Gep Scheduling of Flexible Servers: Asymptotic
Optimality in Heavy Trafhic

A. Mandelbaum A. L. Stolyar
Technion Institute Bell Labs, Lucent Technologies
Haifa, 32000 Murray Hill, NJ 07974
ISRAEL U.S.A.
avim@tx.technion.ac.il stolyar@research.bell-labs.com
Abstract

We consider a queueing system with multi-type customers, non-homogeneous
multi-skilled servers, and delay costs that are convex increasing in queue-lengths or
sojourn times. For such a system in heavy traffic, we show that a simple Generalized
cu-rule (Gep), known to be asymptotically optimal in a single server system [14],
is in fact asymptotically optimal in our much more general setting.

1 Introduction

We analyze the scheduling problem for flexible servers with overlapping capabilities. Our
setup is a queueing system with multi-type customers, multi-skilled servers, and delay
costs that are convex increasing in queue-lengths or sojourn times. For such a system in
heavy traffic, we show that a simple Generalized cu-rule (Gcu) is in fact asymptotically
optimal. This is a far-reaching generalization of Van Mieghem’s [14] striking result for
homogeneous servers. It constitutes a natural progression of [12], which is here adapted
to the (parallel server) model of Harrison and Lopez [8]. (Williams [16] is recommended
as an introduction to the subject.) In this paper we present only result formulations.
The detailed analysis can be found in [10].

To describe our Gep-rule, let 11;; denote the service rate of type ¢ customers by server
J. (wij is the reciprocal of an average service time; y;; = 0 indicates that server j can not
serve type i.) Assume first that the queue of type 7 incurs a queueing cost at rate C;(Q;),
which is an increasing convex function C;(-) of the queue length @;. (Further properties
of the C;’s are listed in Section 3.) Then, applying the Gcu-rule when becoming idle at
time ¢, server j takes for service the longest-waiting type ¢ customer such that

i € argmax Cj(Qi(t)) i -

An alternative cost structure is when each type ¢ customer incurs, upon service comple-
tion, a waiting cost C;(W;) which is a function of its sojourn time W;. Then, the type i
to be served is one for which

i € argmax C{(Wi(t)) pij ,

where W;(t) is the head-of-the-line waiting time in queue 7 at time ¢. (Heavy traffic
renders irrelevant the decisions about customers who encounter idle servers upon arrival.)



Our main result is Theorem 1 of Section 6. We show there that the above @)-version of
Gcyp is optimal in heavy traffic, in that it asymptotically minimizes queueing costs at
all times. An analogous result for the W-version holds with respect to sojourn times
(Subsection 6.1).

The Gep scheduling rule is adaptive and robust. Indeed, its form depends on no
system parameters other than service rates and cost functions; its scheduling decisions
depend only on the current system state (queue lengths or waiting times). Thus the rule
adapts automatically to environmental changes; for example, there is no need to modify
it with changes in arrival rates. (Additional properties of Gep are described in [10].)

The optimality of Gcu is relative to all scheduling disciplines, preemptive or non-
preemptive, as long as each server j serves customers of each type ¢ in order of their
arrivals. Our asymptotics is for a sequence of systems that approach heavy traffic, in a
way that is precisely defined in Section 5 and which we now describe.

A given set of service rates {j;;} determines the stability set M for our queueing
system: this is the closure of the set of arrival rates A € Rfr, with which our system
is stable for at least one scheduling strategy (Section 4). The north-east boundary of
the stability set (its maximal elements) constitute those arrival rates A for which our
system is critically loaded. The system is in heavy traffic when its vector of arrival rates
is ‘close’ to a maximal A\ € M (Section 5). We further say that our system exhibits
complete resource pooling (CRP) if the outer normal v* to the set M at that A is unique
up to scaling (plus some additional non-degeneracy conditions) and, in addition, all the
coordinates of v* are strictly positive (Section 4). The quantity X(t) = Y. v;Q;(t) is
then called the equivalent workload at time t > 0.

Our main result is that, under CRP and in the heavy traffic limit, the Gcu-rule
minimizes the equivalent workload X (¢) at any time ¢ and, moreover, given the value of
X (t), the queue length vector ()(¢) is the one that minimizes the cost rate ), v;C;(Q;(2)).
These two properties imply minimization of the cumulative queueing costs over any finite
interval.

The intuition behind this unexpected result and the analysis (in [10]) are analogous
to those in [12], and can be roughly described as follows. Under the CRP condition and
Gcpu-rule, sample paths of the fluid process corresponding to a critically loaded system
(input rates equal to \) are such that the queue length vector Q(¢) is attracted to a fized
point °Q), namely a point such that the vector (C1(°Q1), ... ,C5(°Qr)) is proportional to
the vector v*. (A fixed point °@ is exactly the point that minimizes Y C;(Q;), given the
equivalent workload value Y v} °Q;.) This implies that, in the heavy traffic (diffusion)
limit, the queue length process exhibits state space collapse - Q(t) is a process “living”
on the one-dimensional manifold of fixed points. In turn, this means that, as long as
total queue length is non-zero, the Gepu-rule “reduces to” the rule that maximizes the
value of ). v u;(t), where p;(t) is the “instantaneous” service rate of flow i. In other
words, the server pool operates as a single “super-server,” which serves the equivalent
workload at the maximum possible rate. This implies the property of equivalent workload
minimization.

The distinguishing feature of our analysis, compared to [12], is that here we deal with
continuous time process and more general convex cost structure. (Although in some
other respects the model in [12] is more general).

Due to space limitation, we do not present a detailed literature review (see [10] and
references therein). We just want to briefly mention that our scheduling problem for
single server queues has been studied extensively, culminating in Van Mieghem’s work



[14]. For multiserver systems, the stability of MazWeight-type rules (roughly, Geu-rules
with quadratic costs) has been demonstrated starting with the work of Tassiulas and
Ephremides [13]. (See also [11, 2, 1].) The heavy traffic optimization for multiservers
starts from Harrison [7], followed by works of Bell and Williams [3], Harrison and Lopez
[8] (where our general model was introduced), and Williams [16]. The equivalent workload
formulation was introduced by Harrison and Van Mieghem [7]. The general approach to
proving state space collapse in heavy traffic was developed by Bramson [4] and Williams
[15].

The outline of our paper is as follows. The formal model is introduced in Section 2.
The Generalized cu-Rule (Gep) is described in Section 3. In Section 4 we formulate the
conditions for Complete Resource Pooling (CRP), followed by the definition of heavy-
traffic in Section 5. Theorem 1, in Section 6, establishes the asymptotic optimality of
Gcep, with respect to queueing costs; we then outline its adaptation to waiting costs.
Section 7 contains final remarks.

Notations: Throughout the paper, we use the notations R, R,, and R, for the sets
of real, real non-negative, and real positive numbers, respectively. Corresponding N-
times product spaces are denoted RY, RY, and RY,. The space RY is viewed as a
standard vector-space, with elements z € RY being row-vectors x = (x1,... ,zy). The
dot-product (scalar product) of z,y € RY, is

N
=1

2 The Model

We consider a queueing system with I customer types and J flexible servers. (I < oo, J <
00.) Types are indexed by i = 1,...,I, which we abbreviate to ¢ € I. Similarly, servers
are indexed by j=1,...,J,0or j € J.

The arrival process for each type i is a renewal process with the time (from the initial
time 0) until the first arrival being u;(0), and the rest of the interarrival times being an
iid. sequence u;(n),n = 1,2,.... Let \; = 1/E[u;(1)] > 0 denote the arrival rate for
type i and o = Var[u;(1)].

The service times of type ¢ customers by server j form an i.i.d. sequence v;;(n),n =
1,2,...; v45(0) is the residual service time, at time 0, of the type ¢ customer at server j (if
there is any). Let p;; = 1/E[v;;(1)] < oo and 82 = Var[v;;(1)]. The convention p;; = 0
is used when server j can not serve type .

All arrival and service processes are assumed mutually independent.

We allow a wide class of scheduling disciplines (which in particular may be preemptive
or non-preemptive). The only constraints are that each server j takes customers from
each queue 7 in FIFO order, and a service of one type i customer can not be preempted
by service of another type i customer. (This condition excludes disciplines which are
allowed to use information on the individual customers’ service requirements and thus
“pick out” those with the shortest service times.)

Customers of type ¢ that await service are waiting in queue ¢ of infinite capacity.
Denote by Q;(t) the queue length of type i customers at time t¢; by convention, this
number includes those customers whose service already started but not yet completed.
Let W;(t) be the “age” of the longest waiting customer of type i, among those whose
service has not yet started.



3 The Gcu-Rule

Suppose that, for each type i, a cost function C;((),{ > 0, is given. Assume that
each C;(-) is a convex strictly increasing function with C;(0) = 0; moreover, C;(+) is twice
continuously differentiable, and its derivative C}(-) is a strictly increasing with C}(0) = 0.

The Gep-rule schedules customers for service as follows. When server j becomes idle,
it chooses for service a customer from queue % such that

i € arg max Ci(Qi(t) pij -
S

Ties are broken arbitrarily: for example, in favor of the largest index 7. Similarly, assign-
ments of customers to idle servers, if such exist upon arrivals, is arbitrary: for example,
in favor of the smallest index j.

Remark. The above version of the Gcu-rule accommodates queueing costs. An
alternative, for waiting costs, will be introduced in Subsection 6.1.

4 Complete Resource Pooling

Consider a “column-substochastic” matrix ¢ = {¢;;, ¢ € I, j € J}, namely all ¢;; > 0
and

Y ¢Sl Vied.

With a given ¢ we associate the vector u(@) = (u1(@), ... , ur(¢)), whose coordinates
are

(@) =Y g, €T ;
j

this is the vector of mean service rates of the queues i € I, if each server j allocates a
fraction ¢;; of its time to queue %, in the long run.

We define M to be the set of u(¢) corresponding to all possible ¢ as above. Further
let M* denote the set of all mazimal elements 1 € M such that p € R .

Note that M is a polyhedron in Ri. We assume that M is non-degenerate (i.e., has
dimension I), which is equivalent to assuming that each queue ¢ can be served at non-zero
rate u;; by at least one server j. The set M is in fact the closure of our system’s stability
region, that is the closure of the set of arrival rate vectors A = (A1,..., ;) such that
A < u(¢) for some ¢. (Cf. [13, 11, 2, 1, 12].)

Definition. We say that the condition of Complete Resource Pooling (CRP) holds
for a vector A if A € M*, X lies within the interior of one of the (( — 1)-dimensional)
faces of M*, and the matrix ¢ such that A = u(¢) is unique.

It is easy to verify that our CRP condition is equivalent to that introduced for parallel
server systems in [8, 16] (see Assumption 3.4, Theorem 5.3 and Corollary 5.4 in [16] for
a summary).

When the CRP condition holds, let us denote by v* = (vf,...,v}) the (unique up
to a scaling) “outer” normal vector to the polyhedron M at the point A. Note, that
v* € RY,. For concreteness we use v*, which is the vector defined uniquely by the
additional requirement that ||v*|| = 1. The components of v* are sometimes called the
workload contributions of customers of the different flows (see [8, 16]).



5 Heavy Traffic

In this section we introduce the notion of a sequence of queueing systems in heavy traffic.
First, fix a vector A satisfying the CRP condition. With A there is an associated (unique)
matrix ¢ such that A = pu(¢), and for which

Y bi=1, VjelJ,

must hold. (¢ is “column-stochastic”.) There is also a corresponding (unique) normal
vector v*, in terms of which we define

X(t) = Zyj@i(t) = Qt), t>0.

The process X (-) will be referred to as the equivalent workload of the system.

We now consider a sequence of queueing systems, indexed by r € R = {ry,79,...},
where r, > 0 for all n and r, T co as n — oo. (Hereafter in this paper, “r — o0”
means that r goes to infinity along values from the sequence R, or some subsequence of
R; the choice of the subsequence will be either explicit or clear from the context.) Each
system r € R is as before, with I customer types and J servers. The other primitives
may depend on r, a fact that will be acknowledged by appending r as a superscript.

Assume that, for each type i, the mean arrival rate \] = 1/E[u](1)] is such that

r(A, — X)) = b, 17— 00, (1)
where b; € R is a fixed constant. Assume also convergence of the variance, that is
[ = a?, 7— 0. (2)

In addition, we make the following technical assumption, needed to apply Bramson’s
weak law estimates [4]:
uniformly over 7 and 7,

E[(u; ()" H{u;(1) >z} <m(2) , 220, (3)

where 7(-), is a fixed function, n(z) — 0 as x — oo.
For the initial interarrival times we assume that, for each i,

u;(0)/r — 0, 7 — oo.

Assumptions (1) and (2) imply a functional central limit theorem (FCLT) for the
arrival processes:

{r=Y(F7(r’t) — Xir?t), t > 0} 5 {o;B(t), t > 0}, (4)

where F](t) is the number of type i customers arrived by time ¢, excluding customers
present at time 0; 07 = \;o?, B(-) is a standard (zero drift, unit variance) Brownian mo-
tion, and = denotes convergence in distribution (for processes in the standard Skorohod
space of RCLL functions).



The service time distributions do not change with the parameter r. For the initial
residual service times (if any) we assume, for all 4 and j, that

v{,j(O)/r —0, r— o0.

Let us denote by S;;(t), t > 0, the number of type ¢ customers which would be served by
server j if it processes type ¢ customers continuously up to time t. Then, a FCLT applies
for each process S;;(-):

{r1(Si(r*t) — pir®t), t > 0} = {0y B(t), t > 0}, (5)

2 __ 2

6 Results

For each value of the (scaling) parameter r € R, let Q"(-) and X"(-) = v* - Q"(-) be the
corresponding (vector) queue length and equivalent workload processes.

Assume that each queue i, at any time ¢, incurs a holding cost at the (instantaneous)
rate of

Ci(Qi (1) = C(Q5 () /7) 5

here C;(-) are convex increasing functions, with the additional properties described in
Section 3. (An alternative cost structure, where cost is a function of customers’ sojourn
time, will be discussed in the next subsection.)

For our results, we need the notion of a fixed point. A vector °¢ € R’ will be called
a fized point if,

[CiCaq), .-, CiCa)l = cv",

for some constant ¢ > 0. It is easy to see that
a fized point °q is the unique vector that minimizes Y, C;(¢;) among all vectors ¢ € RL
with the same equivalent workload, 1.e. satisfying the condition v* - ¢ = v* -°q.
The set of fixed points forms a one-dimensional manifold, which can be parameterized
for example by values of the equivalent workload (v* -° ¢ above).

Applying diffusion scaling to Q"(-) and X"(-) gives rise to the following scaled pro-
cesses:

qt)y=r-'Q(r*t), t >0,

() =r7'X"(r%) , t>0.
We assume that the initial queue lengths of the scaled processes are deterministic and

converging:

q'(0) = 4(0) (6)

where ¢(0) is a fixed point, as defined above. (We comment on this assumption after
Theorem 1.) As a consequence, " (0) — Z(0) = v* - §(0).

Finally, introduce the following one-dimensional reflected Brownian motion T =
{Z(t), t > 0}:

#(t) = #(0) + at + o B(t) + i(t) , (7)



where B(-) is a standard Brownian motion,

g(t) = —[0A inf {Z(0) + au+ oB(u)}], (8)

0<u<t

and the drift a and diffusion coefficient o are given by

a=vb, o= (W)or+ D byl .
J

i

Theorem 1 Consider the sequence of queueing systems in heavy traffic, as introduced
in Section J.

1. Suppose that the scheduling rule is Gep with cost functions C(-), for each value of
the parameter r. Then, as r — 00,

~p W~
T =,

and

i =q,
where, for each t > 0, the vector G(t) is the fized point that is (uniquely) determined
by v* - G(t) = Z(t).

2. The Gcep-rule is asymptotically optimal in that it minimizes the equivalent work-
load and the holding cost rate at all times. More precisely, let g;, and Ty, be the
scaled queue length and equivalent workload processes corresponding to an arbitrary
scheduling discipline G (and appropriately constructed on a common probability
space with our sequence in heavy traffic). Then, with probability 1, for any time
t>0,

liminf Z7,(t) > Z(t) 9)

T—00

and
lim inf Z Cil@ (1) > Z Cil@(t)) - (10)
As a corollary, with probability 1, for any T > 0,

imint [ Y C@a0)ar > lim [ S ci@oie= [ Y@ ()

Remark. Suppose that assumption (6), requiring that ¢(0) is a fixed point, does
not hold. Then, the limiting one-dimensional diffusion process Z is the same as in the
statement of Theorem 1, except that it starts from some fixed point °¢(0) such that it’s
equivalent workload v*-°§(0) € [v*-§(0), Kv*-§(0)], where K > 1 is a fixed constant. In
addition, the weak convergence on the interval [0, 00) in Theorem 1 would be replaced by
weak convergence over the open interval (0, 00). This exact phenomenon arose in [5] for
closed queueing networks and in a context close to ours in Bramson [4], in his Theorem
3. The basic intuition is that on a fluid-scale, the process trajectory reaches a fixed point
within a positive finite time Kv* - §(0), which is negligible on a diffusion-scale.

This means that if §(0) is not a fixed point, the Geu-rule allows the initial equivalent



workload to “jump up” at time 0, i.e. v*-°G(0) > v*-§(0) can hold. It is possible of course
that a different scheduling rule, which uses a priori knowledge of system parameters,
could avoid such a jump of the initial equivalent workload (and hence give rise to lower
cumulative costs). However, if the drift a < 0, the diffusion process Z under Gep reaches
0 within a finite time, with probability 1, and after that time, the Gcu-rule does minimize
both the equivalent workload and cumulative costs.

Remark. Consider the special case of quadratic costs: C;(¢) = 7;¢%/2, where ~; >
0, 2 € I, are given constants. Then the Gcu-rule becomes a “Qu-rule,” namely each
server j chooses for service a queue 7 such that

I € arg max yQ; iy (12)

(which can be considered as a special case of the MaxWeight rule in [12]). An important
feature of this rule is that its form does not depend on the scaling parameter r. The
above theorem then says that, in heavy traffic and under CRP, the Q)u-rule minimizes
equivalent workload and it thrives to keep the vector [y,Q1,... ,yn@n] proportional to
v* at all times: a result analogous to [12].

Theorem 1 deals with transient behavior in heavy traffic. Consider our sequence
of queueing systems in heavy traffic. Suppose that a < 0 and C;(¢) = v;¢%/2, where
v >0, ¢ € I, are given constants. Then, under the Gcu-rule (or, Qu in this case) and
for all r sufficiently large, the systems are stable. The following steady-state conjecture
is very natural.

Theorem 2 Consider the sequence of processes, under the Qu-rule, as described just
above. Let §"(00) and &(o0) denote random vector and random variable with distributions
equal to the stationary distributions of the processes ¢° and T, respectively. Then, as
r — 00,

7' (00) = Z(o0)r”

where 7(00) is exponentially distributed with mean (—2a/0?), and

v = @ Vi ) -
i
Remark. Theorem 2 directly implies that, in the stationary regime, the Qu-rule
stochastically minimizes the quadratic holding cost rate among all disciplines (within the
class specified in Section 2).

6.1 Sojourn Time Costs

Suppose that, as in [14], each customer incurs a “one-time” cost that depends on its type
and sojourn time in the system. More precisely, let FZ(T) denote the number of type
departures from the system by time 7" > 0, and suppose that the objective is to minimize
the cumulative waiting cost

1 Fy(r2T)
20 2 GWi(k)/r),
% k=1

where 7 is the scaling parameter (as before), C;(-) is a cost function with the properties
described in Section 3, and W/ (k) is the sojourn time in the system of the k-th type-i
customer leaving the system.



Then it can be shown (analogously to Theorem 1), that the following form of the
Gcp-rule minimizes the cumulative waiting cost:
Each server j chooses for service the longest-waiting customer from queue

i € argmax Ci(W (t)/r)pij ,
1€

where W] (t) is the waiting time of the (longest-waiting) type i customer.

7 Conclusions

We presented results showing that, surprisingly, a system as complex as our flexible server
system, can be optimally controlled by a scheduling rule as parsimonious as Gcpu. Further
comments on the robustness of Gecp, on its accommodation of linear delay costs, and on
its extensions, notably to alternative performance measures, homogeneous server groups

and other relaxations of the CRP condition, large number of servers, and systems with
feedback, can be found in [10].
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