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Review of queueing models

Basic models:

• Poisson arrivals, rate λ;

• n exponential servers, rate µ.

M/M/n (Erlang-C) queue
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M/M/n/k queue

k trunks, k − n slots in queue.

Important special case: M/M/n/n (Erlang-B).
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M/M/n+M (Erlang-A) queue
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• Patience time τ ∼ exp(θ):

time a customer is willing to wait for service;

• Offered wait V :

waiting time of a customer with infinite patience;

• If τ ≤ V , customer abandons; otherwise, gets service;

• Actual wait W = min(τ, V ).

• Always stable;

• P{Ab} = θ · E[W ].
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Performance measures

Include

• Lq – number of customers in the queue,

• W – waiting time of a customer in the queue,

• P{Ab} – probability to abandon,

• P{W ≤ T ; Sr} – fraction of well-served,

• Agents’ utilization.

Examples of performance goals:

• P{Ab} ≤ 3%;

• P{W ≤ 20 sec; Sr} ≥ 80%;

• E[W ] ≤ 10 sec;

• P{W > 0} ≤ 50%.

Staffing problem: find minimal n s.t. performance goal(s) are

satisfied.

(Then shifts and specific agents should be assigned.)

A specific problem can be solved via 4CallCenters.

Lacks insight, Rules of thumb.

“How many agents needed if arrival rate doubles?”

“How sensitive is performance to 50% error in patience estimate?”
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Motivation:

The Right Answer for the Wrong Reason

Recall: R = λ/µ is the offered load (measured in Erlangs):

minutes of work that arrive per minute.

Deterministic (“naive”) approach:

Staffing according to working load: n = R.

Erlang-C: tele-queue “explodes”.

What if abandonment is taken into account?

Erlang-A: E[S]=3 min, E[τ ]=3 min

λ/hr n Occupancy P{W > 0} E[W ] P{Ab}
20 1 63.2% 63.2% 1:06.2 36.8%

100 5 82.5% 56.0% 0:31.6 17.5%

500 25 92.0% 52.7% 0:14.3 8.0%

2,500 125 96.4% 51.2% 0:06.4 3.6%

9,000 450 98.1% 50.6% 0:03.4 1.9%

↓ ↓ ↓ ↓ ↓ ↓
∞ ∞ 1 ? 50% ? 0 ? 0 ?
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Motivation:

The Right Answer for the Wrong Reason

Erlang-A: E[S]=3 min, E[τ ]=6 min

λ/hr n Occupancy P{W > 0} E[W ] P{Ab}
2,500 125 97.0% 59.6% 0:10.6 3.0%

9,000 450 98.4% 59.1% 0:05.6 1.6%

Moderate-to-large n ⇒ reasonable-to-good performance.
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Motivation:

What can be reached? At what cost?

Quality-Driven Operational Regime

U.S. retail company. ACD Report.
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Quality-Driven Operational Regime.

Performance Analysis

10:00-10:30 am, with 94 agents;

416 calls;

2 seconds ASA.

Service time E[S] = ACD Time + ACW Time

= 3:49 + 0:26 = 4:15

Offered load R = λ× E[S]

= 416× ( 4:15 / 30 min )

= 1768 min / 30 min = 59 Erlangs

Occupancy ρ = R/n

= 59/94 = 63%

Compare with “% ACD Time” column of ACD report.

Rule of Thumb: n ≈ R · (1 + γ),

γ > 0 – service grade.
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Motivation: Operational Regimes

Health Insurance. Charlotte – Center. ACD Report.

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

Total 20,577 19,860 3.5% 30 307 95.1%

8:00 332 308 7.2% 27 302 87.1% 59.3

8:30 653 615 5.8% 58 293 96.1% 104.1

9:00 866 796 8.1% 63 308 97.1% 140.4

9:30 1,152 1,138 1.2% 28 303 90.8% 211.1

10:00 1,330 1,286 3.3% 22 307 98.4% 223.1

10:30 1,364 1,338 1.9% 33 296 99.0% 222.5

11:00 1,380 1,280 7.2% 34 306 98.2% 222.0

11:30 1,272 1,247 2.0% 44 298 94.6% 218.0

12:00 1,179 1,177 0.2% 1 306 91.6% 218.3

12:30 1,174 1,160 1.2% 10 302 95.5% 203.8

13:00 1,018 999 1.9% 9 314 95.4% 182.9

13:30 1,061 961 9.4% 67 306 100.0% 163.4

14:00 1,173 1,082 7.8% 78 313 99.5% 188.9

14:30 1,212 1,179 2.7% 23 304 96.6% 206.1

15:00 1,137 1,122 1.3% 15 320 96.9% 205.8

15:30 1,169 1,137 2.7% 17 311 97.1% 202.2

16:00 1,107 1,059 4.3% 46 315 99.2% 187.1

16:30 914 892 2.4% 22 307 95.2% 160.0

17:00 615 615 0.0% 2 328 83.0% 135.0

17:30 420 420 0.0% 0 328 73.8% 103.5

18:00 49 49 0.0% 14 180 84.2% 5.8
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Asymptotic Operational Regimes

Efficiency-Driven (ED) regime

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

13:30 1,061 961 9.4% 67 306 100.0% 163.4

• 100% occupancy;

• high P{Ab};

• considerable ASA;

• P{W > 0} ≈ 1.

Offered load

RED
∆=

λ

µ
= 1061 :

1800

306
= 180.37 .

Definition:

n = RED · (1− γ) , γ > 0.

In our case, service grade

γ = 1− n

RED
= 1− 163.4

180.37
= 0.094 ≈ P{Ab} .

• This case is similar to traditional queues in heavy traffic;

• See recent papers of Whitt (2004).
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Quality-Driven (QD) regime

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

17:00 615 615 0.0% 2 328 83.0% 135.0

• Occupancy far below 100%;

• negligible P{Ab};

• very small ASA;

• P{W > 0} ≈ 0.

Offered load

RQD =
λ

µ
= 615 :

1800

328
= 112.07 .

Definition:

n = RQD · (1 + γ) , γ > 0.

Service grade

γ =
n

RQD
− 1 =

135

112.07
− 1 = 0.205 .
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Quality and Efficiency-Driven (QED) regime

Time Calls Answered Abandoned% ASA AHT Occ% # of agents

14:30 1,212 1,179 2.7% 23 304 96.6% 206.1

• High occupancy, but not 100%;

• small P{Ab} and ASA;

• P{W > 0} ≈ α, 0 < α < 1.

RQED =
λ

µ
= 1212 :

1800

304
= 204.69 .

(Very close to n = 206.1, recall deterministic staffing.)

Definition:

n = RQED + β
√
RQED , −∞ < β < ∞ .

Service grade

β =
n−RQED√

RQED
=

206.1− 204.69√
204.69

= 0.10 .

Square-Root Staffing Rule: Described by Erlang in 1924!

“In use at the Copenhagen Telephone Company since 1913”.
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QED Regime: Examples

Two call center: U.S. (health insurance) and Italian (banking).

Service grade - correlation with abandonment

U.S. data Italian data
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Service grade - correlation with average wait

U.S. data Italian data
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Erlang-B Queue: QED Regime

Recall: E1,n = P{Blocked} =
Rn

n!

/ n∑
j=0

Rj

j!
.

Theorem (Jagerman, 1974)

As n →∞, the following 3 statements are equivalent:

1. n ≈ R + β
√

R, −∞ < β < ∞,

2.
√

n(1− ρ) → β,

3.
√

nE1,n → α, 0 < α < 1,

in which case

α = h(−β) =
φ(−β)

Φ̄(−β)
=

φ(β)

Φ(β)
,

where φ, Φ, Φ̄ and h are density, cdf, survival function and hazard

rate of N(0, 1), respectively.
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Proof. 1 ∼ 2 – straightforward.

1 ⇒ 3. Assume n ≈ R + β
√

R.

E1,n =
P{XR = n}
P{XR ≤ n}

where XR ∼ Poiss(R).

P{XR ≤ n} = P

XR −R√
R

≤ n−R√
R


CLT,1≈ P{N(0, 1) ≤ β} = Φ(β) .

P{XR = n} = P{n− 1 < XR ≤ n}

= P

n−R− 1√
R

<
XR −R√

R
≤ n−R√

R


≈ P{β − 1√

R
≤ N(0, 1) ≤ β}

≈ 1√
R
· φ(β) ≈ 1√

n
· φ(β) .

3 ⇒ 1. n = R + β
√

R + o(
√

R) iff

∀ε > 0 R + (β − ε)
√

R ≤ n ≤ R + (β + ε)
√

R for large n.

Assume not true. E.g., for some subsequence

n > R + (β + ε)
√

R .

E1,n decreasing in n ⇒ lim sup
√

nE1,n < h(−β − ε).

h(·) increasing function ⇒ h(−β − ε) < h(−β)

⇒ contradiction to 3.
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Erlang-C Queue

Recall:

P{W > 0} ∆= E2,n =
∑
i≥n

πi =
Rn

n!

1

1− ρ
· π0 ,

where

π0 =

n−1∑
j=0

Rj

j!
+

Rn

n!(1− ρ)


−1

.

Palm’s relation between Erlang-C and Erlang-B:

E2,n =
E1,n

(1− ρ) + ρE1,n

Waiting time distribution:

W

1/µ
=


0 wp 1− E2,n

exp
(
mean = 1

n ·
1

1−ρ

)
wp E2,n
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Erlang-C Queue: QED Regime

Theorem (Halfin & Whitt, 1981)

The following 3 statements are equivalent:

1. Manager’s view: n ≈ R + β
√

R, 0 < β < ∞,

(β
√

R – safety staffing)

2. Server’s view:
√

n(1− ρ) → β,

3. Customer’s view: E2,n → α, 0 < α < 1,

in which case

α =

1 +
β

h(−β)


−1

,

the Halfin-Whitt function.

4. In addition E[W |W > 0] ≈ 1√
n
· 1

µβ
.

Proof. 1 ⇒ 3. Follows from the Palm’s relation:

E2,n =
E1,n

(1− ρ) + ρE1,n

≈ h(−β)/
√

n

β/
√

n + h(−β)/
√

n
=

1 +
β

h(−β)


−1

.

4 follows from 2 and wait distribution in Erlang-C.
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The Halfin-Whitt Delay Function
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Assume offered load R = 1000.

• β = 0.5 → β
√

R = 16, P{W > 0} ≈ 50%;

• β = 2 → β
√

R = 63, P{W > 0} ≈ 2%.
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Erlang-C Queue: ED Regime

What if service goal is E[W ] ≤ C?

Assume n = R + γ, γ > 0. Then

1. n · (1− ρ) = γ,

2. P{W > 0} ≈ 1,

3. W
d≈ exp(γµ).

Example. (4CallCenters)

E[S] = 6 min (µ = 10), γ=1.

λ/hr n ρ P{W > 0} E[W ]

10 2 50% 33.3% 2:00

50 6 83.3% 58.8% 3:32

250 26 96.2% 78.2% 4:42

1000 101 99% 88.3% 5:18

9000 901 99.9% 95.9% 5:45

↓ ↓ ↓ ↓ ↓
∞ ∞ 1 1 6:00

E[W |W > 0] remains constant (6:00).

Decrease n by 1 → queue “explodes”.
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General Service Times in the QED Regime.

Mandelbaum & Schwartz, 2002.

Compare three M/G/n systems with E[S] = 1 (simulation):

• M/D/100, deterministic service times;

• M/M/100, exponential service times;

• M/LN/100, lognormal service times, Cs = σ(S)/E[S] = 1.

Khintchine-Pollaczek approximation (n fixed, ρ ↑ 1):

E[W |W > 0] ≈ 1

n
· E[S]

1− ρ
· 1 + C2

s

2
.

Not accurate for lognormal distribution!

Queues with abandonment – impact of service distribution seems

smaller (Whitt, 2004).
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Theoretical Motivation:

Square-Root Staffing in Erlang-A

Assume θ = µ.

QED staffing: n ≈ R + β
√

R.

Fact. If θ = µ, number-in-system distributions of M/M/n+M

and M/M/∞ are identical. (The same B&D process.)

P{W (M/M/n+M) > 0} PASTA= P{L(M/M/n+M) ≥ n}
θ=µ
= P{L(M/M/∞) ≥ n}

From lecture on classical queues:

L(M/M/∞) ∼ Poisson(R) .

For large R

LM/M/∞
d≈ Normal(R,R)

d≈ R + Z
√

R .

Hence,

P{W > 0} ≈ P

Z ≥ n−R√
R

 ≈ Φ̄(β) .

Solution for θ 6= µ: Garnett, Mandelbaum & Reiman, 2002.

But we consider more general model.
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M/M/n+G Queue

• λ – Poisson arrival rate.

• µ – Exponential service rate.

• n service agents.

• G – Patience distribution.

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

G

Exact results:

• Baccelli and Hebuterne (1981) – probability to abandon,

distribution of offered wait:

• Brandt and Brandt (1999, 2002) – number-in-system and

waiting time distributions.

• Mandelbaum, Zeltyn (2004) – extensive list of performance

measures.

23



M/M/n+G Queue:

Calculation of Performance Measures

Building blocks:

H(x) ∆=
∫ x

0
Ḡ(u)du ,

where Ḡ(·) is survival function of patience time.

J ∆=
∫ ∞
0

exp {λH(x)− nµx} dx ,

J1
∆=

∫ ∞
0

x · exp {λH(x)− nµx} dx ,

JH
∆=

∫ ∞
0

H(x) · exp {λH(x)− nµx} dx ,

J(t) ∆=
∫ ∞
t

exp {λH(x)− nµx} dx .

J1(t)
∆=

∫ ∞
t

x · exp {λH(x)− nµx} dx ,

JH(t) ∆=
∫ ∞
t

H(x) · exp {λH(x)− nµx} dx .

Finally,

E ∆=

n−1∑
j=0

1

j!

λ

µ

j

1

(n− 1)!

λ

µ

n−1 .

Erlang-A: Substitute Ḡ(u) = e−θu,

H(x) =
1

θ
· (1− e−θx) .
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Performance measures calculated via building blocks:

P{Ab} – probability to abandon, P{Sr} – probability to be served,

W – waiting time, V – offered wait,

Q – queue length.

P{V > 0} =
λJ

E + λJ
,

P{W > 0} =
λJ

E + λJ
· Ḡ(0) ,

P{Ab} =
1 + (λ− nµ)J

E + λJ
,

P{Sr} =
E + nµJ − 1

E + λJ
,

E[V ] =
λJ1

E + λJ
,

E[W ] =
λJH

E + λJ
,

E[Q] =
λ2JH

E + λJ
,

E[W | Ab] =
J + λJH − nµJ1

(λ− nµ)J + 1
,

E[W | Sr] =
nµJ1 − J

E + nµJ − 1
,

P{W > t} =
λḠ(t)J(t)

E + λJ
,

E[W | W > t] =
JH(t)− (H(t)− tḠ(t)) · J(t)

Ḡ(t)J(t)
,

P{Ab | W > t} =
λ− nµ−G(t)

λḠ(t)
+

exp{λH(t)− nµt}
λḠ(t)J(t)

.
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M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.

Density of patience time: g = {g(x), x ≥ 0}, where g(0) ∆= g0 > 0.

Fix service rate µ.

Let arrival rate λ →∞ and

n =
λ

µ
+ β

√√√√√λ

µ
+ o(

√
λ), −∞ < β < ∞.

Building blocks:

J =
1√
n
· 1
√

µg0
· 1

h(β̂)
+ o

 1√
n

 ,

E =

√
n

h(−β)
+ o(

√
n) ,

J1 =
1

nµg0

1− β̂

h(β̂)

 + o

 1

n

 ,

where

β̂ ∆= β

√√√√√ µ

g0
,

h(·) – hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace

method for asymptotic calculation of integrals.

Erlang-A: Substitute θ = g0.
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Main case: performance measures

• Probability of wait converges to constant:

P{W > 0} ∼
1 +

√√√√√g0

µ
· h(β̂)

h(−β)


−1

.

Check: g0 = µ ⇒ P{W > 0} = Φ̄(β).

• Probability to abandon decreases at rate
1√
n

:

P{Ab|W > 0} =
1√
n
·

√√√√√g0

µ
·

[
h(β̂)− β̂

]
+ o

 1√
n

 .

• Average wait decreases at rate
1√
n

:

E[W |W > 0] =
1√
n
· 1
√

g0µ
·

[
h(β̂)− β̂

]
+ o

 1√
n

 .

• Ratio between P{Ab} and E[W ] converges to patience density

at the origin:
P{Ab}
E[W ]

∼ g0

• Asymptotic distribution of wait:

P


W

E[S]
>

t√
n

∣∣∣∣∣∣∣ W > 0

 ∼
Φ̄

β̂ +
√√√√g0

µ
· t


Φ̄(β̂)

, t ≥ 0 .
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QED Regime: Delay Probability
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Note convergence to −β/
√

n for large negative β.
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QED Operational Regime: Discussion

Points of view.

• Customers: P{W > 0} ≈ α, P{Ab} ≈ γ√
n

;

• Agents: Offered load per Server =
R

n
≈ 1− β√

n
;

• Managers: n ≈ R + β
√

R .

β = 0: right answer for wrong reasons.

(Common in stochastic-ignorant operations.)

If β = 0, QED staffing level:

n =
λ

µ
= R .

Equivalent to deterministic rule: assign number of agents equal to

offered load.

Erlang-C: queue “explodes”.

M/M/n+G: assume µ = g0. Then P{W = 0} ≈ 50%.

If n = 100, P{Ab} ≈ 4%, and E[W ] ≈ 0.04 · E[S].

Overall, good service level.
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QED Operational Regime: Special Cases

According to patience distribution.

• Patience density vanishing near the origin.

(k-1) derivatives at the origin are zero, the k-th derivative is

positive.

Examples: Erlang, Phase-type.

– If β > 0, wait similar to Erlang-C. P{Ab} decreases at

n−(k+1)/2 rate.

– If β < 0, almost all customers delayed, E[W ] → 0 slowly.

P{Ab} ≈ −β/
√

n.

– If β = 0, intermediate behavior.

• Delayed distribution of patience.

Customers do not abandon till c > 0.

Examples: Delayed exponential, deterministic.

Similar to the previous case. For β < 0, wait converges to c.

• Balking.

Customer, not served immediately, balks with probability P{Blk}.
Example. M/M/n/n (Erlang-B).

– P{W > 0} decreases at rate 1/
√

n;

– P{Ab|V > 0} ≈ P{Blk};
– P{Ab} ≈ h(−β)/

√
n, asymptotic loss probability for

Erlang-B.

• Scaled balking.

Customer, not served immediately, balks with probability pb/
√

n.

Results are similar to the main case.
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QED Regime: Numerical Experiments–1

Patience distributions:

• Uniform on [0,4], g0 = 0.25;

• Hyperexponential, 50-50% mixture of exp(mean=1) and exp(mean=1/3),

g0 = 2/3;

• Erlang, two exp(mean=1) phases, g0 = 0;

• Delayed exponential, 1 + exp(mean=1), g0 = 0.

Service grade β = 0.
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P{Ab} convergence rates: 1/
√

n, 1/
√

n, n−2/3, exp,

respectively.
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QED Regime: Numerical Experiments–2

Service grade β = 1.

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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Note linear patterns in the first plot.

Service grade β = −1.

Probability to abandon given delay Probability of wait
vs. arrival rate vs. arrival rate

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

arrival rate

P
(A

b|
W

>
0)

exact U(0,4)
approx U(0,4)
exact expmix
approx expmix
exact Erlang
approx Erlang
exact delexp
approx delexp

0 200 400 600 800 1000
0.88

0.9

0.92

0.94

0.96

0.98

1

arrival rate

pr
ob

ab
ili

ty
 o

f w
ai

t

exact U(0,4)
approx U(0,4)
exact expmix
approx expmix
exact Erlang
approx Erlang
exact delexp
approx delexp

Convergence to −β/
√

n for probability to abandon.
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M/M/n+G: QD Operational Regime.

Density of patience time at the origin g0 > 0.

Staffing level

n =
λ

µ
· (1 + γ) + o(

√
λ) , γ > 0 .

Performance measures

• P{W > 0} decreases exponentially on n.

• Probability to abandon of delayed customers:

P{Ab|W > 0} =
1

n
· 1 + γ

γ
· g0

µ
+ o

 1

n

 .

• Average wait of delayed customers:

E[W | W > 0] =
1

n
· 1 + γ

γ
· 1

µ
+ o

 1

n

 .

• Linear relation between P{Ab} and E[W ].

P{Ab}
E[W ]

∼ g0

• Asymptotic distribution of wait:

P


W

E(S)
>

t

n

∣∣∣∣∣∣∣ W > 0

 ∼ e−(1−ρ)t , ρ =
λ

nµ
.
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QD Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential.

Service grade γ = 1/9, ρ = 0.9.
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Overall, QED approximations are better than QD.

Service grade γ = 0.25, ρ = 0.8. Large arrival rate.
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M/M/n+G: ED Operational Regime.

Assume G(x) = γ has a unique solution x∗ and g(x∗) > 0.

Staffing level

n =
λ

µ
· (1− γ) + o(

√
λ) , γ > 0 .

Performance measures

• P{W = 0} decreases exponentially on n.

• Probability to abandon converges to:

P{Ab} ∼ γ ≈ 1− 1

ρ
.

• Offered wait converges to x∗:

E[V ] ∼ x∗ , V
p→ x∗ .

• Distribution G∗ of min(x∗, τ )

G∗(x) =

 G(x)/γ, x ≤ x∗

1, x > x∗

Asymptotic distribution of wait:

W w→ G∗ , E[W ] → E[min(x∗, τ )] .
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ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed

exponential.

Service grade γ = 1/6, ρ = 1.2.
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Fluid-limit ED approximations for P{Ab} and E[W ] are better

than QED.
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Fitting Erlang-A: Small Call Center

Erlang-A Formulae vs. Data Averages (Israeli Bank)
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Erlang-A Approximations vs. Data Averages

P{Ab} E[W ]
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Fitting Erlang-A: Small Call Center

Comments and conclusions

• Points: hourly data vs. Erlang-A output;

• Formulae with continuous n used;

• Patience estimated via P{Ab}/E[W ] relation;

• Erlang-A estimates – close upper bounds;

• Erlang-A QED approximations – even better fit than exact

formulae.
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Fitting M/M/n+G: Large Call Center

Large US bank.

Daily volume 70,000 calls; 900-1200 agents positions on weekdays.

Two service types analyzed for 5 months.

Calls E[S] P{W > 0} P{Ab} E[W ]

Retail 3,451,743 224.6 sec 30.6% 1.16% 6.33 sec

Telesales 349,371 453.9 sec 24.3% 1.76% 9.66 sec

Estimates of hazard rate
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Problems/Challenges:

• Reliable data for number of agents n unavailable;

• Significant variability of hazard rate/density near the origin.

Approach: Estimate n via some performance measure (P{Ab}).
Fit other performance measure(s).
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Substitute g0 := estimate of h(0) ⇒ unsatisfactory fit.

Solution: Substitute g0 := overall P{Ab}/E[W ]

to QED formulae.
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For telesales, hazard variability near the origin much smaller.

Hence, pattern much closer to straight line.
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Dimensioning and QED regime

Erlang-C: Borst, Mandelbaum & Reiman, 2004.

Erlang-A, M/M/n+G with Zeltyn, in progress.

Cost = c · n + d · λE[W ] ,

c – cost of staffing;

d – cost of delay (cost of abandonment can be considered too);

Erlang-C. Optimal staffing level:

n∗ ≈ R + y∗(r)
√

R, r = delay cost/staffing cost .

y∗(r) = optimal service grade, independent of λ:

y∗(r) = arg min
0<y<∞

y +
r · Pw(y)

y

 ,

where

Pw(y) =

1 +
y

h(−y)


−1

.

Erlang-A. Optimal staffing level (conjecture):

n∗ ≈ R + y∗(r; s)
√

R, s =
√
µ/θ ,

y∗(r; s) = arg min
−∞≤y<∞

{y + r · Pw(y; s) · s · [h(ys)− ys]} ,

where

Pw(y; s) =

1 +
h(ys)

sh(−y)


−1

.
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Optimal service grade. E[S] = 1 min.
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• r < θ/µ implies that “no service” is optimal.

• r ≤ 20 ⇒ y∗ < 2; r ≤ 500 ⇒ y∗ < 3!

• Numerical tests exhibit remarkable accuracy.
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Actual Cost vs. Asymptotic Cost

µ = 1, θ = 1/3

 10

    Economics: ⋅  Safety-Staffing 
Cost  = qEWdNc λ⋅+⋅     (costs: c-staffing, d-delay). 
Optimal staffing level: 

( ) RsryRN ⋅+≈ ;** ,              
c
dr =  ,  

θ
µ

=s  . 

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−⋅⋅⋅+⋅=
∞<<∞−

ysyshys
y

syP
dycy

y
)(

);(
minarg* .    

 

Numerical tests exhibit remarkable accuracy: 
Actual cost function “coincides” with asymptotic cost. 

 
Normalized staffing level = RRN /)( −  ,   
 

Normalized cost  =  (Cost RcR /)− . 
 

Asymptotic cost:  ])([
);(

ysyshys
y

syP
dyc −⋅⋅⋅+⋅ . 

Normalized staffing level = (n−R)/
√

R;

Normalized cost = (cost− cR)/
√

R;

Asymptotic cost = c · y + d · Pw(y; s) · s · [h(ys)− ys],

where y = QED service grade.
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Erlang-A: Optimal Staffing

λ = 10, µ = 1
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M/M/n+G: Optimal Staffing

Uniformly Distributed Patience

Cost = c · n + d · λP{Ab}
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Conclusions

QED approximation: Careful balance of quality and efficiency.

Optimal staffing for linear staffing/waiting costs.

Can be performed using any software that provides the standard

normal distribution (e.g. Excel). Works well for

• Number of servers n from 10’s to 1000’s;

• Agents highly utilized but not overloaded (∼90-98%);

• Probability of delay 10-90%;

• Probability to abandon: 3-7% for small n, 1-4% for large n.

ED approximation: Useful for overloaded call centers.

Requires solving equation G(x) = γ, and integration (calculating

H(x∗)). Works well for

• Number of servers n ≥ 100.

• Agents very highly utilized (close to 100%);

• Probability of delay: more than 85%;

• Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance

systems.
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Additional Research Directions

Deterministic Service Times

• Jelenkovic, Mandelbaum and Momcilovic (2004) Heavy traffic

limits for queues with many deterministic servers, QUESTA.

M/M/n/k Queue

• Massey and Wallace (2004) An Optimal Design of the M/M/C/K

Queue for Call Centers, to appear in QUESTA.

Time-Dependent Arrival Rate

• Jennings, Mandelbaum, Massey and Whitt (1996) Server

staffing to meet time-varying demand, Management Science.

• Feldman, Mandelbaum, Massey and Whitt (2004) Staffing of

time-varying queues to achieve time-stable performance, sub-

mitted to Management Science.

Skills-Based Routing

• Gurvich, Armony and Mandelbaum (2004) Staffing and con-

trol of large-scale service systems with multiple customer classes

and fully flexible servers, working paper.

• Armony and Mandelbaum (2004) Design, staffing and control

of large service systems: The case of a single customer class

and multiple server types, working paper.
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ED Operational Regime

• Bassamboo, Harrison and Zeevi (2004) Design and Control

of a Large Call Center: Asymptotic Analysis of an LP-based

Method.

• Harrison and Zeevi (2004) A method for staffing large call

centers using stochastic fluid models, to appear in MSOM.

• Whitt (2004) Fluid Models for Many-Server Queues with

Abandonments, submitted to Operations Research.

Uncertainty about Arrival Rate

• Whitt (2004) Staffing a Call Center with Uncertain Arrival

Rate and Absenteeism, submitted to Management Science.
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