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Abstract.

We consider an open queueing network. External arrivals to the network are Poisson
(possibly time-inhomogeneous), service times are gereral and switches of customers be-
tween stations are Markovian (governed by a matrix of routing probabilities}. Customers’
transitions between stations may be either immediate or of exponentially distributed du-
rations. First Come First Served (FCFS) discipline is assumed at all stations.

Bach customer is supplied with an Identification Number (ID) upon entering the net-
work. This ID accompanies him until exit, while being registered at each service on his
route,

Suppose that we are able to register also service starts and service terminations, in
addition to the corresponding ID’s. Such type of data will be referred to as transac-
tional data. (In some special cases, we also assume that external arrival times are also
recorded.) The objective is to estimate the evolution of the queue during some time

interval; specifically, to calculate

Q(t) = E[Q(t)/F], te€ [Ty, T3],

where F represents the available information from the transactional data and @ is the
queue length.

Previous research on the subject was devoted exclusively to the single-station case.
(ID’s are insignificant then.) The main approaches were the method of order statistics,
used in the pioneering paper of Larson [12], and the method of Hidden Markov Models,
developed by Daley and Servi [4].

First we consider the problem of Busy-Period Interpolation. In other words, we assume
that all service starts and terminations during a busy period at a specific station are
registered, and that estimation is carried out at the end of the busy period.

In the simplest case of immediate transition times between the stations and known
external arrivals, we can calculate the queue length exactly. In all other cases, the tech-
nique of Hidden Markov Models is used. The case of immediate transitions and unknown
external arrivals is similar to the single-station case. If transition times are exponential,
one needs a more refined definition of the Hidden Markov Model. It turns out that order
relations between truncated exponential random variables are involved in calculations of
the transition probabilities of the Markov model.

The second class of the estimation problems includes Real-Time Estimation and Gen-
eral Interpolation. Here we estimate the queue during a busy period, using available
information, until estimation time t within the busy period. In Real-Time Estimation,
one infers the queue at time ¢, possibly updating the estimate as ¢ varies over the busy
period. (Bertsimas and Servi [2] performed such an analysis for a single station.) In the



case of General Interpolation, we infer the whole evolution of the queue from the start of
the busy period until ¢, dynamically for ¢ > 0.

These problems are, in general, more sophisticated than Busy-Period Interpolation.
The case of immediate transitions is solved using specific methods; Hidden Markov Models
are applicable if transitions are exponential. However, the state space of the Markov chains
“explodes” and even networks that are moderate in size are, in general, not amenable for
computations.

Our theoretical results are applied to a data set originating in a bank operation.
Transition times between stations may be assumed immediate and external arrivals are
registered. Therefore, with the availability of ID’s, one can actually calculate the exact
queues. As an experiment, we assume that external arrivals are unknown and use our Hid-
den Markov Model algorithm. Satisfactory correspondence between estimates and reality
prevails in most cases, despite some theoretical assumptions (FCFS, for example) that do
not exactly apply at the bank. Future additional applications may include communication
and transportation networks.

Chapter 1 includes an introduction to the subject. We start with an informal descrip-
tion of the problem in Section 1. Section 2 includes a literature survey, an introduction
to the methods of order statistics and Hidden Markov Models and examples of queue
inference for the single-station case. In Section 3 we give an exact problem formulation,
specifically description of the queueing network and objectives. Subsection 3.2 is de-
voted to a discussion of the structure of observations and Subsection 3.4 includes a short
summary of our results.

Chapter 2 contains theoretical results. The Busy-Period Interpolation problems are
considered in Section 1. Subsection 1.5 provides auxiliary results concerning truncated
exponential random variables. Further, in Section 2, we study alternative representations
of the observed information. These results are used in Section 3, devoted to Real-Time
Estimation.

Finally, part of our theory is applied in Chapter 3 to real transactional data of a
bank branch. We conclude with some possible directions for future research.



Abbreviations.

ATM
FCFS
ID
IR-time
HMM
QIE

VR-time

Automatic Teller Machine
First Come First Served
Identification Number
Invisible-Routing time
Hidden Markov Model
Queueing Inference Engine

Visible-Routing time



Chapter 1

Introduction

1 Motivation

We start with an informal introduction to the subject.

Suppose that one would like to measure the queue of an Automatic Teller Machine
(ATM,“Bankomat” or “Caspomat” in Hebrew). In principle, it is possible to produce
direct and exact measurements: one can install a camera or hire someone to stand near
the ATM and register customers. However, both methods are likely to be expensive.

A different approach to the problem could be to record customers’ transaciions, i.e.
service starts and terminations. (These times coincide with insertion and ejection times
of the customers’ ATM cards). Such information can be recorded easily by the ATM.
However, since transactions do not include arrival times of customers, we do not know
the queue exactly, hence we must estimate it.

There are many queueing systems which are, in some way, similar to the ATM example.
Specifically, they share the following two features:

e invisible queues, namely queues for which direct measurements are either impossible

or too expensive;

& itransactional data is 1elatively easy to access.

Larson {12] was the first to introduce and solve the problem of queue-length infer-
ence, using transactional data. His paper contains convincing examples, included in the
following list:

» Telephone service centers have a limited number of channels. Transactions corre-
spond to starts and terminations of telephone calls. If customers that encounter
a busy signal (blocked) call back with probability p, then the customers that do
call back constitute a retrial queve. Usually, information about the arrival times of

blocked customers is not available within the service center, but rather, at the level

4
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of the telephone-call carriers (“Bezek” in Israel). Hence, such information may be

impossible to obtain, and in any case expensive to monitor.

e Cellular phone networks {“Pelephone” in Hebrew) is another example of retrial
queues. Here it is impossible to record arrival times of customers that encounter a

busy signal.

¢ Transportation queues at traffic intersections. Transactions may correspond to times
when vehicles cross a measuring cable. Such information is much more amenable

for mathematical analysis then information obtained by installed cameras.

e Face-to-face services such as banks, government offices, health clinics, and so on. It is
typically easier here to measure transactions rather then arrival times of customers.
(These are the type of applications that motivated the present work, and to which
our theory is being applied in Chapter 3.)

Note that the first two applications deal with single-station queues. The last two can be
considered also within a queueing network context. As a matter of fact, previous research
covered the single-station case exclusively, and the contribution here is an extension to a

network setting.

2 Single-station case

2.1 Survey of Literature

As already mentioned, existing research has been devoted to single-station problems. The
subject is only several years old, hence all the existing papers, which we are aware of, will

now be surveyed.

Larson Larson opened up the subject in his pioneering paper [12], where he intro-
duced the terminology Queueing Inference Engine (QIE) to describe the algorithm that
infers queue length from transactional data.

Larson considered a service station with s servers working in parallel, Poisson arrivals
and general distribution of service times (M/G/s queue). Service times are truly general,
as they are required to be neither independent nor identically distributed. {(However, an
assumption of the independence between services and arrivals had to be imposed.)

Transaction times were supposed known and the queue length was estimated through
its expectation, conditioned on the available information.

Larson’s simple key observation was that busy periods (time periods when all servers

are working) coincide with the time intervals, over which new services begin instanta-
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neously after service termination times (in practice — almost immediately). Note that a
queue can arise only during a busy period.

Larson considered, what we call later, the problem of Busy-Period Interpolation.
Specifically, his objective was to estimate the evolution of the queue length over a specified
busy period, given the data (transactions) accumulated over that period. The estimation
is carried out at the end of the period.

A technique, based on the order statistics property of the Poisson process, was used
to develop an algorithm for queue inference. (We shall survey this technique in detail in
Subsection 2.2.) It is notable that the algorithm does not require knowledge of the arrival
rate A.

The number of calculations for the initial algorithm was O{n®), where n is the number
of transactions during the busy period. In [13] the algorithm was modified slightly and
its number of calculations improved to O(n®).

Hall {8) attempts to incorporate information, in addition to transactions. Specifically,
one is informed each time that the queue size hits 0 or M (some buffer space limit). Hall
also calculated additional statistics, such as the density function of the arrival time for
the k-th customer, as well as waiting time in queue. Several heuristic algorithms, that
require less computations (down to O(n?) or O(n)) were developed.

Jones and Larson {11] derive results concerning order statistics and apply them to
compute conditional distributions of some queue characteristics, for example, maximum
queue length.

Daley & Servi An alternative approach was developed by Daley and Servi. In [3]
they used the technique of taboo probabilities for Markov chains to solve Larson’s problem
and other problems of this type. For example, algorithms for Ej/G/1 (interarrival times
are independent with Erlang-k distribution) and M/G/s/m (finite buffer) systems were
analyzed. (In every case, except M/G/s, the arrival rate X must be known.)

An approximate O(n?lnn) algorithm was also developed. The approximation is based
on a truncation of the conditional queue-length distribution.

In [4] more general methods were introduced. Specifically, Daley and Servi found
that many models can be accommodated within the general framework of Markov Chain
Boundary Value problems, which can be solved using taboo probabilities. A single algo-
rithm was developed and applied to the following examples (in addition to [3}}.

¢ Reneging (a customer leaves if the wait is too long);

e Bernoulli feedback (any customer completing service feeds back into the queue with
probability p);
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¢ Balking (any arriving customer leaves with probability p whenever the queue size is
at or above a threshold M).

Another interesting result of [4] concerns a maximum-likelihood sample-path. An algo-
rithm for its derivation was introduced and an illuminating example was given (see our
Subsection 2.4 for an elaboration).

Markov Chain Boundary Value problems belong to an extensive class of models which
are called Hidden Markov Models {HMM). The problem addressed in these models is the
inference of different characteristics of a Markov chain, given partial information about
its state. A clean account on HMM methods, with applications to speech recognition
problems, is Rabiner [14].

In [5] asymptotic conditional mean queue length was studied for busy periods with a
large number of customers. The M/D/1 queue (deterministic service times) was consid-
ered as a start, and then the results were generalized to M/GI/1 (ii.d. service times).
Brownian excursions were used for the approximations.

Bertsimas & Servi Several important results were introduced in [2]. First, an
algorithm for queue estimation in real-time (within a busy period) was derived. This
type of problems is very important since “if there is a possibility of real-time control of
the service time, knowledge that the queue length was excessively large, but that it is
currently zero, is not of value”[2].

Other results included:

¢ An original version of the M/G/s problem (using multidimensional integrals).

e A solution of the M;/G/s problem (after a simple time-change, the initial M/G/s
algorithm is valid; the arrival rate A(f) must be known);

e A solution for the GI/G/s problem (formulas include multidimensional integrals

and convolutions that are, in general, non-computable).

Applications An attempt to apply the QIE algorithm to real data, coming from
telecommunications, was made in Gawlick [7]. He compared true queue lengths with their
estimates, Satisfactory results were reported, in spite of the fact that arrivals were not

exactly Poisson.

2.2 Order stafistics

Larson {12} considered an isolated busy period at an M/G/s service station,
The available data consists of realizations of registration times (service starts and ter-

minations) through the whole given busy period. They are denoted by fo,%y,...,tn, tas1.
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Here t, is the first service start, ¢, is the last service start and #,.; is the last service
termination (no service starts at tny1).

Let Ag = to, A1,..., A, stand for the unknown arrival times of the customers that
started service at fo, 1,...,%n, respectively. The cumulative number of arrivals during
(to,t] will be denoted by A(t), to <t < tapy (A(to) = 0, A(t,) = Atnsr) =n).

The problem is to estimate the queue length Q(t) over the given busy period, using
the available data. It is equivalent to the estimation of A(t), the number of arrivals up to
time t, t € {to, L]

Our observations provide us with the following information about external arrivals:
e Arrival times precede service starts: A; <t;, 1 <2< n.
¢ Busy period terminates at £,41: Ang1 > thga.

Therefore, the information which is relevant for queue estimation is given by the event
E, = {Ag=1to, Ay < t1, A3 <oy, A S tny Angr > tapr }

(The subject of relevant information will be treated rigorously in Subsection 2.1 of Chapter
2.)

From the well-known property of the Poisson process, external arrivals Aj,..., A, are
distributed as the order statistics of a uniform distribution on [to, tn4+1], conditioned on
the event {A4; <ty,..., A, <ta}.

Larson derives an algorithm for calculating
A(t) = B[A(t)/E.}.
Then the queue estimate is given by:

Q1) = A(t) - D(#),

where D(t) is the observed number of cumulative departures during (to,].

The estimate Q(¢) does not depend on the arrival rate X since the joint distribution
of order statistics does not depend on ). (See Subsection 2.1 of Chapter 2 for the strict
proof.}

2.3 Hidden Markov Models (HMM)

An HMM applies to a discrete time Markov chain ¥ = {¥;, 0 < ¢ < n}, on a countable
state space ). (This Markov chain may be time-inhomogeneous.) In our special case, two

elements of information are available for Y:

¢ Boundary conditions {Yp = 1o} and {¥, = in}.
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s Taboo conditions ¥; € B;, 1 <i<n—1, where B; € ) are called taboo sets. The
complementary sets G; = Y \ B; will be referred to as admissible sets.

The HMM problem, whose algorithmic solutions is presented in Daley and Servi [4], is to
calculate the conditional probabilities

P{Y, = l/Ys = io; Yo = in; YVigB,1<i<n—-1}, r=1...,n-11€), (2.1)

in terms of the transition probabilities of Y.

Details of the algorithm will be presented later, when we consider a specific problem
in Subsection 1.2 of Chapter 2. The number of operations turns out to be O(n®) if B; are
bounded and the jump magnitude of the Markov chain is bounded either above or below.
The algorithm can be slightly modified to cover more complicated boundary conditions
such as initial or final distributions.

Larson’s problem can be easily represented as HMM. Consider again an isolated busy
period with the transaction times £o,%1, ..., tn, tny1. Then, the sequence Alto), A(ts),. .., Alta)
constitutes a Markov chain (time-inhomogeneous, in general).

The boundary conditions for this chain are given by A(fo) = 0 and A(fs) = n.

The taboo conditions are
Alt) €{0,1,...,i~1}, i=1,...,n—1L

(It is identical to A; < ¢; from the previous subsection.)

Then the general algorithm which calculates probabilities from (2.1) can be applied
to computation of the conditional distribution of A(t;), 1 <¢<n -1, given boundary
and taboo conditions.

Remark. This account is written “in the spirit of” Daley and Servi [4]. They refer
to HMM but, most of the time, use the term: “Markov Chain Boundary Value Problem”

which concerns the special case of our HMM problem (when the taboo sets B; are identical
for all 7).

2.4 Examples

We present here several graphs of queue estimates, for the single-station case. The fig-
ures were obtained using the program QIE2 (see Chapter 3 for a detailed account on
applications), and will now be briefly described.

Consider first a busy period, consisting of 20 deterministic service times equal to 1.
Figure 2.1 shows the conditional expected value of the queue, together with its maximum
likelihood estimate, i.e. the queue path with the maximum conditional probability (Daley
and Servi [4] explain how to derive it in the case of deterministic services). Note that

the expected queue length increases linearly between transaction points and, naturally,
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decreases by one when a service terminates. The most likely queue path oscillates between
zero and one. This example suggests that conditional expectation is a better representa-
tive of the sample path distribution then the most likely queue path (in the same way as
the expected value is a better representative of a random variable distribution then the
mode).

Figure 2.2 is a smoothed version of Figure 2.1. Note that the conditional expectation
of the queue is slightly asymmetric. The explanation is given by Figure 2.3 which com-
pares the cumulative number of departures (known) to the cumulative number of arrivals
(estimated) during our busy period. The graph for cumulative arrivals is concave. Larson
[12] established concavity for an arbitrary structure of transactions. In other words, the
conditional arrival rate decreases during a busy period: more customers tend to arrive at
the beginning and less at the end. However, when the number of customers in a busy
period is large and services are deterministic, the queue estimate is asymptotically sym-
metric (see Daley and Servi [5]) and may be approximated using Brownian excursions.
(Such asymptotic estimates will possibly be used in our future research.)

In Figures 2.4 and 2.5 we consider another busy period with 20 transactions. The first
ten service times are equal to 1.5 and the last ten to 0.5. Figures 2.6 and 2.7 illustrate
the opposite situation when the short services are at the beginning of the busy period.

It is seen that the queue estimate strongly depends on the transactions: the maximum
of the expected queue length is twice as high in Figure 2.4 than Figure 2.6, the shapes
of graphs are also very different. Note that, in the first case, the conditional expected
number of arrivals (Figure 2.5) is very close to a straight line (namely, the unconditional
expected arrivals) and in Figure 2.7 it is very concave. The intuitive explanation is that,
given the departures in Figure 2.5, a queue forms even if arrivals are homogeneous during
the considered period. As for Figure 2.7, a queue forms only if arrivals are very time-

inhomogeneous.
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3

3.1

Formulation of Problems

Network Description

Consider an open queueing network with d stations, denoted as a set by D = {1,2,...,d}.

Prevailing assumptions about the network are as follows:

L4

External arrivals to the network constitute a Poisson process with a non-homogeneous
arrival rate a = {a(t),t > 0}.

Switches of customers between stations are governed by a d-dimensional routing
matrix P = [p;, 7,k € D]

Service times £;;, j € D, 1 <17 < oo are completely general random variables (not
necessarily independent or identically distributed).

The stochastic components of the network, namely external arrivals, services and

switches between stations, are independent of each other.
Stations may be multi-server stations.
First Come First Served (FCFS) queue discipline is assumed at all stations.

Work-conserving principle prevails: a server cannot be idle if there is a customer

waiting for service.

An Identification Number (ID) is attached to each customer upon entering the

network, and it accompanies him until exit.

No simultaneous arrivals to stations take place.

In specific problems, some of these assumptions will be weakened or even omitted. The

last technical assumption is used because, in the case of simultaneous arrivals, FCFS does

not determine the service order.

It will become clear later that availability of ID’s plays a key role in our approach

and methods. However, knowledge of ID’s considerably improves the queue estimates, as

demonstrated in the applications of Chapter 3.

Two different models are treated:

)

Transitions between stations are immediate.

o Transition times between stations are exponentially distributed with parameters

Nk, J, k € D, independently of the other stochastic components of the network.
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Note that the second case could be formalized, in terms of immediate transitions, by intro-
ducing on all routes, fictitious stations with an infinite number of servers and exponential
service times.

We now elaborate on several features of the network. Most often we assume that
the network has a single entrance, which is conveniently referred to as “station 0”. (The
extended set of stations {0,1,...,d} is denoted by Dp). Thus, at time ¢, new customers
arrive to station 0 at a rate aft), after which they switch to other stations according
to the routing probabilities poj, 7 € D (and transition rates 7o, if transition times are
exponential). Sometimes, however, the stations are assumed to have their own entrances
and independent external arrival rates a;(t). For the case of immediate transitions, the
relation between the two models is clearly a;(t) = poje(t).

It may be reasonable to assume sometimes that a measuring device is installed at the
entrance of the network (see applications in Chapter 3, for example). Therefore, two cases
are considered.

e Ixternal arrivals are registered.
s External arrivals are not registered.

As mentioned above, external arrivals constitute a non-homogeneous Poisson process.
However it is worthwhile to consider separately external arrivals with a constant rate,
mostly because in several special cases this rate can be assumed unknown. Solutions for
the two cases are usually similar, so we choose the one more convenient or representative
and then either extend or concretize briefly the solution for the second.

Non-external arrivals that come from other stations of the network will be called inter-
nal arrivals. Sometimes we shall also use the terminology “internal {external) customers”

for customers that correspond to internal (external) arrivals.

3.2 Structure of Observations

The present subsection can be skipped without loss of continuity. Nevertheless, it may be
helpful for general understanding of the problem and also for computer implementations
(specifically, for the problems of data organization).

Suppose that the network is observed over the time interval [0, t]. We register service
starts, service terminations and ID’s of customers associated with these transactions.
Sometimes external arrivals are also registered, and such cases will be treated separately.

While the structure of the observations is rather simple, we introduce four useful
different points of view on the data. Only the third approach is used directly in our
research, but they are all helpful for a better understanding of the network operation.

The first approach uses classical counting processes as in queueing theory. (All our

random processes are assumed right-continuous with left limits.)
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Counting. Let
A= (AO, Al} B }Ad); AJ = {AJ(S)'I & 2 0}1 .7 € Dy

denote the arrival process of our network: A;(s) is the number of arrivals to station j,
both external and internal, up to time s. For convenience, we denote A, = {4;(s),7 € D}.

In the same way, let V = (V4,...,V3) and and D = (Dy,..., Dy) denote the service
start and the departure processes respectively. Finally, let Cj. denote the identification
number of the k-th customer that started service at the j-th station, and put

C = {C(s), =0, j €D},

where
Ci(s) = (Ci1, Csa, - - -, Civy())-

If external arrivals are registered, then
Co(s) = (091, Coz, .-+ COAo(a))-

The available information at time ¢ is given by F; = o(V,, D,, 0 < s < t; Cy) or
o(Ao(s), Vo, D,, 0 < s < t; C;). (To avoid obvious repetitions, we assume for the
following representations that external arrivals are registered.)

Note that if, in addition, we observe arrival processes to stations, then it is possible to
determine the states of all stations at all times in {0,t]. For example, we could calculate
queue length (knowledge of A and D is sufficient for this}, waiting times, et.c. Thus, our
problem reduces to that of inferring arrivals to the stations.

Now suppose that our observations of the network are saved in a database. The data
in such a hypothetical database can be organized by at least three methods: according to
registrations of network transactions, according to busy periods and according to routes
(or traces) of customers. The following three approaches to data organization are in line
with these methods.

Registrations. Suppose that a computer registers observable events during the time

interval [0,¢]. The available information is then likely to be organized as follows: F; =
o{Z;), where

Z, = (Zo(t), Zu(t), . ., Zalt));  Z;(8) = {(t;0, I, K3), ts <, 421}, j€D
and each triplet (t;;, I3, Kj) corresponds to a single registration. Here
t;; — registration times, where registrations are external arrivals, service starts or service
terminations.

I j? — identification numbers,

K; — registration codes (0 stands for external arrivals, 1 for service starts and 2 for

service terminations).
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Busy periods. A busy period at a station is defined as a maximal time interval, over
which all servers at that station are busy. We noted that a busy period can be also defined
as a period of immediate start of new services after service terminations. In the case of a

single-server station, the observed information can be represented as:
Fe = a(Ao(s), 0 <5< t; By(t), j € D),
where

Bj(t) = {(t‘ii) t{m‘ . -1t:1in1)1( ?21: e ,t%.nz):- . -:(tin e 7tink)= tim? S t}

The times in the brackets are registrations of different busy periods. Times within a busy
period are marked by two ID’s (the first ID belongs to a customer that terminated service
and the second one is associated with a new start) and times that start or end a busy
period and times of external arrivals are marked by a single ID. Note, that the last busy
period at a station could be incomplete.

In the case of a single-server station, every registration belongs to some busy period.
Multi-server station case is different since at the same time there may be busy and idle
servers. Notation for this case would be more complicated.

The approach to data organization via Busy Periods is basic, helping us to develop

various representations of the observed information in Sections 2 and 3 of Chapter 2.

Traces of customers. Suppose that the basic data unit in our database corresponds
to a route, or frace, of a customer. Specifically

Fo=o(IP(), . 1)),
where I, denotes the number of customers that have been registered during [0,t] and
I}?(t) - {a'kO: (nklabklyekl)v .. ,(nkmkabkmk) ekmk)g bki S t: ki S ty ) 2 1}

In the last expression, axo denotes the external arrival time of the k-th customer, ny; are
the stations on his route (chronologically ordered from entrance till departure), by; and

en; are times of service starts and terminations.

3.3 Objectives

Introduce the right-continuous queue length process

Q=1{Qs 520k Q.= (Qs)-..,Quls))

(We define a queue as a set of customers waiting for service.) Our objective is to estimate
the unobserved queue process @, given the available information F3,¢ > 0. Three different

estimation problems are posed:
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Busy-Period Interpolation Let [T}, 73] denote a busy period at some station j. Based
on the available information J;, t > T3, estimate the sample path Q;(s), s € [T, T3).

Real-Time Estimation Estimate in real-time Q(2), based on the available information
Fe.

General Interpolation Estimate the sample path Q(s), 0 < s < ¢, based on the avail-
able information F;.

To summarize, we deal with three cases, distinguished by estimation objective, transition
times (immediate or exponential) and external arrivals (known or unknown): all in all

3 x 2 X 2 = 12 possibilities. Real-time and general interpolation will be treated together.

3.4 Summary of Results

Table 1. Summary of Results.

Immediate transitions | Exponential transitions
External arrivals
known ] unknown || known unknown
Internal HMM HMM;
arrivals technique. truncated
known. Properties | exponentials;
Busy Queue length | Queue of of truncated properties
Periods can be external exponentials. | of M/G /oo
Interpolation computed arrivals queue.
exactly. estimated
using HMM
technique.
FCFS; FCFS; FCFS;
Assumptions None. Poisson transition Poisson
external rates 7;;. external
_ arrivals. arrivals; 7;;.
Real-time Simple Real-time HMM with HMM;
estimation. combina- algorithm of || cumbersome | truncated
General torics. Bertsimas, state space; | exponentials;
interpolation Servi. truncated Qutline of
Matrix-type || exponentials. | approximate
algorithm. solution.
FCFS; FCFS; pij; || FCFS; py; | FCFS; pij
Assumptions routing external transition i35 Aj-
probabili- arrival rates 7;;.
i ties pi;. rates Aj.
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Remarks.

s The complexity of the problems and the number of assumptions increase rapidly
when one moves from the upper left corner of the table to the lower right one.

o The two cases of exponential transitions and real-time estimation involve cumber-

some computations. For the last case we provide only an outline of the solution.

¢ Homogeneous Poisson arrivals were assumed throughout the table. If arrivals are
non-homogeneous Poisson then the arrival rate A(t) must be known for all real-time
cells of the table. From a practical point of view, this is reasonable: estimating A(Z),
say a periodic function, requires data over many periods; such estimation should be

carried out prior to queue-inference.



Chapter 1II

Theoretical Results

1 Busy-Period Interpolation

Busy-Period Interpolation problems cover a specific busy period, which terminated before
our estimation time £. Here we focus on such a busy period, hence notation can and will
be simplified (throughout this section only) by omitting the indices of the busy period
and its associated station. Registrations during the busy period will be denoted by

t(}, tl’ e s !tﬂ) tn».i...l,
where
tg is the start of the busy period,
t,...,t, are service starts, which are also service terminations and

tas: 1s the end of the busy period.
Without loss of generality, we assume that estimation time is £ = £,4.
Note that in the multi-server case, a customer that starts service at ¢; need not leave

at t,‘+1.
Let Ag = tg, Ai,...,An stand for the arrival times of the customers that started
service at tg, t1,..., s, respectively. The cumulative number of arrivals during (#o,t] will

be denoted by A(t), to <t <t, (A(to) =0, A(tn) = A(tny1) = n).

The following question is fundamental: which part of the available information F; is
relevant for our estimation of the queue length?

This problem will be treated rigorously only in Section 2 onwards. As for the current
busy period interpolation problem, treated in Section 1, the structure of the relevant
information is simple, hence only intuition-based statements will be presented. This
simplicity is due to the availability of ID’s of all the customers that were served during
the busy period under consideration. The problem, then, reduces to making inferences
about arrival times of a completely specified customer set. The knowledge of this set
makes it also possible to omit any Markovian assumptions on customers routing.

24
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1.1 Immediate Transitions, Known External Arrivals.

This problem is deterministic in the sense that one can calculate the queues exactly. To

clarify this point, represent the queue process on the 7-th node as

Qi(t) = Q5(t) + Q5(1),
where Q3(t) is the part of the queue due to external customers (customers that arrived
from station 0) and Q7(t) is due to internal ones.

The quantity Q%(t) is known exactly, according to problem definition. Consider the
second term. If a customer arrived from some other station, then his arrival time to the
7-th station coincides with the termination time of his last service. But we know the time
of the last termination because all the network is observed and all the ID’s are registered.
Information about arrivals to the station provides us with the queue size. Note that
Poisson arrivals are not necessary here. This is also the only case where the FCFS queue

discipline plays no role.

1.2 Immediate Transitions, Unknown External Arrivals.

Model Definition and Relevant Information We distinguish again between ex-
ternal and internal customers. The arrivals of internal ones are known, following the
analysis in 1.1. We need, therefore, to estimate only external arrivals. Suppose that
the external arrivals constitute a homogeneous Poisson process with a known arrival
rate A. (At the end of this subsection, we modify our results to accommodate the non-
homogeneous case.) By the memoryless property of the exponential distribution, we can
assume that this process starts at ¢,.

Suppose that t; 1s a service start of some internal customer; then the last service termi-
nation of this customer, which is known, will be denoted by s;. The relevant information
can now be represented as the intersection of the following four events:

Ey. Agp = to (the first arrival coincides with the start of our busy period);

E,. A; = s;,if A; is an internal arrival time;

Es. A; < t;, if A; is an external arrival time (a customer must arrive before his service
starts);

Ey. I Aix < A; are any adjacent internal arrival times, then
Sp = Ap € App1 < Apge < ... < Ao < A= 41
If the first or last arrival of the busy period is not internal then
o< A; < Ay <... < Ay < 41 = s,
in case A is the first internal arrival and

SkZAk<Ak+1<Ak+2<...<AnStn,
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in case Ay is the last internal arrival. (Event E, follows from event E; and FCFS, which
implies tipg >4 = A;+1 > A,)

Formulation as HMM Consider two adjacent internal arrival times A = s; and
A; = s;. The interval [0,,] is divided into intervals of the type [sk, s;] and then cumulative

arrivals A(t) and queue length are estimated separately for every such interval (see Figure
1.1).

Figure 1.1. Immediate Transitions. Unknown Ezternal Arrivals. Ezample of Busy
Period.

Customers 2, 4 and 6 are internal. Queue estimation is carried out separately on [to, s2),

[32: 34)5 [34)56) and [Ss,ts).

We consider two cases, according to the location of s; relative to £j4;.
First case: tpyq > s; (see Figure 1.2).

Figure 1.2. Immediate Transitions. Unknown External Arrivals. Case 1.

A Ay tesr Lraz 4

Then event Ej from the relevant-information list follows from event Ey, for ¢ € {k +
1,...,1 — 1}, and it can be omitted. From event E,; and the order-statistics property
of the Poisson process, we conclude that Agyi,...,A;_; are distributed as uniform order
statistics on [sk, s;]. This means that for ¢t € {sg,s1), 0 <1 <1~k 1,

. s Vil — £)i

P{A(t) = k+i/E} = ( i ) (t - 1(3:)1_21 | (1.1)

At) = EIAQ)/E)] = k+(zmkm1)§l:’l, (1.2)
VarlA(t)/E] = (1—k -1 zsf’f(::): 23 (1.3)

where E, is the relevant information. As for the queue length, if t € [t;,841), 0 < i <
n - 1, then

G(t) = A(t) i (14)
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Second caser tipr < ..o <tm <8 <tmpr <. < (see Figure 1.3).

Figure 1.3. Immediate Transitions. Unknown Ezternal Arrivals. Case 2.

Sk 87
1 ISR NS MY N S VN R M|

tk«?’l tm tm+1 4

Now Agi1,-..,A1- are distributed as uniform order-statistics on [s%, 81], conditioned on
{Arpr S tisr, Az Stigzeoos A < tm}. (We donot use explicitly this joint distribution
of arrivals for queue calculation, though such an approach is feasible, as in Larson [12].)

To formalize the problem in HMM terms, consider the non-homogeneous Markov chain

{A(sk), A(ik.;_l), P A(f,m), A(S;)}, (1.5)

The boundary conditions are A(s:) = k and Alsi)=1
The set of admissible states at t; is given by

Gi={ii+tl,..,l-1}, k+1<i<m,

since at least 7 arrivals must occur before the start of the i-th service.

The taboo conditions are given by A(t:) € Gi.

Remark. Our Markov chain has been constructed in such a way that the events that
constitute the boundary and taboo conditions are identical to the relevant information.

To simplify the presentation, we maintain index continuity by assigning

Zp = Sky 2kl = bttty e o1 Zm = bmy Zmi1 = 8L

It is straightforward to calculate transition probabilities between admissible states of
the Markov chain in (1.5):

5i(u,v) = P{A(z) = v/A(zi1) = v} =

e*wwmﬂM“"“ﬂn_ Ck+1<i<m,i<u<v<i-1, (L6)
(v —u)!
ﬁm+1(u:v) = P{A(zm+1) = Z/A(zm) = u} =

: o {—1wu
e”"(zz-Zm}(A(z'Zfl : Zml;' , m<u<l-1L (1.7)

All other transition probabilities between admissible states are equal to zero.
Further introduce the events

B = {A(t) €G,, m<ism} k+lSnm<msm
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The taboo probability matrices are defined as W™ = {w[’*}, and

w;x,;,rz == P{A(zrz) = V; sz—{-l.r:ml/A(Z,.z) = u}, k S T 5 Ty S m -+ 1’
where # and v must be admissible states.

The algorithm for the calculation of the queue distribution at registration times is as
follows:

Algorithm 1.1 (Follows Daley and Servi [4].)

1°. Using (1.6) and (1.7), define transition matrices between admissible states:
Pi={p(u,v),u€Giy,vEG}, k+1Zi<m+L

The dimensions of these matrices are 1 x (I —k—1)fori=k+1, (I —i+ 1) x (I —1) for
E+2<i<m,and {-m)xlfori=m+1
2°, Calculation of the taboo probabilities matrices:

Wk,k-i—l — pk+1:
Whi = Welp k4+2<i<m+1,
Wm,m+1 - ﬁmM}
wimtl = P Wi e 1 <i<m - L

3°. Calculation of the distribution for cumulative number of arrivals at registration times:

PLA(t) = u/E} = PA(E) = ufA(si) = ks A(s) = L A(t.) € G, k+1 <7 <m —1}
ki im+tl
wk,uwu,l

Wk,iwi.m+z‘
(The denominator of the last expression is the scalar product of two vectors.)
4°. Calculation of the queue distribution at the registration times, using

Q(t:) = A(t;) —4, k+1<i<m.

Discussion and Extensions

e Suppose that ¢ is not a registration point and one needs to estimate the queue at
time ¢. If only conditional expectation of the queue is of interest, then one can use
its linearity between the registration points (see [4]). Otherwise, ¢ can be added to
the domain of the Markov chain (1.5). If t € (¢, i41), then the set of the admissible
states for ¢ is {4,i + 1,...,m}. The transition probabilities for A(t;) — A(t) and
A(t) — A(tis1) are derived using the Poisson distribution.



CHAPTER II. THEORETICAL RESULTS 29

e Given the conditional distribution of queue-length, it is easy to calculate conditional

expectation, variance and other distributional characteristics.

e As in the single-station case, the queue-length distribution does not depend on A.
Indeed, this follows from formulae (1.1)-(1.4) for the first case. For the second case,
the distribution of external arrivals is that of uniform order statistics, conditioned
on an event whose probability does not depend on A.

The independence on X is useful for debugging of any software implementation of the
algorithm: simply substitute two distinct values of A and check that probabilities
do not change.

e Suppose that external arrivals to the station constitute a non-homogeneous Poisson
process with a known arrival rate A(t). To accommodate such a generalization, let
A(t) = f3 \(s)ds stand for the cumulative arrival rate. The transition probabilities
from (1.6) are now:

Alz) — i v—u )
ﬁi(u} 'U) e 6“(A(Z,‘)-A.(z"_1))( (z") (v A(Z)ii)) , k + 1 S i S m, 1 S u S v S l - 1.
— Uj.

(1.8)

Equation (1.7) is modified similarly.

¢ The jump magnitude of our hidden Markov chain is bounded, hence the number of
calculations does not exceed O(n®), where n is the number of estimation points in
an interval between two successive external arrivals. It is important, therefore, from
a computational point of view, that our algorithm is executed separately on each
interval between successive internal arrivals, since such intervals typically include
less points than a whole busy period. Note also that for many queueing networks it
is reasonable to expect that the number of internal arrivals in a busy period with n
customers is of order n. For example, in the steady-state of a Jackson network, the
long-run proportion of internal arrivals to station j is given by (A; — @;)/A;, where
aj is the external arrival rate and J; is the solution of flow conservation equations

(see [16], for example).

If every k-th arrival is internal, the number of calculations needed to estimate the
queue at registration points will be reduced to O(n). If internal arrivals are “ap-
proximately uniformly” dispersed between external ones, the same result can be
expected. The knowledge of external arrival times enables, therefore, a decrease
in the number of calculations even in comparison with the case of a single service

station.

¢ Implementation of the algorithm for real data is presented in Chapter 3.
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1.3 Exponential Transitions, Known External Arrivals

Model Definition and Relevant Information Suppose that the arrivals, service
times and routing mechanism of our network are completely general. In the present model
we eliminate the assumption of immediate transitions between stations. This assumption
is indeed too restrictive for many applications, such as transportation models and human
service systems. (It is appropriate, however, for many communication networks.)

Assume that the transition time of a customer, routed from station j to station k, is
exponentially distributed with a known parameter n;, 7 € Do, k € D. New customers
are registered upon arrival to station 0 and then proceed to station j with probability
poj» § € D. Finally, every transition time is assumed independent of all other stochastic
components of the model. Note that our model allows overtaking between customers.

We now determine the part of the available information F;, which is relevant for queue
estimation.

Consider a busy period at some station of the network, with registrations fo,t1,...,tn, tns1,
as before. For the customer whose registration time is £;, 0 < 1 < n, let s; denote the
last registration time prior to ¢;. These times will be referred to as transition start times
(see Figure 1.4). They may be either service termination or arrival times to station 0.

According to our model specification, g, 81, ..., S, can be deduced from our data.

Figure 1.4. Ezponential Transitions. Known External Arrivals. Ezample of Busy Period.

81 84 Sa Sy 83 L1 85 -
! | 1 LN N [T [ | H H
3 I i H 1 i ] H
ta t ty i3 ty ts tg tr
Enumerate by 1,...,n the customers that started service at ¢4,...,%,. Letting Ay,..., A

denote their unknown arrival times as usual, we have
Ar=s5;+1, 1<1<n, (1.9)

where 7; ~ exp(7:), 7 are the corresponding known transition rates and 7; are indepen-
dent of each other.
Two important facts about arrival times are known:

E.. Every customer arrived before his service start, namely
Ay <ty Ay Sz, An S
E,. From the FCFS queueing discipline,
to=Apg < A; < Az < ... A, £ 1.

The arrivals to the station are distributed according to (1.9), conditioned on the event

ENE;.
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Formulation as HMM Introduce a Markov chain
A= {Alto),..., Altn)},

whose state at t; is the set of customers that arrived during (fo,%;]. The set is ordered

according to arrival times. In other words, the state space A is

{0y U{ma,...,mi}, mje{l,...,n}, m;i#m;

(The state space is more complicated than in the previous subsection since event E, must
be accommodated in the taboo conditions.)

The boundary conditions for the busy period interpolation are:

A(to) = {0}; A(tn) = {1,...,n}.

The set of admissible states at t; is given by

G =1{{1,2,....,i}, {1,2,..., 4,1+ 1}, {1,2,...,n} }.

All that is lacking for HMM are the transition probabilities between admissible states.

We shall use capital letters as a convenient notation for these states. For example
1% 0,6, N¥{1,2,...n}, K+L¥E{1,2,... k+I}
Then
P{A(t;s1) = N/JA(t)=N}=1, 0<i<n-—1,
and for 0 <k<n~1, k+1<n,

n

P{A(tis1) = KJA(t;) = K} = ﬂ exp{—7;(tiy1 — max(ti, 5;))+ }

P{/';i.(t£+1) = K + L/.A'.(t,) = K} = 0, lf 33m & {Sk+1, . .,3k+[} =2 Sm > t,‘_..|.,1.
Otherwise,
P{A(ti1) = K + L/A(t) =K} =

= P{ti1 < Arytsty o tivs < Anjti < Apgr Stig, ot < Ak S iy
Appr < Apsz < oo < Apqifts < Aigr, -6 < An}

n k+l
= I exp{-mlti1 —max(t;,s;))+} [I (1 —exp{—7;(tusr — max(ti, s;))}) x
J=k+l+1 i=k41
x P{Ak.H < Apz < ... < Ak+[/t{ < Apyr Sty < Apu < ti«i«l}- (1.10)

Consider the last term of (1.10). Given {t; < 4; < tiy1}, we have

A; ~ truncexp(y;; max(s;, &), tis1)-
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A recursive algorithm for the calculation of the probabilities associated with this term is
presented in Subsection 1.5. The key formulas are (1.14) and (1.15).

The following algorithm for calculating the queue distribution is very similar to Algo-
rithm 1.1 in Subsection 1.2:

Algorithm 1.2
1°. Define transition probability matrices between the non-taboo states:

b = {ps(m, 1), me Gy, 1l € G} 1<i<n.

The dimensions of these matrices are 1 x n for i = 1 and (n —1 + 2) x (n — i 4 1) for
2<i<n.
2°, Calculation of the taboo probability matrices:

WD,I — }31’
W% = W%-lB, 2<i<an,
Wn.—l,n — pn;

Wi = P W 0<i<n -2

3°. Calculation of arrival number distribution at the registration times.

If A(t) — cumulative number of arrivals to the station in (o, t], then

P{A(t;):k/Al gtl,q..,AnStn;to<A1 < Ay < ... <An} =
= P{A(t;) = K/A(t) € G;, 0<i<n} =
woi Wi

WG,iWi,n
4°. Calculation of queue distribution at the registration times using Q(%;) = A(t:) — 1.

Discussion

¢ Unlike the case in Subsection 1.2, it is no longer true that the expectation of the

queue is linear between registration points.

¢ If queue distribution at some non-registration time ¢t is of interest, then ¢ must be
added to the domain of the Markov chain. Specifically, if £ € (¢;,%i41), then the set
of the admissible states for tis {J,..., N}.

1.4 Exponential Transitions, Unknown External Arrivals

Model Definition and Relevant Information The treatment here resembles that

of the previous model in Subsection 1.3. However, several points concerning external
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arrivals must be modified. Suppose that external arrival times to the network constitute
a Poisson process {possibly non-homogeneous) with a rate function a = {a(t), —o0 <
t < oo}. {Note that this subsection is the only one where we start the arrival process
at the distant past. The reason is that in the case of exponential transitions arrivals to
stations may depend on arrivals to the entrance of the network at the distance past. In
all the other models, the start point of the arrival process is of no importance.)

New customers arrive to station 0 (there are no registrations of arrival times now) and
then switch to other stations according to routing probabilities pgj,j € D. Transition
times between the stations are again exponentially distributed. Hence external arrivals
to stations are departures from M,/M /oo queues.

From the general theory of the M;/G/oo queue (see [6]), the external input to any
station j is Poisson with rate §;(t) = E[a;{t — 7;)], where 7; ~ exp(no;) is a transition
time from station 0 to station j and a;(t) = poja(t).

Two important special cases are:

1. Arrivals started at the distant past:
alt) =\ t> —o0 = §(t) = A; &f Apoj, £ > —o0, 3 €D.

2. Arrivals start at time 0:

alt) =X, £ 20 = §(t) = X(1 — ™), t > 0,7 € D.

As in all problems of interpolation, we consider a separate busy period at a specified
station. Now, the transition start-times are known for internal customers only (see Fig-
ure 1.5). The representation of the relevant information is identical o that of the previous

section.

Figure 1.5. Exponential Transitions. Unknown Erternal Arrivals. Ezample of Busy
Period.

Customers 0, 2, 4 and 6 are internal.

Customers 1, 3 and 5 are external, whose transition-start times are unknown.
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Formulation as HMM We shall define the Hidden Markov Model and estimate the
queue using the algorithm that was presented in Subsection 1.3. All definitions and calcu-
lations are preserved except calculations of transition probabilities between the admissible
states. The Markov property of the process A = {A(to), ..., A(t,)} follows from the mem-
oryless property of the exponential transition times and the independent increments of
the Poisson process.

Define cumulative arrival rate Aj(t) = f; §;(t)dt and suppose that our registrations
t; > 0 for all i. Let Z(k, 1) denote the subset of internal customers in the set {k, k+1,..., I}
and let £(k,1) be the number of external customers in this set. Thenfor 0 <7 <n—1, k<
n, k+1<n,

P{A(tis1) = N/A(t) = N} = exp{~(A(tit1) - A(:))}-
P{A(tit1) = K/A(t:) = K} = exp{~(A(ti1) — A(t))}

X [T exp{~vi(tiss — max(t;, s;))+}
FET{k+1,n)

P{A(ti) =K + L/At) =K} = 0, f3smeI(k+LEk+1) > sm > tipa.
Otherwise,
P{A(t;s1) = K + L/A(t;) = K} =

= I exp{-7(tiss — max(t;, 55))+} x
FET(k+1+1,n)

I (1 exp{—s{ties — max(ti,s;)}) %

FET(k+1,k+1)
Alt; - A(t; E(k+1,k+])
el (a - AR SOI

X P{Ak.;.l < Ak_;_z < ... < Ak-}-l / i < Ak+1 < i1,y s < Ak.}.[ < t;+1}.

X

The last probability is equal to

tit1 tig1 tiy1
/ fl(yl)f ) f2(y2)"-[ fn(yn)dyn dyﬂ-—l ---dyh (1.11)
LA Y1 ¥

-1

where f; are densities of A;. If A; is an internal arrival, then
Aj; ~ truncexp (v;; max(t;, s;), tis1)

(see Subsection 1.5). Now consider external arrivals. From Hall [9], the time of an external

arrival, which took place in [¢;,%;11], has density

(1) = A(tej)(? L t € [t tipa]. (1.12)

Therefore in (1.11) we deal with order statistics of random variable with such a density.
Thus, for external f; we can substitute into (1.11) the density function from (1.12) and
then multiply the result by £(k + 1,k + )L
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Discussion

o For the first special case of constant external arrival rate, in which arrivals start in
the distant past, the distribution of external arrivals to a station (and, therefore, the
queue distribution) is independent of A. Indeed, external arrivals are order statistics

of the uniform distribution on [fo,%,], conditioned on the event:
{Al < iy, Ay <ty ..., AL < tn} ﬂ{t0< A< A < ...Aﬂ},
whose probability is not a function of A.

¢ Consider the second special case of the constant external arrival rate, in which
arrivals start at 0. If we make the time change

e""n(}jt
t H

the external arrivals will be homogeneous Poisson and will have conditional distri-

t
t—+f(1——e“"°i’)dswt——l+
¢]

bution of uniform order statistics in the new scale. Note that the time change is
independent of ), therefore, the queue estimate is again independent of the arrival

rate.

¢ Unfortunately, we have not been able to derive recursive algorithm for the calcula-
tion of formula (1.11), even for the special cases. The integral, however, can always

be computed approximately by numerical methods.

Example. We demonstrate our algorithm with a simple example. Consider a short
busy period with » = 2, whose registrations are denoted by to = 0,4 and t,. Suppose
that the first customer (which starts service at ;) is internal, his transition start time
s; < 0 and the transition rate is v. The second customer is external. We assume that
external arrivals to the station constitute a Poisson process with a rate A (special case 1,
arrivals to the entrance of the network start at the distant past).

Let us calculate

P{A(t;) =1 [ Ar <y, A S o < A < Az}

using the algorithm in Subsection 1.3.

The first step of the algorithm provides us with the transition probabilities:
£0,1) = (1—e)e™™n
. ¢ —ve g —
P(0,2) = (1—e™)Ayen f ve  1—?d

o 1 —e " iy
et

1 - e"')"tk

ds =

1
= (1—e ") Mye M (1~ — +
( Yt ( s

)
Pz(l, 2) = A(tz - tx)E-A(tzﬂtl)
Py(2,2) = e Mat)
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The second step gives W% = P; and W'? = P,. Finally ( step 3 ),
Pi(0,1)P5(1,2)

}51(0, 1)162(1:2) + ]51(01 2)}32(2,2)

to — 1
= e™ Yt * (1'13)
ts =t — 5=w)

P{A(t]_) =1 / A £ t1, Ay <y b < A < Az} =

Note, that
ty — 1,

2
It is straightforward to check that this expression is always larger then the probability in

(1.13) (the condition A; < A, changes the distribution of A»).

P{A(t;) =1/t < A; <t, to < A <t} =

1.5 Truncated exponential random variables.

Notation. We define a truncated exponential random variable with rate A and domain
[a,}] as a random variable { with density:
de MY
W)= o=
It is denoted by ¢ ~ truncexp(};a,b) and its interpretation is that of an exponential
random variable (o ~ exp A, first shifted by a and then conditioned to have values in
la,b].

Several facts about truncated exponential random variables are needed for the calcu-
Jation of transition probabilities of the Hidden Markov Models, which are used in the case
of exponential transition times between the stations.

Specifically, suppose that (5, (s,...,(, are independent truncated exponential random
variables. We would like to calculate the probability P{{i < (> < ... < ()

Case 1.

Let (; ~ truncexp(X;;0,t), 1 <4 < n. This is the easiest case, considered mainly for
a "warm-up”.

Denote Py = P{(; < {3 < ... <(n}, where A = (Ar,..., ). Then
¢
Py = f fi 3}1)/ fz(yz / fn(yn)dyﬂ dYpe1...-dyy =
Ya-1

14
")‘ "")‘ﬂ-w« n— —An n— "')‘ut o
— (1 v f,\e ‘y‘.../ Apoye dnmtn-t(e=inda—s _ 07NNy oL dyy =
el i Yn—2

1 1 t t
— hY =M f Ao —(An-1+An)yn-1 g ney...d .
e [m;u o [ [ —_—

t t
— e“’““‘/ A~ / Mg temt¥etdy o dy]| =
L Yn 2

1 1 — g~ Gr-1+2a)t Mt
T 1 — et 1T —edamt X 04X,

PA2 o e_A“tPAE} ,



CHAPTER II. THEORETICAL RESULTS 37

where Ay, As € R*! and
Al - (Aly ey ’\ﬂ-—Z: A'n--—i):i

Ag = ()x]_, . .,)\n_z,)\n__]_ + An)

So we have derived a recursive formula for the computation of Py.

Case 2.

Let {; ~ truncexp(Ai;zi,t), 1 <7 <n and z;<z2<... Sz, < L.

Denote P¥(t) = Pr((1 < {2 < ... <(n), where A = (Ay,...,An) and X = (=1, .. ,Tn)-
Then

t t t
PI\X(t) = / f1(y1)f fz(yz)---f Fa(yn)dyn dypr .. dyn =
Ty mex(y1,22) max(Ynw1,Tn)
= 1 t )\18_>\iy1 ‘e ft An-1€_Aﬂ—ly“—l x
?zl(e‘"‘)\ia!i — e—/\;t) =y max{Yn.-2,Cn—1 )
X [e_A"mm‘(y""’m") — e_A“*]dyn_; coodyy =
= Sl it Sg.

Here S; and S; correspond each to a term in the square brackets. Thus,

—Ant

¢ X
e~ Ant ‘PA: (t)’

Szﬁ

e—Anzn —
A; = ()\1,.. ‘y’\n—l)a
X.]_ = (331, .. ;,.’Cn_l).

Some more work is required with

1 t
S = / Mg~ v
1 ?gll(ewk;z; - e—)&,-t) 2y 1€
/t Aﬂ-—-‘l e"An—lyn—l"’“An maX(ynm :1n)dyn—1 . dyl p—
max(yn—2,2n—1)
1 £
= Mg
e e Jo
mex(yn—2,%n) t
(f oy + e dgos)dgnr .. dys =
max{yn.z2,Fnwt) max(Yn2,&n)
= S+ S

First we deal with Ss. Observe that y,_; > ., on the domain of the integral.

S4

1 t t
—A - A _ )‘n. m— —_—
e Tompe vl (I NI | Apoge Gt FAnsidy, L dyy =
Hizl (8 ARt A ) Ty max(Yn—2,%n
—(Ap—1+An)zn —{(dp—1¥+An
_ Anml € ( 1+Hn)Tn _ e ( 1H+Aa)t pXZ ;
- Aa ( )?

An-—l + )\n e"}‘n—lzn—l — e“’-xn—lt
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where

K2 =, s dac1 4 An),
X‘z = (21, ey :nn_z,:cn).

Before out last calculation we note that [ max(¥a-221) | is non-zero only if Zn > Yn—z.

max(yn -2, Fn—1)

The domain of the multi-dimensional integral is contained in theset y; <y2 < ... < Yn14
therefore in our special case it is a subset of y; < z,, 1 <42 <n —1. Back to 53

1 t \ t
— -
53 £ P Tt Ale lyl‘/ )\26 e
i (e s — g™ ) zy max(y1.22)
n ]y ]y
/ Aﬂ—le_ n—1Yr—-1" nzndyn_l L. dyl —
max(Yn—2,2n—1)

1 f:t:n Tn 3\
= Ale—Alyl / )\28.— w2,
1.1—1(6_.);_-3,-'- — e_A"t) z max(yt.xz)

i=1
Tn
/ An—_ie—kn—!yn—l_kumndyn_l L dyi —
mex{yn_2,8n_1)
?:1(8-—)\.':2:,' _ 6—4\"%“)
Hﬂ"l(e—,\;m; o e-—-)qt)

i=1

—AnTn

Now we summarize Case 2.
Proposition 1.1

1 - H?;l(emk;z; . e-—)\.'n:,;) .
P;\Y(t) = {e Anzn nl—l(e—)\izi . e—f\if) PJE (331—;) +

e—)\nzn — e—Ant A
An—l e'_(Aﬂ-l"l")\n):Un — e"'(An—l‘l"Aﬂ)t

Xz —dnt DXy
b e e R - RN (119)
where
AI = (Aly"‘1/\n—1))
Xy = (mls'“amﬂ—l)s
Az = (Anyeesdact + A0),
X2 == (331,--':9311—2,-'131;)-
Case 3.

Now consider the final problem, directly connected with the calculations of the tran-
sitional probabilities in the Hidden Markov Models.
Let {; ~ truncexp({A;; z;,t), 1 <1 < n, where 0 < z; <t Let

ry = maxz; (see Figure 1.6) and R = (ry,72,..-,"n)-
a5
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Figure 1.6. Illustration to Proposition 1.2.

ry = T2 Ts Ty = Ts n=>5

| ] i | E
{ I i 1 i

Ty Tq T3 Ty Iy

Denote PE(t) = P{(; < (2 < ... < (u}, where & = (M1,..., An) and X = (21,...,%n).
Proposition 1.2

¥ R n e—)\,'r,' - e—.\,-t
P (t) = Py(?) E P (1.15)
Proof.
Introduce the event A = {{; >, 1 <1 <n}.
Then
= P{G<<...< (n/AYP{A}
Conditioning‘on A, (1,...,C, are truncated exponentials on [r;,¢]. Hence the first

probability of the last formula is equal to Pf(t), P{A} is easily computed and we get
(1.15).

Remark. Consider Figure 1.6 again. In order to calculate the required probability,
we first transform our z;'s to r;’s to get them in an ascending order and then use the
algorithm of Case 2.

Number of operations.

Throughout the recursive calculations of Case 1, we need to compute Py, where
Aﬂ(Al,Az,...,Al,AH_;+...+Ak), 0<l<k§n

There exists
e n{n +1)

=0T

k=1 2

different P, of this type.

In Case 2 we compute P (%), where
A= 2 HAn M+ A, X = (21,22, 00,21 Th), f=z,ort=t 0<l<k<m<n.

Now

" k(k+1) n{n+1)2n+1)
,§ 2 3

different P (1) should be calculated.

Case 3 involves the same n-order of operations as Case 2.
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2 Representations of an Observed Event.

As already mentioned in Section 1, our results and algorithms for the Interpolation case
were not treated as carefully as they could have been. For example, we have worked
with to,%1,...,tn, which are fixed realizations of random registration times, ignoring the
distinction between random variables and their realizations. Also, information that is
relevant for queue inference was identified intuitively.

We have used, in essence, the terminology and approaches of the previous papers by
Larson and Daley & Servi on single-station models [12], [3], [4]. It seemed inappropriate
to complicate considerably our models and methods in order to derive rigorous proofs
for facts that had been intuitively clear. However, the cases of Real-Time Estimation
and General Interpolation are more difficult, in particular the structure of the relevant
information is less intuitive, so formal methods will now be developed for these problems.

Representations of the observed event play an important role in our approach. They
serve as a mathematical framework within which Interpolation and Real-Time problems
are conveniently formulated and solved.

Three types of representations are introduced. The first, via observations, represents
the real data that is actually observed. The third, via stochastic components {namely
external arrivals, service times, switches between stations and transition times,) is helpful
for our analysis: conditioning on the observed event, represented in this form, identifies
the part of the event that is relevant for queue estimation. The second representation,
via arrivals to stations helps to ascertain the equivalence between the two former repre-
sentations.

Our approach is illustrated on the simplest example: we reconsider the basic assump-
tions of Larson [12] and rederive his representation of the observed event, We begin with
service starts and terminations {observations) and conclude with external arrival times
(stochastic components). Due to the model simplicity, the intermediate representation

via arrivals is merely implicit.

2.1 M/G/1. Rederiving Larson’s QIE.

Larson's model consists of a single-server station with Poisson arrivals, general service
times and FCFS discipline.

Stochastic components.
o Ag, Ai,..., Ak, Aky1, ... ate the Poisson arrival times.

o &, 61,. .., 8k Ers1,. .. are the corresponding service times.

Larson assumed that the service times are completely general they may be dependent
with an arbitrary general joint distribution. The following assumption must, however, be

added: service times are independent of arrival times.
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As before, service registrations of a specific busy period are denoted by o = Ao, 21, .., tn,tns1
and we need to estimate the queue length Q(#) {or the cumulative number of arrivals A(%))
over the given busy period [to,tn41], using the available data.

Let the random variable N stand for the length (number of service starts) of our busy
period. The random variables T;, 0 < i < N — 1, denote the start time of the i-th
service and Ty denotes the last service termination of the busy period (the end of the
busy period).

Let the event F stand for the information available at the end of the busy period. We
introduce two representations of this event.

I. Representation of E via Observations,
Eo = {N - n-i— 1, Tg = tg,Tl = t1,.. .,Tn = tn,Tn+1 = tn+1}.
II. Representation of E via Stochastic Components.
E_, = {Ag = tg,Al § tl,. . .,Aﬂ S tn,Aﬂ+1 > tn-i—l;

o=t —to, b1 =t —t1,..., én =tapa ~ .}

Equivalence of representations I and II: Eq = Es.

E, = E,. The event {Aq = o} is identical to {Tp = to}. The event {A; < t}, 1<
i < n, prevails since, otherwise, T; = t; could not be true (the i-th service could not have
started since the corresponding arrival did not take place yet). The event {N =n + 1}
implies {An41 > tay1}- Finally, {& = tiyr — i} follows from Tiyq = tiys and T; = £,

E, = E,. The event {T; = t;}, 1 < i < n, follows from the events {{; = ;1 —
t;, 0 <7 <i—1} {A; <t;, 1 <j <id}and {4 = to}. Specifically, the first
event implies that potential service-start times are tq,t1,...,t (provided server starts
services immediately following service terminations). The second event implies that arrival
times precede potential service starts, therefore, actual service-start times coincide with
potential service-start times. The event {Tny1 = tny1} follows from {{, = tas1 — Ea}.
Finally, {Ans1 > tapa} gives {N =n + 1}.

Now, if we condition cumulative number of arrivals on the available information:
P{A(t) = k/E,} = P{A(t)=k/E,}
= P{Ap <t Aepr > t/Ao =to, Ay b1,y Ap S oy Angr > tosas
fo =t —to, &y =ts—t1,. ., bn = tns1 — tn} (2.16)
= P{Ar <t App > t/Ao=to, A1 Sty An Stn, Angr > tar1r  (2.17)
= P{Ay <t Ap > t/Ao =to, A1 < t1,. .., An Sty Altarr) =n}  (2.18)

Formula (2.17) follows from the independence between arrivals and services. It is natural

to refer to the event

E,- = {Ag = to, A]_ S tl,Az S tg,. ..,An S tn,An+1 > tn+1}
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as the relevant information, relevant in the sense that other components of the observed
event (service times, in our case) are not necessary for queune estimation.

The condition in (2.18) implies that n Poisson arrivals took place in (0,%n41]. Using
the well-known order-statistics property of the Poisson process, we see that the joint
distribution of Ay, As,..., A., given the available information, is that of order statistics
from the uniform distribution on [0,¢,1], conditioned on the event

{Ay <t As <tyy...,An St}

The expression in (2.18) is equal to:

P{Ay <t, Apyr >t, Ay <ty An St fAg = to, A(tny) = n}
P{A; <t1,...,An < tafAo = to, A(tns1) = n}

(2.19)

Our estimate do not depend on A since the numerator and the denominator of (2.19) do
not depend on A from the order-statistics property.

Remark. In this work we sometimes condition on events whose probabilities can be
equal to zero (see formulae (2.16) and (2.19)). For example, the denominator of (2.19)

can be represented as
}EH}] P{Al S t}, ey An S tn/AQ & [to — h,to], A(tﬂ--i-l) = 'n,}

In general, if we condition on event of the type {X; = #,...,X, = z.} and assume
that the random vector (Xi,...,X,) has a positive probability in the neighborhood of

(%1,...,%n), a similar definition can be applied.

2.2 Representations via Registration Times.

In Section 3.2 of Chapter 1 several different approaches to the observed information up to
time ¢ were introduced (all were based on the real data). Here we shall elaborate on one
of the approaches, that which is based on busy periods. It is technically simpler to work
with the observed event up to time ¢, which is denoted by E,, instead of the observed
information F;. (E, is an element of F.)

For simplicity of notation (which is somewhat cumbersome anyway ), we shall assume
everywhere throughout Sections 2 and 3 of Chapter 2 that only a single server is present
at every station. However, all our results remain valid for the multi-server case.

Recall that we always register start and termination times of services with 1D’s of
customers and sometimes also arrival times and ID’s of external customers.

At first, a notation for registration times will be introduced. Let N 7 denote the number
of customers that were served during the k-th busy period at station j (without counting
the customer that starts the busy period, since customers at the k-th busy period are
numbered by 0,1,2,... ,N;j). Then T}fi, 0<1 < N,f +1, is the time of the i-th registration
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during busy period number k at station j. In particular, T,fo and T stand for the

kN1
service start of customer 0 and for the service termination of customer j’\fﬁ respectively.

Suppose that we observe the network during the time interval [0,t]. Let B;(t), j € D,
denote the number of busy periods, which started at station j up to time t. Let Dy(t)
stand for the set of busy stations at time ¢ (i.e. stations whose servers are busy). For
7 € Dy(t) introduce M;(t) to be the number of customers that started service before ¢
during the current busy period. (Here, again, we do not count customer 0, which started
this busy period.)

Finally, introduce a notation for external arrivals: let N°(¢) denotes the number of
external arrivals up to t and T? denotes the time of the i-th external arrival to the network.

We now develop a theoretical framework for describing the information embodied in
the ID’s of customers. Using ID’s, it is possible to obtain the trace of a customer (the
sequence of stations visited up to time ¢} and the times of registrations up to ¢. To this end,
introduce two routing operators. The Routing operator R locates the next service start of
a customer, the Backward Routing operator R™" locates his previous service termination.

Definition of the Routing Operator R. The domain of R consists of triplets of
natural numbers (n,m,1) and pairs of the type (0,1). The value of the routing operator
is given by

Rin,m, 1) = (j,k,i) (or R(0,1) = (4,k,7)) (2.20)

if the customer, which terminated service at time 777, at station n (or entered the network
at T}), starts his next service at time T,fi at station j. If that customer leaves the network,
let

" R{n,m,)=0 (orR(0,I)=0).

We introduce also a special notation for the station to where the customer switches: if
formula (2.20) prevails,
Ry, =j (xRl =73)

Definition of Backward Routing operator R~* The domain of R~ is formed
by triplets of natural numbers. It takes the value

R, k,1) = (n,m,])
if the customer, which starts service at time T;;», terminated his previous service at ).

If the service that starts at time T;;- was the first one for that customer let
’R”l(j, k,7) = (0,1),

where [ is the index of the customer’s registration at station 0.
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In addition, auxiliary operators for the previous station and the previous service ter-
mination time are introduced:

R.El(ja k’i) =n, R’El(j’k:i) =T

Representation 1 of E; via Observations.

Known External Arrivals.
Roughly speaking, the information embodied in ID’s is identical to the information about
values of the Backward Routing operator. Indeed, an ID of a customer enables the
derivation of all his previous registrations. But it is possible to get that same information
recursively from the Backward Routing operator.

The observed event F; can be represented as the intersection of the eight events 1.1-1.8
below. Here and later we adopt a uniform style of event representations: small letters will
be used for realizations of random variables; a verbal description of an event is followed

by formulas; the main statements are printed in bold.

1.1 The number of busy periods at every station is known.
B;(t) = by(t), 5 €D.

1.2 The set of busy stations is known.
Dyp(t) = dp(t).

1.3 The number of registrations is known for all complete busy periods.
Ny =mny, j€D,
1< k< b;(t) for j & do(2),
1 <k <bi(t) — Liorj € doft).

1.4 The number of registrations until ¢ for incomplete busy periods is known.
My(t) = my(t), J € du(t).

1.5 The registrations are known.
Th =t JED, 1<k <byt),
0<i < m‘j(t) for 5 € db(t), k= bj(t),
0<i<nl+1, otherwise.

1.6 Complete information about the backward routing.
R1(,k,i) = (n,m,1) or R-1(j,k,i)=(0,1), for(j,k,5) > t; <t.

1.7 The number of external arrivals is known.

NO(t) = n(¢).

1.8 The registrations at station 0 are known.
T = t, 1 <i < n(2).
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Representation 1’ of E; via Observations.

Unknown External Arrivals.
Here the information about the backward routing can be incomplete. If the ID of a
registered customer has never appeared earlier, we know that he switched to the current
station from station 0 but no information is available about his arrival time to station 0.

Events 1.1-1.5" of Representation 1’ coincide with their counterparts 1.1-1.5 from the
previous case. The last two events from Representation 1 are omitted and event 1.6 is

changed in the following way.

1.6” Partial information about the backward routing.
R-1(3,k,i) = (n,m,1) or R3'(,k,i)=0, for (j ki) 3 t}; <t
(R34, k,4) = 0 when the ID of a customer was never registered earlier.)

2.3 Representations via Arrival Times.

Recall that #§. denotes the realization of the i-th registration time from the k-th busy
period at station j. Let ¢, denote the duration of service which started at #2.. Let also
Al stand for the arrival time to station j of the customer, which started service at tl;.
Finally, A", stands for the arrival time to his next station of the customer that terminated

service at £7,. A connection between the two last definitions is given by:
Rin,m, 1) = (,k,3) = An = AL

Consider a service termination time t7;. It will be called a Visible-Routing service

termination time (or VR-time in short) if
3G, k,¢) 3 8, <t, Rin,m, 1) = (j,k,1).

In words, this customer registered at least once during the time interval (¢7,;,]. Otherwise,
time ", will be called Invisible-Routing (IR-time). A time of service termination is
IR-time if either the corresponding customer leaves the network or if his mext service
beginning takes place after t. We use the notation (n,m,l} € Vr(t) and (n,m,l) €
Ig(t) for VR and IR-times respectively. The corresponding customers are called visible
customers and invisible customers.

The definition of VR and IR-times can be easily extended to the realizations of times
of external arrivals #2.

In order to derive more convenient representation of the observed event we need to
“decompose” the Routing Operator R(n,m,l) = (4, k,1). The knowledge of this operator
for VR-times is equivalent to the knowledge of the following events (provided that all

registrations #1. < t are also known).
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e The switches of the visible customers are known. (See event 2.6 of the
following representation.)

¢ Truncation rule. The visible customers arrive to stations before their services
start. (See event 2.4.)

¢ FCFS discipline. The visible customers arrive in the order at which they are

served. The invisible customers do not arrive to stations before the visible ones.
(See events 2.5 and 2.7.)

The exact formulations of these events are given in the following representation.

Representation 2 of By via Arrival Times. Known External Arrivals.
Here we identify conditions that must be imposed on service times and arrivals (in-

ternal and external) in order to get the observed event from Representation 1.

2.1 Services that terminated up to ¢ are known.
gci = t{c,i+1 —ty, F€D, 1<k bi(t),
O<i<myt)—1, for jedft), k= bi(t)
0<i<ni, otherwise.

2.2 Last service at a busy station have not terminated until £.
. 3 i

2.3 The start of a busy period coincides with the first arrival.
For (n,m, 1) € Vr(t) 3 R(n,m,l) = (j,k,0)
AR =11, €D, 1<k Sbh).

2.4 Truncation rule. Arrivals take place before corresponding service starts.
For (n,m,1) € Vr(t) 3 Rin,m, )= (§,k,1), 1 > 1
AR, <tl, 7€D, 1<k <bi(t), where
1 <i<my(t), for jedu(t), k=25t),
1<« nj';, otherwise.

2.5 FCFS discipline.
For (n;,mi, 1) € Va(t) 3 Rini,mi L) = (4,k,1),

j "Ill "'Ilz iry . N
tig < Am1.11 < Amz»lz <...< Amlu.h;’ jED, 1<k <), 1<t
u, where

U = mj(t), for j € d(,(i), k= bj(t),

u=nj, otherwise.

2.6 Complete information about the switches of the visible customers.
For (n,m, 1) € Vg(t)

n _:
ml b
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2.7 Partial information about the invisible routing.
For (n,m, 1) € Ig(t):
ifjedp(t)y, Ru=i=An= A‘Lj(t),mj(t)r .
ifjd dp(t), RR;=j=> A1, >t. (Event A=> B=A°JB)

2.8 The number of external arrivals is known.

NO(t) = nO(t).

2.9 The times of external arrivals are known.

Remark. Events 2.3-2.6 must include also external arrivals (0,1) € Va(t). They are
treated exactly the same as (n,m,l) € Va(t). Event 2.7 is true also for (0,1) € In(t).

Representation 2° of By via Arrival Times.

Unknown External Arrivals.
Events 2.1°, 2.2°, 2.6' and 2.7’ coincide with their counterparts 2.1, 2.2, 2.6 and 2.7 from
Representation 2. We supplement events 2.3-2.5 with the statements of the type:

2.3’ For (5,k,0) > R5'(j,k,0) =0,
31 3 R(0,1) = (5, %,0), A? = ],

The last two events of Representation 2 are omitted.

Equivalence of Representations 1 and 2.
First we show that the event that constitutes Representation 1 implies Representation

Event 2.1 follows from the definition of T7; (times of service starts and service termi-
nations). Events 1.2, 1.4, 1.5 determine event 2.2 (the last service on a busy station have
not terminated before t).

Then note that complete information about the values of the Backward Routing op-
erator {event 1.6) is identical to complete information about the values of the Routing
operator for the VR-times. Events 2.3-2.5 are implied by the knowledge of R(n,m, 1) for
(n,m, ) € Vr(t) and by the apparent facts written at the headings of these events. Event
2.6 follows from 1.86.

The first statement of event 2.7 means that if an invisible customer switched to a busy
station, then his arrival time took place later then the arrival time of the last serviced
customer. (This fact follows from the FCFS queue discipline.) The second statement
means that if he switched to an idle station, then his arrival there took place after i.
(This is the second part of the event).

Finally, events 1.7 and 1.8 coincide with events 2.8 and 2.9.
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Now, for the converse, suppose all events from Representation 2 are taking place.
Then arrival times and service times uniquely define service starts and terminations from
Representation 1. Specifically, 2.1-2.4 and 2.6 allow service starts at tf;,-, 2.7 guarantees
that no arrivals, which can prevent terminations of busy periods at the proper times, take
place during [0,¢] and 2.5 implies 1.6 (the proper customers start services at the proper
times).

The equivalence of Representations 1’ and 2’ can be derived similarly.

3  Real-Time Estimation and General Interpolation.

3.1 Stochastic Components of the Network.

The stochastic components of our network were introduced in Subsection 1.1 of Chapter
1. Recall that there are four components:

e external Poisson arrivals to the network;

e service times;

¢ switches of customers between the stations;

o transition times between the stations (in the case of exponential transitions).

We now briefly summarize the components that are known exactly and those which
those
that were already analyzed (Busy-Period Interpolation) and the new ones that will be

are necessary to infer, for various special cases. We actually cover all problems:

analyzed in this section. Note that, in all cases, we have complete information about the

service times up to the estimation time .

Unknown stochastic components.

Immediate transitions ] Exponential transitions
External arrivals
known unknown known unknown
Busy- All Fxternal || Transition | External
Period stochastic | arrivals. times. arrivals;
Interpola- || components transition
tion. are known. times.
Real-time Switches;
Estimation. Switches; || Switches; external
General Switches. external | transition arrivals;
Interpola- arrivals. times. transition
tion. ' times.
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We see that the second row differs from the first one only in the knowledge of customers’
switches between the stations.

In Busy-Period Interpolation, queue estimation was carried out separately for every
station; customers served over a busy period were all known, and the objective was to
infer, if necessary, their arrival times {(internal or external). The critical parameter, from
a computational point of view, was the length of the busy period, while the number of
stations in the network had minor effect.

In contrast, real-time problems require also inference about the set of customers that
stand in queue at a specific station. Indeed, the current location of a specific customer,
having been served, is often unknown. A basic concept here turns out to be the set
of invisible customers, namely those customers that possibly wait in some queue at the
time of estimation. The “double inference” nature of real-time problems, i.e. the need to
infer both the set of customers standing in the queue, and their arrival times increases
considerably the computational complexity.

3.2 General Interpolation. The Single-Station Case.

Bertsimas and Servi [2] carried out the analysis of the Real-Time problem in the single-
station case. However, the General Interpolation problem (queue path reconstruction
during a busy period that has not terminated yet) was not considered in the papers on
the subject. The results of the current subsection will be applied in Subsection 3.5 in the
network setting.

Consider the following problem formulation for a single station. Assume that the busy
period under consideration begins at time 0. The times to = 0,%y,...,%,,... denote the
realizations of service starts. As before, Ag = 0, A,,..., A, stand for arrivals to the station
and A(t) is the cumulative number of arrivals in (0,t]. Arrivals to the station constitute
a homogeneous Poisson process with rate A. (The case of the non-homogeneous Poisson
input is similar: perform the time change t — A(t) = [; A(s)ds, then, apply the results
for the homogeneous case with A = 1 and, finally, perform the reverse time change.)
Introduce the event

Bn — {A(tl) 2 1,A(f}2) Z 2,...,A(tn) 2 n} - {Al S t;,Ag S tz,. ..,An ﬁ fﬂ}

The meaning of event B, is that the considered busy period has not terminated up to t,.
Our objective is the recursive calculation of E [A(t)/Bns], for a fixed ¢t > 0. Specifi-
cally, we update our estimate in view of a new service completion.
This problem was studied previously in Bertsimas and Servi [2]. They, however, as-
sumed that t = ¢, (real-time estimation) or t > t, (extrapolation), while we present an
algorithm for general ¢ and clarify the difference between extrapolation and interpolation

(t <t).
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Define the events
Cn = {A(t;) 2 1, A(tz) 2 2, A(tnm1) n—1 A( ) = n}

and
D, = C, [ {Altas) = n}.
Algorithm 3.1. General Interpolation of a single-station.
— Main formula.

E [A(t)/BaP{Ba} — E[A(£)/Da]P{Cn}e tnt:=t)
P{B,} — P{Cy e Mtnti-tn)

E [A(t)/Bo] = M.

— Recursive calculation of P{Bn41}.

E [A(#)/Bns1] =

P{Bn+1} = P{Bn} — P{C’n}e_x(tn-!nl-fn)'

— Recursive calculation of P{Cn11}.

P{C‘n»{-l} = e_Atn+1'\n+1g(t1s t21 sey trn tn+1):

where
def t L tn tnt1
g(t1,t2,.“,tn,tn+1) = f o[ .../ / d:cnﬂd:cﬂ...da:zdzl
e =Ty EZn="En-1) Tp+l1—Zn
and
= n—k t}:-:-%_k
gty ta, - vEnytne1) = Z(“l) (n+1- k)qg(thtz, coorti).
k=0 ’
P{Cg} = gdo = 1.

— Calculation of E [A(t)/D,]. If t > t. (extrapolation)
E [A(£)/Da} = n + M = tnt1)+-

I t < t, (interpolation), specifically ift; <t<ty,i1<n-—1:

E [A(t)/ D] =

1 -1 (t s tm+1)k—‘.ﬂ1
Sk g(ther — titrsz — byt — B)] Z —-('mr_g(th .

o m=0

g A )" by —tteas — ...t —1t) —
P{C } Z (k 1)[ g( k+1 y LR+42 3 ’ )

).
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(3.1)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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Verification of Algorithm 3.1.
Formula (3.2) follows from the definitions of By, C, and D,, equalities

Bny1 = Ba \ {Cs n {A(tas1) — A(tn) = 0}} = B, \ D,

and independence between C,, and A(t,41) — A(tn).
Formula (3.3) prevails since

P{Cn-}-l} == P{Al <ty -;An <ty An+1 < tn+1;A(tn+1) =n-+ 1}

B (Atn+1)n+l
= P{A; <ti,. ., An Stay Anpr S taga fA(Gng) = n + 1}e *’n+1~———~——-——(n+ i )
.. .. : , e i
(conditional joint density of uniform order statistics is n:_l) )

n+1l
= e—At"+lAn+lg(ti: tZ} v ;tn? t”+§)'

Formula (3.5) is almost identical to formula 42 (page 225) of Bertsimas and Servi [2]. We
present a simple proof, by computing multidimensional integrals according to definition

(3.4):

2. g(t1,t2, . tn, tn+1)

= f ] f (tn+1 - I!n)diﬂn PN dfﬂl
@1 =0 Jxp=aey Tn=Fn—1
2

tar g
n n—1
= toy1g{ts, ..., ¢ f f f L tdenog ... d2y
1‘:“0 E2~»=¢1 Tpe] =Tn—2 2

n f fn—2 ti..,]_ fz—z
= tn+1g(t1,...,tn)— —g(t;,...,tn..l)‘*‘ / demn_g...dml

w1 =0 n-2=Tn-—3

n+l-k

s t
= .. Z e )n k k+1 )|g(t1, 2y - ..,tk).

Remark. We showed that P(B,1) and P(Cpry1) can be computed recursively using
O{(n) operations for every recalculation of each event.

Formula (3.1) follows from:

E [A(t)/Bnn] = E[A(t)/{Ba \ Dn}]

E [A(t)/Ba]P{Bn} — E {A(t)/D,P{Dn}
P{B,} — P{D.}

E [A(t)/BnJP{Bn} — E [A(t)/D.]P{C: }6—““‘“""‘}
P{B,} — P{C,}e Mtnti=tn)

Formula {3.6) is true since for t > t,:

E [A(t)/Dn] E [A(ts)/Da] + E [(A(¥) — A(&:))/Dn] =
= n+ At —tog1)+
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We still need to prove formula (3.7). For t; <& <ty <tp,
E [A(t)/D,] = E [A(t)/C4].

Then

E[A(t)/Cn] = ikP{A(t):k/cn} -

- P{C}ZkP{At)wk}P{C JJAR) =k} =
_o_ S e O
= P{cn}g = )P{B/A(t)mk}P{C’ \ Bx/A(t)=k}.  (3.8)

Formula (3.8) follows from conditional independence of B; and C, \ B; given A(t) and

also from

P{C, \ Bi/ Alt) =k} = P{C, \ B/ A(t) =k}

Now we calculate the two probabilities from (3.8) separately.

P{B;/A(t)=k} = P{A1<t1, A<ty Ay S A St}

t t
- / / / f f dzy ... dz; (3.9)
zy =0 mz‘wx epmpy g Y T4 =@ TR=L

- fwa /zz . [_ l%dmi...dml (3.10)

Bt R (E ety )T

= G ey ) -
- 1*?::;& R IS

Here (3.9) follows from the order statistics property, Lemma 1 of Bertsimas and Servi (2]
implies (3.10), and (3.11) is derived by integration of (3.10).
As for the second probability from (3.8),

P{C, \ Bi] A(t) =k} = e Mmt\nFgltpy — b tppa — 1, ta — 1), (3.12)

and g{txs1 — t,tkg2 — ¢, .., tn — t) can be computed recursively using (3.5).
Formulas (3.8), (3.11) and (3.12) imply (3.7).

Remark. Note that extrapolation requires O(n) computations for each updating of

the estimate. However, if the interpolation problem is considered, the number increases

to O(n?). (The calculation of E [A(t)/D,]is critical.)
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3.3 Immediate Transitions, Known External Arrivals.

Our first goal is to introduce the third representation of the observed event £, namely via
stochastic components of the network. Then Q;(t), 7 € D, will be estimated at a given
t > 0 and the general interpolation problem of @;(s) estimation (s < ¢) will be solved.
Finally, a dynamical problem of Q;(t) reestimation in real-time will be considered: we
take some A > t and recalculate E[Q;(h)/Ex].

Notation and Definitions. Recall the stochastic components of the network: A} stand
for the external arrivals, §i; denote the service durations and R?, € D (or R} € Do) stand
for the switches of customers.

Then introduce a d-dimensional stochastic process, C = {C(t), t = 0}, where the j-th
coordinate of C(t), C;{t) denotes the arrival time to station j, of the customer who 1s
served there at time ¢. If station j is idle, put C;(¢) = ¢. Using the notation of Section
2, we can write C;(t) = Agj(t),mj{t) for j € dy(t). Note that C;(t) is determined by the
observed event E;. Indeed, information about the history of this customer provides us
with his last registration time at the predecessor station to j, which is precisely C;(t)
because transitions in the network are immediate.

The customers that terminated service at IR-times (see section 2 for definition) are
called invisible customers. For every IR-time t'; we introduce the available stations
process

My(trg) = {{7 : C;i(t) < tn;} U {0}

The following figure illustrates the definition.
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Figure 3.1. Nlustration to Definitions of C;(t) and M)

Stations
1
1 SN FU— bi(t) =4
G th th t
2
2 _Au, ba(t) = 4
th  th
3
3 —t Az po—rt b(t) = 5
th th t3; ta
4 idle station
t

Registrations of the last incomplete busy periods at several stations are given. Here
C1(t) = Aly, Ca(t) = A%y, Ca(t) = AL, Cu(t) = t and, for example, M,(t3) = {0,1,2,3},
Mft3,) = {0,3}, M(t5;) = {0}

If a customer stands in some queue at , then his last registration has been either
arrival to the network or service termination (it could not have been service start). If this
registration occurred before Cj(t), he can not queue at station j according to the FCFS
queue discipline and the assumption of immediate transitions. This argument provides

us with two important statements.
¢ Only invisible customers occupy the queues of the network.

o Invisible customer that terminated service at #7%; must reside at one of the stations

Of Mf(t:ﬁ,l)

Remark 3.1. If the IR-time ¢, < minjcp C;(t) we know definitely that M(¢7,) = {0},
therefore, the corresponding invisible customer have left the network.

Representation 3 of Ey via Stochastic Components.
Immediate Transitions, Known External Arrivals.
The parenthesized letters that end an index of an event correspond to the stochastic

components that are involved in its description. Specifically:

A — external arrivals;
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S — service times;
R — routing between stations;
T — transition times (in the case of exponential transition times).

3. 1(S) Services that terminated up to f are known.
— -t FED 1Sk <B),
D<ismit)-1, for § e d), k=bt)
0 <i<nj, otherwise.

3.2(S) Last service at a busy station have not terminated until ¢.

For j € dy(t) fb 5(8),m(4) >t = tb {t)mmy(t)”

3.3(R) Complete information about the switches of the visible customers.
For (n,m,1) € Vg(t) and (0,1) € Vg(t)
Ry =J (R} =)
3.4(R) Partial information about the invisible routing.
For (n,m,!) € Vg(t) and (0,1) € Ig(t)
w1 € Mi(thy) (R € Mu(t])).

3.5(A) The number of external arrivals is known.

Ne(t) = n(t).

3.6(A) The times of external arrivals are known.
Al =1t0, 1 <i<n).

Equivalence of Representations 2 and 3. In the beginning, note that events 3.1,
3.2, 3.3, 3.5 and 3.6 coincide with events 2.1, 2.2, 2.6, 2.8 and 2.9 respectively. The

assumption of immediate transitions between the stations can be expressed as
R(n?m‘l l) = ( k: ) = Akt - Aml - ml (313)
In order to prove the equivalence of events 2.7 and 3.4, recall the first part of 2.7:
ep o no o n 7
}‘f-? € db(t)i le =] Aml 2 Abj{t),n,'(t)‘
Using C;(t) = Al (i (6 Ar, = t*, and definition of M, we get the equivalence. The

second part of 2.7 is irrelevant since in the case of immediate transitions an invisible
customer cannot switch to an idle station.
Therefore, Representation 3 follows from 2.

As for the second direction, the arrivals A7), where t2,, € Vg(t), are completely deter-

ml?

mined by the stochastic components from events 3.1-3.5. Hence events 2.3-2.5 will stand
automatically if 3.1-3.5 stand.
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Queue Estimation at Time t. We proceed to compute the conditional expectation

and the variance of the queue at station j.

Proposition 3.2.

Pnj
E[Q;(t)/ B} = >, 1{jeMg(a;,)}z 2 ) (3.14)
t* Eln(t) kEME™ ) Pnk
Pni(l — Pnj
VarlQi(t)/ Bl = D luemdmiy L) N (3.15)
t*  €Ir(t) keMy(t7 ) Prk
Proof.
E[Q;(t)/E] = Bl Y lan=s/Ed = (3.16)
¢ Elr(t)
= S P{Ry,=j/E} =
tn E1g(t)
= Z P{R;z—_-j/R;teMt(t;z)} = (3.17)
¢ €ln(t)
Prj
= Y lgemeny (3.18)
o lTay T keMEn) Pk

Formula (3.16) is true since only invisible customers occupy the queues of the network.
Routing of the invisible customers is involved in representation 3 only in event 3.4. This
fact and independence of the stochastic components of the network imply (3.17). Finally,
(3.18) follows from a straightforward calculation.

Formula (3.15) prevails since transitions between the stations are conditionally inde-

pendent given E,.

General Interpolation. The queue is estimated at station j at time s, before obser-
vation time i.

Proposition 3.3.
Ifs < Ci(t), @Qjs)is known exactly given E; and

Qi(s) = Ai(s) — A;(Ci(s)): (3.19)
If s > C{t),
Q3(s) = [45(C5(1) — As(Ci(a)] + [A5(s) — As(C5(0)]:
The first term is known exactly given E; and

BA) - ACONE]l = L ey o

m.l)} )
t» €Ip(t) 8.5 7, < LokeMu(tn,) Pk
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Proof.

Formula (3.19) prevails since customers that stand in queue at s arrived in [C;(s), s]
due to FCFS discipline. All arrivals to station j which took place before C;(t) are known
because the corresponding customers started service before ¢ and we can trace their pre-
vious registrations using ID. Therefore, A;(C;(t)) — 4;(C;(s)) is known exactly.

Arrivals that took place during [C;(t), s] (if such interval exists) are estimated using
the same argument as for formula (3.14).

Figure 3.2 illustrates our approach.

Figure 3.2. Ilustration to Proposition 3.3.
CIJ'(S) Cl.v'(t) s t

¥ 1 ]

known pIObable
arrivals arrivals

Queue Estimation in Real-Time. Dynamic Algorithm. Suppose that we observe
the network in real-time and estimate the queue conditioning on the observed event (in
the sense of conditional expected value). Then an algorithm for the queue reestimation
at the successive estimation times is needed.

We assume that the last estimation of the queue was carried out at time ¢ and the
reestimation takes place at time h > t when no registrations occur between t and b (but
there can be registrations at h itself).

The following information must be saved in the memory of our computer for every

estimation time t.

¢ The matrix of the routing probabilities P.
o The set of the busy nodes dy(t).

e Information concerning invisible customers.
From Remark 3.1 only those invisible customers that were registered last time after
minjep Cj(t) can possibly wait in some queue at time &. We use notation £, for the
set of such customers at time £. Then for each customer the following characteristics
are stored.

— su{t), k€ L., are times of the last registration of invisible customers.

— n4(t), k € L4, denote the last stations where invisible customers have been

observed (ni(t) = 0 is possible).
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~ My(t), k€ L, are sets of available stations for each customer.
¢ The matrix of the conditional routing probabilities B, = f;(t), k€L, jED,
where

Pn
Pri(t) = 1{36M;(t}}m. (3.20)
k k

Rewriting formula (3.14), we get the queue estimate:

E[Q;(t)/ B} = 2 Pr;i(t). (3.21)

Now introduce dynamic reestimation aigonthm. Several special cases of events, which
could happen at k, are considered. The correctness of the algorithm can be verified from
(3.20), (3.21) and the preceding definitions.

Algorithm 3.2

o No registrations took place at h. The queue estimate does not change. Network
data, stored in memory, is also preserved. (Further if we do not mention some part

of the data then it does not change when we move from ¢ to k.)

o Customer number k arrived to station 0 at h and immediately started service at

stalion v.
dy(h) = dp(t) U{v}

o Customer number k arrived to station 0 at h.

ﬁh = Et U{k}’
Sk(h) = h, Nk(h) = 0, Mk(h) = db(h) = db(t),

- Poj .
() = =P85 dy(t),
ka( ) zveMg(h) PQU, b( )

E{Q;(h)/En} = BIQ;(8)/ EJ + Pusy 7 €D

o Customer number k terminated service at station u at time h and tmmediately

started a new one at station v.

dy(h) = {ds(t) \ {u}}U{v}-
Forl e Ly st. u€ Mt)let
Mf(h) = Mz(t) \ {u} and
)ZmEMJ(t) Prym

pi(h) = pis(t ) jEM[h.
la( ) J( EmeM;(h)Pnam ( )

iQJ h)/Eh Zpka
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o Customer number k terminated service at station u at time h.

dy(h) = dy(t) \ {u},

.Ch T [:g U{k},
sk(h) = h, Nk(h) = U, Mk(h) db(h)
- Poj .
() = e ds(t
Prj(t) SRR € dy(t)

Forl e Ly st. u €& M(t) let
M(h) = My(t) \ {u} and

- - Em pﬂ " .
pi;(h) = Pu‘(lf)Z eﬁ'{t}w =, € Mh).
mg i ny,m

E[Q;(R)/Enl = Zpk;(h)

k=1

o Customer number k terminaled service at station u at time h and immediately

started a new one at station v. At the same moment customer number g started

service at station u.

dy(h) = dy(t) U{v},
Ly =Ly \ {Q‘},
Forl € Ly st u € My(), sult) < so(t) let
My(R) = My(t) \ {u} and

- Em an .
(k) = (1) ;‘f’}p . 7€ My(h).
m 1 Ti,m

/Eh zpka(h

¢ Customer number k terminated service at station u at time h. At the same moment

customer number g started service at station u.

Ly ={L: \ {g}HU{*},
sa(B) =h, Ne(h)=xu, Mu(h) = dy(h) = dy(2),
“ _ Poj .
Pis(H) = Yve My(h) Pov j € di(t)
Forl e Ly s.t. u € M(t), su(t) < s4(t) let

My(h) = My(t) \ {u} and
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- YomeMy(t) Prym .
(k) = his(8) 5 j:(“)p L j e M(h).
m ] ny,m

Qn(h /Eh Zpks(h

Remark. Note, that for the last four special cases considerable recalculations of our

estimates are needed.

Multi-Server Case. All our results remain valid for the multi-server case. The only
alteration concerns the definition of process C. In this case C;(t) denotes the arrival time
to station 7, of the customer who has started service last among all customers currently

being served there.

3.4 Exponential Transitions, Known External Arrivals.

First, we introduce new stochastic components of the network. Set 77, and 7{ stand for
the transition time of the customer, which terminated service at t7,; (£]). If the customer
switched to station j then 77 ~ exp(nn;).

Arrivals to the stations are given by:

R(n,m, 1) = (j,k,8) = Al =t +7m (3.22)
(or R(0,1)=(5,k,1) = AJ =1+ 1)

Representation 4 of E; via Stochastic Components.
Exponential Transitions, Known External Arrivals.

4. 1(S) Services that termmated up to t are known.
J
0<:1< T@J(t) - 1, for j e dp(t), k = bj(t),
0<i<mni, otherwise.

4.2(S) Last service at a busy station have not terminated until ¢.

4.3('T) The start of a busy period coincides with the first arrival.
For (n,m,!) € Va(t) 2 R(n,m,1) = (j,k,0)
thy+ i =ty €D, 1<k < bi(h)

4.4a(T) Truncation rule for complete busy periods.
For (n,m,l) € Va(t) 3 R(n,m,1)=(4,k,i), 121
th + 18, <ty JED,
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LS k< b(t), forj & di(t),
1<k < bj(t) -1, forj € db(t),
1<i<ni.

4.4b(T) Truncation rule for incomplete busy periods.
For (n,m,l) € Va{t) > R(n,m,1) = (5,b;(t),1), i 21, j € du(2),
thi + Tm1 < t‘l‘)j(t),i-

4.5a(T) FCFS discipline for complete busy periods.
For (n,,m,,l = VR(t) 3 Ring,my, li) = (j,k 1)
t'j < t s 113 + T mlll < tmzzlz _§_T::122’12 <. = txriiuulu +Tm
15k§b() for j ¢ du(t),
1<k<bi(t)—1, forj€ dy(t),
1<i<u=ni.

j€D,

uwla’

4.5b(T) FCFS discipline for incomplete busy periods.
For (n,-,m,-, l{) = VR(t) > R(ni;miali) = (3! b.?'(t)? )
3 n n n n .
tbj(t),o ﬁ f'mll,li + Tmi,ll g t11'122,12 + Tmzz,Iz 5 e m Jda ..i,. Tmu Ju? J S db(t)7
1 Stgu'-“—“m_?(t)

4.6{R) Complete information about the switches of the visible customers.
For (n,m,l} € Vp(t) and (0,1) € Vg(t)
le _-} (Ri = J)

4.7(RT) Partial information about the invisible routing.
For {(n,m,1) € Ip(t):
ifj ¢ dp(t), Rpu=J= tou+mm >t
ifjedp(t), Rp;=i=thu+7m 2 tv g +Tv “_] where
(ws, v5,u5) = R7(4, b5(2), ms(2))-
(The similar relations are true for (0,1) € Ir(t).)

4.8(A) The number of external arrivals is known.
NO(t) = n®(t).

4.9{A) The times of external arrivals are known.
Al =D 1 <1< nt).

Equivalence of Representations 2 and 4. The equivalence immediately follows from
formula (3.22). In Representation 4 A%, from Representation 2 is replaced by th,; + 7,
In addition, each of the events 2.4 and 2.5 is divided into two separate events.
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Queue estimation at time t. Relevant information. We introduce again the set of
invisible customers. It includes the customers, which terminated service or arrived to the
network at IR-times. As in Subsection 3.3, we state that only invisible customers occupy

the queues of the network. Therefore,

E[Q;(t)/E] = > )P{Rmz—J/Et} = (3.23)
t"IEIR(t

= Y P{Ry,=i/E E’E"} (3.24)
t“ EIR(t)

= S PRy = /B, (3.25)
tw €In(t)

where events EJ, E?® and Ef® correspond to events 4.7, 4.5b and 4.4b of Representation 4
and E, = E N E® N B is the relevant information. Isis straightforward to check that all
other events include stochastic components, which are independent of Ry}, 3 &7, € Ig(t)
and of the stochastic components, involved in events 4.7, 4.5b and 4.4b. Dependence
of the Invisible Routing on event 4.7 is obvious. Dependence on events 4.5b and 4.4b

appears through 7o u;.

Mathematical Formulation of the Estimation Problem. In the beginning, we are
concerned with notational arrangements. The time index t will be omitted whenever
convenient. (Our algorithm is static, therefore it will make no harm.) Registrations of in-
complete busy periods tg,-(z),ou .. ,tgj(t)‘m:_(t) are called fg, . ,tfnj. Let s),..., sfnj stand for
the transition start times of the corresponding customers. (They are provided by operator
R7Y). The last transition times of these customers are called ... ,Tij respectively.

Suppose that K invisible customers exist at time t. Their last transition start times
are denoted by 52, 1 <k < K and Re, 1 <k < K stands for the station where
they switch. In the end, set 72, 1 < k < K denote the transition times of the invisible
customers,

Using the new notation the relevant events of Representation 4 are expressed as follows:
44b3+7“?<t'7 JEdy, 1 <i<mj

45b 8 <sl +7 <. sznj-i-‘l',ij, J € ds.

a7 ifjedy, Ri=7=sl+70 >4 +1’ij,
1f3¢db, Rkwjisk-i-‘l'k>t.

We need to calculate

E[Q;(t)/E:] ZP{Rk =Jj/E}.
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Formulation as Hidden Markov Chain Problem. We shall solve the estimation
problem using the approach from section 1.3. However, the Markov chain in the Real-
Time case will be considerably more complicated. (We cannot focus on a specific station,
all the stations together are considered.)

Time domain of the Markov chain. Set M = maxjeq, m; and t4(j) = tfnin{k.mj)’ 0<
k < M, j & dy. Then our Markov chain is defined on fo,%1,. .., a1, Err 41, where

fo={th, jedt)}, f={t(), j€B®)}, 1Sk<M, fwn={t,. ..t}

State space. The Markov chain can be represented as:

A = {A(to), }1({1), ooy Altar), fi(tM+1)}:

where

Al = {Ai(te(9)), 7 € ()}
and
Aj(ta(3)) = {AY (0(5)) U Aj(t(G))}-

In the last expression, fiv(tk(j )} is the ordered set of visible customers, which arrived to
station j until tx(7). (Customers are ordered according to their arrival times. } Finally,
AJ{- (tx(7)) is the unordered set of invisible customers, which arrived to station j until £¢(3).

Boundary condition.

A(to) ={0,... ,0}.
Admissible states.
Let (j,7) denote an ID of a customer that started service at tj Then, if tx(j) = t

AY (8(3)) € {{(,1),(5,2), -, GO 1 A, 1),(7,2),- -, (G}, {61, (5:2), (4, ma) 1)

(customer (j,1) arrives before his service starts; FCFS principle prevails).

If (7,m;) & Av(tk( 1)), then AI(tk(g)) = () (all visible customers must appear before
any invisible one arrives).

Transition probabilities.

We must calculate
P{A(fx11) = Cof Allx) = C1}
for admissible states C, and C,.

Define the j-th component of C; and C; as C’f and CJ, j € d;. Then we can rewrite
the last probability as

P{A;(ter()) = O, § € do/ A5(H}) = ¢, j € d}.

We can represent the considered event as the intersection of the following four events:

= { Visible customers that do not belong to C} did not arrive during {tx(7), tr+1(3)}, 7 €
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d b,

B, = { Invisible customers that belong to ¢} and do not belong to C? arrived during
[t:(5), tks1(5)], 7 € do. Their arrival times are ordered according to their service start
times },

B; = { Invisible customers that do not belong to Cj did not arrive during [tz(7), tes1(5)], 7 €
dy }1

B, = { Invisible customers that belong to Cj arrived during [ti(j), tes1(5)], J € d5. Their
arrivals took place after arrivals of all visible customers.}.

Events that correspond to two sentences from event B; definition will be called B3
(visible customers arrived) and B? (order relation). In the same way we define events B}
and BZ.

Let Mf stand for a set of customers that appear in event B; in connection with station
j. Sets Mg, M, and Mg correspond to events Bz, B, and Bj.

In the following reasoning we use the chain formula:

P{A(frp1) = C2/A(TL) = Oy} = P{B1B;BsBy/A(}y) = C1} =
= P{B,/A(f) = C,}P{B,/By, A(i) = C,}P{Bs/B;, Bs, A(fx) = C1} X
% P{Bs/Bi, By, Bs, A(tx) = C1}. (3.26)

We shall consider in turn the four probabilities from formula (3.26).

P{B:/A(Lx) = Ci} = [ I exp{—mi(trs:(5) — max(tx(5), s1))+}- (3.27)

iEdbleﬁdg

Here v; and s; are transition rates and transition start-times of the corresponding cus-
tomers from Mf . Specifically 4;; = 7,5, where n; is the transition-start station of the

invisible customer [.

P{B,/B,, Alfx) = C1} = P{By/A({x) = C1} = (3.28)
= P{Bi/A(k) = C1} x P{B}/B}, Alk) = C1} =
= [T IT (1 —exp{—m(tesr(j) - max(te(5), s1))+}) X

i€dy e p}
x JIP{Ai<4j<...< AfMgw}’ (3.29)
jedp

where A} from formula (3.29) are truncated exponential random variables
(truncexp(ys; min(sy, te(7)), te+1(4))) that correspond to customers from M and |Mj)
stands for a number of customers in M. Independence between stochastic components
implies formula (3.28).
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Now consider

P{By/Bi, Bs, Alfy) = C1} = P{Bs/A() =C1} =
Pio + X aa, Pri exp{ — it — 81)} + Tjea, P1i eXP{ Y5 (Bar1(5) — s)+} 5 o0
: (3.30)
eas Plo+ Siga, Py exp{—5(t — 51)} + Ljea, Pis xP{—5{te(5) — 81)+

Here pij, | € My, j € d, are the probabilities that customer [ switches to station j and
~;; are the corresponding transition rates. The proof of (3.30) will be given in the end of
the subsection.

Finally,
P{B./B, B, Bs, A(li) = C1} = P{Bi/A(x) = C1} x P{B}/ By, Ay =1} =
= H H (1 — exp{—m;{tes1(s) — max(tx(7), s1))+}) *

Jedy le M;
y prj exp{—v;{te(7) — si)+} “
o + Logza, P13 €xpL—15(t — $1)} + Tomea, Pim exp{—m;(Ex(m) — 81)+ }
x P{A] > A7 A3 > A;;j,...,flfMgl > Al Al < Aj <. < ALY, (3.31)

where AJ are arrivals of invisible customers to station j, |M]| is a number of customers
in M and A{, ,1 €4 < m;, are arrivals of visible customers to station j. Formula (3.31)
il be discussed in the end of the subsection. Summarizing, the transition probabilities
of the Markov chain are calculated using (3.26), (3.27), (3.29), (3.30) and (3.31).

Algorithm.

We can use the general algorithm for HMM problem that was introduced in Section
1 (see Algorithm 1.1 on page 28 and Algorithm 1.2 on page 32). This algorithm solves
also the General Interpolation problem since estimates of cumulative arrivals number are
derived for intermediate time points between starts of the current busy periods and ¢.
Queue estimates can be derived from estimates of cumulative arrivals number.

The complexity of the algorithm depends on the number of stations, lengths of busy
periods and number of invisible customers. It increases very rapidly when the number of
invisible customers increases and, therefore, it is not practical to apply to “large” systems,
and the need arises for approximations. We leave this topic for a possible future research.

Another problem is that in the case of exponential transitions the number of invisible
customers increases with time since we never can be absolutely sure that a customer
left the network. Hence, in practice, we need to truncate the set of invisible customers,
removing customers that have not registered for a long time.

Comment on formulae. First we derive formula (3.30). Let D} and Df, | € Ms, stand
for events “invisible customer [ has not appeared on any station until try1” and “invisible
customer ! has not appeared on any station until {x” correspondingly.

P{Bs/A(f) = C1} = 11;[@: P{D;/Di} =
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= [I S P{D}/D} Ri=j}P{Ri=j/Di} =

1635 j€Da
- 1 Sjep, PADI/D}, Ry = GYP{D} /Ry = jYps  _ (3.32)
1M, Ea‘em P{D?/Rl fa j}PIj

Pio + ¥ iga, P15 exp{—1;(t = 8)} + Tjea, p1s exp{—1s(tr+1(J) — s1)1}
ien, Do+ Sjga, Pii xP{—mi(t — 1)} + Tieq, pij exp{—7(tu(5) — s0)+}

Here (3.32) follows from Bayes formula.
Now consider formula (3.31). Its first part (expression for P{Bl/A(fs) = Ci}) can be
proved in the same way as (3.30). As for the second part,

PLAT > Al B> My By > A [ < Mp <o <A} =
P{A] > Af,_, A} > A;j,...,AfM,-l > Al Al < Aj <. < ALY

P{Al < 4] < ... < A} ’

(3.33)

where all random variables in consideration are truncated exponentials and the denomi-
nator can be calculated using technique from Subsection 1.5. The numerator of (3.33) is
equal to

[ 5w [ 8w [ o) [ o) [ o) [ i)

where f; and g; are densities of truncated exponential random variables (f: of arrival times
of visible customers and g; of invisible customers). Some approximation technique must

be used for calculation of this integral.

3.5 Immediate Transitions, Unknown External Arrivals.

Notation and Definitions. Suppose that a customer starts service at #1.. If he arrived
from station O he will be called external customer, otherwise, he will be called internal
customer.

Let d2() C dy(t) denote a subset of the set of the busy stations: station j € d3(t) if
the last service that starts at station j before ¢ corresponds to an external customer.

As in section 3.3, we introduce a d-dimensional stochastic process C = {C(¢), t = 0}
but the definition is a little different. For an idle station j we put Cj(t) = ¢. If a station
is busy but no internal customer started service during the current busy period, Cj(t) =t
again. Otherwise, C;(t) stands for arrival time of the last internal customer, which started
service on station j.

The available stations process for IR-times i,

M) = {{7 : C5(t) < tm} U {03}
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is defined identically to Section 3.3.
The conception of the invisible customers is applied only to internal customers. Natu-
rally, all internals customers, which occupy the queues at time ¢, are invisible. Therefore,

we can represent the queue at station j as

Qi(t) = Q3(t) + Q4(1), (3.34)

where Q¥(t) includes external customers and Q? (t) includes invisible customers.
Representation 5 of B¢ via Stochastic Components.
Immediate Transitions, Unknown External Arrivals.

5.1(S) Services that terminated up to ¢ are known.
gu_.tgcm tHe jeD, 1<k <ht),
] _<_ ') S mJ( ) }., fOI‘ j € db(t), k= bj(t),
0<1 < n"}';, otherwise.

5.2(S) Last service at a busy station have not terminated until ¢.
For j € dy(t) ﬂju)mj(z} >t —t], NOLYOR

5.3(A) The start of a busy period coincides with the first arrival.
For (7,k,0) > R35'(j,k,0)=0,
Axo = tho-

(Al is an external arrival.)

5.4a(A) Truncation rule for complete busy periods.
For (j,k,i) 3 i > 1, R5*(4,%,0) =0,
A < by
1<k <b(t)for j € dp(t), and 1 < k < by(t) — 1 for j € do(2).

5.4b(A) Truncation rule for incomplete busy periods.
For (3,55(2),) 3 J € dft), i > 1, B5'(3,bi(8),9) =0,
Al 580 < th(t)17
1 S i < my(t).

5.5a(A) FCFS discipline for complete busy periods.
tho <Al <Al g,
T
1<k <bj(t)forj & dp(t), and 1 < k < by(t) — 1for j € dy(t),
where some of A}; are unknown external arrivals and some are known internal ones.

5. 5b(A.) FCFS diSCiphne for mcomplete busy periods.
&, {t)0<Ab(t)1 <Al 5(0).mmy(0): j € dp(t).
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5.6(R) Complete information about the switches of the visible customers.
For (n,m,l} € Vr(t)
R = J-

5.7(RA) Partial information about the invisible routing,

5.7a For (n,m,l) € Ip(t):
Ry =J=J€ Mc(thy)-

5.7b If j € di(t) :
Rui=i=tm2 Ajbj(t),mj(t)-

Equivalence of Representations 2’ and 5.
The equivalence of events 2.1-2.6’ to events 5.1-5.6 is straightforward. The equivalence
of event 2.7'=2.7 and event 5.7 follows from the definition of M,(t},;) and the equality

A", = 1", which prevails in the case of immediate transitions.

Queue estimation at time t. Relevant information. According to formula (3.34)

E[Q;(t)/E\] = E[Q3(t)/Ex} + E[Q5(t)/ ). (3.35)

Consider the two terms of (3.35) separately. First,

EQ%¢)/E] = Y. P{Rn=i/E}

th Eln(t)
= Z P{R;I ﬂj/EzbsEza’EtSbaEfb}’ (3'36)
t;‘MEIR(t)
where E™ ET* E® E® correspond to events 5.7b, 5.7a, 5.5b and 5.4b respectively. In
formula (3.36) we condition on events containing Agj(t),m,'(t) and R, (n,m,1) € Ig(t).
Other events are irrelevant. In particular, we omit events 5.4a and 5.5a since external
arrivals from different busy periods are independent.
As for the second term

E[QF(1)/E] = (3.37)
= EB[Qu(t)/El,EP E{*, EY, E}’] (3.38)
=  E[# (Poisson arrivals in [Ag_,'(t),mj(t)’t]) [ET EP El* E, EP.  (3.39)

Mathematical Formulation of the Estimation Problem. Our objective is to sim-
plify notation (as in Section 3.4) and to reduce the relevant information also.
Note that the external arrival times which took place before Cj(t), are conditionally

independent of those which happened after C;(t) given C;(t) is known (and it is known).
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Therefore, the parts of events 4.4b and 4.5b that correspond to arrivals before C;(t) are
irrelevant.

Let ¢ denote the time of the service start of an internal customer, which arrived at
C;(t) (we again omit the time index whenever convenient). The following registrations at
station j until ¢ are denoted by ) < < e < tfnj (as though the busy period starts at
1)

The notation for K invisible customers is preserved from the previous section.

Set A7, ..., Afnj stand for the successive external arrivals to station j, which correspond
to the service starts ¢7,..., tfnj.. From the memoryless property of the Poisson process we
can assume that they are the points of the Poisson process starting at £3.

Then the relevant events are given by:
] b j j . 0,
5.4b A] <t],... AL <t . jed
5.7a R, =j=>je M, 1<k<K.
57b Forjed Ri=j= Af;;j < Sk.

Events 5.5b is “installed” in the definition of A{, cee Afnj.

Queue estimation at time ¢t. We start with some additional definitions, proceed with
the description of the algorithm and, finally, prove its correctness and give some comments.
Unfortunately, the algorithm is static (we assume that ¢ is fixed) and there seems to be no
way to recalculate the estimate for time ¢+ k with essential economy in the computational

effort.
Let B denote the event in 5.4b. Then

B={) B;
jedy

where B; = {4 < t,.. .,A;";,_J_ < tﬁ'nj}, j € dJ. We also use notation
B ¥ B\ B,

Consider event 5.7b. It can be represented as

D= ﬁ () Dxs (3.40)

k=1 JEdg

where event

Dij={Rv=7= A, <si}={R# FHOAL, < sih. (3.41)
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Note that D is the intersection of events, organized in the matrix form (the rows cor-
respond to the invisible customers and the columns correspond to the stations). It is
important that events, which do not belong to the same row or to the same column, are
independent. We shall need also

K

Dlm d;_if n ﬂ ij; DI* ci:ef n n ij; D drf.f ﬂ n ij.
kst jokm kil jedd k=1 j#m

Here event '™ is event I after removal of the I-th row and the m-th column. If only the
[-th row was removed we get D™ and, finally, D*™ corresponds to removal of the m-th
column.

In order to deal with event 5.7a we define the conditional routing matrix of the type
“nvisible customers — stations”. It is denoted by R = (Fmj, 1 S m < K, j € Dy), where

. _ PNpi
T = l{jeMm} S P (3.42)
(see also formula (3.20) from Section 3.3). The assumption that the routing of the invisible
customers is governed by matrix R (instead of the routing matrix P) is equivalent to
conditioning on event 5.7a. Notation Py is used for the conditional probabilities of this
type.

Then we define

wij = P{AL, < si/B}, (3.43)

and, finally, introduce events Fy;, 1<k < K, 7€ D, which mean “the invisible customer
aumber k was the first invisible customer that switched to station j”. Event Fo;, ,5 €7D,
denotes event “no invisible customer switched to station j”.

Algorithm 3.3. Real-Time Estimation.
Immediate Transitions, Unknown External Arrivals.

1°. Basic queue decomposition.
E(Q;(t)/ B = E5Q3(t)/B; D] + E4[Q5(t)/B; D). (3.44)
2°, Calculation of wy;.

P{A],; < s Bj}
P{B;} _ _
P{A] < min(s,t]); A} < min(sx, 13); .. .5 Al < min(sk,tiﬁ)}

U-’kj =

e

= P15 . (3.45)

The numerator of (3.45) and P{B;} are calculated using formulae (3.2)—(3.5) from Sub-

section 3.2.
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3°. Calculation of Pﬁ{FkJ‘}.

K k-1
Po{Fu;} =71 Pa{Fo;} = [J(1 = 75); Pa{Fi;} =7w [[(1—75), 2< k< K. (3.46)
=1

I=3

4°. Calculation of the internal queue.

Zf:l PR{Rk = J; D/B}

E;[Q%(t)/D; B] = 3.47
The denominator of (3.47) is given by the recursive formula:
Pe{D/B} = 3 fuwuPs{D"/B'} + 3 fuPa{D"/B}. (3.48)
led! 1¢d
For k = 1 formula (3.48) turns to
Pi{D/B} = ) fuwu + > . (3.49)
led} lgdy
Finally, the numerator of (3.47) is calculated using
Pf{{Rk = J, D/B} = ijwijR{Dk*/Bj; Bj n{Ain, S Sk}}. (350)
The last conditional probability can be computed recursively using formula (3.48).
5°, Calculation of the external queue.
Forjedy \ df
Eg[Q5(t)/B; D] = A;(t — Cs(t)), (3.51)

where ); = Apg;, A is an exfernal arrival rate and the conditional distribution of the
external queue is Poisson with parameter A;(t — C;(t)).

For j € dj
K
Eq[Q3(t)/B; D] m[z EnlQ2(t)/ By A, < silPr{Fu;}wn; P, {D¥/B} +
k=1
+ FBglQ5(8)/ Bi|Pa{Fo;}Pg, {D7/B}]. (3.52)

Here E4[Q%(¢)/ B;; Afﬂj < si] is computed using Algorithm 3.1 and Ry = R/Fy;, i e
in (3.42) we must replace My, by My, \ {j} form < k,ifk#0,andfor 1 <m < K,if
k=0.

Proof of correctness and comments.

1°. Formula (3.44) is equivalent to (3.35).

2°. Formula (3.45) follows from the definition of ws;. Note that we can represent the
numerator of (3.45) as

P{A] <#]; 4] <th;.. . A] St Al S Ay S ik

™m
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where i = max{l : #§ < s;}. Such probabilities are computed using formulae (3.2)-(3.5)
from Subsection 3.2. Expressions g{t1,...,tm) from this formulae are known from the
calculation of P{B;}, therefore we save some computational effort.

3°. The following straightforward representation of events Fj; implies formula (3.46):

K k-1
Fiy={R =i} Foy=(VHR#35}: Fi={{R#NHR =7} 2<k<K
=1 Joc}

4°. Formula (3.47) follows from

K
Q?(t) =Y Lip=s
k=1

In order to derive formula (3.48), we condition on the switch of the first invisible customer
(recall that s; < 82 < ... < sg):

P:{D/B} = Y Pi{D/B;R; = I}

IeDyg

The following calculation is typical for this section. For the first time, it is carried out in
detail, and further similar calculations will be presented in short.

Ifledd

K
Pa{D/B;Ry =1} = Pa{() N{{B# Y {4, S s}/ Bilu=1}

k=1 JEdg
_ Pa{AL, < stiNNgjzant{fis # 5} U{4d,, < si}h B =1 B}
- Ps{R, = |; B}
Pa{Al, < siiMiey Ny Dij; B = 1; BY; Bi}

— = 3.53
Py{R: =1, B Bi} (3:53)
Pa{Al, < si; B}Pg{R = }P{D"; B'}
Pi{Ry = [}Pz{Bi}P3{B'}
= Pp{4l, < s1/Bi}Pr{D"/B'}

= wyPg{D"/B'}.

Formula (3.53) prevails since event {R, = I} implies {Ry # j, j # I} and event Al <
imphes Aim <sp, 2<k<K.
Then, in the same way, we prove that for j € dp \ 2

Pﬁ{D/B,Rl—-—_‘Z} = Pﬁ{ﬁ nDkg/B} foed

kw2 Jedg
_ Po{D"/B}.
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As for formula (3.49), note that if k =1

- Pi{D/B} = PR{QGDU/B} =
jed?
= S Pe{Ri=1§ () Dy/B} =

led, jedy

= Y Fawn+ Y P

led) I#d}

Note, that all these computations are in some way similar to the computation of a matrix
determinant.

Finally, (3.50) is derived using the following calculation:
Pa{Re=7;D/B} = Pa{Re=5() ) Dij AL, < o¢/B}
I#k jedy
= FPa{D"; AL, < s¢/B}
= g Pa{D* /AL, < s B}
= :ijwkjpﬁ{Dk*/Bj; B; ﬂ{AfnJ_ < sit}
5°, Formula (3.51) prevails since only external customers that arrived after the known

time Cy(t) stand in queue at time ¢ at station 7.

For j € d2 we condition on the first internal customer which arrived to station j:

BAIQ3(0)/B: D] = S BR{Q30) o B DYPa{F/ Bi DY (350
T b £ 0, w
B4 {Q2(8)/ Fui B: D} = Be{Q5(0)/Re = i (VB # 3 B; D)
= EBa{Q(t)/Re =5 {R#3}Bi[} Bl’ikf‘lf;,. < sx; DM} (3.55)
B QN B AL, < o4} (3.56)

Formula (3.55) prevails since {R; # j} implies Dy, @ < k and {Af;,h. < s} implies
Dy, 1 > k. Formula {3.56) is true since Q3(t) is the number of Poisson arrivals in
[A';"nj, t], which depends only on the events that are left in the condition.

If k=0,

Eq{Q5(t)/ Fo;; B; D}

Ea{Q:(t) N{R #7}:B; D} =

led}

= Ea{Q:(t) N{R#i1B; D7} =

ledy

= B{Q3()/B}.
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Now consider the second term of (3.54):

Pi{Fi;; D/B} = Pg{D/F.; BYPa{Fy;/B} =
= Pa{D/Fy;; B}P{Fi;},

since events Fi; and B are independent. Then if k& # 0:

Ps{D/Fi;; B} = Pa{D/({Ri#i};Re=17;B} =

i<k

= Pap{dl, S s D%/ N{R # 35} Re = 5;B; (B} =
1<k

Eas wijﬁ{ij/ ﬂ{R;#]},BJ} =

i<k
= wijﬁk {DkJ/BJ}

Similarly, for k = 0:

Pa{D/Fo; B} = Pp{D”/Fy; B}
= Py, {D7/B’}.

General Interpolation. Here we give an outline of the solution of the General Inter-
polation problem. Suppose we need to calculate E[Q;(s)/E¢], s <t. Two special cases
must be considered.

If s < C;(t) all internal arrivals to station j until s are known. The external arrivals
can be estimated using HMM approach from Subsection 1.2.

Otherwise, if s > C;(t), we have to estimate arrivals in [C;(s), C;(t)] and in [C;(2), s
separately. Arrivals that took place during the first interval can be estimated using HMM
approach again. As for the second interval, the technique of this subsection must be used.
External arrivals are estimated using formulae (3.51) and (3.52), where we replace t by
s. Internal queue is estimated using (3.47) where only those internal customers whose

transition-start times s, < s are included in the sum.

3.6 Exponential transitions. Unknown External Arrivals.

Hidden Markov Model in the spirit of Subsection 3.4 can be constructed in this case. The
state space of HMM and, consequently, notation will be very cumbersome. Indeed, the
state space will be infinite, due to an unrestricted number of external invisible customers.
Any practical implementation of the algorithm must involve a truncation of the state

space. We leave this to a possible future research.
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Applications.

1 Data and Tools.

1.1 The Service System.

The service system analyzed is a typical branch of a commercial bank. Measurements from
14 days of work (2 weeks + 2 days) were collected. The data covered service stations,
servers’ positions, ID’s of customers, arrival times, times of service starts and terminations
etc. ‘

As an example, consider the data in Table 1. Each line corresponds to a specific ser-
vice task. During a single service, several service tasks can be performed. Note customer
1021 that goes through two operations (tasks) at service position 5. Service position cor-
responds to a specific server. At a multi-server station there are several service positions.

Times of service starts, service terminations and external arrivals to the bank entrance
(station 0) are recorded directly by the measurement system but internal arrival times are
not. The system assumes that an arrival time of a customer to the first internal station on
his route is equal to his external arrival time. Each successive arrival time to a station 15
assumed to be equal to the preceding service termination time. In essence, the assumption
of immediate transitions between stations is implicitly used by the measurement system.
(This assumption seems to be appropriate for our bank, where walking distances are
short.)

Now consider the other assumptions, presented in Subsection 3.1 of the Introduction.
FCFS queueing discipline applies in general but there can be exceptions. It is reasonable
to assume that arrivals to the system constitute a non-homogeneous Poisson process,
whose rate is approximately constant during short intervals, for example half an hour. As
a first approximation, we may assume a Markovian switching mechanism. (Although the
routing probabilities may depend on the path of a customer; hence a multi-type models
might be more appropriate.)

Most problems in our data analysis have been connected with violations of the work-
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conserving principle. Indeed, a human server often stops working for some periods of time
even when there are customers waiting for service.

This data set is rather convenient for our applications, since it covers the features of
our simplest model: transitions between stations are immediate and external arrivals are
known. Then we can suppose that, for example, external arrivals are unknown, run our
algorithms on incomplete data and, finally, compare the queue estimate with the exact
queue.

The main problems of the data are violations of work-conserving, FCFS discipline and

also some kinds of measurement errors (see Section 2.2 for examples).

1.2 Description of Software.

In order to apply our theoretical results to real data, several programs, written in C, were

created. The main are:

¢ Program QIEl. Busy-period interpolation. Immediate transitions, known external

arrivals.

s Program QIE2. Busy-period interpolation. Immediate transitions, unknown exter-

nal arrivals.

Program QIE1l. An input of the program has the form of Table 2. The data for each
station is ordered according to service starts. Special programs are used to convert initial
data files (Table 1 shows a part of such a file) to the format of Table 2. In particular, the
convertion unites service tasks performed successively at one service position.

The example of an output of QIEL is presented in Table 3. It includes 7 columns
of numbers: the estimation time, the main estimate of the queue (further referenced as
exact queue), the lower estimate of the queue, the cumulative number of arrivals, the
cumulative number of departures from the queue, the cumulative number of departures
from the station and the number of working servers.

The main estimate of the queue at time t is calculated as the number of arrivals
minus number of departures from the queue. If the assumption of immediate transitions
between stations really stands, this estimate is equal to the exact queue. But sometimes a
customer can “disappear” for an hour and only then return to the next station. The lower
estimate tries to treat such cases. However, it is more appropriate for large bureaucratic
institutions or medical clinics where customers wait for hours.

The output of QIE1 includes also a file with simple statistics. It comprises arrival

rates, average service times and average waiting times.
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Program QIE2. Program QIE2 assumes a homogeneous arrival rate during busy pe-
riods.

The input of QIE2 has the same form as the input of QIEL (see Table 2) but the third
row (arrival times) is not used by the program. Table 4 illustrates the output. Queue
estimate is calculated at the points of service starts and terminations (it is linear between
these points). In addition, 90% quantile of the conditional distribution of the queue and
o(estimate) are calculated.



Table 1. Example of Data File.

DATE CUST ARRIVAL SERVICE SERVICE SERVICE WAIT SERVICE SERVER TASK

iD EBEG END TIME TIME POS ID TYPE
040293 1005 8:03:11 8:03:46 8 14:17 10:31 0:35 10 10 27
040293 1006 8:05:23 8:11:33 8:12:45 1:12 6:09 i2 12 28
040293 1007 8:07:01 8:07:16 8 0%9:47 2:32 0:14 12 1z 11
040293 1008 8:07:10 8:09:34 8 15:51 6:18 2:24 6 ) 20
040293 1009 8:07:19 8:09:47 8 11:33 1:45 2:28 12 12 11
040293 1006 8:12:45 8:19:32 8:19:44 0:12 6:48 5 5 29
040293 1010 8:14:04 8:14:17 8 15:51 1:34 ¢:13 10 10 27
040293 1008 8:15:51 8:15:51 8:15:55 0:04 0:00 10 10 20
040293 1006 8:19:44 8:19:44 8 44:25 24:41 0:00 5 5 12
040293 1012 B8:26:55 8:28:37 8:30:53 2:1%6 1:42 12 12 13
040293 1013 8:27:37 8:33:31 8 34:16 0:45 5:55 10 10 27
040293 1014 8:29:05 8:30:14 8:31:33 1:19 1:10 & 6 20
040293 1014 8:31:33 8:35:36 8:35:35 0:02 4:03 12 12 20
040293 1016 8:33:52 8:34:16 8 44:49 10:33 0:24 10 10 27
040293 1014 8:35:39 8:35:3% 8 41:12 5:33 0:00 12 12 11
040293 1018 8:3%:01 8:43:29 §:50:31 7:02 4:28 i2 12 11
040293 1019 8:39:57 8:41:12 8:43:25 2:18 1:15 12 12 11
040293 1021 8:43:20 8:50:31 8:53:07 2:36 7:11 12 12 11
040293 1022 8:47:21 8:53:07 8 58:18 5:11 5:46 12 12 11
040293 1023 8:47:24 8:49:06 8 54:32 5:26 1:42 6 ) 20
040293 1024 8:50:07 8:51:54 8 54:32 2:38 1:48 10 10 27
040293 1025 8:50:58 8:58:18 8:59:29 1:11 7:20 12 12 11
040293 1021 8:53:07 8:54:52  8:55:05 0:13 1:45 5 5 11
040293 1027 8:53:11 8:59:29 S 12:33 13:04 £:18 12 12 11
040293 1023 8:54:32 8:54:32 8:54:35 0:03 0:00 10 10 20
Ga0293 1023 8:54:35 8:54:35 9:03:02 8:27 0:00 10 10 27
040293 1021 8:55:05 8:55:05 9:02:49 744 0:00 5 5 12
040293 1028 9:00:57 9:03:02 9:09:38 6:36 2:05 10 10 27
040293 1029 9:01:56 9:06:27 9:39:48 33:21 4:30 & 6 21
040292 1030 $:08:51 9:10:02 9:12:41 2:39 1:11 2 2 26
040293 1031 9:08:54 9:09:38 9:13:35 3:56 0:44 10 10 27
040293 1032 9:09:06 9:12:33 9:16:29 3:56 3:27 12 1.2 1t
040293 1030 9:12:41 9:15:18 9:21:50 6:32 2:37 5 5 26
040293 1020 9:13:35 9:13:35 9:13:37 0:03 0:00 10 10 12
040293 102¢ ©:13:38 9:13:38 9:20:3%8 7:01 0:00 10 10 27
040293 1034 9:17:07 9:21:50 9:27:35 5:48 4:43 5 5 12
040293 1036 9:19:43 9:27:39 9:32:04 4:25 7:585 5 5 12
040293 1037 9:20:07 9:20:39 9:22:37 1:57 0:32 10 10 27
040293 1030 9:21:50 9:22:37 9:22:39 0:03 0:47 10 10 26
040293 1030 9:22:39 9:22:39 9:34:05 11:25 0:00 10 10 27
040293 1036 9:32:04 9:32:11 S 32:12 0:02 G:07 12 12z 12
040293 1026 9:32:12 9:32:12 9:46:30 14:17 0:00 12 12 11



Takble 2. Input of Program QIEL.

gTATION CUST ARRIVAL SERVICE SERVICE

START END
1 3003 §.4475 8.4983 8.5614
1 3030 8.5611 8.5703 8.6315
1 3031 8.5700 8.58050 8.6675
1 3028 8.5464 8.6214 §.6664
1 3034 8.5947 8.6400 8.983%
1 3042 8.6794 8.7053 8.9200
1 3055 8.7092 8.7200 8.8939
1 3065 8.7694 §.7808 8.8686
1 3047 8.6900 8.8686 8.9069
1 3021 8.8381 8.8939 9.0064
1 3082 8.8586 8.9069 9.0300
1 3089 8.8836 8.9200 5.0511
1 3108 8.9661 8.9803 9.0228
1 3110 8.9744 8.9836 9.1797
1 3075 9.01L08 S.051% 9.2503
1 3124 9.0814 9.0858 5.1194
1 3145 9.1694 §.1797 9.2978
1 3133 9.1111 5.19231 9.3111
1 3151 9.2183 $.2269 9.3125
1 3146 9.1828 9.2503 9.435%4

TIME Q1 Q2 CUM DEPART DEPART NUMBER
ARRIVAIL  FROM FROM CF
QUEUE STATION SERVERS
8.60 2 1 12 10 6 4
8.62 3 2 13 10 5 4
8.64 3 2 13 10 6 4
8.66 4 2 14 10 6 4
g8.68 5 5 16 11 7 4
8.70 5 6 20 14 10 4
8.72 9 8 23 14 11 3
g8.74 8 7 23 15 i2 3
8.76 10 9 25 i5 12 3
8.78 9 8 26 17 13 4
8.80 8 7 27 19 15 4
8.82 9 5 30 21 17 4
8.84 9 7 33 24 20 4
8.86 9 6 34 25 22 3
8.88 1t 5 37 26 23 3
8§.20 14 4 41 27 24 3
8.92 13 o 44 31 27 4
£.94 13 12 446 33 30 3
8§.96 1C S 46 36 32 4
8.8 12 12 49 37 33 4
.00 10 10 49 39 35 4
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TABLE 4. Output of Program QIEZ.
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2 Busy-Period Interpolation.

2.1 Immediate transitions. Known External Arrivals.

We consider a joint queue at a multi-server station. Several tellers (up fo five) work
simultaneously at the station.

Using QIE1 we calculate the exact queue for 12 days (complete two weeks) of obser-
vations.

Figure 1.1 shows several examples of queues. We immediately note that the queue size
changes significantly for different days. There can be three possible causes of such queue
variability:

e variability of arrival rate;
e variability of service times;
e variability of number of working servers.

When arrival rates are derived from the data we observe that the first explanation is the
main one. Ten days (we do not analyze days 6 and 12 with different working ours and
queue patterns) can be divided into three categories according to queue sizes, waiting
times or arrival rates.

Day 7 is called “catastrophic day”, days 8, ¢ and 10 are “heavily loaded days” and
the rest are “regular days”. Figures 2.2 and 2.3 show average queues and average arrival
rates for the categories.

The variability of the arrival rates has a natural explanation. On day 7 (it was Sunday)
a payment of social insurance took place. Usually the payment is produced during two
days but this time one of them fell on weekend. Therefore, the flow of customers on day
7 was endfmous and three days afterwards the bank worked in heavily loaded conditions.

We established that the variability of arrivals is the main source of the queue variability.
However, it is not the unique cause. Consider, for example, two heavily loaded days, day
8 and day 10. Figure 2.4 compares the arrival rates on these days and figure 2.5 compares
the queues. The arrival rate on day 8 {just after the catastrophic day) was larger, but the
queue and the average waiting time {12.2 minutes versus 8.2 minutes) were larger on day
10. The explanation lays in figure 2.6 which compares the number of working servers for
two days. We observe that at the “critical periods” (10:00-11:00, 11:15-11:40) four servers
only worked on day 10 versus five servers on day 8. The average service time plays some

role also (3.35 minutes on day 8 versus 3.58 minutes on day 10).
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2.2 Immediate transitions. Unknown External Arrivals.

Single-Server Case. A station with one teller was considered. The Program QIE2 was
run for several days at the working periods 8:30-12:30. Some of the results are presented
below.

Figures 2.7 and 2.8 illustrate the case of a good correspondence between the estimate
computed by program QIE2 and the exact queue computed by program QIEL. When
the estimate is computed under the assumption that all arrivals, external and internal,
are unknown (using, in essence, the one-station algorithm of Larson), we get Figures 2.9
and 2.10. Figure 2.9 shows that the correspondence is worse in the three time intervals:
after 9:00, after 10:00 and between 11:00 and 11:30. Note also the difference between 950%
quantiles for two estimates. It is worth mentioning that in the largest busy period (see
Figures 2.8 and 2.10) only four arrivals out of 20 are internal. However, their knowledge
provides us with exact queue at these times (assuming FCFS stands) and helps to improve
the estimate significantly.

Now consider the case of comparatively bad correspondence after 11:00. Table 5
presents the corresponding place of the data file. According to the record, customer
3468 received service more then 15 minutes (and the average service times is less then
3.5 minutes). Naturally, our algorithm “supposed” that several customers should arrive
during such a long service. Probably, the server forgot to register the service termination
of customer 3468 and, erroneously, it was registered only at the service start of customer
3524.

As was mentioned already, most problems with the real-data applications take place
because the work-conserving principle does not always stand. See, for example, Figures
2.11 and 2.12. Most of the time, we have a reasonable correspondence between the exact
queue and the estimate but between 11.5 and 12.5 the estimate turns to be very far from
reality. Let us try to understand the cause looking at the data in Table 6. We observe
that at 12.0700 and 12.2931 there are customers standing in queue but, anyway, the server
interrupts service for a short time. Our algorithm interprets this fact as the end of busy
period. If we prolong service times of customers 3638 and 3659 we get rather different
result (see Figure 2.13).

In order to avoid the problems of this kind, a server should register intervals when
he interrupts his work and there are customers in queue. Then we can suppose in the
algorithm that the service before the interruption is prolonged until the start of the next
service,

Consider the queue estimate on day 11 (Figures 2.14 and 2.15). The correspondence
is normal everywhere except the time interval between 10.5 and 10.8. Table 7 contains
the corresponding registrations. The estimate inaccuracy can be due to the violation of

the assumption of immediate transitions (see customer 3356, for example).
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Multi-Server Case. We consider a service station with 5 servers. Figure 2.16 shows
the the exact queue versus the estimate on day 8 and Figure 2.17 shows 90% quantile on
this day. Note that the estimate follows, in large, the pattern of the exact quene. However,
there seems to be underestimation for the large queue peaks and at the beginning of the

day. Apparently, this is due fo the inhomogeneous arrival rate during the day.



TABLE 5. Day 8. Part of Data File.

Starion D Arrival Service Service
start termination

4 3458 10.9594 10.9839 11.0322
4 3468 11.0456 11.0628 11.3219
4 3524 11.3011 11.3219 11.3358
4 3517 11.2622 11.3358 11.4075

Station ID Arvival Service Service
start termination

4 3609 1%.5517 131.8347 11.5783
4 3616 11.5781 11.5783 11.9953
4 3638 11.7042 11.9953 12.07GC0
4 3645 11.7189 12.1014 12.1353
4 3670 11.828¢6 12.1353 12.2317
4 3659 11.7814 12.23%17 12,2931
4 3688 11.9175 12.3125 12.40%4
4 3740 12.1894 12.4004 12.5467

tation ID Arrival Service Service
start termination
4 3281 10.2150 10.4344 10.4778
4 3354 10.4722 10.4778 10.7283
4 3380 10.6556 10.7744 10.8311
4 3376 10.6258 16.8311 11.01%92
4 3400 10.8011L 11.0192 11.0433
4 3356 10.4806 11.0433 11.1022
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Chapter IV

Possible Future Research.

We conclude with a list of possible research directions, that would build upon the work

presented here.

Theoretical Research. It seems that, within the models presented here, we have ex-
hausted most possibilities for exact analysis. Interesting extensions are possible in the

following directions:

e Approximations. An appropriate mathematical framework is the theory of condi-
tional weak convergence ([10],[15]) and excursion theory (for example, {1}). Queue
length during a busy period, after proper normalization, can converge to a Brownian
excursion when the number of services is large. Daley and Servi began working in

this direction in [5].

e Cover other types of available information. This can include either more or less
than transactional data. For example, more data could include receiving a signal
when the queue length exceeds some threshold, as in Hall [8]). Less data could
exclude ID’s. Even in simple cases, exact solution of the model without ID’s requires
heavy combinatorial calculations and is, in general, non-computable. Therefore,

approximations are desirable here.

e Add new modeling features, such as general (non- Poisson) arrival pattern. The
exact solution for the single-station case was derived in Bertsimas and Servi [2] but
it is computationally hard to apply to real data. Therefore, the need for approxi-
mations arises again. Other useful modeling features include buffers, abandonment,
reneging, multi-type customers and violations of FCFS (for example, queues with

priorities).

¢ Analyze new performance measures, such as waiting times distribution during a

busy period.
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Applications.

e Software programs for different special cases of the problem could be developed.
The following cases seem to be both important and amenable for computations:

— Busy-Period Interpolation. Exponential Transitions, Known External Arrivals.

— Real-Time Estimation. Immediate Transitions, Known and Unknown External
Arrivals.

~ Known non-homogeneous arrival rates for different special cases.

s Development of robust algorithms that are less sensitive o measurement errors and
violations of model assumptions. In particular, being able to cope with violations of
the work-conserving principle is very important. In principle, we may try to filter

out long service times that seem to include periods of server’s idleness.

e In the cases of Real-Time Estimation, exact calculations of the queue estimates
seem to be extremely time-consuming (except for the case of immediate transitions
and known external arrivals). Therefore, control in real-time would require suitable

heuristics.

e It is important to search for real data, on which our observations could be tested.

Possible sources are communication and transportation networks.
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