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Part [

Critical Loading

Overview of Results



Background: Halfin - Whitt Theorem

Consider a queueing model M /M /n:
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e ONE CLASS OF CUSTOMERS, ONE SERVICE STATION
e ARRIVALS: Poisson, rate A
e SERVERS IN STATION: n servers (i.i.d.)

e SERVICE TIME: exponential, rate p



Halfin - Whitt (cont.)

Consider a sequence of M /M /n systems, indexed by n.
Asn T oo, assume p" ~ pu, A"~ npu.

As n T oo, the system becomes critically loaded, i.e.:

utilization (fraction of server’s busy time) :

For diffusion approximations assume

~ 1 ——  forsome 5 > 0.
n" Vn g

Let X™(t) = total number of customers at time ¢.

Define the centered and normalized process:

fr() = =0,

t > 0.

Theorem (H. & W., 1981): Assume X"(0) < X(0).
Then X" = X in D(]0,0)), where X is a diffusion:

X(t) = X(0) + / t b(X (s))ds + oW ().



Parallel Queueing Model
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e Crasses: Z={1,...,1}, I >1

l

e STATION: J ={1,....J}, J >1
e ARRIVALS: renewal processes A;, rate \;, 1 € Z
e SERVERS PER STATION: NN; in station j € J

e SERVICE: of class-z by type-j server, exponential, rate fu;;

In order to describe the system completely, specity control:

Routing customers and Scheduling servers



Average Behavior. Fluid View

Consider a sequence of queueing systems indexed by n T oo.

e First look at the average behavior (fluid view).

Assume A~ nA i ™~ i N~ nv;.

Consider the corresponding flutd model, where

e Arrivals and service processes are deterministic flows with
the corresponding rates A; and p;;.

e v; - total server capacity of station j ("number of servers”).

Optimize the fluid model, by statically allocating the incoming
fluid among the service stations.

Choose &;; - the fraction of v}, constantly dedicated to class i.

STATIC ALLOCATION PROBLEM |[Harrison & Lopez (1999)]:
choose an allocation matrix (&;;) and a scalar p to

MIN{P i Z,uij Vi &ij = i, Z&j <p, &j= 0}-

1e€J €L

HEAVY TRAFFIC CONDITION (HT):

There ezists a unique optimal solution (£*, p*) to the linear
program. Moreover, p* =1 and ) ,_; §,=1Jorallyj € J.



Parameters (second order)

Static Allocation Problem gives us
i = &vj - the amount of fluid ¢ in station j.

x; = ) ¥} - the total amount of fluid ¢ in process.

e For the original model expect the averages of corresponding

quantities to be nz® and ni;;.

For the diffusion approximations assume

NI = nv; + o(+v/n)

J
A" = n); + Aiv/n + o(v/n)
s = npij + flijy/n + o(v/n)
where A, p and v satisty HT conditions.

e For our queuecing model expect stochastic fluctuations of
O(y/n) around the average.

e Meaningless to talk about diffusion optimization (order O(y/n)),
without the optimally allocated fluid (order O(n)).



Diffusion Model: Many - to - One

Atar, Mandelbaum and Reiman (2004), Harrison and Zeevi (2004).
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Define X' = number of class-¢ customers in the system.

Perform centering around fluid and rescaling.

As n T oo, the original model gives rise (under formal limits)
to a controlled diffusion model:

X(t) = X(0) + /O b(X (s),U(s))ds + oW (t).

e Controlled process: X € IRY. Control: U € R,

e (Given the cost, obtain stochastic control problem with drift
control.

e Optimal control of the diffusion gives rise to asymptotically
optimal scheduling for queueing model.

e Rigorous result is not weak convergence of the processes but
convergence of optimal cost.



Diffusion Model: Many - to - Many
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After scaling and centering about fluid, take formal limits as
n — oo to get surprisingly new kind of a diffusion model:

X(t)=X(0)+oW(t)+ /0 b(X(s),U(s))ds + Z mene(t).

e Controlled process: X € R!. Control: (U,n).
e C - finite set. m,. € R - constant vectors, depend on L.

e For each ¢, n. € IR is nondecreasing with 7.(0) > 0.

e The "singular” term is due to our many servers limit. Do not confuse with
the singular term in the classical heavy-traffic, which is due to a necessity
to be constrained to a certain domain, hence, reflection.

e Before it was expected to get only drift control as in Atar (2005), Borkar
(2005).



Constraining the Diffusion

Consider the diffusion model:

X(t)=X(0)+oW(t)+ /0 b(X(s),U(s))ds + Z mene(t).

The singular term 7 can restrict X to a certain closed domain.

It can happen that X can be restricted to a domain, corre-
sponding to all queues being empty.

Here X_ ={z € R/, e-2 <0}.

Lemma 1 Let e - m. < 0 for some c. Then there exists a
control (U,n) under which e - X(t) <0, on |0,00], P-a.s.

Sketch of Proof: standard results on diffusion with oblique
reflection.
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Main Results (overview)

Consider a sequence of systems in heavy traffic.

Let e - m. < 0 for some c. Then the following effect happens
(null controllability) :

For any finite interval (0,7] there is a scheduling
policy that keeps all queues empty, in the sense

lim P(no queues in the n'™ system during (0, 7)) = 1.

n—aoo

We find the strategies for two different types of control

PREEMPTIVE REGIME:

a service to a customer can be interrupted and resumed at
later time (possibly in a different station).

NON-PREEMPTIVE REGIME :

a service to a customer can not be interrupted before it is
completed.

Critically loaded system behaves like underloaded!!!
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Part 11

Intuition and Explanations

Basic and Non-basic Activities
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Basic and Non-basic Activities

HEAVY TRAFFIC CONDITION (HT):

There ezists a unique optimal solution (£*, p*) to the linear
program. Moreover, p* =1 and ), ;& =1, forallj € J.

e BAsic ACTIVITIES (BA): pairs (i, j), s.t. §; > 0.

e NON-BASIC ACTIVITIES (NBA): pairs (7,7) s.t. £ = 0.

Example:

(1) () (D)

One checks that HT condition holds, with £* = ( (1) 8;? )

The activity (2, 1) is non basic.

Fact: HT = BA constitute a union of disjoint trees.

ASSUMPTION: the graph of BA is a tree.
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Non-basic Activities (cont.)

Example (cont.):

For ¢ > 0 small enough make a slight perturbation to the
static allocation &; by introducing

E —¢€

g@-jszjJr@j, where 0 = <_€ 5).

Total processing rate = Z Mjgj
i
= §1i1 + a2 + Sy a1 + Exopton + A
where A := (8 =3/44+1/3—4)e >0

e The fluid "mass” was cyclically transferred.

e The throughput was increased!
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When do m.’s arise? Simple Cycles

Denote the set of simple cycles:

C = {cycles, for which exactly one edge belongs to N'BA}.

NOTE: one-to-one correspondence between NBA and C.

For each cycle ¢ € C corresponds a unique vector m,., s.t.

Throughput increased < exists c € C with e-m. <0

APPLYING THE ABOVE FOR ORIGINAL MODEL

Cyclically transfer the "mass” by putting large amount of cus-
tomers into non-basic activity, for a certain period of time.

As a result, the rate of service completions will increase.

NOTE: Effect of above will not be seen in one - server stations.
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Part 111

Formal Results and Discussions

Asymptotic Null Controllability
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Reminder

MAIN ASSUMPTION: there exists ¢ € C, with e - m, < 0.

Let V" = number of class-i customers in the queue.

PREEMPTIVE REGIME:

Theorem 1 Assume that Main Assumption holds and let
0 <e<T < o0 be giwven. Then there exist a preemptive
strateqy under which

lim P(Y"(t) =0 for allt € [e,T]) = 1. (1)

n—aoo

NON-PREEMPTIVE REGIME:

Theorem 2 Assume I = J = 2, let Main Assumption
hold and let 0 < ¢ < T < oo be given. Then there exist
non-preemptive strategy under which (1) holds.
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Discussion: Preemptive Regime

The nature of preemption makes it possible to mimic the re-
flection mechanism from the diffusion model.

Denote

D12{66R116'6< —1}
Fix throughout a simple cycle ¢y for which e-m,, < 0.

Let ¥ = number of customers in the non-basic activity, cor-
responding to cycle ¢g. Set

U (t) = 0, ):fn(w €Dy
N n’/® X"(t) € DS o

and ¥'(t) = 0 for all ¢ # ¢y, t > 0.

e The resulting scaled process X" is tight. This enables to
obtain weak convergence of diffusion-level processes.

e The fluctuations are of order O(n'/?) around fluid. This is a
reason for increasing the non-basic population to a greater power
of n, thus to move the system quickly away from the forbidden
reglon.
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Discussion: Non-Preemptive Regime

Much more difficult!!!

[t is impossible to follow the reflection mechanism, because
instantaneous changes in the population are impossible

Intuition:

Assume that K servers are currently working in activity (4, j).
Let K — oo.

1. For any o < 1, it will take infinitesimal O(K*!) = o(1)
time to serve O(K®) customers.

2. But it will take O(1) time to serve O(K) customers!

e In fact, the diffusion model does not describe correctly the
asymptotic problem.

e Completely different treatment needed. However, one still
uses mass transfer along the cycle c.

e Special routing keeps the population in the non-basic activity
of order O(n°/®) all the time.

e The resulting scaled process X" is not tight. Thus, stability
only for a finite interval.
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Present and Future Research

e Null Controllability of Fluid Queue.
e Applications to Staffing.
e General Service Times.

e PDE Analysis (Viscosity Solutions).
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