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Part I

Critical Loading

Overview of Results
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Background: Halfin - Whitt Theorem

Consider a queueing model M/M/n:

• One class of customers, one service station

• Arrivals: Poisson, rate λ

• Servers in station: n servers (i.i.d.)

• Service time: exponential, rate µ
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Halfin - Whitt (cont.)

Consider a sequence of M/M/n systems, indexed by n.

As n ↑ ∞, assume µn ∼ µ, λn ∼ nµ.

As n ↑ ∞, the system becomes critically loaded, i.e.:

utilization (fraction of server’s busy time) :
λn

nµn
→ 1.

For diffusion approximations assume

λn

nµn
∼ 1 − β√

n
, for some β > 0.

Let Xn(t) = total number of customers at time t.

Define the centered and normalized process:

X̂n(t) =
Xn(t) − n√

n
, t ≥ 0.

Theorem (H. & W., 1981): Assume X̂n(0)
d→ X(0).

Then X̂n ⇒ X in D([0,∞)), where X is a diffusion:

X(t) = X(0) +

∫ t

0

b(X(s))ds + σW (t).
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Parallel Queueing Model

• Classes: I = {1, ..., I}, I ≥ 1

• Station: J = {1, ..., J}, J ≥ 1

• Arrivals: renewal processes Ai, rate λi, i ∈ I
• Servers per station: Nj in station j ∈ J
• Service: of class-i by type-j server, exponential, rate µij

In order to describe the system completely, specify control:

Routing customers and Scheduling servers
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Average Behavior. Fluid View

Consider a sequence of queueing systems indexed by n ↑ ∞.

• First look at the average behavior (fluid view).

Assume λn
i ∼ nλi µn

ij ∼ µij Nn
j ∼ nνj.

Consider the corresponding fluid model, where

• Arrivals and service processes are deterministic flows with
the corresponding rates λi and µij.

• νj - total server capacity of station j (”number of servers”).

Optimize the fluid model, by statically allocating the incoming
fluid among the service stations.

Choose ξij - the fraction of νj, constantly dedicated to class i.

Static allocation problem [Harrison & Lopez (1999)]:
choose an allocation matrix (ξij) and a scalar ρ to

Min

{
ρ :

∑
j∈J

µij νj ξij = λi,
∑
i∈I

ξij ≤ ρ, ξij ≥ 0
}

.

Heavy Traffic condition (HT):

There exists a unique optimal solution (ξ∗, ρ∗) to the linear
program. Moreover, ρ∗ = 1 and

∑
i∈I ξ∗ij = 1 for all j ∈ J .
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Parameters (second order)

Static Allocation Problem gives us

ψ∗
ij = ξ∗ijνj - the amount of fluid i in station j.

x∗
i =

∑
j ψ∗

ij - the total amount of fluid i in process.

• For the original model expect the averages of corresponding
quantities to be nx∗ and nψ∗

ij.

For the diffusion approximations assume

Nn
j = nνj + o(

√
n)

λn
i = nλi + λ̂i

√
n + o(

√
n)

nµn
ij = nµij + µ̂ij

√
n + o(

√
n)

where λ, µ and ν satisfy HT conditions.

• For our queueing model expect stochastic fluctuations of
O(

√
n) around the average.

•Meaningless to talk about diffusion optimization (order O(
√

n)),
without the optimally allocated fluid (order O(n)).
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Diffusion Model: Many - to - One

Atar, Mandelbaum and Reiman (2004), Harrison and Zeevi (2004).

Define Xn
i = number of class-i customers in the system.

Perform centering around fluid and rescaling.

As n ↑ ∞, the original model gives rise (under formal limits)
to a controlled diffusion model:

X(t) = X(0) +

∫ t

0

b(X(s), U(s))ds + σW (t).

• Controlled process: X ∈ IRI . Control: U ∈ IRI .

• Given the cost, obtain stochastic control problem with drift
control.

• Optimal control of the diffusion gives rise to asymptotically
optimal scheduling for queueing model.

• Rigorous result is not weak convergence of the processes but
convergence of optimal cost.
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Diffusion Model: Many - to - Many

After scaling and centering about fluid, take formal limits as
n → ∞ to get surprisingly new kind of a diffusion model:

X(t) = X(0) + σW (t) +

∫ t

0

b(X(s), U(s))ds +
∑
c∈C

mcηc(t).

• Controlled process: X ∈ IRI . Control: (U, η).

• C - finite set. mc ∈ IRI - constant vectors, depend on µij.

• For each c, ηc ∈ IR is nondecreasing with ηc(0) ≥ 0.

• The ”singular” term is due to our many servers limit. Do not confuse with

the singular term in the classical heavy-traffic, which is due to a necessity

to be constrained to a certain domain, hence, reflection.

• Before it was expected to get only drift control as in Atar (2005), Borkar

(2005).
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Constraining the Diffusion

Consider the diffusion model:

X(t) = X(0) + σW (t) +

∫ t

0

b(X(s), U(s))ds +
∑
c∈C

mcηc(t).

The singular term η can restrict X to a certain closed domain.

It can happen that X can be restricted to a domain, corre-
sponding to all queues being empty.

Here X− = {x ∈ IRI, e · x ≤ 0}.

Lemma 1 Let e · mc < 0 for some c. Then there exists a
control (U, η) under which e · X(t) ≤ 0, on [0,∞], P -a.s.

m 2

m
1

−X m1

1m

Sketch of Proof: standard results on diffusion with oblique
reflection.
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Main Results (overview)

Consider a sequence of systems in heavy traffic.

Let e · mc < 0 for some c. Then the following effect happens
(null controllability) :

For any finite interval (0, T ] there is a scheduling
policy that keeps all queues empty, in the sense

lim
n→∞P (no queues in the nth system during (0, T ]) = 1.

We find the strategies for two different types of control

Preemptive regime:

a service to a customer can be interrupted and resumed at
later time (possibly in a different station).

Non-Preemptive regime :

a service to a customer can not be interrupted before it is
completed.

Critically loaded system behaves like underloaded!!!
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Part II

Intuition and Explanations

Basic and Non-basic Activities
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Basic and Non-basic Activities

Heavy Traffic condition (HT):

There exists a unique optimal solution (ξ∗, ρ∗) to the linear
program. Moreover, ρ∗ = 1 and

∑
i∈I ξ∗ij = 1, for all j ∈ J .

• Basic activities (BA): pairs (i, j), s.t. ξ∗ij > 0.

• Non-basic activities (NBA): pairs (i, j) s.t. ξ∗ij = 0.

Example:

ν =

(
1
1

)
, λ =

(
1
1

)
, µ =

(
3/4 1/3
8 4

)
.

One checks that HT condition holds, with ξ∗ =

(
1 0.75
0 0.25

)

The activity (2, 1) is non basic.

Fact: HT ⇒ BA constitute a union of disjoint trees.

Assumption: the graph of BA is a tree.
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Non-basic Activities (cont.)

Example (cont.):

For ε > 0 small enough make a slight perturbation to the
static allocation ξ∗ij by introducing

ξ̃ij = ξ∗ij + δij, where δ =

( −ε ε
ε −ε

)
.

Total processing rate =
∑
ij

µijξ̃ij

= ξ∗11µ11 + ξ∗12µ12 + ξ∗21µ21 + ξ∗22µ22 + ∆

where ∆ := (8 − 3/4 + 1/3 − 4) ε > 0

• The fluid ”mass” was cyclically transferred.

• The throughput was increased!
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When do mc’s arise? Simple Cycles

Denote the set of simple cycles:

C = {cycles, for which exactly one edge belongs to NBA}.

Note: one-to-one correspondence between NBA and C.

For each cycle c ∈ C corresponds a unique vector mc, s.t.

Throughput increased ⇔ exists c ∈ C with e · mc < 0

Applying the above for original model

Cyclically transfer the ”mass” by putting large amount of cus-
tomers into non-basic activity, for a certain period of time.

As a result, the rate of service completions will increase.

Note: Effect of above will not be seen in one - server stations.
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Part III

Formal Results and Discussions

Asymptotic Null Controllability
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Reminder

Main Assumption: there exists c ∈ C, with e · mc < 0.

Let Y n
i = number of class-i customers in the queue.

Preemptive regime:

Theorem 1 Assume that Main Assumption holds and let
0 < ε < T < ∞ be given. Then there exist a preemptive
strategy under which

lim
n→∞P (Y n(t) = 0 for all t ∈ [ε, T ]) = 1. (1)

Non-preemptive regime:

Theorem 2 Assume I = J = 2, let Main Assumption
hold and let 0 < ε < T < ∞ be given. Then there exist
non-preemptive strategy under which (1) holds.
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Discussion: Preemptive Regime

The nature of preemption makes it possible to mimic the re-
flection mechanism from the diffusion model.

Denote
D1 = {ξ ∈ IRI : e · ξ < −1}.

Fix throughout a simple cycle c0 for which e ·mc0 < 0.

Let Ψn
c0

= number of customers in the non-basic activity, cor-
responding to cycle c0. Set

Ψn
c0

(t) =

{
0, X̂n(t) ∈ D1

n5/8, X̂n(t) ∈ Dc
1

t ≥ 0,

and Ψn
c (t) = 0 for all c �= c0, t ≥ 0.

• The resulting scaled process X̂n is tight. This enables to
obtain weak convergence of diffusion-level processes.

• The fluctuations are of order O(n1/2) around fluid. This is a
reason for increasing the non-basic population to a greater power
of n, thus to move the system quickly away from the forbidden
region.
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Discussion: Non-Preemptive Regime

Much more difficult!!!

It is impossible to follow the reflection mechanism, because
instantaneous changes in the population are impossible

Intuition:

Assume that K servers are currently working in activity (i, j).
Let K → ∞.

1. For any α < 1, it will take infinitesimal O(Kα−1) = o(1)
time to serve O(Kα) customers.

2. But it will take O(1) time to serve O(K) customers!

• In fact, the diffusion model does not describe correctly the
asymptotic problem.

• Completely different treatment needed. However, one still
uses mass transfer along the cycle c.

• Special routing keeps the population in the non-basic activity
of order O(n5/8) all the time.

• The resulting scaled process X̂n is not tight. Thus, stability
only for a finite interval.
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Present and Future Research

• Null Controllability of Fluid Queue.

• Applications to Staffing.

• General Service Times.

• PDE Analysis (Viscosity Solutions).
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