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Abstract

We consider Markovian non-preemptive and preemptive priority queueing systems with impatient cus-

tomers, under the assumption that service rates and abandonment rates are equal across customer types.

For such systems in steady-state, we develop an algorithm for calculating the expected waiting time of

any type.

We then assume that the number of servers is large, formally taking this number to infinity, which en-

ables an asymptotic analysis in three operational regimes: an Efficiency-Driven (ED) regime, in which

the focus is on servers’ utilization (efficiency), a Quality-Driven (QD) regime, where the focus is on the

quality of the service and a Quality-and-Efficiency-Driven (QED) regime, where efficiency is carefully

balanced against service quality.

Our asymptotic analysis provides simplified expressions for some operational measures, e.g., the ex-

pected waiting time of any type. But, as importantly, it yields structural insight. For example, assum-

ing that the offered load of the lowest priority is non-negligible, we show that preemption and non-

preemption are essentially equivalent, as far as average waiting times are concerned. Moreover, the

delayed customers of all classes other than the lowest priority wait, on average, the same time as in a

queue without abandonment. (In other words, their service level is high enough to render their abandon-

ment negligible.)

Stationary behavior turns out to provide important insights on the behavior of time-varying queues.

Specifically, under an appropriate scale and time-varying staffing, the performance of time-varying ver-

sions of the above-mentioned systems is in fact stable in time. Moreover, this stable performance matches

remarkably well the performance of naturally-corresponding steady-state systems. We demonstrate all

that via simulating queues in which the arrival-rates are taken from four real call-centers.

More specifically, we first simulate call-center environments with a single customer type whose arrivals

are described by an empirical function. After that, we present simulation results of queues with two

customer types that arrive according to analytical functions. The conclusion of these experiments, as

mentioned, is that in many cases, and under appropriate staffing, stationary models can be used to prop-

erly predict the performance of time-varying queues.

In our last chapter, the traditional heavy-traffic approximation for expected waiting time, based on the

first two moments of the service-time distribution, is considered. We check this approximation by sim-

ulating queues with different service-time distributions and conclude that in the QED regime, such two-

moment approximations are inaccurate.
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Chapter 1

Introduction

Telephone call centers have turned into a widespread and highly preferred means for many organizations

to contact their customers. These organizations cover both the public and the private sectors. For some of

them, such as cellular companies, call centers are in fact their most important contact channel with their

customers. It is no wonder, thus, that the call center world is expanding dramatically and is becoming a

vital part of our service-driven society. In concert with this state of affairs, call centers have also become

a significant object for academic research; this is amply testified by the growing literature cited in [24]

for example, some of which is surveyed in [10].

The majority of the operating costs of a call center are salaries for its staff. Overstaffing leads to un-

desirable high costs and understaffing results in long waits, dissatisfied customers and overworked and

frustrated telephone agents. Many call centers use a ”1-800” service, in which case waiting costs become

part of their operational costs. Additionally, the costs of dissatisfied customers could be very significant,

especially accounting for the fact that some abandon (during a particular call, or actually opt for the

competition).

The call center environment is very complex. One of the main complexity factors is the need to cater

to varying types of customers by agents with varying skills. One common approach is to cross-train

the agents and then serve customers according to pre-assigned priorities. Naturally, staffing decisions

must account for all this complexity, yet the challenge is to develop staffing rules that are simple and

insightful enough for implementation. For example, the ”square-root safety staffing” rule is one, as will

be surveyed below.

Many mathematical models have been developed for the complex environment of call centers (see [10]).

Their main advantage is their simplicity of use, as well as the theoretical insights that they can often

provide. Their main weakness is their limited modelling scope, which is restricted by our state-of-the-art

analytical capabilities. Another weakness is the fact that some analytical background is required in order

to apply these models comfortably. The latter could explain the wide gap between needs and prevalence:

indeed, the most commonly-used model in support of call center staffing is the overly-simplistic M/M/N
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queue (known as Erlang-C in call center circles): its severe assumptions are time-homogenous Poisson

arrivals, exponential service times, i.i.d. customers and i.i.d. servers. A significant practical improve-

ment, that is still alarmingly simple, is the M/M/N+M (Erlang-A), which accommodates customers’

impatience, and its M/M/N+G generalization. (Readers are referred to [11] and [41] for more details on

the latter two models.) A major goal of present-day call center research is extending the modelling scope

of mathematical models - see [10] for a survey of the main directions of this research.

An alternative to mathematical models is offered by computer simulation. Simulation models, if created

and used correctly, cope in principle with any level of model complexity, taking into account any small

detail one wishes to consider. But simulation has significant limitations as well. For one, it is expen-

sive/cumbersome to develop, maintain and run. Moreover, even with today’s powerful computers, it can

take many hours to run. Hence, the insight that simulation can provide is limited relative to theoretical

models, when the latter are applicable.

To overcome the weaknesses of mathematical models and simulation, a research trend has recently

emerged in which the two have been combined to nurture each other, and this is the approach adopted

here. (An example of such research is [18].) More precisely, we will follow the approach in [9], which

combined theoretical models with simulation in order to develop dynamic staffing rules, in the face of

time-varying demand. The models in [9] are restricted to iid customers and iid servers. In this thesis, we

extend [9] to cover some of the models in [15], namely allow customers that are of multiple classes.

1.1 The Structure of the Thesis

This work is organized in the following way. Chapter3 introduces the analytical technique which later

allows to represent the Delay Probability of Markovian queues in terms of their Busy and Idle periods.

Then (Section3.4) we analyze the Delay Probability under different operational regimes and obtain both

its limit and its convergence rate.

Chapter4 opens the discussion of priority queues by representing the known results for the Erlang-C

queue under preemptive and non-preemptive priority disciplines. Later, in Chapter5 we expand the

same approach to the Erlang-A queue. We present the calculation of the expected waiting time of any

customer type under preemptive priority and develop an algorithm for the calculation of this measure

under non-preemptive priority.

Chapters6 and7 are devoted to the time-varying environment. In Chapter6 we simulate four different

call-centers using empirical data for the average service rate, average customers patience and the dynam-

ics of arrivals during the day. We check the performance of each call center when the staffing level is

determined by thesquare-root safety-staffingrule. In addition, in this chapter we check the impact of

what is known as thetime-lag, by comparing the results of call-center staffing usingPointwise Station-

ary Approximation (PSA)with the results of staffing usingLagged Pointwise Stationary Approximation

(Lagged PSA).
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The analysis of a call center with two customer types under non-preemptive priority is presented in Chap-

ter 7. This chapter is a generalization of some results discussed in [9]. The main finding presented in

this chapter is the possibility to calculate many performance measures by using appropriate stationary

single-type and two-types models.

In Chapter8, we compare theM/G/N + M system with a correspondingM/M/N + M , emphasizing

the effect of the service-time distribution on system performance. The discussion follows the simula-

tions results presented in [32] for M/G/N queues. The purpose of this chapter is to check whether the

impact of the service-time distributions on performance is similar to that described in [32]. According to

conventional heavy-traffic theory, the expected waiting time in anyM/G/N queue under heavy traffic

can be well approximated using the Kchinchine-Pollazcek formula. Schwartz [32] shows that this ap-

proximation is not good under the QED regime. We check the Kchinchine-Pollazcek formula analogue

for the M/G/N + M queues, developed by Ward in [33], and demonstrate that, here as well, in the

QED regime there are significant differences among different service-time distributions with the same

first two moments. Consequently, with and without abandonment, traditional heavy-traffic two-moment

approximations are inaccurate in the QED regime.
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Chapter 2

Literature Review and Theoretical

Background

This work has several different directions. Thus, in order to achieve a more focused presentation, some

of the next chapters begin with the review of the relevant theoretical background. This chapter presents

some exact and asymptotic results which are common for all directions of our research.

2.1 Markovian N-Server Queues (Birth & Death)

In this section the two most common models that are used for call centers modeling and staffing are

presented. The first model is Erlang-C: first developed around 1910 by Erlang [6], it has served until

recently as the ”working-horse” of call center staffing. Its main deficiency is that it ignores customers

impatience, which is remedied by the second model, namely Erlang-A. Impatience leads to the phe-

nomenon of customers abandonment, and, already around 1940, Palm [29] developed Erlang-A in order

to capture it. We will be using Erlang-A to motivate three operating regimes for medium-to-large call

centers: one which emphasizes service quality, another that focuses on operational efficiency, and the

third, which is the main subject of the present thesis, carefully balances these two goals of quality and

efficiency.

Many queues can be presented as a Birth & Death process. A general form of the transition-rate diagram

for queues withN statistically identical independent servers is shown in Figure2.1. Here

• λi is the arrival rate of customers at statei.

• µi is the service rate at statei. Note thatµi = i · µ for any i ≤ N . The service rate in the states

N + 1, N + 2 . . . is determined by the model specifics.

Define the following:

• R = λ×E(S) = λ
µ is the Offered Load.
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Figure 2.1:General Birth & Death Transition-Rate Diagram

0 1 N-1 N N+1

1 2 N-1 N N+1

µ 2µ (N-1)µ Nµ µN+1

• L(t) is the total number of customers in the queue at timet.

• Wq(k) is the waiting time of thek-th arrival.

• L(∞), Wq(∞) is the number of customers and waiting time in steady state (when exists).

Changing the parameters of the general model in Figure2.1, we can get different special cases of queues.

For instance, if in this diagram we setλi ≡ λ for anyi = 1, 2, . . . , N , λi ≡ 0 otherwise, andµi ≡ 0 for

anyi ≥ N +1, we obtain the transition-rate diagram of the Erlang-B queue (M/M/N/N ); and ifλi ≡ λ

for any i = 1, 2, . . . andµi = Nµ for any i ≥ N + 1, we obtain the Erlang-C diagram (M/M/N ). In

the coming subsections we shall present these and some other models in more details.

2.1.1 Erlang-C

The classicalM/M/N (Erlang-C) queueing model is characterized by Poisson arrivals at rateλ, iid ex-

ponential service times with an expected duration1/µ, andN servers working independently in parallel.

Formally speaking, customers’ arrivals to the queueing system are described byPoisson(λ) process.

Individual service time are i.i.d.exp(µ) random variables. In addition, the processes of arrivals and

service are independent.

Erlang-C is ergodic if and only if its traffic intensityρ = λ/(Nµ) < 1; ρ is then the servers’ utilization,

namely the long-run fraction of time that a server is busy.

Let us recall thatL(t) is the total number of customers inM/M/N at timet. ThenL = {L(t), t ≥ 0}
is a Markov Birth-and-Death process with the transition-rate diagram in Figure2.2.

As usual, we denote the limiting-distribution vector ofL by π:

πj , lim
t→∞P (L(t) = j), j ≥ 0.

Solution of the following steady-state equations yields the probabilitiesπj of being at any state j during

steady-state: {
λπj = (j + 1) · µπj+1, 0 ≤ j ≤ N − 1
λπj = Nµπj+1, j ≥ N.

(2.1)
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Figure 2.2:Erlang-C – Transition-Rate Diagram

0 1 N-1 N N+1

µ 2µ (N-1)µ Nµ Nµ

The probability that in steady-state all the servers are busy is given by
∑∞

j=N πj , the stationary prob-

ability of being in one of the states{N, N + 1, . . .}. This probability is sometimes referred to as the

Erlang-C formula. It is denotedE2,N (λ) and is given by

E2,N (λ) =
(λ/µ)N

N !(1− ρ)

[ N−1∑

j=0

(λ/µ)j

j!
+

(λ/µ)N

N !(1− ρ)

]−1
. (2.2)

The Poison distribution of arrivals has an important and useful consequence, known as PASTA (Poison

Arrivals See Time Averages): it implies that the probabilityE2,N is in fact also the probability that a

customer is delayed in the queue (as opposed to being served immediately upon arrival).

2.1.2 Erlang-B

Another widely-used model is theM/M/N/N or Erlang-B queue. In this model customers are not

allowed to wait and when allN servers are busy, arriving customers leave immediately. Fitting the

general diagram in Figure2.1to this case, we setλk = 0 for anyk ≥ N .

Again, we denote byL(t) the total number of customers inM/M/N/N at timet. ThenL = {L(t), t ≥
0} is a Markov Birth-and-Death process with the transition-rate diagram in Figure2.3.

Erlang-B is always ergodic, and its steady-state distribution is given by

πj =
Rj

j!

/ N∑

n=0

Rn

n!
, 0 ≤ j ≤ N. (2.3)

HereR = λ
µ is theOffered Load.

Figure 2.3:Erlang-B – Transition-Rate Diagram

(N-1)µ

0 1 N-1 N

µ 2µ Nµ
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This model is often used to calculate, by PASTA, the Loss Probability, which is denoted in the literature

by E1,N :

πN ≡ E1,N =
RN

N !

/ N∑

n=0

Rn

n!
. (2.4)

The Delay Probability or Erlang-C formula (2.2) can be represented in terms of the Loss Probability as

follows:

E2,N =
[
1 +

1− ρ

ρE1,N−1

]−1
. (2.5)

2.1.3 Erlang-A

Trying to make the M/M/N model more realistic and useful for modeling call-centers, the following as-

sumption is added: each customer has limited patience, that is, as the waiting time in the queue increases

the customer may abandon. We assume that patience is distributed exponentially with mean1/θ. This

model is referred to as Erlang-A (A for Abandonment). The Erlang-A model is fully characterized by

the following four parameters:

• λ - Poisson arrival rate (λ > 0);

• µ - individual service rate (µ > 0);

• N - number of agents (N = 1, 2, . . .);

• θ - individual abandonment rate (θ > 0).

Erlang-A was first analyzed by Palm [29]. Here we give a short summary of some of its properties that

are useful for this thesis.

Let us denote byL(t) the total number of customers inM/M/N +M at timet. ThenL = {L(t), t ≥ 0}
is a Markov Birth-and-Death process with the transition-rate diagram in Figure2.4.

It can be shown that the limiting distribution of Erlang-A always exists (see, for example, [41]). In

accordance with the ergodic theorem, it is equal to the stationary distribution, which is calculated by

solving the following steady-state equations:
{

λπj = (j + 1) · µπj+1, 0 ≤ j ≤ N − 1
λπj = (Nµ + (j −N + 1)θ) · πj+1, j ≥ N.

(2.6)

Figure 2.4:Erlang-A – Transition-Rate Diagram

0 1 2 N-1 N N+1

µ (N-1)µ Nµ Nµ +2µ 3µ Nµ+2
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The solution of (2.6) is well-known ([29]) and has the following form:

πj =





(λµ)j

j! π0 , 0 ≤ j ≤ N,
∏j

k=N+1

[
λ

Nµ+(k−N)θ

]
(λ/µ)N

N ! π0 , j > N,
(2.7)

π0 =

[
N∑

j=0

(λ/µ)j
j!

+
∞∑

j=N+k

j∏

k=N+1

( λ

Nµ + (k − s)θ

)(λ/µ)N

N !

]−1

.

In terms of the steady-state distributionπ, it is possible deduce the Delay Probability. According to

PASTA, this probability is determined by the following sum:

P (Wq > 0) =
∑

j≥N

πj , (2.8)

whereπj is the steady-state distribution (2.7).

Formulae (2.7) consist of infinite sums, which may cause some numerical problems. To circumvent

them, Palm [29] proposed to use the following special functions:

Gamma Function : Γ(x) ,
∫ ∞

0
tx−1e−tdt, x > 0;

Incomplete Gamma Function : γ(x, y) ,
∫ y

0
tx−1e−tdt, x > 0, y ≥ 0.

In addition, let us define the following function:

A(x, y) , xey

yx
γ(x, y). (2.9)

By applying these special functions, Zeltyn in [41] obtained an elegant representation of the steady-state

distribution (2.7):

πj =





πN · N !
j!(λ/µ)N−j

, 0 ≤ j ≤ N,

πN · (λ/θ)j−N

∏j−N
k=1 (Nµ

θ + k)
, j > N,

(2.10)

where

πN =
E1,N

1 + [A(Nµ
θ , λ

θ )− 1] · E1,N

. (2.11)

Recall thatE1,N is the Erlang-B formula (2.4).

In Section3.2 of this work we present a technique that enables one to calculate the Delay Probability

(2.8) in terms of Idle and Busy periods. It is not hard to show that, when substituted into (2.8), the

representation (2.10) yields exactly the same expression for the Delay Probability as our result (3.11).

M/M/∞
Let us now consider an important special case ofM/M/N +M queues. Assume that the average service
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Figure 2.5:M/M/∞ – Transition-Rate Diagram

(N+2)µ(N+1)µNµ(N-1)µ2µµ

0 1 N-1 N
N+1

rateµ is equal to the average individual abandonment rateθ. The transition-rate diagram of this process is

identical to that of anM/M/∞ queue with arrival rateλ and service rateµ (see Figure2.5). Substituting

µ = θ into the solution of the balance equations ((2.6) or (2.10)) shows that the steady-state probability

that there are exactlyj customers in the queueing system is determined by the Poisson distribution with

parameterλµ :

πj =
e−λ/µ(λ/µ)j

j!
(2.12)

Expected Waiting and Abandonment Probability

A very useful property of queues with exponential patience time is the following relation between the

expected waiting time and the probability of abandoning:

P (Aband) = θ · E(Wq). (2.13)

Proof

The proof of this relation is very simple and is based on a balance equation and on Little’s formula.

According to the balance equation, the following equality holds:

θ · E(Lq) = λ · P (Aband). (2.14)

HereE(Lq) is the average number of delayed customers in the system, in steady-state. The left side of

this equation represents the abandonment rate from the considered queue and the right side represents

the arrival rate of those customers who will eventually abandon.

Little’s formula representsE(Lq) in the terms of the arrival rateλ and the expected waiting time:

E(Lq) = λE(Wq). (2.15)

Substitution of (2.15) into (2.14) yields the relation (2.13). ¤

2.2 Three Operational Regimes: ED, QD, QED

Organizations have their own preferences in their everyday functioning. Some try to get the most from

the available resources, while others see customers’ satisfaction as the most important target. Depending

on organizational preferences, three different operational regimes arise:
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• Efficiency driven (ED)

• Quality driven (QD)

• Quality-Efficiency driven (QED)

As the number of servers increases, which is relevant for moderate to large call centers, these regimes

can be formally characterized by simply relating the number of servers to the offered load. This will

be now done within the framework of Erlang-A, following [11]. (One could do it also for Erlang-C,

following [16]. The resulting regimes would then be somewhat different, notably ED. We chose to focus

on Erlang-A as it is more applicable to call centers.)

• Efficiency Driven (ED) Regime:

The efficiency driven regime is characterized by very high servers utilization (close to100%) and rela-

tively high abandonment rate (10% or more). In the ED regime, the offered loadR = λ/µ is noticeably

larger than the number of agentsN . This means that the system would explode unless abandonment take

place. The formal characterization of the ED regime is in terms of the following relationship betweenN

andR:

N ≈ R(1− ε),

where0 < ε < 1 is a QoS parameter: a larger value ofε implies longer waiting times and more

abandonment.

• Quality Driven (QD) Regime:

In the quality-driven regime the emphasis is given to customers’ service quality. This regime is char-

acterized by relatively low servers utilizations (for large call centers below90%, and for moderate ones

around80% and perhaps less) and very low abandonment rate. Formally, this regime is characterized by:

N ≈ R(1 + ε).

• Quality and Efficiency Driven (QED) Regime:

This regime is the most relevant for call centers operation. It combines a relatively high utilization of

servers (around90 − 95%) and low abandonment rate (1% − 3%). Because of its importance, and for

historical perspective, we present here both Erlang-C and Erlang-A in the QED regime.

Erlang-C

The Erlang-C QED regime goes back as early as Erlang [7], where he derived it via marginal analysis of

the benefit of adding a server. This regime is characterized by thesquare-root safety-staffing rule, which

we now describe. (Erlang indicated that the rule had been practiced actually since 1913.)

Let R = λ/µ denote theOffered Load. Then the square root safety-staffing rule states the following: for

moderate to large values of R, the appropriate staffing level is of the form

N = R + β ·
√

R, (2.16)
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whereβ is a positive constant that depends on the desired level of service;β will be referred to as the

Quality-of-Service (QoS) parameter: the larger the value ofβ, the higher is the service quality. The

second term on the right side of (2.16) is the excess (safety) capacity, beyond the nominal requirement

R, which is needed in order to achieve an accepted service level under stochastic variability.

The form of (2.16) carries with it a very important insight. Denote by∆ the safety staffing level (above

the minimumR = λ/µ.) Then, ifβ is fixed, ann-fold increase in the offered loadR requires that the

safety staffing∆ increases by only
√

n -fold, which constitutes significant economies of scale.

What does (2.16) guarantee as far asQoSis concerned? For Erlang-C, this is the subject of the seminal

paper by Halfin and Whitt [16], where they provided the following answer:

Theorem 1 Consider a sequence ofM/M/N queues, indexed byN = 1, 2, . . .. Denote the parameters

of theN -th system with a subscriptN , for example,RN = λN/µ, ρN = RN/N . Then, as the number of

serversN grows to infinity, the square-root safety-staffing rule applies asymptotically if and only if the

delay probability converges to a constantα (0 < α < 1), in which case the relation betweenα andβ is

given by the Halfin-Whitt function:

α = [1 +
β

h(−β)
]−1; 0 < β < ∞; (2.17)

h(t) is the hazard rate of the Standard Normal Distribution.

Note that (2.16) applies if and only if
√

ρN (1 − ρN ) converges toβ ( β > 0). Indeed, formally the

Theorem of Halfin-Whitt reads:

AsN ↑ ∞, PN (Wq > 0) ≡ E2,N → α, (0 < α < 1) (2.18)

iff
√

N(1− ρN ) → β, (β > 0) (2.19)

equivalentlyN ≈ RN + β
√

RN . (2.20)

The square-root staffing-safety rule was thoroughly analyzed in [38], which was based on [16]. In prac-

tice, this rule makes the life of a call-center manager easier: he or she can actually specify the desired

delay probability and achieve it by following the square-root safety staffing rule (2.16), simply choosing

the rightβ.

Erlang-A

The Erlang-A analogue of Theorem1 was proved in [11], and it is given as follows:

Theorem 2 Consider a sequence ofM/M/N + M queues, indexed byN = 1, 2, . . . As the number of

serversN grows to infinity, the square-root safety-staffing rule (2.16) applies asymptotically if and only

if the delay probability converges to a constantα (0 < α < 1), in which case the relation betweenα and

β is given by the Garnett function

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1
, −∞ < β < ∞, (2.21)
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whereβ̂ = β
√

µ/θ.

Moreover, the above conditions apply if and only if
√

NPN (Aband) converges to some positive constant

γ which is given by

γ = αβ

[
h(β̂)

β̂
− 1

]−1

. (2.22)

Formally, Theorem2 reads:

AsN ↑ ∞, PN (Wq > 0) → α, (0 < α < 1); (2.23)

iff
√

N(1− ρN ) → β, (−∞ < β < ∞); (2.24)

iff N = RN + β
√

RN + o(
√

RN ); (2.25)

iff
√

NPN (Aband) → γ, (0 < γ < ∞). (2.26)

An important feature of Erlang-A is that, unlike Erlang-C, it is always stable whenever the abandonment

rateθ is positive.

Theorem2 demonstrates that the square-root safety-staffing rule prevails for Erlang-A as well. TheQoS

parameterβ now depends on both the abandonment rateθ and the delay probabilityα. It is significant

that hereβ may take also negative values (since Erlang-A is always stable).

The analysis of theM/M/N + M model can be extended toM/M/N + G, in which the distribution

of customers’ patience takes a general form. The exact analysis ofM/M/N + G was first performed in

[3].

Zeltyn [41] extended some of the results in [3], and then continued with asymptotic analysis, as the

number of serversN grows indefinitely. One of the main outcomes of [41] is the analogue of Theorem

2 for M/M/N + G. It applies when patience has a positive density at the origin, sayg(0) > 0. Then it

follows that the asymptotic performance measures forM/M/M +G are exactly those forM/M/N +M

but with only substitutingg(0) for θ.

Remark 1 The above characterizations of the operating regimes are insightful, yet they are essentially

structural in the sense that the precise values of the QoS parameters remain unspecified. For Eralng-C,

the specifications of these values were carried out in [4], based on economic considerations that trade

off delay costs against servers’ salaries. For Erlang-A, this is done in [27].

Remark 2 From Theorems1 and2 follows that a characterization of the QED regime could be:

QED: lim
N→∞

PN (Wq > 0) = α, 0 < α < 1.

Along these lines, one can characterize also the ED and QD regimes, namely:

ED: lim
N→∞

PN (Wq > 0) = 1;

QD: lim
N→∞

PN (Wq > 0) = 0.

Interestingly, the performance-measurePN (Wq > 0)is rarely tracked in practise.
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Chapter 3

Markovian N-Server Queues: Analysis

through Excursions

We are beginning this chapter by presenting a technique that makes it possible to find the stationary/limit

distribution of any Markov process restricted to some subset of statesA, if the stationary/limit distribution

of the process defined on the entire set of statesS is given. Then we show how this technique applies to

reversible processes. In Section3.1, we show how, by using the distribution of the reversible restricted

processes, one can calculate the expected duration of any excursion of the original process. Section3.2

presents closed-form expressions of the Delay Probability for our Markovian queues in terms of busy and

idle periods. Through these expressions of the Delay Probability, we are going to identify Erlang-C and

Erlang-B queues as being two extreme forms of Erlang-A. Finally, by using the developed expression,

we analyze the behavior of the Delay Probability under ED, QED and QD regimes.

3.1 Restriction to a Set via Time-Change

Here we are presenting the Time-Change technique. This method will be used in the following sections

for getting a new expression of the Delay Probability which enables easy analysis.

The idea of the technique is the following. Consider a general Markov processX with some steady-state

distribution given:X(∞) d= π. Denote byA a subset of states ofX. Let us construct a new process

XA(t) in the following way. We observe the original processX only at times when it is within the subset

of A. To formalize this, define:

L(t) =
∫ t

0
1{X(u)∈A}du.

Note thatL(t) is the entire time up tot thatX spends in the states ofA.

Now defineX restricted to A, which we denote byXA, as the processXA = {XA(t), t ≥ 0} given by

XA(t) = X
(L−1(t)

) ≡ X (τA(t)), t ≥ 0.
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HereτA(t) is a right-continuous inverse ofL(t), namely

τA(t) , inf{s : L(s) > t}. (3.1)

Theorem 3 Let X be an ergodic irreducible right-continuous left-limit Markov process on the discrete

set of statesS, with a limitting (stationary) distributionπ. Then, the limitting distribution of the restricted

processXA is the restriction ofπ to A. Formally,

XA(∞) d= X(∞)|X(∞) ∈ A.

Proof

ConsiderXA(t) = X(τA(t)), which isX restricted toA.

Define the following:

• π(B) = P (X(∞) ∈ B),

• πA(B) = P (XA(∞) ∈ B.)

We are to show that for anyB ⊂ A,

πA(B) = lim
T→∞

P (X(T ) ∈ B|X(T ) ∈ A) ≡ π(B)
π(A)

.

First, we state thatXA is a Markov process. Indeed,

1. It is given thatX is a right-continuous left-limit Markov process;

2. L(t) =
∫ t
0 1{X(u)∈A}du is a continuous additive functional.

Consequently, as shown in [34], if τA is defined by (3.1), thenXA(t) = X(τA(t)) is also a right-

continuous left-limit Markov process.

It is known (see [34]), thatX is ergodic if and only if

lim
t→∞

1
t

∫ t

0
f(X(u))du =

∑

j∈Ω

π(j)f(j),

for any functionf , such that the right-hand-side of the above is well defined.

Thus, the calculation of the limitlimt→∞ 1
t

∫ t
0 f(X(τA(u)))du will allow us to conclude whether the

restricted processXA is ergodic, and if so, to identify its stationary/limitting distribution.

lim
t→∞

1
t

∫ t

0
f(X(τA(u)))du =

14



change of variables: s = τA(u) ⇒ du = dL(s).

lim
t→∞

1
t

∫ τA(t)

0
f(X(s))dL(s) =

= lim
t→∞

τA(t)
t

1
τA(t)

∫ τA(t)

0
f(X(s))1A(X(s))ds;

lim
t→∞

τA(t)
t

= lim
t→∞

t

LA(t)
=

1
π(A)

,

lim
t→∞

1
τA(t)

∫ τA(t)

0
f(X(s))1A(X(s))ds =

∑

j∈A

π(j)f(j).

The last two statements follow from the ergodicity ofX.

⇒ lim
t→∞

1
t

∫ t

0
f(X(τA(u)))du =

∑
j∈A π(j)f(j)

π(A)
.

We have shown thatlimt→∞ 1
t

∫ t
0 f(X(τA(u)))du exists and it is finite. As a result, the restricted Markov

process is ergodic with the limitting/stationary distribution

πA(B) =
π(B)
π(A)

, for anyB ⊆ A. ¤ (3.2)

Theorem3 can be applied to any ergodic Markov processX. If, in addition,X is reversible, the distribu-

tion of any subprocess restricted to a setA can be actually calculated by just omitting all the states that

are not included inA from its transition diagram.

Definition 1 LetX = {X(t), t ≥ 0} be a Markov process on a discrete state space. Denote its transition

rates by[qij ]. Let A be a subset of states ofX and define the Kelly processXK
A overA in terms of its

transition rates (fori 6= j):

qK
i,j =

{
qi,j if i, j ∈ A

0 otherwise
.

Definition 2 Consider a Markov process with a stationary distribution{πi}. Then, this Markov process

is called reversible if the transition rates between each pair of statesi and j in the state space obey

qi,jπi = qj,iπj ,

whereqi,j is the transition rate from state i to state j andπi andπj are the stationary probabilities of

being in statesi and j, respectively.

Theorem 4 LetX = {X(t), t ≥ 0} be a reversible Markov process. Then the stationary distribution of

the restricted processXA is equal to the stationary distribution of the Kelly processXK
A .
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The complete proof of Theorem4 can be found in [22], hence the terminology for Kelly process. Below

we present a proof of this theorem for a special case, which is important for our further research. But

before that, we show an example of a non-reversible process and conclude that the distribution of the

Kelly process defined over some set of statesA differs from that of the process restricted to the same set.

Example 1 Consider the Markov processX = {X(t), t ≥ 0} defined over the statesΩ = {1, 2, 3}.
The transition rate diagram ofX is presented in Figure3.1. Let us analyze the Kelly processXK

A on the

setA = {1, 2} andXA restricted to the same setA. We are to show that these two processes have a

different distribution.

Figure 3.1:Example - Non-Reversible Process
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Proof

BothXA andXK
A are also presented in Figure3.1. The diagram of the Kelly processXK

A is obtained by

”erasing” all the paths outgoing fromA.

In the restricted processXA the duration of stay in state{1} is found as the geometrical sum of expo-

nential times:
∑N

i exp(2), whereN
d= Geo(3

4).
Hence, the total time thatXA spends in state{1} is exponentialexp(2 · 3

4 = 1.5).
The time of the restricted processXA in state{2} is exp(1).

As seen from the transition-rate diagram (Figure3.1), the restricted processXA defined by setA, and

the Kelly processXK
A are not equal in distribution. ¤

We have just shown that a Kelly process is not neccessarily equal in distribution to the corrsonding re-

stricted process. Now let us consider a special case, which is important for our further research, and

prove that Theorem4 does apply for it. The case we are concentrating on is the calculation of the de-

lay probability forM/M/N + M via the Erlang-B formula, after observing thatM/M/N/N is the

restriction ofM/M/∞ to the set of its first N+1 states (from 0 toN ).
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Example 2 Consider anM/M/∞ queue with the arrival rateλ and the service rateµ. LetL(t) denote

the number of customers in the system at timet ≥ 0, and let the vectorπ be the steady-state distribution

of L: L(∞) d= π.

DefineL− to beL restricted to states{0, 1, . . . , N}.
ThenL−

d= M/M/N/N , with the arrival rateλ, service rateµ and

P (L−(∞) = N) =
π(N)∑N
i=0 π(i)

= E1,N

Proof

For L−, the duration of a visit in a statei, i ∈ {0, 1, . . . , N − 1}, is exp(λ + iµ), as in the original

M/M/∞ queue.

Each time the original queueL reaches stateN , it is followed by stateN + 1 with probability λ
λ+Nµ , or

by stateN −1 with probability µ
λ+Nµ . Whenever the original processL starts moving toN +1, it leaves

the restricted set, and the time ofL− then stops advancing. In this case, the only possible way to return

to the restricted set is through the state ofN .

The duration of stay in stateN of L− depends on the series of visits ofL in stateN . The duration

of each visit is distributed exponentiallyexp(r = λ + Nµ). The number of such visits is distributed

geometricallyGeo(p = Nµ
λ+Nµ). Now, one deduces that the visit time ofL− in stateN is distributed

exponentiallyexp(p · r = Nµ), being a geometric sum of i.i.d. exponentials.

To conclude, the restricted processL− has the same distribution asM/M/N/N :

L−
d= M/M/N/N ¤

3.2 Up/Down Crossings - The Erlang-A formula

Consider anM/M/N + M queueing system with arrival rateλ, service rateµ, abandonment rateθ and

total number of servers N. LetL(t) be the total number of customers at timet ≥ 0. ThenL = {L(t), t ≥
0} is a Birth-and-Death process with the transition rate diagram depicted in Figure3.2.

Figure 3.2:Erlang-A – Transition-Rate Diagram

0 1 2 N-1 N N+1

µ (N-1)µ Nµ Nµ +2µ 3µ Nµ+2

Let us define the following:
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• L− = {L−(t), t ≥ 0} is the number of customers in the system where at least one server is idle.

The processL− is L restricted to states{0, 1, . . . , N − 1}, so its distribution is identical to an

M/M/N − 1/N − 1 queue (Erlang-B) with arrival rateλ and service rateµ.

• L+ = {L+(t), t ≥ 0} is the number of customers in the system where all the servers are busy.

The processL+ is L restricted to states{N, N + 1, . . .}. Its distribution can be described by

a Birth-and-Death process which resembles anM/M/∞ queue with arrival rateλ, with the only

difference being that the first server starts a busy period works at rateNµ and each additional server

joins with rateθ, so that the total service rate at each statei ∈ {N +1, . . .} is µi = Nµ+(i−N)θ.

The total number of customersL alternates betweenL+ andL−.

• Let TN−1,N be the expected duration of anL idle period. Formally, given thatL starts at state

N − 1, TN−1,N is the expectation of the first hitting time of stateN .

• Let TN,N−1 be the expected duration of anL busy period. Formally, given thatL starts at state

N , TN,N−1 is the expectation of the first hitting time of stateN − 1.

The delay probability can be found via PASTA from the following relation:

P (Wq > 0) =
TN,N−1

TN,N−1 + TN−1,N
=

[
1 +

TN−1,N

TN,N−1

]−1
. (3.3)

To find TN,N−1 andTN−1,N , we use the following relation, observed by Whitt [39] (a proof will be

provided momentarily):

TN−1,N =
1

λN−1π−(N − 1)
=

1
λE1,N−1

, (3.4)

TN,N−1 =
1

µNπ+(0)
. (3.5)

HereE1,N−1 is the Erlang-B Loss Probability given by

E1,N =
RN

N !

/
N∑

k=0

Rk

k!
, where R = λ/µ is the Offered Load,

=
P (Y = N)
P (Y ≤ N)

, where Y
d= Pois(R),

= P (Y = N |Y ≤ N);

π+(0) denotes the stationary probability thatL+ is at stateN . This probability is expressed by (3.6)-

(3.8), and its calculation is presented in Appendix3.5.1:

π+(0) =
(λ/θ)Nµ/θ

/
(Nµ/θ)!

∑∞
i=0 (λ/θ)Nµ/θ+i/(Nµ/θ + i)!

(3.6)

=
P (X = Nµ/θ)
P (X ≥ Nµ/θ)

, where X
d= Poisson(λ/θ), (3.7)

= P (X = Nµ/θ|X ≥ Nµ/θ). (3.8)
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In the above writing, we assume thatNµ/θ is an integer. However, for further asymptotical analysis,

and as will be shown in Appendix3.5.1, this assumption is unnecessary sinceπ+(0) can be re-expressed

in the terms of special functions (see [41]):

π+(0) =
(λ/θ)Nµ/θ

[Nµ/θ]eλ/θγ(Nµ
θ , λ

θ )
, (3.9)

where

γ(x, y) =
∫ y

0
tx−1e−tdt, x > 0, y ≥ 0.

Equation (3.4) can be proved easily as follows:

Note that the expected duration of a single Idle Excursion is
1

π−(N − 1)µN−1
. (Idle Excursion refers to

an excursion fromN − 1 to N − 1 without leaving the ”idle” states0, 1, ..., N-1) The number of such

excursions, before the processL− leaves stateN − 1 (to stateN), has a Geometric distribution starting

from zero, with probability of success
λN−1

λN−1 + µN−1
. Hence, the expected duration of an Idle period is

calculated by the Wald formula:

TN−1,N = E(Idle Excursion)× E(# of Idle Excursions) =
1

π−(N − 1)µN−1
· µN−1

λN−1
.

Following the same approach, one can immediately derive (3.5).

After establishing expressions (3.5) and (3.4) for the expected duration of the busy and idle periods ofL,

we can substitute them into (3.3) to obtain the following result:

P (Wq > 0) =

[
1 +

π+(0)
ρπ−(N − 1)

]−1

(3.10)

=

[
1 +

1
ρ

P (X = Nµ/θ|X ≥ Nµ/θ)
P (Y = N − 1|Y ≤ N − 1)

]−1

, (3.11)

where X
d= Pois(λ/θ), Y

d= Pois(λ/µ) and ρ = λ
Nµ is the Offered Load per server.

3.3 Special Cases

3.3.1 M/M/∞
We would like to begin this section with an analysis of theM/M/∞ queue. Alternatively, we analyze

anM/M/N +M queue where the individual customer abandonment rateθ is equal to the service rateµ

of a single server. Under this assumption, the idle periodTN−1,N of the queue does not change, but the
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busy periodTN,N−1 can be presented in a more elegant way.

By substitutingθ = µ into (3.11), we immediately obtain the following:

P (Wq > 0) =

[
1 +

1
ρ

P (Y = N |Y ≥ N)
P (Y = N − 1|Y ≤ N − 1)

]−1

, Y
d= Pois(R). (3.12)

P (Wq > 0) ≈
[
1 +

P (Y = N |Y ≥ N)
P (Y = N |Y ≤ N)

]−1

, for N large and ρ ≈ 1. (3.13)

3.3.2 Erlang-C

Now let us consider an extreme example of the Erlang-A queue. Here we analyze the case with infinite

patience, namely the Erlang-C queue. The transition-rate diagram of this queue is presented in Figure

3.3. We will check the limit ofP (Wq > 0) in (3.11), asθ converges to 0.

Figure 3.3:Erlang-C - Transition-Rate Diagram

0 1 N-1 N N+1

µ 2µ (N-1)µ Nµ Nµ

Notice that (3.11) depends onθ only viaπ+(0) = P (X = Nµ/θ|X ≥ Nµ/θ). Therefore, we start with

checking the convergence oflimθ→0 π+(0).
Lemma 1

lim
θ→0

π+(0) = 1− ρ.

Proof:

lim
θ→0

π+(0) = lim
θ→0

(λ/θ)Nµ/θ
/

(Nµ/θ)!
∑∞

i=0 (λ/θ)Nµ/θ+i/(Nµ/θ + i)!

= lim
θ→0

1∑∞
i=0(λ/θ)i/

∏i
j=1(

Nµ
θ + j)

= lim
θ→0

1∑∞
i=0(λ/θ)i · (θ/Nµ)i/

∏i
j=1(1 + jθ

Nµ)

=
1∑∞

i=0(λ/Nµ)i

20



= 1− ρ. ¤

Substituting the result of this last lemma into (3.11) yields the theoretical result, known as the Erlang-C

formula, orE2,N .

lim
θ→0

P (Wq > 0) = E2,N =
[
1 +

1− ρ

ρ P (Y = N − 1|Y ≤ N − 1)

]−1

=
[
1 +

1− ρ

ρ E1,N−1

]−1

. (3.14)

3.3.3 Erlang-B

Another extreme example of the Erlang-A model is Erlang-B. Here customers do not wish to wait and

abandon immediately if there are no servers available upon their arrivals. The transition-rate diagram

of this queue is presented in Figure3.4. Such a queue can be described as anM/M/N + M queue

Figure 3.4:Erlang-B - Transition-Rate Diagram

0 1 2 N-1 N

µ (N-1)µ Nµ
2µ 3µ

Q+Q_

with infinitely impatient customers (θ = ∞). In the Erlang-B queue no customer waits, so the notation

P (Wq > 0) in (3.11) is not meaningful. Hence, we will denote this probability byP (L(t) ≥ N), where

L(t) is the number of customers in the system at timet.

Now we will check the convergence of (3.11) asθ diverges to∞. Observe that in (3.11) only π+(0)
defined in (3.6) depends onθ, so we begin with calculating the convergence oflimθ→∞ π+(0).

Lemma 2 Letπ+(0) =
(λ/θ)Nµ/θ

[Nµ/θ]eλ/θγ(Nµ
θ , λ

θ )
(See3.9). Then

lim
θ→∞

π+(0) = 1.

Proof

We are interested in evaluating the following limit:

lim
θ→∞

(λ/θ)Nµ/θ exp(−λ/θ)
Nµ
θ γ(Nµ

θ , λ
θ )

.
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The Numerator

The limit of the numerator is found by using the L’Hospital rule:

lim
θ→∞

(λ/θ)Nµ/θ exp(−λ/θ) = 1,

The Denominator

To find the limit of the denominator, we use the recursive presentation of the Incomplete Gamma Func-

tion (See [1]):

γ(a + 1, x) = aγ(a, x)− xa exp(−x). (3.15)

This recursive representation (3.15) leads to the following conclusion:

lim
θ→∞

Nµ

θ
γ(

Nµ

θ
,
λ

θ
) = lim

θ→∞

[
γ(

Nµ

θ
+ 1,

λ

θ
) + (λ/θ)Nµ/θ exp(−λ/θ)

]
= 1,

since

lim
θ→∞

γ(
Nµ

θ
+ 1,

λ

θ
) = lim

θ→∞

[
Γ(

Nµ

θ
+ 1)− Γ(

Nµ

θ
+ 1,

λ

θ
)
]

= 0.

The statement of Lemma2 is now proven. ¤

By using Lemma2 it immediately follows from (3.11) that

lim
θ→∞

P (L(t) ≥ N) =
[
1 +

1
λ/NµP (Y = N − 1|Y ≤ N − 1)

]−1

=
[
1 +

P (Y ≤ N − 1)
λ/NµP (Y = N − 1)

]−1

=
[
P (Y = N) + P (Y ≤ N − 1)

P (Y = N)

]−1

=
P (Y = N)
P (Y ≤ N)

= P (Y = N |Y ≤ N)

= E1,N .

In the above, we used the relation

λ

Nµ
P (Y = N − 1) =

R

N
· e−RRN−1

(N − 1)!
= P (Y = N).

This result gives rise to the following insight: as the customers’ impatienceθ grows to infinity,P (L(t) ≥
N) converges toP (Blocked) = E1,N . This means thatP (L(t) > N) converges to 0, i.e. the model

never gets to statesi > N . Consequently, Erlang-B is indeed an extreme example of Erlang-A, as the

impatience grows indefinitely.

22



3.4 Asymptotic Analysis

This section presents an asymptotic analysis of the Delay Probability when the number of servers is

large, under the three operational regimes QED, ED and QD.

The convergence of the Delay Probability in these operational regimes is well-known. Yet, the present

analysis gives some interesting insight and shows not only the final limiting values but also different

components that have their impact both on the final limit and on the rate of convergence to it.

The section is divided into three subsections. Each subsection presents a different regime, for which we

evaluate the convergence of the Delay Probability (3.11):

lim
N→∞

P (Wq > 0) = lim
N→∞

[
1 +

1
ρ

π+(0)
E1,N−1

]−1

. (3.16)

It has been shown above thatπ+(0) has a probabilistic representation under the assumption thatNµ/θ

is an integer:

π+(0) = P (X = Nµ/θ|X ≥ Nµ/θ) ≡ P (X = Nµ/θ)
P (X ≥ Nµ/θ)

, where X
d= Poisson(λ/θ).

In addition, note thatlimN→∞E1,N−1 = limN→∞E1,N , hence in our subsequent asymptotic analysis

we calculatelimN→∞E1,N instead oflimN→∞E1,N−1.

Recall thatE1,N has a probabilistic representation as well:

E1,N = P (Y = N |Y ≤ N) ≡ P (Y = N)
P (Y ≤ N)

, where Y
d= Poisson(RN ≡ λ/µ).

In each of the following three subsections, the analysis of the Delay Probability is conducted along five

steps. The first four are devoted to the procedures of limit calculations, while the last step summarizes

all the procedures.

• Step 1 limN→∞ P (Y ≤ N);

• Step 2 limN→∞ P (Y = N);

• Step 3 limN→∞ P (X ≥ Nµ/θ);

• Step 4 limN→∞ P (X = Nµ/θ);

• Step 5 Merge the results ofSteps 1-4and calculate the Delay Probability limit (3.16).

3.4.1 QED Regime: The Garnett Function

Let us now analyze the convergence of the Delay Probability (3.16) in the QED regime. Here, the arrival

rateλ grows to infinity in such way that thenumber of seversN is expressed by the square-root staffing

rule:

N ≈ RN + β
√

RN , (3.17)
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where−∞ < β < ∞ is aQoS parameter andRN = λ
µ is the Offered Load.

Step 1

lim
N→∞

P (Y ≤ N) = lim
N→∞

P

(
Y −RN√

RN
≤ N −RN√

RN

)

⇒ lim
N→∞

P (Y ≤ N) = P (Z ≤ β) = Φ(β), where Z
d= N(0, 1),

assuming thatlimN→∞ Y−RN√
RN

= β , for −∞ < β < ∞, which holds in the QED regime. Here we are

using the normal approximation to the Poisson distribution:
(Poisson(λ)−λ)√

λ
converges in distribution to

N(0, 1), asλ ↑ ∞.

Step 2

lim
N→∞

P (Y = N) = lim
N→∞

P

(
N −RN − 1√

RN
<

Y −RN√
RN

≤ N −RN√
RN

)

⇒ lim
N→∞

√
RN P (Y = N) = lim

N→∞

√
RN P (β − 1√

RN
< Z ≤ β)

= lim
N→∞

√
RN

(
Φ(β)− Φ(β − 1√

RN
)

)

= φ(β),

i.e. limN→∞ P (Y = N) converges to 0 at rateΘ(1/
√

RN ).

Combining the results of Steps 1 and 2, one concludes that

lim
N→∞

√
RN · E1,N = h(−β), (3.18)

whereh(·) is the hazard rate of the Standard Normal Distribution.

Step 3

lim
N→∞

P
(
X ≥ Nµ/θ

)
= lim

N→∞
P

(X − λ/θ√
λ/θ

≥ Nµ/θ − λ/θ√
λ/θ

)

In order to analyze the convergence of this expression, we need to know what happens tolim
N→∞

Nµ/θ − λ/θ√
λ/θ

in the QED regime.

Lemma 3

lim
N→∞

(Nµ− λ)/θ√
λ/θ

= β
√

µ/θ ⇐⇒ lim
N→∞

√
N(1− ρN ) = β.
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Proof

lim
N→∞

(Nµ− λ)/θ√
λ/θ

= lim
N→∞

(√
θ

λ

(Nµ− λ)
θ

)

= lim
N→∞

(
Nµ(1− λ/Nµ)√

λθ

)
= lim

N→∞

(√
N(1− λ/Nµ)

√
Nµ

λ

√
µ

θ

)

= β
√

µ/θ.

¤

Lemma3 allows one to deduce the convergence ofP
(
X ≥ Nµ/θ

)
in the QED regime:

lim
N→∞

P
(
X ≥ Nµ/θ

)
= 1− P (Z ≥ β̂) = 1− Φ(β̂), where Z

d= N(0, 1), β̂ = β
√

µ/θ.

Step 4

P (X = Nµ/θ) = P

(
Nµ− λN/θ − 1√

λN/θ
<

X − λN/θ√
λN/θ

≤ Nµ− λN/θ√
λN/θ

)

⇒ lim
N→∞

√
λN P (X = Nµ/θ) = lim

N→∞

√
λN P (β̂ − 1√

λN/θ
< Z ≤ β̂)

= lim
N→∞

√
λN

(
Φ(β̂)− Φ(β̂ − 1√

λN/θ
)

)

=
√

θ · φ(β̂).

From Steps 3 and 4 we conclude that

lim
N→∞

√
λN · πN

+ (0) =
√

θ · h(β̂). (3.19)

Step 5

For further investigation of the Delay Probability, we need the following lemma.

Lemma 4 In the QED regime, the offered load per server converges to 100%.

Formally,

if (N −RN )/
√

RN → β, −∞ < β < ∞, then ρN → 1.

Basing the calculation of the limitting Delay Probability on Lemma4 and results (3.18) and (3.19), we

derive the following:

lim
N→∞

P (Wq > 0) = lim
N→∞

[
1 +

π+(0)
ρE1,N

]−1

= lim
N→∞

[
1 +

√
θ

λN
h(β̂)

√
λN
µ

ρ h(−β)

]−1
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=

[
1 +

h(β̂)√
µ
θ h(−β)

]−1

=

[
1 +

h(β̂)/β̂

h(−β)/β

]−1

.

Note that the last expression is exactly the Garnett formula (see Theorem2 ) for the Delay Probability

[11].

3.4.2 Efficiency-Driven (ED) Regime

In the Efficiency-Driven regime, the number of servers is determined by the following staffing rule:

N = λN/µ− ελN/µ, where ε > 0. (3.20)

Let us check the convergence of (3.16) under this regime by performing the steps described at the begin-

ning of this section.

Step 1

lim
N→∞

P (Y ≤ N) = lim
N→∞

P

(
Y −RN√

RN
≤ N −RN√

RN

)

= lim
N→∞

P

(
Z ≤ −ε

√
λN

µ

)
, where Z

d= N(0, 1)

= lim
N→∞

P

(
Z ≥ ε

√
λN

µ

)
,

= lim
N→∞

φ(ε
√

λN
µ )

ε
√

λN
µ

= 0.

In the last line we use the equalitylima→∞ P (Z ≥ a) = lima→∞ φ(a)/a, which can be obtained

through L’Hospital’s rule.

Step 2

lim
N→∞

P (Y = N) = lim
N→∞

P

(
N −RN√

RN
−

√
µ

λN
<

Y −RN√
RN

≤ N −RN√
RN

)

⇒ lim
N→∞

√
λN

µ

P (Y = N)

φ
(
ε
√

λN
µ

) = lim
N→∞

1√
µ

1

φ
(
ε
√

λN
µ

)
√

µ

λN
φ
(
ε

√
λN

µ

)
= 1.

i.e., in the ED regime,P (Y = N) converges to 0 at rateΘ(
φ

(
ε
√

λN
µ

)
√

λN
µ

).
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Combining the results of Steps 1 and 2, we conclude that in the ED regime the blocking probability

converges toε:

lim
N→∞

E1,N = ε. (3.21)

Step 3

lim
N→∞

P (X ≥ Nµ/θ) = lim
N→∞

P

(
X − λN/θ√

λN/θ
≥ Nµ/θ − λN/θ√

λN/θ

)

= lim
N→∞

P

(
Z ≥ −ε

√
λN

θ

)
, where Z

d= N(0, 1)

⇒ lim
N→∞

P (X ≥ Nµ/θ) = 1.

Step 4

lim
N→∞

P (X = Nµ/θ) = lim
N→∞

P

(
Nµ/θ − λN/θ√

λN/θ
−

√
θ

λN
<

X − λN/θ√
λN/θ

≤ Nµ/θ − λN/θ√
λN/θ

)

⇒ lim
N→∞

λN

φ
(
− ε

√
λN
θ

) P (X = Nµ/θ)

= lim
N→∞

λN

φ
(
− ε

√
λN
θ

)
√

θ

λN
φ
(
− ε

√
λN

θ

)

=
√

θ,

i.e., in the ED regime,P (X = Nµ/θ) converges to 0 at rateΘ

(√
θ

λN
φ(ε

√
λN
θ )

)
.

Steps 3 and 4 allow us to see what happens toπN
+ (0) in the ED regime:

lim
N→∞

√
λN/θ

φ(ε
√

λN/θ)
· πN

+ (0) = 1. (3.22)

Step 5

In the ED regime, the offered load per server is constant and exceeds 100%:

lim
N→∞

ρN =
1

1− ε
.

This observation and the intermediate results (3.21 and3.22) show that in the ED regime, the Delay

Probability (3.16) converges to 1, which is in line with known results.

lim
N→∞

P (Wq > 0) = lim
N→∞

[
1 + (1− ε)

h(−ε
√

λN
θ )

ε
√

λN
θ

]−1

= 1. (3.23)
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Let us define γN = ε
√

λN
θ = ε

√
N(1−ε)

θ .

Then the delay probability (3.23) converges to 1 at the following rate:

Θ
(

φ(γN )
γN

)
. (3.24)

Recall that this last statement means that

lim
N→∞

P (Wq > 0)− 1
φ(γN )/γN

= 1.

3.4.3 Quality Driven (QD) Regime

In the Quality Driven regime, the number of servers is determined by the following rule:

N = λN/µ + ελN/µ where ε > 0. (3.25)

Here we check the convergence of the Delay Probability given by (3.16) in this regime.

Step 1

lim
N→∞

P (Y ≤ N) = lim
N→∞

P

(
Y −RN√

RN
≤ N −RN√

RN

)

= lim
N→∞

P

(
Z ≤ ε

√
λN

µ

)
= 1.

Step 2

lim
N→∞

P (Y = N) = lim
N→∞

P

(
N −RN√

RN
−

√
µ

λN
<

Y −RN√
RN

≤ N −RN√
RN

)

⇒ lim
N→∞

√
λN/µ

φ
(
ε
√

λN
µ

) · P (Y = N) =

= lim
N→∞

√
λN/µ

φ
(
ε
√

λN
µ

)
√

µ

λN
φ
(
ε

√
λN

µ

)
= 1.

Combining the results of Steps 1 and 2, we conclude that in the QD regime the blocking probability

converges to 0 at rateΘ

(
φ(ε
√

λN/µ)√
λN/µ

)
:

lim
N→∞

E1,N = lim
N→∞

√
µ/λN φ(ε

√
λN/µ) , (3.26)

⇒ lim
N→∞

√
λN/µ

φ(ε
√

λN/µ)
· E1,N = 1. (3.27)
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Step 3

lim
N→∞

P (X ≥ Nµ/θ) = lim
N→∞

P

(
X − λN/θ√

λN/θ
≥ Nµ/θ − λN/θ√

λN/θ

)

= lim
N→∞

P

(
Z ≥ ε

√
λN

θ

)

= lim
N→∞

φ(ε
√

λN
θ )

ε
√

λN
θ

= 0.

In the last line, we again turned tolima→∞ P (Z ≥ a) = lima→∞ φ(a)/a.

Thus lim
N→∞

ε
√

λN
θ

φ(ε
√

λN
θ )

· P (X ≥ Nµ/θ) = 1.

Step 4

lim
N→∞

P (X = Nµ/θ) = lim
N→∞

P

(
Nµ/θ − λN/θ√

λN/θ
−

√
θ

λN
<

X − λN/θ√
λN/θ

≤ Nµ/θ − λN/θ√
λN/θ

)

⇒ lim
N→∞

√
λN/θ

φ
(
ε
√

λN
θ

) · P (X = Nµ/θ)

= lim
N→∞

√
λN/θ

φ
(
ε
√

λN
θ

) ·
√

θ

λN
φ
(
ε

√
λN

θ

)
= 1.

Steps 3 and 4 show what happens toπN
+ (0) in the QD regime.

lim
N→∞

πN
+ (0) = ε. (3.28)

Step 5

In the QD regime, the offered load per server is constant and does not exceed 100%:

lim
N→∞

ρN =
1

1 + ε
.

This observation and the intermediate results (3.26 and 3.28) show that in the QD regime the Delay

Probability (3.16) converges to 0, which is again in line with the known results:

lim
N→∞

P (Wq > 0) = lim
N→∞

[
1 + (1 + ε)

Φ(ε
√

λN/µ)√
µ/λN φ(ε

√
λN/µ)

]−1

= 0. (3.29)

Let us defineνN = ε
√

λN
µ . Then the converges rate of the delay probability (3.16) can be presented as

follows:

Θ(
νN

φ(νN )
). (3.30)
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We observe a certain symmetry between the convergence rate of the delay probability in the ED regime

(3.24) and the one in the QD regime (3.30). In the ED regime, the convergence rate of delay probability

depends onγ ≡ ε
√

λN
θ , while in the QD regime this rate is determined by the termω ≡ ε

√
λN
µ . The

only difference betweenγ andω is dictated by the service rate ofL+ andL− respectively, i.e. by the

service rate of the queue part which becomes negligible in the current regime.

3.4.4 Busy and Idle Periods under Different Operational Regimes

The limits and the convergence rates of the delay probability in the three operational regimes can be

concluded from the convergence of the busy and idle periods in these regimes. Their convergence rates

are summarized in Table3.1.

We see, for example, that in the QED regime, Busy and Idle periods converge to zero at the same rate,

so it makes perfect sense that the delay probability converges to a constant that is neither 0 nor 1.

In the ED regime, the busy period is very long (converges to infinity), while the idle period converges to

Table 3.1:Convergence Rates of Busy and Idle Periods in the Three Operational Regimes

Busy Period Idle Period

TN,N−1 TN−1,N

lim rate lim rate

QED 0 1/
√

N 0 1/
√

N

ED ∞ 1
√

N φ(ε
√

N(1−ε)
µ )

0 1/N

QD 0 1 / N ∞ 1
√

N φ(ε
√

N(1+ε)
θ )

zero.

It is interesting to see that the convergence rates and limits of the busy and idle periods in the ED and QD

regimes are almost exactly opposite to each other. This, apparently, can be related to the reversibility of

the underlying Birth-and-Death process altough the idle period of a queue is defined over a finite number

of states (L− = L|L ∈ {0, 1, . . . , N − 1}), while its busy period is defined over an infinite number of

states (L+ = L|L ∈ {N, N + 1, . . .}).
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3.5 Appendix

3.5.1 TheL+ Queue: Calculation of the Steady-State Distribution

To findπ+(0) we solve the following balance equations:

{
λπ+(i− 1) = (Nµ + iθ)π+(i) , 1 ≤ i < ∞∑∞

i=0 π+(i) = 1
(3.31)

Assuming thatNµ/θ is an integer, it follows from Equation (3.31) thatπ+(k) is given by

π+(k) =
π+(0)(λ/θ)k(Nµ/θ)!

(Nµ/θ + k)!
.

Using the fact that
∑∞

k=0 π+(k) = 1, we obtain that

π+(0) =
(λ/θ)Nµ/θ

/
(Nµ/θ)!

∑∞
i=0 (λ/θ)Nµ/θ+i/(Nµ/θ + i)!

.

Note that

π+(0) =
P (X = Nµ/θ)
P (X ≥ Nµ/θ)

, where X
d= Pois(λ/θ),

= P (X = Nµ/θ|X ≥ Nµ/θ).

The ”integer” assumption allows the probabilistic representation ofπ+(0) but it is not necessary. We can

re-writeπ+(0) in terms of the incomplete Gamma functionγ(·, ·), using the same approach as in [41]:

π+(0) =
(λ/θ)Nµ/θ

[Nµ/θ]eλ/θγ(Nµ
θ , λ

θ )
, (3.32)

where

γ(x, y) =
∫ y

0
tx−1e−tdt, x > 0, y ≥ 0.

Thus we obtain an expression forπ+(0) that solves the balance equations (3.31) and relaxes the ”integer”

assumption.
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Chapter 4

Erlang-C with Priorities

In this chapter we begin our introduction to queues with heterogenous customers served in accordance to

their importance. These models are very useful since they describe many service environments. Exam-

ples include banks, whose customers are differentiated according to their account status; hospitals, where

urgent patients do not wait in the common queue; call-centers, where the customers may be differentiated

by their requests, languages or value, etc.

The assumption throughout this work is thatall servers are statistically identical, all customers need

the same service and the queue is work-conserving, i.e., no reservations of servers is allowed to guarantee

a better quality of service for higher priority customers.

Two priority disciplines, under which these assumptions hold are:Preemptive andNon-Preemptive

priorities.

Non-Preemptive Priority: Under this discipline, a customer of priorityi enters service only when there

are no waiting customers of higher priorities. Once service started, it cannot be interrupted, even upon

the appearance of a delayed higher-priority customer.

Preemptive Priority: Here higher-priority customers are not ”aware” of lower priority ones. That is, if

a higher-priority customer arrives when all the servers are busy, and there are lower-priority customers

in service, a customer of the lowest-priority in queue is immediately returned to the head of its original

queue, and the higher-priority customer enters service (immediately upon arrival).

4.1 Model Description

This section develops a formal description of the priority models studied in this chapter. The same

notation is used forM/M/N andM/M/N + M priority queues to emphasize the common structure of

their performance, in particular the expected waiting time.

• There areK customer types.

• A customer of typek has priority (preemptive or non-preemptive) over a customer of typej if and
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only if k < j, 1 ≤ k, j ≤ K. In particular, customers of the lowest type(k=1) have the highest

priority, and of the highest type (k = K) have the lowest priority.

• Customers of typek arrive at rateλk; arrivals are Poisson, independent among the classes.

• Service rate isµ (the same for all customers);service durations are exponential, independent of the

arrivals.

• ρ = λ
Nµ is the servers utilization (assuming no abandonment). Hereλ =

∑K
i=1 λi is the total

arrival rate.

Notations of Priority Queues

• Epr(W k
q ) (Enp(W k

q )) is the expected waiting time of typek under preemptive (non-preemptive)

priority discipline,

• Epr(W 1→k
q ) (Enp(W 1→k

q )) is the expected waiting time averaged over firstk types under pre-

emptive (non-preemptive) priority discipline,

• Epr(Lk
q ) (Enp(Lk

q )) is the expected number of the delayed (in queue) typek customers under

preemptive (non-preemptive) priority,

• Epr(L1→k
q ) (Enp(L1→k

q )) is the expected number of the delayed (in queue) customers of types

1, . . . , k under preemptive (non-preemptive) priority,

• Ppr(W k
q > 0) (Pnp(W k

q > 0)) is the probability that customers of typek are delayed under

preemptive (non-preemptive) priority discipline,

• Ppr(W 1→k
q > 0) (Pnp(W 1→k

q > 0)) is the probability that a customer of any type1, . . . , k is

delayed under preemptive (non-preemptive) priority,

• Ppr(Abandk) (Pnp(Abandk)) is the probability that customers of typek abandon under preemp-

tive (non-preemptive) priority discipline,

• Ppr(Aband1→k) (Pnp(Aband1→k)) is the probability that customers of the firstk types abandon

under preemptive (non-preemptive) priority,

• Epr(Wq) (Enp(Wq)) is the expected waiting time of all types under preemptive (non-preemptive)

priority discipline,

• Epr(Lq) (Enp(Lq)) is the expected total number of the delayed (in queue) customers under

preemptive (non-preemptive) priority discipline.
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Notations of Related Queues without Priorities

• Eλk
(Wq) is the expected waiting time in anM/M/N queue with homogeneous customers which

arrive at rateλk,

• E(W 1→k
q ) is the expected waiting time in anM/M/N queue with homogeneous customers which

arrive at rateλ1→k =
∑k

i=1 λi,

• Eλ(Wq) is the expected waiting time in anM/M/N queue with homogeneous customers which

arrive at rateλ =
∑K

i=1 λi,

• Pλk
(Wq > 0) is the delay probability in anM/M/N queue with homogeneous customers which

arrive at rateλk (Erlang-C formula),

• P (W 1→k
q > 0) is the delay probability in anM/M/N queue with homogeneous customers which

arrive at rateλ1→k =
∑k

i=1 λi,

• Pλ(W k
q > 0) is the delay probability in anM/M/N queue with homogeneous customers which

arrive at rateλ =
∑K

i=1 λi.

4.2 Exact Results

Consider a general Erlang-C queue with priorities, as described in Section4.1. Here we present known

results for the expected waiting time under both priority disciplines.

4.2.1 Preemptive Priority

The expected waiting time under preemptive priority discipline is found recursively, followingthe same

expressions for queues with and without abandonment:

Epr(W k
q ) =

[
λ1→kEpr(W (1→k)

q )− λ1→(k−1)Epr(W (1→(k−1))
q )

]
λ−1

k , k = 1 . . . K. (4.1)

Relation (4.1) is a direct consequence of Little’s Law. Indeed, a customer of typek ”sees” customers

of only two kinds: those of a higher priorities (i.e., types1, . . . , k − 1) and those of typek. The total

number of customers of types1, . . . , k consists of the total number of delayed customers of the higher

priority (types1, . . . , k − 1) and the delayed customers of typek. That is,

Epr(L1→k
q ) = Epr(L1→(k−1)

q ) + Epr(Lk
q ). (4.2)

By Little’s Law, Equation (4.2) can be restated as follows:

λ1→kEpr(W (1→k)
q ) = λ1→(k−1)Epr(W (1→(k−1))

q ) + λkEpr(W (k)
q ). (4.3)

Now the recursive relation (4.1) follows.
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The total number of customers of the firstk types is distributed as in theM/M/N(+M) queue with

the arrival rateλ1→k due to the fact that the customers of the higher priorities do not see lower-priorities

customers:

Epr(L1→k
q ) = E(L1→k

q ). (4.4)

After taking into account the fact that higher priorities are not aware of the lower ones (see (4.4)), the

following formulation for the expected waiting time of typek under preemptive priority is derived:

Epr(W k
q ) =

[
λ1→kE(W (1→k)

q )− λ1→(k−1)E(W (1→(k−1))
q )

]
λ−1

k , k = 1 . . .K. (4.5)

In the case of Erlang-C, an exact expression for the expected waiting time is not hard to deduce from

(4.5):

Epr(W k
q ) =

E2,N (λ1→k)
λk(1− σk)

− E2,N (λ1→(k−1))
λk(1− σk−1)

. (4.6)

Here

σk =
k∑

i=1

ρi, ρi =
λi

Nµ
is the fraction of time a server spends on customers of typei

andE2,N (·) is the delay probability in theM/M/N queue (Erlang-C Formula (2.2)).

4.2.2 Non-Preemptive Priority

Results for the waiting time under non-preemptive priority were presented by Kella and Yechially, [20],

who determined Laplace transform of the waiting time distribution for any typek and showed that the

expected waiting time is given by the following expression:

Enp(W k
q ) = E2,N (λ)

[
Nµ(1− σk)(1− σk−1)

]−1
, (4.7)

whereE2,N (λ) andσk are defined as before.

To define these Laplace transforms and to prove (4.7), Kella and Yechially used a vacations approach.

Subsection4.2.3presents an alternative proof, which provides an important insight on the three basic

components of the expected waiting time. Its idea can be used to calculate not only expectations, but

also Laplace transforms for waiting time of any typek. The approach is due to Gurvich [17] and it can

be skipped without loss of reading-continuity.

4.2.3 Expected Waiting Time under Non-Preemptive Priority: Proof of (4.7)

The proof consists of the two following steps:

• Step 1

The delay probability is the same for any typek and is equal to the delay probability in the

M/M/N queue with arrival rateλ and service rateµ ( Erlang-C formula (3.3)).

P (W k
q > 0) = E2,N (λ) for anyk = 1, . . . ,K,
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• Step 2

The expected waiting time given waiting is given by the following expression:

Enp(W k
q |W k

q > 0) =
[
Nµ(1− σk)(1− σk−1)

]−1

After these two steps the result follows.

• Step 1

The delay probability does not depend on the internal order of customer service. This is the reason

why this probability is the same for all work-conserving queues with the arrival rateλ and service

rateµ and is given by Erlang-C (3.3).

• Step 2

Now let us study the expected waiting time given waiting of a typek customer.

If there is waiting, customers of this type are served as under anM/G/1 queue whereG is the

busy period distribution of anM/M/1 queue with arrival rateλ1→(k−1) ≡
∑k−1

i=1 λi and service

rateNµ. The expectation of the busy period of theM/M/1 queue is given by
1

Nµ(1− σk−1)
(See, for example, Kleinrock [21], p. 213, Equation 5.141).

Given waiting, a customer of typek ”sees” upon arrival only customers of equal or higher priority.

Thus, to determine how many busy periods he needs to wait, we notice that this number is equal

to one plus the queue length in anM/M/1 model with arrival rateλ1→k ≡
∑k

i=1 λi and service

rateNµ. The stationary distribution of this queue isGeom0(1 − λ1→k
Nµ ), whereGeom0(·) is a

geometric distribution starting at zero (See, for example, Kleinrock [21], p. 96, Equation 3.23).

This is why the number of busy periods to wait is distributedGeom(1 − λ1→k
Nµ ) with the mean

1
(1− σk)

. In other words, the number of the busy periods to wait is distributed as the total number

of customers in anM/M/1 model with arrival rateλ1→k ≡
∑k

i=1 λi and service rateNµ.

For future analysis, we observe that the expected waiting time of typek consists of the following three

components.

1. Thedelay probability , which is found using global system characteristics. It depends on the total

arrival rateλ, the service timeµ and the number of the serversN .

2. Given waiting, a type-k customer is advanced in his queue only when there are no customers of

higher priorities. This is why, customers of typek are exposed to anM/G/1 queue whereG is

thebusy periodof anM/M/1 with the arrival rateλ1→(k−1) and service rateNµ.

3. A queue, which adelayed type-k customer faces, consists of customers with priority no lower

than his, which means that the averagequeue lengthfor him depends on the arrivals of the firstk

types. That is, if there is waiting, the average number of the busy periods to wait is found similarly
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to the average number of customers in anM/M/1 queue with arrival rateλ1→k and service rate

Nµ.

To formally summarize:

Enp(W k
q ) = P (W k

q > 0)×E(W k
q |W k

q > 0)

= E2,N (λ)︸ ︷︷ ︸
1

× 1
Nµ(1− σk−1)︸ ︷︷ ︸

2

× 1
(1− σk)︸ ︷︷ ︸

3

=
E2,N (λ)

Nµ(1− σk−1)(1− σk)
. ¤

4.3 An Asymptotic Example with Two Customer Types: QED and ED

This section deals with the analysis of queues with two types of customers,K = 2, in the QED and

ED regimes. The results obtained for the lowest priority can be applied to queues with any number of

customer types, because it is possible to consider anyk first types as the highest-priority customers, and

the restk + 1, . . . , K types as customers of the lowest priority.

The analysis of both the QED and ED regimes is organized in the following way. For each operational

regime, we start from the preemptive priority discipline, and continue to the non-preemptive discipline.

The analysis is conducted using analytical tools for ED, QED and QD regimes developed by Zeltyn in

[42], and the exact formulae (4.1) and (4.7) of the expected waiting time for any typek re-stated below

for K = 2.

For the case with two customer types, equations (4.1) and (4.7) read as follows:

Epr(W 1
q ) =

E2,N (λ1)
Nµ(1− ρ1)

, (4.8)

Epr(W 2
q ) =

λ
E2,N (λ)
Nµ(1−ρ) − λ1

E2,N (λ1)
Nµ(1−ρ1)

λ2
, (4.9)

Enp(W 1
q ) =

E2,N (λ)
Nµ(1− ρ1)

, (4.10)

Enp(W 2
q ) =

E2,N (λ)
Nµ(1− ρ1)(1− ρ)

. (4.11)

Note that in queues with two types of customers,σ1 ≡ ρ1 andσ2 ≡ ρ1 + ρ2 = ρ.

4.3.1 QED Regime

The QED operational regime forM/M/N queues was first introduced by Halfin and Whitt in [16].

Under this regime, the service rateµ is constant, and as the number of serversN and the arrival rateλ

increase infinitely, thesquare rootstaffing rule prevails:

N ≈ RN + β
√

RN , λ →∞, β > 0, (4.12)
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whereRN = λN
µ is theOffered Loadin anM/M/N queue with arrival rateλ and service rateµ.

In addition, we assume that, as the total arrival rateλ grows to infinity, the fraction of the arrival rate of

each type remains a positive constant (λk
λ = const for k = 1, 2).

Preemptive Discipline
First Type

Under this discipline customers of the first type enjoy the QD regime, because they are not troubled with

the presence of the lower priority. That is, they see a system staffed by the following rule:

N ≈ λ1

µ
(1 + δ), (4.13)

asλ1 andN increase infinitely.

Recall that the fraction of time, in which a single server works with first-type customers, stays constant

(ρ1), and it is similar to the offered load per agent in the QD regime with an arrival rateλ1. Hence

δ → ρ2

ρ1
.

In order to find how fast the waiting time of the first type converges to 0, we need to know the convergence

of the delay probability in anM/M/N queue with arrival rateλ1. This convergence rate is calculated

using the approximation of the delay probability for the QD regime (see [42], Remark 5.1):

Pλ1(Wq > 0) ≈ 1√
2πN

· ρN
1

ρ2
· e1−ρ1 .

Based on this approximation, we conclude that the convergence rate of thefirst-type expected waiting

time isΘ(
ρN
1

N
√

N
):

lim
N→∞

N
√

N

ρN
1

· Epr(W 1
q ) = lim

N→∞
N
√

N

ρN
1

·
1√

2πN
· ρN

1
ρ2
· e1−ρ1

Nµ(1− ρ1)
=

eρ2

√
2πµρ2

2

.

Second Type

The convergence rate of thesecond typeunder preemptive priority discipline isΘ( 1√
N

):

lim
N→∞

√
NEpr(W 2

q ) = lim
N→∞

√
N

λ
E2,N (λ)
Nµ(1−ρ) − λ1

E2,N (λ1)
Nµ(1−ρ1)

λ2
=

α

ρ2µβ
.

Non-Preemptive Discipline
First Type

The expected waiting time of thefirst type under non-preemptive priority converges at rateΘ(1/N):

lim
N→∞

NEnp(W 1
q ) = lim

N→∞
N

E2,N (λ)
Nµ(1− ρ1)

=
α

µρ2
,
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whereα = α(β) is the Halfin-Whitt function [16], see (2.17).

Second Type

The expected waiting time of thesecond typeunder non-preemptive priority converges at rateΘ(1/
√

N):

lim
N→∞

√
NEnp(W 2

q ) = lim
N→∞

√
N

E2,N (λ)
Nµ(1− ρ1)(1− ρ)

=
α

µβρ2
.

4.3.2 ED Regime

Now let us consider a sequence of two-typeM/M/N queues in the ED operational regime. Assume

that the total arrival rate isλ → ∞, the service rateµ is constant and the total number of serversN is

detrmined by:

N(1− ρN ) = γ for some0 < γ < ∞. (4.14)

In addition, we again assume that as the total arrival rateλ grows to infinity, the fraction of the arrival

rate of each type remains a positive constant (λk
λ = const for k = 1, 2).

Preemptive Discipline
First Type

Here we again use the fact that the higher priority customers are not aware of the lower priority and enjoy

the QD regime, i.e. they see a system with the staffing level given by (4.13):

Repeating the arguments of the QED regime for the highest priority under the preemptive discipline and

using the approximation of the delay probability for the QD regime ([42], Remark 5.1), we obtain:

Pλ1(Wq > 0) ≈ 1√
2πN

· ρN
1

ρ2
· e1−ρ1 .

The convergence rate of the expected waiting time of thefirst type under preemptive priority discipline

is Θ(
(ρ1)N

N
√

N
):

lim
N→∞

N
√

N

ρN
1

· Epr(W 1
q ) = lim

N→∞
N
√

N

(ρ1)N
·

1√
2πN

· (ρ1)N

ρ2
· e1−ρ1

Nµ(1− ρ1)
=

1√
2πµρ2

2

.

Second Type

The convergence rate of the expected waiting time of thesecond typeunder preemptive priority isΘ(1)
(the same rate as that ofEnp(W 2

q )):

lim
N→∞

Epr(W 2
q ) = lim

N→∞

λ
Pλ(Wq>0)
Nµ(1−ρ) − λ1

Pλ1
(Wq>0)

Nµ(1−ρ1)

λ2
=

1
ρ2µγ

.

Non-Preemptive Discipline
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First Type

The convergence rate of the expected waiting time of thefirst type under non-preemptive priority is is

Θ(1/N):

lim
N→∞

NEnp(W 1
q ) = lim

N→∞
N

Pλ(Wq > 0)
µ(1− ρ1)

=
1

µρ2

Second Type

The convergence rate of the expected waiting time of thesecond typeunder non-preemptive priority is

Θ(1):

lim
N→∞

Enp(W 2
q ) = lim

N→∞
Pλ(Wq > 0)

Nµ(1− ρ1)(1− ρ)
=

1
µγρ2

.

Remark 3 Note the asymptotic equivalence of the lowest priority under preemptive and non-preemptive

disciplines. This was emphasized by Ashlagi in [2]. We will see that this behavior is preserved in queues

with abandonments. A detailed explanation of this phenomenon is given at the beginning of Subsection

5.3. Table5.1 summarizes the rates of convergence in the QED and ED regimes for queues with and

without abandonment.
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Chapter 5

Erlang-A with Priorities

In this chapter we analyze priority queues with impatient customers. We begin with a description of our

models, present some new results for non-preemptive priority, and conclude with asymptotic analysis.

5.1 Model Description

This section presents a general description of the models studied in this chapter. Note, that the description

of Erlang-A queues is very similar to the description ofM/M/N queues in Section4.1.

• There areK customer types.

• A customer of typek has priority (preemptive or non-preemptive) over a customer of typej if and

only if k < j, 1 ≤ k, j ≤ K. In particular, customers of the first type(k=1) have the highest

priority.

• Customers of typek arrive at rateλk; arrivals are Poisson.

• Service rate isµ (the same for all customers); service durations are exponential.

• ρ = λ
Nµ is the offered load per server. Hereλ =

∑K
i=1 λi is the total arrival rate.

• Abandonment rate isθ (the same for all customers); customers’ patience is exponential.

Let us define the following:

Notations of Priority Queues

• Epr(W k
q ) (Enp(W k

q )) is the expected waiting time of typek under preemptive (non-preemptive)

priority discipline,

• Epr(W 1→k
q ) (Enp(W 1→k

q )) is the expected waiting time averaged over firstk types under pre-

emptive (non-preemptive) priority discipline,
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• Epr(Lk
q ) (Enp(Lk

q )) is the expected number of the delayed (in queue) typek customers under

preemptive (non-preemptive) priority discipline,

• Epr(W 1→k
q ) (Enp(W 1→k

q )) is the expected number of the delayed (in queue) customers of types

1, . . . , k under preemptive (non-preemptive) priority,

• Ppr(W k
q > 0) (Pnp(W k

q > 0)) is the probability that customers of typek are delayed under

preemptive (non-preemptive) priority discipline,

• Ppr(W 1→k
q > 0) (Pnp(W 1→k

q >)) is the probability that a customer of any type1, . . . , k is

delayed under preemptive (non-preemptive) priority discipline,

• Ppr(Abandk) (Pnp(Abandk)) is the probability that customers of typek abandon under preemp-

tive (non-preemptive) priority discipline,

• Ppr(Aband1→k) (Pnp(Aband1→k)) is the probability that customers of the firstk types abandon

under preemptive (non-preemptive) priority,

• Epr(Wq) (Enp(Wq)) is the expected waiting time of all types under preemptive (non-preemptive)

priority,

• Epr(Lq) (Enp(Lq)) is the expected total number of the delayed (in queue) customers under

preemptive (non-preemptive) priority discipline.

Notations of Related Queues without Priorities

• Eλk
(Wq) is the expected waiting time in anM/M/N + M queue with homogeneous customers

which arrive at rateλk,

• E(W 1→k
q ) is the expected waiting time in anM/M/N + M queue with homogeneous customers

which arrive at rateλ1→k =
∑k

i=1 λi,

• Eλ(Wq) is the expected waiting time in anM/M/N + M queue with homogeneous customers

which arrive at rateλ =
∑K

i=1 λi,

• Pλk
(Wq > 0) is the delay probability in anM/M/N + M queue with homogeneous customers

which arrive at rateλk (Erlang-A formula),

• P (W 1→k
q > 0) is the delay probability in anM/M/N + M queue with homogeneous customers

which arrive at rateλ1→k =
∑k

i=1 λi,

• Pλ(W k
q > 0) is the delay probability in anM/M/N + M queue with homogeneous customers

which arrive at rateλ =
∑K

i=1 λi,

• Pλk
(Aband) is the abandonment probability in anM/M/N + M queue with homogeneous cus-

tomers which arrive at rateλk,
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• P (Aband1→k) is the abandonment probability in anM/M/N + M queue with homogeneous

customers which arrive at rateλ1→k =
∑k

i=1 λi.

5.2 Exact Results

5.2.1 Preemptive Priority

The expected waiting time under preemptive priority is found by a recursive expression, which isthe

same(See (4.1) for comparison) for queues with and without abandonment:

Epr(W k
q ) =

[
λ1→kEpr(W (1→k)

q )− λ1→(k−1)Epr(W (1→(k−1))
q )

]
λ−1

k , k = 1 . . . K. (5.1)

This relation can be re-stated in terms of measures without priorities as follows:

Epr(W k
q ) =

[
λ1→kE(W (1→k)

q )− λ1→(k−1)E(W (1→(k−1))
q )

]
λ−1

k , k = 1 . . .K. (5.2)

5.2.2 Non-Preemptive Priority: Expected Waiting Time of First-Type Customers

Let us analyze the expected waiting time of thehighest priority (first-type customers) under the non-

preemptive priority discipline. In the next section we will use the obtained result to calculate the expected

waiting time for any typek.

Theorem 5 The delay probability for any type under the non-preemptive priority discipline is the same

as in theM/M/N + M queue without priorities, with arrival rateλ, service rateµ and abandonment

rateθ (Erlang-A formula):

Pnp(W k
q > 0) = Pλ(Wq > 0) k = 1, . . . ,K. (5.3)

The expected waiting time of thedelayedcustomers with the highest priority is the same as in an

M/M/N + M queue without priorities with arrival rateλ1 and the rest of the parameters the same:

Enp(W 1
q |W 1

q > 0) = Eλ1(Wq|Wq > 0). (5.4)

Statements (5.3) and (5.4) yield an expression for the expected waiting time of customers with the highest

priority:

Enp(W 1
q ) = Pλ(Wait > 0) · Eλ1(Wq|Wq > 0) (5.5)

Remark 4 The ratio between the expected waiting times of the highest priority customers under the

preemptive and the non-preemptive disciplines is equal to the ratio of the appropriate delay probabilities:

E1
pr(Wq)

E1
np(Wq)

=
Pλ1(Wq > 0)
Pλ(Wq > 0)

. (5.6)
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Remark 5 Note that the statement of Theorem5 holds also for Erlang-C queues. Equation (4.1) for the

expected waiting time of customers with the highest priority (Kella and Yechially [20]) reads as follows:

Enp(W 1
q ) = E2,N (λ) · 1

Nµ(1− ρ1)
, (5.7)

whereE2,N (λ) is the delay probability in anM/M/N queue with arrival rateλ (Erlang-C formula,

(3.3)), and
1

Nµ(1− ρ1)
= Eλ1(Wq|Wq > 0).

Proof

First, let us ascertain when the highest priority customers get delayed. Consider the total number of

present customers as a Birth & Death process. Its transition-rate diagram is presented in Figure5.1.

Customers of any type are delayed if they arrive to statesN, N + 1, . . .. The transition rates in the

Figure 5.1:Total number of customers with non-preemptive priorities

0 1 2 N-1 N N+1

µ (N-1)µ Nµ Nµ +2µ 3µ Nµ+2

diagram do not depend on the internal discipline of the queue, consequently the delay probability of any

customers type, by PASTA, is given by the Erlang-A formula:

Pnp(W k
q > 0) = Pλ(Wq > 0), i = 1, . . . , K.

To prove part (5.4) of this theorem, we note that customers of the highest priority can classify all cus-

tomers into two types: the first type consisting of customers of their own type only, and the second type

(lower priority) of all other types of customers. Hence, in order to check the expected waiting time,

if there is waiting, of the first type of customers, it is sufficient to analyze anM/M/N + M queue

with K = 2. Figure5.2 presents the transition rate diagram of a two-type queue with non-preemptive

priorities. Here, the first number in each state is the number of busy servers, the second entry is the

total number of the delayed customers of the first type, and the last entry is the number of the delayed

customers of the second type.

We defineL+ to be a sub-process of the original queue restricted to the statesk ≥ N , that is, only those

states where all the servers are busy. Using the excursions technique presented in the previous chapter,

it can be shown thatL+ is distributed like anM/M/1 + M queue with two customer types with arrival

ratesλ1 andλ2, service rateNµ + θ and abandonment rateθ.1

Let us now aggregate the states ofL+ with the same number of the highest priority customers. Define

1Note that the transition rates for theL+ part are similar to those in anM/M/1+M queue under preemptivepriority, with

K = 2, arrival ratesλ1 andλ2, and service rateNµ + θ.
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Figure 5.2:Non-Preemptive Priority Queue withK = 2
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L1
+ to be the total number of the delayed first type customers. The transition rates diagram ofL1

+ is

presented at the bottom of Figure5.2. In this diagram, state(N, i) means that there areN busy servers

andi delayed first-type customers. It is a diagram of a single-typeM/M/1 + M queue with arrival rate

λ1, service rateNµ + θ and abandonment rateθ, which is similar to theL+ part of a single-type queue

with arrival rateλ1, service rateµ and abandonment rateθ.

The fact that the number of delayed first-type customers has the same distribution as the number of de-

layed customers in a queue with a single customer type with arrival rateλ1, allows us to conclude, by

Little’s Law, that the expected waiting time, if there is waiting, of the first type under non-preemptive

priority is equal to the expected waiting time, if there is waiting, in the queue without priorities with total

arrival rateλ1.

Now it remains to conclude the final expression of the expected waiting time for the customers of the

highest priority.

Enp(W 1
q ) = Pλ(Wq > 0) · Eλ1(Wq|Wq > 0). (5.8)

¤
It is worth mentioning here, that Theorem (5) can be applied for the calculation of the expected waiting

time of any firstk types:

Enp(W 1→k
q ) = Pλ(Wq > 0) · E(W 1→k

q |W 1→k
q > 0). (5.9)

We will use this observation together with Little’s Law to obtain the expected waiting time of any type

k.
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5.2.3 Non-Preemptive Priority: Expected Waiting Time of Type-k Customers

We have mentioned in Subsection4.2.3that the expected waiting time of type-k customers is comprised

of three components. For queues with abandonments these components are the following: (1) The delay

probability in a queue with arrival rateλ (Erlang-A), (2) The expected duration of a busy period in an

M/M/1 + M queue with arrival rateλ1→(k−1) and service rateNµ and (3) The expected number of

customers in anM/M/1 + M queue with arrival rateλ1→k and service rateNµ. The problem is that

these components, especially the second one, are not easily calculated.

In this section we develop a recursive expression for the expected waiting time of type-k customers. It is

based on the same idea as the recursive formula for the preemptive priority (See Equation (4.1) or (5.1)

for M/M/N or M/M/N + M accordingly).

• Step 1

CalculateEnp(W 1
q ) by (5.5):

Enp(W 1
q ) = Pλ(Wq > 0) · Eλ1(Wq|Wq > 0).

• Step 2

In general: ”Merge” the firstk types into a single highest-priority type with arrival rateλ1→k and

calculate the average waiting timeEnp(W 1→k
q ) of thesek types, by using (5.5) again:

Enp(W 1→k
q ) = Pλ(Wq > 0) · E(W 1→k

q |W 1→k
q > 0).

• Step 3:

Let us use the same logic as in the case of preemptive priority. The total number of customers of

types 1 through(k− 1) and customers of typek is equal to the number of all customers of the first

k types. Applying Little’s Law we receive:

Enp(L1→k
q ) = Enp(L1→(k−1)

q ) + Enp(Lk
q ) (5.10)

Enp(W 1→k
q ) =

λ1→(k−1)

λ1→k
Enp(W 1→(k−1)

q ) +
λk

λ1→k
Enp(W k

q ) (5.11)

⇒ Enp(Wk) =
λ1→kEnp(W 1→k

q )− λ1→(k−1)Enp(W
1→(k−1)
q )

λk
. (5.12)

Note that the recursive relation (5.12) is similar to the recursion (5.1) for the preemptive priority, and the

only difference is in the calculation of the expected waiting time of the highest priority, i.e., inStep 2.

5.3 Asymptotic Equivalence of the Lowest Priority

It was shown by Ashlagi in [2], that under ED, QED, QD operational regimes and also in the conventional

heavy traffic, the expected waiting time of the lowest priority in queues without abandonment converges
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to zero under preemptive and non-preemptive disciplines, both at the same rate. These results can be

expanded to queues with the same individual abandonment rate for all types of customers. But before

we do that, we explain the physics of this asymptotic equivalence.

5.3.1 The Physics of the Asymptotic Equivalence

Consider twoM/M/N + M systems withK=2 customer types. Suppose that in the first system the

priority discipline isnon-preemptive, and in the second system the priority discipline ispreemptive.

Let us assume that the lowest priority is not negligible:limN→∞ λ2
λ = ρ2, 0 < ρ2 ≤ 1. It follows from

this assumption thatlimN→∞ λ1
λ = ρ1, 0 ≤ ρ1 < 1.

This subsection presents an intuitive explanation of the asymptotic equivalence of preemptive and non-

preemptive disciplines, as far as the average waiting time of the lowest priority is concerned. The expla-

nation covers the ED, QD and QED operational regimes and also conventional heavy traffic.

Any arriving second-type customer joins a queue that consists of customers of both types. Thus, by

PASTA the average length of a queue in front of a lowest-priority customer is equal under both preemp-

tive and non-preemptive disciplines and can be found using anM/M/N + M model with arrival rateλ,

service rateµ and abandonment rateθ.

Non-preemptive priority: A delayed second-type customer can advance one position in his queue

when there are no waiting customers of the first type. Consequently, the average time it takes him to

move forward in his queue is equal to one busy period of anM/M/1+M queue with arrival rateλ1 and

service rateNµ.

Preemptive priority: Due to the possibility of preemptions, the time before the second-type customer

is advanced is longer than a single busy period of anM/M/1 + M queue with arrival rateλ1. In order

to determine this time, we need to multiply the expected busy-period duration by the average number of

times a lowest-priority customer re-starts his service (each time, due to preemption).

Let us consider some specific low-priority customer under the preemptive priority discipline, which is

currently starting service. He needsexp(µ) time to accomplish his service and then leaves the system.

We start from the analysis of the QED and ED regimes.

QED and ED Regimes:N ≈ λ
µ + β

√
λ
µ , −∞ < β < ∞; N ≈ λ

µ − ελ
µ , ε > 0 .

The offered load per server converges to 1 (QED) or exceeds 1. Thus, the servers utilization is close to

100%.

Due to the assumption that the second-type is not negligible, in steady state customers of the first type

start their service immediately (asymptotically). Thus, the total number of servers busy with the highest

priority is proportional to the fraction of the highest-priority arrivals:

N1 ≈ λ1

µ
= ρ1 N.
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The rest of the servers are ”free” to serve the second type. That is, the average number of the servers

working with the second type is

N2 = N −N1 ≈ ρ2N.

The number of high-priority customers which arrive during a single service time isλ1
µ + O(

√
λ1
µ ).

The average number of high-priority customers that leave the system during a single service time is
λ1
µ (= N1).

This means, that there will beO(
√

λ1
µ ) preemptions during a single service time.

The observation above allows us to conclude that the total number of interruptions of any randomly-

chosen second-type customer converges to 0:

lim
N→∞

P (preemption) = lim
N→∞

O(
√

λ1
µ )

ρ2N
≈ lim

N→∞
O(
√

N)
N

= 0.

QD Regime:N ≈ λ
µ + ελ

µ , ε > 0.

Under the assumptions of the QD regime, first-type customers are not sensitive to the change of the

operational regime. Thus, the average number of servers busy with the highest priority at some moment

of time remainsN1 ≈ λ1

µ
= ρ1 N.

The first-type customers enter the service with rateλ1
µ + O(

√
λ1
µ ), and the average number of highest-

priority customers who leave the system during a single service does not change either:
λ1

µ
.

The average number of servers needed for the lowest priority at each moment of time isN2 ≈ λ2

µ
. Note,

thatlimN→∞(N1 + N2) < limN→∞N .

The number of second-type customers, arriving during a single service time isλ2
µ + O(

√
λ2
µ ).

The average number of lowest-priority customers leaving the system during a single service time is
λ2
µ (= N2).

It is easy to see that, in steady state, there are∆N servers, available at each moment of time, where

Here ∆N = N −N1 −N2 −O

(√
λ1

µ

)
−O

(√
λ2

µ

)
≈ ε

λ

µ
−O

(√
λ

µ

)
, ∆N > 0.

(limN→∞∆N > 0). This is why, in the QD regime the number of preemptions converges to zero asN

grows to infinity.

We have shown that in the three operational regimes the probability of the low-priority service inter-

ruption converges to zero,limN→∞ P (preemption) = 0. The number of preemptions is distributed

Geom0(1− P (preemption)). This is why,

lim
N→∞

E(#preemptions) = 0.
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Thus, we can conclude that the expected waiting time of the lowest priority is asymptotically the same

under the preemptive and non-preemptive priority disciplines:

lim
N→∞

Enp(WK
q )

Epr(WK
q )

= lim
N→∞

(Eλ(Lq) + 1)×E(B1→(K−1))
(Eλ(Lq) + 1)×E(B1→(K−1))× (1 + E(#preemptions))

= 1, (5.13)

whereE(B1→(K−1)) is a Busy Period in anM/M/1 + M queue with arrival rateλ1→(K−1), service

rateNµ and abandonment rateθ.

Conventional Heavy Traffic

Now we assume that there is a single server and his utilization converges to 1. For simplicity, the fol-

lowing explanation addresses queues without abandonment. In the case with impatient customers the

explanation below applies with minor changes.

Let ρN converge to 1 in the following manner:limN→∞
√

N(1− ρN ) = c for some0 < c < ∞.

UnderNon-Preemptivediscipline, to move forward one position in his queue, a delayed lowest-priority

customer waits a single busy period of anM/M/1 queue with the service rateNµ and arrival rateλ1.

As it was mentioned, both underPreemptive and Non-Preemptivedisciplines, the queue length upon

an arrival of the lowest priority customer, if there is waiting, is distributed like a queue length in an

M/M/1 queue with the arrival rateλ = λ1 + λ2.

Thus,

Enp(WK
q ) =

1
µ(1− ρ1)︸ ︷︷ ︸

E(busy period), λ1, µ,1

× 1
(1− ρ)︸ ︷︷ ︸

E(L), λ, µ,1

UnderPreemptive Priority discipline, the time until a delayed lowest-priority customer moves forward

one position is distributed as a busy period of anM/M/1 queue with the service rateNµ and arrival rate

λ1, similarly to the non-preemptive discipline.

However, there are additional high-priority customers which arrive after the service of the second-type

customer has begun making him return to the queue.

The probability of preemption isP (preemption) = λ1
λ1+µ ≡ ρ1

1+ρ1
, as the competition of two exponen-

tial random variables. As a result, the number of preemptions is distributedGeom0(1 − ρ1

1+ρ1
), and the

expected number of preemptions isρ1.

Thus,

Epr(WK
q ) =

1
µ(1− ρ1)︸ ︷︷ ︸

E(busy period), λ1, µ,1

×
[

1
(1− ρ)︸ ︷︷ ︸

queue upon arrival

+ ρ1︸︷︷︸
#preemptions

]

We notice, that there is a finite number (ρ1) of the high-priority customers which enter the queue due to

preemptions, while the queue length upon a low-priority customer arrival is exactly the same as under

non-preemptive priority and diverges to infinity asρ approaches 1.

As a result, it is possible to conclude that under conventional heavy traffic preemptive and non-preemptive
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disciplines result in asymptotically the same expected waiting time for customers of the lowest priority:

lim
r→∞

Enp(WK
q )

Epr(WK
q )

= lim
r→∞

1
µ(1−ρ1) × 1

(1−ρ)

1
µ(1−ρ1) ×

(
1

(1−ρ) + ρ1

) = 1. (5.14)

Using the same arguments, it can be shown that for any finite number of typesK, the preemptive and the

non-preemptive priority disciplines are asymptotically equivalent for the customers of the lowest priority

K.

The fact of asymptotic equivalence of the two disciplines is important because in many cases we may

apply the known results for one priority discipline to another.

Now, using exact analysis, we are going to obtain convergence rate of the expected waiting time for the

highest and for the lowest priorities under each discipline and see that the lowest priority is asymptotically

the same under both priority disciplines, as predicted.

Let us consider a pair ofM/M/N+M queues under preemptive and non-preemptive priority disciplines.

For asymptotic analysis, similarly to the analysis of anM/M/N queue, we use the results of Zeltyn et

al. [42] for the ED, QED and QD operational regimes and the exact formulae (5.15-5.18) listed below.

Equations (5.1and5.12) for the two customer types read as follows:

Ep(W 1
q ) =

1
θ
Pλ1(Aband) (5.15)

Ep(W 2
q ) =

1
θ

λPλ(Aband)− λ1Pλ1(Aband)
λ2

(5.16)

Enp(W 1
q ) =

Pλ(Wq > 0)
θ

Pλ1(Aband|Wq > 0), (5.17)

Enp(W 2
q ) =

Pλ(Wq > 0)
θ

· λPλ(Aband|Wq > 0)− λ1Pλ1(Aband|Wq > 0)
λ2

(5.18)

The next two subsections present an asymptotic analysis of queues with two customer types under both

priority disciplines in ED and QED operational regimes. For each subsection the convergence is shown

in the same way. First, to show, how Equations (5.15)-(5.18) converge asN grows to infinity, we check

separately the convergence of their main components:

• Pλ(Wq > 0), Pλ(Aband|Wq > 0), Pλ(Aband) (= Pλ(Wq > 0)Pλ(Aband|Wq > 0));

• Pλ1(Wq > 0), Pλ1(Aband|Wq > 0), Pλ1(Aband) (= Pλ1(Wq > 0)Pλ1(Aband|Wq > 0)) .

After that we aggregate the results to find the convergence of (5.15-5.18).
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5.3.2 QED: An Example with Two Customer Types

We assume that the total arrival rate converges to infinity,λ → ∞, and that the total number of servers

N is given by:

N ≈ λ

µ
+ β

√
λ

µ
, λ →∞, −∞ < β < ∞. (5.19)

In addition, we assume that asλ grows to infinity, the offered load per server for each type of customers,

ρi, stays constant:

lim
N→∞

λk

Nµ
= ρk, k = 1, 2.

Now, to obtain the convergence of expressions (5.15)-(5.18), let us analyze the convergence of their main

components.

1. The delay probability in the QED regime converges toα:

lim
N→∞

Pλ(Wq > 0) = α,

whereα is given by Garnett function [11]:

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1

, (5.20)

in which β̂ , β
√

µ
θ .

2. Formula (4.6) in [42] gives an approximation for the probability of abandoning, if there is waiting,

in the QED regime:

Pλ(Aband|Wq > 0) =
1√
N
·
√

θ

µ
· [h(β̂)− β̂] + o(1/N). (5.21)

3. To analyze the convergence ofPλ1(Wq > 0) andPλ1(Aband), we notice that in a queue with a

single type of customers who arrive at rateλ1 and the number of servers is determined by (5.19),

the customers are served similarly to the QD regime. This is why, the number of the servers in

such a queue can be described as follows:

N ≈ λ1

µ
+

ρ2

ρ1
· λ1

µ
. (5.22)

The convergence of the delay and the abandonment probabilities in the QD regime is determined

by Theorem 5.1 (a-b) in [42]:

Pλ1(Wq > 0) ≈ 1√
2πN

· 1
δ

(
1

1 + δ

)N−1

exp(λ1δ/µ) (5.23)

≈ 1√
2πN

· ρN
1

ρ2
· e1−ρ1 , (5.24)

Pλ1(Aband|Wq > 0) =
1
N
· 1
1− ρ1

· θ

µ
+ o(1/N). (5.25)
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Now, after the convergence of each component has been determined, it is easy to obtain the convergence

of the waiting time of any type under both priority disciplines.

Preemptive discipline

Epr(W 1
q ) · N

√
N

(ρ1 )N
=

eρ2

√
2π ρ2

2µ
(5.26)

Epr(W 2
q ) ·

√
N =

α

ρ2
√

θµ
· [h(β̂)− β̂]. (5.27)

We see that the waiting time of the first type customers converges to zero at rateΘ( ρN
1

N
√

N
), as expected

according to the QD regime. The service level of the lowest-priority customers fits the QED regime, and

their waiting time converges to 0 at rateΘ( 1√
N

).
Non-Preemptive Discipline

Enp(W 1
q ) ·N =

α

ρ2µ
(5.28)

Enp(W 2
q ) ·

√
N =

α

ρ2
√

θµ
· [h(β̂)− β̂]. (5.29)

Under the non-preemptive discipline, the highest priority experience QD service level ”conditioned on

waiting”, i.e. the highest priority enjoy service before the lowest priority, but they cannot interrupt in-

process service. This is why their waiting time converges to zero at rateΘ(1/N). This rate is faster than

the convergence under QED in a queue without priorities but not as fast as under the preemptive priority

discipline.

The waiting time of the lowest priority converges to zero at rateΘ( 1√
N

) , just like under preemptive

priority. Moreover, the ratio between the expected waiting time and1√
N

converges to the same limit as

under preemptive priority.

5.3.3 ED: An Example with Two Customer Types

We assume that the total arrival rate converges to infinityλ →∞ and that the total number of serversN

is given by:

N =
λ

µ
(1− γ), for some0 < γ < ∞. (5.30)

Again, the assumption is that asλ grows to infinity, the fraction of time spent with each type of customer,

ρi, stays constant.

Now, to obtain the convergence of expressions (5.15)-(5.18), let us analyze the convergence of their main

components.

1. The delay probability in the ED regime converges to 1:

lim
N→∞

Pλ(Wq > 0) = 1.
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2. Formula (6.5) in [42] gives an approximation of the probability of abandoning, if there is waiting,

in the ED regime:

Pλ(Aband) ≈ γ. (5.31)

3. To analyze the convergence ofPλ1(Wq > 0) andPλ1(Aband), we again use QD approximations,

using the same arguments as in the case of QED. The convergence of the delay and the abandon-

ment probabilities in the QD regime is determined by Theorem 5.1 (a-b) in [42]:

Pλ1(Wq > 0) ≈ 1√
2πN

· 1
δ

(
1

1 + δ

)N−1

exp(λ1δ/µ) (5.32)

≈ 1√
2πN

· ρN
1

ρ2
· e1−ρ1 , (5.33)

Pλ1(Aband|Wq > 0) =
1
N
· 1
1− ρ1

· θ

µ
+ o(1/N). (5.34)

Preemptive discipline

lim
N→∞

Epr(W 1
q )

N
√

N

ρN
1

=
eρ2

√
2πρ2

2 µ
, (5.35)

lim
N→∞

Epr(W 2
q ) = lim

N→∞
ργ

θρ2
=

γ

θρ2
. (5.36)

We see that both in Erlang-C and Erlang-A queues in QED and ED regimes, the convergence rate of

Epr(W 1
q ) is Θ( ρN

1

N
√

N
)

The convergence rate ofEpr(W 2
q ) is Θ(1).

Non-Preemptive Discipline

lim
N→∞

NEnp(W 1
q ) =

1
ρ2µ

, (5.37)

lim
N→∞

Enp(W 2
q ) =

γ

θρ2
. (5.38)

The convergence rate of the expected waiting time of the highest priority under non-preemptive disci-

pline isΘ(1/N), which is the same for all previously considered examples (M/M/N under QED and

ED andM/M/N + M under QED).

The convergence rate ofEnp(W 2
q ) is Θ(1), which is the same rate as under preemptive priority. Addi-

tionally, Enp(W 2
q ) itself converges to the same limit as under preemptive priority.

5.3.4 Summary of Convergence Rates

To emphasize the similarity of the preemptive and non-preemptive disciplines for the lowest priority, Ta-

ble5.1presents a summary of the waiting-time convergence rates for the two-type examples of Erlang-C
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/ A queues.

This table shows that the first-type customers are not sensitive to the changes in the operational regime.

The convergence rate of the preemptive priority remains exponential under QED and ED in queues with

and without abandonment. And under non-preemptive priority, the convergence rate of the first type is

Θ(1/N) both for QED and ED regimes.

The performance of the lowest priority is influenced by the operational regime and not by the priority

discipline. Table5.1shows that in the same operational regime, the convergence rate of the lowest prior-

ity both under preemptive and non-preemptive disciplines is similar to that in queues without priorities.

Table 5.1:Convergence Rates Under Both Disciplines in Queues with and without Abandonment

QED ED

N = R + β
√

R N = R− γR

M/M/N M/M/N + M M/M/N M/M/N + M

Enp(W 1
q ) Θ(1/N) Θ(1/N) Θ(1/N) Θ(1/N)

Enp(W 2
q ) Θ(1/

√
N) Θ(1/

√
N) Θ(1) Θ(1)

Epr(W 1
q ) Θ( ρN

1

N
√

N
) Θ( ρN

1

N
√

N
) Θ( ρN

1

N
√

N
) Θ( ρN

1

N
√

N
)

Epr(W 2
q ) Θ(1/

√
N) Θ(1/

√
N) Θ(1) Θ(1)

5.4 Higher Priorities: Convergence of the Expected Waiting Time

This section deals with the convergence of the expected waiting time of any priorityk higher than the

lowest priorityK, under the QED and ED operational regimes. We also assume that the lowest priority

is not negligible,limN→∞ ρK > 0, and that the total number of customers of the types1 . . . k is not

negligible,limN→∞ σk > 0.

5.4.1 Preemptive Priority

Let us start with the preemptive-priority discipline. The expected waiting time of typek is given by

recursion (4.5), which is the same for Erlang-C and Erlang-A queues. This equation is re-stated below

for Erlang-A queues using the relation (2.13) between the abandonment probability and the expected
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waiting time:

Epr(W k
q ) =

1
θ · λk

[
λ1→kP (Aband(1→k)

q )− λ1→(k−1)P (Aband(1→(k−1))
q )

]
, k = 1 . . .K. (5.39)

In the case of Erlang-C queues, the expected waiting time is given by (4.6), which is repeated here for

convenience of the reader:

Epr(W k
q ) =

E2,N (λ1→k)
λk(1− σk)

− E2,N (λ1→(k−1))
λk(1− σk−1)

.

If the number of servers is determined by the ED or QED staffing rule, then Erlang-C or A queueing

systems with the arrival rateλ1→k or λ1→(k−1) experience service under light traffic (QD). This is why

we apply Theorem 5.1 (a-b) from [42] to determine the convergence ofE2,N (λ1→k), E2,N (λ1→(k−1)),
P (Aband1→k), andP (Aband1→(k−1)):

E2,N (λ1→k) = P (W 1→k
q > 0) ≈ 1√

2πN
· σN

k

1− σk
· e1−σk , (5.40)

P (Aband1→k|W 1→k
q > 0) =

1
N
· 1
1− σk

· θ

µ
+ o(1/N). (5.41)

Utilizing results (5.40-5.41), we see that the convergence rate ofEpr(W k
q ) is Θ(

σN
k√
N3

), and it is the same

for Erlang-C and Erlang-A queues:

lim
N→∞

Epr(W k
q ) ·

√
N3

σN
k

=
e1−σk

√
2π(1− σk)2µ

, k = 1, . . . , K − 1. (5.42)

Moreover, the ratio betweenEpr(W k
q ) and its convergence rate converges to the same constant (see

(5.42)) for both Erlang-C and Erlang-A queues. This means thatthe expected waiting time of any

priority k, k < K, can be approximated by Erlang-C model with the arrival rateλ1→k.

5.4.2 Non-Preemptive Priority Discipline

The general expression for the expected waiting time of any typek is found using recursion (5.12). It is

repeated below for convenience:

Enp(W k
q ) =

λ1→k · Enp(W 1→k
q )− λ1→(k−1)Enp(W

1→(k−1)
q )

λk
.

Several algebraic operations on (5.12) and the relation (2.13) lead to the following result:

Enp(W k
q ) =

Pλ(Wq > 0)
λk θ

(
λ1→kP (Aband1→k|Wq > 0)− λ1→(k−1)P (Aband1→(k−1)|Wq > 0)

)
.

Now let us analyze the convergence of the expected waiting time of typek in the QED and ED operational

regimes while the number of servers increases indefinitely. The expected waiting time of any typek is a

product of the two following elements:
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• Pλ(Wq > 0),

• Enp(W k
q |W k

q > 0) =
1
λk

(
λ1→k

P (Aband1→k|Wq > 0)
θ

− λ1→(k−1)
P (Aband1→(k−1)|Wq > 0)

θ

)
.

We check separately the convergence of each of them and later combine the results to make a conclusion

aboutlimN→∞Enp(W k
q ).

In the QED regime, the delay probability converges to some positive constantα less than 1 (Garnett

Function (5.20)):

Pλ(Wq > 0) = α + o(1/
√

RN ). (5.43)

This can be concluded from our analysis of the delay probability in the QED regime in Subsection3.4.1.

In the ED regime the delay probability converges to 1:

Pλ(Wq > 0) = 1 + o(1/N). (5.44)

This is concluded from the analysis of the delay probability in the ED regime in Subsection3.4.2.

To analyze the convergence of the expected waiting time, if there is waiting of typek customers we use

the approximations of the abandonment probability in the QD regime, developed by Zeltyn (see [42],

Theorem 5.1 (b)). This is made possible due to the assumption that the lowest priority is not negligible:

P(Aband1→k|W 1→k
q > 0) =

1
N
· 1
1− σk

· θ

µ
+ o(1/N)

P (Aband1→(k−1)|W 1→k
q > 0) =

1
N
· 1
1− σk−1

· θ

µ
+ o(1/N)

Substituting these approximations into conditioned waiting time, we obtain the following:

Enp(W k
q |W k

q > 0) =
1

λk θ

( λ1→k θ

Nµ(1− σk)
− λ1→(k−1) θ

Nµ(1− σk−1)

)
+ o(1/N)

=
1
λk

( σk

1− σk
− σk−1

1− σk−1

)
+ o(1/N)

=
σk − σkσk−1 − σk−1 + σkσk−1

λk(1− σk)(1− σk−1)
+ o(1/N)

⇒ Enp(W k
q |W k

q > 0) =
1

Nµ(1− σk)(1− σk−1)
+ o(1/N). (5.45)

Let us now combine the convergence results of the delay probability and the expected waiting time given

waiting. For the QED regime, the relevant results are equations (5.43) and (5.45), and for the ED regime

the expected waiting time is a combination of (5.44) and (5.45). One can easily see, that under QED
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or ED, the expected waiting time of typek, k < K, which is presented as a limit of a product of two

elements, is equal to the product of the limits of these elements:

⇒ lim
N→∞

Enp(W k
q ) = lim

N→∞
Pλ(Wq > 0) · lim

N→∞
1

Nµ(1− σk)(1− σk−1)
. (5.46)

Note that the expected waiting time of any typek, k > K, is given asymptotically by the same expression

as forM/M/N queues (see (4.7)) with the only difference that the delay probability is given by the

Erlang-A formula, and not by the Erlang-C one.

By using (5.46) we find the convergence rate of the expected waiting time for any typek, k < K. It can

be seen that under both theQED and theED operational regimes, the convergence rate isΘ( 1
N ), since

the delay probability converges to some constant (0 < α < 1 for the QED and 1 for the ED).
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Chapter 6

Towards Time-Stable Performance of

Time-Varying Call Centers

In this chapter, we show howstationary models can be used in atime-varying environment to help

determine an appropriate staffing level. This is done by analyzing via simulation four different call

centers. For each center, the staffing level is determined by either a simulation-based algorithm (ISA) or

by the square-root safety-staffing rule.1

In addition, we check and compare the performance of the two staffing methods, PSA and Lagged PSA,

the first of which is widely used in industry.

The chapter is organized as follows.

A detailed explanation of the ISA algorithm, which determines staffing level for a given target delay

probability, is provided in Section6.1. Section6.2 lists different performance measures that can be

calculated using our simulation tool. Section6.3gives a short summary of the prevalent staffing methods,

PSA and Lagged PSA. Section6.4 presents simulated performance of the four call centers, the staffing

for which is determined with the help of PSA, Lagged-PSA and square-root staffing.

Appendix6.5describes the current implementation of the performance measures listed in Section6.2, as

well as alternative ways of their calculation.

6.1 Description of the ISA algorithm

Here we describe the simulation-based Iterative-Staffing Algorithm (ISA). In our implementation, the

algorithm determines time-dependent staffing levels aiming to achieve a given constant-over-time delay

probability at all time intervals.

For the implementation of the algorithm we assume that we have anMt/G/st system with homo-

1For each of these call centers both ISA and the square-root safety-staffing rule were applied, and the differences between

these two staffing methods were found to be practically insignificant.
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geneous customers. We assume that service times are iid variables of a given general distribution,

which are independent of arrivals. The Poisson arrivals are fully specified by their arrival rate func-

tion {λ(t); 0 ≤ t ≤ T}.
To start, we fix an arrival-rate function, a service-time distribution and a time horizon[0, T ]. For any

random quantity of interest, letX(i)
t denote its value at timet in the ith iteration,t ∈ [0, T ]. Although

the algorithm is formulated in continuous time, staffing decisions are made at discrete times. This is

achieved by dividing the time-horizon into small intervals of lengthδ. The number of servers is constant

within each interval.

Let s
(i)
t be the staffing level at timet in iterationi, for 0 ≤ t ≤ T . Let L

(i)
t denote the random num-

ber of customers in the system at timet under this staffing function. We estimate the distributions of

L
(i)
t for eachi andt, by performing multiple (5000) independent replications. The algorithm starts with

infinitely many servers (s(0)
t ≡ ∞). In this implementation we choose a large finite number of servers

which guarantees a negligible delay probability.

The algorithm iteratively performs the following steps, until convergence is obtained.(Here, con-

vergence means that the staffing levels do not change much after an iteration. By the algorithm imple-

mentation, they are allowed to change by some thresholdτ , which we took to be 1.)

1. Given theith staffing function{s(i)
t : 0 ≤ t ≤ T}, evaluate the distributions ofL(i)

t for all t, using

the simulation.

2. For eacht, 0 ≤ t ≤ T , let s
(i+1)
t be the least number of servers such that the delay probability

constraint is met at timet,2 i.e. let

s
(i+1)
t = argmin{c ∈ N : P

(
L

2,(i)
t ≥ c

)
≤ α}. (6.1)

3. If there is a negligible change in the staffing from iterationi to iterationi + 1, then stop. Formally,

||s(i+1) − s(i)||∞ ≡ max{|s(i+1)
t − s

(i)
t | : 0 ≤ t ≤ T} ≤ τ, (6.2)

then stop and lets(i+1) be the proposed staffing function. Otherwise, advance to the next iteration,

i.e., increasei to i + 1 and go back to step 1.

Let∞ denote the index of the last iteration of ISA, so thats
(∞)
t denotes the final staffing level at time

t andL
(∞)
t denotes the random number of the customers in system at timet, with the obtained staffing

functions(∞). Then if convergence is reached, the determined staffing function satisfies the following:

P
(
L

(∞)
t ≤ s

(∞)
t

)
≈ α, for all 0 ≤ t ≤ T .

The implementation of the algorithm is written in C++ and is an adaptation of an existing software

written by Z. Feldman (see [8] or [9]).

2We take the event that ”all servers are busy at timet” to mean that a (virtual) arrival at timet would be delayed before

service.
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6.2 Calculation of performance measures

Here we present a list of the performance measures implemented in our simulation software. The imple-

mentation of these measures is discussed in Appendix6.5.

The ISA algorithm ([8] and [9]) allows one to calculate these measures over a pre-determined time hori-

zon, partition intervals and number of replications which may vary depending on the user choice.

In the formulae below:

• superscriptj indicates thejth replication;

• subscriptt indicates thetth partition interval; all intervals are of size∆T ;

• Repsis the total number of replications.

The measures listed below are calculated for each time interval separately. They are referred to as

Dynamic Performance Measures, to emphasize their time-dependence.

• Rt: Offered Load;

• βt: Implied Service Quality;

• ρt: Servers Utilization (Fraction of Time Serving Customers);

• Pt(Aband): Abandonment Probability;

• Pt(Wq > 0): Delay Probability;

• Qt: Average Queue Length;

• Wt: Average Waiting Time;

• E(Wt|Wt > 0): Average Waiting Time Conditioned on Waiting.

The following measures, referred to asOverall Performance Measures, are calculated at the end of the

simulation run.

• E(W ): Average Waiting Time;

• E(W |W > 0): Average Waiting Time Conditioned on Waiting;

• P (Aband): Average Abandonment Probability;

• P (Wq > 0): Average Delay Probability;

• ρ: Average Servers Utilization.

60



6.3 Short Staffing Intervals: PSA and Lagged PSA Approximations

In the following two subsections, we present two techniques for staffing time-varying queues, PSA and

Lagged PSA, as described in the article by Green et al. [14].

6.3.1 PSA and SIPP

There are several approaches for coping with time-varying arrivals. The traditional solution for staffing

a queue with short service times and a high quality of service is thePointwise Stationary Approximation

(PSA). This approximation describes a time-dependent queue at each timet using a stationary model

with the arrival rate and other parameters of this time t.

In practice the number of servers stays constant during time intervals, which we call here staffing in-

tervals. The PSA method can be adapted to such conditions bySegmented PSA. The latter determines

staffing for each staffing interval as the maximum of all PSA-generated staffing levels in this interval. In

general, this method tends to overstaff slightly, but its results can be refined by simulations.

In practice, many commercial software packages use the following approach: The arrival rates are first

averaged over the whole staffing interval, and the staffing level in that interval is set according to a cor-

responding stationary model. This method is referred to asStationary Independent Period-by-Period

(SIPP)[13].

Both Segmented PSA and SIPP are based on the same principle and assume that all time periods are

independent. The difference is as follows. With Segmented PSA we first findall possible staffing levels

for all arrival rates during some staffing interval, while with SIPP we average arrival rates for this interval

and find the appropriate staffing only once.

6.3.2 The Lagged Pointwise Stationary Approximation

While PSA methods perform well for fast service rates, for medium to low service rates some adjust-

ment may be needed. An intuitive explanation is that each customer stays in the system during his service

time, hence the number of customers in system lags behind the arrival rate. In such a case, staffing by

the arrival rate at every given moment is not very accurate because during the lag period the number of

customers in the system may change.

A very good example of the lag impact is described by Litvak et al. in their report [23] for an emergency

department in Massachusetts. Their main finding, obtained exclusively by observations, is that there is a

lag between the arrivals of ambulances and the demand for doctors. There was no observations of what

would have happened if the number of doctors and nurses lagged behind the arrival rate for six hours,

the latter being an average service time in this ED. We believe, that if the observations were continued,

the authors would have found out that this lag in staffing lead to a much improved level of performance.

The Infinite-Server Model provides insight into the staffing problem. Indeed, we use theMt/GI/st +
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GI model with medium-to-low service rates and a high-quality-of-service standard to describe our en-

vironment. Its corresponding infinite-server model isMt/GI/∞. This model allows one to find the

number of assigned servers with no resource constraints. The distribution of the number of busy servers

at each timet in the Mt/GI/∞ queue can be found analytically. Although in our original queue the

number of servers is not infinite, the associated Infinity-Server model is nevertheless intimately related

to it, as will become clear in the sequel.

Solution for the Mt/GI/∞ Model. The number of busy servers at timet in theMt/GI/∞ model has

a Poisson distribution with time-varying meanm∞(t), which can be expressed in the following 3 ways:

m∞(t) = E[λ(t− Se)]E[S] = E
[ ∫ t

t−S
λ(u)du

]
=

∫ t

−∞
[1−G(t− u)]λ(u)du, (6.3)

where

S is the service time with cdfG,

andSe is a random variable with the residual lifetime cdf associated withS, i.e.

P (Se ≤ t) ≡ 1
E[S]

∫ t

0
[1−G(u)]du, t ≥ 0. (6.4)

From the representation (6.3), we see that the number of busy servers depends on the arrivals during

the latest service time. This fact provides a theoretical support to the results described in [23] and also

explains why applying Lagged-PSA staffing generally leads to better results than PSA, as will be seen

from our simulation experiments presented further.

6.4 Empirical Examples

Here we compare the results of square-root staffing with the results of staffing by PSA and Lagged-PSA,

applying these methods to four different call-centers. The description of the results for each center is

organized in a very similar manner, and, to make the description easier to follow, we repeat in each

subsection the same theoretical formulae.

For each empirical example the results are presented in the following way. Each subsection starts with a

detailed summary of performance under square-root staffing, which is compared against an appropriate

stationary model. Then the results of staffing by PSA and Lagged PSA are presented.

6.4.1 First Empirical Example - Green, Kolesar and Soares [13]

TheMt/M/st + M queue presented here was originally studied by Green, Kolesar and Soares in [13].

The simulated environment is as follows:

• The running horizon is 24 hours.
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• Performance statistics are calculated over the period of time between6 a.m. and17 p.m. to make

sure that the arrival rate is large enough, so that QED approximations are applicable. (Our results

actually reveal the time-period over which QED approximations are applicable.)

• All empirical values are calculated as an average over 5000 sample paths (simulations).

• Service time is assumed to be distributed exponentially, with mean1/µ = 0.1 hours or 6 minutes.

(This is given in [13].)

• Customers patience is assumed to be distributed exponentially, with mean1/θ = 0.1 hours or 6

minutes. (There is no account of abandonment in [13].)

• The queue discipline is assumed FCFS.

• The arrival rate function is presented in Figures6.1and6.2(being adopted from [13]).

Square-Root Staffing

The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.

We are using staffing by constant value of the Quality-of-Service (QoS) parameterβ which determines

an appropriate staffing level, fixed over the staffing interval, for each time interval as follows:

st = Rt + β
√

Rt. (6.5)

Here, {Rt, 0 ≤ t ≤ 24} is the time-varying average number of customers (= busy servers) in an

Mt/M/∞ queue (5000 sample paths), with the arrival rate as in Figure6.2and average service time of

6 minutes.

We tested 11 values ofβ, from 2 to -2 in step 0.4, focusing onβ = 1.2, 0 and -1.2; the latter 3 values

correspond to the QD, QED and ED operational regimes respectively.

The results will now be elaborated on.

Staffing according to (6.5), achieves a time-stable level of the delay probability. Summary of the delay

probabilities is presented in Figure6.3, and its stability from 6 a.m. to 17 p.m. is remarkable.

Figure6.4shows a comparison of the simulated overall (global) delay probability and the probability of

waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropri-

ate stationary models. The theoretical global delay probability for a constantβ is found by the Garnett

function [11]:

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1

, −∞ < β < ∞, (6.6)

whereβ̂ = β
√

µ/θ. (Note that onlyβ is required on this case, since we have assumed thatµ = θ.)

All the theoretical calculations are based on the stationaryM/M/s+M model with constant arrival rate

and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,
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Figure 6.1:Arrivals, Offered Load and Staffing Levels
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we calculated the average arrival rate and the average number of servers over the period of time from 6

a.m. till 17 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on

this stationary model and reads as follows (see [42]):

P

{
Wq >

t√
s
|Wq > 0

}
≈ Φ̄(β̂ +

√
θµ t)

Φ̄(β̂)
. (6.7)

Here

Φ(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),

64



Figure 6.2:Arrivals, Offered Load and Staffing Levels
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Figure 6.3: Stable Delay Probability
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Φ̄(x) is the survival function(Φ(x) = 1− Φ̄(x)),
φ(x) is the density of the standard normal distribution,

h(x) , φ(x)/Φ̄(x) is the hazard rate of the standard normal distribution.

Note that, in contrast to Equation (6.6), for calculating (6.7) one must specifys, µ, θ separately.
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Figure6.5 presents the plots of the abandonment probability and of the expected waiting time, for all

eleven values of the testedβ, and compares each simulated measure with its theoretical value. To find

Figure 6.4:Global Performance (6:00-17:00) of (1) Delay Probability; (2) Probability of Waiting More

than 30 sec., if there is Waiting
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Figure 6.5: Global (6:00-17:00) Performance of (1) Abandonment Probability; (2) Average Waiting

Time
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the theoretical values we used again the results from [42]:

P (Aband) ≈ 1√
s
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1

(6.8)

E(Wq) ≈ 1√
s
· 1
θ
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1 (
=

1
θ
P (Aband)

)
(6.9)

The calculation of these theoretical values is based on the same stationaryM/M/s + M model with the

constant arrival rate and number of servers, averaged as described above.

Server utilization is also relatively constant during the hours from 6:00 till 17:00: see Figure6.6. In this

Figure 6.6: Average Servers Utilization
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example, it takes more time for this measure to stabilize for higher values ofβ (lower target delay prob-

ability). This situation is different from that with the probability of abandoning, which is more stable for

small target delay probabilities (compare with Figure6.8).

Average values of waiting time and queue length under the three operational regimes are presented in

Figure6.7.

The dynamics of the abandonment probability is presented in Figure6.8. One can see from the zoomed

plot that for high values ofβ this probability is low and stable over the whole simulation period, while

for close to 0 and negative values ofβ it stabilizes only during the period from 6:00 till 17:00.

Histograms of the waiting time, if there is waiting, for the three operational regimes are presented in

Figure6.9. The theoretical graphs were created via (6.7) using the average number of servers during the

period from 6:00 till 17:00. The fit between practice and theory is again remarkable.

PSA and Lagged PSA

Figure6.10presents delay probabilities obtained by applying PSA and Lagged PSA and by the ISA al-

gorithm. The average service time is rather short (6 minutes), thus significant differences in performance
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Figure 6.7: Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure 6.8: Dynamics of Abandonment Probability
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between these three methods in the levels of the delay probabilities in the morning hours (from 4 till 6)

and in the afternoon (from 14 to 20) are rather unexpected. During different periods of the day, where

the arrival rate is changing very fast, the definition of ”short” service time varies, which results in over-

staffing in the morning hours, and understaffing in evening hours.

Indeed, let us consider timet = 4.1 with target delay probabilityα = 0.5 (See Figure6.10). The de-

lay probability obtained by the PSA staffing is 0.181 instead of the target 0.5. This happens because

of the PSA assumption that the number of customers in the system at timet is given by the arrival rate

λ(t) = 240.4 customers per hour. Thus, the solution suggested by PSA is 25 servers, and it takes in
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Figure 6.9: Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.10:Delay Probabilities Obtained by Different Staffing Methods
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account 240.4 customers. However, at this moment the servers must handle those customers who arrived

in the previous time interval (the expected service time is exactly one time interval in our partition), that

is, there areλ(t − 6 min.) = 199.575 customers to be served at this moment of time. In a stationary

M/M/25 + M model with constant arrival rate 199.575 customers per hour and the rest parameters as

defined above, the delay probability is 0.16, which is close to the simulated 0.18 instead of the target 0.5!

During the evening hours, staffing by PSA leads to understaffing. The arrival rate decreases very fast

during these hours, so taking into account a current time interval instead of its previous one results in a
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Figure 6.11:Staffing Differences between PSA and Lagged PSA Methods
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deficit of servers and too high delay probabilities.

We do not present a separate plot for each staffing level because, due to the low resolution, the differ-

ences between the curves are barely noticeable. These differences never exceed 10 servers, and for such

a large call-center with hundreds of servers (see Fig.6.3), it will be impossible to recognize them on a

single plot. Instead, Figure6.11summarizes the differences in the staffing levels obtained by PSA and

Lagged PSA. The absolute differences between staffing levels do not depend on the targetα and change

during the day together with the arrival rate. We observe that fluctuations of the delay probability of the

PSA method take place during the time periods where PSA and Lagged PSA determine different staffing

levels. The larger these differences, the larger the deviations of PSA from the target delay probability.

6.4.2 Second Empirical Example - A Small Israeli Bank

Here we experiment with the three different staffing methods using the data of a relatively small call-

center of a small Israeli bank. In this center, the maximal expected arrival rate does not exceed 120

customers per hour and the call center works only for 16 hours. This call-center was described by Sakov

et.al. in [26].

The simulated environment is as follows:

• The running horizon is 16 hours: from 7:00 am till 23:00 pm.

• Performance statistics are calculated over the period of time between9 : 00 a.m. and23 : 00 p.m.

• All empirical values are calculated as an average over 5000 sample paths (simulations).

• Service time is assumed to be distributed exponentially, with mean1/µ = 3.2 minutes. (This is

given in [5])
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• Customers patience is assumed to be distributed exponentially, with mean1/θ = 7.3 minutes.

• The queue discipline is assumed FCFS.

• The arrival rate function is presented in Figure6.12.

Staffing by ISA

The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.

Figure 6.12:Arrivals, Offered Load and Staffing Levels
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Avg. Patience    7.3 min

In this example, we present results of staffing by ISA and not by square-root staffing as before. It is

important to mention that the differences between these two methods are negligible.

According to the description of ISA (Section6.1), the algorithm determines, given the target delay prob-

ability α, for each time interval (6 minutes) an appropriate staffing level, fixed over the staffing interval.

We tested nine values ofα, from 0.1 to 0.9 in step 0.1 focusing onα = 0.1, 0.5 and 0.9; the latter 3 values

correspond to the QD, QED and ED operational regimes respectively.

The results will now be elaborated on.

Staffing according to ISA achieves relatively stable level of the delay probability even for this small

call-center. The fluctuations during the simulation run are the largest for this call-center among all the

considered examples (compare Figure6.3with Figure6.13, for example), and this is due to its small size.

Summary of the delay probabilities obtained as a result of staffing by ISA is presented in Figure6.13.

Figure6.14shows a comparison of both the simulated global delay probability and probability of waiting

more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropriate sta-

tionary model. The theoretical global delay probability for a constantβ is found by the Garnett function

71



Figure 6.13:Delay Probability Summary
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[11]:

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1

, −∞ < β < ∞, (6.10)

whereβ̂ = β
√

µ/θ. (Note that in this caseµ 6= θ so in this case all three parametersβ, µ andθ are

required.)

All the theoretical calculations are based on the stationaryM/M/s + M model with constant arrival

Figure 6.14:Global Performance (10:00-24:00) of (1) Delay Probability; (2) Probability of Waiting

More than 30 sec., if there is Waiting
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Figure 6.15:Global (10:00-24:00) Performance of (1) Abandonment Probability; (2) Average Waiting

Time
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rate and number of servers, both calculated in the following way: for each of the 5000 sample paths, we

calculated the average arrival rate and the average number of servers over the period of time from 9 a.m.

till 23 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on

this stationary model and reads as follows (see [42]):

P

{
Wq >

t√
s

∣∣∣∣Wq > 0} ≈ Φ̄(β̂ +
√

θµt)

Φ̄(β̂)
. (6.11)

Here

Φ(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),

Φ̄(x) is the survival function(Φ(x) = 1− Φ̄(x)),
φ(x) is the density of the standard normal distribution,

h(x) , φ(x)/Φ̄(x) is the hazard rate of the standard normal distribution.

Figure6.14clearly shows that the approximations for the probability of waiting more than 30 seconds

are not applicable for this environment. In addition, when compared to Figure6.5, the simulated delay

probabilities are also relatively different from their theoretical stationary values, especially for the target

α greater than 0.6, though the theoretical and the simulated curves of the delay probability seem rather

close forβ > −0.5.

Figure6.15presents the plots of the abandonment probability and of the expected waiting time, for all

nine values of the testedα and compares each simulated measure with its theoretical value. To find the

theoretical values we used again the results from [42] for a stationary model:

P (Aband) ≈ 1√
s
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1

(6.12)
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Figure 6.16:Average Servers Utilization
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E(Wq) ≈ 1√
s
· 1
θ
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1 (
=

1
θ
P (Aband)

)
(6.13)

The calculation of these theoretical values is based on the same stationaryM/M/s + M model with

constant arrival rate and number of servers, averaged as described above.

These stationary approximations do not fit the simulated environment at all. Figure6.15shows that the

difference between the theoretical and the simulated values is large, and it increases asα grows.

Server utilization is also relatively constant during most of the day (see Figure6.16). In this example,

it takes more time for this measure to stabilize for lower values of the target delay probabilityα. This

situation is different from that with the probability of abandoning, which is more stable for small target

delay probabilities (compare with Figure6.18).

The average values of waiting time and queue length under the three operational regimes are presented

in Figure6.17.

The dynamics of the abandonment probability is presented in Figure6.18. One can see that for low

values ofα this probability is low and stable over the whole simulation period.

Histograms of waiting time, if there is waiting, for the three operational regimes are presented in Figure

6.19. The theoretical curves were created via Eq. (6.11) using the average number of servers during the

period from 9:00 till 23:00. Note that for such a small average number of servers, this approximation

does not work at all, and the theoretical curve does not describe the simulated distribution.

PSA and Lagged PSA

Figure6.20presents staffing levels obtained by PSA and Lagged PSA methods. The results of these
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Figure 6.17:Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure 6.18:Dynamics of Abandonment Probability
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two methods are very close. We do not compare ISA with PSA and Lagged PSA staffing levels because

in the experiments with ISA the minimal staffing interval was six minutes, while for PSA and Lagged

PSA the minimal staffing interval was 3.2 minutes, i.e., one average service time. This was done to

facilitate the application of Lagged PSA, which, for any time interval, uses arrival rate that lags exactly

one average service time. The difference between PSA and Lagged PSA never exceeds a single server,

and the performance of the queue is very similar under both of them. Figure6.21presents a summary of

the delay and abandonment probabilities. For this measure, these two staffing methods also give a very

similar outcome. The performance over the day is not stable, even though the staffing intervals are very

short.
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6.4.3 Third Empirical Example - An Israeli Cellular Company

Here we analyze a medium call center (maximal arrival rate reaches 500 customers per hour), which also

works for 16 hours per day. The simulated environment is as follows:

• The running horizon is 16 hours: from 7:00 am till 23:00 pm.

• Performance statistics are calculated over the period of time between 10:00 a.m. and 23:00 p.m.

• All empirical values are calculated as an average over 5000 sample paths (simulations).

• Service time is assumed to be distributed exponentially, with mean1/µ = 3.3 minutes (based on

data analysis).

• Customers patience is assumed to be distributed exponentially, with mean1/θ = 0.1 hours or 6

minutes.

• The queue discipline is assumed FCFS.

• The arrival rate function is presented in Figures6.22and6.23.

Square-Root Staffing

The goal of the experiments is to achieve time-stable performance in the face of time-varying arrivals.

We are using staffing with a constant value of the Quality-of-Service (QoS) parameterβ. This determines

an appropriate staffing level, which is fixed over the staffing intervals as follows:

st = Rt + β
√

Rt. (6.14)

Here, {Rt, 7 ≤ t ≤ 23} is the time-varying average number of customers (= busy servers) in an

Mt/M/∞ queue (5000 sample paths), with the arrival rate as in Figure6.23and average service time of

Figure 6.19:Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.20:Arrivals, Offered Load and Different Staffing Levels
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Figure 6.21:Delay and Abandonment Probabilities Obtained by Different Staffing Methods
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3.3 minutes.

Seven values ofβ were tested, (from 1.2 to -1.2 with the step -0.4), focusing onβ = 1.2, 0 and -1.2

which correspond to the QD, QED and ED operational regimes respectively.

The results will now be elaborated on.

Staffing according to (6.14), achieves a time-stable level of the delay probability. Summary of the delay

probabilities is presented in Figure6.24.

Figure6.25shows a comparison of the simulated overall (global) delay probability and the probability

of waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appro-
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Figure 6.22:Arrivals, Offered Load and Staffing Levels
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priate stationary models. Here, theoretical values are calculated using the average simulated value ofβ.

The theoretical global delay probability for a constantβ is found by the Garnett function [11]:

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1

, −∞ < β < ∞, (6.15)

whereβ̂ = β
√

µ/θ. (Note that in this caseµ 6= θ so in this case all three parametersβ, µ andθ are

required.)

All the theoretical calculations are based on the stationaryM/M/s+M model with constant arrival rate

and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,

we calculated the average arrival rate and the average number of servers over the period of time from 10

a.m. till 23 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on
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Figure 6.23:Arrivals, Offered Load and Staffing Levels
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Figure 6.24:Delay Probability Summary
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this stationary model and reads as follows (see [42]):

P{Wq >
t√
s
|Wq > 0} ≈ Φ̄(β̂ +

√
θµt)

Φ̄(β̂)
. (6.16)

Here

Φ(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),

Φ̄(x) is the survival function(Φ(x) = 1− Φ̄(x)),
φ(x) is the density of the standard normal distribution,

h(x) , φ(x)/Φ̄(x) is the hazard rate of the standard normal distribution.

We conclude from Figure6.25that the delay probability can be approximated by the stationary model
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very well, while for the probability of waiting more than 30 seconds, if there is waiting, the difference

between theoretical and simulated values grows as the targetα increases although these differences are

significantly less than in the previous example.

Figure6.26presents the plots of the abandonment probability and of the expected waiting time, for all

nine values of the testedα, and compares each simulated measure with its theoretical value. To find the

Figure 6.25:Global Performance (10:00-23:00) of (1) Delay Probability; (2) Probability of Waiting

More than 30 sec., if there is Waiting

Simulated and Theoretical

 Delay Probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1.5 -1 -0.5 0 0.5 1 1.5
beta

Sim. beta P(Wait) Theor.  P(Wait)

Simulated and Theoretical

P(Wait > 30 sec|Wait>0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1.5 -1 -0.5 0 0.5 1 1.5
beta

Sim.  P(Wait > 30sec|Wait >0) Theor.  P(Wait>30 sec|Wait >0)

Figure 6.26:Global (10:00-24:00) Performance of (1) Abandonment Probability; (2) Average Waiting
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Figure 6.27:Average Servers Utilization
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theoretical values we used again the results from [42]:

P (Aband) ≈ 1√
s
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1

(6.17)

E(Wq) ≈ 1√
s
· 1
θ
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1 (
=

1
θ
P (Aband)

)
(6.18)

The calculation of these theoretical values is based on the same stationaryM/M/s + M model with

constant arrival rate and number of servers, averaged as described above.

The approximations are very good when the target delay probability is lower than a half (0 ≤ β ≤ 1.2),

and are less precise for larger values of the targetα.

Server utilization is also relatively constant during most of the day (see Figure6.27). In this example, it

takes more time for this measure to stabilize for lower target delay probability. This situation is different

from that with the probability of abandoning, which is more stable for small target delay probabilities

(compare with Figure6.29).

The average values of waiting time and queue length under the three operational regimes are presented

in Figure6.28.

The dynamics of the abandonment probability is presented in Figure6.29. One sees that for low values

of α this probability is low and stable over the whole simulation period.

Histograms of waiting time, if there is waiting, for the three operational regimes are presented in Figure

6.30. The theoretical graphs were created via (6.16) using the average number of servers during the

period from 10:00 till 24:00.
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Figure 6.28:Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure 6.29:Dynamics of Abandonment Probability
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PSA and Lagged-PSA

The summary of arrivals, offered load and staffing levels for the three operational regimes (QD,QED and

ED), obtained by PSA and Lagged PSA methods, is presented in Figure6.31. In addition, this figure

shows that the staffing differences between PSA and Lagged-PSA methods never exceed a single server.

The delay probability (see Figure6.32) is more stable than in the previous example, under all staffing

methods, especially during the hours of high arrival rate. PSA method does not perform very well during

the first three and the last two hours. At the beginning of the day it leads to overstaffing, because it is a

period of a very fast growth of the arrival rate. Overstaffing can be identified from the plot of the delay

and abandonment probabilities (Figure6.32). During the last two hours, PSA results in slight under-

staffing, which follows from the delay probability being higher than the target level.

The abandonment probability obtained by both methods (Figure6.32) is stable over the main part of the

day.
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Figure 6.30:Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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Figure 6.31:Arrivals, Offered Load and Different Staffing Levels
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6.4.4 Last Empirical Example - Charlotte Call-Center

Here we analyze the medium call-center which was studied in the course ”Service engineering” (096324)

[45]. This example is different from the previous ones, because here the customers’ patience is to be

estimated using the operational ACD report of the call-center. This report is presented in Figure6.33.

In practice, the target of the empirical staffing level was to answer the calls which arrive during the day

in average within 30 seconds. This target was achieved. However, the performance during the day was

rather unstable. Below we compare the simulated results of staffing according to constantβ with the

empirical results.

The simulated environment is as follows:

• The running horizon is 10 hours: from 8:00 am till 18:00 pm.
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Figure 6.32:Delay and Abandonment Probabilities Obtained by Different Staffing Methods
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• All empirical values are calculated as an average over 5000 sample paths (simulations).

• Service time is assumed to be distributed exponentially, with mean1/µ = 1/12 hours or 5 minutes,

as described in [45].)

• Customers patience is assumed to be distributed exponentially. The evaluation of its mean was

conducted using the 4CC software ([43]) and is explained later.

• The queue discipline is assumed FCFS.

• The minimal staffing interval in practice is 30 minutes.

• In the simulations, we compared staffing intervals of 5 minutes (a single average service time) and

of 30 minutes.

• The arrival rate function, the offered load and the empirical staffing level are presented in Figures

6.34and6.35.

The empirical customers’ patience during each half-an-hour period was estimated in the following way.

The parameters, such as arrival rate, service time and the number of servers, were uploaded to the 4CC

software [43] using the option ”Advanced Query”. Then the empirical abandonment probability of this

interval was set to be the goal. On the basis of the uploaded data, 4CC determined the lower and the

upper limits of the customers mean patience.

Figure6.36presents the estimated abandonment rate during each half an hour which was found as an

average of the lower and upper limits. These limits were very close for almost the whole day except of

the first interval (8:00-8:30) and the two last ones (17:00-18:00). This is why later we do not use these

intervals for the estimation of the average customers patience.

One of the limitations of our simulation software is the underlying assumption that the abandonment rate
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Figure 6.33:Example of ACD Report

Asymptotic Operational Regimes

Example of Half-Hour ACD Report

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

Total 20,577 19,860 3.5% 30 307 95.1%

8:00 332 308 7.2% 27 302 87.1% 59.3

8:30 653 615 5.8% 58 293 96.1% 104.1

9:00 866 796 8.1% 63 308 97.1% 140.4

9:30 1,152 1,138 1.2% 28 303 90.8% 211.1

10:00 1,330 1,286 3.3% 22 307 98.4% 223.1

10:30 1,364 1,338 1.9% 33 296 99.0% 222.5

11:00 1,380 1,280 7.2% 34 306 98.2% 222.0

11:30 1,272 1,247 2.0% 44 298 94.6% 218.0

12:00 1,179 1,177 0.2% 1 306 91.6% 218.3

12:30 1,174 1,160 1.2% 10 302 95.5% 203.8

13:00 1,018 999 1.9% 9 314 95.4% 182.9

13:30 1,061 961 9.4% 67 306 100.0% 163.4

14:00 1,173 1,082 7.8% 78 313 99.5% 188.9

14:30 1,212 1,179 2.7% 23 304 96.6% 206.1

15:00 1,137 1,122 1.3% 15 320 96.9% 205.8

15:30 1,169 1,137 2.7% 17 311 97.1% 202.2

16:00 1,107 1,059 4.3% 46 315 99.2% 187.1

16:30 914 892 2.4% 22 307 95.2% 160.0

17:00 615 615 0.0% 2 328 83.0% 135.0

17:30 420 420 0.0% 0 328 73.8% 103.5

18:00 49 49 0.0% 14 180 84.2% 5.8

is constant during the whole day. As follows from Figure6.36, this assumption does not hold in the real

life. In our further experiments we set the abandonment rateθ to be 10.2 customers per hour, which

was found as the average of the estimated abandonment rates weighted by the number of arrivals in each

half-hour interval.

In addition, Figure6.36presents the empirical quality of service parameter during the whole day. We

see that it is very unstable; so that during the same day some customers are served under the ED regime

( β < −1), while others - under the QD regime (β > 2).

Square-Root Staffing

The goal of our experiments is to achieve time-stable performance in the face of time-varying arrivals.
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Figure 6.34:Arrivals, Offered Load and Staffing Levels
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Figure 6.35:Arrivals, Offered Load and Staffing Levels
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Avg. Service Time:  5 min.

For both 5-minute and 30-minute staffing intervals, we are using staffing with a constant value of the
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Figure 6.36:Estimated Quality of Service and Customer Patience

Empirical Quality of Service (beta)

-2

-1

0

1

2

3

4

5

8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

Empir. beta

Empirical Rate of Abandonment

per hour

0

2

4

6

8

10

12

8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

time
Estimated aband. rate theta 

Empirical Average Patience

0

5

10

15

20

25

30

35

8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

time

h
o

u
rs

Estimated avg. patience 

Figure 6.37:Delay Probability Summary

Delay Probability (5-minutes intervals)
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Quality-of-Service (QoS) parameterβ. This determines an appropriate staffing level, which is fixed over

the staffing interval for each time interval as follows:

st = Rt + β
√

Rt. (6.19)

Here, {Rt, 0 ≤ t ≤ 24} is the time-varying average number of customers (= busy servers) in an

Mt/M/∞ queue (5000 sample paths), with the arrival rate as in Figure6.35and average service time of

6 minutes.

In both cases, seven values ofβ were tested, (from 1.2 to -1.2 with the step -0.4), focusing onβ = 1.2,

0 and -1.2, which correspond to the QD, QED and ED operational regimes respectively.

5-minute staffing intervals
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Figure 6.38:Global Performance (10:00-16:00) of (1) Delay Probability; (2) Probability to Wait More

than 30 sec., if there is Waiting
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Staffing according to (6.19) achieves a time-stable level of the delay probability. Summary of the delay

probabilities is presented in Figure6.37.

Figure6.38shows a comparison of the simulated overall (global) delay probability and the probability of

waiting more than 30 seconds, if there is waiting, with the theoretical probabilities found by an appropri-

ate stationary models. The theoretical global delay probability for a constantβ is found by the Garnett

function [11]:

α =
[
1 +

√
θ

µ

h(β̂)
h(−β)

]−1

, −∞ < β < ∞, (6.20)

whereβ̂ = β
√

µ/θ. (Note that in this caseµ 6= θ so in this case all three parametersβ, µ andθ are

required.)

All the theoretical calculations are based on the stationaryM/M/s+M model with constant arrival rate

and constant number of servers, both calculated in the following way: for each of the 5000 sample paths,

we calculated the average arrival rate and the average number of servers over the period of time from 10

a.m. till 16 p.m., and then averaged the 5000 averages.

The theoretical value of the probability of waiting more than 30 seconds, if there is waiting, is based on

this stationary model and reads as follows (see [42]):

P

{
Wq >

t√
s

∣∣∣∣Wq > 0
}
≈ Φ̄(β̂ +

√
θµt)

Φ̄(β̂)
. (6.21)

Here

Φ(x) is the cumulative distribution function of the standard normal distribution (mean=0, std=1),
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Φ̄(x) is the survival function(Φ(x) = 1− Φ̄(x)),
φ(x) is the density of the standard normal distribution,

h(x) , φ(x)/Φ̄(x) is the hazard rate of the standard normal distribution.

Figure6.39presents the plots of the abandonment probability and of the expected waiting time, for all

Figure 6.39:Global (10:00-16:00) Performance of (1) Abandonment Probability; (2) Average Waiting
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seven values of the testedβ and compares each simulated measure with its theoretical value. To find the

theoretical values we used again the results from [42] for a stationary model:

P (Aband) ≈ 1√
s
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1

(6.22)

E(Wq) ≈ 1√
s
· 1
θ
·
[
h(β̂)− β̂

]
·
[√

µ

θ
+

h(β̂)
h(−β)

]−1 (
=

1
θ
P (Aband)

)
(6.23)

The calculation of these theoretical values is based on the same stationaryM/M/s + M model with the

constant arrival rate and number of servers, averaged as described above.

Server utilization is also relatively constant during most of the day (see Figure6.40). In this example, it

takes more time for this measure to stabilize for higher values ofβ (lower target delay probability). This

situation is different from that with the probability of abandoning, which is more stable for small target

delay probabilities (compare with Figure6.42).

Average values of waiting time and queue length under the three operational regimes are presented in

Figure6.41.

The dynamics of the abandonment probability is presented in Figure6.42. One can see that for low

values ofα this probability is low and stable over the whole simulation period.

Histograms of the waiting time, if there is waiting, for the three operational regimes are presented in
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Figure 6.40:Average Servers Utilization
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Figure 6.41:Average Waiting Time and Queue Length for QD, QED and ED Regimes
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Figure6.43. The theoretical graphs were created via (6.21) using the average number of servers during

the period from 10:00 till 16:00, and the accuracy is excellent.

30-minute staffing intervals

In practice, such short staffing intervals may be an impractical solution, since in reality people often lack

flexibility and staffing levels cannot be changed every five minutes. Below are the results of our simu-

lations for staffing using a constant quality-of-service parameterβ on 30-minute-long staffing intervals.

Our results exhibit performance that is significantly better than that prevailing in industry.

The recommended staffing levels for the three considered operational regimes are presented in Figure
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Figure 6.42:Dynamics of Abandonment Probability
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Figure 6.43:Waiting Time, if there is Waiting: Empirical vs. Theoretical Distribution
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6.44.

The empirical staffing level, which differs from the simulated one, leads to a very unstable performance

during the day. Figure6.45presents a comparison between the simulatedβ under three different opera-

tional regimes with the empirical quality-of-service parameter. This figure shows that though the staffing

intervals are relatively large, the simulatedβ is very stable.

Delay and abandonment probabilities are, of course, less stable than in case with the 5-minute staffing

intervals, but they are still very predictable. Figure6.46presents a summary of these probabilities for all

seven values ofβ.

The abandonment probability during the whole day under any operational regime is much more stable

than the empirical one. The comparison between the simulated and the empirical probabilities of aban-
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Figure 6.44:Arrivals, Offered Load and Staffing Levels

Empirical Arrivals and Staffing Levels
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Figure 6.45:Empirical and Simulated Quality of Service
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doning are shown in Figure6.47.

The overall performance of Charlotte call-center is also improvable. Table6.1compares some empirical

performance measures with those obtained by our simulations. As follows from this table, the overall

performance of the call-center could be improved. The objective of answering all the calls within an

average of 30 seconds could be achieved using a smaller number of servers. In fact, the present number

of servers could have been sufficient to decrease the average waiting time from 30 to 10 seconds.

The utilization of the servers could also be increased: under the ED regime it exceeds 99% and the

average waiting time is not significantly different from the target 30 seconds.
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Figure 6.46:Summary of Delay and Abandonment Probabilities
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Figure 6.47:Empirical and Simulated Abandonment Probability
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PSA and Lagged PSA

Table 6.1:Charlotte - Comparison of Empirical and Simulated Performance
Agent ASA

hours P(Aband) (sec) Utilization

Empirical 1781.5 3.5% 30 95.1%

β = 1.2 (QD) 1857.4 0.49% 1.58 90.33%

β = 0 (QED) 1702.92 3.2% 10.78 96.5%

β − 1.2 (ED) 1548.58 10.19% 35.82 99.4%
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In the Charlotte call-center, staffing differences between PSA and Lagged PSA cannot be ignored: for the

time intervals in which the arrival rates change fast, the differences in the number of servers can amount

up to 12 servers. Figure6.48presents staffing differences between Lagged PSA and PSA staffing over

the day, under the QD, QED and ED regimes. We do not present a separate plot for each staffing level

because, due to the low resolution, the differences between the curves are barely noticeable.

It appears that the time lag has a strong impact on the overall performance of the system. Figure6.49

Figure 6.48:Staffing Differences between the Lagged PSA and PSA methods
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shows that the use of PSA gives unsuitable delay probabilities: too high for the first part of the day with

an increasing arrival rate, and too low for the second part of the day with the decreasing arrival rate. In

contrast, both Lagged PSA and square-root staffing give very close and stable delay probabilities.

In addition, the abandonment probability (see Figure6.50) is subject to the changes in the staffing lev-

els: the probability of abandonment is very stable both under the square-root staffing and Lagged PSA,

whereas staffing by PSA worsens the abandonment probability which becomes very unstable during the

day.

6.4.5 Conclusions

Systems with staffing levels determined by ISA or according to square-root staffing with constantβ per-

formed very similarly for all our examples. Hence we describe the performance of only one of these

methods.

The examples above differ in the levels of the offered load during the work day. In our second example,

the range of offered load is within 1 to 6 hours per hour (Erlangs), while in the first and in the last ex-

amples the offered load falls within the range of approximately 50 to more than 200 Erlangs. Thus, we
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Figure 6.49:Delay Probability obtained by different staffing methods

Delay Probability:
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Figure 6.50:Abandonment Probability obtained by different staffing methods

Abandonment Probability:

 Different Staffing Methods
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Zoomed Abandonment Probability:

 Different Staffing Methods
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can conclude that most of the QED approximations are inaccurate for small system size, since none of

the approximations, except for the Garnett formula (6.6), fits in our second empirical example (a small

Israeli bank).
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The Garnett Function (6.6): First of all, we wish to emphasize that the Garnett approximation for the

delay probability is very robust. As follows from our second example, this approximation can be applied

even to a very small call-center, though it is rather surprising that the asymptotic results are so close to

the simulated values even when the number of severs is small (5-10 servers).

Delay Probability: Square-root safety staffing enabled a very stable delay probability during the sim-

ulation run in all examples, except for the second one, where the deviations of the delay probability were

large during the whole simulation run due to the very small size of this system. In the first example, there

was a warm-up period with relatively large deviations during the first hours of the run due to the low

offered load in this period.

Waiting-Time Histograms: The empirical waiting-time histograms of the delayed customers almost

coincide with the theoretical curves in all cases, except for the second example. In the third example,

in which the offered load does not exceed 60 servers per hour, the theoretical curve (Figure6.25) does

not precisely describe the empirical distribution of waiting time if there is waiting under the the QD

regime, though starting from some point, the two are rather close to each other. QED and ED empirical

histograms in this example are very close to their theoretical curves.

In the first and the last examples (Figures6.9 and 6.30 ), where the offered load during the day ap-

proaches 200 servers per hour, all the empirical histograms can be reliably predicted by their appropriate

theoretical curves.

In the second example, the empirical histograms (Figure6.19) do not resemble the theoretical curves at

all, the reason being a very small size of this system.

Different Staffing Methods In our examples, square-root safety staffing gave rise to the most stable

performance . From the description of Examples 1 and 4, it follows that Lagged PSA is rather close to

square-root staffing, though it is a slightly less stable. Lagged PSA performs better than PSA in all cases

except for the very small call-center, where they performed in a very similar mode. In general, staffing

by PSA leads to overstaffing during the first part of the day with the increasing offered load, and it results

in under-staffing in the second part of a day with the decreasing offered load.

In Examples 2 and 3, ISA orβ staffing was not compared with PSA and Lagged-PSA due to differ-

ent length of the staffing intervals between the simulations with ISA and PSA and Lagged-PSA. The

different staffing shifts were simulated due to short average service time (about three minutes). To ap-

ply Lagged-PSA, we needed to set the minimal staffing interval to be 3 minutes, while for square-root

safety staffing, the staffing interval was six minutes, because shorter intervals are of no practical value.

Although in these examples, it was not possible to compare the performance of the three methods, we

assume that the performance of Lagged-PSA would be very similar to that of ISA orβ staffing with the

3-minutes staffing intervals.
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6.5 Appendix

This Appendix presents the explanation of our present implementation of the performance measures

listed in Section6.2, alternative ways of these calculations and a comparison of the implemented and the

alternative methods.

6.5.1 Performance Measures Implemented in the ISA Algorithm

Recall that in the formulae below:

superscriptj indicates thejth replication;

subscriptt indicates atth partition interval of size∆T ;

total number of replications isReps.

Dynamic Performance Measures

Offered LoadRt

Rt =

∑Reps
j=1 Lj

t

Reps
,

where

Lj
t is the total number of customers at the end of intervalt in replicationj; recall thatRepsis the number

of replications.

Implied Service Qualityβt

βt =
st −Rt√

Rt
,

where

st is the number of servers during the intervalt (which is held fixed by ISA over an interval).

Servers Utilizationρt

ρt =

∑Reps
j=1 ρj

t

Reps
;

here

ρj
t is the servers utilization during intervalt in replicationj:

ρj
t =

Busyj
t

∆T · st
,

where

Busyj
t is the total time the servers were working during the intervalt in thejth replication.

Abandonment ProbabilityPt(band)

Pt(Aband) =

∑Reps
j=1 P j

t (Aband)
Reps

;
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here

P j
t (Aband) =

Abandonedj
t

Arrivedj
t

,

whereArrivedj
t is the number of customers who arrived at time intervalt in replicationj, andAbandonedj

t

is the number of customers who arrived at time intervalt in replicationj and eventually abandoned.

Delay ProbabilityPt(Wq > 0)

Pt(Wq > 0) =

∑Reps
j=1 P j

t (Wq > 0)
Reps

;

here

P j
t (Wq > 0) =

Delayedj
t

Arrivedj
t

,

whereDelayedj
t is the number customers who arrived at time intervalt in replicationj and did not start

their service immediately.

Average Queue LengthQt

Qt =

∑Reps
j=1 Qj

t

Reps
,

whereQj
t is a queue length in intervalt in jth replication.

Average Waiting TimeWt

Wt =

∑Reps
j=1 W j

t

Reps
,

whereW j
t is an average waiting time of customers whoarrived in intervalt in jth replication:

W j
t =

(Waiting time)j
t

Arrivedj
t

.

Average Waiting Time, if there is WaitingE(Wt|Wt > 0)

E(Wt|Wt > 0) =

∑Reps
j=1 (Waiting time)j

t∑Reps
j=1 Delayedj

t

,

where(Waiting time)j
t is the total waiting time of customers who arrived at timet in thejth replication.

Overall Performance Measures

Average Waiting TimeW

W =

∑Reps
j=1 W j

Reps
;
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here

W j =
(Waiting T ime)j

Releasedj
,

whereReleasedj is the total number of customers who left the queue during thejth replication.

Average Waiting Time, if there is on WaitingE(W |W > 0)

E(W |W > 0) =

∑Reps
j=1 E(W j |W j > 0)

Reps
,

where

E(W j |W j > 0) =
Total Waiting T imej

Total Delayedj
.

Average Abandon ProbabilityP (Aband)

P (Aband) =

∑Reps
j=1 P j(Aband)

Reps
,

where

P j(Aband) =
Abandonedj

Releasedj
.

Average Delay ProbabilityP (Wq > 0)

P (Wq > 0) =

∑Reps
j=1 P j(Wq > 0)

Reps
,

where

P j(Wq > 0) =
Delayedj

Releasedj
.

Servers Utilizationρ

ρ =

∑Reps
j=1 ρj

Reps
;

hereρj is the total servers utilization duringjth replication.

ρj =
Busyj

∆T
∑T

t=1 st

,

whereBusyj is the total time the servers were busy duringjth iteration.
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6.5.2 Alternative Ways of Calculations

This section presentsalternative ways for calculating some performance measures in the simulation

software. First, we present an approach, which is based on a different way of averaging. It yields typ-

ically approximately the same results as the method implemented in the code, but the outcomes could

vary in case of large deviations of the estimated measure (i.e., Delay probability) over time. Later, we

discuss different definitions of abandonment probability

Single-Batch Approach

In the ISA implementation, almost all the performance measures are calculated as an average of many

(Reps) averages. The only exception is Expected Waiting Time, if there is Waiting for the whole simula-

tion horizonE(W |W > 0). For all others, first, we calculated the needed measure for a single replication

(batch), and the final result was calculated as an average of all the batches.

The difference in the calculation ofE(W |W > 0) is that in its calculation we use a single very long

batch of lengthReps × T . Other performance measures, for example, Delay Probability, can be also

calculated by this approach.

Both implemented and the single-batch methods have their advantages and disadvantages. Finding the

average of multiple batches smoothes and neutralizes extreme deviations which take place in some single

batch.

On the other hand, taking into account all the results as a single batch provides more data about steady

state. Performance measures are calculated basing on a longer period of time so they are more informa-

tive. This approach is efficient if simulation runs are long or expensive. Its disadvantage is that it is more

sensitive to large deviations of the estimated measure - because here we average only once, and not two

times as in the implemented method. The Expected Waiting Time if there is WaitingE(W |W > 0) was

calculated following the Single-Batch Approach because according to the simulation results, it converges

to its theoretical value much faster if it is implemented this way.

As an example, here is the calculation of Abandonment Probability during time intervalt carried out

under the Single-Batch Approach.

Abandon Probability of typei during intervalt P i
t (Aband)

P i
t (Aband) =

∑Reps
j=1 Abandonedi,j

t∑Reps
j=1 Arrivedi,j

t

Table6.2summarizes the existing and the alternative calculation methods.

Abandonment Probability

There is a certain ambiguity in the definition of the Abandonment Probability. In the simulation software
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Existing Alternative

P i
t (Aband)

∑Reps
j=1 P i,j

t (Aband)
Reps

∑Reps
j=1 Abandonedi,j

t∑Reps
j=1 Arrivedi,j

t

P i
t (Wq > 0)

∑Reps
j=1 P i,j

t (Wq>0)
Reps

∑Reps
j=1 Delayedi,j

t∑Reps
j=1 Arrivedi,j

t

W i
t

∑Reps
j=1 W i,j

t

Reps

∑Reps
j=1 (Waiting T ime)i,j

t∑Reps
j=1 (Arrived)i,j

t

E(W i
t |W i

t > 0)
∑Reps

j=1 E(W i,j
t |W i,j

t >0)
Reps

∑Reps
j=1 (Waiting T ime)i,j

∑Reps
j=1 (Delayed)i,j

W i

∑Reps
j=1 W i,j

Reps

∑Reps
j=1 (Waiting T ime)i

∑Reps
j=1 (Released)i

E(W i|W i > 0)
∑Reps

j=1 Total Waiting T imei,j

∑Reps
j=1 Total Delayedi,j

E(W i,j |W i,j>0)
Reps

P i(Aband)
∑Reps

j=1 P i,j(Aband)
Reps

∑Reps
j=1 Abandonedi

t∑Reps
j=1 Releasedi

t

P i(Wq > 0)
∑Reps

j=1 P i
j (Wq>0)

Reps

∑Reps
j=1 Delayedi

t∑Reps
j=1 Releasedi

t

Table 6.2:Existing and Alternative Ways of Performance Measures Calculations

we consider the ratio of those customers who arrived during time intervalt and abandoned later (not

necessary during this time interval) and the total arrivals during the same time interval.

One can also think of Abandonment Probability in the following way, taking into account all the previous

intervals: it can be found as a ratio of all the customers who decide to abandon until time intervalt and

the total number of arrived customers till this time interval. These two approaches may lead to different

results in their evaluation.

Here we present the second approach. Let us consider the abandonment rate at timet as the number of

customers who abandon during the time intervalt; denote itrt. Theoretically, using balance equations,
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this arrival rate is found from the following expression:

rt = θ ∗ E[Qt],

whereQt is the queue length at time t. In this case the abandonment probability is calculated via

Pt(Aband) = rt/λt,

whereλt is the arrival rate at time t.

One sees that, from the customer point of view, the method implemented in the simulation software is

more ”informative”, while the alternative method has more managerial insights.

Moreover, under the QED regime, we expect thatrt/
√

Rt should be approximately constant. So, follow-

ing this new definition of abandonment probability, we obtain that the ratioPt(Aband) ∗ λt/
√

Rt is also

approximately stable. Simulation experiments confirm that. However, this observation is not practically

useful for stabilizingPt(Aband), sinceλt/
√

Rt ≈
√

Rt is of the order of 10’s.
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Chapter 7

Time-Stable Performance of Time-Varying

Queues with Static Priorities

This chapter explains how it is possible to identify staffing levels that give rise to a time-stable perfor-

mance forall types. We use the same approach as in [9] and apply its Iterative Staffing Algorithm (ISA)

within a time-varying environment. We present detailed results for twoMt/M/st + M models (time-

varying Erlang-A) and a summary of several additional models, all with two types of customers.

As before, the assumption is that servers are independent but statistically identical; in other words, ser-

vice times forall customers have thesameexponential distribution. For such models, the main findings

of our analysis are as follows:

• Overall success in stabilizing performance: very successful in stabilizing the delay probabilityα

and implied service gradeβ, and reasonably successful in stabilizing waiting times, queue lengths

and abandonment rates, especially for the high priority customers.

• Global performance of our time-varying systems correspond to an appropriate stationary system.

The fit is better for systems with low fraction of one of the types and less exact for systems with

approximately the same fraction of arrivals for both types.

• Dependence on the total arrival rate only, as opposed to the vector of type arrival-rates. (It is rather

clear to us that this is due to the fact that all service times are type-independent and identically

distributed.) Consequently, the staffing problem can be reduced to staffing asingle-typeErlang

model.

Abandonments play a crucial role in system performance; indeed, adding abandonment enables the al-

gorithm to converge significantly faster than those without. For instance, the running horizon was 24

time units (instead of 72 time units required for Erlang-C queues). The number of iterations till ISA

convergence is also small due to the customers’ impatience. The highest number of iterations is 4, after

which the algorithm always converges even forα = 0.8 and 0.9, while in queues without abandonment,
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for these values ofα the algorithm did not succeed to converge even after 100 iterations.

If customers do not abandon, the warming-up period is relatively long. To ensure that a system reaches

steady state, we take 72 time units as the simulation running horizon. For under-loaded systems (with

targetα = 0.1, 0.2, 0.3) the number of iterations till convergence is small, while for highly-utilized sys-

tems (α = 0.8, 0.9) it could be very large, hence the highest value ofα we consider in the simulation

experiments of Erlang-C queues is 0.75. The number of iterations till convergence for this latterα is 12

at the most. If we continue experiments toα = 0.8 or more, this number exceeds 100 iterations, which

takes about 6 hours in computer time.

7.1 Two-types customers in the QED regime. Simulations results

To check the performance of ISA in an environment with heterogeneous customers, the algorithm was

applied to various queueing systems with time-varying arrival rates. The results are described below.

7.1.1 An Example with the Time-Varying Erlang-A Model

Here we present the performance of ISA for the time-varying Erlang-A models (Mt/M/st + M ) with

two customer types and sinusoidal arrival rates of each type.

Models Description:

• The running horizon is 24 time units and performance statistics are collected after the6th time

units to make sure that the system reaches to a steady state.

• All the values are calculated as an average of 5000 iterations.

• Service time is distributed exponentially with mean1/µ = 1 time unit.

• Customer patience is distributed exponentially with mean1/θ = 1 time unit.

• There are two types of customers. Customers of the first type have a non-preemptive priority over

the second type customers.

• The queue discipline within each class is FCFS.

First (70-30) System Arrival Rates:

• First-type arrivals are given by a non-homogenous Poisson process with the arrival rate

λ1(t) = 70 + 21 · sin(3t). Period is2π/3.

• Second-type arrivals are given by a non-homogenous Poisson process with the arrival rate

λ2(t) = 30 + 12 · sin(2t). Period isπ.

Second (30-70) System Arrival Rates:
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• First-type arrivals are given by a non-homogenous Poisson process with the arrival rate

λ1(t) = 30 + 12 · sin(2t). Period isπ.

• Second-type arrivals are given by a non-homogenous Poisson process with the arrival rate

λ2(t) = 70 + 21 · sin(3t). Period is2π/3.

The total arrival rate in both systems is given byλ(t) = 100 + 12 · sin(2t) + 21 · sin(3t) with period2π.

Staffing levels, obtained for both systems for the tested values ofα, are shown in Figures7.1-7.3. The

total arrival rate is the same in both systems, hence for the same values ofα the determined staffing level

is the same. Queue lengths and expected waiting times are presented in the second part of these Figures.

Figure 7.1:Targetα=0.1 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and

Queue Length of Both Classes.
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The 30-70 System, Target =0.1
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Customers abandonment makes a system stable. As mentioned above, the running horizon was decreased

from 72 in Erlang-C to 24 time units because systems with abandonment converge to steady state sig-

nificantly faster. As expected, the algorithm obtains stable delay probability for both customer types and

for both systems throughout its running period. (See Figure7.4.)

Figure7.5presents a summary of abandon probabilities for the highlighted QD, QED and ED regimes.

This figure shows that ISA is less successful in stabilizing the abandonment probability for large values

of the target delay probabilityα. The greater targetα, the less stable the abandon probability.

In our systems, customers have exponential patience withθ = 1 so in stationary models, by the relation

Figure 7.2:Targetα=0.5 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and

Queue Length of Both Classes.
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Figure 7.3:Targetα=0.9 - (1) Staffing Level, Offered Load and Arrival Function; (2) Waiting Time and

Queue Length of Both Classes.
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P (Abandi) = θE[Wi] the abandon probability must be equal to the expected waiting time. Figures7.6

- 7.7verify this relation for our time-varying models under the three considered regimes. It follows that

the abandon probability of the high priority is virtually equal to the expected waiting time for all the

three highlighted values ofα, as predicted by the theoretical relation between the expected waiting time

and the abandonment probability in stationary queues. The abandonment probability of the low priority

is always above the expected waiting time, except for the caseα = 0.1 in the 30-70 system where these

two measures are rather close. In all three cases, there clearly exist a dependence between the abandon-

ment probability and the expected waiting time, but this relation is different from from equality of the

abandonment probability and the expected waiting time for the lowest priority.
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Figure 7.4:Summary of Delay Probability.
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Figure7.8 is the comparison of the theoretical curve and the empirical pairs (αi, βi). The empirical val-

ues in both systems are very close to the theoretical curve, even for the highestα = 0.9.

Dynamics of the implied grade of serviceβ is presented in Figure7.9. It is rather stable during sim-

ulation runs. In the simulation of 30-70 system with the targetα = 0.9 it drops down during the first

time unit but then stabilizes fast. In the 70-30 system there is no such a sharp drop but there are more

fluctuations during the simulation run.

The utilization summary of both systems for different values of the targetα is presented in Figure7.10.

This measure stabilizes relatively fast - during the first two time units for all values of the targetα.

Waiting-time histograms are presented in Figures7.11-7.12. It is interesting to observe that waiting time
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Figure 7.5:Abandonment Probability.
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of thefirst class in both systems can be approximated by the exponential distribution similar to stationary

M/M/N model without abandonment.

To build the theoretical curves of the waiting-time distribution both in 70-30 and 30-70 models we took

the average number of servers during the period from600 till 2400. The average arrival rate was calcu-

lated over the same period (λ1 = 70 in the 70-30 queue, orλ1 = 30 in the 30-70 queue). The service

rate of the stationary model was assumed to beµ = 1. In this case, the theoretical curve was built using

the exponential distribution with the mean 1
Nµ(1−ρ1) .

To analyze the waiting time distribution of the first type, we actually use the following fact observed in

the previous chapter. Given waiting, the highest priority is not aware of the delayed second-type cus-

tomers. Henceλ2 is not needed to predict how long thedelayedcustomers of the first type will wait.

This is why when the staffing level is determined by the QED regime and all the servers are busy, the

first-type customers experience QD performance (conditioned on waiting). In the QD regime the proba-

bility of abandonment is very small, and hence the approximation by the Erlang-C model works.

The stationary distribution of the lowest priority is more problematic since, in this case, the abandonment

probability cannot be ignored. Here we present only the simulated histogram without any theoretical

curve.
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Figure 7.6:The 70-30 System,α = 0.1 - Abandon Probability vs. Waiting Time.
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7.1.2 Results and Conclusions

We end with section with some additional results, comparisons and conclusions, based on our experi-

ments.

• The impact of abandonment: Erlang-C vs. Erlang-A

Abandonments play a very important role in queue performance. Taking them in account not only makes

a model more realistic, it also improves most of the performance measures. As we mentioned earlier,

the running horizon in the simulation of Erlang-A queues was decreased from 72 to 24 hours, since

queues with abandonments reach steady state much faster than those without. In addition, ISA managed

to converge for all values ofα from 0.1 to 0.9, while in Erlang-C we had to stop afterα = 0.75; and the

maximal number of the algorithm iterations till convergence was 4 instead of 12 for the Erlang-C.

Abandonments also allow to decrease the staffing level required to obtain the desired delay probability

α. Figure7.13presents the final staffing forα = 0.1, 0.5 and 0.9 for the simulated queues with and
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Figure 7.7:The 30-70 System, Abandon Probability vs. Waiting Time.
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Figure 7.8:Theoretical (Garnett Function) and Empirical Probability of Delay vs.β
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Figure 7.9:Summary of the Implied Service Gradeβ.
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Figure 7.10:Utilization Summary
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without abandonment.1

The savings of labor can be quantified by the area between the staffing curves. It comes out that allowing

customers patience withθ = 1 leads to total labor savings of 143.4 time units forα = 0.1, 214.8 time

units forα = 0.5 and 314.92 time units forα = 0.9. It may perhaps be better to quantify savings by

1The algorithm did not converge forα = 0.9 for the Erlang-C model but using the fact that staffing of a multi-type queue is

similar to staffing of a single-type queue with the same total arrival rate and relying on the Feldman Z. et al [9] we assume that

in the Erlang-C queue in order to obtainα = 0.9 (ED) one should staff close to the offered load. This is why in Figure7.13

(3), the Erlang-C Staffing and the Offered Load curve are similar.
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Figure 7.11:The 70-30 System - Waiting Time Histograms.
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looking at the savings of labor per shift. Dividing the saving in time-units by the number of time-units

they are taken over, we come up with savings of about 6, 14 and 114 servers per shift, forα = 0.1, 0.5

and 0.9 respectively. The labor savings increase asα increases.

• Erlang-A with Priorities vs. Erlang-A with Homogenous Customers

To see how system’s performance is influenced by the customers differentiation, we compare the results

of 70-30 and 30-70 queues simulations with the results of a single-classMt/M/s+M queue simulation

with arrival rateλ(t) = 100 + 21 sin(3t) + 12 sin(2t), that is, equal to the total arrival rate of the 70-30

and 30-70 systems. The results are as follows:

• A single-class queue reaches the steady state faster than a queue with heterogenous customers.

This is clear in Figure7.14, which presents a summary of the implied service gradeβ for all

values of the targetα.

One can see thatβ stabilizes immediately for allα, while in the two-types systems for high values

of α there was some warmup period.
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Figure 7.12:The 30-70 System - Waiting Time Histograms.
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• As expected, customers prioritizationshortensexpected waiting times and queue lengths of the

high priority andincreasesthese for the low priority. Figure7.15presents the waiting times and

the queue lengths for the Erlang-A queue with homogenous customers. The following Figure7.16

compares these measures with the waiting times of the 70-30 and the 30-70 systems with the target

α = 0.9 (The differences are the largest for thisα.) One can see that in the 30-70 system the first-

type customers ”profit” more from their status: their average waiting time decreases almost 10

fold (!) for α = 0.9. Additionally, in the 30-70 system, the waiting time of the low priority grows

about 1.5 times, while in the 70-30 system the decrease of the waiting time for the high priority is

about 2 times, and the increase for the low priority is about 2 times. This makes sense because the

fraction of the high priority is greater in the 70-30 system, hence a first-type customer, although

enjoying his priority over the second type, yet needs to wait for other customers of his type which

arrived before him.
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Figure 7.13:Staffing: Erlang-C vs. Erlang-A. (1)α = 0.1 (QD), (2)α = 0.9 (ED), (3)α = 0.5 (QED)
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Figure 7.14:Implied Service Gradeβ for the Single-Type Queue

The Homogenous System: 

Implied Service Grade 

-1.5

-1

-0.5

0

0.5

1

1.5

0 2 3 5 6 8 10 11 13 14 16 18 19 21 22

alpha 0.1 alpha 0.2 alpha 0.3
alpha 0.4 alpha 0.5 alpha 0.6
alpha 0.7 alpha 0.8 alpha 0.9

115



Figure 7.15:Waiting Times and Queue Lengths for the Single-Type Queue

The Homogenous  System, Target =0.1:

Average Queue Length and Average Waiting Time.
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Figure 7.16:Targetα = 0.9: Waiting Times and Queue Lengths of the Single-Type Queue vs. 70-30

and 30-70 Queues
The Homogenous System, Target =0.9:

Average Queue Length and Average Waiting Time. 
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Chapter 8

Heavy-Traffic Approximations

Conventional/Classical heavy-traffic approximations of queues are typicallytwo-moment approxima-

tions in the sense that means, variances and covariances of the input parameters determine the approxi-

mations. For example, the same heavy-traffic performance is expected forM/M/N andM/LN/N (LN

stands for log-normal) if the mean and standard deviation of LN are equal, assuming that the two systems

have the same arrival rate, service rate and the same number of servers.

However, this is not what happens in practice for highly utilized systems in which many servers work in

parallel. The project of Schwartz [32] contains some simulation results for the delay probability and the

expected waiting time conditioned on waiting for three different service time distributions - exponential

(M/M/100), log-normal(M/LN/100) and deterministic(M/D/100). The purpose of these simula-

tions was to compare highly utilized systems with a large number of servers with different service-time

distribution. The first two moments of the log-normal and the exponential distributions are equal to 1

and, as mentioned above, the number of servers is 100.

Following conventional heavy traffic approximations, the expected waiting time should be equal for the

exponential and log-normal cases, but, as follows from [32], log-normal services give rise to significantly

lower values of the waiting time. Note that the ordering of the delay probabilities(D < LN < Exp) is

consistent with that of the expected waiting time conditioned on waiting.

The purpose of the experiments described in this chapter is to check whether it is possible to predict the

Expected Waiting Time by using only the first two moments of the service-rate distribution for queues

with impatient customers under the QED regime.

This chapter is organized as follows. Section8.1shows a derivation of a closed-form expression for the

expected queue length under the ED regime. The analysis in this section is based on the paper of Ward

[33], where she obtains the two-moments approximation for the queue length. When the expected queue

length is known, the expected waiting time is directly derived from Little’s Law. The section closes with

the presentation of the simulation results which show that as the offered load increases, the approxima-

tion of the expected waiting time becomes more and more precise.

In Section8.2 we repeat the experiments of Schwartz [32] but for M/GI/100 + M queues under the
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QED regime. The simulation results expand the main findings of [32] to queues with abandonment and

show that, in the QED regime, the order among average waiting times that arose in [32], due to varying

service-time distributions with equal first moments, is preserved.

Lastly, a short comparison of queues with 100 servers with and without abandonment is given in Section

8.3.

8.1 Heavy-Traffic Approximations

Following the approach in [33], in this section we develop a two-moment approximation for the average

queue length and waiting time in theGI/GI/N + GI queue under heavy traffic.

We start with a single-serverGI/GI/1 + GI queue with arrival rateλ and service rateµ. Let u1 be the

distribution of an inter-arrival time,v1 be the distribution of a service time andF be a distribution of

customers patience.

As shown in [33], the steady-state mean of theGI/GI/1 + GI queue is approximately given by

E(Lq) ≈ E(N(m, b2)|N(m, b2) ≥ 0), (8.1)

whereN(m, b2) is a Normal variable with a meanm and varianceb2. The approximation is asymp-

totically valid in heavy traffic, namely whileρN converges to 1 aslimN→∞
√

N(1 − ρN ) = c for some

c, −∞ < c < ∞.

Here

m =
µ(ρ− 1)
F ′(0)

; b2 =
µ3[ρ var(u1) + (ρ ∧ 1)var(v1)]

2F ′(0)
(8.2)

(Note that for notational simplicity, in [33] the service rateµ is equal to 1.)

Let us find a closed-form expression for the conditional expectation (8.1).

E(N(m, b2)|N(m, b2) ≥ 0) =

1
Φ(m/b)

∫ ∞

0

x

b
√

2π
exp

(
− (x−m)2

2b2

)
dx

=
1

Φ(m/b)

[ ∫ ∞

0

x−m

b
√

2π
exp

(
− (x−m)2

2b2

)
dx +

∫ ∞

0

m
b
√

2π
exp

(
− (x−m)2

2b2

)
dx

]

=
1

Φ(m/b)

[ ∫ ∞

0

b√
2π

exp
(
− (x−m)2

2b2

)
d
(x−m)2

2b2
+ mΦ(m/b)

]
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=
b exp

(
− m2

2b2

)

√
2πΦ(m/b)

+ m.

The average queue length is thus given by:

E(Lq) ≈ m +
b exp

(
− m2

2b2

)

√
2πΦ(m/b)

. (8.3)

Then the approximated expected waiting time is a direct consequence of (8.3) and Little’s Law:

E(Wq) =
Lq

λ
≈ m

λ
+

b exp
(
− m2

2b2

)

√
2π λ Φ(m/b)

(8.4)

Figure 8.1:TheM/GI/1 + M queue - Empirical Results vs. Approximations
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Now, we will consider the single-server Erlang-A (M/M/1 + M ) as an important special case. Let us

assume that the arrival rate isλ, the service rate isµ and the abandonment rate isθ.

Here

u1
d= exp(λ), v1

d= exp(µ) and F ′(0) = θ.

By substituting the distributions ofu1 andv1 into (8.2), we obtain the following:

m =
λ− µ

θ
, b2 =

µ2 + λ(λ ∧ µ)
2λθ

. (8.5)
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To check the performance of the approximation (8.4), we compared it with the simulated average waiting

time in M/GI/1 + M queues with three different service-time distributions. The considered service-

time distributions were: Exponential, Log-Normal with CV=1 and Deterministic.

For each simulated environment, the rest of the parameters were as follows:

• The arrival rate changes from 93 to 150 customers per hour;

• The service rate isµ = 100 customers per hour;

• The individual abandonment rate isθ = 1.

Figure8.1presents a summary of the average waiting time values obtained under different service-time

distributions and arrival rates. The comparison of the theoretical waiting time with the empirical results

shows that the approximation is excellent for highly utilized systems (ρ ≥ 1.2).

Some additional results are found in the summary of simulations, conducted by Reed [30]. This work

considersM/M/1+GI queues with equal arrival and service rates (λ = µ = 2500 customers per hour)

and the mean of individual abandonment 1 hour. The queues differ in the patience distributions.

The report [30] includes results of Deterministic abandonment distribution and Gamma distribution

G(p), wherep is the shape parameter, forp = 5, . . . , 0.2. The variance ofG(p) is 1
p , and it increases as

p decreases.

The first conclusion of these experiments is that the relative error in the queue length and in the abandon-

ment probability increases as the variance increases (or as the shape parameterp decreases). The error

in the Queue-Length prediction for Deterministic abandonment distribution was only 3.38 %, while for

G(0.2) it was as big as 23.56%. The abandonment probability is influenced in the same fashion: The er-

ror in the case of the patience distributionG(5) was only 1.41%, and underG(0.2) it grew up to 49.36%.

The accuracy of the approximation is also a matter of scale,which follows from the second sequence

of simulations in [30]. This second experiment tested theM/M/1/ + GI queues withGI = G(0.2).
Arrival rateλ is again equal to the service rateµ, λ = µ = n, . . . n = 1000, . . . , 100, 000, 000.

The error in queue length decreases from 16.38% forn = 1000 to 2.92 % forn = 100, 000, 000; and the

error for abandonment probability decreases from 31.57% forn = 1000 to 3.19% forn = 100, 000, 000.

This observation is in line with our results presented in Figure8.1. We conduct experiments with service

rateµ = 100, i.e. one order less than the minimal in [30]. Relying on the results of [30], we can thus

conclude that the error of the queue-length approximation (8.1) will be relatively large. This conclusion

is supported by the plot presented in Figure8.1.

8.2 M/G/100 + M Queues

As already mentioned at the beginning of this chapter, according to the heavy-traffic approximations in

Erlang-C queues, the expected waiting time depends on the service-time distribution only through its
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first two moments and can be approximated byKingman’s Law. Schwartz in [32] shows that under the

QED regime this approximation is not very good. The comparison of the exponential and the log-normal

distributions with the same first two moments in [32] shows that the exponential distribution consistently

leads to greater delays. (The mean of the service distribution was always 1, and theCV of the log-normal

distribution was also 1.)

In this section we check the impact of the service-time distribution on the expected waiting time in queues

with abandonment. Here is the description of the simulated queues.

• Customers arrivals are given by Poisson process with the arrival rates ranging from 93 to 107

customers per hour which approximately corresponds toβ from 0.7 to -0.7;

• Customers patience is exponential with the rateθ = 1;

• The service rate is the same for all the distributions,µ = 1; equivalently,E(S) = 1.

The service time distributions in the experiments are

• Exponential: M/M/100 + M ;

• Deterministic: M/Det/100 + M ;

• Log-Normal withCV = 1: M/LN(CV = 1)/100 + M ;

• User-defined Special service-time distribution: service time is a random variable which can get

only one of two values:

P (S = 1/k) =





0.999897, if 1/k = 1/0.989897,
0.000103, if 1/k = 1/100,

0 otherwise.

We denote this distribution asSpecial(100) to emphasize the longest possible service time.

• User-defined Special service-time distribution: service time is a random variable which can get

only one of two values:

P (S = 1/k) =





0.9999549, if 1/k = 1/0.99338,

0.0000451, if 1/k = 1/150,

0 otherwise.

We denote this distribution asSpecial(150) to emphasize the longest possible service time.

The mean and the variance of both user-defined distributions are equal to 1.

To check the impact of service-time distribution on system performance, we compare the expected wait-

ing time, given there is waiting, the delay probability and the abandonment probability under the five

service-time distributions described above.
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Figure 8.2:Expected Waiting Time, if there is Waiting, in Queues with 100 servers
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Figures8.2and8.3summarize these data for all testedβ = 0.7, . . . ,−0.7.

It can be seen from these figures that theSpecial(150) service-time distribution always leads to the

lowest expected waiting time, if there is waiting, and the abandonment probability, while the delay prob-

ability is always the highest under the deterministic distribution (See Figure8.3).

Under the exponential distribution of service time, delayed customers on average experience the longest

delay (See Figure8.2). In addition, the abandonment probability is also the highest for this distribution.

For all tested values ofβ, the log-normal distribution gives rise to the expected waiting time and abandon-

ment probability somewhere between the exponential and deterministic distributions. (This resembles

the results of Schwartz [32], though the location between the distributions is different).

From Figure8.3 we notice that under theSpecial(100) distribution, the delay probability grows faster

than under the exponential and log-normal. Yet, it does not reach the deterministic distribution, which

consistently leads to the highest delay probability.

Special(150) distribution:Let us concentrate on the second Special distribution with values 0.9338 and

150. As the probability of the low value is very close to 1 (p=0.999897) and the number of servers is

large, we can say that customers hardly feel those servers who work 150 time units. If a single server

happened to work 150 hours (and such a probability is very low), the number of active servers decreases

by 1. In such case, customers see anM/Det/(N − 1) + M queue with service time of0.99338 till

the next very long service event. Because the probability of such a long service duration is very low, it

122



is reasonable to assume that the probability of a single, two or more simultaneous long service events

is negligible, and the performance of a queue withSpecial(150) service-time distribution will be very

close to that of anM/Det/(N − 1) + M queue with the service time0.99338 customers per hour.

Figure 8.3:Delay and Abandonment in Queues with 100 servers

P(Wq>0)

M/GI/100+M Queues

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8beta

P
(W

q
>

0
)

Exp Det Log-Norm Special (100) Special (150)

P(Aband)

M/GI/100+M Queues

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

beta

P
(A

b
a
n

d
)

Exp Det Log-Norm Special (100) Special  (150)

123



This similarity of these two systems can be easily checked by simulations. The results of these simula-

Figure 8.4:M/Special(150)/100 vs. M/Det(0.99338)/99
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tions for different arrival ratesλ = 93, . . . , 107 customers per hour (orβ = 0.7, . . .− 0.7 accordingly)

are resented in Figure8.4. We can see that, as expected, the three tested performance measures are very

similar. Yet, queues with Deterministic service time and 99 servers perform slightly better for high ar-

rival rates

Heavy-Traffic Approximation for Many Servers:When the servers of anyM/GI/N +M queue work

under the ED regime, the delay probability is close to 1, and the customers’ experience is not different
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from that ofM/M/1 + M queue with the service rateNµ. So we may suggest that the heavy-traffic

approximations developed in [33] will work for this case, too.

We check this hypothesis by simulations, comparing their results to the theoretical values. Figure8.5

Figure 8.5:TheM/GI/100 + M queue - Empirical Results vs. Approximations
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presents these results. As expected, for highly utilized servers the simulated values are close to the ap-

proximations. But for for the QED regime, and for the early stages of ED regime the differences between

the simulated and the approximated values are significant. So the approximation performs here worse

than in case of a single server (compare to Figure8.1). In this case, the approximated values of the wait-

ing time approaches the simulated ones when the offered load per server exceeds 1.2, the same way as in

the case of a single server. However, for lower values of the offered load the error of the approximation

used for 100 servers is greater than in case of the single server.

8.3 M/G/100 vs. M/G/100+M

It is worth comparing the simulation results of queues without abandonment, obtained by Schwartz [32],

with our simulation results of queues with abandonment.

Comparing Figure8.2with Figure 7 in [32], we can see the differences in expected waiting time, if there

is waiting, as a function of decreasingβ. The order of the distributions does not change after adding

the abandonment. In both cases the exponential service-time distribution results in the highest values of

the expected waiting time, and the deterministic one leads to the lowest values. The difference is that in

the Erlang-C queues the waiting time, if there is waiting, under the exponential distribution is twice as
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large as this measure under the deterministic distribution. This coefficient is explained theoretically by

the Khintchine-Pollazchek Formula. As a result, when the value ofβ decreases, the absolute difference

between the deterministic and exponential distributions increases.

In the case of Erlang-A queues, there is less difference between the distributions, though the order of

the distributions does not change. Figure8.2shows that under the QED, the absolute difference between

these distributions virtually does not change. Moreover, using the theoretical result of A. Ward [33] we

can predict that further increase of the arrival rate will lead to smaller differences between the service

distributions with the same first two moments.

The delay probability behaves differently in queues with and without abandonment. In Erlang-C queues

the highest delay probability is achieved by the exponential distribution, the lowest is achieved by the

deterministic one and the log-normal distribution is situated between the two of them, very close to

the deterministic one. This order is preserved for any arrival rate tested in [32]. Yet, in queues with

abandonment, the deterministic service-time distribution yields the highest delay probability, while the

plots of this probability under the log-normal and exponential distributions almost coincide.
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Chapter 9

Future Research

Priority Queues: In our analysis of priority queues (Chapters4 and5), we used a model with the same

service rateµ and with the same abandonment rateθ. This assumption allowed us to conduct the exact

analysis of any priority but made the model less applicable.

General Service and Abandonment Rates:One of the possible future research directions is analyzing

models where different customer types are served with different rateµk and have different abandonment

rateθk. The exact analysis of such models is very complicated, whether the customer types differ only

by their patience, or both by service and abandonment rates.

In both cases, it is reasonable to conjecture that under the ED or QED regimes as the number of servers

grows to infinity and the lowest priority is not negligible, the only type that continues to abandon is type

K (the lowest priority). This intuition is based on our result presented in Section5.4. There we showed

that under the ED and QED regimes the expected waiting time conditioned on waiting of higher priori-

ties in Erlang-A queues converges to that in Erlang-C queues, i.e. abandonments of types1, . . . , K − 1
become negligible.

In the models with equal service rates and equal abandonment rates the delay probability is equal to that

in anM/M/N(+M) queue with the arrival rateλ =
∑K

i=1(λi) for any typek. For models with different

abandonment rates (and/or different service rates) under non-preemptive priority, the delay probability is

the same for any typek but it is hard to find a closed-form expression for this probability.

To analyze models with different service ratesµk, one might need more advanced mathematical tools.

The exact solution of such model is probably impossible, but yet some asymptotic conclusions might be

feasible. For example, we can expect that in the case of non-preemptive priority under the ED and QED

regimes, when the lowest priority is not negligible, the convergence rate of the highest priority remains

Θ(1/N). Under the preemptive priority this rate will be exponential.

Waiting-Time Distribution: Another challenge in the analysis of priority queues is a formal determi-

nation of the waiting-time distribution of typek customers under the non-preemptive priority. Here, the

distribution of the delayed first-type customers waiting time is exponential, similarly to the waiting time
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conditioned on waiting in anM/M/1 queue with the arrival rateλ1 and service rateNµ. The distri-

bution of other types is more complicated. On this stage, we can only observe that other non-lowest

delayedtypes face anM/G/1 queue under light traffic.

Time-Varying Queues: Our simulation results presented in Chapters6 and7 and results of Feldman

[9] clearly show that many of the overall performance measures of time-varying queues can be found by

using an appropriate stationary model. However, the theoretical explanation of this fact is beyond our

present understanding.

Heavy-Traffic Two-Moments Approximations: The experiments with different service-time distribu-

tions described in Chapter8 support the main finding of Schwartz, [32]. Our experiments show that

under the QED regime, the general performance of anM/G/N +M queue depends not only on the first

two moments of the service-time distribution, but also on the distribution itself. We found that different

service-time distributions with the same two first moments lead to different performance, which contra-

dicts the conventional heavy-traffic approximations.

A proper understanding of the impact of the service-time distribution under the QED regime on the over-

all performance is an interesting and important research problem. Progress in this field has been achieved

in the recent work of Mandelbaum and Momcilovic [25] for finite-support services and Reed for general

service times [31].
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