¢ = 1. This can be explained by the smaller
probability of P(block).

139



Approximations for P(W>0)
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Figure 9.6: The illustration of the changing of the approximation for P(W > 0)
when the parameters 1 and  are changing and ¢ = 5.

The case of ¢ = 5 is similar to the case ¢ = 1. The difference is in the speed
of decreasing of the function with decreasing of 3 and this is caused by the same
tendency in the probability to find the system busy.

When we solve the problem (9.3) we are searching for the smallest 5 and 7
for which the restriction are true. Suppose that ¢ = 1 and plot the function f;
and fy in the same figure.
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4.5

Approximation for +/SP(block) and P(W > 0)

Figure 9.7: The illustration of the changing of the approximation for v/SP(block)
and P(W > 0) when the parameters n and [ are changing and ¢ = 1.

Suppose we are looking for an optimal solution of the problem (9.3), when
a = 0.5 and b/+v/S = 0.02. Consider first the function f;. Figure 9.7 shows that
the smallest 3 and 7 for which the restriction is true are § = —4 and n = —4.
On the other side, for this pair fo = 4.2. This means that if we wish to satisfy
the second restriction in the problem (9.3) we need the number of agents in a
call center to be at least S = (04%022)2 = 44100. Thus, the pair (§ = —4,n7 = —4)
can be the optimal pair for only a huge call center. If we want the number of
agents in a call center to be about 1000, we need the value of the function f; to
be about 0.65, and the optimal value of 3, which corresponds to n = —4 will be
3.2. Taking into account that the cost of the trunk lines constitutes about 7% of
the staffing cost, it is easy to see that this solution cannot be optimal. A more
appropriate way is to take the pair (5 = —0.25,7 = 0). By analyzing Figure 9.7
we can conclude that the optimal solution of the problem (9.3) will probably be a
pair (3,n), where # and 7 are between —3 and 3. Of course, these values depend
on the size of a call center.
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We consider the case when ¢ = %0 = 1, but, of course, this value can be less
or more than 1. Figures 9.2-9.6 show that when ¢ # 1 we receive the same range
for optimal pair (3,n). The explanations of this fact are as follows:

e In Section 7.3 it was shown that when n — oo the system with an IVR may be
modelled as the M/M/S queue. Borst, Mandelbaum and Rieman showed
in [5], that in the case of M/M/S queue the $*, which corresponds to the

optimal solution S, = %L + B ﬁ is less than 3. Taking into account the

fact that the limitation of a number of trunk lines decreases the probability
to wait we can also say that our 5 < 3.

e In Section 4.8 we proved and in this section we illustrated that when 3 < 0
the probability to find the system busy satisfies the following restriction

VSP(block) ~ —f3.

Usually, a manager of a call center wishes that the probability to find the

system busy is less than 2%. Then, if 5 = —3 the size of a call center must
be at least S = (ﬁy = 22500. There are not many call centers in the

world of such a big size. Thus, we can suppose that usually § > —3.

e Analyzing Figures 9.2-9.6 we can see that when n > 3 the values of performance
measures are almost not changing. On the other side, when < —3 we can
see that the probability to find the system busy got too big values and needs
a very big value of 3 in order to satisfy the needed restriction. And what
is more, sometimes it is even impossible to achieve a needed value, because
as we showed in Section 4.8 f, — oo when n — —o0.

Thus, we conclude that for a regular call center the optimal solution (.S, V)
of the problem (8.2) has the following domain:

A A
) N—-S=~— —:

\ : (9.4)
(i) S~2Ly ﬁ\/z;
7 u

where —3 < f <3 and -3 <n < 3.
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9.3 Some ways to reduce operating costs

As has been noted several times, staffing costs (salary, training, etc.) account for
over 65% of the operating costs of a typical call center. Hence, the main way to
reduce costs is to reduce the number of agents. In this section we consider two
methods of doing that, as well as some of their advantages and disadvantages.

9.3.1 Reducing the number of trunk lines

The first way to reduce operating costs is to reduce the number of trunk lines and
the number of agents. The effectiveness of this method was discussed in Section
5.2. There we saw that even minor reduction in the number of trunk lines caused
the improvement of some characteristics, such as the probability to wait and the
average waiting time. It is thus possible to reduce the number of agents so that
the system still satisfies a desired service level requirement.

The disadvantage of this approach is the increase of the probability to find the
system busy. The following example illustrates what can be achieved by reducing
the number of trunk lines and what can be lost as well.

Consider a call center with an IVR in which:

the average arrival rate A = 80,

the number of agents S equals 82,

the number of trunk lines N equals 200,

the average service rate in the IVR 6 equals 1,

the average agent’s service rate pu equals 1,

e the probability to be served by an agent p equals 1.

Thus, the operational performance measures are as follows:
e P(W >0)=0.65,
e P(block) = 0.01.

Suppose that we wish to reduce P(W > 0) to 0.4. There are two ways to do
that:

(1) reduce 30 trunk lines, from 200 down to 170;
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(2) add 4 agents, from 82 to 86.

At first glance it may seem that the more appropriative way to achieve the
goal is to reduce 30 trunk lines. But in this case the probability to find the system
busy increases to 0.03. If we would like to reduce this probability back to the
previous value 0.01 we need to add 7 agents. The values associated with this
example are illustrated in Table 9.1:

s P(W>0) | P(block)
N=200

82 0.65 0.01

86 0.4 0.004

89 0.22 | 0.0015
N=170

82 0.4 0.03

86 0.2 0.015

89 0.01 0.01

Table 9.1: Operational performance measures for a call center with an IVR, when
p = p =6 =1 and the arrival rate equals 80.

As was said in Section 8.1, the trunk costs constitute 5% and the staffing
costs - about 65% of a call center’s operational costs. If we suppose that these
proportions are not changing with adding or reducing agents or trunk lines, then
the solution (1) will cost approximately 5% more than the current costs and the
solution (2) will cost around 3% more. Thus we conclude that the second way is
more appropriate.

9.3.2 Adding functionality to the IVR

The effective way to reduce costs without making the service level worse is to
extend the IVR’s capabilities. Adding functions to the IVR will decrease the
probability p to be served by an agent. Indeed, the operations which previously
only an agent could do are now carried out routinely by the “self-service” cus-
tomer. Therefore, the number of customers wishing to be served by agents will
decrease and, as a result, the number of agents S will decrease as well.

As an example, consider a call center with the following parameters:

144



(i) the average arrival rate A = 1000,
(ii) the average service rate in the IVR 6 equals 1,

(iii) the average agent’s service rate p equals 1.

Suppose that the performance constraints are as follows:

PW > 0) < 0.4;

(9.5)
P(block) < 0.02.

We can find the optimal pair (S, N), where N is the number of trunk lines and
S is the number of agents 0 < S < N. This pair (S, N) minimizes the costs
and provides the desired level of service. The algorithm for solving this problem
was described in Chapter 8. In this algorithm we used the exact formulas of
performance measures. It was easy, because we consider a relatively small call
center (with the arrival rate A = 20). In the current example and in all the other
examples in this chapter we will consider big call centers (the arrival rate A is
about 1000). The calculation of exact performance measures in such a big call
center takes a lot of time and needs a complicated programming process. Thus,
we will use approximations for performance measures for finding the optimal
solution.

Let us change p - the probability to be served by an agent over the range from
0 to 1, and for each case find the optimal solution (S, N).
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Optimal solution, when 9=1, p=1

2500 -

2000 -
——N
1500 +
- S
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1000 +
500 -
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p, probability to be served by an agent

Figure 9.8: The optimal pairs (S, N) for a call center with an IVR, when the
arrival rate equals 1000, the agent’s and the IVR’s service rates equals 1 and p
changes from 0 to 1 .

The dependence between the probability p to be served by an agent and the
optimal number of trunk lines N and the optimal number of agents S, as in
Figure 9.8 looks linear. Is it really a linear dependence? The domain of (S, N)
values is given in (9.4). Consider, for example, the relationship between S and

p: S~ % + [ %. The values of # are small and so the influence of 3,/ % is

negligible in comparison to %. Using this fact we can do rough approximation
of the optimal number of agents. For example, if p = 0.5 we can predict that
the optimal number of agents S will be equal to 500. We can see in Figure 9.8
that it is almost true, but because of a small resolution we cannot see the value
exactly. Note, that such an approximation is too rough and the optimal number
of agents can be actually equal to 550, i.e. the error is 10%.

The relationship between N and p are similar to the relationship between S
and p plus the item, which does not depend on p:

A A A A
va g [ AL A
J w0 0

Because of this, the line N is parallel to the line S and the difference is equal to

% + 77\/%- Moreover, we can roughly say that the difference is equal to %, ie.

1000 in our example, because the item 77\/% is negligible compared with %.
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Now, let us continue to analyze changing of the optimal solution when chang-
ing the parameters of the system. It is reasonable to assume that along with
changing the probability to be served by an agent the service time in the IVR
is changing as well. Unfortunately, we do not know how those changes occur,
but first let us consider what happens when we change the parameter 6. Let the
average service rate in the IVR be equal to 0.2, i.e. the average service time in
the IVR is 5 times more what it was before. We then get the following figure:

Optimal solutions, when 0=0.2, n=1

7000 -

6000 - ) R SO

5000 $0000004 000400000 . ) )

4000 - ——N

—&-S

3000

2000 -

1000 - |
0 m
SO I RN SN N S

p, probability to be served by an agent

Figure 9.9: The optimal pairs (S, V) for a call center with an IVR, when the
arrival rate equals 1000, the agent’s service rate equals 1, the IVR’s service rate
equals 0.2 and p changes from 0 to 1 .

Let us compare Figure 9.8 with Figure 9.9. When 6 = 0.2, the optimal number
of agents is exactly the same as when # = 1, and only the number of trunk lines
N changes. Actually, it is not surprising, because we saw that the optimal value
of S does not depend on . When 6 = 0.2, the values of N are about 5000 trunk
lines more than when € = 1, and it happens because now the difference between
N and S is about % = % = 5000.

Let us see what happens when 6 = 5, i.e. the average service time in IVR is 5
times less than in the first case and 10 times less than in the second case. We can
hypothesize that the optimal number of agents will be the same as in the previous
cases and the optimal number of trunk lines will be less, and the difference found
will be as follows: Nop (0 =5) & £(Nope(6 = 1) — Sope(0 = 1)) + Sope(6 = 5). Our
intuition is that the optimal number of agents will not change and therefore the
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optimal number of trunk lines will be about 900 trunk lines less than in the case
when ¢ = 1. Figure 9.10 supports this intuition:

1400 -
Optimal solutions, when 6=5, p=1
1200 | oo
o
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o
o
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M,WO
400 - 244
‘ oo
200

Figure 9.10: The optimal pairs (S, N) for a call center with an IVR, when the
arrival rate equals 1000, the agent’s service rate equals 1, the IVR’s service rate
equals 5 and p changes from 0 to 1.

Now, let us assume that the service rate in the IVR is a function of p. Intu-
itively this function must be an increasing function, because when the number
of customers wishing to be served by an agent increases the time that these cus-
tomers spend in the IVR is decreasing, therefore the service rate in the IVR is
increasing. For simplicity, suppose that this function is linear such that when
nobody wishes to be served by an agent (p = 0), the average service rate in the
IVR equals 1, and when everyone wishes to be served by an agent (p = 1), the
average service rate equals 5. Thus, this function has the following form:

O(p) =4-p+1. (9.6)

According to the previous analysis we can guess that changes in the service
time in the IVR will not influence the optimal agent’s number. Now let us look
at the optimal solution (S, N) to the problem (9.5), but in the case when 6 is
given by (9.6).
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1400 -
Optimal solution, when 6=4p+1, n=1
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p, probability to be served by an agent

Figure 9.11: The optimal pairs (S, V) for a call center with an IVR, when the
arrival rate equals 1000, the agent’s service rate equals 1, the IVR’s service rate
depends on p, and p changes from 0 to 1.

Figure 9.11 shows that our intuition was right. The optimal number of agents
did not change. This fact is very important, because we can see once again that
adding functions to an IVR is a good way to reduce costs of a call center. The line
N values for this now does not look linear. So, it is a line similar to N = % + %.
This is a rough approximation, because we do not take into account the items

77\/5 and \/¥ , but the values of these items are negligible and do not influence
the form of the line N.

Another property that can be manipulated with the addition of functions to
the IVR is the service time at the agents’ pool. Indeed, if the IVR has more
functionality, then the agents do not need to do part of the functions. Thus, it
is natural to suppose that there will be a decrease in the average agent’s service
time and, as a result, it will lead to a decrease in the optimal number of agents.
Another average agent’s service time might increase as a result of additional
functions to an IVR. Customers might have questions as for the IVR usage,
since it is more complicated now. Moreover, the customers who will be served
by an agent after adding more functions to an IVR are expected to have more
complicated requests which take longer to be satisfied. Thus, the relationship
between the probability p to be served by an agent and the rate y of an agent’s
service is not easy to predict. Consider two scenarios of changing the rate of the
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agent’s service:

p=1+2-p-(1-p) (9.7)
and

p=1-=2-p-(1-p). (9.8)
Let us now see the illustration comparing the optimal number of agents in the
two scenarios.

Comparison of optimal number of agents in the scenarios (9.7) and (9.8)
1400 -
1200 -
1000 -

800 -

600

—e—scenario (9.7)
—=&— scenario (9.8)

400 -

200 ~

Figure 9.12: A comparison of the optimal number of agents for a call center with
an IVR, when the arrival rate equals 1000, the IVR’s service rate depends on p,
p changes from 0 to 1, and the agent’s service rate p in the first scenario it equals
1+ 2p(1 — p) and in the second scenario equals 1 — 2p(1 — p).

Figure 9.13 shows that the first scenario is preferable to the second. We can

come to the same conclusion using the picture below, which shows the comparison
of the optimal number of trunk lines for both scenarios.
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Comparison of optimal number of trunk lines in the scenarios (9.7) and (9.8)
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p, probability to be served by an agent

Figure 9.13: A comparison of the optimal trunk lines numbers for a call center
with an IVR, when the arrival rate equals 1000, the IVR’s service rate depends
on p, p changes from 0 to 1, and the agent’s service rate p in the first scenario
equals 1 +2-p- (1 —p) and in the second scenario it equals 1 —2-p- (1 — p).

Thus, we can see that adding functions to an IVR can provide a very good
solution for the costs reduction. However, sometimes this may bring undesirable
changes. Such a result can be seen in the second scenario. Indeed, before adding
functions to the IVR, i.e. when p was equal to 1, the optimal agent’s number was
503. After the addition of some functions to the IVR, for example, when p = 0.7,
the optimal number of agents in the second scenario was 605. This is almost by
20% more than it was before. As said in Section 8.1, the trunk costs constitute
5% and the staffing costs - about 65% of a call center’s operational costs. If we
suppose that these proportions are not changing with adding or reducing agents
or trunk lines, then after adding functions to an IVR, the call center’s costs
increase by about 14%. Such a scenario can happen as a result of unsuccessful
design of an IVR, which shows how important it is to be careful while designing
it. As we said in the Section 1.1, when we deploy an IVR we need to take into
consideration not only a call center’s interests, but also the wishes, needs and
possibilities of customers in order to make it an easy to use, understandable and
convenient application.
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9.4 Investigation of the effect of changes in p, 6
and ;1 on the optimal solution (S, V)

Let us now return to the original problem (8.2) with restriction (9.5) in order to
consider the effect of changes in p, n and p and their influence on the optimal
solution (S, N). Actually, we began this analysis in the previous section. Figure
9.8-9.10 showed that the dependence between the probability p to be served by
an agent and the optimal pair (S, N) looks linear. We explained this fact by
using the domain of (S, V) values:

: ~ A A
(1) N—Swg‘i"fl 9’

.. A /p .
(II)SNFP_’_ﬁ Fpa

As can be seen, the main influence on S and N is that of the first term in (ii),
thus the dependence is basically linear. The following questions arise now:

How large is the value of the last term in (ii), i.e how strong is this term’s
influence on S and as a result on N7

Is there really a linear dependence between S and p?

What is the relationship between p and S7

What is the relationship between # and N — S?

9.4.1 Effect of p

Let us try to answer the first and second questions. For this purpose we will
consider ( and 7 as functions of p and plot the values of 5 and 7, which correspond
to the original pair (S, N).
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0.5

-0.2 -
p, probability to be served by an agent

Figure 9.14: The values of 3 and 7, that correspond to the optimal pairs (S, N)
for a call center with an IVR, when the arrival rate equals 1000, the agent’s and
the IVR’s service rates equal 1 and p changes from 0 to 1.

Figure 9.14 shows that 7 is almost constant and [ changes in a manner close
to linear. Also, the plot shows that all values are close to zero, then the last
terms in (i) and (ii) from the domain of (S, N) values, do not have a profound
effect on the optimal pairs (S, N). For the reasons given above the dependence
of values (S, N) on p seems linear (see Figures 9.8-9.10).

9.4.2 Effect of u

Now let us consider in what way p influences the optimal solution. From the
definition of the domain of (S, V) values we can see that p influences the number
of agents and not the potential number of places in the queue N —S. So, we can
suppose that 1 will be constant. The next plot confirms our assumption.
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Effect of p on the optimal B and n

+n

L, average agents' service rate

Figure 9.15: The values of # and 7, that correspond to the optimal pairs (.S, V)

for

a call center with an IVR, when the arrival rate equals 1000, p and the IVR’s

service rates equals 1 and the agent’s service rate changes from 0.2 to 10.

Figure 9.15 shows that n is almost constant, moreover, it equals the same

value as in the case when p was changed. Thus, the optimal value of n does not

dep

end on p and p, but the optimal value of 3 depends on p and u as well. A

more detailed analysis of the domain of (S, N) values shows that p is included
into the same items as p. So, the optimal value of beta depends on the fraction
%. Figure 9.14 shows the optimal values 3 and 7 as functions of %.
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14 Effect of p/p on the optimal B and n
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p/M, probability to be served by an agent/average agents' service rate

Figure 9.16: The values of # and 7, that correspond to the optimal pairs (.S, V)
for a call center with an IVR, when the arrival rate equals 1000, average service
rate in the IVR 6 equals 1 and the fraction % changes from 0.1 to 10.

We can once again make sure that the values of 1 did not change. Furthermore,
Figure 9.14 is a particular case of the Figure 9.16.

9.4.3 Effect of 6

In the domain of (S, N) values we can see that S is not dependent on 6. So, it
is natural to suppose that with the changes of # the value of § will not change
either.
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25 - Effect of 6 on the optimal 3 and n
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Figure 9.17: The values of # and 7, that correspond to the optimal pairs (.S, V)
for a call center with an IVR, when the arrival rate equals 1000, p and the agents’
service rates equals 1 and the IVR’s service rate changes from 0.2 to 10.

Figure 9.17 supports our assumption, i.e. an average service rate in an IVR
does not depend on the optimal number of agents. The value of n grows with
growing of the average service rate in the IVR 6.

9.4.4 Conclusions

After this section’s analysis we can formulate the following conclusions:

e The items 3,/ ”7)‘ and 77\/% are small values in comparison with %)‘ and % re-

spectively, so sometimes we can neglect these values and predict the optimal
solution in the following way: S ~ ”7’\ and N — S = 2.

e Growth of the probability p to be served by an agent or average agent’s service
time i causes growth of the optimal number of trunk lines, but the value

of n does not change.

e Growth of the probability p to be served by an agent causes growth of the
optimal number of agents, but the value of # decreases.

e Growth of an average agent’s service rate p causes decrease of the optimal
number of agents, but the value of § grows.
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e If the values of the probability p to be served by an agent or an average agent’s
service time y are changing, then it is convenient to consider the changing of
fraction pu instead of each of them taken separately. Growth of this fraction
causes growth of the optimal pair (S, N), but the value of 5 decreases and
the value of 1 remains constant.

e Growth of an average service rate 6 in an IVR causes growth of the optimal

agents’ number S,,; and growth of 3 as well.

e Growth of an average service rate 6 in an IVR causes decrease of the optimal
number of trunk lines, but the value of n grows. Changes in the value of 6
have no effect on 8 and as a result on the optimal number of agents S,,.

9.5 Effect of the call center’s size

First, let us have a look at the behaviour of P(block). This characteristics depends
on (# and n, S and %9, but in this case we assume that p =60 = u = 1.

P(block), B =1

0.1
0.09 & —— - —A— —— ——
0.08 - \ n=-2 n=-1 n=0 n=1 n=2
0.07
— 0.06
0.05 -

P(block

0.04
0.03 \‘\‘\’\0\.

0.01 -

(O . et SR S S S— — —
100 200 300 400 500 600 700 800 900 1000

S, agents

Figure 9.18: The illustration of the changing of the approximation for P(block)
when the parameter 7 is changing and /3 is equal to 1.

In the Figure 9.18 we plot changing of P(block) when 3 is equal to 1, nis-2, -1,
0, 1 and 2. The number of agents S is changing from 100 to 1000. Usually, we say
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a call center with the number of agents S=100 is mid-sized and when S = 1000
a call center is big-sized. In this graph we really see P(block) decreasing with
growing of S when all the other parameters are fixed. We can also see that with
the growth of 7 this decrease is less distinctive. This fact can be explained by
a slight changing of lim v/SP(block) in this case. On the other side, when 7 is
decreasing these changes are more visible. Thus, when 7 = —2 and S = 100 the
probability to find the system busy is more than 9%, and when S = 1000 this
probability is less than 3% under the same parameters. This is one more piece of
evidence in the service level increasing with growing of a call center’s size. But
this increase is not always remarkable, even in the case when the arrival rate A
is big. For better understanding let us see the following graph:
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S, agents

Figure 9.19: The illustration of changing of the approximation for P(block) when
the parameter 7 is changing and 3 = —1.

Figure 9.19 shows significance of the parameter 3. We can see that even when
our call center is huge, for example S = 10000, the probability to find the system
busy still cannot be less 1% under the given system’s parameters. Thus, this
example also shows that parameters § and n are important even for a big call
center.

Now, we would like to plot the effect of a call center’s size on the values of (8
and 7. First, let us look at the changes in § for call centers with the arrival rate
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being one of the following:
A =500, A=1000, A=5000, A=10000, A= 50000.

For each case # corresponds to the optimal solution (.S, V).

P Qf‘%W 2T P FRERF L PP E LR FFS S TS O

O

K
1 XXXXX
XXXXXX
XXX
Xxx
24 XXXXXXXXX
Kok
Kk
3
x**)K)Kx
KKk
4 %
*— A=500 = A=1000 A=5000 *= A=10000 *= A=50000

Figure 9.20: The values of 3, that correspond to the optimal values S for a call
center with an IVR, when the arrival rates are different, the agent’s and the IVR’s
service rates equal 1 and p changes from 0 to 1.

The results show that all the values are close to zero, while 3 decreases as the
call center’s size increases. This once again supports the well known fact that a
large call center works faster that a smaller one.

Next, we look at the changes in 1 for the same cases described above (see
figure 9.21).
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Optimal values of 1, when the fraction p/p grows

00600600600 06060 0606060600600 06060606000000000000000000000090%00

XXXXXXXXXXXXXXXXXXXEXXXKXXXXXXXXXXXXXXXXXXXXXXX X

XXX)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)K)KXXXXXXXXXXXXXXXXXXXXX

—* A=500 —# 2=1000 A=5000 7 A=10000  —* A=50000

Figure 9.21: The values of 7, that correspond to the optimal pairs (S, V) for a
call center with an IVR, when the arrival rates are different, the agent’s and the
IVR’s service rates equal 1 and p changes from 0 to 1.

Here, the values of n are almost constant and they decrease as a call center’s
size increases. Also, we can see that these values are small enough. Even for the
call center with the arrival rate A = 50000 the value of 1 is about -4.

Figure 9.20-9.21 approves the range for § and n, which we receive in Section
9.2. Recall, that for a regular call center § and 7, which correspond to the optimal
solution of the problem (8.2), are between —3 and 3.
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Chapter 10

Future research

Finally, we outline some directions worthy of further research.

Adding abandonment and retrials to the model. The subject of this
thesis is a Markovian model for a call center with an IVR. We have tried to make
the problem as realistic as possible. However, some more work is required to
understand the effects of retrials and abandonments. Analogous problems were
analyzed by Garnett, Mandelbaum and Reiman in [13] for M/M/N queue and by
Zeltyn and Mandelbaum in [25] for M/M/n+G queue.

Mixed customer population. One more realistic problem is the issue of
different service requirements for different classes of customers. Such problems
are called Skills-Based Routing and they were already investigated by Gurvich,
Armony and Mandelbaum in [2] and Atar, Mandelbaum and Shaikhet in [4]. It
is advisable (interesting) to investigate the models of Skill-Based Routing for call
centers with an IVR.

Dimensioning the model of call center with an IVR. In our context,
the term dimensioning was introduced in Borst, Mandelbaum and Reiman [5].
The authors considered an optimization problem for the Erlang-C queue, where
the goal is to minimize the sum of staffing costs and waiting costs. Increased
competition, deregulation and rising customer acquisition costs highlight the im-
portance of both high-quality customer service and effective management of oper-
ating costs, and [5] developed a formal framework for this problem. Specifically,
if ¢ is the hourly cost of an agent, and a is the hourly cost of customers’ delay,
then the asymptotic optimal staffing N* = R + y*(a/c)V/R, where R is offered
load, and y*(+) is a function that is easily computable. It is of interest to analyze
analogous problem for a call center with an IVR, where in addition to staffing
and waiting costs, IVR’s costs arise.
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Chapter 11

Appendix

11.1 Proof of Lemma 6.1.1

PRrooF. In the table about inverse Laplace transform we find the following:
L7} (t)=e™", (11.1)

and
tn_ 1

LY ()= ——
(a+z)™ ( ) (n — 1)'

Now let us find the inverse Laplace transform for the function

9(x) = bix(aix)n

For this purpose, decompose this function into common fractions

1 1 \" B Ay A
: = + b4 (11.3)
b+z \a+x b+ a4z (a+ x)"

e . (11.2)

If we multiply the left and right sides of equation (11.3) first by b+ x and second
by a + z, we get the following equations:

1 " B Ay A,
= i+ ——— ) (b 11.4
<a+x> b+x+<a+x+ +(a+x)”)< ), (114)
1 k k-1
= A N S 11.5
T o b+x(a+x) +Ai(a+2)" .+ (11.5)
By substituting * = —band = —ain (11.4) and (11.5) respectively, ones obtains
1 1
B = A, = _ 11.
(a—b)™’ b—a (11.6)



Now let us look more carefully at equation (11.5). By differentiating n-1 times
the two sides of the equation and substituting each time x = —a, we get that

A = (_1)k_j

g m, V 0<k<n.

Thus, the inverse Laplace transform for the function g(x) is equal to

) ;e—bt + ﬂe—at R — 1 . (A + 1 . !
9@) " (a — b)k (b—a)k Tob—a)? (k—=2)let  b—a (k—1)le
1 —bt —at 1 1 th=2 1 th—1
T ¢ {m—mk+“+@pwy'm—2ﬂ+a—bxk—mkaJ

- —— {e_bt—e_“t (1+(a—b)t+w+...+W)]

o 2! (k—1)!
e (e )

Finally, the inverse Laplace transform of the function
b a—b\"
= 1—
a(z) b+x( (a+x) )

(a — b)*t? (a— b)”‘lt”‘l)]

-1 __ bt —bt —at
Ly = be —b{e —e <1+(a—b)t+ 5 + ...+ (1)
— b)2¢2 — p)yn—ln—1
LR R R

is equal to

=be " (1 —b)t
e (+(a )t + 51 + = 1)

which yields the required result. O
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