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ABSTRACT.

In the traditional approaches to management, planning and control of projects it is
generally assumed that the projects go through a system separately and independently of
each other. Handling of projects in accordance with these approaches is generally
deterministic, with the results of analysis of a single project being a "sure” forecast of
the date of conclusion. In reality, however, a large number of projects characterized by
uncertainty are handled simultaneously, and in this way a dynamic system is created.

In this system, projects compete to receive service from a group of limited resources,

and this results in the forming of queues of activities belonging to different projects. The

study separates the queues into two types: |
¢ Queues waiting for resources, because resources are fimited.
e Synchronization queues formed because of constraints of priorities and
independence between the activities.

In this study we attempt to examine the influence of the various parameters (for

instance: efficiency, variability factors etc.) on the time profile of a project in the system.

The work contains two main chapters:

The first chapter begins with a survey of the literature, in which we gradually build the

dynamic model. The basic model is the deterministic model. With the addition of

distributions to the service times, we receive a static stochastic model. Finally, with the
addition of arrival of projects for the system, we receive the dynamic model.

For the purposes of the study we redefined traditional concepts, such as: critical path,

critical task etc.

In addition, we divide the time profile of a project in the system into three types:

Processing time, waiting time and synchronization time.

We proposed two methods for defining these times:

Method 1. Relieving the system from constraints of resources and synchronization,
while measuring the benefit in performances. This method has four stages
that can be executed in an arbitrary order.

Method 2:  Treatment of each task separately. For each task these times are well
defined. We then define a performance index that equals to the sum of

times spent by the tasks at the stations.
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At the end of the chapter we illustrate applications of these methods and examination of
other parameters in a small, but sufficiently interesting system. In this way we supplied a
framework for empirical investigation based on simulations of queue networks.
The main conclusion derived from the example is that the waiting time for resources
constitutes most of the overall time, in both methods. On the other hand, the
synchronization time is low. Therefore, if we wish to reduce the throughput time in the
system, we will invest in reducing the waiting time (for instance by increasing
resources). Naturally, lowering of efficiency or reduction of the coefficient of variation
(arrival and service) will improve the system.
Another conclusion is that the arrival variability has almost no influence on the
synchronization time between the tasks.
On the other hand, the arrival variability and the service variability both have an
influence on the waiting time.
An analytical analysis of a general system is difficult and most times impossible.
Accordingly, in the second chapter we restrict attention to a simple and symmetric
system. The system included n x m resources, each devoted to an activity. The project is
spiit into # groups of m tasks each, and the » groups operate in parallel.
The task duration is exponentially distributed, and the arrival of the projects to the
system constitutes a renewal process.
We built three bounds for the expected throughput time of the project in the system:

o Upper bound received by a system with # independent arrival of projects.

¢ Lower bound received by a system without arrival of projects, a static stochastic

system.

e Lower bound, received by a system with one group (#=1).
Through the use of these bounds and with results of simulations, we received analytical
approximations for the mean throughput time of a project, for a border cases of the
parameters m, :

¢ Fixed m, n—o0

e Fixed n, m—wx

® M-, N—»©
In each case we matched an approximate analytical formula for a Poisson phase and a
deterministic phase. We also examined the influence of the various parameters on the
expectancy, for instance: efficiency of the resources, size of the group (), number of

groups (), and coefficient of variation.
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We distinguished between the two types of synchronization existing in the system:
e Initial synchronization, formed as a result of joint arrival of projects to the system.
e Final synchronization, formed in light of the constraint whereby the project finishes
its processing on conclusion of processing of all its tasks.
As a cénclusion, we recommend using the following approximation for the mean

throughput time of a project in a system with a Poisson arrival (for each m>10, and for

each n):
T, m) = m _(1+inn‘inm - lnp)
H-A m 2
:f(n,m)_ m .(H_Inn'lnm»inp)
Y 1-p m 2

This approximation usually gives an error of up to 5% of the mean as calculated by the
simulation.

Form the approximation it can be seen that the mean throughput time of a project grows
at a linear rate as a function of m and at a logarithmic rate as a function of ». If we
attribute the number of tasks in group (m) to waiting queues, and the number of groups
(n) to synchronization queues, then limited resources have a linear influence, while the
synchronization gap has a logarithmic influence. Accordingly, it will be advisable to

invest more extensively in limited resources in order to improve the system.



