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Abstract

We consider Markovian non-preemptive and preemptive priority queueing systems with impatient cus-
tomers, under the assumption that service rates and abandonment rates are equal across customer types.
For such systems in steady-state, we develop an algorithm for calculating the expected waiting time of
any type.

We then assume that the number of servers is large, formally taking this number to infinity, which en-
ables an asymptotic analysis in three operational regimes: an Efficiency-Driven (ED) regime, in which
the focus is on servers’ utilization (efficiency), a Quality-Driven (QD) regime, where the focus is on the
quality of the service and a Quality-and-Efficiency-Driven (QED) regime, where efficiency is carefully
balanced against service quality.

Our asymptotic analysis provides simplified expressions for some operational measures, e.g., the ex-
pected waiting time of any type. But, as importantly, it yields structural insight. For example, assum-
ing that the offered load of the lowest priority is non-negligible, we show that preemption and non-
preemption are essentially equivalent, as far as average waiting times are concerned. Moreover, the
delayed customers of all classes other than the lowest priority wait, on average, the same time as in a
queue without abandonment. (In other words, their service level is high enough to render their abandon-
ment negligible.)

Stationary behavior turns out to provide important insights on the behavior of time-varying queues.
Specifically, under an appropriate scale and time-varying staffing, the performance of time-varying ver-
sions of the above-mentioned systems is in fact stable in time. Moreover, this stable performance matches
remarkably well the performance of naturally-corresponding steady-state systems. We demonstrate all
that via simulating queues in which the arrival-rates are taken from four real call-centers.

More specifically, we first simulate call-center environments with a single customer type whose arrivals
are described by an empirical function. After that, we present simulation results of queues with two
customer types that arrive according to analytical functions. The conclusion of these experiments, as
mentioned, is that in many cases, and under appropriate staffing, stationary models can be used to prop-
erly predict the performance of time-varying queues.

In our last chapter, the traditional heavy-traffic approximation for expected waiting time, based on the
first two moments of the service-time distribution, is considered. We check this approximation by sim-
ulating queues with different service-time distributions and conclude that in the QED regime, such two-
moment approximations are inaccurate.

viii
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Chapter 1

Introduction

Telephone call centers have turned into a widespread and highly preferred means for many organizations
to contact their customers. These organizations cover both the public and the private sectors. For some of
them, such as cellular companies, call centers are in fact their most important contact channel with their
customers. It is no wonder, thus, that the call center world is expanding dramatically and is becoming a
vital part of our service-driven society. In concert with this state of affairs, call centers have also become
a significant object for academic research; this is amply testified by the growing literature c/8jl in [

for example, some of which is surveyed [i(].

The majority of the operating costs of a call center are salaries for its staff. Overstaffing leads to un-
desirable high costs and understaffing results in long waits, dissatisfied customers and overworked and
frustrated telephone agents. Many call centers use a "1-800” service, in which case waiting costs become
part of their operational costs. Additionally, the costs of dissatisfied customers could be very significant,
especially accounting for the fact that some abandon (during a particular call, or actually opt for the
competition).

The call center environment is very complex. One of the main complexity factors is the need to cater
to varying types of customers by agents with varying skills. One common approach is to cross-train
the agents and then serve customers according to pre-assigned priorities. Naturally, staffing decisions
must account for all this complexity, yet the challenge is to develop staffing rules that are simple and
insightful enough for implementation. For example, the "square-root safety staffing” rule is one, as will
be surveyed below.

Many mathematical models have been developed for the complex environment of call cent&l€](see [
Their main advantage is their simplicity of use, as well as the theoretical insights that they can often
provide. Their main weakness is their limited modelling scope, which is restricted by our state-of-the-art
analytical capabilities. Another weakness is the fact that some analytical background is required in order
to apply these models comfortably. The latter could explain the wide gap between needs and prevalence:
indeed, the most commonly-used model in support of call center staffing is the overly-simplistic M/M/N



gueue (known as Erlang-C in call center circles): its severe assumptions are time-homogenous Poisson
arrivals, exponential service times, i.i.d. customers and i.i.d. servers. A significant practical improve-
ment, that is still alarmingly simple, is the M/IM/N+M (Erlang-A), which accommodates customers’
impatience, and its M/M/N+G generalization. (Readers are referrédijand [41] for more details on

the latter two models.) A major goal of present-day call center research is extending the modelling scope
of mathematical models - se&(] for a survey of the main directions of this research.

An alternative to mathematical models is offered by computer simulation. Simulation models, if created
and used correctly, cope in principle with any level of model complexity, taking into account any small
detail one wishes to consider. But simulation has significant limitations as well. For one, it is expen-
sive/cumbersome to develop, maintain and run. Moreover, even with today’s powerful computers, it can
take many hours to run. Hence, the insight that simulation can provide is limited relative to theoretical
models, when the latter are applicable.

To overcome the weaknesses of mathematical models and simulation, a research trend has recently
emerged in which the two have been combined to nurture each other, and this is the approach adopted
here. (An example of such researchig][) More precisely, we will follow the approach i8], which
combined theoretical models with simulation in order to develop dynamic staffing rules, in the face of
time-varying demand. The models @] pre restricted to iid customers and iid servers. In this thesis, we
extend B] to cover some of the models id%], namely allow customers that are of multiple classes.

1.1 The Structure of the Thesis

This work is organized in the following way. Chap@mtroduces the analytical technique which later
allows to represent the Delay Probability of Markovian queues in terms of their Busy and Idle periods.
Then (Sectioi8.4) we analyze the Delay Probability under different operational regimes and obtain both
its limit and its convergence rate.

Chapterd opens the discussion of priority queues by representing the known results for the Erlang-C

gueue under preemptive and non-preemptive priority disciplines. Later, in Clapterexpand the

same approach to the Erlang-A queue. We present the calculation of the expected waiting time of any
customer type under preemptive priority and develop an algorithm for the calculation of this measure

under non-preemptive priority.

Chapterss and7 are devoted to the time-varying environment. In Chafteie simulate four different
call-centers using empirical data for the average service rate, average customers patience and the dynam-
ics of arrivals during the day. We check the performance of each call center when the staffing level is
determined by thequare-root safety-staffingile. In addition, in this chapter we check the impact of

what is known as théme-lag by comparing the results of call-center staffing udfmgntwise Station-

ary Approximation (PSAith the results of staffing usinigagged Pointwise Stationary Approximation
(Lagged PSA)



The analysis of a call center with two customer types under non-preemptive priority is presented in Chap-
ter(7. This chapter is a generalization of some results discussé).iMhe main finding presented in

this chapter is the possibility to calculate many performance measures by using appropriate stationary
single-type and two-types models.

In Chaptei8, we compare thé//G /N + M system with a corresponding /M /N + M, emphasizing

the effect of the service-time distribution on system performance. The discussion follows the simula-
tions results presented iB82] for M /G /N queues. The purpose of this chapter is to check whether the
impact of the service-time distributions on performance is similar to that describ&g]ir\ccording to
conventional heavy-traffic theory, the expected waiting time in & /N queue under heavy traffic

can be well approximated using the Kchinchine-Pollazcek formula. Schviditatiows that this ap-
proximation is not good under the QED regime. We check the Kchinchine-Pollazcek formula analogue
for the M/G/N + M queues, developed by Ward i83], and demonstrate that, here as well, in the
QED regime there are significant differences among different service-time distributions with the same
first two moments. Consequently, with and without abandonment, traditional heavy-traffic two-moment
approximations are inaccurate in the QED regime.



Chapter 2

Literature Review and Theoretical
Background

This work has several different directions. Thus, in order to achieve a more focused presentation, some
of the next chapters begin with the review of the relevant theoretical background. This chapter presents
some exact and asymptotic results which are common for all directions of our research.

2.1 Markovian N-Server Queues (Birth & Death)

In this section the two most common models that are used for call centers modeling and staffing are
presented. The first model is Erlang-C: first developed around 1910 by EBhrigHas served until
recently as the "working-horse” of call center staffing. Its main deficiency is that it ignores customers
impatience, which is remedied by the second model, namely Erlang-A. Impatience leads to the phe-
nomenon of customers abandonment, and, already around 1940, 2%htha\eloped Erlang-A in order

to capture it. We will be using Erlang-A to motivate three operating regimes for medium-to-large call
centers: one which emphasizes service quality, another that focuses on operational efficiency, and the
third, which is the main subject of the present thesis, carefully balances these two goals of quality and
efficiency.

Many queues can be presented as a Birth & Death process. A general form of the transition-rate diagram
for queues withV statistically identical independent servers is shown in FiguteHere

e )\; is the arrival rate of customers at state

e 1; is the service rate at stateNote thaty; = i - u for anyi < N. The service rate in the states
N +1, N +2...isdetermined by the model specifics.

Define the following:

e R=XAxE(S)=2% isthe Offered Load.



Figure 2.1:General Birth & Death Transition-Rate Diagram

)\.1 7\.2 7\.1\1_1 7\.1\1 7MN+1
n 2e (N-Dp Np T

e L(t) is the total number of customers in the queue at time
e W, (k) is the waiting time of the:-th arrival.
e L(c0), W,(c0) is the number of customers and waiting time in steady state (when exists).

Changing the parameters of the general model in Figu;eve can get different special cases of queues.
For instance, if in this diagram we skt = A foranyi = 1,2,..., N, \; = 0 otherwise, ang.; = 0 for
anyi > N +1, we obtain the transition-rate diagram of the Erlang-B quadéx//N/N); and if \; = A
foranyi = 1,2,...andu; = Np foranyi > N + 1, we obtain the Erlang-C diagram{/M /N). In

the coming subsections we shall present these and some other models in more details.

2.1.1 Erlang-C

The classical\/ /M /N (Erlang-C) queueing model is characterized by Poisson arrivals atvraie ex-
ponential service times with an expected duratfign, and N servers working independently in parallel.

Formally speaking, customers’ arrivals to the queueing system are describi@aidyn(\) process.
Individual service time are i.i.dexp(p) random variables. In addition, the processes of arrivals and
service are independent.

Erlang-C is ergodic if and only if its traffic intensity= A/(Nu) < 1; p is then the servers’ utilization,
namely the long-run fraction of time that a server is busy.

Let us recall thal () is the total number of customersid /M /N attimet. ThenL = {L(t), ¢t > 0}
is a Markov Birth-and-Death process with the transition-rate diagram in FRigre

As usual, we denote the limiting-distribution vectorioby

2 lim P(L(H) =j),  j 0.

t—o0

Solution of the following steady-state equations yields the probabititied being at any state j during
steady-state:

{Mj=<j+1)-wrj+1, 0<j<N-1 e

)\ﬂ-j:NHTerr]_, ij

5



Figure 2.2:Erlang-C — Transition-Rate Diagram

A A A A A
n 2 (N-Dp Np Np

The probability that in steady-state all the servers are busy is giv@ﬁgﬁV 7; , the stationary prob-
ability of being in one of the stategV, N + 1,...}. This probability is sometimes referred to as the
Erlang-C formula. It is denotefl; x(\) and is given by

N-1 ;
AN My N g
E = . 2.2
28 () N!(1—p){j§ 1 +N!(1—p)] (2.2)
The Poison distribution of arrivals has an important and useful consequence, known as PASTA (Poison
Arrivals See Time Averages): it implies that the probabiliy x is in fact also the probability that a

customer is delayed in the queue (as opposed to being served immediately upon arrival).

2.1.2 Erlang-B

Another widely-used model is th&//M/N/N or Erlang-B queue. In this model customers are not
allowed to wait and when alN servers are busy, arriving customers leave immediately. Fitting the
general diagram in Figui2.1to this case, we set, = 0 for anyk > N.

Again, we denote by.(¢) the total number of customersi /M /N/N attimet. ThenL = {L(t), t >
0} is a Markov Birth-and-Death process with the transition-rate diagram in F&Bre
Erlang-B is always ergodic, and its steady-state distribution is given by

R /&R

] n
n=0

HereR = % is theOffered Load

Figure 2.3:Erlang-B — Transition-Rate Diagram

x x °
n 2p (N-1)p Np



This model is often used to calculate, by PASTA, the Loss Probability, which is denoted in the literature
by E v

RN N R"
n=0
The Delay Probability or Erlang-C formul2.€) can be represented in terms of the Loss Probability as
follows: ) )
J— p —_
FEon=|1+—"——| . 2.5
v = |1+ pELN_l] (2.5)

2.1.3 Erlang-A

Trying to make the M/M/N model more realistic and useful for modeling call-centers, the following as-
sumption is added: each customer has limited patience, that is, as the waiting time in the queue increases
the customer may abandon. We assume that patience is distributed exponentially with/the@his

model is referred to as Erlang-A (A for Abandonment). The Erlang-A model is fully characterized by
the following four parameters:

e )\ - Poisson arrival rate\(> 0);

e 1 - individual service ratey( > 0);

e N - number of agents\ = 1,2,...);

e 0 - individual abandonment raté ¢ 0).

Erlang-A was first analyzed by Palii]. Here we give a short summary of some of its properties that
are useful for this thesis.

Let us denote by.(¢) the total number of customersid /M /N + M attimet. ThenL = {L(¢), ¢t > 0}

is a Markov Birth-and-Death process with the transition-rate diagram in FRidre

It can be shown that the limiting distribution of Erlang-A always exists (see, for exanidp, [In
accordance with the ergodic theorem, it is equal to the stationary distribution, which is calculated by
solving the following steady-state equations:

{/\W] (G+1) pmjqa, 0<j<N-1

. (2.6)
/\71'] (N/L—F(]—N-i- )9)-7Tj+1, jZN.

Figure 2.4:Erlang-A — Transition-Rate Diagram

DO

3y (N-1)p Nup +6 Nu+20




The solution of2.6) is well-known (R9]) and has the following form:

(Mt)’

jl 70§‘7SN7

A /N .
k=N+1 [N;H—(k—N)G} ]\;;! T >N,

RS I Z H ( )O‘/M)N -
= par j' N,u+ —5)0) NI '

j=N+k k=N+1

(2.7)

T =

In terms of the steady-state distributian it is possible deduce the Delay Probability. According to
PASTA, this probability is determined by the following sum:

P(W,>0)=> = (2.8)
j>N

wherer; is the steady-state distributic.?).
Formulae 2.7) consist of infinite sums, which may cause some numerical problems. To circumvent

them, Palm29] proposed to use the following special functions:

o0
Gamma Function : I'(z) = / t*le~tat, x> 0;
0

Az, y) = yfxv(%y). (2.9)

By applying these special functions, Zeltyn #i] obtained an elegant representation of the steady-state

distribution 2.7):
N!

TN - W ,0<7 <N,
;= , 2.10
T (A/G)J‘N | (2.10)
N J >N,
NI R
where
Evv (2.11)

TN = .
1+ A, 3) - 1] Ein
Recall thatF; y is the Erlang-B formula.4).

In Section3.2 of this work we present a technique that enables one to calculate the Delay Probability
(2.8) in terms of Idle and Busy periods. It is not hard to show that, when substituted2r&o the
representation.10) yields exactly the same expression for the Delay Probability as our r8sidj.(

M/M/ oo
Let us now consider an important special cas&gf\/ /N + M queues. Assume that the average service

8



Figure 2.5:M /M /oo — Transition-Rate Diagram

A

IO

N+1p (N+2)p

ratey is equal to the average individual abandonment#atéhe transition-rate diagram of this process is
identical to that of ar/ /M /oo queue with arrival raté and service ratg (see Figur@.5). Substituting

1 = 6 into the solution of the balance equatior®. or (2.10)) shows that the steady-state probability
that there are exactly customers in the queueing system is determined by the Poisson distribution with
paramete%:

e ME(A/ )

5 (2.12)

T =

Expected Waiting and Abandonment Probability
A very useful property of queues with exponential patience time is the following relation between the
expected waiting time and the probability of abandoning:

P(Aband) = 6 - E(W,). (2.13)

Proof
The proof of this relation is very simple and is based on a balance equation and on Little’s formula.
According to the balance equation, the following equality holds:

0-E(Lqg) = \- P(Aband). (2.14)

Here E(L,) is the average number of delayed customers in the system, in steady-state. The left side of
this equation represents the abandonment rate from the considered queue and the right side represents
the arrival rate of those customers who will eventually abandon.

Little’s formula represent&'(L,) in the terms of the arrival rate and the expected waiting time:
E(Lqg) = AE(W,). (2.15)

Substitution of 2.15) into (2.14) yields the relationZ.13). O

2.2 Three Operational Regimes: ED, QD, QED

Organizations have their own preferences in their everyday functioning. Some try to get the most from
the available resources, while others see customers’ satisfaction as the most important target. Depending
on organizational preferences, three different operational regimes arise:

9



e Efficiency driven (ED)
e Quality driven (QD)
e Quality-Efficiency driven (QED)

As the number of servers increases, which is relevant for moderate to large call centers, these regimes
can be formally characterized by simply relating the number of servers to the offered load. This will
be now done within the framework of Erlang-A, followin@1]. (One could do it also for Erlang-C,
following [16]. The resulting regimes would then be somewhat different, notably ED. We chose to focus
on Erlang-A as it is more applicable to call centers.)

e Efficiency Driven (ED) Regime:

The efficiency driven regime is characterized by very high servers utilization (cldg®%6) and rela-
tively high abandonment rate(% or more). In the ED regime, the offered lo&d= )/ is noticeably
larger than the number of ager{s This means that the system would explode unless abandonment take
place. The formal characterization of the ED regime is in terms of the following relationship betveen
andR:

N ~ R(1 —¢),
where0 < e < 1is a QoS parameter: a larger value eoimplies longer waiting times and more
abandonment.

e Quality Driven (QD) Regime:

In the quality-driven regime the emphasis is given to customers’ service quality. This regime is char-
acterized by relatively low servers utilizations (for large call centers béliy, and for moderate ones
around80% and perhaps less) and very low abandonment rate. Formally, this regime is characterized by:

N =~ R(1+¢).
e Quality and Efficiency Driven (QED) Regime:

This regime is the most relevant for call centers operation. It combines a relatively high utilization of
servers (around0 — 95%) and low abandonment raté% — 3%). Because of its importance, and for
historical perspective, we present here both Erlang-C and Erlang-A in the QED regime.

Erlang-C

The Erlang-C QED regime goes back as early as Erl@ahgvhere he derived it via marginal analysis of
the benefit of adding a server. This regime is characterized tyoihere-root safety-staffing ryleshich
we now describe. (Erlang indicated that the rule had been practiced actually since 1913.)

Let R = \/u denote theffered Load Then the square root safety-staffing rule states the following: for
moderate to large values of R, the appropriate staffing level is of the form

10



where( is a positive constant that depends on the desired level of sef/ied| be referred to as the
Quality-of-Service (QoS) parameter: the larger the valug,ofhe higher is the service quality. The
second term on the right side &.L€) is the excess (safety) capacity, beyond the nominal requirement
R, which is needed in order to achieve an accepted service level under stochastic variability.

The form of 2.1€) carries with it a very important insight. Denote Bythe safety staffing level (above
the minimumR = \/u.) Then, if 5 is fixed, ann-fold increase in the offered loall requires that the
safety staffingA increases by onlyn -fold, which constitutes significant economies of scale.

What does|2.16) guarantee as far &30Sis concerned? For Erlang-C, this is the subject of the seminal
paper by Halfin and Whittlg], where they provided the following answer:

Theorem 1 Consider a sequence 81 /M /N queues, indexed by = 1,2, .... Denote the parameters

of the N-th system with a subscrip{, for example Ry = An/u, py = Ry /N. Then, as the number of
serversN grows to infinity, the square-root safety-staffing rule applies asymptotically if and only if the
delay probability converges to a constan{0 < « < 1), in which case the relation betweenand( is
given by the Halfin-Whitt function:

p =
h(=p)

h(t) is the hazard rate of the Standard Normal Distribution.

a=[1+

;7 0< B < o (2.17)

Note that 2.1€) applies if and only if ,/pn (1 — pn) converges ta3 ( G > 0). Indeed, formally the
Theorem of Halfin-Whitt reads:

ASN Too, Py(W;>0)=Eyn — «, 0<a<l) (2.18)
iff VN(1—py) — 8, (3> 0) (2.19)
equivalently N ~ Ry + 6/ Rn. (2.20)

The square-root staffing-safety rule was thoroughly analyze®8Jn yhich was based oiif]. In prac-

tice, this rule makes the life of a call-center manager easier: he or she can actually specify the desired
delay probability and achieve it by following the square-root safety staffing/2ul€)( simply choosing

the rightg.

Erlang-A
The Erlang-A analogue of Theoretrwas proved in11], and it is given as follows:

Theorem 2 Consider a sequence 6f /M /N + M queues, indexed by = 1,2, ... As the number of
serversN grows to infinity, the square-root safety-staffing ri2el€) applies asymptotically if and only
if the delay probability converges to a constant) < « < 1), in which case the relation betweerand
0 is given by the Garnett function

_ 0 h(B) 1!

11



where = 3/11/6.

Moreover, the above conditions apply if and onky/ ¥ Py (Aband) converges to some positive constant
~ which is given by

N = aﬁ[h(g) - 1] _1. (2.22)
Formally, Theoren? reads:
ASN Too, Py(W;>0) — «, 0<a<l) (2.23)
ifVN1—py) — B, (—00< < o0); (2.24)
if N = Ry+3/Ry+o0/Rn); (2.25)
iff VNPy(Aband) — 7, (0 <5 < o0). (2.26)

An important feature of Erlang-A is that, unlike Erlang-C, it is always stable whenever the abandonment
rated is positive.

Theoreni2 demonstrates that the square-root safety-staffing rule prevails for Erlang-A as we@poBhe
parameter? now depends on both the abandonment faadd the delay probability. It is significant
that here5 may take also negative values (since Erlang-A is always stable).

The analysis of thé//M /N + M model can be extended fd /M /N + G, in which the distribution

of customers’ patience takes a general form. The exact analy3is/ df /N + G was first performed in
[3].

Zeltyn [41] extended some of the results i8][ and then continued with asymptotic analysis, as the
number of server&/ grows indefinitely. One of the main outcomeséi]is the analogue of Theorem
2for M/M/N + G. It applies when patience has a positive density at the origing&€y> 0. Then it
follows that the asymptotic performance measures{gi/ /M + G are exactly those fav/ /M /N + M

but with only substituting;(0) for 6.

Remark 1 The above characterizations of the operating regimes are insightful, yet they are essentially
structural in the sense that the precise values of the QoS parameters remain unspecified. For Eralng-C,
the specifications of these values were carried oudinlyased on economic considerations that trade

off delay costs against servers’ salaries. For Erlang-A, this is don@7h [

Remark 2 From Theoremd/and2 follows that a characterization of the QED regime could be:
QED: lim Py(Wy>0)=0a, 0<a<l.
N—o0
Along these lines, one can characterize also the ED and QD regimes, namely:
ED: lim Py(W,>0) =1,
N—oo
QD: lim Py (W, > 0) = 0.
N—oo

Interestingly, the performance-measutg (17, > 0)is rarely tracked in practise.
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Chapter 3

Markovian N-Server Queues: Analysis
through Excursions

We are beginning this chapter by presenting a technique that makes it possible to find the stationary/limit
distribution of any Markov process restricted to some subset of sfaiéthe stationary/limit distribution

of the process defined on the entire set of statesgiven. Then we show how this technique applies to
reversible processes. In Secti®d, we show how, by using the distribution of the reversible restricted
processes, one can calculate the expected duration of any excursion of the original process3 Section
presents closed-form expressions of the Delay Probability for our Markovian queues in terms of busy and
idle periods. Through these expressions of the Delay Probability, we are going to identify Erlang-C and
Erlang-B queues as being two extreme forms of Erlang-A. Finally, by using the developed expression,
we analyze the behavior of the Delay Probability under ED, QED and QD regimes.

3.1 Restriction to a Set via Time-Change

Here we are presenting the Time-Change technique. This method will be used in the following sections
for getting a new expression of the Delay Probability which enables easy analysis.

The idea of the technique is the following. Consider a general Markov procegth some steady-state

distribution given: X (co) < . Denote byA a subset of states of. Let us construct a new process
X 4(t) in the following way. We observe the original procésonly at times when it is within the subset
of A. To formalize this, define:

t
L(t) = /o L x (uyeaydu.
Note that((¢) is the entire time up té that X spends in the states df.

Now defineX restricted to Awhich we denote by 4, as the proces& 4 = {X(t),t > 0} given by
Xa(t) =X (L7'1) = X (1a(t)), t>0.

13



Herer,(t) is a right-continuous inverse df(t), namely

Ta(t) = inf{s: L(s) > t}. (3.1)

Theorem 3 Let X be an ergodic irreducible right-continuous left-limit Markov process on the discrete
set of state$, with a limitting (stationary) distributionr. Then, the limitting distribution of the restricted
processX 4 is the restriction ofr to A. Formally,

4

X 4(00) = X(00)| X (00) € A.

Proof
ConsiderX 4(t) = X (7a(t)), which is X restricted toA.
Define the following:

e 7(B)=P(X(0) € B),
e m4(B) = P(X4(x) € B.)
We are to show that for an C A,

(B

ma(B) = Jim P(X(T) € BIX(T) € A) =~

First, we state thak 4 is a Markov process. Indeed,
1. Itis given thatX is a right-continuous left-limit Markov process;
2. L(t) = fot 1x(u)ea}du is a continuous additive functional.

Consequently, as shown ii34], if 74 is defined by 8.1), then X 4(t) = X(7a(t)) is also a right-
continuous left-limit Markov process.
It is known (seel34]), that X is ergodic if and only if

o1
lim —
t—oo t

/0 FX )du = 3 7()F(),

JEQ
for any functionf, such that the right-hand-side of the above is well defined.

Thus, the calculation of the limifm; .., + f(f f(X(7a(u)))du will allow us to conclude whether the
restricted procesX 4 is ergodic, and if so, to identify its stationary/limitting distribution.

lim /0 F(X (ra(u)))du =

t—o00

14



change of variables:  s=r714(u) = du=dL(s).

1 TA(t)
lim — f(X(s))dL(s) =
t—oo ¢ Jo
Ta(t)
~ lim mt(t) TAl(t) /0 F(X())1a(X (5))ds;
_oTalt) t 1
AT T T Ry
1 A s
Jim — [ AR LA e)as - > #)0)
The last two statements follow from the ergodicity>of
t ) ) f
= tliglog . f(X(TA(U)))du Zje‘jr?ij)) (j)

We have shown thaim; .. + fot f(X(7a(u)))du exists and itis finite. As aresult, the restricted Markov
process is ergodic with the limitting/stationary distribution
m(B)
B)=—=

ma(B) = — )’
Theoreni3 can be applied to any ergodic Markov procésslf, in addition, X is reversible, the distribu-
tion of any subprocess restricted to a detan be actually calculated by just omitting all the states that
are not included iM from its transition diagram.

foranyB C A. O (3.2)

Definition 1 LetX = {X(¢),t > 0} be a Markov process on a discrete state space. Denote its transition
rates by[q;;|. Let A be a subset of states af and define the Kelly process’ over A in terms of its
transition rates (fori # j):

q-K< B qi.j if Z,j cA
i 0 otherwise

Definition 2 Consider a Markov process with a stationary distributign }. Then, this Markov process
is called reversible if the transition rates between each pair of siat@slj in the state space obey

Qi jTi = 45,iT55

whereg; ; is the transition rate from state i to state j and and r; are the stationary probabilities of
being in states andj, respectively.

Theorem 4 Let X = {X(¢),t > 0} be a reversible Markov process. Then the stationary distribution of
the restricted proces¥ 4 is equal to the stationary distribution of the Kelly proces§ .
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The complete proof of Theoredican be found in22], hence the terminology for Kelly process. Below

we present a proof of this theorem for a special case, which is important for our further research. But
before that, we show an example of a non-reversible process and conclude that the distribution of the
Kelly process defined over some set of statadiffers from that of the process restricted to the same set.

Example 1 Consider the Markov process = {X(¢),t > 0} defined over the statd3 = {1, 2, 3}.

The transition rate diagram oX is presented in Figur8.1. Let us analyze the Kelly proce&s} on the
setA = {1,2} and X 4 restricted to the same set. We are to show that these two processes have a
different distribution.

Figure 3.1:Example - Non-Reversible Process

Proof
Both X4 and X & are also presented in FiguBel. The diagram of the Kelly process¥ is obtained by
"erasing” all the paths outgoing from.

In the restricted procesk 4 the duration of stay in statgl } is found as the geometrical sum of expo-
nential times:>" exp(2), whereN £ Geo(3).

Hence, the total time that 4 spends in statél} is exponentiabzp(2 - 3 = 1.5).

The time of the restricted proce3s, in state{2} is exp(1).

As seen from the transition-rate diagram (Fig8r#), the restricted procesk 4 defined by set4, and
the Kelly processzf are not equal in distribution. [

We have just shown that a Kelly process is not neccessarily equal in distribution to the corrsonding re-
stricted process. Now let us consider a special case, which is important for our further research, and
prove that Theoremd does apply for it. The case we are concentrating on is the calculation of the de-
lay probability for M /M /N + M via the Erlang-B formula, after observing th&t/M/N/N is the
restriction of M /M /oo to the set of its first N+1 states (from 0 16).
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Example 2 Consider anM/ /M /oo queue with the arrival raté and the service ratg. Let L(t) denote
the number of customers in the system at time0, and let the vectorr be the steady-state distribution
of L: L(co ) .

DefineL_ to beL restricted to state$0, 1,..., N}.
ThenL_ < M/M/N/N, with the arrival rate), service rate: and

P(L-(0)=N)=ox— = =Ein

Proof
For L_, the duration of a visitin a state i € {0,1,..., N — 1}, isexp(A + iu), as in the original
M /M /oo queue.

Each time the original queuke reaches stat#, it is followed by stateV + 1 with probabilityﬁ, or

by stateV — 1 with probabilitykf—Nu. Whenever the original proceésstarts moving taVv + 1, it leaves

the restricted set, and the time bf then stops advancing. In this case, the only possible way to return
to the restricted set is through the staté\of

The duration of stay in stat® of L_ depends on the series of visits bfin state/N. The duration
of each visit is distributed exponentiaékp(r = A + Nu). The number of such visits is distributed
geometricallyGeo(p = Afj\‘,u). Now, one deduces that the visit time bf in state NV is distributed

exponentiallyexp(p - » = Npu), being a geometric sum of i.i.d. exponentials.

To conclude, the restricted process has the same distribution a$/M /N /N

L_ 2 M/M/N/N 0

3.2 Up/Down Crossings - The Erlang-A formula

Consider anV/ /M /N + M queueing system with arrival rate service ratg:, abandonment rateand
total number of servers N. Léf(¢) be the total number of customers at time 0. ThenL = {L(t),t >
0} is a Birth-and-Death process with the transition rate diagram depicted in Bdiire

Figure 3.2:Erlang-A — Transition-Rate Diagram

@DC NCOK

3u  (N-1)p Nup +0 Nu+20

Let us define the following:
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o L_ ={L_(t),t > 0} is the number of customers in the system where at least one server is idle.
The procesd._ is L restricted to state$0,1,..., N — 1}, so its distribution is identical to an
M/M/N —1/N — 1 queue (Erlang-B) with arrival rate and service ratg.

o L. = {L4(t),t > 0} is the number of customers in the system where all the servers are busy.
The procesd.; is L restricted to state¢ N, N + 1,...}. Its distribution can be described by
a Birth-and-Death process which resembles\an\/ /oo queue with arrival rate,, with the only
difference being that the first server starts a busy period works aviand each additional server
joins with rated, so that the total service rate at each stage{ N +1, ...} isp; = Nu+(i—N)0.

The total number of customersalternates betweeh, and/L_.

e LetTy_1 n be the expected duration of dnidle period. Formally, given that starts at state
N — 1, Ty_1,n is the expectation of the first hitting time of state

e LetTy n—1 be the expected duration of dnbusy period. Formally, given that_ starts at state
N, Ty n—1 is the expectation of the first hitting time of state— 1.

The delay probability can be found via PASTA from the following relation:

Tn v Tn_1n1-1
P(W, > 0) = NN-1 [1+M] : (3.3)

- Inn-1+Tn-1n TNnN-1
To find Tnx ny—1 andTn_1,n, We use the following relation, observed by Whigd] (a proof will be

provided momentarily):
1 1

AN_17—(N —1) N )\EI,N—17
1

pn7(0)

HereE; n_1 Is the Erlang-B Loss Probability given by

TN = (3.4)

ITNN-1= (3.5)

rY /X RE .
Ein = N E R where R = \/p is the Offered Load
k=0
P(Y =N) d .
= — = h Y=P
PY <)’ where ois(R),

= P(Y =N|Y < N);

7+ (0) denotes the stationary probability that is at stateV. This probability is expressed b@.€)-
(3.8), and its calculation is presented in Appendi%. 1

(AN [ (N u/6)
O S O (N + i) o
_P(X = Nu/6) 4
- W, where X = Poisson(A\/0), (3.7)
— P(X = Np/6|X > Npu/o). (3.8)
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In the above writing, we assume thit/6 is an integer. However, for further asymptotical analysis,
and as will be shown in AppendB&5.], this assumption is unnecessary sing€0) can be re-expressed
in the terms of special functions (se&l]):

A/)Nu/0
74 (0) N T 39
[Np/0]eMoy (%, 5)
where y
v(x,y) = / t* tetdt, x>0, y>0.
0
Equation8.4) can be proved easily as follows:
. . . 1 .
Note that the expected duration of a single Idle Excursi . (Idle Excursion refers to
m_(N — 1)/~LN—1

an excursion fromV — 1 to N — 1 without leaving the "idle” state§, 1, ..., N-1) The number of such
excursions, before the proceks leaves statév — 1 (to stateN), has a Geometric distribution starting

, - AN— . I

from zero, with probability of succes)s:;]iil. Hence, the expected duration of an Idle period is
N-1T MN-1

calculated by the Wald formula:

1 N-1
(N —1Dpun—1 An-—1

Tn-_1.n = E(ldle Excursion x E(# of Idle Excursion =

Following the same approach, one can immediately de@.

After establishing expressior®.E) and 3.4) for the expected duration of the busy and idle periods,of
we can substitute them int8.@) to obtain the following result:

-1
P(W,>0) = [1 + m_ﬂ(?v(ozn] (3.10)
-1
B 1P(X =Np/0|X > Nu/o)
- [1+pP(Y:N1|Y§N1)] ’ 3.11)

where X < Pois(\/0), Y 4 Pois(\/p) and p = zﬁ is the Offered Load per server.

3.3 Special Cases

3.3.1 M/M/x

We would like to begin this section with an analysis of the'M /oo queue. Alternatively, we analyze
anM /M /N + M queue where the individual customer abandonmen#érestequal to the service rage
of a single server. Under this assumption, the idle pefigd; n of the queue does not change, but the
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busy periodl’y x—1 can be presented in a more elegant way.

By substitutingd = p into (3.11), we immediately obtain the following:

-1
1 P(Y =N|Y >N) @
P = [1+- = Y=P . 3.12
(Wy >0) +pP(Y:N_1\Y<N—1)] ’ ois(R) (3.12)
P(Y=N|Y >N)|
P ~ |1 N ~ 1. A
(W, >0) + PY =NV <N)| for large and p (3.13)

3.3.2 Erlang-C

Now let us consider an extreme example of the Erlang-A queue. Here we analyze the case with infinite
patience, namely the Erlang-C queue. The transition-rate diagram of this queue is presented in Figure
3.2 We will check the limit of P(W, > 0) in (3.11), asé converges to 0.

Figure 3.3:Erlang-C - Transition-Rate Diagram

A A A A A
n 2 (N-Dp Np Np

Notice that8.11) depends o# only viaw(0) = P(X = Nu/0|X > Nu/0). Therefore, we start with
checking the convergence Ibfng_.o 74 (0).

Lemmal
gl_r%mr(O) =1-p.
Proof:
(AN [ (Nu/6)
li = 1l ;
O = S e (N 6+ 1)
1

lim pos ; i Nu .
=0 3220 (N0) / TT=a (5 +9)

1

= lim i j
=03 2o (N0) - (0/Np) /T (1 + 1%)

_ o

B > imo(A/Np)
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= 1—0p U

Substituting the result of this last lemma inf11) yields the theoretical result, known as the Erlang-C
formula, orEs v .

‘ 1—p -1 1—p 17t
sim P(Wq > 0) = o +pP(Y:N—1|Y§N—1)} [ +pELN1] (3.14)

3.3.3 Erlang-B

Another extreme example of the Erlang-A model is Erlang-B. Here customers do not wish to wait and
abandon immediately if there are no servers available upon their arrivals. The transition-rate diagram
of this queue is presented in Figu8ed. Such a queue can be described as\i\//N + M queue

Figure 3.4:Erlang-B - Transition-Rate Diagram

A a A A A
m B c | ‘
o 21 3p (N-1)u : N
Q Q4

with infinitely impatient customerg)(= o). In the Erlang-B queue no customer waits, so the notation
P(W, > 0) in (3.1]) is not meaningful. Hence, we will denote this probability ByL(t) > N'), where
L(t) is the number of customers in the system at time

Now we will check the convergence @.01) asé diverges toco. Observe that in3.11) only 7 (0)
defined in8.€) depends o, so we begin with calculating the convergencéiofy_. . 7 (0).

(A/6) N1/
[Np/0leMoy (T, )

lim 74 (0) = 1.

6—o00

Lemma 2 Letr, (0) =

(Seel.9). Then

Proof
We are interested in evaluating the following limit:

i V0200 exp(=A/0)

N N
f—co Dl (SE 2)
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The Numerator
The limit of the numerator is found by using the L'Hospital rule:

lim (A/0)VH/%exp(=N/0) = 1,

f—o0

The Denominator
To find the limit of the denominator, we use the recursive presentation of the Incomplete Gamma Func-
tion (SeeL]):

v(a+1,2) = ay(a,z) — % exp(—z). (3.15)

This recursive representatic®. 1) leads to the following conclusion:

dim T [ﬂ;“ FLO)+ (/o) exp(—A/f))] -1
since
ehjgoy(% +1 %) - ehjgo [F(A;M 1) - F(% +L /9\)] =0
The statement of Lemnif&is now proven. [
By using Lemm& it immediately follows from|[8.11) that
- 1 -1
fm PIL(H) 2 N) - = }+MMWW:N;HY<N—Q

_ L PY<N-1) 17!
B _4TVNpPa@:N—1J
:'mY:m+PW§N—ny1

P(Y = N)
P(Y =N)
=—— < = PY=N|Y <N
= k.
In the above, we used the relation
A R e BRN-I
—PY=N-1) = —-—— =P(Y =N).
Nu( ) N (N-1) ( )

This result gives rise to the following insight: as the customers’ impatiéigecews to infinity, P(L(t) >

N) converges taP(Blocked) = E; y. This means thaP(L(t) > N) converges to 0, i.e. the model
never gets to statesi > N. Consequently, Erlang-B is indeed an extreme example of Erlang-A, as the
impatience grows indefinitely.
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3.4 Asymptotic Analysis

This section presents an asymptotic analysis of the Delay Probability when the number of servers is
large, under the three operational regimes QED, ED and QD.

The convergence of the Delay Probability in these operational regimes is well-known. Yet, the present
analysis gives some interesting insight and shows not only the final limiting values but also different
components that have their impact both on the final limit and on the rate of convergence to it.

The section is divided into three subsections. Each subsection presents a different regime, for which we
evaluate the convergence of the Delay Probab/8t{1):

lim P(W, >0) = lim

N—oo N—oco

—1
41O (3.16)
pEyN_1

It has been shown above that (0) has a probabilistic representation under the assumption\th#®
is an integer:

P(X = Nu/b)
P(X > Nu/6)’
In addition, note thalimy .. £ n—1 = limy_. E1 N, hence in our subsequent asymptotic analysis
we calculatdimy ., Eq v instead ofimy .o E1 n—1.

74+(0) = P(X = Nu/0|X > Nu/0) = where X < Poisson(\/0).

Recall thatE'; n has a probabilistic representation as well:
P(Y =N)

P(Y <N)’
In each of the following three subsections, the analysis of the Delay Probability is conducted along five

steps. The first four are devoted to the procedures of limit calculations, while the last step summarizes
all the procedures.

Ein=P(Y =N|Y <N)= where v £ Poisson(Ry = A/ ).

e Step 1 limy 0 P(Y < N);

e Step 2 limy o P(Y = N);

e Step 3 limy_oo P(X > Nu/0);

e Step 4 limy oo P(X = Npu/0);

e Step5 Merge the results dbteps 1-4and calculate the Delay Probability limB.(L€).

3.4.1 QED Regime: The Garnett Function

Let us now analyze the convergence of the Delay Probakiithg] in the QED regime. Here, the arrival
rate\ grows to infinity in such way that theumber of seversN is expressed by the square-root staffing
rule:
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where—oo < 8 < 00 is aQoS parameter an®y = % is the Offered Load.

Step 1

VEx = VEx

= lim P(Y <N)=P(Z<B)=®(3), where Z<N(©0,1),

N—oo

Y - N —
Jim P(Y <N)= lim P( Ry RN)

assuming thalim y_... F =/, for —oco < 3 < oo, which holds in the QED regime. Here we are

using the normal approximation to the Poisson distributigﬁo:m\o/?ik)*” converges in distribution to
N(0,1),as\ T .

Step 2
im P(Y =N) = Im p|o_fv=1 _Y-Rv N-Hy
N—oo N—oo \/m \/m \/m

1
= lim VRyP(Y=N) = lim /Ry P(f— == <2<
vy P ) = VBN PO = G < 25 0)

1
(w000 )
= ¢(8),
i.e.limy_o P(Y = N) converges to O at ra®(1A/Ry ).
Combining the results of Steps 1 and 2, one concludes that
Jim /Ry - By = (=), (3.18)
whereh(-) is the hazard rate of the Standard Normal Distribution.

Step 3

X MO Nufo - )\/9)

VA VA0
Nu/0— /0

In order to analyze the convergence of this expression, we need to know what hap}@msw

lim P(XZNM/«9> = lim P(

in the QED regime.
Lemma 3

Jm SR = /NG =0
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Proof

(Nu=N/8 _ hm(

1m =
N—oo )\/9 N—oco

(Np — /\>
~ g [NEQ AN B Nu
- (B2 NLOO(W w345

O

>/

Lemma3 allows one to deduce the convergencePo{fX > NM/H) in the QED regime:

~

lim P(X > NW&) —1-P(Z>3)=1-0(f), where Z<N(0,1), §=83/u/o.

N—oo

Step 4

B [ Nu—An/6-1 X —Ay/0 _ Nu—An/0
P(X = Nu/) = P( N/ By, v R v >

= lim Ay P(X = Np/6) = lim /Ay P(5 - JAjW <7<
. A A 1
= lim Ay <<I>(ﬂ) — (3~ = /9)>
= VO 9(5).
From Steps 3 and 4 we conclude that
Jim \ﬁ 7™ (0) =V - h(B). (3.19)

Step 5
For further investigation of the Delay Probability, we need the following lemma.

Lemma 4 In the QED regime, the offered load per server converges td7.00
Formally,

if (N—RN)A/Ry— [0, —co<f<oo, then py—1.

Basing the calculation of the limitting Delay Probability on Lem#and results3.18) and 8.19, we
derive the following:

lim P(W,>0) — Iim |14+
N—oo N—oo pE1 N

& h(B)ﬁ]-

e Y Ty
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Note that the last expression is exactly the Garnett formula (see Th@bydan the Delay Probability
[11].

3.4.2 Efficiency-Driven (ED) Regime
In the Efficiency-Driven regime, the number of servers is determined by the following staffing rule:
N = An/p— eAn/ 1, where e > 0. (3.20)

Let us check the convergence 8f1€) under this regime by performing the steps described at the begin-
ning of this section.

Step 1
Y — N —
lim P(Y <N) = lim P fiv N - By
N—oo N—oo \/RN ‘/RN
: AN d
= lim P(Z < —¢/— ], where  Z = N(0,1)
N—o0 )2
— lim P(ZZe AN)
N—oo %
Bey/20)
= lim ——— = 0.

N—oo o [AN
w

In the last line we use the equalitim, .. P(Z > a) = lim, .~ ¢(a)/a, which can be obtained
through L'Hospital’s rule.

Step 2
. . N — Ry m Y—-Ry _N—Ry
lm PY =N) = lim P —/— < <
N—o00 ( ) N—o0 ( \/RN )\N VRN B \/RN )
:J\}im )‘NP(Y:)\N) — ]\}im i% )\Lgi)(e )‘l) —1.
" o(e/ ) Foley/3) Vv 21

o(ey/ 2N
i.e., inthe ED regimeP(Y = N) converges to O at ral@(<”>).

AN
I
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Combining the results of Steps 1 and 2, we conclude that in the ED regime the blocking probability
converges te:

N By =e (3.21)
Step 3
lim P(X > Nup/0) = lim P X—AN/H . Nu/0 — An /0
= Jlim P( >7 where  Z £ N(0,1)
= Jim POCE Npgo) =1
Step 4
lim P(X = Nu/6) — lim p 0= AN/6 9 _X- AN/G N6 — Ay /6
AN
li _
- N W P(X = Np/0)
QZ)(_E T)
AN 0 AN
= lim ¢< 7)
N—oo A A 0
o(—e/) T
= V0,

i.e., inthe ED regimeP(X = N/6) converges to 0 at ral@( = Pley/2h )).

Steps 3 and 4 allow us to see what happenst¢0) in the ED regime:

. AN /0 N
im — YN Ny =1, 3.22
W e 522

Step 5
In the ED regime, the offered load per server is constant and exceed$:100

li = .
NgnoopN 1—c¢

This observation and the intermediate resu®21 and3.22) show that in the ED regime, the Delay
Probability 3.1€) converges to 1, which is in line with known results.

PSRN A Rt
/%

lim P(W, >0) = lim

N—oo N—o0
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Letus define v = 5\/% _ 6\/@_

Then the delay probability8(23 converges to 1 at the following rate:
@GMM> (3.24)
YN
Recall that this last statement means that

P -1
lim —(Wq >0)

N ey

3.4.3 Quality Driven (QD) Regime
In the Quality Driven regime, the number of servers is determined by the following rule:
N =An/p+en/n where € > 0. (3.25)

Here we check the convergence of the Delay Probability givei3€)in this regime.
Step 1

Y — N —
lim P(Y <N) = lim P Ry Ry
N—oo N—oo ‘/RN \/RN

— IM1P<Z§eMAN>:1.
N—oo M

Step 2
N - Y — N -
lim P(Y =N) — Iim p| 2By _ e Y- By N- Ry
N—oo N—oo VRN AN VRN VRN
VA
o qim YW by ny

B vy Y
- P ) -

Combining the results of Steps 1 and 2, we conclude that in the QD regime the blocking probability
converges to O at rate HevAn/u) VAN/’“) :

VAN/1
Jim By = lim /Ay élev/Av/n) (3.26)
VA
= mn——ﬂﬂi~mW::L (3.27)



Step 3

X —An/0 _ Nu/0—\n/0
lim P(X > Np/0) = lim P AN/G N6 = v/
= lim P(ZZe AN)
N—o00 0
Bley/ 2
= lim ) _
N—o0 AN

In the last line, we again turned on, . P(Z > a) = lim,—.0 ¢(a)/a.

%
Thus lim ———-P(X > Nu/0) =1.

Y o6y )

Step 4
lim P(X =Np/0) = lim P Nuf6 = n/6_ [0 X =An/6 N6 = An/6
N—oo N—oo /\N/H AN \/)\N/Q \/)\N/Q

. P(X = Np/6)

. An /0 0 [AN
= lim ————— - —qb(e 7) = 1.
N—oo A A 0
o(ei) TN
Steps 3 and 4 show what happenaﬁb(o) in the QD regime.

lim Wf(O) =€ (3.28)

N—oo
Step 5
In the QD regime, the offered load per server is constant and does not excegd 100
lim pny = ! .
N—oo 1+4+¢€

This observation and the intermediate resu®&2¢ and3.2&) show that in the QD regime the Delay
Probability 3.1€) converges to 0, which is again in line with the known results:

-1

im = lim € (e v AN/ 1) =
]\}AOOP(W(] > 0) A}_)OO 1+ (1+ )\//L/TN¢(6\/W) 0. (3.29)

Let us definery = ¢ %N Then the converges rate of the delay probabi€) can be presented as
follows:

o(-N . (3.30)



We observe a certain symmetry between the convergence rate of the delay probability in the ED regime
(3.29 and the one in the QD regim@&.80). In the ED regime, the convergence rate of delay probability
depends ony = ¢ ﬁ while in the QD regime this rate is determined by the termx ¢ \/% The

only difference between andw is dictated by the service rate af, and L_ respectively, i.e. by the
service rate of the queue part which becomes negligible in the current regime.

3.4.4 Busy and Idle Periods under Different Operational Regimes

The limits and the convergence rates of the delay probability in the three operational regimes can be
concluded from the convergence of the busy and idle periods in these regimes. Their convergence rates
are summarized in Tab®R 1.

We see, for example, that in the QED regime, Busy and Idle periods converge to zero at the same rate,
so it makes perfect sense that the delay probability converges to a constant that is neither O nor 1.

In the ED regime, the busy period is very long (converges to infinity), while the idle period converges to

Table 3.1:Convergence Rates of Busy and Idle Periods in the Three Operational Regimes

Busy Period Idle Period
TN,Nfl TNfl,N

lim rate lim rate

QED| 0 1/vV'N 0 1/vVN

ED | ! 0 1/N
VN (e /0=

QD | 0 1/N 00 ! ~

VN e/ )

Zero.

It is interesting to see that the convergence rates and limits of the busy and idle periods in the ED and QD
regimes are almost exactly opposite to each other. This, apparently, can be related to the reversibility of
the underlying Birth-and-Death process altough the idle period of a queue is defined over a finite number
of states ([ = L|L € {0,1,..., N — 1}), while its busy period is defined over an infinite number of
states(y = L|L € {N,N +1,...}).

30



3.5 Appendix

3.5.1 TheL, Queue: Calculation of the Steady-State Distribution

To find 7 (0) we solve the following balance equations:

{ Ami(i = 1) = (Np+ i) (i) ,1<i<o0 (3.31)

Dicom(i) =1
Assuming thatV /6 is an integer, it follows from Equatioi8(31) that=_ (k) is given by

T (0)(A/0)* (N p/0)!
(Nu/0+E)! ’

T (k) =
Using the fact thap .~ , 7 (k) = 1, we obtain that

(AN [ (Nu/6)
>0 (OO (N /6 + )

m(0) =

Note that
T P > Ny
= P(X =Nu/0|X > Nu/o).

where X < Pois(\/0),

The "integer” assumption allows the probabilistic representation @) but it is not necessary. We can
re-write (0) in terms of the incomplete Gamma functigf, -), using the same approach as4dlf

Nu/o
m(0) = VT

: 3.32
[Np/6]eM0y (S, 5) (5:92)

where y
v(x,y) = / t*le~tdt, x>0, y=>0.
0

Thus we obtain an expression far (0) that solves the balance equatio8s3() and relaxes the "integer”
assumption.
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Chapter 4

Erlang-C with Priorities

In this chapter we begin our introduction to queues with heterogenous customers served in accordance to
their importance. These models are very useful since they describe many service environments. Exam-
ples include banks, whose customers are differentiated according to their account status; hospitals, where
urgent patients do not wait in the common queue; call-centers, where the customers may be differentiated
by their requests, languages or value, etc.

The assumption throughout this work is tladitservers are statistically identical all customers need

the same service and the queue is work-conserving, i.e., no reservations of servers is allowed to guarantee
a better quality of service for higher priority customers.

Two priority disciplines, under which these assumptions hold Breemptive and Non-Preemptive
priorities.

Non-Preemptive Priority: Under this discipline, a customer of prioritgnters service only when there

are no waiting customers of higher priorities. Once service started, it cannot be interrupted, even upon
the appearance of a delayed higher-priority customer.

Preemptive Priority: Here higher-priority customers are not "aware” of lower priority ones. That is, if

a higher-priority customer arrives when all the servers are busy, and there are lower-priority customers
in service, a customer of the lowest-priority in queue is immediately returned to the head of its original
gueue, and the higher-priority customer enters service (immediately upon arrival).

4.1 Model Description

This section develops a formal description of the priority models studied in this chapter. The same
notation is used fod/ /M /N andM /M /N + M priority queues to emphasize the common structure of
their performance, in particular the expected waiting time.

e There areK customer types.

e A customer of typé: has priority (preemptive or non-preemptive) over a customer of fypand
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onlyif k < j,1 < k,j < K. In particular, customers of the lowest tyflie=1) have the highest
priority, and of the highest typé:(= K) have the lowest priority.

e Customers of typé arrive at rate)\; arrivals are Poisson, independent among the classes.

e Service rate ig (the same for all customers);service durations are exponential, independent of the
arrivals.

o p = 1\% is the servers utilization (assuming no abandonment). Pete Zfil A; is the total
arrival rate.

Notations of Priority Queues

° Epr(W[f) (Enp(W[f)) is the expected waiting time of tygeunder preemptive (non-preemptive)
priority discipline,

° Epr(qu*’f) (Enp(qu—”“)) is the expected waiting time averaged over firgypes under pre-
emptive (non-preemptive) priority discipline,

° Epr(L’;) (Enp(L’;)) is the expected number of the delayed (in queue) typastomers under
preemptive (non-preemptive) priority,

° EPT(L}IH’“) (Enp(Lf’“)) is the expected number of the delayed (in queue) customers of types
1,..., k under preemptive (non-preemptive) priority,

o PJT,T(W(;C > 0) (Pnp(Wq’“ > 0)) is the probability that customers of tygeare delayed under
preemptive (hon-preemptive) priority discipline,

o Pp(W)™F > 0) (Pup(W]—F > 0)) is the probability that a customer of any type . ., k is
delayed under preemptive (non-preemptive) priority,

e P,.(Aband*) (P,,(Aband*))is the probability that customers of typeabandon under preemp-
tive (non-preemptive) priority discipline,

o P,.(Aband'=*) (P,,(Aband'—*))is the probability that customers of the fitstypes abandon
under preemptive (non-preemptive) priority,

o E,.(Wy) (Enp(Wy)) is the expected waiting time of all types under preemptive (non-preemptive)
priority discipline,

e £, (Ly) (Enp(Lq)) is the expected total number of the delayed (in queue) customers under
preemptive (non-preemptive) priority discipline.
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Notations of Related Queues without Priorities

e E,, (W,) is the expected waiting time in au /M /N queue with homogeneous customers which
arrive at rate\,

o E(W}~")is the expected waiting time in @ /M /N queue with homogeneous customers which
arrive atrate\; ., = % | \;,

e E,(W,) is the expected waiting time in aW /M /N queue with homogeneous customers which
arrive at rate\ = .5\,

e P\, (W, > 0) is the delay probability in an//M /N queue with homogeneous customers which
arrive at rate\, (Erlang-C formula),

o P(W(}—)"/’ > () is the delay probability in ad/ /M /N queue with homogeneous customers which
arrive atrate\; ., = S.F | \;,

. PA(W(;C > 0) is the delay probability in ad//M /N queue with homogeneous customers which
arrive atrate\ = > % | \;.

4.2 Exact Results

Consider a general Erlang-C queue with priorities, as described in SdctioHere we present known
results for the expected waiting time under both priority disciplines.

4.2.1 Preemptive Priority

The expected waiting time under preemptive priority discipline is found recursively, follavengame

expressions for queues with and without abandonment:
Epr(WE) = M pBpr (WD) = 0 B (WY, k=1, K. (4D

Relation &.1) is a direct consequence of Little’s Law. Indeed, a customer of kyfsees” customers

of only two kinds: those of a higher priorities (i.e., types. .,k — 1) and those of typ&. The total
number of customers of typds. . ., k consists of the total number of delayed customers of the higher
priority (typesl, ...,k — 1) and the delayed customers of typeThat is,

Ep(Ly™*) = Bpr (Ly ™" D) + Epr(L7). (4.2)
By Little’s Law, Equation4.2) can be restated as follows:
Mok By (WY = A oy By (W D)) 4 N B, (W), (4.3)
Now the recursive relatio(1) follows.
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The total number of customers of the fifstypes is distributed as in th&//M /N (+M) queue with
the arrival rate\;_;, due to the fact that the customers of the higher priorities do not see lower-priorities
customers:

Ep(LL™%) = B(L;F). (4.4)

After taking into account the fact that higher priorities are not aware of the lower ones(dpethe
following formulation for the expected waiting time of tygaunder preemptive priority is derived:

Ep(WE) = [N_p EWWETR) = Ao BWIEID) AL k=1...K.  (45)

In the case of Erlang-C, an exact expression for the expected waiting time is not hard to deduce from
(4.5):
_ Ean(ier)  Ean(Misg-n)

Epr (W) = M —or) o) (4.6)
Here
k A\
o = Z; Di, pi = N; is the fraction of time a server spends on customers ofitype

andE; y(-) is the delay probability in th#1/M/N queue (Erlang-C Formul2(2)).

4.2.2 Non-Preemptive Priority

Results for the waiting time under non-preemptive priority were presented by Kella and YecB@lly, [
who determined Laplace transform of the waiting time distribution for any typad showed that the
expected waiting time is given by the following expression:
-1
Enpy(WF) = Es n(N) | Np(1 = 03)(1 — 03-1) |, (4.7)
whereFE; () andoy, are defined as before.

To define these Laplace transforms and to prak@)( Kella and Yechially used a vacations approach.
Subsectior.2.3 presents an alternative proof, which provides an important insight on the three basic
components of the expected waiting time. Its idea can be used to calculate not only expectations, but
also Laplace transforms for waiting time of any tylpeThe approach is due to Gurvichd] and it can

be skipped without loss of reading-continuity.

4.2.3 Expected Waiting Time under Non-Preemptive Priority: Proof of 4.7)
The proof consists of the two following steps:

e Step 1
The delay probability is the same for any typeand is equal to the delay probability in the
M /M/N queue with arrival rate. and service ratg ( Erlang-C formula/8.3)).
P(WF>0)=FEyn(\) foranyk =1,..., K,

35



e Step 2
The expected waiting time given waiting is given by the following expression:

Enp(WEHWE > 0) = | Np(1 — o) (1 — 0—1)

After these two steps the result follows.

e Step 1
The delay probability does not depend on the internal order of customer service. This is the reason
why this probability is the same for all work-conserving queues with the arrivahrated service
ratey and is given by Erlang-C3(3).

e Step 2
Now let us study the expected waiting time given waiting of a tymeistomer.
If there is waiting, customers of this type are served as undeér/a@'/1 queue wheré is the
busy period distribution of an//M /1 queue with arrival rate\; _, ;1) = Zf’f Ai and service

rate Nu. The expectation of the busy period of thé/)M /1 queue is given byﬁ
— O0k-1
(See, for example, Kleinrocl2ll], p. 213, Equation 5.141).

Given waiting, a customer of type”sees” upon arrival only customers of equal or higher priority.
Thus, to determine how many busy periods he needs to wait, we notice that this number is equal
to one plus the queue length in af/M /1 model with arrival rate\; ., = Zf 1 A and service

rate Nu. The stationary distribution of this queueG&:omg(1 — AHk) whereGeomg(-) is a
geometric distribution starting at zero (See, for example, Kleinr@ék p. 96, Equation 3.23).

This is why the number of busy periods to wait is distributéebm (1 — AlH’“) with the mean

ﬁ' In other words, the number of the busy periods to wait is distributed as the total number
of customers in ad//M /1 model with arrival rate\; ., = Zle A; and service ratéV u.

For future analysis, we observe that the expected waiting time ofkyomsists of the following three
components.

1. Thedelay probability, which is found using global system characteristics. It depends on the total
arrival rate)\, the service time: and the number of the servels

2. Given waiting, a typée customer is advanced in his queue only when there are no customers of
higher priorities. This is why, customers of typeare exposed to ai/ /G /1 queue wheré& is
thebusy period of an A//M /1 with the arrival rate\;_, ;) and service ratéy p.

3. A queue, which aelayedtype+ customer faces, consists of customers with priority no lower
than his, which means that the averageue lengthfor him depends on the arrivals of the fifst
types. That is, if there is waiting, the average number of the busy periods to wait is found similarly
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to the average number of customers infdii) /1 queue with arrival raté;_,; and service rate
Nu.

To formally summarize:

Enp(WF) = PW}>0)x EWFW} > 0)

1 1
= FE A) X X
BN Gl o) T =)
—_—— —
! 2 3
_ Ey n(N) O

Np(l—op_1)(1 —ox)
4.3 An Asymptotic Example with Two Customer Types: QED and ED

This section deals with the analysis of queues with two types of custotiiets, 2, in the QED and

ED regimes. The results obtained for the lowest priority can be applied to queues with any number of
customer types, because it is possible to considekdmgt types as the highest-priority customers, and
therestt + 1, ..., K types as customers of the lowest priority.

The analysis of both the QED and ED regimes is organized in the following way. For each operational
regime, we start from the preemptive priority discipline, and continue to the non-preemptive discipline.
The analysis is conducted using analytical tools for ED, QED and QD regimes developed by Zeltyn in
[42], and the exact formula@ (1) and 4.7) of the expected waiting time for any typere-stated below

for K = 2.

For the case with two customer types, equati@h) @nd @4.7) read as follows:

Eyn (M)
1 2,N\N1
BrWa) = Nu— iy o
A Eaon(A) . E> n(A1)
Nu(l— Nu(l—
Epr(WqQ) _ p(1—p) " 1 01)7 (4.9)
Ean(N)
E Iy _— VAT 4.1
w(Wa) Np(l = p1)’ (4.10)
E A
Enp(W7) = 2v(Y) (4.11)

Nu(l—p1)(1—p)
Note that in queues with two types of customers= p; andoy = p1 + p2 = p.
4.3.1 QED Regime

The QED operational regime fav//M /N queues was first introduced by Halfin and Whitt [k6][
Under this regime, the service ratas constant, and as the number of serv&rand the arrival rate\
increase infinitely, thequare rootstaffing rule prevails:

N~ Ry + 8+v/Ry, \— o, B> 0, (4.12)
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whereRy = ’\TN is theOffered Loadn anM /M /N queue with arrival raté and service ratg.

In addition, we assume that, as the total arrival ratgows to infinity, the fraction of the arrival rate of
each type remains a positive constaf}ikt E constfork =1, 2).

Preemptive Discipline

First Type

Under this discipline customers of the first type enjoy the QD regime, because they are not troubled with
the presence of the lower priority. That is, they see a system staffed by the following rule:

N~Ma ), (4.13)
7!

asA; andN increase infinitely.
Recall that the fraction of time, in which a single server works with first-type customers, stays constant
(p1), and it is similar to the offered load per agent in the QD regime with an arrivahfatdence

o — @.

P1

In order to find how fast the waiting time of the first type converges to 0, we need to know the convergence
of the delay probability in aid//M /N queue with arrival rate\;. This convergence rate is calculated
using the approximation of the delay probability for the QD regime (42 Remark 5.1):

N
P1 1—
Py, (Wy>0) ~ e P
N
Based on this approximation, we conclude that the convergence rate foktHgpe expected waiting
N
: : P1 .
time is© :
il
INT N7 1. Py Lel—p1
i WN 1 : NN V2N P2 € ef?
lim —— - Ep(W,) = lim —5—- = .

Second Type
The convergence rate of tisecond typeunder preemptive priority discipline @Q/LN):

A Ean(A) Al By n(A1)

lim VNE,, (W2) = lim vN—2ed=n) = Nullzp) %

N—oo P ( q) N—o0 Ao pz,u,B
Non-Preemptive Discipline
First Type
The expected waiting time of tHest type under non-preemptive priority converges at r@id /N ):

Eon(A
lim NE,,(W!) = lim N2 KN _ e
N—oo a N—oco  Np(l—p1)  ppe
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wherea = () is the Halfin-Whitt function'16], see 2.17).

Second Type
The expected waiting time of treecond typeunder non-preemptive priority converges at 1@te A/N):

. . Esn()N) o
lim VNE,,(W?) = lim VN : = )
N—oo p(We) = Jim Np(l—=p1)(L—p)  uBp2

4.3.2 ED Regime

Now let us consider a sequence of two-type/'M /N queues in the ED operational regime. Assume
that the total arrival rate i&8 — oo, the service ratg is constant and the total number of servarss
detrmined by:

N(1—pn) =~ forsomel < v < oc. (4.14)

In addition, we again assume that as the total arrival Xageows to infinity, the fraction of the arrival
rate of each type remains a positive consté\r/{%t(: const fork =1, 2).

Preemptive Discipline

First Type

Here we again use the fact that the higher priority customers are not aware of the lower priority and enjoy
the QD regime, i.e. they see a system with the staffing level giveA.Bg)(

Repeating the arguments of the QED regime for the highest priority under the preemptive discipline and
using the approximation of the delay probability for the QD regird@]([Remark 5.1), we obtain:

1 P{V 1
Py, (Wy >0) = e P
>\1( q ) T?TN D2
The convergence rate of the expected waiting time ofitsetype under preemptive priority discipline
N
so(2)l).
NN
71 . 7(p1)N . el_pl
WN b WE e N
lim —— - Ep(W,;) = lim ~ = 5
N—oo py N—co (p1) Np(l —p1) V213

Second Type
The convergence rate of the expected waiting time ofte®nd typeunder preemptive priority i®(1)
(the same rate as that &F,,(W?)):

APA>0) Py, (Wg>0)

. . - L Nu(—p1) 1
1 E W2 = 1 Nu(l-p) H P1 — )
N, Er(Wq) = Jim A2 P21y

Non-Preemptive Discipline
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First Type
The convergence rate of the expected waiting time ofitisetype under non-preemptive priority is is
O(1/N):

P)\(Wq > 0) 1

. N _ 15 =
I V) = i NG

Second Type
The convergence rate of the expected waiting time ofst#wond typeunder non-preemptive priority is

O(1):

P
lim B (W2) = lim —2Wa>0 1
N—oo 7 Nooco Nu(l=p1)(1—p)  pype

Remark 3 Note the asymptotic equivalence of the lowest priority under preemptive and non-preemptive
disciplines. This was emphasized by Ashlagl} YWe will see that this behavior is preserved in queues

with abandonments. A detailed explanation of this phenomenon is given at the beginning of Subsection
5.2 Table5.1 summarizes the rates of convergence in the QED and ED regimes for queues with and
without abandonment.
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Chapter 5

Erlang-A with Priorities

In this chapter we analyze priority queues with impatient customers. We begin with a description of our
models, present some new results for non-preemptive priority, and conclude with asymptotic analysis.

5.1 Model Description

This section presents a general description of the models studied in this chapter. Note, that the description
of Erlang-A queues is very similar to the description\éf M/ /N queues in SecticA.l.

e There arel customer types.

A customer of typé: has priority (preemptive or non-preemptive) over a customer of fypand
onlyif ¥ < 5,1 < k,j < K. In particular, customers of the first tygfle=1) have the highest
priority.

Customers of typé arrive at rate\; arrivals are Poisson.

Service rate ig (the same for all customers); service durations are exponential.

p= N%L is the offered load per server. Hexe= 3. | \; is the total arrival rate.
e Abandonment rate i& (the same for all customers); customers’ patience is exponential.

Let us define the following:
Notations of Priority Queues

. Em(W(f) (En,,(Wf)) is the expected waiting time of tygeunder preemptive (non-preemptive)
priority discipline,

o Ep(W}F) (B, (W}™F)) is the expected waiting time averaged over firsypes under pre-
emptive (non-preemptive) priority discipline,

41



o Ep(LE) (Enp(LE)) is the expected number of the delayed (in queue) fypestomers under
preemptive (non-preemptive) priority discipline,

° Epr(qu*’f) (Enp(qu—”f)) is the expected number of the delayed (in queue) customers of types
1,..., k under preemptive (non-preemptive) priority,

° PPT(VVJC > 0) (Pnp(qu > 0)) is the probability that customers of tygeare delayed under
preemptive (non-preemptive) priority discipline,

o Pp(W}™% > 0) (Puyp(W, " >)) is the probability that a customer of any type ..,k is
delayed under preemptive (non-preemptive) priority discipline,

e P,.(Aband®) (P,,(Aband®))is the probability that customers of typeabandon under preemp-
tive (non-preemptive) priority discipline,

o P,.(Aband'=*) (P,,(Aband'—%)) is the probability that customers of the fikstypes abandon
under preemptive (non-preemptive) priority,

o E,.(Wy) (Enp(W,)) is the expected waiting time of all types under preemptive (non-preemptive)
priority,

o £, (Ly) (Enp(Lgq)) is the expected total number of the delayed (in queue) customers under
preemptive (non-preemptive) priority discipline.

Notations of Related Queues without Priorities

o [, (W,) is the expected waiting time in aw /M /N + M queue with homogeneous customers
which arrive at rate\,

o E(qu—”“) is the expected waiting time in au /M /N + M queue with homogeneous customers
which arrive at rate\; ., = 3%\,

e E,(W,) is the expected waiting time in aW /M /N + M queue with homogeneous customers
which arrive at rate, = S5 )\,

o P (W, > 0) is the delay probability in ad//AM /N + M queue with homogeneous customers
which arrive at rate\;, (Erlang-A formula),

° P(qu—”“ > 0) is the delay probability in afi/ /M /N + M queue with homogeneous customers
which arrive at rate\; ., = 3% \;,

. PA(W(;C > 0) is the delay probability in ad//M /N + M queue with homogeneous customers
which arrive at rate. = S5 |\,

e P, (Aband) is the abandonment probability in &d/M /N + M queue with homogeneous cus-
tomers which arrive at rats,,
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e P(Aband'—") is the abandonment probability in a1 /M /N + M queue with homogeneous
customers which arrive at ratg_,;, = Zle A

5.2 Exact Results

5.2.1 Preemptive Priority

The expected waiting time under preemptive priority is found by a recursive expression, wttieh is
same(See 4.1) for comparison) for queues with and without abandonment:

Epe(Wy) = [AlﬁkEpAWq“*’“) - Alﬁk_l)Em(Wq‘“(’“*”)} N k=1...K.  (51)
This relation can be re-stated in terms of measures without priorities as follows:

Ep(WE) = [Al_,kE(Wél_’k)) - Al_,(k_l)E(Wq(lﬁ(k_l)))} AL k=1...K. (5.2

5.2.2 Non-Preemptive Priority: Expected Waiting Time of First-Type Customers

Let us analyze the expected waiting time of tlighest priority (first-type customers) under the non-
preemptive priority discipline. In the next section we will use the obtained result to calculate the expected
waiting time for any typéek.

Theorem 5 The delay probability for any type under the non-preemptive priority discipline is the same
as intheM /M /N + M queue without priorities, with arrival rate, service rateu and abandonment
rate § (Erlang-A formula):

Ppy(WF>0)=P\(W,>0) k=1,... K. (5.3)

The expected waiting time of tlieelayedcustomers with the highest priority is the same as in an
M/M/N + M queue without priorities with arrival rate; and the rest of the parameters the same:

Enp(W, W) > 0) = Ey, (Wg|W, > 0). (5.4)

Statements3 and 5.4) yield an expression for the expected waiting time of customers with the highest
priority:

Enp(Wy) = P\(Wait > 0) - Ex, (W,|W, > 0) (5.5)

Remark 4 The ratio between the expected waiting times of the highest priority customers under the
preemptive and the non-preemptive disciplines is equal to the ratio of the appropriate delay probabilities:

EL(V,) Py, (W, >0)
EL,(W,)  Px(W;>0)

(5.6)
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Remark 5 Note that the statement of Theor&rmolds also for Erlang-C queues. Equati¢hl) for the
expected waiting time of customers with the highest priority (Kella and Yech2dl]yreads as follows:

1
Nu(l—p1)’
where E5 v () is the delay probability in an\//AM /N queue with arrival rate\ (Erlang-C formula,

1
(33)), andm = E)\l (Wq|Wq > 0)

Enp(W)) = Ean () - (5.7)

Proof
First, let us ascertain when the highest priority customers get delayed. Consider the total number of
present customers as a Birth & Death process. Its transition-rate diagram is presented ib.Eigure

Customers of any type are delayed if they arrive to stafe®&’ + 1,.... The transition rates in the
Figure 5.1:Total number of customers with non-preemptive priorities

@N COE

3y (N-1)p Nup +6 Nu+20

diagram do not depend on the internal discipline of the queue, consequently the delay probability of any
customers type, by PASTA, is given by the Erlang-A formula:

Pop(WF > 0)=P\(W;>0), i=1,... K

To prove part%.4) of this theorem, we note that customers of the highest priority can classify all cus-
tomers into two types: the first type consisting of customers of their own type only, and the second type
(lower priority) of all other types of customers. Hence, in order to check the expected waiting time,

if there is waiting, of the first type of customers, it is sufficient to analyze\si\//N + M queue

with K = 2. Figure5.2 presents the transition rate diagram of a two-type queue with non-preemptive
priorities. Here, the first number in each state is the number of busy servers, the second entry is the
total number of the delayed customers of the first type, and the last entry is the number of the delayed
customers of the second type.

We definel to be a sub-process of the original queue restricted to the ¢tated, that is, only those
states where all the servers are busy. Using the excursions technique presented in the previous chapter,
it can be shown that . is distributed like am\//M /1 + M queue with two customer types with arrival
rates\; and)\,, service ratéVy + 6 and abandonment rafet

Let us now aggregate the states/of with the same number of the highest priority customers. Define

"Note that the transition rates for tiie. part are similar to those in al /M /14 M queue under preemptiyiority, with
K = 2, arrival rates\; and ., and service rat&vp + 6.
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Figure 5.2:Non-Preemptive Priority Queue withi = 2
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L}r to be the total number of the delayed first type customers. The transition rates diagfalrnisof

presented at the bottom of Figuse?. In this diagram, statéN, i) means that there af€ busy servers

andi delayed first-type customers. It is a diagram of a single-iyp@//1 + M queue with arrival rate

A1, service ratéVy + 6 and abandonment rafie which is similar to thel., part of a single-type queue
with arrival rate), service ratg: and abandonment rafe

The fact that the number of delayed first-type customers has the same distribution as the number of de-
layed customers in a queue with a single customer type with arrivahfatallows us to conclude, by

Little’s Law, that the expected waiting time, if there is waiting, of the first type under non-preemptive
priority is equal to the expected waiting time, if there is waiting, in the queue without priorities with total
arrival rate);.

Now it remains to conclude the final expression of the expected waiting time for the customers of the
highest priority.
Enp(qu) = P\(Wq > 0) - Ex, (W|Wg > 0). (5.8)

g

It is worth mentioning here, that Theore) can be applied for the calculation of the expected waiting
time of any firstk types:

Enp(WS %) = P\(W, > 0) - E(W, MW} ~F > 0). (5.9)

We will use this observation together with Little’s Law to obtain the expected waiting time of any type
k.
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5.2.3 Non-Preemptive Priority: Expected Waiting Time of Type4 Customers

We have mentioned in Subsectidr?.3that the expected waiting time of tygeeustomers is comprised

of three components. For queues with abandonments these components are the following: (1) The delay
probability in a queue with arrival rate (Erlang-A), (2) The expected duration of a busy period in an
M/M/1 + M queue with arrival rate\; _,;,_;) and service ratéVy and (3) The expected number of
customers in ad//M /1 + M queue with arrival raté; ., and service rat&/'y. The problem is that

these components, especially the second one, are not easily calculated.

In this section we develop a recursive expression for the expected waiting time df tystemers. Itis
based on the same idea as the recursive formula for the preemptive priority (See Egua)ion(b.1)
for M/M/N or M/M/N + M accordingly).

e Step 1l
CalculateF,,,(W}) by (5.5):

Enp(Wy) = PA(Wy > 0) - By, (Wy|W, > 0).

e Step 2
In general: "Merge” the firsk types into a single highest-priority type with arrival ratge ., and
calculate the average waiting tir@lp(waﬁk) of thesek types, by using3.5) again:

Enp(W)™F) = P\(W, > 0) - E(W,} W} ~F > 0).

e Step 3
Let us use the same logic as in the case of preemptive priority. The total number of customers of
types 1 througtik — 1) and customers of typeis equal to the number of all customers of the first
k types. Applying Little’s Law we receive:

Epp(LL%) = Eny(Ll=¢0) 4+ B,,(LF) (5.10)
— )\14’ k—1 —(k— )\k?
Enp(W2F) = Al%k;)Enp(qu (k 1))JrrékEnp(Wf) (5.11)
Ak B (WIRY — Xy By (WA D)
LBy = p(Wg™") )l\k(k 1) Enp(We )' (5.12)

Note that the recursive relatioB.02) is similar to the recursiorb(1) for the preemptive priority, and the
only difference is in the calculation of the expected waiting time of the highest priority, i.8tem2

5.3 Asymptotic Equivalence of the Lowest Priority

It was shown by Ashlagi ird], that under ED, QED, QD operational regimes and also in the conventional
heavy traffic, the expected waiting time of the lowest priority in queues without abandonment converges
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to zero under preemptive and non-preemptive disciplines, both at the same rate. These results can be
expanded to queues with the same individual abandonment rate for all types of customers. But before
we do that, we explain the physics of this asymptotic equivalence.

5.3.1 The Physics of the Asymptotic Equivalence

Consider twoM /M /N + M systems withK=2 customer types. Suppose that in the first system the
priority discipline isnon-preemptive, and in the second system the priority disciplingpisemptive.

Let us assume that the lowest priority is not negligibigiy_. . ATQ = p2, 0 < py < 1.Itfollows from

this assumption thatmy ..o 3 = p1, 0 < p; < 1.

This subsection presents an intuitive explanation of the asymptotic equivalence of preemptive and non-
preemptive disciplines, as far as the average waiting time of the lowest priority is concerned. The expla-
nation covers the ED, QD and QED operational regimes and also conventional heavy traffic.

Any arriving second-type customer joins a queue that consists of customers of both types. Thus, by
PASTA the average length of a queue in front of a lowest-priority customer is equal under both preemp-
tive and non-preemptive disciplines and can be found using/ ah/ /N + M model with arrival rate\,

service ratg: and abandonment rafe

Non-preemptive priority: A delayed second-type customer can advance one position in his queue
when there are no waiting customers of the first type. Consequently, the average time it takes him to
move forward in his queue is equal to one busy period a¥at//1 + M queue with arrival rate; and

service rateVu.

Preemptive priority: Due to the possibility of preemptions, the time before the second-type customer
is advanced is longer than a single busy period odgf\//1 + M queue with arrival rate\;. In order

to determine this time, we need to multiply the expected busy-period duration by the average number of
times a lowest-priority customer re-starts his service (each time, due to preemption).

Let us consider some specific low-priority customer under the preemptive priority discipline, which is
currently starting service. He neeelsp(u) time to accomplish his service and then leaves the system.
We start from the analysis of the QED and ED regimes.

QEDandEDRegimes:Nz%+5\/§, —00 < 3 < 00; %%—e%,6>0.
The offered load per server converges to 1 (QED) or exceeds 1. Thus, the servers utilization is close to

100%.

Due to the assumption that the second-type is not negligible, in steady state customers of the first type
start their service immediately (asymptotically). Thus, the total number of servers busy with the highest
priority is proportional to the fraction of the highest-priority arrivals:

A
Nlm—l:plN.
1%
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The rest of the servers are "free” to serve the second type. That is, the average number of the servers
working with the second type is
NQZN—lepQN.

The number of high-priority customers which arrive during a single service tirﬁ%isO(, /%).

The average number of high-priority customers that leave the system during a single service time is
AL o(—
This means, that there will b@(, %) preemptions during a single service time.

The observation above allows us to conclude that the total number of interruptions of any randomly-
chosen second-type customer converges to O:
A
. . O oWN)
lim P(preemption) = lim ——— ~ lim ———~ = 0.
N—o0 N—o0 p2N N—oo
QD Regime: N ~ % + eﬁ, €>0.
Under the assumptions of the QD regime, first-type customers are not sensitive to the change of the
operational regime. Thus, the average number of servers busy with the highest priority at some moment
. . A
of time remainsV; ~ =X = p; N.
i)

The first-type customers enter the service with Fg{ek oG/ %), and the average number of highest-

. . . , A
priority customers who leave the system during a single service does not change either:
7!

. A
The average number of servers needed for the lowest priority at each moment omeelsﬁ. Note,
n
thatlimNﬁoo(Nl + Ng) < limy_o N.

The number of second-type customers, arriving during a single service tiﬁﬁeHsD(\/%).

The average number of lowest-priority customers leaving the system during a single service time is
2 (= Na).

It is easy to see that, in steady state, thereaté servers, available at each moment of time, where

Here AN = N—Nl—N2—0< /\1>—O< )\2> R e)\—0< A), AN > 0.
\/u Iz I I

(imy_—oo AN > 0). This is why, in the QD regime the number of preemptions converges to zéYo as
grows to infinity.

We have shown that in the three operational regimes the probability of the low-priority service inter-
ruption converges to zerbimy_,., P(preemption) = 0. The number of preemptions is distributed
Geomy(1 — P(preemption)). This is why,

lim E(#preemptions) = 0.

N—oo
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Thus, we can conclude that the expected waiting time of the lowest priority is asymptotically the same
under the preemptive and non-preemptive priority disciplines:

En Wi 1—(K-1)
i 2o Wa') (Ex(Ly) +1) x E(B )

N—oo Ep(WE)  Nooo (Ex(Lg) + 1) x E(B™(E=1) x (1 + E(#preemptions))

—1, (5.13)

where E(B'~(E-1)) is a Busy Period in ad//M/1 + M queue with arrival rate\!~(5=1  service
rate Ny and abandonment rafe

Conventional Heavy Traffic

Now we assume that there is a single server and his utilization converges to 1. For simplicity, the fol-
lowing explanation addresses queues without abandonment. In the case with impatient customers the
explanation below applies with minor changes.

Let pn converge to 1 in the following manndim ...V N (1 — py) = ¢ for somel < ¢ < oc.

UnderNon-Preemptivediscipline, to move forward one position in his queue, a delayed lowest-priority
customer waits a single busy period of &Y M /1 queue with the service raféy and arrival rate\;.

As it was mentioned, both und@reemptive and Non-Preemptivedisciplines, the queue length upon
an arrival of the lowest priority customer, if there is waiting, is distributed like a queue length in an
M /M /1 queue with the arrival rat® = A\ + \s.

Thus, ) )
E,(WKy =

s W= o) -7

—— ~———

E(busy peTiOd)7 A1, p,l E(L)7 A, p,l

UnderPreemptive Priority discipline, the time until a delayed lowest-priority customer moves forward
one position is distributed as a busy period of\dp)/ /1 queue with the service rafé, and arrival rate
A1, similarly to the non-preemptive discipline.

However, there are additional high-priority customers which arrive after the service of the second-type
customer has begun making him return to the queue.

The probability of preemption i®(preemption) = Al)\—&l-u = lfrlpl, as the competition of two exponen-

tial random variables. As a result, the number of preemptions is distrilditeth (1 — —£2-), and the

1+p1
expected number of preemptionsis

Thus,
By (W) : x L,
= T N 1
e p(1— p1) (1-p) —~
N—— S—— #preemptions
E(busy period), A1, p,1 queue upon arrival

We notice, that there is a finite numbey Y of the high-priority customers which enter the queue due to
preemptions, while the queue length upon a low-priority customer arrival is exactly the same as under
non-preemptive priority and diverges to infinity aspproaches 1.

As aresult, itis possible to conclude that under conventional heavy traffic preemptive and non-preemptive
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disciplines result in asymptotically the same expected waiting time for customers of the lowest priority:

1 1
Epp(WS) W) X T

r—oo F, T(WK) T 5o
e u(lim) x ((1;) —I—p1)

= 1. (5.14)

Using the same arguments, it can be shown that for any finite number of&ygbe preemptive and the
non-preemptive priority disciplines are asymptotically equivalent for the customers of the lowest priority
K.

The fact of asymptotic equivalence of the two disciplines is important because in many cases we may
apply the known results for one priority discipline to another.

Now, using exact analysis, we are going to obtain convergence rate of the expected waiting time for the
highest and for the lowest priorities under each discipline and see that the lowest priority is asymptotically
the same under both priority disciplines, as predicted.

Let us consider a pair af/ /M /N + M queues under preemptive and non-preemptive priority disciplines.
For asymptotic analysis, similarly to the analysis of i)\ /N queue, we use the results of Zeltyn et
al. [42] for the ED, QED and QD operational regimes and the exact formbld&-6.18) listed below.

Equations/s.1and5.12) for the two customer types read as follows:

E,(W,) = %P,\l(Abcmd) (5.15)
Ep(WqZ) _ ;)\P,\(Abcmd) —)\2/\1P>\1(Abcmd) (5.16)
Enp(W,) = WPM(Abandqu > 0), (5.17)
Enp(WqQ) B P,\(Wg > 0) APy (Aband|W, > 0) —/\2)\1P,\1(Abanqu > 0) (5.18)

The next two subsections present an asymptotic analysis of queues with two customer types under both
priority disciplines in ED and QED operational regimes. For each subsection the convergence is shown
in the same way. First, to show, how Equaticdhdlf)-(5.18) converge asV grows to infinity, we check
separately the convergence of their main components:

o P\(W,;>0), P\(Aband|W, > 0), P\(Aband) (= Pa(Wy > 0)Py(Aband|W, > 0));
e P\, (W, >0), Py (Aband|W, > 0), Py,(Aband) (= Py,(Wy > 0)Py, (Aband|W, > 0)) .

After that we aggregate the results to find the convergende o:6.19).
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5.3.2 QED: An Example with Two Customer Types

We assume that the total arrival rate converges to infinity, oo, and that the total number of servers
N is given by:

A A
N%+ﬂ\/7, A — 00, —00 < < 0. (5.19)
[ 1t

In addition, we assume that aggrows to infinity, the offered load per server for each type of customers,
pi, stays constant:

Ak
lim — = k=1, 2.
N = o :

Now, to obtain the convergence of expressidns)-(5.18), let us analyze the convergence of their main
components.

1. The delay probability in the QED regime convergesito
A}im P\(Wyq >0) = a,

whereq is given by Garnett functiorifl]:
0 _h(p) } -
1+ , 5.20
| \/; h=5) (620
inwhich 3 £ 4 /4.

2. Formula (4.6) in42] gives an approximation for the probability of abandoning, if there is waiting,
in the QED regime:

Py\(Aband|W, > 0) \F \/7 8]+ o(1/N). (5.21)

3. To analyze the convergence Bf, (W, > 0) and Py, (Aband), we notice that in a queue with a
single type of customers who arrive at rateand the number of servers is determinedBy.9),
the customers are served similarly to the QD regime. This is why, the number of the servers in
such a queue can be described as follows:

NaM P2 M (5.22)
weopr R
The convergence of the delay and the abandonment probabilities in the QD regime is determined

by Theorem 5.1 (a-b) irdi2]:

1 1/ 1 \M!
P, (W, >0) =~ e <1 n 5) exp(A1d/p) (5.23)
N
~ L P e, (5.24)
2N p2
1 1 0
Py, (Aband|W, > 0) = Ni-p & +o(1/N). (5.25)



Now, after the convergence of each component has been determined, it is easy to obtain the convergence
of the waiting time of any type under both priority disciplines.

Preemptive discipline

Bp(wh) VN o (5.26)
()N V2m p3p
o

2 .
EnW VN =

We see that the waiting time of the first type customers converges to zero @:(F]ég%), as expected
according to the QD regime. The service level of the lowest-priority customers fits the QED regime, and
their waiting time converges to O at rﬁ\%ﬁ).

Non-Preemptive Discipline

~ ~

- [h(B) = Bl. (5.27)

o

Enp(W)) N = . (5.28)
En(W3) VN = o [0(5) = 5] (5.29)

Under the non-preemptive discipline, the highest priority experience QD service level "conditioned on
waiting”, i.e. the highest priority enjoy service before the lowest priority, but they cannot interrupt in-
process service. This is why their waiting time converges to zero ab@tgV). This rate is faster than

the convergence under QED in a queue without priorities but not as fast as under the preemptive priority
discipline.

The waiting time of the lowest priority converges to zero at @(9%) , just like under preemptive
priority. Moreover, the ratio between the expected waiting time ﬁ@d:onverges to the same limit as
under preemptive priority.

5.3.3 ED: An Example with Two Customer Types

We assume that the total arrival rate converges to infiRity oo and that the total number of servéys
is given by:
A
N ==(1—-~), forsomel <~ < oc. (5.30)
7]

Again, the assumption is that agrows to infinity, the fraction of time spent with each type of customer,
pi, stays constant.

Now, to obtain the convergence of expressidni)-(5.18), let us analyze the convergence of their main
components.

1. The delay probability in the ED regime converges to 1.

]\}im PA(Wq > 0) =1.
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2. Formula (6.5) in4#2] gives an approximation of the probability of abandoning, if there is waiting,
in the ED regime:
Py (Aband) = . (5.31)

3. To analyze the convergence Bf, (W, > 0) and P, (Aband), we again use QD approximations,
using the same arguments as in the case of QED. The convergence of the delay and the abandon-
ment probabilities in the QD regime is determined by Theorem 5.1 (a-d@jn [

1 1/ 1 \M!
Py (W, >0) = 5~ s\11s exp(A1d/p) (5.32)
1 N
~ A el=r, (5.33)
2rN  p2
1 1 0
Py, (Aband|W, > 0) = N i-p & +o(1/N). (5.34)
Preemptive discipline
MNN P2
lim B, (W)=~ = i (5.35)
- P1 V21p3
lim B, (W2) = lim 2L =1 5.36
Ngnoo P ( q) Ngnoo 9p2 9p2 ( )

We see that both in Erlang-C and Erlang-A queues in QED and ED regimes, the convergence rate of
3 N

Ep (W) is 9(1\%)

The convergence rate (Epr(Wq?) isO(1).

Non-Preemptive Discipline

1

lim NE,, (W) = —, 5.37
N—oo p( q) P2 ( )
lim FE,, (W 2 = ;Y . 5.38
Nlaoo p( q) 9p2 ( )

The convergence rate of the expected waiting time of the highest priority under non-preemptive disci-
pline is©(1/N), which is the same for all previously considered exampMg//N under QED and
ED andM /M /N + M under QED).

The convergence rate (ﬂnp(WQQ) is ©(1), which is the same rate as under preemptive priority. Addi-
tionally, Enp(WqQ) itself converges to the same limit as under preemptive priority.

5.3.4 Summary of Convergence Rates

To emphasize the similarity of the preemptive and non-preemptive disciplines for the lowest priority, Ta-
ble5.1presents a summary of the waiting-time convergence rates for the two-type examples of Erlang-C
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/ A queues.

This table shows that the first-type customers are not sensitive to the changes in the operational regime.
The convergence rate of the preemptive priority remains exponential under QED and ED in queues with
and without abandonment. And under non-preemptive priority, the convergence rate of the first type is
©(1/N) both for QED and ED regimes.

The performance of the lowest priority is influenced by the operational regime and not by the priority
discipline. Tabléb.1shows that in the same operational regime, the convergence rate of the lowest prior-
ity both under preemptive and non-preemptive disciplines is similar to that in queues without priorities.

Table 5.1:Convergence Rates Under Both Disciplines in Queues with and without Abandonment

QED ED
N =R+ /R N=R—-~R
M/M/N | M/M/N +M | M/M/N | M/M/N + M
Enp(W)) | ©(1/N) O(1/N) O(1/N) O(1/N)
Enp(W2) | ©(1N/N) O(1A'N) O(1) O(1)
Ep(Wh) | 0(L=) | e(&y) | eds) | e(lx)
Ep(W2) | ©(1A/N) O(1A/N) o(1) o(1)

5.4 Higher Priorities: Convergence of the Expected Waiting Time

This section deals with the convergence of the expected waiting time of any p#drnigher than the
lowest priority K, under the QED and ED operational regimes. We also assume that the lowest priority
is not negligible limy_., px > 0, and that the total number of customers of the types k is not
negligible,limy_. o, o > 0.

5.4.1 Preemptive Priority

Let us start with the preemptive-priority discipline. The expected waiting time of tyjgegiven by
recursion 4.5), which is the same for Erlang-C and Erlang-A queues. This equation is re-stated below
for Erlang-A queues using the relaticB.13 between the abandonment probability and the expected
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waiting time:
1
Ep(Wh) = Mok P(Aband('=F)) — X\ 1y P(Aband(! =) g =1...K. (5.39)
0 - )\k q q
In the case of Erlang-C queues, the expected waiting time is giveA.By Wwhich is repeated here for
convenience of the reader:

Eyn(M—k) By N( M= (k-1))

Ae(L=0op) Al —op—1)

If the number of servers is determined by the ED or QED staffing rule, then Erlang-C or A queueing
systems with the arrival ratg . or \,_,(x—1) experience service under light traffic (QD). This is why
we apply Theorem 5.1 (a-b) frord2] to determine the convergence B n (A1), E2 v (M- k-1)),
P(Aband'~*), and P(Aband'—(*=1):

Epr(sz) =

1 oN
Ban(aon) = PWg™8 > 0) ~ e gt e, (5.40)
1 1
P(Aband "W}~k > 0) = A ~Z+o(1/N). (5.41)
— 0k

N
Utilizing results 6.405.41), we see that the convergence ratéﬂg,f(Wj) is @(\/a%), and itis the same

for Erlang-C and Erlang-A queues:

v N3 1—oy
lim B, (WF) - Y = —— L k=1,... K 1. (5.42)
N—oo o) V2r(1—o%)p
Moreover, the ratio betweeEpT(W(f) and its convergence rate converges to the same constant (see
(5.42)) for both Erlang-C and Erlang-A queues. This means thatexpected waiting time of any

priority k, k < K, can be approximated by Erlang-C model with the arrival rate A;_.

5.4.2 Non-Preemptive Priority Discipline

The general expression for the expected waiting time of any kyipdound using recursiorb(12). It is
repeated below for convenience:

— —(k—
Mok - Enp(W)—F) — )\1H(k71)Enp(qu ( 1))

ky _
ETLP(Wq ) - )\k
Several algebraic operations d12) and the relationd.13) lead to the following result:
P\(W,>0
Ep(Wy) = A(Aqe) (AlHkP(Aband“’ﬂWq > 0) — A (k1) P(Aband' =D w, > 0)).
k

Now let us analyze the convergence of the expected waiting time oktypde QED and ED operational
regimes while the number of servers increases indefinitely. The expected waiting time of ahysype
product of the two following elements:
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° P)\(Wq > O),

1
o Enp(WHWE > 0) = E(A“’“

P(Aband'~*|W, > 0) P(Aband —* =YW, > 0)

We check separately the convergence of each of them and later combine the results to make a conclusion
aboutlimy oo Enp(Wr).

In the QED regime, the delay probability converges to some positive constiass than 1 (Garnett
Function 6.20)):

P,\(Wq >0)=a+o(lA/Rn). (5.43)
This can be concluded from our analysis of the delay probability in the QED regime in Sub&e4tibn
In the ED regime the delay probability converges to 1:

Py(W, > 0) =1+ o(1/N). (5.44)

This is concluded from the analysis of the delay probability in the ED regime in Subs8cfién

To analyze the convergence of the expected waiting time, if there is waiting oktgpstomers we use
the approximations of the abandonment probability in the QD regime, developed by ZeltydZkee [
Theorem 5.1 (b)). This is made possible due to the assumption that the lowest priority is not negligible:

1 1 0

1—k 1—k

PAband " |W, 7" > 0) = N 1 o -ﬁ—&-o(l/N)
1

1
P(Aband" = *=D|wi=kF > 0) = N T e Z +o(1/N)
— Uk—-1

Substituting these approximations into conditioned waiting time, we obtain the following:

1 A1k 0 A (k—1) 0
Epp (WE|WF = — 1/N
p(Wg Wy >0) s H(N,u(l—ak) Nu(l—ak_l))+0( /M)
1 Ok Ok—1
n )\k(l—()'k 1—0‘k_1>+0(1/N)
Ok — O0k0k—1 — Ok—1 + Ok0k—1
= +o(1/N
Ae(1 = o) (1 —0ok-1) (1/N)
1
= Enp(WJ Wy >0) = +o(1/N). (5.45)

- Np(1—op)(1 —op_1)
Let us now combine the convergence results of the delay probability and the expected waiting time given
waiting. For the QED regime, the relevant results are equatmd$§)(and 6.45), and for the ED regime
the expected waiting time is a combination 6f44) and 6.45). One can easily see, that under QED

56



or ED, the expected waiting time of tyge k£ < K, which is presented as a limit of a product of two
elements, is equal to the product of the limits of these elements:
1

lim E,,(WF) = lim P\(W, > 0)- li ) 5.46
e p(Wy) N AW > 0) NgnooNN(l—O'k)(l_Uk—l) (5:49)

Note that the expected waiting time of any typé > K, is given asymptotically by the same expression
as for M /M /N queues (seed(7)) with the only difference that the delay probability is given by the
Erlang-A formula, and not by the Erlang-C one.

By using 65.4€) we find the convergence rate of the expected waiting time for anykype< K. It can
be seen that under both t¥ED and theED operational regimes, the convergence rat@@%), since
the delay probability converges to some constant (« < 1 for the QED and 1 for the ED).
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Chapter 6

Towards Time-Stable Performance of
Time-Varying Call Centers

In this chapter, we show hostationary models can be used intame-varying environment to help
determine an appropriate staffing level. This is done by analyzing via simulation four different call
centers. For each center, the staffing level is determined by either a simulation-based algorithm (ISA) or
by the square-root safety-staffing rdle.

In addition, we check and compare the performance of the two staffing methods, PSA and Lagged PSA,
the first of which is widely used in industry.

The chapter is organized as follows.

A detailed explanation of the ISA algorithm, which determines staffing level for a given target delay
probability, is provided in SectioB.l. Section6.2 lists different performance measures that can be
calculated using our simulation tool. Sect@®®g gives a short summary of the prevalent staffing methods,
PSA and Lagged PSA. Secti@ presents simulated performance of the four call centers, the staffing
for which is determined with the help of PSA, Lagged-PSA and square-root staffing.
Appendix6.5describes the current implementation of the performance measures listed in Be4;taen

well as alternative ways of their calculation.

6.1 Description of the ISA algorithm

Here we describe the simulation-based Iterative-Staffing Algorithm (ISA). In our implementation, the
algorithm determines time-dependent staffing levels aiming to achieve a given constant-over-time delay
probability at all time intervals.

For the implementation of the algorithm we assume that we hav&/gitz/s; system with homo-

For each of these call centers both ISA and the square-root safety-staffing rule were applied, and the differences between
these two staffing methods were found to be practically insignificant.
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geneous customers. We assume that service times are iid variables of a given general distribution,
which are independent of arrivals. The Poisson arrivals are fully specified by their arrival rate func-
tion {\(t); 0<t<T}.

To start, we fix an arrival-rate function, a service-time distribution and a time hofizdr. For any
random quantity of interest, Ie’t’t(i) denote its value at timein the " iteration,t € [0, T]. Although

the algorithm is formulated in continuous time, staffing decisions are made at discrete times. This is
achieved by dividing the time-horizon into small intervals of lengtffhe number of servers is constant
within each interval.

Let sii) be the staffing level at timein iterationi, for 0 < ¢t < T'. Let L,Ei) denote the random num-
ber of customers in the system at tihender this staffing function. We estimate the distributions of
Lf) for eachi andt, by performing multiple (5000) independent replications. The algorithm starts with
infinitely many SGI’VGFS&éO) = o0). In this implementation we choose a large finite number of servers
which guarantees a negligible delay probability.

The algorithm iteratively performs the following steps, until convergence is obtained(Here, con-
vergence means that the staffing levels do not change much after an iteration. By the algorithm imple-
mentation, they are allowed to change by some thresholhich we took to be 1.)

1. Given theit" staffing function{sti) : 0 <t < T}, evaluate the distributions oﬁ‘gi) for all ¢, using
the simulation.

2. Foreacht, 0 <t <T,let si”l) be the least number of servers such that the delay probability
constraint is met at time? i.e. let

sgiﬂ) = argmin{c € N : P(Lf’(i) > c) < a}. (6.1)

3. Ifthere is a negligible change in the staffing from iteratida iteration:i + 1, then stop. Formally,
150 — 50| = maz{|sf™ — s’ 0 <t < T} <7, 6.2)

then stop and let+1) be the proposed staffing function. Otherwise, advance to the next iteration,
i.e., increasé toi + 1 and go back to step 1.

Let oo denote the index of the last iteration of ISA, so th%if’) denotes the final staffing level at time

t andLgoo) denotes the random number of the customers in system at tiwith the obtained staffing
function s(>). Then if convergence is reached, the determined staffing function satisfies the following:
P(LE‘X’) < s§°°>) ~a, forall0 <t <T.

The implementation of the algorithm is written in C++ and is an adaptation of an existing software
written by Z. Feldman (se@]J or [9]).

2\We take the event that "all servers are busy at tifne® mean that a (virtual) arrival at timewould be delayed before
service.
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6.2 Calculation of performance measures

Here we present a list of the performance measures implemented in our simulation software. The imple-
mentation of these measures is discussed in Appéh8ix

The ISA algorithm (8] and [9]) allows one to calculate these measures over a pre-determined time hori-
zon, partition intervals and number of replications which may vary depending on the user choice.

In the formulae below:
e superscripf indicates the*” replication;
e subscript indicates the'” partition interval; all intervals are of siz&T;
e Repss the total number of replications.

The measures listed below are calculated for each time interval separately. They are referred to as
Dynamic Performance Measurde emphasize their time-dependence.

e R;: Offered Load;

G¢: Implied Service Quality;

pe: Servers Utilization (Fraction of Time Serving Customers);

e Pi(Aband): Abandonment Probability;

P,(W, > 0): Delay Probability;

Q:: Average Queue Length;
e W;: Average Waiting Time;
o E(W:|W; > 0): Average Waiting Time Conditioned on Waiting.

The following measures, referred to @serall Performance Measureare calculated at the end of the
simulation run.

e E(W): Average Waiting Time;
e E(W|W > 0): Average Waiting Time Conditioned on Waiting;

e P(Aband): Average Abandonment Probability;

P(W, > 0): Average Delay Probability;

p: Average Servers Utilization.
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6.3 Short Staffing Intervals: PSA and Lagged PSA Approximations

In the following two subsections, we present two techniques for staffing time-varying queues, PSA and
Lagged PSA, as described in the article by Green efld]. [

6.3.1 PSA and SIPP

There are several approaches for coping with time-varying arrivals. The traditional solution for staffing
a queue with short service times and a high quality of service iBaivd@wise Stationary Approximation
(PSA) This approximation describes a time-dependent queue at each tisieg a stationary model

with the arrival rate and other parameters of this time t.

In practice the number of servers stays constant during time intervals, which we call here staffing in-
tervals. The PSA method can be adapted to such conditioi@ebmnented PSAhe latter determines
staffing for each staffing interval as the maximum of all PSA-generated staffing levels in this interval. In
general, this method tends to overstaff slightly, but its results can be refined by simulations.

In practice, many commercial software packages use the following approach: The arrival rates are first
averaged over the whole staffing interval, and the staffing level in that interval is set according to a cor-
responding stationary model. This method is referred t&tationary Independent Period-by-Period
(SIPP)[13].

Both Segmented PSA and SIPP are based on the same principle and assume that all time periods are
independent. The difference is as follows. With Segmented PSA we firstlfipdssible staffing levels

for all arrival rates during some staffing interval, while with SIPP we average arrival rates for this interval
and find the appropriate staffing only once.

6.3.2 The Lagged Pointwise Stationary Approximation

While PSA methods perform well for fast service rates, for medium to low service rates some adjust-
ment may be needed. An intuitive explanation is that each customer stays in the system during his service
time, hence the number of customers in system lags behind the arrival rate. In such a case, staffing by
the arrival rate at every given moment is not very accurate because during the lag period the number of
customers in the system may change.

A very good example of the lag impact is described by Litvak et al. in their reB8ft¢r an emergency
department in Massachusetts. Their main finding, obtained exclusively by observations, is that there is a
lag between the arrivals of ambulances and the demand for doctors. There was no observations of what
would have happened if the number of doctors and nurses lagged behind the arrival rate for six hours,
the latter being an average service time in this ED. We believe, that if the observations were continued,
the authors would have found out that this lag in staffing lead to a much improved level of performance.

Thelnfinite-Server Model provides insight into the staffing problem. Indeed, we use\theGI/s; +
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G model with medium-to-low service rates and a high-quality-of-service standard to describe our en-
vironment. Its corresponding infinite-server modelis/G1/oo. This model allows one to find the
number of assigned servers with no resource constraints. The distribution of the number of busy servers
at each time in the M, /GI /oo queue can be found analytically. Although in our original queue the
number of servers is not infinite, the associated Infinity-Server model is nevertheless intimately related
to it, as will become clear in the sequel.

Solution for the M,;/GI /oo Model. The number of busy servers at timim the M, /GI /oo model has
a Poisson distribution with time-varying mean,(¢), which can be expressed in the following 3 ways:

t t
moc(t) = BNt — S)LELS] = B / Mu)du] = / 01— Glt—w)\u)du,  (6.3)
t—S —o0
where
S is the service time with cdf?,
ands, is a random variable with the residual lifetime cdf associated @withe.

P(S, <t) = — /tu _G)du, t>0. (6.4)
0

E[S]
From the representatio®.@), we see that the number of busy servers depends on the arrivals during
the latest service time. This fact provides a theoretical support to the results descriBgldaind also
explains why applying Lagged-PSA staffing generally leads to better results than PSA, as will be seen
from our simulation experiments presented further.

6.4 Empirical Examples

Here we compare the results of square-root staffing with the results of staffing by PSA and Lagged-PSA,
applying these methods to four different call-centers. The description of the results for each center is
organized in a very similar manner, and, to make the description easier to follow, we repeat in each
subsection the same theoretical formulae.

For each empirical example the results are presented in the following way. Each subsection starts with a
detailed summary of performance under square-root staffing, which is compared against an appropriate
stationary model. Then the results of staffing by PSA and Lagged PSA are presented.

6.4.1 First Empirical Example - Green, Kolesar and Soares13]

The M;/M /s, + M queue presented here was originally studied by Green, Kolesar and Sod@s in [
The simulated environment is as follows:

e The running horizon is 24 hours.
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e Performance statistics are calculated over the period of time betivaen. andl7 p.m. to make
sure that the arrival rate is large enough, so that QED approximations are applicable. (Our results
actually reveal the time-period over which QED approximations are applicable.)

e All empirical values are calculated as an average over 5000 sample paths (simulations).

e Service time is assumed to be distributed exponentially, with mi¢arr 0.1 hours or 6 minutes.
(This is given in/lL3].)

e Customers patience is assumed to be distributed exponentially, with 1i@an0.1 hours or 6
minutes. (There is no account of abandonmenigj.]

e The queue discipline is assumed FCFS.
e The arrival rate function is presented in Figuée$and6.Z (being adopted from1]).

Square-Root Staffing

The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.
We are using staffing by constant value of the Quality-of-Service (QoS) parafheteich determines

an appropriate staffing level, fixed over the staffing interval, for each time interval as follows:

st = Ry + /Ry (6.5)

Here, {R;, 0 < t < 24} is the time-varying average number of customers (= busy servers) in an
M, /M /oo queue (5000 sample paths), with the arrival rate as in FiGiZand average service time of
6 minutes.

We tested 11 values g@f, from 2 to -2 in step 0.4, focusing gi = 1.2, 0 and -1.2; the latter 3 values
correspond to the QD, QED and ED operational regimes respectively.
The results will now be elaborated on.

Staffing according tc@.5), achieves a time-stable level of the delay probability. Summary of the delay
probabilities is presented in Figuges, and its stability from 6 a.m. to 17 p.m. is remarkable.

Figure6.4 shows a comparison of the simulated overall (global) delay probability and the probability of
waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropri-
ate stationary models. The theoretical global delay probability for a constisrfound by the Garnett

function [11]:
_ 0 h(p) |
a= [1—1—\/;“_@} , —o0o <3< oo, (6.6)

where3 = 5/ 11/6. (Note that onlys is required on this case, since we have assumedqithad.)

All the theoretical calculations are based on the station&fy/ /s + M model with constant arrival rate
and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,
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Figure 6.1:Arrivals, Offered Load and Staffing Levels
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we calculated the average arrival rate and the average number of servers over the period of time from 6
a.m. till 17 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on
this stationary model and reads as follows (&&#)[

t

B3+ )
7 . . (6.7)

P{w, > o

Here
®(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),
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Figure 6.2:Arrivals, Offered Load and Staffing Levels
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Figure 6.3: Stable Delay Probability
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®(z) is the survival functio{®(z) = 1 — ®(x)),
¢(x) is the density of the standard normal distribution,
h(z) £ ¢(x)/®(z) is the hazard rate of the standard normal distribution.

Note that, in contrast to Equatiaf.€), for calculating|6.7) one must specify, u, 6 separately.
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Figurel6.5 presents the plots of the abandonment probability and of the expected waiting time, for all
eleven values of the testgt] and compares each simulated measure with its theoretical value. To find

Figure 6.4.Global Performance (6:00-17:00) of
than 30 sec., if there is Waiting
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the theoretical values we used again the results fdith [

P(Aband) m\/lg [h(@) —B] : [ %Jr h}é(_ﬁﬂ))}l (6.8)
E(W,) ~ \/15 . % - [h(ﬁ) - B] - [ L+ h}z(ﬁﬂ))} B ( _ ;P(Aband)> (6.9)

The calculation of these theoretical values is based on the same statidpafy s + M model with the
constant arrival rate and number of servers, averaged as described above.

Server utilization is also relatively constant during the hours from 6:00 till 17:00: see [ddiud@ this

Figure 6.6: Average Servers Utilization
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example, it takes more time for this measure to stabilize for higher valye¢lafver target delay prob-
ability). This situation is different from that with the probability of abandoning, which is more stable for
small target delay probabilities (compare with Fig6ré).

Average values of waiting time and queue length under the three operational regimes are presented in
Figure6.7.

The dynamics of the abandonment probability is presented in F&8ré&ne can see from the zoomed

plot that for high values off this probability is low and stable over the whole simulation period, while
for close to 0 and negative values®ft stabilizes only during the period from 6:00 till 17:00.

Histograms of the waiting time, if there is waiting, for the three operational regimes are presented in
Figure6.C. The theoretical graphs were created @& using the average number of servers during the
period from 6:00 till 17:00. The fit between practice and theory is again remarkable.

PSA and Lagged PSA
Figurel6.10presents delay probabilities obtained by applying PSA and Lagged PSA and by the ISA al-
gorithm. The average service time is rather short (6 minutes), thus significant differences in performance
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Figure 6.7: Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure 6.8: Dynamics of Abandonment Probability

Abandonment Probability (Zoomed) Abandonment Probability

0.8 4

0.7 4

0.6

0.5

0.4 1 {J

0.3 Y

0.2 4

] w/‘J

o
SrNe o~ o®oo-deFese22l 5K

beta 2 beta 1.6 beta 1.2 beta 0.8 beta 0.4 beta 0O beta 2 beta 1.6 beta 1.2 beta 0.8 beta 0.4 beta 0
beta -0.4 beta -0.8 beta -1.2 beta -1.6 beta -2 beta -0.4 beta -0.8 beta -1.2 beta -1.6 beta -2

between these three methods in the levels of the delay probabilities in the morning hours (from 4 till 6)

and in the afternoon (from 14 to 20) are rather unexpected. During different periods of the day, where
the arrival rate is changing very fast, the definition of "short” service time varies, which results in over-
staffing in the morning hours, and understaffing in evening hours.

Indeed, let us consider time= 4.1 with target delay probabilityy = 0.5 (See Figur®.10. The de-
lay probability obtained by the PSA staffing is 0.181 instead of the target 0.5. This happens because
of the PSA assumption that the number of customers in the system at isngévzen by the arrival rate
A(t) = 240.4 customers per hour. Thus, the solution suggested by PSA is 25 servers, and it takes in
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Figure 6.9: Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.10:Delay Probabilities Obtained by Different Staffing Methods
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account 240.4 customers. However, at this moment the servers must handle those customers who arrived
in the previous time interval (the expected service time is exactly one time interval in our partition), that

is, there are\(t — 6 min.) = 199.575 customers to be served at this moment of time. In a stationary
M/M /25 + M model with constant arrival rate 199.575 customers per hour and the rest parameters as
defined above, the delay probability is 0.16, which is close to the simulated 0.18 instead of the target 0.5!

During the evening hours, staffing by PSA leads to understaffing. The arrival rate decreases very fast
during these hours, so taking into account a current time interval instead of its previous one results in a
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Figure 6.11:Staffing Differences between PSA and Lagged PSA Methods
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deficit of servers and too high delay probabilities.

We do not present a separate plot for each staffing level because, due to the low resolution, the differ-
ences between the curves are barely noticeable. These differences never exceed 10 servers, and for such
a large call-center with hundreds of servers (see Eig), it will be impossible to recognize them on a

single plot. Instead, Figui@.11summarizes the differences in the staffing levels obtained by PSA and
Lagged PSA. The absolute differences between staffing levels do not depend on the targehange

during the day together with the arrival rate. We observe that fluctuations of the delay probability of the
PSA method take place during the time periods where PSA and Lagged PSA determine different staffing
levels. The larger these differences, the larger the deviations of PSA from the target delay probability.

6.4.2 Second Empirical Example - A Small Israeli Bank

Here we experiment with the three different staffing methods using the data of a relatively small call-
center of a small Israeli bank. In this center, the maximal expected arrival rate does not exceed 120
customers per hour and the call center works only for 16 hours. This call-center was described by Sakov
et.al. in 2€].

The simulated environment is as follows:

The running horizon is 16 hours: from 7:00 am till 23:00 pm.

Performance statistics are calculated over the period of time be@ive@ina.m. and23 : 00 p.m.

All empirical values are calculated as an average over 5000 sample paths (simulations).

Service time is assumed to be distributed exponentially, with mgan= 3.2 minutes. (This is
givenin [B])
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e Customers patience is assumed to be distributed exponentially, withii@an7.3 minutes.
e The queue discipline is assumed FCFS.
e The arrival rate function is presented in Figéré&Z.

Staffing by ISA
The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.

Figure 6.12:Arrivals, Offered Load and Staffing Levels
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In this example, we present results of staffing by ISA and not by square-root staffing as before. It is
important to mention that the differences between these two methods are negligible.

According to the description of ISA (Secti@nl), the algorithm determines, given the target delay prob-
ability «, for each time interval (6 minutes) an appropriate staffing level, fixed over the staffing interval.
We tested nine values of, from 0.1 to 0.9 in step 0.1 focusing an= 0.1, 0.5 and 0.9; the latter 3 values
correspond to the QD, QED and ED operational regimes respectively.

The results will now be elaborated on.

Staffing according to ISA achieves relatively stable level of the delay probability even for this small
call-center. The fluctuations during the simulation run are the largest for this call-center among all the
considered examples (compare Figaréwith Figure6.13 for example), and this is due to its small size.
Summary of the delay probabilities obtained as a result of staffing by ISA is presented in&itftire

Figure6.14shows a comparison of both the simulated global delay probability and probability of waiting
more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropriate sta-
tionary model. The theoretical global delay probability for a constastfound by the Garnett function
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Figure 6.13:Delay Probability Summary
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where = A/ /0. (Note that in this casp # 0 so in this case all three parametgrsy andd are
required.)

All the theoretical calculations are based on the statioddpd//s + M model with constant arrival

Figure 6.14:Global Performance (10:00-24:00) of (1) Delay Probability; (2) Probability of Waiting
More than 30 sec., if there is Waiting

1 Simulated and Theoretical 1 Simulated and Theoretical
05 Delay Probability P(Wait > 30 sec|Wait>0)
0.8 4 0.9 4
0.7 4
0.8 4
0.6
0.5 4 0.7 4
0.4 4
03 | 0.6 - /—4——0—\
0.2 4
0.5 4
0.1 4
0 T T T T 04 T T T T T
-1.5 -1 -0.5 0 peta 0.5 1 1.5 1.5 -1 0.5 0 beta 0.5 1 1.5
—&— Sim. ISA P(Wait) —l— Theor. P(Wait) ‘—0— Sim.P(Wait>30 sec.|Wait>0) —l— Theor. P(Wait>30 sechait>0)‘

72



Figure 6.15:Global (10:00-24:00) Performance of (1) Abandonment Probability; (2) Average Waiting
Time
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rate and number of servers, both calculated in the following way: for each of the 5000 sample paths, we
calculated the average arrival rate and the average number of servers over the period of time from 9 a.m.
till 23 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on
this stationary model and reads as follows (Z&#)[

P{Wq > t’Wq >0} ~ M (6.11)
Vs ()
Here
®(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),
®(x) is the survival functior{®(z) = 1 — ®(x)),
¢(x) is the density of the standard normal distribution,
()

h(z) = ¢(z)/®(z) is the hazard rate of the standard normal distribution.

Figure6.14 clearly shows that the approximations for the probability of waiting more than 30 seconds
are not applicable for this environment. In addition, when compared to F&EBréhe simulated delay
probabilities are also relatively different from their theoretical stationary values, especially for the target
« greater than 0.6, though the theoretical and the simulated curves of the delay probability seem rather
close for3 > —0.5.

Figure6.15 presents the plots of the abandonment probability and of the expected waiting time, for all
nine values of the testedland compares each simulated measure with its theoretical value. To find the
theoretical values we used again the results fréghfor a stationary model:

P(Aband) z\/lg [h([}) —B] : [ %Jr h}z(_ﬁﬂ))}l (6.12)
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Figure 6.16: Average Servers Utilization
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The calculation of these theoretical values is based on the same statidiiary's + M model with
constant arrival rate and number of servers, averaged as described above.

These stationary approximations do not fit the simulated environment at all. [Edifrshows that the
difference between the theoretical and the simulated values is large, and it increagge\as.

Server utilization is also relatively constant during most of the day (see F&@Lée In this example,

it takes more time for this measure to stabilize for lower values of the target delay probabilitlyis
situation is different from that with the probability of abandoning, which is more stable for small target
delay probabilities (compare with Figuéels).

The average values of waiting time and queue length under the three operational regimes are presented
in Figure6.17.

The dynamics of the abandonment probability is presented in Figid& One can see that for low

values ofa this probability is low and stable over the whole simulation period.

Histograms of waiting time, if there is waiting, for the three operational regimes are presented in Figure
6.19 The theoretical curves were created via Eg111) using the average number of servers during the
period from 9:00 till 23:00. Note that for such a small average number of servers, this approximation
does not work at all, and the theoretical curve does not describe the simulated distribution.

PSA and Lagged PSA
Figurel6.20 presents staffing levels obtained by PSA and Lagged PSA methods. The results of these
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Figure 6.17: Average Waiting Time and Queue Length for QD, QED and ED Regimes

0.25

0.1

0

0.2

0.15 +

0.05 +

Waiting Time and Queue Length

0.007

QD (alpha=0.1)

- 0.006

- 0.005

- 0.004

r 0.003

- 0.002

+ 0.001

MO DOT-TA®MTLONDOD O

- o
rrrrrrrrrr NN

Avg. Queue (left) Avg. Wait (right)

1.4 4
1.2 4

0.8
0.6 -
0.4
0.2

Waiting Time and Queue Length

0.03

QED (alpha = 0.5)

r 0.025

r 0.02

r 0.015

—+ 0.01

~+ 0.005

NOOOTNNDTLOND DO =N
rrrrrrrrrr NN

Avg. Queue (left) Avg. Wait (right)

Waiting Time and Queue Length
ED (alpha = 0.9)

0.04

-+ 0.035
+ 0.03
-+ 0.025
T 0.02
+ 0.015
+ 0.01
-+ 0.005

NOOO T AMIETWLWONDD O

— N
rrrrrrrrrr N NN
)]

Avg. Queue (left) Avg. Wait (right

two methods are very close. We do not compare ISA with PSA and Lagged PSA staffing levels because

Figure 6.18: Dynamics of Abandonment Probability
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in the experiments with ISA the minimal staffing interval was six minutes, while for PSA and Lagged

PSA the minimal staffing interval was 3.2 minutes, i.e., one average service time. This was done to
facilitate the application of Lagged PSA, which, for any time interval, uses arrival rate that lags exactly
one average service time. The difference between PSA and Lagged PSA never exceeds a single server,

and the performance of the queue is very similar under both of them. FBderesents a summary of

the delay and abandonment probabilities. For this measure, these two staffing methods also give a very
similar outcome. The performance over the day is not stable, even though the staffing intervals are very

short.
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6.4.3 Third Empirical Example - An Israeli Cellular Company

Here we analyze a medium call center (maximal arrival rate reaches 500 customers per hour), which also
works for 16 hours per day. The simulated environment is as follows:

e The running horizon is 16 hours: from 7:00 am till 23:00 pm.
e Performance statistics are calculated over the period of time between 10:00 a.m. and 23:00 p.m.
e All empirical values are calculated as an average over 5000 sample paths (simulations).

e Service time is assumed to be distributed exponentially, with m¢ar= 3.3 minutes (based on
data analysis).

e Customers patience is assumed to be distributed exponentially, with 1i@an0.1 hours or 6
minutes.

e The queue discipline is assumed FCFS.
e The arrival rate function is presented in Figuée22and6.23

Square-Root Staffing

The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.
We are using staffing with a constant value of the Quality-of-Service (QoS) paraiédteis determines

an appropriate staffing level, which is fixed over the staffing intervals as follows:

st = Ry + B/Re. (6.14)

Here,{R;, 7 < t < 23} is the time-varying average number of customers (= busy servers) in an
M; /M /oo queue (5000 sample paths), with the arrival rate as in Fi@i2&and average service time of

Figure 6.19: Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.20:Arrivals, Offered Load and Different Staffing Levels
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Figure 6.21:Delay and Abandonment Probabilities Obtained by Different Staffing Methods
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3.3 minutes.

Seven values off were tested, (from 1.2 to -1.2 with the step -0.4), focusingios 1.2, 0 and -1.2
which correspond to the QD, QED and ED operational regimes respectively.

The results will now be elaborated on.

Staffing according tcG,14), achieves a time-stable level of the delay probability. Summary of the delay
probabilities is presented in Figuée24

Figure6.25shows a comparison of the simulated overall (global) delay probability and the probability
of waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appro-

77



Figure 6.22:Arrivals, Offered Load and Staffing Levels
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priate stationary models. Here, theoretical values are calculated using the average simulateddvalue of
The theoretical global delay probability for a consténs found by the Garnett functiofd1]:

_ ORI o0
_{1+\/;h(—ﬂ)} , < P < o0, (6.15)

where = A/ /0. (Note that in this casp # 0 so in this case all three parametgrsy andd are
required.)

All the theoretical calculations are based on the station&fy/ /s + M model with constant arrival rate

and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,
we calculated the average arrival rate and the average number of servers over the period of time from 10
a.m. till 23 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on
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Figure 6.23:Arrivals, Offered Load and Staffing Levels
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Figure 6.24:Delay Probability Summary
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this stationary model and reads as follows (ZE#)[

L\Wq > 0} ~ B +/0pt) f@ﬂ . (6.16)

P{W, > 7 507)
Here

®(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),
®(z) is the survival functio{®(z) = 1 — ®(x)),

¢(x) is the density of the standard normal distribution,

h(z)

(z) £ ¢(x)/®(x) is the hazard rate of the standard normal distribution.

We conclude from Figuré.25that the delay probability can be approximated by the stationary model

T
T
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very well, while for the probability of waiting more than 30 seconds, if there is waiting, the difference
between theoretical and simulated values grows as the targeteases although these differences are
significantly less than in the previous example.

Figure6.26 presents the plots of the abandonment probability and of the expected waiting time, for all
nine values of the tested and compares each simulated measure with its theoretical value. To find the

Figure 6.25:Global Performance (10:00-23:00) of
More than 30 sec., if there is Waiting

(1) Delay Probability; (2) Probability of Waiting
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Figure 6.26:Global (10:00-24:00) Performance of

(1) Abandonment Probability; (2) Average Waiting

Time
0.25 Simulated and Theoretical Simulated and Theoretical
. Abandonment Probability 0.03 Waiting Time
0.2 4 0.025
0.02
0.15
w
50.015 -
o
0.1 4 =
0.01
0.05 7 0.005 -
0 T T T T T (o] . . T T T
-1.5 -1 -0.5 [0] 0.5 1 1.5 -1.5 -1 -0.5 bet 0 0.5 1 1.5
beta eta
—&— Simulated P(Aband.) —#— Theoretical P(Aband.) ‘ ‘ —&— Simulated E(W) —#—Theor. E(W)

80



Figure 6.27: Average Servers Utilization
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theoretical values we used again the results frégj

P(Aband) z;g - [h(ﬁ) - B] - [ L. h]z(_ﬁﬂ))} B (6.17)
BE(W,) z\/lg : % [h(@) —B] : [ %Jr h]z@,)yl <: ;P(Aband)> (6.18)

The calculation of these theoretical values is based on the same statidriary's + M model with
constant arrival rate and number of servers, averaged as described above.

The approximations are very good when the target delay probability is lower than & kalf (< 1.2),
and are less precise for larger values of the tatget

Server utilization is also relatively constant during most of the day (see F&g2ire In this example, it

takes more time for this measure to stabilize for lower target delay probability. This situation is different
from that with the probability of abandoning, which is more stable for small target delay probabilities
(compare with Figur®.29).

The average values of waiting time and queue length under the three operational regimes are presented
in Figure6.28

The dynamics of the abandonment probability is presented in F&id€e One sees that for low values
of « this probability is low and stable over the whole simulation period.

Histograms of waiting time, if there is waiting, for the three operational regimes are presented in Figure
6.3Q The theoretical graphs were created \6al€) using the average number of servers during the
period from 10:00 till 24:00.
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Figure 6.28: Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure 6.29: Dynamics of Abandonment Probability
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PSA and Lagged-PSA

The summary of arrivals, offered load and staffing levels for the three operational regimes (QD,QED and

ED), obtained by PSA and Lagged PSA methods, is presented in FditeIn addition, this figure

shows that the staffing differences between PSA and Lagged-PSA methods never exceed a single server.

The delay probability (see Figu&32) is more stable than in the previous example, under all staffing
methods, especially during the hours of high arrival rate. PSA method does not perform very well during
the first three and the last two hours. At the beginning of the day it leads to overstaffing, because it is a
period of a very fast growth of the arrival rate. Overstaffing can be identified from the plot of the delay
and abandonment probabilities (Figie82). During the last two hours, PSA results in slight under-

staffing, which follows from the delay probability being higher than the target level.

The abandonment probability obtained by both methods (Fig13@ is stable over the main part of the

day.
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Figure 6.30: Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.31:Arrivals, Offered Load and Different Staffing Levels
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6.4.4 Last Empirical Example - Charlotte Call-Center

Here we analyze the medium call-center which was studied in the course "Service engineering” (096324)
[45]. This example is different from the previous ones, because here the customers’ patience is to be
estimated using the operational ACD report of the call-center. This report is presented inG:gfure

In practice, the target of the empirical staffing level was to answer the calls which arrive during the day
in average within 30 seconds. This target was achieved. However, the performance during the day was

rather unstable. Below we compare the simulated results of staffing according to cghstiintthe

empirical results.

The simulated environment is as follows:

e The running horizon is 10 hours: from 8:00 am till 18:00 pm.
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Figure 6.32:Delay and Abandonment Probabilities Obtained by Different Staffing Methods
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e All empirical values are calculated as an average over 5000 sample paths (simulations).

e Service time is assumed to be distributed exponentially, with nigarr 1/12 hours or 5 minutes,
as described ird5].)

e Customers patience is assumed to be distributed exponentially. The evaluation of its mean was
conducted using the 4CC softwardd]) and is explained later.

e The queue discipline is assumed FCFS.
e The minimal staffing interval in practice is 30 minutes.

¢ In the simulations, we compared staffing intervals of 5 minutes (a single average service time) and
of 30 minutes.

e The arrival rate function, the offered load and the empirical staffing level are presented in Figures
6.34and6.35

The empirical customers’ patience during each half-an-hour period was estimated in the following way.
The parameters, such as arrival rate, service time and the number of servers, were uploaded to the 4CC
software B3] using the option "Advanced Query”. Then the empirical abandonment probability of this
interval was set to be the goal. On the basis of the uploaded data, 4CC determined the lower and the
upper limits of the customers mean patience.

Figurel6.36 presents the estimated abandonment rate during each half an hour which was found as an
average of the lower and upper limits. These limits were very close for almost the whole day except of
the first interval (8:00-8:30) and the two last ones (17:00-18:00). This is why later we do not use these
intervals for the estimation of the average customers patience.

One of the limitations of our simulation software is the underlying assumption that the abandonment rate
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Figure 6.33:Example of ACD Report

Asymptotic Operational Regimes
Example of Half-Hour ACD Report

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents ‘
Total |20,577] 19,860 3.5% 30 | 307 | 95.1% |
8:00 | 332 308 7.2% 27 [ 302 | 87.1% 59.3
8:30 | 653 615 5.8% 58 | 293 | 96.1% 104.1
9:00 | 866 796 8.1% 63 | 308 | 97.1% 140.4
9:30 | 1,152 | 1,138 1.2% 28 | 303 | 90.8% 211.1
10:00 | 1,330 | 1,286 3.3% 22 | 307 | 984% 223.1
10:30 | 1,364 | 1,338 1.9% 33 [ 296 | 99.0% 222.5
11:00 | 1,380 | 1,280 7.2% 34 | 306 | 98.2% 222.0
11:30 | 1,272 | 1,247 2.0% 44 [ 298 | 94.6% 218.0
12:00 | 1,179 | 1,177 0.2% 1 | 306 | 91.6% 218.3
12:30 | 1,174 | 1,160 1.2% 10 | 302 | 95.5% 203.8
13:00 | 1,018 | 999 1.9% 0 [ 314 95.4% 182.9
13:30[1,061| 961 9.4% 67 | 306 [100.0%| 163.4 |
14:00 | 1,173 | 1,082 7.8% 78 | 313 | 99.5% 188.9 |
14:30 |1,212| 1,179 2.7% 23 | 304 | 96.6% | 206.1 |
15:00 | 1,137 | 1,122 1.3% 15 | 320 | 96.9% 205.8
15:30 | 1,169 | 1,137 2.7% 17 | 311 | 97.1% 202.2
16:00 | 1,107 | 1,059 4.3% 46 | 315 | 99.2% 187.1
16:30 | 914 892 2.4% 22 | 307 | 95.2% 160.0
|17:00| 615 | 615 | 0.0% | 2 [328]83.0% | 135.0 |
17:30 | 420 420 0.0% 0 [ 328 | 738% 103.5
18:00 | 49 49 0.0% 14 | 180 | 84.2% 5.8

is constant during the whole day. As follows from Fig6t8€, this assumption does not hold in the real

life. In our further experiments we set the abandonmentgatebe 10.2 customers per hour, which

was found as the average of the estimated abandonment rates weighted by the number of arrivals in each
half-hour interval.

In addition, Figure6.36 presents the empirical quality of service parameter during the whole day. We
see that it is very unstable; so that during the same day some customers are served under the ED regime
(B < —1), while others - under the QD regimg ¢ 2).

Square-Root Staffing
The goal of our experiments is to achieve time-stable performance in the face of time-varying arrivals.
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Figure 6.34:Arrivals, Offered Load and Staffing Levels
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Figure 6.35:Arrivals, Offered Load and Staffing Levels
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For both 5-minute and 30-minute staffing intervals, we are using staffing with a constant value of the
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Figure 6.36:Estimated Quality of Service and Customer Patience
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Figure 6.37:Delay Probability Summary

Delay Probability (5-minutes intervals)
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beta-0.8

beta 0.4

Quality-of-Service (QoS) paramet@r This determines an appropriate staffing level, which is fixed over
the staffing interval for each time interval as follows:

st = Ry + B/Re.

Here,{R;, 0 < t < 24} is the time-varying average number of customers (= busy servers) in an

(6.

19)

M; /M /oo queue (5000 sample paths), with the arrival rate as in Fi@Ld®and average service time of

6 minutes.

In both cases, seven values@fvere tested, (from 1.2 to -1.2 with the step -0.4), focusingiea 1.2,
0 and -1.2, which correspond to the QD, QED and ED operational regimes respectively.

5-minute staffing intervals
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Figure 6.38:Global Performance (10:00-16:00) of (1) Delay Probability; (2) Probability to Wait More
than 30 sec., if there is Waiting
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Staffing according tog.19) achieves a time-stable level of the delay probability. Summary of the delay
probabilities is presented in Figuée37.

Figure6.3&shows a comparison of the simulated overall (global) delay probability and the probability of
waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropri-
ate stationary models. The theoretical global delay probability for a constisrfound by the Garnett

function [11]:
A 7 —1
o= [1 —i-\/Eh}(L(_ﬁﬁ)J , —o0o< (< o0, (6.20)

where = W (Note that in this casg # 6 so in this case all three parametékrsy andd are
required.)

All the theoretical calculations are based on the station&fy/ /s + M model with constant arrival rate

and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,
we calculated the average arrival rate and the average number of servers over the period of time from 10
a.m. till 16 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on
this stationary model and reads as follows (Z&#)[

(340
P{Wq >\/t§'Wq > o} ~ W . (6.21)

Here
®(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),
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®(x) is the survival functior{®(z) = 1 — ®(x)),
¢(x) is the density of the standard normal distribution,
h(z) £ ¢(z)/®(x) is the hazard rate of the standard normal distribution.

Figure6.39 presents the plots of the abandonment probability and of the expected waiting time, for all

Figure 6.39:Global (10:00-16:00) Performance of (1) Abandonment Probability; (2) Average Waiting
Time
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seven values of the testgdand compares each simulated measure with its theoretical value. To find the
theoretical values we used again the results fréghfor a stationary model:

P(Aband) ~ \/15 [h(B) _ B] - [ " h}é(:@ﬁ))}l (6.22)
BE(W,) ~ \/15 . % - [h(@) _ B] - [ L+ h’z(ﬁg)} - ( - :)P(Aband)> (6.23)

The calculation of these theoretical values is based on the same statidjiafy s + A model with the
constant arrival rate and number of servers, averaged as described above.

Server utilization is also relatively constant during most of the day (see Fegd@e In this example, it

takes more time for this measure to stabilize for higher valugs(twer target delay probability). This
situation is different from that with the probability of abandoning, which is more stable for small target
delay probabilities (compare with Figuéed?2).

Average values of waiting time and queue length under the three operational regimes are presented in
Figure6.41.

The dynamics of the abandonment probability is presented in Figidéz One can see that for low
values ofa this probability is low and stable over the whole simulation period.

Histograms of the waiting time, if there is waiting, for the three operational regimes are presented in
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Figure 6.40: Average Servers Utilization
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Figure 6.41: Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figurel6.42 The theoretical graphs were created @&() using the average number of servers during
the period from 10:00 till 16:00, and the accuracy is excellent.

30-minute staffing intervals

In practice, such short staffing intervals may be an impractical solution, since in reality people often lack
flexibility and staffing levels cannot be changed every five minutes. Below are the results of our simu-

lations for staffing using a constant quality-of-service parametan 30-minute-long staffing intervals.
Our results exhibit performance that is significantly better than that prevailing in industry.

The recommended staffing levels for the three considered operational regimes are presented in Figure
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Figure 6.42: Dynamics of Abandonment Probability
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Figure 6.43: Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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6.44.

The empirical staffing level, which differs from the simulated one, leads to a very unstable performance
during the day. Figuré.45presents a comparison between the simulgtedder three different opera-
tional regimes with the empirical quality-of-service parameter. This figure shows that though the staffing

intervals are relatively large, the simulatéds very stable.

Delay and abandonment probabilities are, of course, less stable than in case with the 5-minute staffing
intervals, but they are still very predictable. Fig6rd6presents a summary of these probabilities for all

seven values af.

The abandonment probability during the whole day under any operational regime is much more stable
than the empirical one. The comparison between the simulated and the empirical probabilities of aban-
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Figure 6.44:Arrivals, Offered Load and Staffing Levels
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Figure 6.45.Empirical and Simulated Quality of Service
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doning are shown in Figui@47.

The overall performance of Charlotte call-center is also improvable. Babmpares some empirical
performance measures with those obtained by our simulations. As follows from this table, the overall
performance of the call-center could be improved. The objective of answering all the calls within an
average of 30 seconds could be achieved using a smaller number of servers. In fact, the present number
of servers could have been sufficient to decrease the average waiting time from 30 to 10 seconds.

The utilization of the servers could also be increased: under the ED regime it excegdsargdthe
average waiting time is not significantly different from the target 30 seconds.
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Figure 6.46:Summary of Delay and Abandonment Probabilities
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Figure 6.47:Empirical and Simulated Abandonment Probability
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PSA and Lagged PSA

Table 6.1:Charlotte - Comparison of Empirical and Simulated Performance
Agent ASA

hours | P(Aband)| (sec) | Utilization
Empirical 17815 | 3.5% 30 95.1%
6=12(QD) | 1857.4 | 0.49% 1.58 | 90.33%
B =0(QED) | 1702.92| 3.2% 10.78| 96.5%
3 —1.2(ED) | 1548.58| 10.19% | 35.82| 99.4%
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In the Charlotte call-center, staffing differences between PSA and Lagged PSA cannot be ignored: for the
time intervals in which the arrival rates change fast, the differences in the number of servers can amount
up to 12 servers. Figui®.48 presents staffing differences between Lagged PSA and PSA staffing over
the day, under the QD, QED and ED regimes. We do not present a separate plot for each staffing level
because, due to the low resolution, the differences between the curves are barely noticeable.

It appears that the time lag has a strong impact on the overall performance of the system6 Bigure

Figure 6.48:Staffing Differences between the Lagged PSA and PSA methods

Staffing Differences:
Lagged PSA - PSA

shows that the use of PSA gives unsuitable delay probabilities: too high for the first part of the day with
an increasing arrival rate, and too low for the second part of the day with the decreasing arrival rate. In
contrast, both Lagged PSA and square-root staffing give very close and stable delay probabilities.

In addition, the abandonment probability (see Figbu®() is subject to the changes in the staffing lev-

els: the probability of abandonment is very stable both under the square-root staffing and Lagged PSA,
whereas staffing by PSA worsens the abandonment probability which becomes very unstable during the
day.

6.4.5 Conclusions

Systems with staffing levels determined by ISA or according to square-root staffing with cahpemt
formed very similarly for all our examples. Hence we describe the performance of only one of these
methods.

The examples above differ in the levels of the offered load during the work day. In our second example,
the range of offered load is within 1 to 6 hours per hour (Erlangs), while in the first and in the last ex-
amples the offered load falls within the range of approximately 50 to more than 200 Erlangs. Thus, we
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Figure 6.49: Delay Probability obtained by different staffing methods
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Figure 6.50: Abandonment Probability obtained by different staffing methods
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can conclude that most of the QED approximations are inaccurate for small system size, since none of

the approximations, except for the Garnett formi@&), fits in our second empirical example (a small
Israeli bank).
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The Garnett Function (6.€):  First of all, we wish to emphasize that the Garnett approximation for the
delay probability is very robust. As follows from our second example, this approximation can be applied
even to a very small call-center, though it is rather surprising that the asymptotic results are so close to
the simulated values even when the number of severs is small (5-10 servers).

Delay Probability:  Square-root safety staffing enabled a very stable delay probability during the sim-
ulation run in all examples, except for the second one, where the deviations of the delay probability were
large during the whole simulation run due to the very small size of this system. In the first example, there
was a warm-up period with relatively large deviations during the first hours of the run due to the low
offered load in this period.

Waiting-Time Histograms:  The empirical waiting-time histograms of the delayed customers almost
coincide with the theoretical curves in all cases, except for the second example. In the third example,
in which the offered load does not exceed 60 servers per hour, the theoretical curve [(EXiudoes

not precisely describe the empirical distribution of waiting time if there is waiting under the the QD
regime, though starting from some point, the two are rather close to each other. QED and ED empirical
histograms in this example are very close to their theoretical curves.

In the first and the last examples (Figu@& andi6.30), where the offered load during the day ap-
proaches 200 servers per hour, all the empirical histograms can be reliably predicted by their appropriate
theoretical curves.

In the second example, the empirical histograms (FigL.t€) do not resemble the theoretical curves at
all, the reason being a very small size of this system.

Different Staffing Methods In our examples, square-root safety staffing gave rise to the most stable
performance . From the description of Examples 1 and 4, it follows that Lagged PSA is rather close to
square-root staffing, though it is a slightly less stable. Lagged PSA performs better than PSA in all cases
except for the very small call-center, where they performed in a very similar mode. In general, staffing
by PSA leads to overstaffing during the first part of the day with the increasing offered load, and it results
in under-staffing in the second part of a day with the decreasing offered load.

In Examples 2 and 3, ISA of staffing was not compared with PSA and Lagged-PSA due to differ-

ent length of the staffing intervals between the simulations with ISA and PSA and Lagged-PSA. The
different staffing shifts were simulated due to short average service time (about three minutes). To ap-
ply Lagged-PSA, we needed to set the minimal staffing interval to be 3 minutes, while for square-root
safety staffing, the staffing interval was six minutes, because shorter intervals are of no practical value.
Although in these examples, it was not possible to compare the performance of the three methods, we
assume that the performance of Lagged-PSA would be very similar to that of I8Ataffing with the
3-minutes staffing intervals.

96



6.5 Appendix

This Appendix presents the explanation of our present implementation of the performance measures
listed in Sectior6.2, alternative ways of these calculations and a comparison of the implemented and the
alternative methods.

6.5.1 Performance Measures Implemented in the ISA Algorithm

Recall that in the formulae below:

superscripj indicates the” replication;

subscript indicates a'” partition interval of sizeA T,
total number of replications Reps

Dynamic Performance Measures
Offered LoadR;
i1 L

Ry ==
! Reps

9

where
L{ is the total number of customers at the end of interualreplication;j; recall thatRepsis the number
of replications.

Implied Service Quality,

ﬁ _St—Rt
t — /7Rt )

where
s¢ Is the number of servers during the intervvé@lvhich is held fixed by ISA over an interval).

Servers Utilizatiorn,

oy — > ]
Reps
here

p{ is the servers utilization during intervain replication;:

;  Busy]

pt - AT'St,

where
Busyg is the total time the servers were working during the intet\mlthe j** replication.

Abandonment Probability?; (band)

SR Pl (Aband)

7

Py(Aband) =

Reps
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here ,
Abandoned]

Arrived]

P! (Aband) =

WhereArrived{ is the number of customers who arrived at time interimteplication;, andAbandoned{
is the number of customers who arrived at time intetvalreplicationj and eventually abandoned.

Delay Probability P, (W, > 0)

> Bl (W, > 0)

P, = ;
H{Wq > 0) Reps
here ,
; Delayed]
R, > 0) = DA
Arrived]

WhereDelayed{ is the number customers who arrived at time intetymlreplicationj and did not start
their service immediately.

Average Queue Length;

" .
o ST
K Reps '

WhereQ{ is a queue length in intervain ;" replication.

Average Waiting Tim&l;
Reps j
e w

Wi Reps

whereWtj is an average waiting time of customers wardved in intervalt in j** replication:

W aiting time)]

_
W} = —
Arrived,

Average Waiting Time, if there is Waitidg1W;|WW; > 0)

S P (Waiting time)?
EW{W; > 0) = = Reps J t
ijl Delayed,;

where(W aiting tz’me){ is the total waiting time of customers who arrived at tinmethe j** replication.

Overall Performance Measures

Average Waiting Timé&l/
ZReps Wj
- Reps .
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here

(Waiting Time)’
Released’
whereReleased’ is the total number of customers who left the queue duringtheeplication.

Wi =

Average Waiting Time, if there is on Waitidigf W |W > 0)

Reps i i
s pWIWI > 0
E(W|W > 0) = =1 EW] )

)

Reps
where

_ Total Waiting Time’

EWI|wi = :
(W7 |w? > 0) Total Delayed’
Average Abandon Probabiliti? ( Aband)
Reps pij
" PJ(Aband
P(Aband) = 2= Re;g )
where
~ Abandoned’

Average Delay Probability?(W, > 0)
>R PI(Wy > 0)

P =
(W >0) Reps ’
where
- Delayed’
PP(W,>0)= ——"—.
(Wy>0) Released’
Servers Utilizatiorp
Reps 5
X
"~ Reps
herep/ is the total servers utilization during” replication.
» Busy’
P] = a7
AT Zt:l St

whereBusy’ is the total time the servers were busy durjigiteration.
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6.5.2 Alternative Ways of Calculations

This section presentlternative ways for calculating some performance measures in the simulation
software. First, we present an approach, which is based on a different way of averaging. It yields typ-
ically approximately the same results as the method implemented in the code, but the outcomes could
vary in case of large deviations of the estimated measure (i.e., Delay probability) over time. Later, we
discuss different definitions of abandonment probability

Single-Batch Approach

In the ISA implementation, almost all the performance measures are calculated as an average of many
(Reps) averages. The only exception is Expected Waiting Time, if there is Waiting for the whole simula-
tion horizonE (W |W > 0). For all others, first, we calculated the needed measure for a single replication
(batch), and the final result was calculated as an average of all the batches.

The difference in the calculation df(W|W > 0) is that in its calculation we use a single very long
batch of lengthReps x T. Other performance measures, for example, Delay Probability, can be also
calculated by this approach.

Both implemented and the single-batch methods have their advantages and disadvantages. Finding the
average of multiple batches smoothes and neutralizes extreme deviations which take place in some single
batch.

On the other hand, taking into account all the results as a single batch provides more data about steady
state. Performance measures are calculated basing on a longer period of time so they are more informa-
tive. This approach is efficient if simulation runs are long or expensive. Its disadvantage is that it is more
sensitive to large deviations of the estimated measure - because here we average only once, and not two
times as in the implemented method. The Expected Waiting Time if there is Waitiig 1w > 0) was
calculated following the Single-Batch Approach because according to the simulation results, it converges
to its theoretical value much faster if it is implemented this way.

As an example, here is the calculation of Abandonment Probability during time inteceatied out
under the Single-Batch Approach.

Abandon Probability of typeduring intervalt P}(Aband)

ijf‘g Abandoned;”’

Reps . 0,7
> j—1 Arrived,

P!(Aband) =

Table6.2 summarizes the existing and the alternative calculation methods.

Abandonment Probability

There is a certain ambiguity in the definition of the Abandonment Probability. In the simulation software
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E(WEWE > 0)

Existing Alternative
. Zf:efs P/ (Aband) ZREP ? Abandonedi’j
P} (Aband) s
Reps > Arrived.’
. ZRepS PP (W,>0) ZREPS Delayed.’
Pi(W, > 0) T ' o
t\re Reps Zj:e’fs Arrived;”’
ZR”)S Wi ZR”” (W aitin, sze) J
Wi Lg=1 't 9
t Reps Zf‘p" (Arrived)y?
ij’fs E(W} W7 >0) ZRCPS (Waiting Time)™

Reps ZRCPS (Delayed)i-
Wi Zfefs Wi ZRepS (Waiting Time)?
Reps Zfefs (Released)’
EWiW > 0) ijfs Total Waiting Time*? E(WHI W53 >0)
S Total Delayed:i Reps
ZReps P4 (Aband) ZReps Abandoned:
Pi(Aband) = — —————
Reps Zj:‘[f‘ Released;,
S Reps piy,>0) ZReps Delayed:
Pi(W, > 0) = -
E Reps Effzf Released:

Table 6.2:Existing and Alternative Ways of Performance Measures Calculations

we consider the ratio of those customers who arrived during time intervadl abandoned later (not
necessary during this time interval) and the total arrivals during the same time interval.

One can also think of Abandonment Probability in the following way, taking into account all the previous
intervals: it can be found as a ratio of all the customers who decide to abandon until time intardal
the total number of arrived customers till this time interval. These two approaches may lead to different

results in their evaluation.

Here we present the second approach. Let us consider the abandonment rate astiheenumber of
customers who abandon during the time intetyaenote itr;. Theoretically, using balance equations,

101




this arrival rate is found from the following expression:
re = 0% E[Qy],
whereQ) is the queue length at time t. In this case the abandonment probability is calculated via
Pi(Aband) = ¢/ M,

where); is the arrival rate at time t.

One sees that, from the customer point of view, the method implemented in the simulation software is
more "informative”, while the alternative method has more managerial insights.

Moreover, under the QED regime, we expect thay/ R, should be approximately constant. So, follow-

ing this new definition of abandonment probability, we obtain that the Rtidband) x \; A/R; is also
approximately stable. Simulation experiments confirm that. However, this observation is not practically
useful for stabilizingP; (Aband), since\; A/R; ~+/R; is of the order of 10’s.
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Chapter 7

Time-Stable Performance of Time-Varying
Queues with Static Priorities

This chapter explains how it is possible to identify staffing levels that give rise to a time-stable perfor-
mance forall types. We use the same approach a®jmand apply its Iterative Staffing Algorithm (ISA)
within a time-varying environment. We present detailed results forMypM /s, + M models (time-
varying Erlang-A) and a summary of several additional models, all with two types of customers.

As before, the assumption is that servers are independent but statistically identical; in other words, ser-
vice times forall customers have treameexponential distribution. For such models, the main findings
of our analysis are as follows:

e Overall success in stabilizing performance: very successful in stabilizing the delay probability
and implied service grade, and reasonably successful in stabilizing waiting times, queue lengths
and abandonment rates, especially for the high priority customers.

e Global performance of our time-varying systems correspond to an appropriate stationary system.
The fit is better for systems with low fraction of one of the types and less exact for systems with
approximately the same fraction of arrivals for both types.

e Dependence on the total arrival rate only, as opposed to the vector of type arrival-rates. (It is rather
clear to us that this is due to the fact that all service times are type-independent and identically
distributed.) Consequently, the staffing problem can be reduced to staffimgle-typeErlang
model.

Abandonments play a crucial role in system performance; indeed, adding abandonment enables the al-
gorithm to converge significantly faster than those without. For instance, the running horizon was 24
time units (instead of 72 time units required for Erlang-C queues). The number of iterations till ISA
convergence is also small due to the customers’ impatience. The highest number of iterations is 4, after
which the algorithm always converges evendos 0.8 and 0.9, while in queues without abandonment,
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for these values af the algorithm did not succeed to converge even after 100 iterations.

If customers do not abandon, the warming-up period is relatively long. To ensure that a system reaches
steady state, we take 72 time units as the simulation running horizon. For under-loaded systems (with
targeta = 0.1, 0.2, 0.3) the number of iterations till convergence is small, while for highly-utilized sys-
tems @ = 0.8,0.9) it could be very large, hence the highest valuexoie consider in the simulation
experiments of Erlang-C queues is 0.75. The number of iterations till convergence for this liatts2

at the most. If we continue experimentsdc= 0.8 or more, this number exceeds 100 iterations, which
takes about 6 hours in computer time.

7.1 Two-types customers in the QED regime. Simulations results

To check the performance of ISA in an environment with heterogeneous customers, the algorithm was
applied to various queueing systems with time-varying arrival rates. The results are described below.

7.1.1 An Example with the Time-Varying Erlang-A Model

Here we present the performance of ISA for the time-varying Erlang-A modé&lgi/ /s, + M) with
two customer types and sinusoidal arrival rates of each type.

Models Description:

e The running horizon is 24 time units and performance statistics are collected af@f ttme
units to make sure that the system reaches to a steady state.

e All the values are calculated as an average of 5000 iterations.
e Service time is distributed exponentially with megf = 1 time unit.
e Customer patience is distributed exponentially with megh= 1 time unit.

e There are two types of customers. Customers of the first type have a non-preemptive priority over
the second type customers.

e The queue discipline within each class is FCFS.
First (70-30) System Arrival Rates:

e First-type arrivals are given by a non-homogenous Poisson process with the arrival rate
A1(t) =70+ 21 - sin(3t). Period is27 /3.

e Second-type arrivals are given by a non-homogenous Poisson process with the arrival rate
Ao(t) = 30 4 12 - sin(2t). Period isr.

Second (30-70) System Arrival Rates:
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e First-type arrivals are given by a non-homogenous Poisson process with the arrival rate
A1(t) =30+ 12 - sin(2t). Period isr.

e Second-type arrivals are given by a non-homogenous Poisson process with the arrival rate
A2(t) = 70 4+ 21 - sin(3t). Period is27 /3.

The total arrival rate in both systems is givenX{y) = 100 + 12 - sin(2¢) 4 21 - sin(3¢) with period2x.

Staffing levels, obtained for both systems for the tested values afe shown in Figureg.1-7.2. The
total arrival rate is the same in both systems, hence for the same valudsefietermined staffing level
is the same. Queue lengths and expected waiting times are presented in the second part of these Figures.

Figure 7.1:Targeta=0.1 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and
Queue Length of Both Classes.

The 70-30 System, Target a=0.1 The 30-70 System, Target a=0.1
140 Staffing Level, Offered Load and Arrivals Staffing Level, Offered Load and Arrivals
120 4
100 4
80 4
60 -
40
20 4
0
o o~ o [Xo} ~ (=2} o o < wn ~ [=2] o N ot
MR °© & mw e ®o - 023 ee2gy
—él;ri}/rals I —grfrfivalg E d Total Arrivals Arrivals | — Arrivals |l —— Total Arrivals
atting ered Loa — Staffing —— Offered Load
The 70-30 System, Target a=0.1, Type I: The 30-70 System, Target a=0.1, Type I:
0.45 Average Queue Length and Average Waiting Time. 0.006 Average Queue Length and Average Waiting Time.
0.004
+ 0.005 l 0.0035
- 0.004 + 0.003
+ 0.0025
+ 0.003 | 0.002
+ 0.002 + 0.0015
L 0.001 - 0-001
- + 0.0005
0 0 0
SN ™1 © © 2 - I L X 2gY O N ™MW © ® O = N T WO~ OO T O
******* NN - - - v - - & N &
Avg. Queue (left) Avg. Waiting Time (right) ‘ Avg. Queue (left) Avg. Waiting Time (right) ‘
The 70-30 System, Target a=0.1, Type II: The 30-70 System, Target a=0.1, Type II:
0.6 Average Queue Length and Average Waiting Time. 0.014 07 Average Queue Length and Average Waiting Time. 0.009
- 0.012 - 0.008
oo 0000
+ 0.008 | 0.005
t 0.006 | 0.004
- 0.004 - 0.003
+ 0.002 r 0.002
o + 0.001
< 0 o]
N O N M 1 © © ® — N ¥ B M~ © O — ™
FFFFFF K& & &
Avg. Queue (left) Avg. Waiting Time (right) ‘ Avg. Queue (left) Avg. Waiting Time (right)

105



Customers abandonment makes a system stable. As mentioned above, the running horizon was decreased
from 72 in Erlang-C to 24 time units because systems with abandonment converge to steady state sig-
nificantly faster. As expected, the algorithm obtains stable delay probability for both customer types and
for both systems throughout its running period. (See Figuig

Figure7.5 presents a summary of abandon probabilities for the highlighted QD, QED and ED regimes.
This figure shows that ISA is less successful in stabilizing the abandonment probability for large values
of the target delay probability. The greater target, the less stable the abandon probability.

In our systems, customers have exponential patiencefwithl so in stationary models, by the relation

Figure 7.2:Targeta=0.5 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and
Queue Length of Both Classes.
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Figure 7.3:Targeta=0.9 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and
Queue Length of Both Classes.
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P(Aband;) = 0 E[W;] the abandon probability must be equal to the expected waiting time. Figies

-[7.7 verify this relation for our time-varying models under the three considered regimes. It follows that

the abandon probability of the high priority is virtually equal to the expected waiting time for all the
three highlighted values af, as predicted by the theoretical relation between the expected waiting time

and the abandonment probability in stationary queues. The abandonment probability of the low priority

is always above the expected waiting time, except for the @asd).1 in the 30-70 system where these

two measures are rather close. In all three cases, there clearly exist a dependence between the abandon-
ment probability and the expected waiting time, but this relation is different from from equality of the
abandonment probability and the expected waiting time for the lowest priority.
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Figure 7.4:Summary of Delay Probability.
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Dynamics of the implied grade of servigkis presented in Figuré.C.
ulation runs. In the simulation of 30-70 system with the target 0.9 it drops down during the first

time unit but then stabilizes fast. In the 70-30 system there is no such a sharp drop but there are more
fluctuations during the simulation run.

Waiting-time histograms are presented in Figltdsl-7.12
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Figure7.8is the comparison of the theoretical curve and the empirical pajrg(). The empirical val-
ues in both systems are very close to the theoretical curve, even for the higheasD.

It is rather stable during sim-

The utilization summary of both systems for different values of the targefpresented in Figuré.1Q
This measure stabilizes relatively fast - during the first two time units for all values of the éarget

It is interesting to observe that waiting time




Figure 7.5:Abandonment Probability.
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of thefirst class in both systems can be approximated by the exponential distribution similar to stationary
M /M /N model without abandonment.

To build the theoretical curves of the waiting-time distribution both in 70-30 and 30-70 models we took
the average number of servers during the period f68trtill 24°°. The average arrival rate was calcu-
lated over the same period (= 70 in the 70-30 queue, ox; = 30 in the 30-70 queue). The service
rate of the stationary model was assumed t@ e 1. In this case, the theoretical curve was built using
the exponential distribution with the mean i —-

To analyze the waiting time distribution of the first type, we actually use the following fact observed in
the previous chapter. Given waiting, the highest priority is not aware of the delayed second-type cus-
tomers. Hence\; is not needed to predict how long tdelayedcustomers of the first type will wait.

This is why when the staffing level is determined by the QED regime and all the servers are busy, the
first-type customers experience QD performance (conditioned on waiting). In the QD regime the proba-
bility of abandonment is very small, and hence the approximation by the Erlang-C model works.

The stationary distribution of the lowest priority is more problematic since, in this case, the abandonment
probability cannot be ignored. Here we present only the simulated histogram without any theoretical
curve.
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Figure 7.6:The 70-30 Systeny = 0.1 - Abandon Probability vs. Waiting Time.
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7.1.2 Results and Conclusions

We end with section with some additional results, comparisons and conclusions, based on our experi-

ments.

e The impact of abandonment: Erlang-C vs. Erlang-A

Abandonments play a very important role in queue performance. Taking them in account not only makes
a model more realistic, it also improves most of the performance measures. As we mentioned earlier,
the running horizon in the simulation of Erlang-A queues was decreased from 72 to 24 hours, since

gueues with abandonments reach steady state much faster than those without. In addition, ISA managed

to converge for all values af from 0.1 to 0.9, while in Erlang-C we had to stop afte= 0.75; and the
maximal number of the algorithm iterations till convergence was 4 instead of 12 for the Erlang-C.

Abandonments also allow to decrease the staffing level required to obtain the desired delay probability
«. Figure7.13 presents the final staffing fer = 0.1, 0.5 and 0.9 for the simulated queues with and
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Figure 7.7:The 30-70 System, Abandon Probability vs. Waiting Time.
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Figure 7.8:Theoretical (Garnett Function) and Empirical Probability of Delay/s.

The 70-30 System:
Theoretical & Simulated Probability Of Delay vs. B

The 30-70 Systi
Theoretical & Simulated Probal

em:
bility Of Delay vs.

0.9 - 0.9
0.8 - 0.8
2 07 ._;-‘ 0.7
5 061 506
2 ° 05
&9 0.5 e
7 o4l % 04
K 03 1 a 03
.2
0.2 0
0.1
0.1 -
0 T T T
0 J ' J -2 -1 [ 0 1 2
-2 -1 B 0 1 2

—— Theoretical (Garnett F-n) —e— Simulated ‘

‘ —— Theoretical (Garnett F-n)

—e—Simulated

111




Figure 7.9:Summary of the Implied Service Grade
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Figure 7.10:Utilization Summary
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without abandonment.
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The savings of labor can be quantified by the area between the staffing curves. It comes out that allowing
customers patience with= 1 leads to total labor savings of 143.4 time units fo= 0.1, 214.8 time
units fora. = 0.5 and 314.92 time units fott = 0.9. It may perhaps be better to quantify savings by

1The algorithm did not converge for = 0.9 for the Erlang-C model but using the fact that staffing of a multi-type queue is
similar to staffing of a single-type queue with the same total arrival rate and relying on the Feldman 8] eteshfsume that
in the Erlang-C queue in order to obtain= 0.9 (ED) one should staff close to the offered load. This is why in Figul&
(3), the Erlang-C Staffing and the Offered Load curve are similar.




Figure 7.11:The 70-30 System - Waiting Time Histograms.
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looking at the savings of labor per shift. Dividing the saving in time-units by the number of time-units
they are taken over, we come up with savings of about 6, 14 and 114 servers per shift;, @t, 0.5
and 0.9 respectively. The labor savings increase msreases.

e Erlang-A with Priorities vs. Erlang-A with Homogenous Customers

To see how system’s performance is influenced by the customers differentiation, we compare the results
of 70-30 and 30-70 queues simulations with the results of a singlelg&¥/ /s + M queue simulation

with arrival rateX(t) = 100 + 21 sin(3¢) + 12sin(2t), that is, equal to the total arrival rate of the 70-30

and 30-70 systems. The results are as follows:

e A single-class queue reaches the steady state faster than a queue with heterogenous customers.
This is clear in Figure’.14, which presents a summary of the implied service grader all

values of the target.

One can see thdt stabilizes immediately for all, while in the two-types systems for high values
of a there was some warmup period.
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Figure 7.12:The 30-70 System - Waiting Time Histograms.
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e As expected, customers prioritizatishortensexpected waiting times and queue lengths of the
high priority andincreasesthese for the low priority. Figuré.15presents the waiting times and
the queue lengths for the Erlang-A queue with homogenous customers. The following Eifure
compares these measures with the waiting times of the 70-30 and the 30-70 systems with the target
a = 0.9 (The differences are the largest for thiy One can see that in the 30-70 system the first-
type customers "profit” more from their status: their average waiting time decreases almost 10
fold (!) for o = 0.9. Additionally, in the 30-70 system, the waiting time of the low priority grows
about 1.5 times, while in the 70-30 system the decrease of the waiting time for the high priority is
about 2 times, and the increase for the low priority is about 2 times. This makes sense because the
fraction of the high priority is greater in the 70-30 system, hence a first-type customer, although
enjoying his priority over the second type, yet needs to wait for other customers of his type which

arrived before him.

114



Figure 7.13:Staffing: Erlang-C vs. Erlang-A. () = 0.1 (QD), (2)a = 0.9 (ED), (3)a = 0.5 (QED)
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Figure 7.14:1mplied Service Gradg for the Single-Type Queue
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Figure 7.15:Waiting Times and Queue Lengths for the Single-Type Queue
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Figure 7.16:Targeta = 0.9: Waiting Times and Queue Lengths of the Single-Type Queue vs. 70-30
and 30-70 Queues
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Chapter 8

Heavy-Traffic Approximations

Conventional/Classical heavy-traffic approximations of queues are typtealynoment approxima-

tions in the sense that means, variances and covariances of the input parameters determine the approxi-
mations. For example, the same heavy-traffic performance is expectétffdi/ N andM /LN/N (LN

stands for log-normal) if the mean and standard deviation of LN are equal, assuming that the two systems
have the same arrival rate, service rate and the same number of servers.

However, this is not what happens in practice for highly utilized systems in which many servers work in
parallel. The project of Schwart32] contains some simulation results for the delay probability and the
expected waiting time conditioned on waiting for three different service time distributions - exponential
(M/M/100), log-normal(M /LN /100) and deterministi¢ A/ /D /100). The purpose of these simula-
tions was to compare highly utilized systems with a large number of servers with different service-time
distribution. The first two moments of the log-normal and the exponential distributions are equal to 1
and, as mentioned above, the number of servers is 100.

Following conventional heavy traffic approximations, the expected waiting time should be equal for the
exponential and log-normal cases, but, as follows fi88}, Jog-normal services give rise to significantly
lower values of the waiting time. Note that the ordering of the delay probabililes LN < Exp) is
consistent with that of the expected waiting time conditioned on waiting.

The purpose of the experiments described in this chapter is to check whether it is possible to predict the
Expected Waiting Time by using only the first two moments of the service-rate distribution for queues
with impatient customers under the QED regime.

This chapter is organized as follows. Seci&f shows a derivation of a closed-form expression for the
expected queue length under the ED regime. The analysis in this section is based on the paper of Ward
[33], where she obtains the two-moments approximation for the queue length. When the expected queue
length is known, the expected waiting time is directly derived from Little’'s Law. The section closes with
the presentation of the simulation results which show that as the offered load increases, the approxima-
tion of the expected waiting time becomes more and more precise.

In Section8.2 we repeat the experiments of Schwai@2][but for M/ /G1/100 + M queues under the
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QED regime. The simulation results expand the main finding8%jftp queues with abandonment and
show that, in the QED regime, the order among average waiting times that ar@2§ mhufe to varying
service-time distributions with equal first moments, is preserved.

Lastly, a short comparison of queues with 100 servers with and without abandonment is given in Section
8.2

8.1 Heavy-Traffic Approximations

Following the approach ir33], in this section we develop a two-moment approximation for the average
queue length and waiting time in tiie/ /G /N + GI queue under heavy traffic.

We start with a single-serveérI/GI/1 + GI queue with arrival rate. and service ratg. Letu; be the
distribution of an inter-arrival timey; be the distribution of a service time addbe a distribution of
customers patience.

As shown in[B3], the steady-state mean of thd /GI/1 + GI queue is approximately given by
E(Lg) = E(N(m, b*)|N(m,b%) >0), (8.1)

where N (m, b%) is a Normal variable with a meam and variancé?. The approximation is asymp-
totically valid in heavy traffic, namely whilg converges to 1 a$my_...V/N (1 — py) = ¢ for some
c, —oo<c<oo.

Here
_pnlp—1),

p2 _ Ilpvar(u) + (p A Dvar(v1)]
F'(0) 2F(0)

(Note that for notational simplicity, ir33] the service ratg: is equal to 1.)

(8.2)

Let us find a closed-form expression for the conditional expecta8d). (

E(N(m, b*)|N(m,b%) 20) =

So ( - (x;bm)>d

= 5o [/OO O ( - @;bznl))d *




b exp(—ggz)

= V250 (m)b) +m.

The average queue length is thus given by:

b ex —m—z
B(L) ~m ep< %) (8.3)
K V2r®d(m/b) '

Then the approximated expected waiting time is a direct consequer@&)cduid Little’s Law:

b exp < - mz)
L m 2b
E(Wq) =4 (8.4)

A NX+\/%A<I>(m/b)

Figure 8.1:The M/GI/1 + M queue - Empirical Results vs. Approximations
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Now, we will consider the single-server Erlang-A/(M /1 + M) as an important special case. Let us

assume that the arrival rateisthe service rate ig and the abandonment ratefis
Here
u exp(N), o < exp(p) and F'(0) = 6.

By substituting the distributions af; andv, into (8.2), we obtain the following:

m=-" bQZM_

0 270 (8:5)
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To check the performance of the approximati8rl), we compared it with the simulated average waiting
time in M/GI/1 + M queues with three different service-time distributions. The considered service-
time distributions were: Exponential, Log-Normal with CV=1 and Deterministic.

For each simulated environment, the rest of the parameters were as follows:

e The arrival rate changes from 93 to 150 customers per hour;
e The service rate is = 100 customers per hour;

e The individual abandonment ratefis= 1.

Figure8.1 presents a summary of the average waiting time values obtained under different service-time
distributions and arrival rates. The comparison of the theoretical waiting time with the empirical results
shows that the approximation is excellent for highly utilized systemns (.2).

Some additional results are found in the summary of simulations, conducted by F}ediljis work
considersM /M /1 + GI queues with equal arrival and service rates . = 2500 customers per hour)
and the mean of individual abandonment 1 hour. The queues differ in the patience distributions.

The report BQ] includes results of Deterministic abandonment distribution and Gamma distribution
G(p), wherep is the shape parameter, foe= 5, ...,0.2. The variance o&Z(p) is }g, and it increases as
p decreases.

The first conclusion of these experiments is that the relative error in the queue length and in the abandon-
ment probability increases as the variance increases (or as the shape papaieetenses). The error

in the Queue-Length prediction for Deterministic abandonment distribution was only 3.38 %, while for
(G(0.2) itwas as big as 23.56%. The abandonment probability is influenced in the same fashion: The er-
ror in the case of the patience distributi@ii5) was only 1.41%, and undé#(0.2) it grew up to 49.36%.

The accuracy of the approximation is also a matter of scale,which follows from the second sequence
of simulations in8Q]. This second experiment tested the/AM/1/ + GI queues withGI = G(0.2).
Arrival rate X is again equal to the service raieA = 4 =n, ... n = 1000,...,100,000,000.
The error in queue length decreases from 16.38% fer1000 to 2.92 % forn = 100, 000, 000; and the
error for abandonment probability decreases from 31.57% fer1000 to 3.19% forn. = 100, 000, 000.

This observation is in line with our results presented in FiditeWe conduct experiments with service
ratep, = 100, i.e. one order less than the minimal BO]. Relying on the results of3(0], we can thus
conclude that the error of the queue-length approxima8ol) (ill be relatively large. This conclusion
is supported by the plot presented in FigBr#

8.2 M/G/100 + M Queues

As already mentioned at the beginning of this chapter, according to the heavy-traffic approximations in
Erlang-C queues, the expected waiting time depends on the service-time distribution only through its
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first two moments and can be approximatedaygman’s Law Schwartz in'82] shows that under the

QED regime this approximation is not very good. The comparison of the exponential and the log-normal
distributions with the same first two moments/&82] shows that the exponential distribution consistently
leads to greater delays. (The mean of the service distribution was always 1, &fd tifehe log-normal
distribution was also 1.)

In this section we check the impact of the service-time distribution on the expected waiting time in queues
with abandonment. Here is the description of the simulated queues.

e Customers arrivals are given by Poisson process with the arrival rates ranging from 93 to 107
customers per hour which approximately correspondsftom 0.7 to -0.7;

e Customers patience is exponential with the fate 1;

e The service rate is the same for all the distributigns; 1; equivalently,E(S) = 1.
The service time distributions in the experiments are

e Exponential: M /M /100 + M,

e Deterministic: M /Det/100 + M;

e Log-Normal withCV = 1: M/LN(CV =1)/100 + M,

e User-defined Special service-time distribution: service time is a random variable which can get
only one of two values:

0.999897, if l/k: = 1/0.989897,
P(S=1/k) =1 0.000103, if 1/k=1/100,
0 otherwise.

We denote this distribution &pecial(100) to emphasize the longest possible service time.

e User-defined Special service-time distribution: service time is a random variable which can get
only one of two values:

0.9999549, if 1/k =1/0.99338,
P(S=1/k)=1< 0.0000451, if 1/k=1/150,
0 otherwise

We denote this distribution &pecial(150) to emphasize the longest possible service time.

The mean and the variance of both user-defined distributions are equal to 1.

To check the impact of service-time distribution on system performance, we compare the expected wait-
ing time, given there is waiting, the delay probability and the abandonment probability under the five
service-time distributions described above.
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Figure 8.2:Expected Waiting Time, if there is Waiting, in Queues with 100 servers
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Figures8.2 and8.3 summarize these data for all tested= 0.7,...,—0.7.

It can be seen from these figures that 8)cial(150) service-time distribution always leads to the
lowest expected waiting time, if there is waiting, and the abandonment probability, while the delay prob-
ability is always the highest under the deterministic distribution (See FRidye

Under the exponential distribution of service time, delayed customers on average experience the longest
delay (See Figur8.2). In addition, the abandonment probability is also the highest for this distribution.

For all tested values df, the log-normal distribution gives rise to the expected waiting time and abandon-
ment probability somewhere between the exponential and deterministic distributions. (This resembles
the results of Schwart8p], though the location between the distributions is different).

From Figure8.3 we notice that under th8pecial(100) distribution, the delay probability grows faster
than under the exponential and log-normal. Yet, it does not reach the deterministic distribution, which
consistently leads to the highest delay probability.

Special(150) distribution:Let us concentrate on the second Special distribution with values 0.9338 and
150. As the probability of the low value is very close to 1 (p=0.999897) and the number of servers is
large, we can say that customers hardly feel those servers who work 150 time units. If a single server
happened to work 150 hours (and such a probability is very low), the number of active servers decreases
by 1. In such case, customers seeMpiDet/(N — 1) + M queue with service time df.99338 till

the next very long service event. Because the probability of such a long service duration is very low, it
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is reasonable to assume that the probability of a single, two or more simultaneous long service events
is negligible, and the performance of a queue vfiffiecial(150) service-time distribution will be very
close to that of arl//Det /(N — 1) + M queue with the service tin®99338 customers per hour.

Figure 8.3:Delay and Abandonment in Queues with 100 servers
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This similarity of these two systems can be easily checked by simulations. The results of these simula-

Figure 8.4:M /Special(150)/100 vs. M/ Det(0.99338) /99
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tions for different arrival rateg = 93, ..., 107 customers per hour (gt = 0.7, ... — 0.7 accordingly)

are resented in Figui@4. We can see that, as expected, the three tested performance measures are very
similar. Yet, queues with Deterministic service time and 99 servers perform slightly better for high ar-

rival rates

Heavy-Traffic Approximation for Many Servers: When the servers of any/ /G1/N + M queue work
under the ED regime, the delay probability is close to 1, and the customers’ experience is not different
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from that of M /M /1 + M queue with the service rat¥ ;.. So we may suggest that the heavy-traffic
approximations developed iB3] will work for this case, too.
We check this hypothesis by simulations, comparing their results to the theoretical values. 8%gure

Figure 8.5:The M /G1/100 + M queue - Empirical Results vs. Approximations
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presents these results. As expected, for highly utilized servers the simulated values are close to the ap-
proximations. But for for the QED regime, and for the early stages of ED regime the differences between
the simulated and the approximated values are significant. So the approximation performs here worse
than in case of a single server (compare to Fi@uitp In this case, the approximated values of the wait-

ing time approaches the simulated ones when the offered load per server exceeds 1.2, the same way as in
the case of a single server. However, for lower values of the offered load the error of the approximation
used for 100 servers is greater than in case of the single server.

8.3 M/G/100 vs. M/G/100+M

It is worth comparing the simulation results of queues without abandonment, obtained by ScB@artz [

with our simulation results of queues with abandonment.

Comparing Figur®.2 with Figure 7 in B2], we can see the differences in expected waiting time, if there

is waiting, as a function of decreasity The order of the distributions does not change after adding

the abandonment. In both cases the exponential service-time distribution results in the highest values of
the expected waiting time, and the deterministic one leads to the lowest values. The difference is that in
the Erlang-C gueues the waiting time, if there is waiting, under the exponential distribution is twice as
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large as this measure under the deterministic distribution. This coefficient is explained theoretically by
the Khintchine-Pollazchek Formula. As a result, when the valyg ddcreases, the absolute difference
between the deterministic and exponential distributions increases.

In the case of Erlang-A queues, there is less difference between the distributions, though the order of
the distributions does not change. Fig8ré shows that under the QED, the absolute difference between
these distributions virtually does not change. Moreover, using the theoretical result of A.38pwe[

can predict that further increase of the arrival rate will lead to smaller differences between the service
distributions with the same first two moments.

The delay probability behaves differently in queues with and without abandonment. In Erlang-C queues
the highest delay probability is achieved by the exponential distribution, the lowest is achieved by the
deterministic one and the log-normal distribution is situated between the two of them, very close to
the deterministic one. This order is preserved for any arrival rate test@®f]in Yet, in queues with
abandonment, the deterministic service-time distribution yields the highest delay probability, while the
plots of this probability under the log-normal and exponential distributions almost coincide.

126



Chapter 9

Future Research

Priority Queues: In our analysis of priority queues (Chaptdrand5), we used a model with the same
service rateu and with the same abandonment réteT his assumption allowed us to conduct the exact
analysis of any priority but made the model less applicable.

General Service and Abandonment RatesOne of the possible future research directions is analyzing
models where different customer types are served with differentaé@d have different abandonment
rated;.. The exact analysis of such models is very complicated, whether the customer types differ only
by their patience, or both by service and abandonment rates.

In both cases, it is reasonable to conjecture that under the ED or QED regimes as the number of servers
grows to infinity and the lowest priority is not negligible, the only type that continues to abandon is type

K (the lowest priority). This intuition is based on our result presented in SestihbMhere we showed

that under the ED and QED regimes the expected waiting time conditioned on waiting of higher priori-
ties in Erlang-A queues converges to that in Erlang-C queues, i.e. abandonments af typek” — 1

become negligible.

In the models with equal service rates and equal abandonment rates the delay probability is equal to that
inanM /M /N (+M) queue with the arrival rate = Efil(ki) for any typek. For models with different
abandonment rates (and/or different service rates) under non-preemptive priority, the delay probability is
the same for any typk but it is hard to find a closed-form expression for this probability.

To analyze models with different service rajes one might need more advanced mathematical tools.
The exact solution of such model is probably impossible, but yet some asymptotic conclusions might be
feasible. For example, we can expect that in the case of non-preemptive priority under the ED and QED
regimes, when the lowest priority is not negligible, the convergence rate of the highest priority remains
©(1/N). Under the preemptive priority this rate will be exponential.

Waiting-Time Distribution: Another challenge in the analysis of priority queues is a formal determi-
nation of the waiting-time distribution of typecustomers under the non-preemptive priority. Here, the
distribution of the delayed first-type customers waiting time is exponential, similarly to the waiting time
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conditioned on waiting in aid//M /1 queue with the arrival ratg; and service rat&Vy. The distri-
bution of other types is more complicated. On this stage, we can only observe that other non-lowest
delayedtypes face ad//G/1 queue under light traffic.

Time-Varying Queues: Our simulation results presented in Chapi&@nd(7 and results of Feldman

[9] clearly show that many of the overall performance measures of time-varying queues can be found by
using an appropriate stationary model. However, the theoretical explanation of this fact is beyond our
present understanding.

Heavy-Traffic Two-Moments Approximations: The experiments with different service-time distribu-
tions described in Chapt&® support the main finding of Schwart3]. Our experiments show that
under the QED regime, the general performance a¥atd: /N + M queue depends not only on the first

two moments of the service-time distribution, but also on the distribution itself. We found that different
service-time distributions with the same two first moments lead to different performance, which contra-
dicts the conventional heavy-traffic approximations.

A proper understanding of the impact of the service-time distribution under the QED regime on the over-
all performance is an interesting and important research problem. Progress in this field has been achieved
in the recent work of Mandelbaum and MomcilovR&5][ for finite-support services and Reed for general
service times31].
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