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Introduction

Network Model

We shall consider a class of Fork-Join networks that include probabilistic
feedback. For example-

Motivation - Fork-Join networks are natural models for a variety of
processes including communication and computer systems,
manufacturing, project management and health-care.
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Customers and Activities

In our model, activities are associated uniquely with customers. They are
hence non-exchangeable in the sense that one can not join activities
associated with different customers.

This property create dependencies between processing routes

Conclusion- Customers’ disorder may cause increase of Idle-time in the
join nodes and hence lower throughput.
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Introduction

Control Problem Formulation

Consider a general Fork-Join + Jackson network. such as

We seek an optimal priority policy, in the sense of maximum throughput,
under the following assumptions.
Model Assumptions

Time-Homogeneous Poisson arrival process with average arrival rate λ.

Exponential service durations with average rate of µj for all servers in station j .

Policy Assumptions

Nonanticipating.

Work conserving.
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Introduction

Exact Optimality

Definition- Maximum throughput in the sense of maximum achievable
departures on any finite region [0,T ].

Proposition

Two equivalent conditions:

Complementarity condition- Q1(T ) ∧ Q2(T ) = 0 a.s.

Minimal buffers size- Q1(T ) + Q2(T ) = |L1(T )− L2(T )| a.s.

for any fixed T.

Note- These conditions are analogous to Assembly networks with
exchangeable customers dynamics.
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Asymptotic Optimality

Definition- Maximum achievable throughput in the Heavy-Traffic
asymptotic.

Notation- Throughout the presentation we shall use the scaling Q̂n
i (t) =

Qn
i (t)√

n
.

Proposition

Equivalent condition:

Q̂n
1 (T ) ∧ Q̂n

2 (T )→ 0 in probability

for any fixed T.

One can verify that under the condition above, given any other control
policy j and fixed T:

Q̂n
1 (T ) + Q̂n

2 (T ) ≤ Q̂
(j),n
1 (T ) + Q̂

(j),n
2 (T ) + ε(n), ε(n)→ 0 in probability .
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Model with Multi-Servers

Is FCFS Optimal for Multi-Servers Network?

One can verify that FCFS is optimal for Single-Servers Fork-Join network. 1

But is this the case for Multi-Servers Fork-Join?

Obviously No, Due to the disorder effect of the multi-server stations. But the FCFS

policy may be asymptotically optimal.

Consider the following system:

Heavy Traffic assumptions: (”sequence of systems” indexed by n)

arrival rate: λn = λ · n + λ̂ ·
√

n + l.o.t.

service rate: µj,n
i = µj

i · n + µ̂j
i ·
√

n + l.o.t.

traffic intensity: ρj,n
i ≡

λn

N
j
i ·µ

j,n
i

Heavy Traffic Condition: n1/2(ρj,n
i − 1) −→n θ

j
i , as n −→∞ , |θj

i | <∞ ∀i , j .
1Under the optimality condition defined above.
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Model with Multi-Servers

Asymptotically Optimal Control

Theorem

Given the Multi-Servers system above, with FCFS discipline, and fixed T.

P(Qn
1 (T ) ∧ Qn

2 (T ) > K )−→n0;

for some deterministic number K defined by the network structure.

Meaning that Q̂n
1 (T ) ∧ Q̂n

2 (T ) ≤ K
n1/2 w.p. converging to 1.

We may conclude that-

The scaled random variable Q̂n
1 (T ) ∧ Q̂n

2 (T )→ 0 in probability,
which is asymptotically optimal under the definition above.

The multi-server non-exchangeable ”sequence of systems” is
asymptotically equivalent to an exchangeable system (Assembly
system).
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Model with Feedback

Fork-Join Network with Feedback

This seems to be the simplest setting of a Fork-Join network where
solving for optimal scheduling is hard.

Heavy Traffic assumptions- (”sequence of systems” indexed by n)

arrival rate- λn = λ · n + λ̂ ·
√

n + l.o.t.

service rate- µn
i = µi · n + µ̂i ·

√
n + l.o.t.

Heavy Traffic Conditions:
|µ

n
1

n
− µn

2
n
| −→n 0; |µ

n
3

n
− µn

4
n
| −→n 0;

|λ
n

n
− µn

1·(1−p1)

n
| −→n 0; |λ

n

n
− µn

3·(1−p2)

n
| −→n 0;


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Model with Feedback

Control Policy

Definition- At each route, assign absolute preemptive priority to
customers whose service was completed in the other route.

The definition of the policy creates an artificial division of the customers
into two classes:

LP (Low Priority) Customers: Customers whose service is still
incomplete in both routes.

HP (High Priority) Customers: Customers whose service was
completed in one of the routes but is still incomplete in the other.

Note: The set of HP customers in one route is equal to the set of
customers in the synchronization queue in the other.
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Model with Feedback

Asymptotically Optimal Control

Theorem

Given the system and control policy defined above, and a fixed T:

maxt∈[0,T ]{Ẑ n,H
1,2 (t) ∧ Ẑ n,H

3,4 (t)} → 0, in probability ,

where


Ẑ n,H

1,2 (t) = Ẑ n,H
1 (t) + Ẑ n,H

2 (t);

Ẑ n,H
3,4 (t) = Ẑ n,H

3 (t) + Ẑ n,H
4 (t);

But since
Ẑ n,H

1,2 (t) = Q̂n
2 (t) and Ẑ n,H

3,4 (t) = Q̂n
1 (t).

We may conclude that-

The scaled process Q̂n
1 (t)∧ Q̂n

2 (t) converge uniformly to 0, in probability.
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Model with Feedback

About The Proof

We prove Heavy Traffic properties for H-P customers using the
queue length of H-P customers in the processing routes.

In the proof we focus on a time interval [τ, σ], defined by the two
random variables:

σ = inf {t : Ẑ n,H
1,2 (t) ∧ Ẑ n,H

3,4 (t) > ε};

τ = sup{t < σ : Ẑ n,H
1,2 (t) ∧ Ẑ n,H

3,4 (t) ≤ ε
2};

On this time interval, both processing routes have a queue length of
H-P customers greater than ε

2n
1
2 , and one of the routes increases

during this interval by ε
2n

1
2 .

A central ingredient in the proof is the use of a down-crossings
technique on the random process of H-P customers’ queue length.
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Summary

We introduced a natural concept of optimality for Fork-Join
networks with non-exchangeable customers.

An optimality condition was derived via an analogy to Assembly
networks and proved to be efficient for a general Fork-Join +
Jackson model.

We proposed a control policy and proved asymptotic optimality for
both models - with multi-servers and with feedback.

The proofs indicate an asymptotic equivalence between
non-exchangeable and exchangeable dynamics in Heavy-Traffic.

Simulation runs for the model with feedback show improvements of
33% in sojourn time and almost 66% in synchronization time, for
the proposed policy vs. FCFS in Heavy-Traffic.
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