
Control of Fork-Join Networks

Control of Fork-Join Networks in Heavy-Traffic

Asaf Zviran

Based on MSc work under the guidance of
Rami Atar (EE) and Avishai Mandelbaum (IE&M)

Industrial Engineering and Management
Technion

May 2011



Control of Fork-Join Networks

Outline

1 Introduction

2 Control Problem Formulation

3 Main Result: Adaptive Task Scheduling

4 Research Evolution



Control of Fork-Join Networks

Introduction

Introduction



Control of Fork-Join Networks

Introduction

Main Idea and Motivation

Parallel processing systems are commonly encountered in many human
ventures. A Fork-Join network is considered as a typical model of parallel
processing systems with arrival and departure synchronization. Our
generalized fork-join model allows probabilistic feedback.

Main idea: A simple global adaptive scheduling control is used to
increase throughput and reduce synchronization delays.

Motivation: Parallel Processing Application

Communication through distributed channel.

Data streaming through web/cellular application.

Large scale parallel computing and/or multi-core utilization.

Multi-Project scheduling problem.

Health-care systems (service networks).

Molecular Biology: Transcriptional networks / Ribosome scheduling.



Control of Fork-Join Networks

Introduction

Network Model

In this network a job arriving to the system “forks” to tasks processed
simultaneously in two parallel processing routes, each route consisting of
two service stations in tandem, followed by a probabilistic feedback.

The completed task in each route waits in the synchronization queues
(Q1&Q2) until tasks of both routes are completed.

Complete job “joins” and depart from the system only after the
completion of the tasks associated with it.



Control of Fork-Join Networks

Introduction

Departure Synchronization

In our model, tasks are associated uniquely with customers. They are
hence non-exchangeable in the sense that one can not join tasks
associated with different customers.

Conclusion- Customers’ disorder increase Idle-time in the join nodes and
decrease throughput.

In contrast to Assembly network with exchangeable customers, in which

Complementarity Condition: Q1(t) ∧ Q2(t) = 0.



Control of Fork-Join Networks

Introduction

Methodology: Asymptotic Analysis

We shall work in the conventional Heavy-Traffic regime.

The precise formulation of Heavy-Traffic limits requires the construction
of a ”sequence of systems”, indexed by n = 1, 2, . . .

Assume that the following relations hold:

Average arrival rate: λn = λ · n + λ̂ ·
√

n + o(
√

n).

Average service rates: µn
j = µj · n + µ̂j ·

√
n + o(

√
n).

Heavy Traffic Condition - Define the traffic intensity at station j to
be ρn

j ; it is assumed that there exists deterministic numbers

−∞ < θj <∞, such that n
1
2 (ρn

j − 1) −→n θj , as n −→∞, for each
station j.

Notation - Throughout the presentation, we shall use the scaling

Q̂n
i (t) =

Qn
i (t)√

n
.



Control of Fork-Join Networks

Introduction

Existing Research

Heavy-Traffic Analysis of Fork-Join Networks:

Processing Networks With Parallel and Sequential Tasks
(Single-Class Feedforward Networks): Viên Nguyen (1993).
The Trouble With Diversity: Fork-Join Networks With
Heterogeneous Customer Population (Multi-Class Feedforward
Networks): Viên Nguyen (1994).
Heavy traffic analysis of state-dependent fork-join queues with
triggers : Leite and Fragoso (2008).

Scheduling Policies in Fork-Join Networks:

Non-Preemptive Priorities in Simple Fork-Join Queues (Multi-Class
Feedforward Networks): Halfin and Avi-Itzhak1 (1991).
Multi-Project Scheduling and Control: Cohen, Mandelbaum and
Shtub (2004).
Generalized parallel-server fork-join queues with dynamic task
scheduling: Squillante, Zhang, Sivasubramaniam and Gautam
(2008).

1Emeritus professor of IE&M



Control of Fork-Join Networks

Control Problem Formulation

Control Problem
Formulation



Control of Fork-Join Networks

Control Problem Formulation

Optimality Criteria

Definitions

Exact Optimality: Maximum throughput in the sense of maximum achievable
departures on any finite time-interval [0,T ].

Asymptotic Optimality: Policy γ is asymptotically optimal if for any other policy
β and for any fixed T,

D̂n,γ
out (T ) ≥ D̂n,β

out (T )− ε(n), ε(n)→ 0, in probability .

Proposition

These conditions are equivalent to the definitions above

Exact Optimality: Q1(T ) ∧ Q2(T ) = 0, a.s.,

Asymptotic Optimality: Q̂n
1 (T ) ∧ Q̂n

2 (T )→ 0, in probability ;

for any fixed T.

Note: These conditions indicate an asymptotic equivalence between fork-join and

assembly networks in Heavy-Traffic.



Control of Fork-Join Networks

Control Problem Formulation

Generalization

Note that both the exact and asymptotic conditions may be generalized
to any number of parallel processing routes. For M processing routes:

Proposition

Equivalent conditions:

Exact Optimality:
∧

i∈{1,..,M}(Qi (T )) = 0, a.s.;

Asymptotic Optimality:
∧

i∈{1,..,M}(Q̂n
i (T ))→ 0, in probability ;

for any fixed T.

According to the following relations

M · N(t) =
∑

j (Zj (t)) +
∑M

i=1(Qi (t));∑M
i=1 Qi (t) =

∑M
i=1 (Li (t)−

∧
i∈{1,..,M}(Li (t))) + M ·

∧
i∈{1,..,M}(Qi (t));



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

Main Result:

Adaptive Task Scheduling



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

Control Policy

Definition: At each route, assign preemptive priority to customers whose
service has completed in the other route.
The definition of the policy creates a natural division of the customers into two
classes:

LP (Low Priority) Customers: Customers whose service is still incomplete in
both routes.

HP (High Priority) Customers: Customers whose service was completed in one
of the routes but is still incomplete in the other.

Define FCFS priority policy within each class. Then the policy is fully defined.



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

Asymptotically Optimal Control

Theorem

Given the system and control policy defined above, and a fixed T:

maxt∈[0,T ]{Ẑ n,H
1,2 (t) ∧ Ẑ n,H

3,4 (t)} → 0, in probability ,

where


Ẑ n,H

1,2 (t) = Ẑ n,H
1 (t) + Ẑ n,H

2 (t);

Ẑ n,H
3,4 (t) = Ẑ n,H

3 (t) + Ẑ n,H
4 (t).

Note that
Ẑ n,H

1,2 (t) = Q̂n
2 (t) and Ẑ n,H

3,4 (t) = Q̂n
1 (t).

We conclude that

The scaled process Q̂n
1 (t)∧ Q̂n

2 (t) converges uniformly to 0, in probability.



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

About the Proof (1)

The High-Priority Arrival (“Birth”) Processes in single station perspective is hard to
define in the sense of probabilistic distributions. Hence, the lemmas can not be proven
by ”simple” fluid and diffusion limits. Example

But on the event considered: Z n,H
3,4 (s) ≥ ε

3

√
n, ∀s ∈ (τ, σ). Therefore, we note

heuristically that

When Z H
4 is full with HP customers then the idleness process is non-increasing;

When Z H
3 is full with HP customers then the arrival process to Z H

4 is in the

order of n. Hence, the Idleness should be in the order of n−
1
2 ;

What about the transitions between states?



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

About the Proof (2)

Illustration of Z H
4 sample-path:

The proof consists of the following steps:

The number of transitions between states in [τ, σ) equals to the number of
down-crossings by Z H

4 . We showed that the number of down-crossings is tight.

In every [Ai ,Bi ) period, the increase in Î n,H
4 ([Ai ,Bi )) is bounded. Recall that the

HP arrival rate in these periods is in the order of n.

Therefore, P(I n,H
4 [τ, σ] > n−

1
2

+δ)−→n0.

The central ingredient of the proof requires the use of the tightness of the potential

service processes.



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

High-Priority Dynamics

Recall that Ẑ n,H
1,2 (t) = Q̂n

2 (t) and Ẑ n,H
3,4 (t) = Q̂n

1 (t). We showed that

Q̂n
1 (t) ∧ Q̂n

2 (t) converges uniformly to 0, in probability.

Note the following properties

Synchronization queues state space is reduced to a one-dimensional state space.

A critical route determines the customers’ departure order. The critical route
index is a random variable defined by the service dynamic (argmini∈{1,2}Li (t)).

An asymptotic equivalence appears between fork-join and assembly network
dynamics, in the sense of synchronization queue length and throughput
processes.



Control of Fork-Join Networks

Main Result: Adaptive Task Scheduling

Comment about Generalization

Note that the strategy of the proof is designed to be
generalized to general service time distributions and a
nonpreemptive discipline. However, these extensions have not
been established at this time.

Recall that

General service time distribution refers to iid service durations.

Non-Preemptive is a policy where service to a customer can not be interrupted
before it is completed.



Control of Fork-Join Networks

Research Evolution

Research Evolution



Control of Fork-Join Networks

Research Evolution

Research Evolution



Control of Fork-Join Networks

Research Evolution

Extension: Multi-Type Model

Consider an Heterogeneous customer population, such that different
customers may have different precedence constraints, interarrival time
distributions and service time distributions, e.g.

Definition: At each route, assign preemptive priority to customers whose
service has completed in the other route. Define maximum pressure
policy (Jim Dai 2011) within each class.

Will this policy be asymptotically optimal for such model?



Control of Fork-Join Networks

Research Evolution

Thank You


	Introduction
	Control Problem Formulation
	Main Result: Adaptive Task Scheduling
	Research Evolution

