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1 Abstract

We consider the behavior of a queueing system, as an outcome of its customers’ patience.
The patience function (the probability for a randomly selected customer to stay in the
queue t seconds after arrival) is assumed to be related to the system’s performance, as
perceived by its customers, thus implying a mutual dependence between the two. This
setup is a game (in the game theoretic sense), whose equilibrium (existence and uniqueness)
is explored. The system is modeled as an M/M/m queue with abandonment, where the
queue is invisible (i.e. the queue length is not revealed to the waiting customers). The only
evidence available to a customer in such a queue is whether or not he was served, and how
long he has waited. Since it is very natural for people to generalize and then to deduce, it
is reasonable to believe that customers use their collected evidence to estimate the mean
waiting time (generalization) and then, this parameter is used for deduction (e.g. decision
of when to hang up). Consequently, we have selected models, which consider the estimated
mean waiting time, z, as the main factor influencing customers’ expectations and behavior.
We study two classes of functions, which describe the customers patience. The first is
the class of all patience functions decreasing in x, and the second consists of all patience
functions increasing in z, in a linearly bounded way. Additionally, we suggest a rational
decision model, used to describe the decision process performed by each waiting customer,
as an individual. The customers are assumed to believe in an exponentially distributed
waiting time, and also to be affected by a convex increasing waiting cost function. The
aggregate behavior of the rational customers is then related to the above classes of customers
patience functions. Both the rational model as well as the explored patience functions
sets assume minimal knowledge of the system performance and state, relegated through a
single parameter - the estimated mean waiting time z. We show for the class of functions
decreasing in z that there exists an equilibrium to the system and that this equilibrium is
unique. This result is then extended to the case of patience functions which are increasing

in z, in a linearly bounded way. In particular, we obtain existence and uniqueness of



equilibrium for the rational decision model by showing that the agpregate behavior of
customers according to this decision rule yields patience functions within the above classes.
We finally consider in simulation a dynamic model of learning for the system, where the
customers use their past experience to estimate the mean waiting time in the system using
a censored sampling estimator {both the Censored MLE and the Kaplan-Meier estimator
are explored). The estimated mean waiting time is exploited by the rational decision
model, to determine whether or not to leave the queue at each given time. Convergence
of the system to the theoretically anticipated equilibrium is demonstrated for the Kaplan-
Meier estimator, and the biassed result recevied upon using the Censored MLE estimator
is analytically justified. This work was highly motivated by the need to provide means
with which administrative decisions can be performed. The models developed herein can
be used for the prediction of customers behavior in invisible queues, and in particular their
adaptation to changes in system performance. Thus, providing means for the design of
more cost-effective systems, by allowing for educated decisions of whether to add, improve

or eliminate servers.



2 Notations list

v - offered waiting time.
z - estimated mean offered waiting time.

G(z,t) - patience function, the probability for a randomly selected customer to stay in

the queue until time ¢, given that the estimated waiting time is z.

A - arrival rate.

% - mean service time.

p; - stationary probability for 7 occupied servers.

F'(z,t) - offered waiting time density function.

H,(x,t) - offered waiting time hazard rate function.

E.[v] - mean offered waiting time, calculated according to the density function F'(z,t).
T.(x) - abandonment time of a z type customer with estimated waiting time z.

P, - customers types distribution.

w, - relative weight of a 2 type customer in the group of all customers types.



3 Introduction

3.1 DBackground and Motivation

This research deals with the analysis of customers’ abandonment from invisible queues. It is
highly motivated by the real need of understanding and addressing customers’ expectations
from services with which invisible queues are inherently embodied. The most evident
example for such services is telephone call-centers, which have become profit centers for
many businesses. In particular telephone call-centers, which do not reveal the place of the
waiting customer in the quene, hence invisible queues. According to the Direct Marketing
Association [5] direct sales and marketing via call centers accounted for $308 billion or
44.6 percent of total business-to-business sales in 1999 {overall sales via call centers: $538.3
billion). In the last years, this market has proliferated even further mainly due to the
Internet. The web clearly provides a new frontier for call centers, which have the potential
of humanizing the web-experience, and supporting on-line consumers with the comfort and
security they need, rendering "call centers” into ”virtual customer care centers”. By using
call centers to address and enhance customers’ satisfaction and security, companies manage
to retain their customer-base, keeping in mind that a customer satisfied, in many cases,

equates to future doilars earned.

It comes down to serving user's needs, and in today’s world: "time means money”,
has been automatically translated to "reducing the time customers spend in queues”. But
our goal is to serve "customers’ expectations”, and since customers are adapting to the
current quality of service, and rate their satisfaction according to these expectations, the
question raised is: What are the basic elements, which build those expectations? In the
following we address these issues, in order to model customers behavior in invisible queues,
and especially their adaptation to changes in system performance, hence providing means

for the design of more cost-effective systems.



3.2 Assumptions and Results

The only evidence ohservable by a person in an invisible queue (e.g. telephone) is whether or
not he was served, and how long he has waited. We strongly believe that it is within human
nature to base one’s expectations upon perception of prior experience. Therefore, we persist
that this is the case in the invisible queue case, and that the limited evidence available is
used to build one’s expectations of the service. Furthermore, since it is very natural for
humans to generalize and then to deduce, it is reasonable to believe that customers use
their collected evidence to estimate their mean waiting time (generalization) and then, this
parameter is used for deduction (e.g. decision of when to hang up). Consequently, we've
selected, in the following, a model, which considers the estimated mean waiting time as the

main factor influencing customers’ expectations and behavior.

We model the behavior of customers, using two complementary approaches. Both ap-
proaches summarize a customer’s expectations through a single parameter, the average
waiting time for service. The first approach, a more general one, refers to the aban-
donment behavior of all customers, expressed by a global patience function with general
characteristics. This gives us tools to analyze empirical data, or even specific decision rules.
The second model applies an individual "rational decision rule”: Each and every waiting
customer weights the possible benefit from getting the service against the cost of waiting,
and the possibility of not getting a service at all. The optimal abandonment time is then

drawn out of the individual knowledge about the queue.

Based on the general attributes of the patience function, we show that a global patience
function, which decreases with z, has a unique equilibrium. We also refer to increasing
patience function, in particular to a set of increasing patience functions with a bounded
increase rate. We show that if the maximum rate of the increase rate of the patience

function is less than the increase rate of z, then there exists a unique equilibrium.

In the rational abandonment decision model, an individual decision is derived from a

comparison of the waiting time hazard rate function with a waiting cost function. We



suggest two types of cost functions, one which does not depend on z at all, and the other
with an additive dependence. By assuming that the customers believe in an exponential
distributed waiting time, the hazard rate may be easily derived. We show that the first
type of cost function (with dependence on ¢ alone) yields a decreasing (in z) global patience
function, which guarantees te existence of a unique equilibrium. The second cost function
corresponds to the bounded increasing patience, therefore, if the equilibrium exists - it is

unique.

3.3 A learning model - formulation and simulation

We suggest a simple learning model based on the following behavioral assumption - the
estimated mean waiting time is the main factor influencing customers’ patience. According
to the model customers learn about the queue through their experience of entering the
service or abandoning the queue. Every customer decides whether or when to abandon the
queue after estimating the expected waiting time by using his previous experience. The
abandonment experiences provide only the lower bound on the waiting time till service,
therefore a censored estimator is required. Two estimators are considered: Kaplan-Meier
estimator, and censored MLE. Although the first estimator is a more accurate one, (since
we do not assume any underlying distribution) it is not very likely that customers will use
such a complicated estimator. The censored MLE estimator, on the other hand, is a more

intuitive estimator, but it assumes an exponential distribution for the waiting time.

The performance of the system with the sggested learning model is examined via simu-
lation, and its convergence to the anticipated equilibrium is demonstrated. The simulation
is of an M/M/m + G queue. Customers enter the queue and wait until one of two events
takes place: (1) they are admitted into service {2) they lose their patience and decide to
abandon. When the customers use the Kaplan-Meier estimator the estimated mean wait-
ing time after convergence is very close to the theoretic equilibrium result. The use of the

Censored MLE yields a biased equilibrium, which is analytically justified.



Another.interesting result is the convergence of the mean values in a system with two types
of customers, who are using the censored MLE estimator. The distinction between the
groups is via the group’s patience. Customers from one group are willing to wait a longer
period of time than the customers in the second group, given the same expected waiting
time. The two groups are clearly distinct in their final estimated values, where customers
with less patience reach higher values of estimated waiting time. This is a result of the in-
correct assumption of the censored MLE - the exponential distribution of the waiting time.
We show analytically how under the false assumption we get similiar results to the simula-
tion results. Simulations of two customers types using the Kaplan-Meier estimator yielde
similiar resuits for both types, which coincide with the theoretic value of the equilibrium

mean waiting time,

3.4 Contents

The following section presents an overview of related research. In section 5 we describe the
model suggested for customers’ behavior. The section begins with modeling the system and
analyzing it using the results of Baccelli and Hebuterne [1], with a general patience function
G(t). The section further details the rational decision model, by derivation of the optimal
abandonment rule, assuming a constant hazard rate function (exponentially distributed
waiting time belief}. Additionaly, an overview of psychological references is provided,
to explain the characterization of the cost function to be used. In section 6 we present
conditions for uniqueness and existence of the partially consistent equilibrium, based on
the assumptions from section 5. Having established the characterization of the equilibrium,
we demonstrate, in section 8, our results through simulation. Finally, a summary and

concluding remarks are found in section 9.



4 Related research

Facing a problem, which involves formulation of customers’ behavior, one must remember
the limitations of the analytic and computation tools available. In other words, taking into
consideration each and every decision of all customers at all times, is not feasible. The
following articles address the probelm of modeling behavior of customers, who are waiting

on the teiephone line, both from the psychological and the mathematical points of view.

4.1 Related work on queueing systems

A model which describes the individual rational decision rule of waiting customers is pro-
posed by Mandelbaum and Shimkin in {19]. In their article (which is highly related to this
work) they assumed an invisible queue, but the consistency assumption imposed required
that customers have complete knowledge of the offered waiting time distribation function,
rather than a partial knowledge like the estimated mean waiting time. The decision rule
compares the hazard rate function and a constant marginal cost-benefit ratio (or linear
cost-benefit ratio). The simple M/M/m + G model results in zero or infinite patience,
which does not seem to fit the intuitive idea of customer behavior. An M/M/m(q) + G
model adds the probability of (1-q) for a fault state in the system, in which the customer
does not obtain service no matter how long he waits. This model results in a non-trivial

patience profile, with a unique equilibrium.

Another paper related to the rational decision to abandon an invisible M/M/1 queue is
the work of Hassin and Haviv [10], where homogeneous customers (identical cost function
and value of service), perform individual decisions, whether to join the queue and when to
abandon. A customer is assumed to join the queue with probability p, and with a deadline
- T for reneging (since he does not get any new information while waiting). The decision
of what deadline to choose is based on a linear cost function and a fixed value of service. A
unique Nash equilibrium is shown to exist for the pair (p,T). The work of Haviv and Ritov

[11] establishes the conditions for a unique Nash equilibrium in an M/M/1+G queueing



system. The customers are homogeneous and with a convex cost function.

Osuna [20] provided a model for explaining the cost of waiting. The main contribution
of this paper is the consideration of the psychological cost, along with the economic cost.
During the wait, a process of building up stress takes place. The higher the uncertainty
the higher the stress. The stress accumulates to be the psychological cost of the waiting.
Osuna also refered to the expectations issue by showing the consequences of providing the
customer with information regarding the waiting period. [24] proposes a generalization to
Osuna’s work by eliminating the the need for the constraints of a bounded G(t), which

does not have common discontinuities with F{¢), in the monotonicity theorem.

Palm [21] suggested a parametric mode! to characterize the inconvenience caused to
customers waiting in a congested system. The paper begins by describing the inconvenience
function as an integral over the irritaion of the waiting customer, which is intuitively
assumed to be an increasing function in ¢. Then, Palm assumes that the probability for a
customer to abandon during the time interval [t,¢ + dt], given he has been waiting till ¢,
equals the corresponding irritation in the interval. Taking advantage of some unconnected
exchanges in the Stockholm area allowed to measure when customers hang up without
getting the service. Thus supplying Palm a way to estimate the values of theS model’s

parameters.

4.2 Psychology related articles

The following papers are related to the psychological aspects of waiting. We will refer to
these papers in the section 5.3.2, where we explain the characteristics of the waiting cost

function {non-linear increasing).

Thierry in [27] raises two central issues: (1) Approaching waiting lines as goal-oriented
settings. (2) The individual experience at all time in regarding to the goal. The aim of the
study was to assess time-integration processes as a function of the subjective importance

of the goal. The connection between the subjective importance of the goal and the way



passing of time is experienced by the customer was tested in a field observation. The
observed queue was a queue to an exhibition, the theme of which was the work of Gauguin.
Participants were categorized as highly or lowly goal oriented according to their preferences
of the painters from a list of 20 painters of Gauguin’s period (highly goal criented - chose
Gauguin as one of their three preferred painters). All the participants answered three
questions: {1) what is their current mood, (2) what is their estimation for the duration of
waiting they still have ahead, (3) what is their evaluation of the number of people ahead
of them. The results showed that there was no significant difference between the two
categories in mood, but participants with high goal orientation estimated their distance
from the goal to be shorter then the distance estimated by the low orientation participants.
Testing the data within each category revealed a strong connection in time spent in the
gueue and the current mood (the longer they waited or the greater the distance, the less
pleasant was the mood), only for the low oriented category. The low oriented group also
tended to underestimate the remaining waiting time when being far away from the goal
and overestimate it when being closer to the goal. The high oriented group relied heavily
on the distance from the goal (and not on the time they already spent in the queue) in
order to estimate the remaining waiting period, whereas low oriented relied also on the
time spent waiting.

In [7] Friedman and Friedman state that the cost of waiting is different for different
people, and with this idea they propose the waiting line segmentation. They begin by
segmenting the customers into two groups: willing to pay in order to shorten the waiting
time, and willing to wait. Servers are assigned to each group in a way that paying custormers
get a higher rate of service. We can see a possible game arising between the size of the
payment and the difference in waiting time (low payment leads to many paying customers
and so to longer waiting time). The steady-state results proved that with this method
we can increase firm’s revenue, and improve customers satisfaction. (The article includes

graphs and data of customers’ choices due to given costs of service).

Larson {17] reviews several different factors, which play a major part in influencing peo-

10



ple’s experiences while waiting in queues. Among these factors one finds social injustice
(breaking the unwritten law of FIFQ), queueing environment (distracting the customers
attention from the waiting itself), delay feedback (information about the delay estimation).
The author concludes with two important points. One point is supported by a research,
which was conducted in IBM. This research shows how the productivity of a time-shared
computer users varies nonlinearly with the delay, characterized by an elbow in the pro-
ductivity vs. computer response time graph. The other point is the nonlinearity of the
disutility function with the gueueing delay, caused by the annoyance that waiting customers
feel. A short report regarding the latter issue is added to the article. This report states

that almost all disutility functions where found to be nonlinear with queueing delays.

Dube, Schmitt, and Leclerc [6] describe a field experiment, investigating mood changes
as a reaction to delays of students waiting for their TA to return to class. Three types of
delays were compared: preprocess, postprocess, and in-process. The results showed that
subjects, who experienced pre and postprocess delays, expressed higher degrees of negative

feelings than the in-process delay and the control groups (e.g. no delay).

Taylor has two relevant papers. In [25] she explores customer reaction to a service
delay by assessing the relationship between the delays and evaluations of service, and in-
tegrating those relations into a conceptual model. Waiting times are categorized as pre,
in, and post-process. Pre-process is also divided to pre-schedule (e.g. arriving before the
scheduled event, therefore waiting the pre-schedule period along with the delay}, delays
(post-schedule), and queue waits (no scheduled event but FIFO). This article focuses on
examining the degrees of anger and uncertainty (elements of the evaluation) caused by
delays. The results showed a strong relation between the customers anger and uncertainty
and lower evaluations of service. The waiting time estimation of the customers was also
influenced by anger and uncertainty, the stronger those feelings were the longer the time
was perceived.

The other article written together with Claxton is [26]. Although occupied with similar

questions, it concentrates on alterations of stable service: What will happen after chang-
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ing one service attribute to the other attributes? Will service evaluations and importance
weightings change? (The questions’ motivation is checking the stability of a linear com-
pensatory model). Delay was found as affecting respondents’ moods (significant difference
between delayed and non-delayed). It was also found that the importance of punctuality,

on the overall evaluation of service, increased due to a negative experience.

Diekmann, Jungbauer-Gans, Krassnig and Lorenz [4] describe another field experiment,
which examined the relation between drivers’ characteristics and the type of the cars they
have. The experiment involved a blocking car and an observation of the blocked driver
reaction latency. There was also a use of Kaplan-Meier technique in the cases where the
drivers’ only reaction was leaving the blocked lane (no honking or beaming). The results
showed that drivers of higher social status cars tend to be more aggressive than those of
lower status cars. The estimated survival functions of response time consisted of an "elbow”
after the first few seconds, which means high rate of response till the ”elbow” time and low

rate of response later on.

Gail and Scott present in {8 a field observation, which took place in two separate super-
markets. The observation purpose was to determine the effects of objective waiting time,
perceived waiting time, and serve time on customer satisfaction with the server and the
store. The results confinmed previous findings that shorter perceived time leads to more
satisfaction of the customer with the server (the satisfaction with the store remains unin-
fluenced). The perceived waiting time was greater than or comparable to objective waiting
time. Another important conclusion claims that there are situations when customers will
be more satisfied with longer period of waiting. These situations are, for example, the cases

when checkers spend time socializing with the customers.

Maister introduces 2 propositions about service encounters [18]: 1. Satisfaction equals
perception minus expectation. 2. It’s hard to play catch-up ball. The early stages of
the service are the important ones, so we must concentrate in improving this period. The
author also introduces his 8 propositions about the psychology of queues:

1. Unoccupied time feels longer than occupied time.

12



Pre-process waits feel longer than in-process waits.

Anxiety makes waits seem longer.

Uncertain waits are longer than known, finite waits.
Unexplained waits are longer than explained waits.

Unfair waits are longer than equitable waits.

The more valuable the service, the longer I will wait.

o N gt e W

Solo waits feels longer than group waiting.

Hueter and Swart describe in [13] the work that was done for the Taco Bell Corporation
in order to improve its efficiency and cost-effectiveness. The writers investigated all the
aspects of the labor-management system, but a specific point of their work is of great
importance for modeling customers’ patience in queues. They performed a study, which
assessed when customers would be likely to leave the queue (due to perceiving the wait as
excessive). According to the results, customers perceived the first 5 minutes of the wait as
approximately 2 minutes. At about 5 minutes the graph is characterized by an "elbow”,

which translates the loss of patience experienced by customers.

A somewhat incomplete work on the shopping behavior is presented by Hornik in [12].
The author suggests 4 hypotheses, but the study doesn’t refer to the last and very in-
teresting one ("The frequency of shopping, in addition to personal characteristics, might
influence individual perceptions of waiting time”). The results of this paper showed that

customers tend to overestimate waiting time during the waiting period.

13



5 Model Formulation

Our model combines two points of view, that of the analyst and that of the common cus-
tomer. The analyst tries to understand waiting or abandonment decisions through the
knowledge of the actual waiting time distribution. This case was studied in [1]. On the
other hand, the customer has only partial observations of the scenario: the history of his
previous trials using the service, and maybe some information from other customers. In
the following we consider two separate, though related, approaches for the characterization
of the customers’ behavior. One approach perceives the decision process as an outcome of
an optimization, combining prior knowledge with cost-benefit ratio functions. The other
uses an aggregate patience function to describe the customers’ decisions, representing the
probability that a randomly chosen customer stays in the queue at time t. Within both
frameworks, the entire knowledge, available to the customers about the system, is sum-
marised by a single parameter: the estimated mean offered waiting time - z (aka. the
estimated waiting time). In general, z may be different from the calculated mean waiting
time, since it reflects only the knowledge available to individuals rather than complete un-
derstanding of the system. Hence, we introduce an assumption for this partial knowledge

about the systenu:

Definition 1 The partial consistency assumption is defined as the case where the estimated

and calculated waiting time are equal

5.1 System model

We will assume throughout this paper that our system is an M/M/m queue with Poisson
arrival rate - A, an exponential service time with mean value of 1/u, and m servers. Let
(G(z,t) denote the probability for a randomly selected customer to abandon the queue until
time ¢, provided that her estimated waiting time is z. Then let G{z,t) = 1 — G(z,t) be

the patience function. The customers in the system are allowed to abandon the queue at

14



any time {prior to receiving service), and the global abandonment probability is expressed
through the function G(z,t). We assume that mu > AG{z, oc) for every z. Consequently,

as in {1], the density function of the offered waiting time is:

¢
F'{x,t) = Apm_; exp(— / (mu - MGz, s)) ds},t>0,
0

Where p,,,_; is the stationary probability for having exactly m — 1 occupied servers.

The normalization condition is:

1 oo }‘31
p;+ f Fllz,)dt =1, -=(-—-)~,- :
Lt [P pi=(5)

Here p; is the stationary probability for j occupied servers, j = 0,1...,m.

Therefore, the density function for an M/M/m+G may be written as:

t

exp(—of (m,u - MGz, s)) ds)

F,(.T,t) — - n — (5.1)
Lo+ fexp(— [ (mu - /\G(mas)) ds)dt
0 b
-1 _ F—m-+1
SN 52

In the following sections we suggest two approaches for characterizing customers abandon-
ment behavior. The first approach refers to the global patience function, and draws some
guidelines to the attributes of the calculated mean waiting time in the system. The other,
optimizes individual utility function, as in [19], but under less demanding assumptions.
Observe that a customer waiting in a queue has expectations from the serving system re-
garding the time she is about to waste during the wait period. In particular, our main
assumption, with respect to these expectations, is that (in the case of invisible queue) they

are highly dependent on the customer’s estimated mean waiting time. This estimated mean
ghly aep

15



is formed mainly by the learning experience of the customer, during her past experiences

in the system, but may also be influenced by hearsay from other customers.

5.2 The patience function

Let G(z,t) be a general patience function. (Recall that this function represents the prob-
ability for a randomly chosen customer to keep on waiting at time t, given her estimated
waiting time z). If G(z,t) is decreasing in x, it means that the probability to find a ran-
domly selected customer in the queue at time ¢ is smaller for larger x. Equivalently, if the
customers estimated the waiting time as longer, they would be willing to wait less, and
thus, lead to a shorter waiting time. In the next proposition we formalize this statement

and prove it using stochastic order techniques.

Proposition 5.1 Let G(z,t) be the patience function, and F(z,t) the corresponding of-
fered waiting time distribution function, defined through 5.1. Assume that G(z,t) is a
decreasing function in © for every t. If Wy, Wy are random variables with the distributions

F{x,t), F(z2,t) respectively and z; > x5, then Wy <, Wy, in particular E[W,] < E [Wa].

Proof: The proposition states, in other words, that the calculated waiting time is a sto-
chastically decreasing function of z. Let us define the following function, in order to simplify

the expressions we are about to use:

J(z,t) = fot(m,u — X3z, 8))ds (5.3)

AGs(x,s) = Glx, s) — Gl{x + 8, 5) (5.4)

Since G{z,t) is a decreasing function then for z; > z, there is a function AGs(z,s) > 0,

which satisfies the following equation:

t _
J(@a,t) = J{z1,t) — A /0 AGa_z, (22, 8)ds (5.5)
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The hazard rate functions of the two random variables are:

(t) . _5@ _ Apm—lemp(“”](xi:t)) _ emp(“'](ma:t))
TR Ao [T exp(—J (2, 0))dv T exp(—J (2, v))dv

(5.6)

where i is the index of the distribution. By substituting the function with the expression

from (5.5}, we get:
eap(=J(z3, )exp( JE AGs(zz, 5)ds)

Hy(t) = — — =
J7° lexp(—J (w1, v))ezp(M f3 AGs(xs, 5)ds)| dv
_ exp(—J(z1,t))
f [exp(—~J(ml,U))ea:p()\ IV AGs(xa, 8)ds)exp(=X f§ AGs(xs, s)ds)] dv
Since,
exp(A /: AG(s)ds)exp(—\ /: AG(s)ds) > 1
We have:

Hy(t) < Hi(t)

The inequality Ho(t) < Hy(t) means that W, is smaller than W, in the hazard rate order,
or Wi < Wa. According to theorem 1.B.1 from [23] this implies that W, <, W, It is
easily seen that the last stochastic relation leads to E{W1] < E[Ws].

0O
Similarly to proposition 5.1, the following states that If G{xz,t) is increasing in x, then the
probability to find a randomly selected customer in the queue at time ¢ is bigger for larger

z.

Proposition 5.2 Let G(z,t) be the patience function, and F{z,t) be the corresponding
offered waiting time distribution function, defined through 5.1. Assume that G{z,t) is a
increasing function in z for every t. If Wi, W, are random variables with the distributions

F(zy,t), Fxa,t) respectively and z1 > xa, then W1 =4 W, in particular E [W] > E [W,].

Proof: The proof is similar to that of proposition 5.1, with the corresponding relations.

0

We now continue to explore a specific group of patience functions. We will calculate
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the objective mean waiting time in the system, using the density function from (5.1) for
the M/M/m+G queue. Denote E,[v] - the calculated (objective} mean waiting time, and
Eilvlv > 0] - the calculated waiting time given that there exists a waiting period. In
proposition 5.3 below we show that E [vjv > 0] is increasing with = with a less than 1
slope, for the simple case of a linear shift of G(z,t). This result is extended for the general
case of a shift - shft(z), which satisfy 0 < ;%.shft(a:) < 1, in proposition 5.4. Let us
begin by explaining the motivation for working with this group of functions. Consider, for
simplicity, a finite number of customers of types z, in which the abandonment time function
is:

T.(z) =z + B(z), (5.7)

where z is the customers type, distributed according to Pz, over N different types. As-
suming that all customers stabilized on the same estimated mean waiting time, then the

patience distribution G, (i, t) for one type of customers would be the following step function:

&z t) 1fort < z+ 3(2) (5.8)
zx; = .
0fort>xz+ 3(z)

Denote w, the relative weight of customer type z, according to the distribution P,. Then,

N
Z w, =1
z=f)

and the patience function of all customers is given by:
-_— N —
Glz,t) = > w,G,(z, ). {5.9)
z=0
We see that an increase in z results in a shift to the right of the function G(z,t).

G(z,t) = G{t — 1) (5.10)
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The same shift would appear in the continuous case:
P(TAz) >ty =Pla+3(z) >t) = P(B(z) >t —z) = Gt — x)

for some distribution function G. (In fact, G is the distribution function of the random
variable 3(z), where z is distributd according to Pz.)
The calculated (objective) mean waiting time according to the density function from (5.1)
is

o0 t —

[texp(~[ (mp, — AG(xz, s)) ds)dt

b 0

E.[v] = — . - (5.11}
f—ffa + ({ exp(——of (m;u — AG(z, s)) ds)dt

The last expression allows for the possibility of being admitted into service immediately,
or zero waiting time. We believe that it is more natural to separate the two events. If a
customer does not need to wait for service, there is no reason to address an hypothetical
patience function. However, if a waiting period is required, then the customer’s patience is
examined. Therefore, we will refer to E;[v|v > 0], as the main objective element for cus-
tomers to evaluate their expectations from a waiting period. Furthermore, we will assume
later that customers maintain an ezponential distribution of waiting time belief. This belief
does not assign a positive probability to the event v = 0.

The conditional calculated waiting time is:

Ofot exp(—jZ (m,u, — MG(x, s)) ds)dt
E.Jvlv > 0] = &

oo

2 - (5.12)
Ofexp(uof (mp - AG’(:L‘,S)) ds)dt

Proposition 5.3 Assume that G(x,t) - the patience function, is linearly shifted by z, as in
(5.10). Also assume the partial consistency assumption (definition 1). Then the coditional
calculated waiting time (5.12) is an increasing function in z, which satisfies:

LEwlv>0] <1
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Proof: We have already proven that if G(z,t) increases with z, then the calculated mean

also increases with z (see (5.2)). We now turn to further analyze ZE,[v]. The relation

between the derivatives according to x and ¢, using the characteristic from (5.10) is:
OG(t — z) _ _8@(1& — )
0r ot

(5.13)

and therefore:

fgg%;lﬂds = G(z,0) — G(z,t) = 1 - G(z,t)

Using the last relation, the derivative of the exponent in the expression of E;[v] according

to z is:

?9% exp(— / (m,u — \G(x, s)) ds) = ()\ — mp +mpu — AG(x, t)) exp(«-«-/ (m,u, — MGz, 3)) ds)
0 0

and according to
%exp(— / (m,u — AG(z, s)) ds) = ()\C_?(x, t) — m,u) exp(— f (mp, — \G(z, s)) ds)
0 o

Combining the above:

B‘% exp(— / (m,u — MGz, s)) ds) = (A ~ mu) exp(m/ (m,u — A\G(z, s)) ds)—
0 o

t

0

Denote A and B as follows:

numerator (E;[v]) = A = ft exp(— f (mu — MGz, s)) ds)dit
Q i}
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. K o] -
denominator (E.[v]) = Bz—)‘— + 0fexp(— O/ (m,u — MGz, 5)) ds)dt

%ﬁ- = (A —mu) zot exp(— (jf (m,u - MGz, 5)) ds)dt — ;fot-g-’t- exp(woft (mp& — AG(z, s)) ds)dt =

=(A—mu) A — te}cp(—({t (m,u — \G(z, s)) ds)

N + Cfexp(— jt' (mﬂ - )\G’(m,s)) ds)dt =

o 0 9

= (A—mp)A-i—B—%fﬂ

B = (X~ mp) ‘}oexp(—f‘c (m,u - \G(z, s)) ds)dt — ofoﬁ exp(*ft (m,u, — \G{z, s)) ds)dt =
0 2 o - 0

= (A — mp) (B - %) — exp(—{{ (m,u - MGz, s)) ds)

=()\——mu)(B—%ﬂ)+1

0

aE[ mB%A—A%B_l EnpB 4+ A—(A—mu)fmA
5z Lol = B - B?
We know that for the conditional calculated waiting time K,,, = 0:
8 BL£A- ALB A
i v eI BT = ] e e
amE‘I[UJ'v > 0} 5 1 7 S 1

a

Remark: It is easy to see the the last proposition holds for the calculated waiting time

E.[v] of an M/M/1+G, where K, = 1, and for every K, if A < mpu.

Proposition 5.4 Define shft(z) as the shift function of G(x,t), and suppose that shft(x)
is non-decreasing with ﬂi’i_{_jfll < 1. Then under the partial consistency assumption, the

conditional calculated waiting time is increasing in x, and satisfies ZE.[vjv > 0] <1

Proof: The general shift is now:

Gz, t) = Gt — shft(x))
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Expression 5.13 takes the more general form:

dG(i — shft(z))  OG(t—x)
dshft(z) Ot

or:

0G(t — shit(z)) d(shft(z)) _ 0G(t - z) d (shft(z))

Osh ft(x) dr ot dz

The derivatives of 4 and B are now:

%‘3 — [\ = mp) A + B] Wd(Shd’::(‘”))
% - By L)

Hence, the derivative £ E,[v] is:

) __B%A—-A%B_[l__i}d(shft(m))
- B? dx

9
e <
0< axEx[vw >0/ <1
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5.3 Rational abandonment
5.3.1 The utility function

The rational abandonment decision is based on the individual utility function of the cus-
tomers. We distinguish between different types of customers according to their decision
model parameters. Let z € Z denote the type, with Z the set of possible types. A customer

of type z will be characterized by the following elements:

(#) 7, the service utility, assumed to be positive.

(17) c.(t}, the marginal cost function of waiting, assumed positive and increasing, as ex-

plained later on.

{1i1) Pz, a probability distribution over the set of customer types Z. The type z of each

customer is randomly chosen according to Pz, independently across customers.

Along with the type parameters, all customers are assumed to believe in an exponentially
distributed waiting time. The parameter of the distribution - estimated mean waiting time,
can be different for each customer without relation to type of customer.

Define the cost-benefit ratiofunction: ,(t) :== ¢.(¢)/r,. We will see that this function dic-
tates the abandonment time of the customers in each type group, given the same estimated

mean waiting time. Denote the cost function:

t

C.(t) = ] c.(s)ds.

0
The utility function, at any possible abandonment time 7" > 0, accounts for the probability

to be admitted into service, and compares the service utility against the total waiting cost,
as follows:
UAT) = E,(r,1{T 2V} - C,(min{V,T})}
T -
= [ = C)aR ) - CUDE(T), (5.1)
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where E, is the mean according to the subjective exponential probability, and V is the
offered waiting time. The optimal abandonment time is the one that maximizes the utility

function. Differentiating the utility function (5.14) with respect to 7" > 0 gives

UAT) = [r: — CUDNFUT) = e.(T)FAT) + C(T)FL(T)

Since 7, > 0 by assumption, when F,(T') > 0 this may be written in the following way:

U;(T) = Tze(T){F;(T)/Fz(T) - 'YZ(T)]
= rF(THAT) - v(T) (5.16)

where H, is the hazard rate function associated with the offered waiting time distribution,
namely

H.(t) = FU{§)/E.(8), t>0.

UL(T) = 0, can now be simply stated as
H(T)=(T). {6.17)

Recall the assumption regarding customers’ belief from the beginning of this subsection.
We characterized the customers with an exponential distributed waiting time belief. The

hazard rate function of an exponential distribution is:

F ,uzea:p(-—uzt)
= mmm T —— 1
Hz ; ( zt) " (5 8)

H, is constant in time, and equals the inverse of the mean waiting time. Hence, {5.17)

reduces to:
'Yz(T) = Kz
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5.3.2 The cost function

The rational decision to abandon, as estabiished_in the last subsection, is based on an
optimization process which is affected by the customers’ limited knowledge about the sys-
tem (gathered through the waiting experience) as well as their waiting cost function. The
purpose of the waiting cost function in the process, as we define it, is to combine all the
elements, which influence a customer to abandon a queue (or not to enter at all). How
does this waiting cost function look like? In order to answer this question let us elaborate

on the psychological related research presented in section 4.

The most related assessment of customers feelings while waiting in a queue appears
in the work of Carmon and Kahneman [3], who tested the momentary affect on waiting
customers. They showed clear results of dependence between the advances in an invisible
queue and customers’ feelings. After every advance in the queue the affect meter jumped
up (positive feelings), and then declined slowly till the next advance. We believe that
this resuit may be transfered to the case of invisible queues, by considering the behaviour
during a single cycle from this periodical affect. Thus, without further knowledge about
the queue'’s state, customers display decline in positive feelings. The negative feelings,
described above, can be related as the price customers pay while waiting in a gueue, and
an increase of negative feelings in delay can be refered as an increasing cost function. We

now continue to a more detailed description of the increasing behavior of the cost function.

Larson, in his article {17}, describes some preliminary results of interviews that were
conducted in order to assess people’s disutility functions for waiting time in queues. The
results showed nonlinear dependence of the disutility function on delay (9 of 10 interviews).
Diekmann and Jungbauer-Gans checked drivers’ reaction to a blocking car [4]. The esti-
mated survival functions of response time showed a low rate of reaction for the first seconds,
and then a steep change, which means loss of patience. Hueter and Swart, in their work for
Taco Bell [13], studied how customers perceive the time in queue and found out that the

first 5 minutes of waiting are perceived as a couple of minutes. After 5 minutes an elbow
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appears in the graph and perceived time changes nonlinearly with absolute time. Palm [21]
suggested a two parameters model for the irritation function of waiting customers. The
irritation is increasing in time. Hence, the inconvenience function, which is an integration
over the irritation, is convex (t power constant). The accumulated cost function, that arises
from all the above, increases slowly at the beginning, but at some point changes into steep

increase.

Having suggested the shape of the function, we shall now try to understand why and
when the steep change (elbow) occurs. In [27] we see a distinction between two groups:
high goal and low goal oriented groups, we will return to this point later on, and now
examine the results for the low goal oriented group. Two main conclusions were reached
regarding this group: (1) The longer people from this group waited the less pleasant of
a mood they had. (2) They tended to underestimate remaining waiting time, being far
from the goal, and overestimate it in a closer position. Dube Schmitt and Leclerc in (6]
showed that customers, waiting for service, grow negative feelings during the wait. Taylor
showed in [25] that the stronger anger and uncertainty the customer felt the longer the
time was perceived. Maister in propositions 3,4 [18], also determines the more anxiety and

uncertainty a waiting customer feels the longer the time is perceived.

Let us summarize these last conclusions. Customers enter a waiting line with an objec-
tive view of time (maybe a slight tendency to optimism regarding the time they are about
to wait); during the wait a process of growing anxiety, uncertainty, and other negative feel-
ing takes place. This process has a positive feedback (the more negative feeling, the more
time perceived as longer, magnifying negative feelings), which explains the nonlinearity of
the impatience graph.

We are still left with the question of when does this process takeoff occurs. Maister [18]
claims in his first law about service encounters, that Satisfaction equals Perception minus
Expectation. This is a very intuitive law: we are satisfied whenever we perceive a higher
level of service than we expected. By transforming this law to our needs, we can say that

customers will be satisfied till the moment when the waiting time they perceive increases
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beyond what they expected. At this point the feedback process begins. By now we have
suggested the shape of the impatience graph, as slowly increasing at the beginning till an
elbow leading to a much higher increase rate. The elbow appears around the expected time

of service.

We shall continue by describing the difference between groups of customers. As men-
tioned previously, Thierry shows in his article [27] a distinction between groups of cus-
tomers. His results exhibit a significant difference between customers, who have high mo-
tivation to achieve the goal (service), and customers who are less eager. The high goal
oriented didn’t reveal a strong connection between waiting time and mood. This group
also had a more optimistic estimation about the remaining waiting time (higher hazard
" rate). Friedman and Friedman (7] succeeded in segmenting the customers into groups ac-
cording to their willingness to pay in order to shorten the waiting time. Diekmann and
Jungbauer-Gans [4] showed a partitioning due to social status, which characterized im-
patient behavior. Hence, we can see that different groups have different values of time.
Factors like goal motivation, social status and others suspend the annoyance, and therefore

extend the period of time customers would be willing to wait.
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5.3.3 Properties of optimal decisions

Using the results of the abandonment rule (see subsection 5.3.1} and the shape of the cost
function (see subsection 5.3.2) , we are now about to analyze two cases that are distin-
guished by their marginal cost function. In the first case the assumption is that customers
believe in an exponential distributed waiting time with the parameter p,. The marginal
cost function (derivative of the cost function) is an increasing function of t, varying in its
rate of increase between different customers. The second case maintains the exponential
waiting time assumption, but takes into consideration the influence of the customers’ expec-
tations. Here we assume that the cost function is an increasing function of T, = ¢t~ sh ft{zx)
instead of t alone. Thus, allowing a longer waiting pericd when the estimated waiting time
increases (or a shorter one if x decreases). While we expect an increase in the waiting
period as x increases, it is reasonable that the rate of increase in patience will not ex-

ceed the increase rate of z. Therefore, we add one more constraint on the shift function:
dishft(z}}
- < 1.

Proposition 5.5 Given the utility function (5.14) and under the ezponential waiting time
belief with an increasing cost-benefit ratio function - v,(t), the optimal abandonment time

of a type z customer 1s:
{(z) T, =0 for v.(0) > H,
(21} T. = oo if 7.(t) < H, for every t.
(ii1) T = v (H,) if there exists t which satisfies v,(t) > H..

Proof: As shown in (5.18) H, = p,,. We are looking for the maximum value of t, which
maintains v.(t) < H,.

If v.{0) > H,, and knowing that ~,(¢) is increasing, the utility function would be decreasing
(negative derivative). Therefore, in order to maximize the utility we must abandon at

T. =0
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If v.(t) < H, for every t the Utility function is an increasing function. Therefore, the
optimal abandonment time is T}, == 00.

If there exists ¢ which satisfies v,(¢) > H, the utility function is an increasing decreasing
function. The derivative is positive till v,(t) = H, and then becomes negative. Hence, the

optimal abandonment time would be T, = v, 1(H,). 0

As previously argued, customers enter the system with expectations that we refer to as
the estimated mean waiting time. The last cost function does not take into consideration
those expectations, because it depends on ¢ alone. Hence, we suggest (see section (5.2))
the next cost function, which shifts the nonlinear increase of the cost function relative to
the expectations. Two assumptions appear in this set of functions: the shift behavior, and
its bounded increase rate. Both assumption are mainly intuitive. The shift function is
a simple way to express the increase in patience as a result of increase in the estimated
waiting time, while bounding the increase rate is only reasonable since we do not expect

customers to increase their relative willingness to wait.

Proposition 5.6 Let v.(t) > 0 be an increasing differentioble cost-benefit ratio function,
and let T{zx) be a function which satisfies the equation v,(T(z) — z) == 1/x. Then the

increase rate of T(x) is bounded by 1. In particular for v,(T(z) ~ shft(z)) = 1/x where

ﬂ—s—'%gfn<l, where 3£ < 1.

Proof: Using the inverse function v, the direct expression for T'(z} is:
/1
r=a+(3)
Differentiating T'(x} with respect to

or _ 197 (3)
8z a2 8 (%)

T
Since 7.{(t) > 0 is an increasing function in ¢, +;}(¢) is also increasing. Therefore, the

derivative of v, * is positive, and so -g% < 1. It is clear that if instead of = we use shft(x)

with RHE) 1 we get & < 1. m
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After having described two types of abandonment time functions, we continue discussing
the patience function behavior. The equilibrium theorems will be based on the attributes,
which are derived through the relation between the individual abandonment time and the

global patience function.
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6 Equilibrium Uniqueness

We now turn to analyze the equilibrium. In the model formulation section we have sug-
gested one parameter, to describe the statistics of the subjective waiting time (instead of
the distribution function in the consistent equilibrium)}.We have also claimed that since z
reflects only the knowledge available to individuals rather than complete understanding of
the system, it may have a different value than the calculated mean in the system. There-
fore, we defined the partial consistency assumption, as the state where the estimated and
calculated waiting time are identical.

In the patience function section we have explained that it is more natural to refer to the
conditional estimated mean waiting time - E;[v|v > 0], since there is no reason to address
an hypothetical patience function, if a customer does not need to wait for service. Under
this assumptions the equilibrium we are about to refer to is the Partial Consistent Equi-

bibrium.

Partial Consistent Equilibrium

Definition 2 The system is in a partial consistent equilibrium, if the estimated and con-

ditional calculated wasting time coincide for all customers:
Efvju>0l=x
The following theorems describe the conditions for equilibrium. First, the relation
between the patience function and the estimated waiting time is explored. Then, the

relation found is used to show the uniqueness of the equilibrium for the rational decision

rule.

Theorem 6.1 Consider an M/M/m + G queue with G(z,t) as a decreasing function with

z. Then there exists o untque partial consistent equilibrium.

Proof: We have proven in Proposition (5.1) that a decreasing function G(z,t) in z results

in a decreasing calculated mean function: Egfv|v > 0]. It is easy to see that there is a
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unigue z, which satisfies E.[vlv > 0] = z. But this is the partial consistent equilibrium. O

Theorem 6.2 Let G(t — shft(z)}) be the patience function in an M/M/m+G queue. As-
sume also that shft{x) is non-decreasing and with Md%@ﬁ < 1. Then there exists a partial

consistent equilibrium, it is unique.

Proof: In proposition {5.4), we have stated that E,jvlv > 0] is increasing in z, with a less
than one increase rate. A partial consistent equilibrium satisfies E [vjv > 0] = z. The
increase rate of x in z is 1, and knowing that the increase rate of E [vjv > 0 is less than
1, guarantees that 3zg > O which satisfies B, [v|v > 0] = zo, and that there is no other z,
which satisfies the equilibrium equation.

&
Uniqueness of the equilibrium under the rational decision rule can now be established. We

start with a marginal cost-benefit ratio function of ¢ alone:

Theorem 6.3 Let v.{t) be a time dependent increasing cost-benefit ratio function, and
assume that customers believe in an erponential waiting time distribution. Then there

exists a unique partial consistent equilibrium.

Proof: Proposition 5.5 gives rise to the value of T,. The cost-benefit ratio function is
known to be increasing, therefore 7, is increasing with 1/z, or decreasing with z. Decrease
of T, with & means decrease of G{z,t). In theorem 6.1 we have proved that if G(z,1) is a

decreasing function with x, therefore there exists a unique partial consistent equilibrium.

O

We have proposed a model, which shifts the time dependent marginal cost-benefit ratio
function, according to z. The following theorem provides conditions for uniqueness of the

equilibrium.

Theorem 6.4 Consider the M/M/m queuve with the rational abandonment model, where
. . . , . . 1 d{shft{x
YT — shft(x)} > 0 is the increasing cost-benefit ratio function, with W < 1. If there

exists a partial consistent equilibrium it s unique.
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Proof: As shown in proposition 5.6 an increasing v.(T — shft(x)) leads to the bounded

derivative: g-% < 1. Equivalently we can say that the shift of the patience function is

bounded by z. According to theorem 6.2, this means that there exists a unique equilibrium.
0

The last theorem proved uniqueness, but if we think about human customers an in-
finite willingness to wait in the queue is inconceivable. Therefore, it is required to add

some threshold, after which the customers will not agree to wait any longer. Adding such

threshold insures the existence of the equilibrium according to the remark in theorem 6.2.
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7 Survival Analysis

Survival analysis is concerned with the measurement of time between an initial event and
an end event - a process lifetime. This period time is known as the "survival time”.
The name was chosen since the technique emerged out of the insurance industry, where
risk calculations were needed for costing the insurance premium [22]. Survival data has an
important feature - censored measurements, as explained below. Together with the ordinary
data of the length of the interval, some of the information is partial, due to ceasing the

process before the end event.

It is important to note that the survival analysis can be used either to estimate the
offered waiting time, in which case the censored samples are the abandonment samples. It
can also be used as for estimating customers patience, in which case the samples terminated
by service are the censored ones. In our simulation we estimate the offered waiting time,

therefore the first case applies.

7.1 Censoring in waiting time estimation

When we come to estimate the mean waiting time in a queue with abandonment, we
must consider two types of waiting experiences. One would be a waiting period ended
by admission into service, while the other - a waiting period terminated by abandonment.
The abandonment time, although not specifying the exact waiting duration till admission,
supplies us with a lower bound to this value. Samples like the abandonment times, which

reveal only partial information, are referred to as censored samples.

It is clear that we can not relate to the censored samples the same way as regular
samples, neither can we ignore them. abandonment occur when the waiting periods are
too long for the customers patience. Therefore it is most probable that instead of high values
of complete waiting periods we will get lower values of abandonment times. Ignoring the

censored samples or referring them as regular samples will result in a biased estimator. In
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the next subsections we describe two estimators, which relate to censored sample as well:

Kaplan-Meier estimator, and censored maximum likelihood estimator.
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7.2 Kaplan-Meier Estimator -

The Kaplan-Meier Estimator enables us to find an estimation for the waiting time distrib-
ution, based on censored data. Denote 5{t) as the estimator of F(t) = P(V > t), where V
is the waiting duration till admission to service. Let us also divide the time scale to finite

intervals of size A, and let time ¢, equal {A. We can now write S'(t) as follows:

Sty =PV > |V > t, )PV > t;y)
The same way we can extend the last formula for every ¢; < i3

i
S(ti) == H P(V > fj IV > tj_g)
j=i
The information we have regarding the waiting experiences of customers is the samples of

completed waiting durations or the abandonment times. The conditional probability of a

waiting duration V to be longer than ¥;, given that it is longer than ¢;_, is:

nj—“hj

P(V>tj|V>tj_1)= -
3

where:
n; - the number of trials, which were neither completed nor censored before ;.
h; - the number of trials, which were completed by the time £;.

~ i T — h

=1 3
As mentioned before, we are using the estimation in order to find the mean waiting time.

Using the Kaplan-Meier estimator, we first estimate the waiting time distribution, and then
calculate the mean waiting time through the tail formula:

Ejv} = [ F{v)dv



7.3 Censored MLE Estimator

The maximum likelihood function in the censored case takes the following form:

imn

CMLE = mﬁtx {H [f“(xf,)Ai] nﬁ: [l - Fu(ﬂ)]}

i=1

The notations are:

n - the total number of samples.

m - the number of complete waiting durations.

x,; - complete waiting duration sample.

T; - abndonment time sample.

A; - small time interval around xz;.

Since the time intervals do not depend on the parameter - u, we can rewrite the likelihood

function:

w

CMLE = max {H [fulz3)] nﬁ: - FM(T})}}

t=1

Assuming an exponential distribution with the parameter - p:

ﬁkm%=i@mF%9;FME)=lﬂemﬂw%%

and the censored likelihood function:

Sm+ 'y T

f==1 F=1

CMLE = L exp
pu M

Differntiating and comparing to zero, we find that the censored maximum likelihood func-

tion yields the following estimator for the offered waiting time:

fa=]

Lt n—rm
DERRE
Jﬁ

B= m

37



8 A learning model - formulation and simulation

We suggest a simple learning model based on our behavioral assumption - the estimated
mean waiting time as the main factor influencing customers’ patience. According to the
model, customers learn the queue statistics through their experience of entering service or
abandoning the queue. We use simulation to help us, even partially, overcome the problem
of obtaining the detailed data needed to examine the theoretical model. Through simu-
lation, we can check the behavior of the system under different parameters, compare cus-
tomers decision rules and mean estimation techniques etc. We can see whether the system
converges, and check for correlation between the converged-to values and the mathematical

results.

The simulation is of an M/M/1 + G queue with hetergeneous customer population.
Customers arrive to a queue (infinite size) at times that are determined according to a
Poisson process with parameter A. The service in the system is FIFO, and its duration is
exponentialy distributed with the parameter 1/u. The patience function of every customer
is translated into a time T, after which the customer will abandon the queue. Customer
admitted into service can no longer abandon the system. The type of a customer is uni-
formly selected from the set of allowed types. Given the type of customer, the customer is
uniformly selected from the bank of this type group of customers. If all the customers from
this group happen to be in the queue, a new customer is initialized with the knowledge-
base of a uniformly chosen existing customer. Every new type customer begins the queue‘
experience with ten initial offered waiting periods set to be Tp. This is in order to reduce
the number of iterations needed before the system converges. We also allow a periodic
exploration of the waiting time by substituting the real abandonment time with 1/eps; this

accelerates learning.

The abandonment rule is determined as a linear function of the estimated waiting time
with a random element: T(z} = a*x + U. Here U is a Normally distributed random

number with mean zero and variance 0.01. The estimated waiting time is calculated with
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two possible estimators: Censored MLE or Kaplan-Meier.

8.1 Simulation results

The following results consist of four examples. The first two examples compare system
behavior under two different individual mean waiting time estimators, with a single type of
customers (given the same queue experience all customers would choose the same abandon-
ment time). We show convergence of both systems, but we also show that the Kaplan-Meier
estimation result is closer to the theoretical equilibrium value. The next two examples,
again, compare the two estimators, but in a system with two types of customers. We show
that there is a correlation between the estimated waiting time value of the customers and
their customer type. It is important to note that we do not prove convergence mathemat-

ically, although dozens of simulations yielded the same convergence results.

Example 1 The parameters of the following simulation results are: A =1, p = 1,
Ty = 1.5 {initial 10 values of trials in the system), Z = 1 {one type of customers), explo-

ration period = 30, T'(z) = 0.8 * z, Kaplan-Meier estimator.

In the next pages we present the estimation of the waiting time distribution, as was
performed by every customer. We also show the convergence of the estimated waiting time

through every trial a customer had in the system (iteration).
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In figures 1,2 we can see the estimated waitining time distribution of each customer:
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Figure 1. estimation of the waiting time distribution customers 1-4
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Figure 2: estimaotion of the waiting time distribution customers 5-8

41



Figures 3,4 show the estimated mean waiting time of the 8 customers:

meanrzi 0,customer-1,type-1,mean-1.09,std-0.03 meanrﬂ .0,customer-2 type-1,mean-1.19,std-0.04

I SO— S S D T ]

C -
] o
D QO
5 . . E . i
0 . 5 .............. ............. .............. D. 5 .............. ............. ........... o
0 N : 0 : ;
0 2000 4000 6000 0 2000 4000 6000
iteration iteration

meanr:f .0,customer-3,type-1,mean-1.22,5td-0.05 meanrzf .0,customer-4type-1,mean-1.26,5td-0.03

1 5 .............. i ............. ‘ e e 1'5
1
C C
(3] ©
@ O
05k O SR 05k e s
0 ‘ : 0 i L
0 2000 4000 60060 ] 2000 4000 6000
iteration jtaration

Figure 3: estirnation of the waiting time customers 1-4
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Figure 4: estimation of the waiting time customers 5-8
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We see that the estimated waiting time converges. The simulation yields a mean waiting

time of 1.2007 across 8 customers with standard deviation of 0.0672.

The theoretic conditional calculated waiting time for one type of customers uses:
m lfort<T
Gz, t) = (8.19)

we get:

}Otexp(—— ft w~ AG{z, s)ds)dt. ft exp (A — p)t) dt + exp (AT) Ttexp(——ut)dt

Efoly >0 =0 0 o r

({ exp(— ({ ©— AG(z, s)ds)dt Jexp (A = p)t) dt-+exp (AT) [ exp(—ut)dt
3 T

Calculating the integrals:

ﬁT(m) exp {cT (z)) + £ exp (cT (z)) + L

Em[?_)|'1) > O] = %exp (CT (x)) — ¢

where

Forthecaseof A=pu=1:

el L T (2)+1
T(z)+1

Exlvjv > 0] st =

In our simulation we used the linear abandonment time: T (z) = 0.82. Therefore in order
to find the theoretic equilibrium E;{viv > 0] = z, we need to solve the following equation:

-@%Eﬁ—t—().&:-l—l _
0.8z +1 -

The solution is a mean waiting time of x = 1.25, which is indeed close to the simulation’s

result.
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The Kaplan Meier estimator seems to bring the customers near the unique partial
consistent equilibrium, but is it reasonable to assume that customers use such a complex
estimator? In the next example we use a simpler more intuitive estimator - Censored MLE
estimator. For this estimator we first assume an exponential distribution (instead of trying
to find the correct one), and then calculate the estimator of the parameter (mean) using

the MLE.
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Example 2 The parameters are the same as in the last example (A=1, p =1, T = 1.5,

Z =1, exploration period = 30, T(z) = 0.8 x ) except for the Censored MLE estimator.
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Figure 5: estimation of the waiting time 1-4
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Figure 6: estimation of the waiting time 5-8
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Figure 7: estimation of the waiting time 9-11
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We see that the estimated waiting time converges. The simulation yields a much higher
mean waiting time of 1.6452 across 11 customers, with standard deviation of 0.0218. This
result is not surprising, since the base assumption of the estimator was not correct - the
waiting time distribution is not exponential because of the abandonment. Recall the shape
of the distribution, as was estimated using the Kapian~Meier estimator in example 1. The
next figure shows the a-parametric estimation of the waiting time distribution function,
with a comparison to an exponential distribution with the same mean {the results are for
customer number one. The other customers showed similar results regarding the distribu-

tion, as seen in figures 1,2). The smooth curve is the curve of the exponential distribution:
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Figure 8: estimation of the waiting time distribution
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Notice that for ¢ < 1.5 the "true” distribution in figure 8 has higher values than the
exponential distribution. The mean estimated waiting time for the censored MLE is 1.6452,
which means abandonment time of T' = 0.8 % 1.6452 = 1.31616. Therefore, the full waiting
time durations (the durations which eﬁd\ed with service, not abandonment) reflect only the
part of the distribution for which t < 1.3\1616. The outcome is a higher than exponential
distribution curve - a larger parameter.

The theoretic calculation of the equilibrium value is based on the ratio of abandonment

and service samples. The estimated mean waiting time z using the censored MLE is:

-1

_E Ty _§_:1 T
P o i=x] + 1=
m m

™
3

If T is the mean abadonment time, G(z,t) from (8.19) and m is large enough, then b

equals the mean waiting time in the interval (0, T'], which is:

e

T t -
[texp(— [ — AG(z, s)ds)dt tdt T
0 B _ D _ 4
T ¢ - I
[exp( [ p— AG(z, s)ds)dt fdt
0 ¢ p=A=1 0
We know that T' = 0.8 % x, therefore:
g z; nimj} . _
gm0 T (o o 080 -m)z
m m 2

The last equation yields a ratio of 3/4 between the number of abandonment and the num-
ber of services.

Another way to calculate this ratio is through the waiting time distribution:

P(t>T) exp(T) ;f exp(—s)ds
Pt <T) = =T

= =
fds
D

And we get T = 1.333 or z = 1.666, which is very close to the simulation result: 1.6452.

50



The z here stands for the estimated mean waiting time, and not the correct mean in the

system, since, as we said before, the exponential assumption is not true.

The first two examples considered only one type of customers. The next two use the
same parameters, but add another type of customers. Customer of type 1 now has the
patience according to T{(x) = 0.95 * z, and customer of type 2 has T'(z) = 0.65 x 2. The
results are shown in figures 10-18 for Kaplan-Meier and 19-22 for Censored MLE.
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Example 3 The parameters are: A= 1, u =1, Ty = 1.5, Z = 1, exploration period = 30,
Ti{z) = 0.95 x z, Th(z) = 0.65 + z Kaplan-Meier estimator.
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Figure 9: Kaplan-Meier estimation of the waiting time distribution, customers 1-4
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Figure 10: Kaplan-Meier estimation of the waiting time distribution, customers 5-8
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Figure 11: Kaplan-Meier estimation of the waiting time distribution, customers 9-12
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Figure 12: Kaplan-Meier estimation of the waiting time distribution, customers 15-16
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Figure 13: Kaplan-Meier estimation of the waiting time distribution, customers 17-18

The mean waiting time of all 14 customers is 1.1335 with standard deviation of 0.0491. The
mean waiting time of type 1 customers is 1.1350 with standard deviation of 0.0368. The
mean waiting time of type 2 customers is 1.1316 with standard deviation of 0.0641. We
see that the Kaplan-Meier estimator yields similiar results for both types of customers. As
explained before this estimator does not assume the incorrect exponential assumption, but
performs estimation to the distribution itself. If the estimation is correct and the system
converges, then all customers should reach the same distribution and therefore the same
mean estimated waiting time, although each type acts in a different way under the same

mean: type 1 abandons after 1.078, while type 2 after 0.7356.
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Figure 14: Kaplan-Meier estimation of the waiting time, customers 1-4
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Figure 15: Kaplan-Meier estimation of the waiting time, customers 5-8

58



mean =1.0,customer-9,type-2 mean-1.15,std-0.06 mean =1.0,customer-10,type-1,mean-1.13,std-0.03
1.5 ! ; ! f 1.5

alo T T Y - N SR

09 ) : ; ; 0 g " " L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000
iteration iteration

meanr-.:i 0,customer-11,type-1,mean-1.10,5td-0.09 meanrmi 0,customer-12,type-2,mean-1,18,std-0.04
15 ; ; ; 15

alo SR SR ! SO N RS-

09 L . : 09 . . . .
0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000
iteration iteration

Figure 16: Kaplan-Meier estimation of the waiting time, customers 9-12
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Figure 17: Kaplan-Meier estimation of the waiting time, customers 13-16
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Figure 18: Kaplan-Meier estimation of the waiting time, customers 17-18
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Example 4 The parameters are: A=1, u =1, Ty = 1.5, Z = 1, exploration period =
30, Ty(z) = 0.95 x 2, Ta(x) = 0.65 * z, Censored MLE estimator.
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Figure 19: Censored MLE estimation of the waiting time 1-4
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Figure 20: Censored MLE estimation of the waiting time 5-8
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Figure 21: Censored MLE estimation of the waiting time 9-12
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Figure 22: Censored MLE estimation of the waiting time 13-14
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Figure 23: The theoretic and real patience function

Figure 23 shows the theoretic patience function of two types of customers (abandonment
after 7\ and 7T3) in comparison to the real patience calculated from the simulation results

(see {5.9)).
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The mean waiting time of all 14 customers is 1.6494 with standard deviation of 0.0848.

The mean waiting time of type 1 customers is 1.5741 with standard deviation of 0.0329.

The mean waiting time of type 2 customers is 1.7246 with standard deviation of 0.0359.

Now there are two abandonment /service ratios, each for every type.

The theoretic conditional calculated waiting time for two types of customers uses:

lfort<Ty
Gz, ) =4 05for T, <t< T
Gfort>Ts
Type 1 ratio is:
T El 5 0050 0.95(n — m)z
m m 2 m
and the second calculation of the ratio is:
i T expl
Pit>T) exp(3{T1 -I-Tg))szexp( s)ds B exp(~0.152)
t T T ~ 1+ 0.65z — exp(~0.15
P( < Tz) g'lds +6Xp(%(T1)g26Xp(—%s)ds + T BXP( JC)
1
Comparing both expressions, we get: x = 1.774.
The same way, we can calculate the estimated mean waiting time of type 2:
P E; T gese 0.65(n — m)z
r = -+ = +
m m 2 m
and the second calculation of the ratio is:
L(7)) [ exp(—s)ds + exp(3(T; + Ty)) T exp(—s)d
* —2 2 —8)ds
P(t>T1)=eXp(2( 1))1{exp 58)ds + exp(5(11 + T2 Tzexp 8 _ )
Pt <) 0.65z

5

[ ds
0
The last equation results in z = 1.482,

Both theoretic values are close to the simulation values.
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9 Conclusion

In this work we studied the behavior of an invisible M/M/m queue with abandomment.
QOur main assumption was that the dominant factor in how customers perceive system per-
formance is their estimated mean waiting time. This affects customrs’ decision of whether
to stay or abandon the queue, determining, in turn, the system’s load. This inter-relation

between the system’s performance and the customers’ behaviour was addressed.

Two sets of customer’s patience functions were explored. The first was the set of all
functions decreasing in the estimated mean waiting time, z, and the other set consisted of
all functions increasing in z, in a linearly bounded way. We have established that if the
patience function decreases in z, there exists an equilibrium, where z equals the actual
mean waiting time, and that this equilibrium is unique. For patience functions which are
increasing in z, in a linearly bounded way, we have shown that the equilibruim is unique

given that it exists.

We have suggested a rational decision model which compares a cost function with the
hazard-rate function to establish the abandonment rule. Psychological research, which we
have reviewed, motivates the assumption that the cost function is convex increasing in £.
Additionally, since no information is available to the customers regarding the waiting time
distribution, the customers were assumed to believe in an exponentially distributed waiting
time. We obtained existence and uniqueness of equilibrium for the rational decision model
by showing that the aggregate behavior of customers according to this decision rule yields

patience functions within the explored sets.

We finally simulated the system for the case where customers patience is linearly de-
pendent in z. The customers used their past experience to estimate the mean waiting time
in the system using a censored sampling estimator. We have shown that if customers use
the Kaplan-Meier estimator, a convergence to the partially consistent equilibruim prevails.
On the other hand, if customers use the Censored MLE estimator, their false assumption

of exponentialy distributed waiting time yields a bias. The simulation bias was found to
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coincide with the theoretically anticipated bias.

In order to develop accurate models, more empirical data must be obtained and processed.
Throughout this work we have assumed existence of a single parameter shaping customers
patience. The main reason for settling with such an assumption is lack of data and experi-
ments directed to reveal more parameters and their influence on customers. Gaining more
knowledge is necessary for reducing the speculative part of this work.

Another area in which more work needs to be done is the visible or invisible -+ information
queues analysis. By concentrating on invisible queues we eliminated the psychological as-
pect of interaction according to the information supplied by the system. Customers do not
know in what place they are in the queue, when a new customer is admitted into service,
whether the server is working, etc. Such information can play a major part in deciding if
and when to abandon the queue.

Further research is also required in chiracterizing different groups of customers. Customers
can be distinguished according to their motivation to achieve the service [27], their wiil-
ingness to pay in order to shorten the waiting time [7], their social status [4], and so on.
Although there are some references that study different behavior versus group relation, a
more extensive research is required. We believe that the principles presented in this work

provide a foundation on which more accurate and strong models may be built.
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10 Appendix — Simulation code

10.1 LRNSYSM

% In order {o change the cost function, changes must take place
% inside invgmat.m, Tz_APrmE.m andTz_APrmF.m

global MLE APrmE APrmF MLENC FileNum initTz TO ThrowExtrm DumpThrsh DumpFactor
ExplorePrd alfa

OutMat=}1,%%%% Parameters to be simulated %%%%
%MLE3 8 1 3;

%6%6%0% first service and arrival times %%%%
rand('state’, sum(1 00*clock));

u=rand(1,1);

diserv=(-1/mu)*log(n); Yeservice time

u=rand(i,1);

dtarv=(~1/lamda)*log(u), Yearrival time
tarv=tarv-+dtarv;

tserv=tarv+dtserv;

%profile on
Yoho%%o Quene 30013 %6%%%
for step=1:N
if (mod(step,500)==0)
save count step
end

=1,
if (size(ClientsMat)~=0)
for o=1length(ClientsMat(;,3)}
if (ClientsMat(o,3)==length(@ataMat{o,1})}
fi{o)=0;
end
end
end

%updating queue st
if (tserv>=tarv) %onext client arrived
QuencLen=size(QueueMat, 1),
if (QueueLen>1) Yoqueue not empty (one client is served and the rest are waiting)
QueneMat, DataMat, ClientsMat}= ...
cln_que(QueueMat, ClientsMat, tarv,DataMat EstimFlag);
end

%%%% client data %%%%

% finding the client's type

u=rand(1,1); zcurr=length(find{Clilntrv<uw)}; %choosing client type
if {zeurr==0} zcurr=CliNum; end

% finding the client's number and updatingClientsMat if nceded
[clicurr, ClientsMat, DataMatl=client z{ClientsMat, DataMat,zcurr, EstimFlag);
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%client enters the queue
QueuveLen=size(QueueMat,1);
if (Queuelen==0)
QueueMat(Quevelen+1,:)=[clicurr, tarv, tarv];
else % time of entering service will be updated later
QueueMat(QueuelLen+1,:)=[clicurr, tarv, 0};
end

%next arrival time

u= rand(1,1);

dtarvs=(-1/lamda)*log(u); %arrival time
tarv=tarv+dtarv;

eise %next ciient served (FCFS)
o= rand(1,1);
dtserv=(-1/mu)*log(u); %service time

Queuelen=size(QueueMat,1);
if (Queuelen>=1) %queve not empty
if (QueueLen>1) %queue not empty (one client is served and the rest are waiting)
[QueueMat. DataMat,ClientsMat]= ...
cln_gue(QueveMat,ClientsMat tserv,DataMat, EstimFlag);
end

%update data for serviced client

Queunel en=size{QueueMat,1};

[ClientsMat, DataMat]= ...
updt_cli{QueueMat(]1,:),ClientsMat,DataMat EstimFlag);

if (QueuveLen>1)
QueueMat=QueueMat(2:Queuelen,.);
QueueMat(1,3)=tserv;
else QueueMat=(},
end
tserv=tserv+dtserv;
else
tserv=tarv+dtserv;
end
end
Len=[Len, size(QueueMat,1)];
end % Queue loop

Foprofile report
pltgrph=0;
if pltgrph==

len=length(Len);

estmean=mean(Len{len-1000:len));

eststd=std(Lenllen-1000:Ien));

S=sprintf(’Size of Queue \nreal mean=%2.11, est. std-%2.3f, est. mean-%2.31, 1/mu,eststd,estrean);
plot{Len,'b'y;title(S);xlabel(iteration'); ylabel{'Size");

grid;

ZOO0m of;

phgrph=0;
estmeanvec=(];
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for k=1:size(ClientsMat, 1)
res=modik.4);
if (res==0) res=4; end
len=length(DataMat{k.3});
r=round(0.8*len);
estmean=mean{DataMat{k,3 }(len-r:len));
estimeanvec=[estmeanvec, estmean};
eststd=std(DataMat{ k,3 }(len-r:len));
QuiMat(k,: )=k, ClientsMat(k,1), estmean, eststd];
if pltgrph==1

if (res==1) figure, end

S=sprintf{'mean_r=%2.1f client-%d,type-%d, mean-%2.1{,5td- %2 .2f", 1/mu. k,ClientsMat(k, 1 ) estmean,estst
dy;
subplot{2,2, res);
if (EstimFlag==MLE)[(EstimFlag==MLENC))
plot{1:len, DataMat{k,3 });title(S);xlabel(iteration);ylabel{Mean');
else
Ptlen=length(DataMat{k 4});
% calculating St
St=DataMat{k.4 }{1.Ptlen);
for m=2:Ptlen
St=St.*[ones(1,{m-~1}), (DataMat{k 4 H{1:(Pten-m+1))];
end
plot{[0, DataMat{k.1}],[1, St]}title(S);xlabel('time");ylabel('St');
end
grid;
20011 011}
end
end
end

if EstimFlag==APrmF

figure;

plot(ClientsMat(:,6),'0";grid on; zoom om;
end
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10.2 CLN_QUEM

% Cleans the queue from clients that by time - t have already left.
function {QueveMat,DataMat,ClientsMati=cln_gue(QueueMat,ClientsMat.t,DataMat EstimFlag)
global MLE APrmE APrmF MLENC

ServCli=QueueMat(1,:); % save served client

newTi=(];

[Queuvelen, Ji=size(QueueMat);

QueueMat=QueueMat(2:Queuelen,:); %clean the waiting clients only

vec=QueneMat(: 2)+ClientsMat{QueneMat(:,1),6);
[LJ]=find(vec<t); %abandon
1=length(I);
if (~=0)
Y%update abandonment data
for k=1:1
newTi(k,1)=ClientsMat(QueneMat(1(k),1),6);
if ({EstimFlag~=MLE}&{EstimFlag~=MLENC))
len=length(DataMat{QueuveMat(1(k),1),2});
if (Jen==0)
DataMat{ QueueMat(I(k),1),2 }=newTi(k,1};
else
indx=length(find(DataMat{ QueveMat(1(k),1),2 }<newTi(k, 1)});
Ynew Ti
DataMat{ QueueMat(I(k),1),2}= ...
{DataMat{ QueueMat{I{k),1),2 }(1:indx),newTi(k, 1), DataMat{ QueneMat(I(k),1),2 } (indx+1:len)];
end
end
end
% z in=] Nx Sumx SumT Tz Nt
ClientsMat{ QueueMat(I,1),2)=0; %in=0
ClientsMat(QueueMat(1,1),5)=ClientsMat(QueueMat(1,1),5)+ClientsMat(QueueMat(L,1),6); %SumT
ChientsMat(QueueMat(l,1),7)=ClientsMat{QueneMat(1,1),7)+1; %Nt
switch EstimFlag, %update Tz according to the right estimator
case MLE,
[ClientsMat(QueueMat(],1),6),DataMat(QueuveMat(1,1),:}]= ...
Tz_MLE(ClientsMat(QueueMat(I,1),:),DataMat(QueneMat(L,1),.) EstimFlag);
case MLENC,
[ClientsMat(QueueMat(1,1),6), DataMat(QueueMat(1,1},))]= ...
Tz MLE(ClientsMat(QueueMat(1,1),:), DataMat(QueneMat(L,1),:),EstimFlag);
case APrmE,
[ClientsMat{QueueMat(,1),6),DataMat(QueneMat(1,1),:)]= ...
Tz_APrmE(ClientsMat(QueueMat(I,1),:},DataMat(QueueMat(I,1),:),newTi,0);
end
end

[EJ]=find(vec>=t}); Pbstill waiting
if (length(D==0) QueneMat={];
else QueueMat=QueueMat(1,:);
end
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Queuelen=size{QueuzMat,1);
% place the served client back in the queue
if (QueueLen==0)
QueueMat=ServCli;
else
QueuveMat={ServCli; QueucMat];
end
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103 CLIENT_ZM

% Chooses the client number, given the client type and the queue status.

% There are three possibilities:

% (1) new type in the queue->initialize new client type.

% (2) new client from existing type->new client with old client information.
% (3) free old client->reentering ofd client

function [clicurr,ClientsMat,DataMat)=client_z{ClientsMat,DataMat,zcurr, EstimFlag)
global MLE APrmE APrmF MLENC initTz

CliMatLen=size(ClientsMat, 1 };
if (CliMatLen==0) I={};
else
I=find{ClientsMat(:, | }==zcurr);
if (length(T}~=0) %there are/were zcurr clients in the queue
I=find(ClientsMat(1,2)==0);
if (length()~=0) I=I{1); else J=[]; end %check for possible clients
trp=length(J);
end
end

if (length(T)==0) %no clients from this type ever in the queue (1)
chcurr=CliMatLen+1;
if ((EstimFlag~=MLE)&(EstimFlag~=MILENC))
ClientsMat(clicurr,:)={zcurr, 1, 10, 10*initTz, 0, initTz, 0];
% Pt - Calculation for 10 initial values
DataMat{clicurr,4}=[0.9, 0.9*(1-1/9), 0.9%(1-1/9y*0.875, 0.9*(1-1/9)*0.875*(1-1/7),...
0.9%(1.1/N*0.875%(L-1/7)¥{1-1/6), 0.9%(1-1/9)*0.875%(1-1/7)*{1-1/6}*0.8,...
0.9%(1-1/9y%0.875*(1-1/7)y*(1-1/6)*0.8*0.75, ...
0.9%(1-1/9Y*0.875*(1-1/Ty*(1-1/6)*0.8%0.75%(1-1/3), ...
0.9*(1-1/9y*0.875*(1-1/7y(1-1/6)*0.8*0.75*(1-1/3)*0.5, O}
% Xi
DataMat{clicurr, 1 }=[0.95*nitTz, 0.96*initTz, 0.97*inirTz, 0.98*initTz, 0.99%initTz, ...
initTz, L.O1*initTz, 1.02%initTz, 1.03*nitTz, 1.04*initTz);
DataMat{clicurr,3}=initTz¥ones(1,10); % E
DataMat{clicurr,2}=[1; % Ti
else
% z in=1 Nx Sumx SumT Tz Nt
ClientsMat(clicurr,:)={zcurr, [, 19, 10%*initTz, 0, initTz, 0];
% Xi
DataMat{clicurr,] }=[0.65%nitTz, 0.96*initTz, 0.97*initTz, 0.98*initTz, 0.99*nitTz, ...
initTz, 1.01*nitTz, 1.02*%initTz, 1.03%initTz, 1.04*nitTz];
DataMat{clicurr,2}=[]; % Ti
DataMat{clicurr,3}=initTz*ones(1,10; % E

end

elseif (tmp==0} %same type clients in the queue (2}
sametypecli=length(l);
tmpvec=(1:sametypecli)/sametypecli;

u= rand(1,1};

k=length{find(tmpvec<u));

if (k==0)} k=sametypecli; end
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clicurr=I(k); %onumber of new client in the queue
clinew=CliMatLen+1;
% z  in=1 Nx Sumx SumT Tz
ChentsMat(clinew,)=[ zcurr, 1, ClientsMat{clicurr,3:7)];
DataMat{clinew,1}=DataMat{clicurr,1};
DataMat{clinew,2 }=DataMat{clicurr,2};
DataMat{clinew,3}=DataMat{clicarr,3};
if ((EstimFlag~=MLE)&(EstimFlag~=MLENC))} DataMat{clinew 4 }=DataMat{clicurr,4}; end
clicurr=clinew;

else %free client from zcurr type (3)
tmpvec=(1:tmp)/tmp;
v= rand(1,1);
k=length(find(tmpvec<u));
if (k==0) k=tmp; end
clicurr=I{Kk)); %number of new chient in the queue
ClientsMat(clicurr,2)=1;

end
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104 UPDT_CLIM

% Updates the current client data

function [ClientsMat,DataMat}= ...
updt_cli(QueueVec,ClientsMat, DataMat, EstimFlag)

global MLE APrmE APrmF MLENC

clinum=QueueVec(l,1);
tarvque=QueuneVec(l,2);
tentrs=QueueVec(1,3Y;
newXi=(tentrs-tarvque);
if newXi<0
disp(newXi<0?;
pause;
elseif newXi>0
if ((EstimFlag~=MLE)&(EstimFlag~=MLENC))
len=length(DataMat{clinum,1});
if (len==0)
DataMat{clinum,! }=newXi;
else
mdx=length{find{DataMat{clinam, 1 } <newXi});
Ponew Xi
DataMat{clinum, 1 }=[DataMatfclinum, I }(1:indx},newXi,DataMat{clinum, 1 }(indx+1:lem)];
end
end

% z in=1 Nx Sumx SumT Tz
ClientsMait(clinum,2)=0; %in=0
ClientsMat(clinum,3)=ClientsMat(clinum,3)+1;: %Nx
ClientsMat(clinum,4)=ClientsMat{clinum,4)+newXi; %SumX
Y%calculating the abandon time
switch EstimFlag, %update Tz according to the right estimator
case MLE,
[ClientsMat(clinum,6),DataMat(clinum,:}]= ...
Tz_MLE(ClientsMat(clinum,:),DataMat(clinum,:},EstunFlag);
case MLENC,
[ClientsMat(clinum,6), DataMat(clinum,:)]= ...
Tz_MLE(ClientsMat{clinum,:},DataMat(clinum,:) EstimFlag);
case APrmE,
[ClientsMat(clinum,6),DataMat(clinum,:}J= ...
Tz_APrmE(ChentsMat{clinum,:),DataMat(clinum,:),newXi,1);
end
else
ClientsMat(clinum,2)=0; %in=0
end
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105 Tz MLEM

% Updates the saved Tz data for the given clients
% exp. distribution assumption
% Maximum Likelthood Estim. using censored sampling

function [Tz, DataMat]=Tz_MLE(ClientsMat, DataMat, EstimFlag)
global MLE MLENC TO ExplorePrd aifa dalfa rndU

if (EstimFlag==MLE)
%MLE estimator Censored samples
E=(ClientsMat(:,4)+ClientsMat(:,5))./(ClientsMat(:,3)-+eps*ones(size(ClientsMat(: ,4))));
else
%MLE estimator service samples
E=(ClientsMat(:,4)) /(ClentsMat(:,3)+eps*ones(size(ClientsMat(: 4))));
end

l=size(ClientsMat,1);
for k=1:1

DataMat{k 3 }=[DataMat{k,3}, E(k)]; %new E
end

Z%calculating the abandon time <----- update when changing T(E)
Prd=(ClientsMat(:,3)+ClientsMat(:,7))/ExplorePrd;
L} =find{round(Prd)==Prd),
if (ength(I)~=0)
Tz{1,1)=1/eps*ones(size());
{1.=find(round(Prd)~=Prd};
BTz(I,1)=E(1,1)./ClientsMat(I 1 )+1./E(1,1); %abandonment rule
if {length(I)~=0)
if (rmdU==1})
U=0.01*randn(size(}));
Ufind(U<-0.2))=zeros(size(find(U<-0.2));
else
U=zeros(size(I));
end
Tz(l, =alfa*E(, I -dalfa*(ClientsMat(1,1)-ones(size(I))). *E{,1)+1J; %abandonment rule
D[K L]=find(Tz(I;>T0};
%if (length(L)~=0) Tz(I(L),1)=T0*ones(size(I(L)}); end %Tz=T0O
end
else
%Tz=E./ClientsMat(:,1)+1./E; %abandonment rule
U=0.01*randn(size(E)Y;
Ufind(U<-0.2))=zeros(size(find(U<-0.2));
Tz=alfa*E-dalfa*{ClientsMat(:, 1}-ones(size(E))). *E+U,; %abandonment rule
G K, LI=find(Tz>T0);
%if (length(K)~=0) Tz(K)=T0*ones(size(K)); end %Tz=T0
end

77



10.6 Tz_APRMEM

% Updates the saved Tz data for the given clients
% aparametric estimation of the mean waiting time in the queue
% newl=1 if newV is Xi value

function [Tz,DataMat]=Tz_APrmE(ClientsMat, DataMat, newV, newF)
global TO ExplorePrd alfa dalfa mdU

B=f};
% update S(t) data
[DataMat, ClientsMat]=updt_Pt(ClientsMat,DataMat,newV newF);

I=size(ClientsMat, [);
for k=1:1
Ptlen=length{DataMat{k.4});
if Ptlen>0
% calculating St
St=DataMat{k.4}(1:Ptlen);
for m=2:Ptlen
St=St.*[ones(1,(m-1)), DataMat{k.4}(1:(Ptlen-m+DN];
end
% calculating the mean waiting time
Bk, D=trapz([0.DataMat{k,1}].[1, St])
DataMat{k,3}=[DataMat{k,3}, E(k,1}]; %new E
else
E(k, D=eps;
end
end

Yocalculating the abandon time <--ex update when changing T(E)
Prd=(ClientsMat(:,3)+ClientsMat(:,7)ExplorePrd;
{LII=find(round(Prd}==Prd),
if (length(P~=0)
Tz(L 1)=1/eps*ones(size(l));
[IN]=find{round(Prd)~=Prd);
% T2(1,1)=E1,1)./ClientsMat(d,1}+1./E({, 1); %abandonment rule
if (length{I)~=0)
if (mdU==1)
U=0.01*randn(size(I));
U(find(U<-0.2Y)=zeros(size(find(U<-0.2)));
else
U=zeros(size(l}));
end
Tz, D=alfa*E(1, 1 )-dalfa*(ClientsMat(l, 1 )-ones(size(IN). *E(I,1 +U; %abandonment rule
T K Ll=find(Tz(D)>T0); .
%if (length(L)~=0) Tz(I(L),1)=T0*ones(size(I(L)}); end %Tz=T0
end
else
% Tz=E./ClientsMat(:,1}+1./E; %abandonment rule
U=0.01*randn{size(E));
Ulfind(U<-0.2))=zeros(size(find(U<-0.2)):
Tz=alfa*E-dalfa*(ClientsMat(:, 1 )-ones(size(E))). *E+U; %abandonment rule
P[K Ll=find(Tz>T0);
%if (length(K)~=0} Tz(K)=T0*ones(size(K)); end %Tz=T0
end
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10.7 UPDT_PT.M

% updates the distribution estimation (the mult. elements-Pt used to construct
% the estimation St)

function [DataMat, ClientsMat]=updt_Pt(ClientsMat,DataMat,newV ,newF)
global ThrowExtrm DuempThrsh DumpFactor

I=size(ClientsMat,1);
fork=L1
calwhole={0:
%thorwing extreme values of Xi and calculating the whole Pt
if ((ThrowExtrm== D&(DumpThrsh<=ClientsMat(k,3))) %filter data
meanXi=mean{DataMat{k,1});
thrwindx=ClientsMat(k,3)}-length(find(DataMat{k, 1 }>DumpFactor*meanXi)}
if (thrwindx<ClientsMat(k,3)) %data is filtered
ClientsMat(k,4)=ClientsMat(k,4)-sum(DataMat{k,] } {{thrwindx+1):ClientsMat(k,3))});
DataMat{k,1 }=DataMat{k,] }(1:thrwindx);
ClientsMat(k,3)=thrwindx;
calwhole=1;
end
end
JeNx
indx=ClientsMat(k,3)-length(find(DataMat{ k,1 ) >newV{k,1}));
lenPt=length(DataMat{k.41); :
%data is filtered->calculate everything
if (calwhole==1)
indx=ClientsMat(k,3};
DataMat{k.4}=[};
%new Ti is smaller than any Xi->do nothing
elseif ((indx==0)&{ClientsMat(k,3)>0)&(newF==0))
%mnew Xi is smaller than any Xi->first element calculated in for loop and
%inserted on the left of the Pt line
elseif {(indx==1)&(newF==1))
%new Ti or Xi is bigger than any Xi->calculate everything
elseif (indx==ClientsMat(k,3})
DataMat{k,4}=(];
%new Xi is in the middle
elseif ((indx>1)&(newF==1)}
indx=indx+1;
DataMat{k 4 }=DataMat{k 4 }{indx:lenPt);
9onew Ti is in the middle
else
DataMat{k,4}=DataMat{k,4 }(indx+1:lenPt);
end

%if newV is the first in the vector indx==0 if newV=Ti and Pt stays the same

for j=indx:-1:1
factor=length(find(DataMat{k,1 }==(DataMat{k,1 } (7))}
n=length(find(DataMat{k, I } >=DataMat{k, 1}
m=length{find(DataMat{k,2}>=DataMat{k,1}(G))
DataMat{k,4 }=[{(1-(factor/(n+m}}),DataMat{ k.4 }1;

end

end
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