

Sergey Zeltyn

March 2005

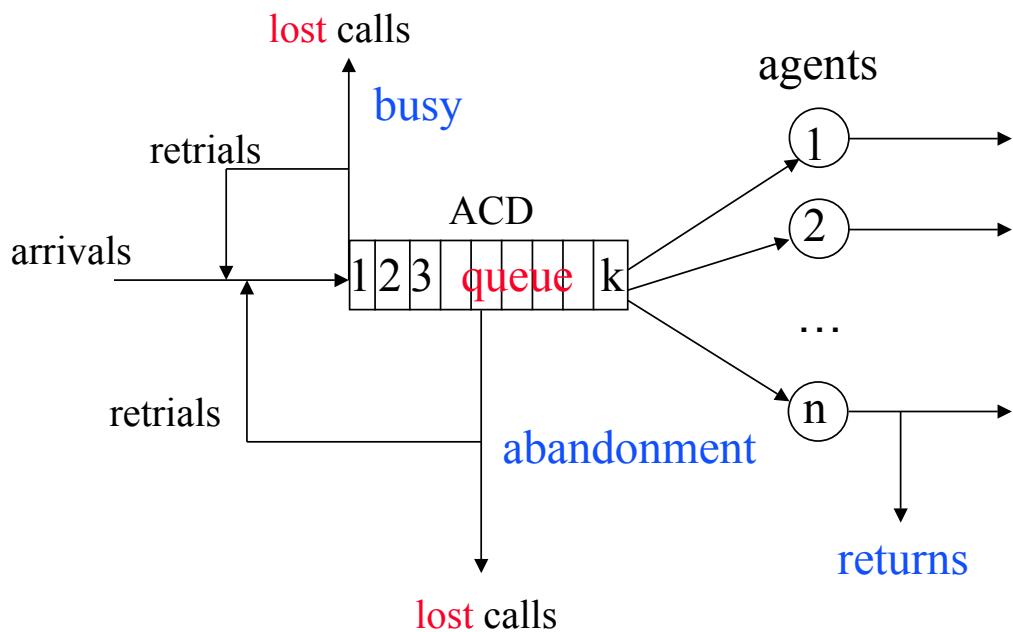
**STAT 991. Service Engineering.
The Wharton School. University of Pennsylvania.**

Operational Regimes in Call Centers: Empirically-Based Queueing Theory

Based on:

- Mandelbaum A. *Service Engineering* course, Technion.
<http://iew3.technion.ac.il/serveng2005>
- Mandelbaum A. and Zeltyn S. Call Centers with Impatient Customers: Many-Server Asymptotics of the $M/M/n+G$ queue. Submitted to *QUESTA*.

Schematic representation of a telephone call center



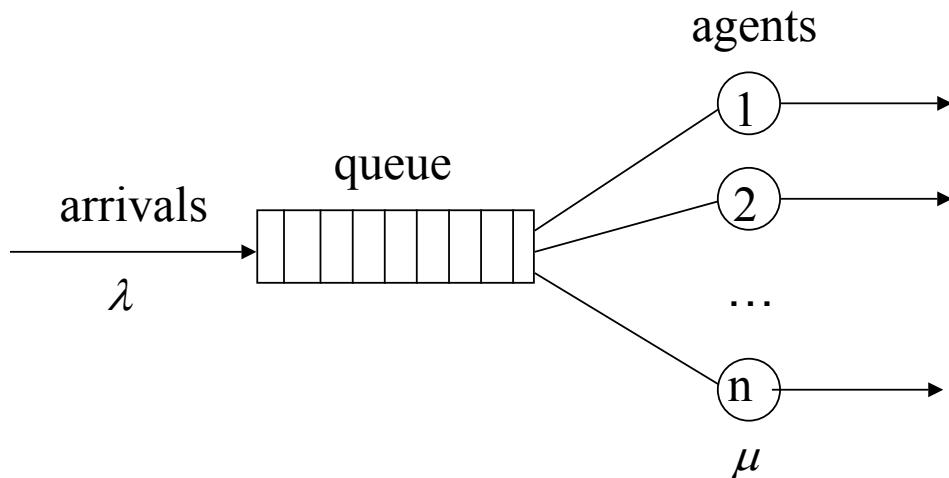
How to model?

Review of queueing models

Basic models:

- Poisson arrivals, rate λ ;
- n exponential servers, rate μ .

$M/M/n$ (Erlang-C) queue

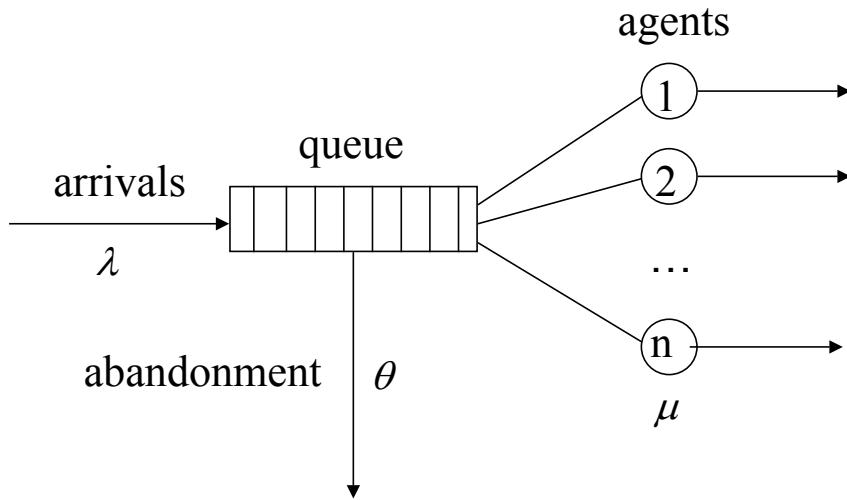


$M/M/n/k$ queue

k trunks, $k - n$ slots in queue.

Important special case: $M/M/n/n$ (Erlang-B).

M/M/ $n+M$ (Erlang-A) queue



- **Patience time** $\tau \sim \exp(\theta)$:
time a customer is willing to wait for service;
- **Offered wait** V :
waiting time of a customer with infinite patience;
- If $\tau \leq V$, customer abandons; otherwise, gets service;
- **Actual wait** $W = \min(\tau, V)$.
- Always stable;
- $P\{\text{Ab}\} = \theta \cdot E[W]$.

Performance measures

Include

- L_q – number of customers in the queue,
- W – waiting time of a customer in the queue,
- $P\{Ab\}$ – probability to abandon,
- $P\{W \leq T; Sr\}$ – fraction of well-served,
- Agents' utilization.

Examples of **performance goals**:

- $P\{Ab\} \leq 3\%$;
- $P\{W \leq 20 \text{ sec}; Sr\} \geq 80\%$;
- $E[W] \leq 10 \text{ sec}$;
- $P\{W > 0\} \leq 50\%$.

Staffing problem: find minimal n s.t. performance goal(s) are satisfied.

(Then shifts and specific agents should be assigned.)

A specific problem can be solved via 4CallCenters.

Lacks insight, **Rules of thumb**.

“How many agents needed if arrival rate doubles?”

“How sensitive is performance to 50% error in patience estimate?”

Motivation: The Right Answer for the Wrong Reason

Recall: $R = \lambda/\mu$ is the **offered load** (measured in Erlangs): minutes of work that arrive per minute.

Deterministic (“naive”) approach:

Staffing according to working load: $\mathbf{n} = \mathbf{R}$.

Erlang-C: tele-queue “explodes”.

What if **abandonment** is taken into account?

Erlang-A: $E[S]=3$ min, $E[\tau]=3$ min

λ/hr	n	Occupancy	$P\{W > 0\}$	$E[W]$	$P\{\text{Ab}\}$
20	1	63.2%	63.2%	1:06.2	36.8%
100	5	82.5%	56.0%	0:31.6	17.5%
500	25	92.0%	52.7%	0:14.3	8.0%
2,500	125	96.4%	51.2%	0:06.4	3.6%
9,000	450	98.1%	50.6%	0:03.4	1.9%
↓	↓	↓	↓	↓	↓
∞	∞	1 ?	50% ?	0 ?	0 ?

Motivation: The Right Answer for the Wrong Reason

Erlang-A: $E[S]=3$ min, $E[\tau]=6$ min

λ/hr	n	Occupancy	$P\{W > 0\}$	$E[W]$	$P\{\text{Ab}\}$
2,500	125	97.0%	59.6%	0:10.6	3.0%
9,000	450	98.4%	59.1%	0:05.6	1.6%

Moderate-to-large $n \Rightarrow$ reasonable-to-good performance.

Motivation:

What can be reached? At what cost?

Quality-Driven Operational Regime

U.S. retail company. ACD Report.

18	Avg Ans	Speed W	Avg Aban	ACD Calls	Avg ACD Time	Avg ACW	Aban	% ACD Calls	% Time	Avg Ans	Calls Pos	Per Pos	% Serv	% Aux	% ACW	% ACD Time	P
Totals	:00:02	:00:28	10456	:03:47	:00:25	46	53	85	70	149	8						
12:00 AM*	:00:00	:00:00	26	:04:31	:00:02	1	76	61	7	4	51	2	18	61			
12:30 AM*	:00:03	:04:10	14	:07:27	:00:33	1	89	52	5	3	48	1	26	63			
1:00 AM*	:00:00		9	:04:54	:11:29	0	91	90	1	7	90	0	26	65			
5:30 AM*			0			0	0	0	0	0		33	0	0			
6:00 AM*	:00:00		12	:03:21	:00:18	0	21	100	7	2	100	9	2	19			
6:30 AM*	:00:00		27	:02:51	:00:20	0	32	100	14	2	100	5	3	28			
7:00 AM*	:00:00		52	:03:34	:00:15	0	38	100	21	3	100	13	4	34			
7:30 AM*	:00:00		93	:03:11	:00:34	0	36	100	30	3	100	7	4	32			
8:00 AM*	:00:00		120	:03:37	:00:40	0	39	100	47	3	100	8	6	33			
8:30 AM*	:00:00		193	:03:04	:00:14	0	44	100	61	3	100	10	7	37			
9:00 AM*	:00:01		293	:03:25	:00:25	0	54	89	75	4	97	9	7	47			
9:30 AM*	:00:02	:00:06	381	:03:45	:00:22	2	60	87	81	4	93	8	8	52			
10:00 AM*	:00:02	:00:01	415	:03:49	:00:26	1	63	87	94	4	98	5	8	55			
10:30 AM*	:00:00		349	:03:35	:00:33	0	52	99	96	4	99	6	8	44			
11:00 AM*	:00:00		352	:03:50	:00:27	0	51	100	102	3	100	7	8	45			
11:30 AM*	:00:00		348	:03:44	:00:18	0	49	100	97	4	100	8	6	45			
12:00 PM*	:00:01		354	:03:59	:00:18	0	52	95	95	4	95	8	5	47			
12:30 PM*	:00:00		336	:03:38	:00:21	0	52	99	97	3	99	9	8	46			
1:00 PM*	:00:00		347	:03:53	:00:32	0	51	99	98	4	99	11	8	44			
1:30 PM*	:00:00		368	:03:52	:00:14	0	58	99	98	4	99	11	7	50			
2:00 PM*	:00:01		393	:03:55	:00:17	0	51	100	108	4	100	10	5	46			
2:30 PM*	:00:00		403	:03:58	:00:13	0	54	100	112	4	100	10	4	50			
3:00 PM*	:00:00	:00:04	410	:04:02	:00:18	1	57	98	110	4	98	8	5	51			
3:30 PM*	:00:00		347	:03:58	:00:14	0	50	100	100	3	100	7	5	45			
4:00 PM*	:00:00		382	:03:48	:01:37	0	54	100	98	4	100	8	7	47			
4:30 PM*	:00:00		378	:03:41	:00:19	0	55	99	97	4	99	8	5	50			
5:00 PM*	:00:00		411	:03:53	:00:19	0	53	100	109	4	100	9	5	48			
5:30 PM*	:00:01		387	:03:58	:00:19	0	58	99	98	4	99	10	6	51			
6:00 PM*	:00:01	:00:21	371	:03:28	:00:25	1	53	98	91	4	98	9	8	47			
6:30 PM*	:00:00		280	:03:26	:00:13	0	41	100	90	3	100	8	4	37			
7:00 PM*	:00:00		289	:03:24	:00:17	0	42	100	78	3	100	9	5	38			

Quality-Driven Operational Regime. Performance Analysis

10:00-10:30 am, with 94 agents;

416 calls;

2 seconds ASA.

$$\begin{aligned}\text{Service time } E[S] &= \text{ACD Time} + \text{ACW Time} \\ &= 3:49 + 0:26 = 4:15\end{aligned}$$

$$\begin{aligned}\text{Offered load } R &= \lambda \times E[S] \\ &= 416 \times (4:15 / 30 \text{ min}) \\ &= 1768 \text{ min} / 30 \text{ min} = 59 \text{ Erlangs}\end{aligned}$$

$$\begin{aligned}\text{Occupancy } \rho &= R/n \\ &= 59/94 = 63\%\end{aligned}$$

Compare with “% ACD Time” column of ACD report.

Rule of Thumb: $n \approx R \cdot (1 + \gamma)$,
 $\gamma > 0$ – service grade.

Motivation: Operational Regimes

Health Insurance. Charlotte – Center. ACD Report.

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
Total	20,577	19,860	3.5%	30	307	95.1%	
8:00	332	308	7.2%	27	302	87.1%	59.3
8:30	653	615	5.8%	58	293	96.1%	104.1
9:00	866	796	8.1%	63	308	97.1%	140.4
9:30	1,152	1,138	1.2%	28	303	90.8%	211.1
10:00	1,330	1,286	3.3%	22	307	98.4%	223.1
10:30	1,364	1,338	1.9%	33	296	99.0%	222.5
11:00	1,380	1,280	7.2%	34	306	98.2%	222.0
11:30	1,272	1,247	2.0%	44	298	94.6%	218.0
12:00	1,179	1,177	0.2%	1	306	91.6%	218.3
12:30	1,174	1,160	1.2%	10	302	95.5%	203.8
13:00	1,018	999	1.9%	9	314	95.4%	182.9
13:30	1,061	961	9.4%	67	306	100.0%	163.4
14:00	1,173	1,082	7.8%	78	313	99.5%	188.9
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1
15:00	1,137	1,122	1.3%	15	320	96.9%	205.8
15:30	1,169	1,137	2.7%	17	311	97.1%	202.2
16:00	1,107	1,059	4.3%	46	315	99.2%	187.1
16:30	914	892	2.4%	22	307	95.2%	160.0
17:00	615	615	0.0%	2	328	83.0%	135.0
17:30	420	420	0.0%	0	328	73.8%	103.5
18:00	49	49	0.0%	14	180	84.2%	5.8

Asymptotic Operational Regimes

Efficiency-Driven (ED) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
13:30	1,061	961	9.4%	67	306	100.0%	163.4

- 100% occupancy;
- high $P\{Ab\}$;
- considerable ASA;
- $P\{W > 0\} \approx 1$.

Offered load

$$R_{ED} \triangleq \frac{\lambda}{\mu} = 1061 : \frac{1800}{306} = 180.37.$$

Definition:

$$n = R_{ED} \cdot (1 - \gamma), \quad \gamma > 0.$$

In our case, *service grade*

$$\gamma = 1 - \frac{n}{R_{ED}} = 1 - \frac{163.4}{180.37} = 0.094 \approx P\{Ab\}.$$

- This case is similar to traditional queues in heavy traffic;
- See recent papers of Whitt (2004).

Quality-Driven (QD) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
17:00	615	615	0.0%	2	328	83.0%	135.0

- Occupancy far below 100%;
- negligible $P\{Ab\}$;
- very small ASA;
- $P\{W > 0\} \approx 0$.

Offered load

$$R_{QD} = \frac{\lambda}{\mu} = 615 : \frac{1800}{328} = 112.07.$$

Definition:

$$n = R_{QD} \cdot (1 + \gamma), \quad \gamma > 0.$$

Service grade

$$\gamma = \frac{n}{R_{QD}} - 1 = \frac{135}{112.07} - 1 = 0.205.$$

Quality and Efficiency-Driven (QED) regime

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1

- High occupancy, but not 100%;
- small $P\{Ab\}$ and ASA;
- $P\{W > 0\} \approx \alpha$, $0 < \alpha < 1$.

$$R_{QED} = \frac{\lambda}{\mu} = 1212 : \frac{1800}{304} = 204.69.$$

(Very close to $n = 206.1$, recall deterministic staffing.)

Definition:

$$n = R_{QED} + \beta \sqrt{R_{QED}}, \quad -\infty < \beta < \infty.$$

Service grade

$$\beta = \frac{n - R_{QED}}{\sqrt{R_{QED}}} = \frac{206.1 - 204.69}{\sqrt{204.69}} = 0.10.$$

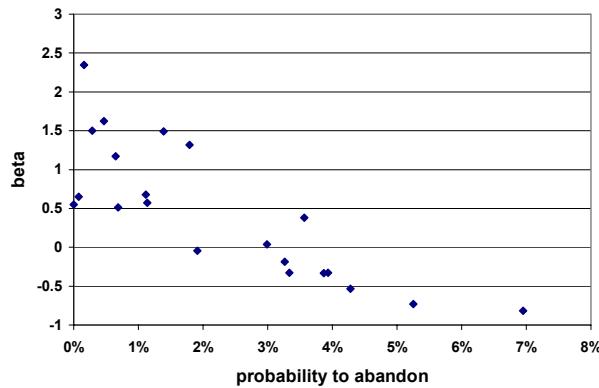
Square-Root Staffing Rule: Described by Erlang in 1924!
“In use at the Copenhagen Telephone Company since 1913”.

QED Regime: Examples

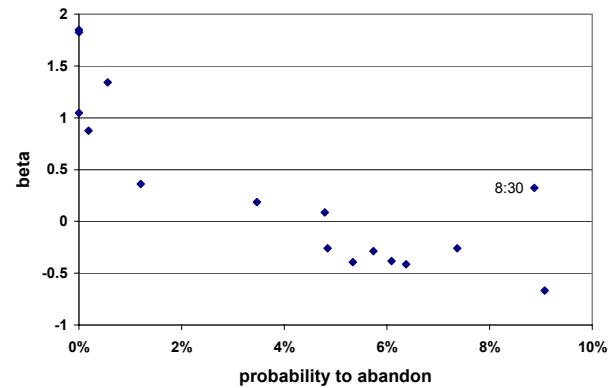
Two call center: U.S. (health insurance) and Italian (banking).

Service grade - correlation with abandonment

U.S. data

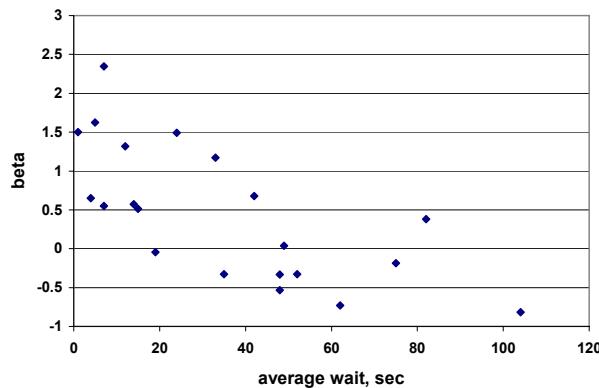


Italian data

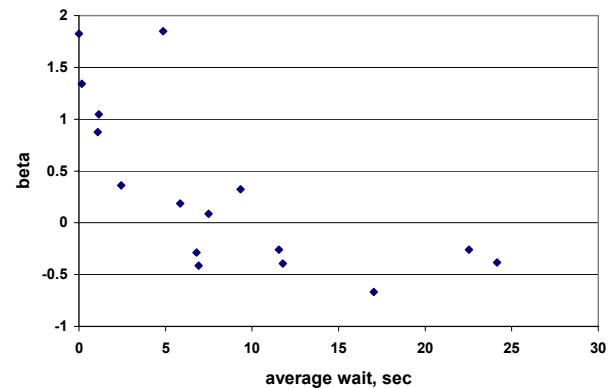


Service grade - correlation with average wait

U.S. data



Italian data



Erlang-B Queue: QED Regime

Recall: $E_{1,n} = P\{\text{Blocked}\} = \frac{R^n}{n!} \Big/ \sum_{j=0}^n \frac{R^j}{j!}$.

Theorem (Jagerman, 1974)

As $n \rightarrow \infty$, the following 3 statements are equivalent:

1. $n \approx R + \beta\sqrt{R}$, $-\infty < \beta < \infty$,
2. $\sqrt{n}(1 - \rho) \rightarrow \beta$,
3. $\sqrt{n}E_{1,n} \rightarrow \alpha$, $0 < \alpha < 1$,

in which case

$$\alpha = h(-\beta) = \frac{\phi(-\beta)}{\bar{\Phi}(-\beta)} = \frac{\phi(\beta)}{\Phi(\beta)},$$

where $\phi, \Phi, \bar{\Phi}$ and h are density, cdf, survival function and hazard rate of $N(0, 1)$, respectively.

Proof. 1 ~ 2 – straightforward.

1 \Rightarrow 3. Assume $n \approx R + \beta\sqrt{R}$.

$$E_{1,n} = \frac{\mathbb{P}\{X_R = n\}}{\mathbb{P}\{X_R \leq n\}}$$

where $X_R \sim \text{Poiss}(R)$.

$$\begin{aligned} \mathbb{P}\{X_R \leq n\} &= \mathbb{P}\left\{\frac{X_R - R}{\sqrt{R}} \leq \frac{n - R}{\sqrt{R}}\right\} \\ &\stackrel{CLT,1}{\approx} \mathbb{P}\{N(0, 1) \leq \beta\} = \Phi(\beta). \end{aligned}$$

$$\begin{aligned} \mathbb{P}\{X_R = n\} &= \mathbb{P}\{n - 1 < X_R \leq n\} \\ &= \mathbb{P}\left\{\frac{n - R - 1}{\sqrt{R}} < \frac{X_R - R}{\sqrt{R}} \leq \frac{n - R}{\sqrt{R}}\right\} \\ &\approx \mathbb{P}\left\{\beta - \frac{1}{\sqrt{R}} \leq N(0, 1) \leq \beta\right\} \\ &\approx \frac{1}{\sqrt{R}} \cdot \phi(\beta) \approx \frac{1}{\sqrt{n}} \cdot \phi(\beta). \end{aligned}$$

3 \Rightarrow 1. $n = R + \beta\sqrt{R} + o(\sqrt{R})$ iff

$\forall \epsilon > 0 \quad R + (\beta - \epsilon)\sqrt{R} \leq n \leq R + (\beta + \epsilon)\sqrt{R}$ for large n .

Assume not true. E.g., for some subsequence

$$n > R + (\beta + \epsilon)\sqrt{R}.$$

$E_{1,n}$ decreasing in $n \Rightarrow \limsup \sqrt{n}E_{1,n} < h(-\beta - \epsilon)$.

$h(\cdot)$ increasing function $\Rightarrow h(-\beta - \epsilon) < h(-\beta)$

\Rightarrow contradiction to 3.

Erlang-C Queue

Recall:

$$\text{P}\{W > 0\} \triangleq E_{2,n} = \sum_{i \geq n} \pi_i = \frac{R^n}{n!} \frac{1}{1 - \rho} \cdot \pi_0,$$

where

$$\pi_0 = \left[\sum_{j=0}^{n-1} \frac{R^j}{j!} + \frac{R^n}{n!(1 - \rho)} \right]^{-1}.$$

Palm's relation between Erlang-C and Erlang-B:

$$E_{2,n} = \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}}$$

Waiting time distribution:

$$\frac{W}{1/\mu} = \begin{cases} 0 & \text{wp } 1 - E_{2,n} \\ \exp \left(\text{mean} = \frac{1}{n} \cdot \frac{1}{1 - \rho} \right) & \text{wp } E_{2,n} \end{cases}$$

Erlang-C Queue: QED Regime

Theorem (Halfin & Whitt, 1981)

The following 3 statements are equivalent:

1. *Manager's view:* $n \approx R + \beta\sqrt{R}$, $0 < \beta < \infty$,

($\beta\sqrt{R}$ – **safety staffing**)

2. *Server's view:* $\sqrt{n}(1 - \rho) \rightarrow \beta$,

3. *Customer's view:* $E_{2,n} \rightarrow \alpha$, $0 < \alpha < 1$,

in which case

$$\alpha = \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1},$$

the Halfin-Whitt function.

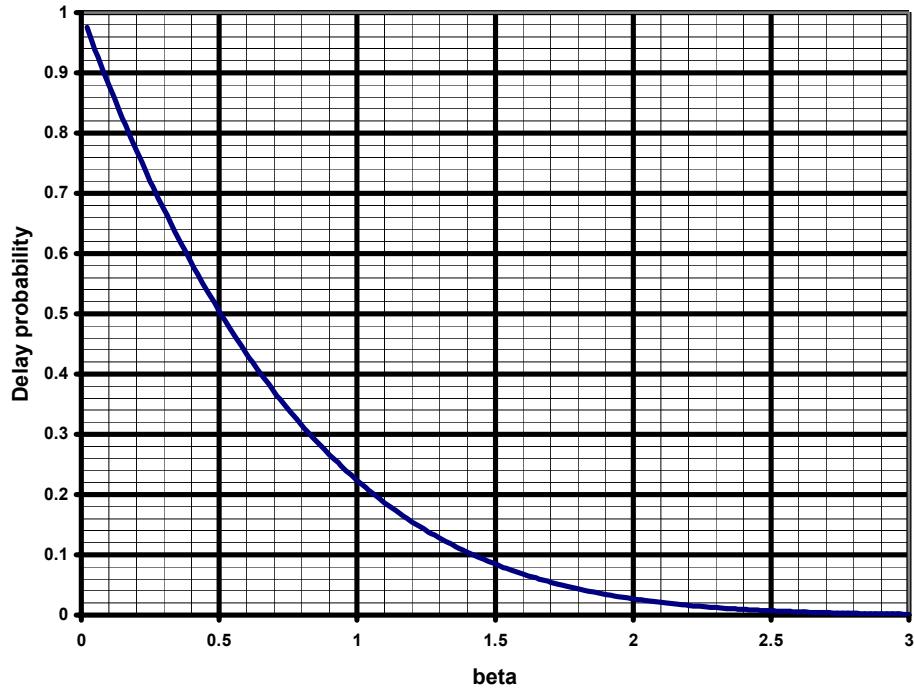
4. In addition $E[W|W > 0] \approx \frac{1}{\sqrt{n}} \cdot \frac{1}{\mu\beta}$.

Proof. 1 \Rightarrow 3. Follows from the Palm's relation:

$$\begin{aligned} E_{2,n} &= \frac{E_{1,n}}{(1 - \rho) + \rho E_{1,n}} \\ &\approx \frac{h(-\beta)/\sqrt{n}}{\beta/\sqrt{n} + h(-\beta)/\sqrt{n}} = \left[1 + \frac{\beta}{h(-\beta)} \right]^{-1}. \end{aligned}$$

4 follows from 2 and wait distribution in Erlang-C.

The Halfin-Whitt Delay Function



Assume offered load $R = 1000$.

- $\beta = 0.5 \rightarrow \beta\sqrt{R} = 16$, $P\{W > 0\} \approx 50\%$;
- $\beta = 2 \rightarrow \beta\sqrt{R} = 63$, $P\{W > 0\} \approx 2\%$.

Erlang-C Queue: ED Regime

What if service goal is $E[W] \leq C$?

Assume $n = R + \gamma$, $\gamma > 0$. Then

1. $n \cdot (1 - \rho) = \gamma$,
2. $P\{W > 0\} \approx 1$,
3. $W \stackrel{d}{\approx} \exp(\gamma\mu)$.

Example. (4CallCenters)

$E[S] = 6$ min ($\mu = 10$), $\gamma = 1$.

λ/hr	n	ρ	$P\{W > 0\}$	$E[W]$
10	2	50%	33.3%	2:00
50	6	83.3%	58.8%	3:32
250	26	96.2%	78.2%	4:42
1000	101	99%	88.3%	5:18
9000	901	99.9%	95.9%	5:45
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
∞	∞	1	1	6:00

$E[W|W > 0]$ remains constant (6:00).

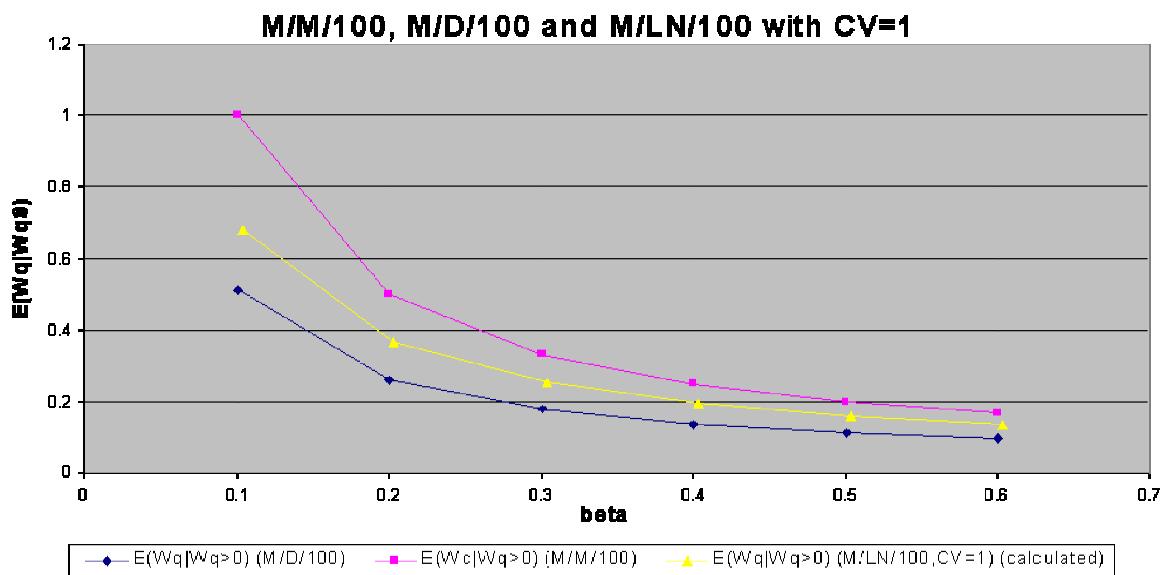
Decrease n by 1 \rightarrow queue “explodes”.

General Service Times in the QED Regime.

Mandelbaum & Schwartz, 2002.

Compare three $M/G/n$ systems with $E[S] = 1$ (simulation):

- $M/D/100$, deterministic service times;
- $M/M/100$, exponential service times;
- $M/LN/100$, lognormal service times, $C_s = \sigma(S)/E[S] = 1$.



Khintchine-Pollaczek approximation (n fixed, $\rho \uparrow 1$):

$$E[W|W > 0] \approx \frac{1}{n} \cdot \frac{E[S]}{1 - \rho} \cdot \frac{1 + C_s^2}{2}.$$

Not accurate for lognormal distribution!

Queues with abandonment – impact of service distribution seems smaller (Whitt, 2004).

Theoretical Motivation: Square-Root Staffing in Erlang-A

Assume $\theta = \mu$.

QED staffing: $n \approx R + \beta\sqrt{R}$.

Fact. If $\theta = \mu$, number-in-system distributions of $M/M/n+M$ and $M/M/\infty$ are identical. (The same B&D process.)

$$\begin{aligned} P\{W(M/M/n+M) > 0\} &\stackrel{\text{PASTA}}{=} P\{L(M/M/n+M) \geq n\} \\ &\stackrel{\theta=\mu}{=} P\{L(M/M/\infty) \geq n\} \end{aligned}$$

From lecture on classical queues:

$$L(M/M/\infty) \sim \text{Poisson}(R).$$

For large R

$$L_{M/M/\infty} \stackrel{d}{\approx} \text{Normal}(R, R) \stackrel{d}{\approx} R + Z\sqrt{R}.$$

Hence,

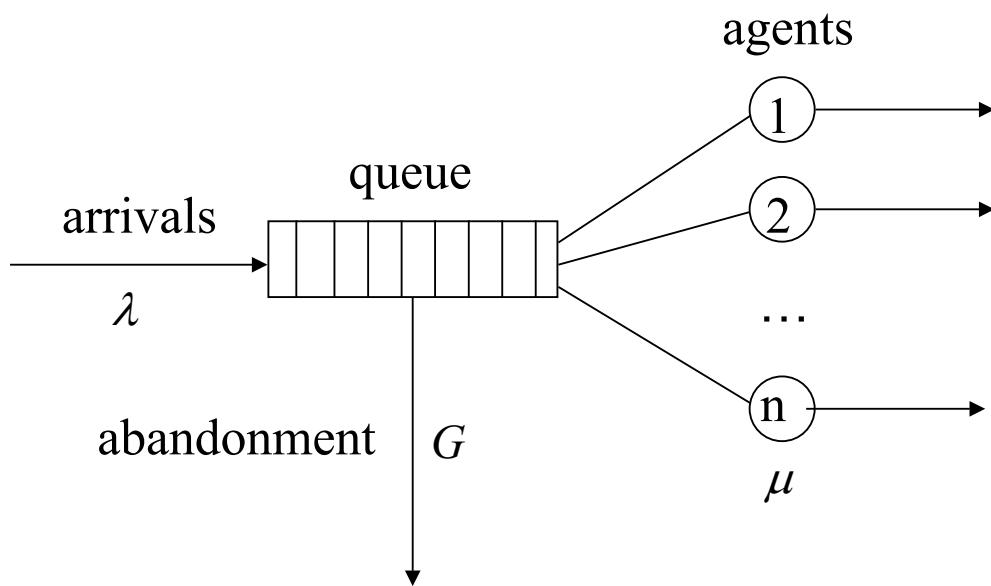
$$P\{W > 0\} \approx P\left\{Z \geq \frac{n - R}{\sqrt{R}}\right\} \approx \bar{\Phi}(\beta).$$

Solution for $\theta \neq \mu$: Garnett, Mandelbaum & Reiman, 2002.

But we consider more general model.

M/M/n+G Queue

- λ – Poisson arrival rate.
- μ – Exponential service rate.
- n service agents.
- G – Patience distribution.



Exact results:

- Baccelli and Hebuterne (1981) – probability to abandon, distribution of offered wait:
- Brandt and Brandt (1999, 2002) – number-in-system and waiting time distributions.
- Mandelbaum, Zeltyn (2004) – extensive list of performance measures.

M/M/n+G Queue: Calculation of Performance Measures

Building blocks:

$$H(x) \triangleq \int_0^x \bar{G}(u)du ,$$

where $\bar{G}(\cdot)$ is survival function of patience time.

$$\begin{aligned} J &\triangleq \int_0^\infty \exp \{ \lambda H(x) - n\mu x \} dx , \\ J_1 &\triangleq \int_0^\infty x \cdot \exp \{ \lambda H(x) - n\mu x \} dx , \\ J_H &\triangleq \int_0^\infty H(x) \cdot \exp \{ \lambda H(x) - n\mu x \} dx , \\ J(t) &\triangleq \int_t^\infty \exp \{ \lambda H(x) - n\mu x \} dx . \\ J_1(t) &\triangleq \int_t^\infty x \cdot \exp \{ \lambda H(x) - n\mu x \} dx , \\ J_H(t) &\triangleq \int_t^\infty H(x) \cdot \exp \{ \lambda H(x) - n\mu x \} dx . \end{aligned}$$

Finally,

$$\mathcal{E} \triangleq \frac{\sum_{j=0}^{n-1} \frac{1}{j!} \left(\frac{\lambda}{\mu}\right)^j}{\frac{1}{(n-1)!} \left(\frac{\lambda}{\mu}\right)^{n-1}} .$$

Erlang-A: Substitute $\bar{G}(u) = e^{-\theta u}$,

$$H(x) = \frac{1}{\theta} \cdot (1 - e^{-\theta x}) .$$

Performance measures calculated via building blocks:

$P\{Ab\}$ – probability to abandon, $P\{Sr\}$ – probability to be served,
 W – waiting time, V – offered wait,
 Q – queue length.

$$\begin{aligned}
P\{V > 0\} &= \frac{\lambda J}{\mathcal{E} + \lambda J}, \\
P\{W > 0\} &= \frac{\lambda J}{\mathcal{E} + \lambda J} \cdot \bar{G}(0), \\
P\{Ab\} &= \frac{1 + (\lambda - n\mu)J}{\mathcal{E} + \lambda J}, \\
P\{Sr\} &= \frac{\mathcal{E} + n\mu J - 1}{\mathcal{E} + \lambda J}, \\
E[V] &= \frac{\lambda J_1}{\mathcal{E} + \lambda J}, \\
E[W] &= \frac{\lambda J_H}{\mathcal{E} + \lambda J}, \\
E[Q] &= \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J}, \\
E[W \mid Ab] &= \frac{J + \lambda J_H - n\mu J_1}{(\lambda - n\mu)J + 1}, \\
E[W \mid Sr] &= \frac{n\mu J_1 - J}{\mathcal{E} + n\mu J - 1}, \\
P\{W > t\} &= \frac{\lambda \bar{G}(t) J(t)}{\mathcal{E} + \lambda J}, \\
E[W \mid W > t] &= \frac{J_H(t) - (H(t) - t\bar{G}(t)) \cdot J(t)}{\bar{G}(t) J(t)}, \\
P\{Ab \mid W > t\} &= \frac{\lambda - n\mu - G(t)}{\lambda \bar{G}(t)} + \frac{\exp\{\lambda H(t) - n\mu t\}}{\lambda \bar{G}(t) J(t)}.
\end{aligned}$$

M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.

Density of patience time: $g = \{g(x), x \geq 0\}$, where $g(0) \triangleq g_0 > 0$.

Fix service rate μ .

Let arrival rate $\lambda \rightarrow \infty$ and

$$n = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + o(\sqrt{\lambda}), \quad -\infty < \beta < \infty.$$

Building blocks:

$$\begin{aligned} J &= \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{\mu g_0}} \cdot \frac{1}{h(\hat{\beta})} + o\left(\frac{1}{\sqrt{n}}\right), \\ \mathcal{E} &= \frac{\sqrt{n}}{h(-\beta)} + o(\sqrt{n}), \\ J_1 &= \frac{1}{n\mu g_0} \left[1 - \frac{\hat{\beta}}{h(\hat{\beta})} \right] + o\left(\frac{1}{n}\right), \end{aligned}$$

where

$$\hat{\beta} \triangleq \beta \sqrt{\frac{\mu}{g_0}},$$

$h(\cdot)$ – hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace method for asymptotic calculation of integrals.

Erlang-A: Substitute $\theta = g_0$.

Main case: performance measures

- Probability of wait converges to constant:

$$P\{W > 0\} \sim \left[1 + \sqrt{\frac{g_0}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)} \right]^{-1}.$$

Check: $g_0 = \mu \Rightarrow P\{W > 0\} = \bar{\Phi}(\beta)$.

- Probability to abandon decreases at rate $\frac{1}{\sqrt{n}}$:

$$P\{\text{Ab}|W > 0\} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot [h(\hat{\beta}) - \hat{\beta}] + o\left(\frac{1}{\sqrt{n}}\right).$$

- Average wait decreases at rate $\frac{1}{\sqrt{n}}$:

$$E[W|W > 0] = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{g_0 \mu}} \cdot [h(\hat{\beta}) - \hat{\beta}] + o\left(\frac{1}{\sqrt{n}}\right).$$

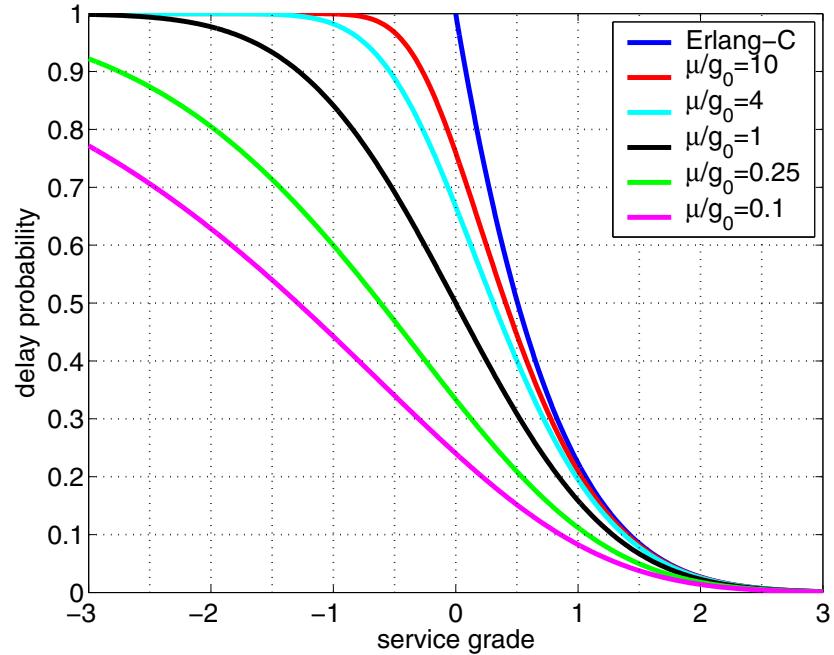
- Ratio between $P\{\text{Ab}\}$ and $E[W]$ converges to patience density at the origin:

$$\boxed{\frac{P\{\text{Ab}\}}{E[W]} \sim g_0}$$

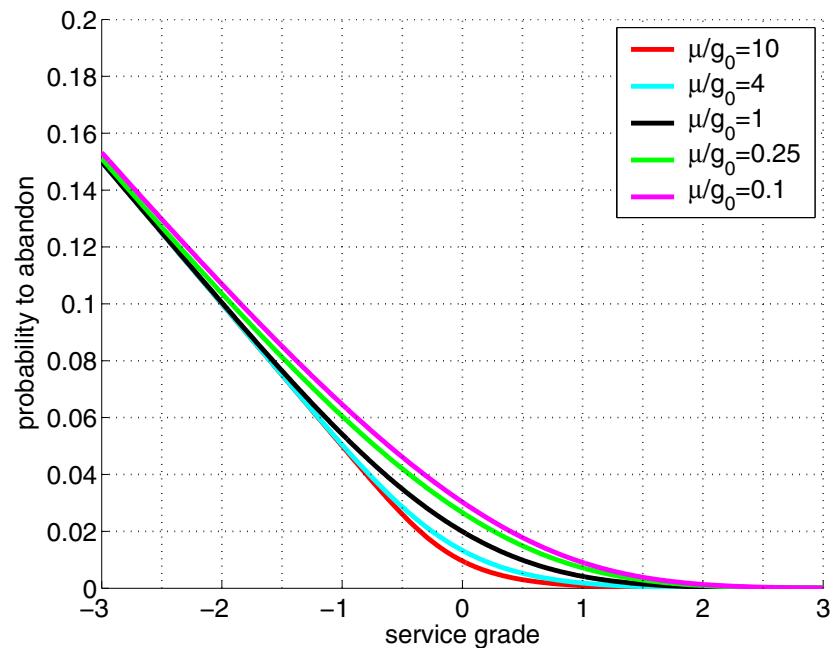
- Asymptotic distribution of wait:

$$P\left\{ \frac{W}{E[S]} > \frac{t}{\sqrt{n}} \mid W > 0 \right\} \sim \frac{\bar{\Phi}\left(\hat{\beta} + \sqrt{\frac{g_0}{\mu}} \cdot t\right)}{\bar{\Phi}(\hat{\beta})}, \quad t \geq 0.$$

QED Regime: Delay Probability



QED Regime: Probability to Abandon (n=400)



Note convergence to $-\beta/\sqrt{n}$ for large negative β .

QED Operational Regime: Discussion

Points of view.

- **Customers:** $P\{W > 0\} \approx \alpha$, $P\{\text{Ab}\} \approx \frac{\gamma}{\sqrt{n}}$;
- **Agents:** Offered load per Server $= \frac{R}{n} \approx 1 - \frac{\beta}{\sqrt{n}}$;
- **Managers:** $n \approx R + \beta\sqrt{R}$.

$\beta = 0$: right answer for wrong reasons.

(Common in stochastic-ignorant operations.)

If $\beta = 0$, QED staffing level:

$$n = \frac{\lambda}{\mu} = R.$$

Equivalent to deterministic rule: assign number of agents equal to *offered load*.

Erlang-C: queue “explodes”.

M/M/n+G: assume $\mu = g_0$. Then $P\{W = 0\} \approx 50\%$.

If $n = 100$, $P\{\text{Ab}\} \approx 4\%$, and $E[W] \approx 0.04 \cdot E[S]$.

Overall, good service level.

QED Operational Regime: Special Cases

According to patience distribution.

- **Patience density vanishing near the origin.**

$(k-1)$ derivatives at the origin are zero, the k -th derivative is positive.

Examples: Erlang, Phase-type.

- If $\beta > 0$, wait similar to Erlang-C. $P\{Ab\}$ decreases at $n^{-(k+1)/2}$ rate.
- If $\beta < 0$, almost all customers delayed, $E[W] \rightarrow 0$ slowly.
 $P\{Ab\} \approx -\beta/\sqrt{n}$.
- If $\beta = 0$, intermediate behavior.

- **Delayed distribution of patience.**

Customers do not abandon till $c > 0$.

Examples: Delayed exponential, deterministic.

Similar to the previous case. For $\beta < 0$, wait converges to c .

- **Balking.**

Customer, not served immediately, balks with probability $P\{Blk\}$.

Example. M/M/ n/n (Erlang-B).

- $P\{W > 0\}$ decreases at rate $1/\sqrt{n}$;
- $P\{Ab|V > 0\} \approx P\{Blk\}$;
- $P\{Ab\} \approx h(-\beta)/\sqrt{n}$, asymptotic loss probability for Erlang-B.

- **Scaled balking.**

Customer, not served immediately, balks with probability p_b/\sqrt{n} .

Results are similar to the main case.

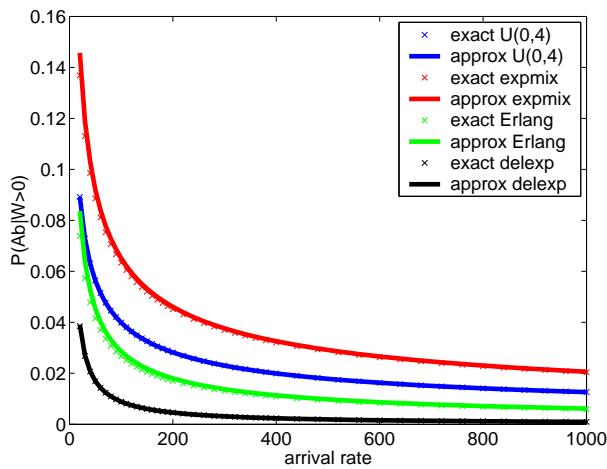
QED Regime: Numerical Experiments–1

Patience distributions:

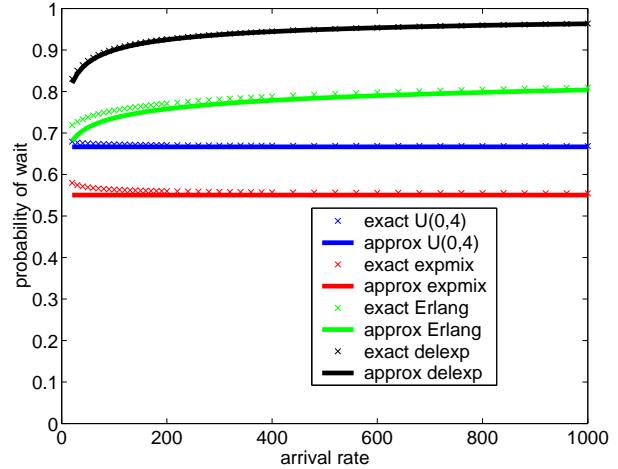
- Uniform on $[0,4]$, $g_0 = 0.25$;
- Hyperexponential, 50-50% mixture of $\exp(\text{mean}=1)$ and $\exp(\text{mean}=1/3)$, $g_0 = 2/3$;
- Erlang, two $\exp(\text{mean}=1)$ phases, $g_0 = 0$;
- Delayed exponential, $1 + \exp(\text{mean}=1)$, $g_0 = 0$.

Service grade $\beta = 0$.

Probability to abandon given delay
vs. arrival rate



Probability of wait
vs. arrival rate

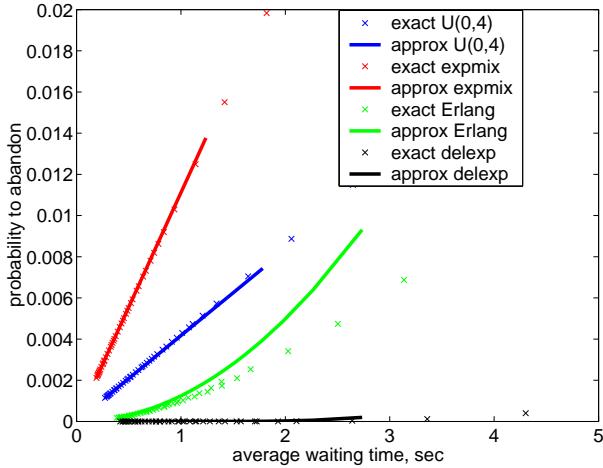


$P\{\text{Ab}\}$ convergence rates: $1/\sqrt{n}$, $1/\sqrt{n}$, $n^{-2/3}$, \exp , respectively.

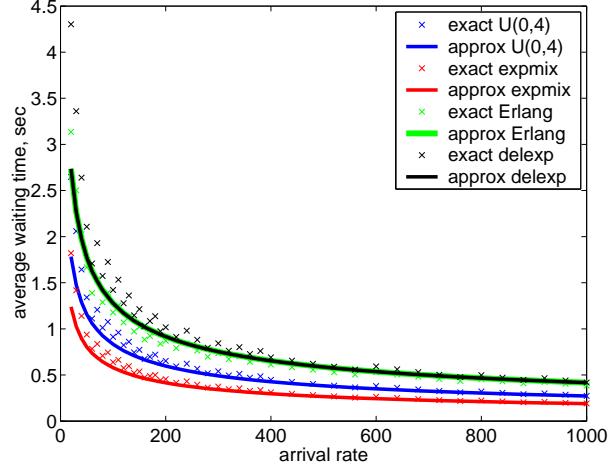
QED Regime: Numerical Experiments–2

Service grade $\beta = 1$.

Probability to abandon
vs. average waiting time



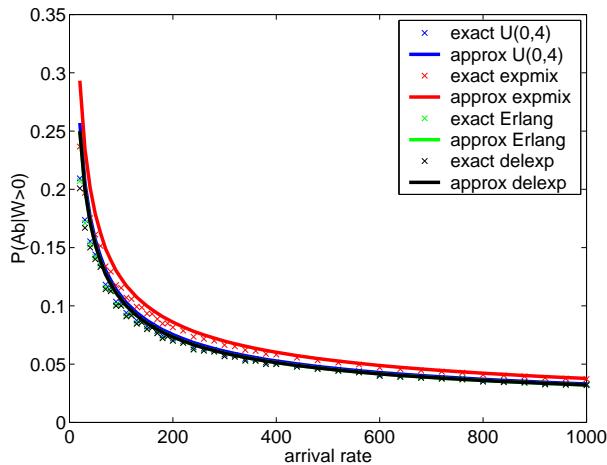
Average waiting time
vs. arrival rate



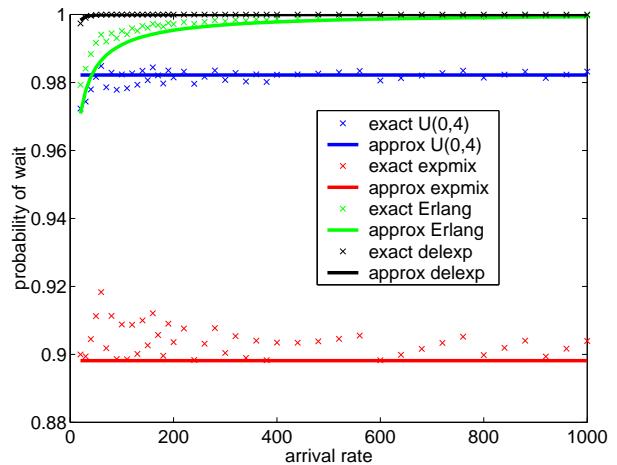
Note linear patterns in the first plot.

Service grade $\beta = -1$.

Probability to abandon given delay
vs. arrival rate



Probability of wait
vs. arrival rate



Convergence to $-\beta/\sqrt{n}$ for probability to abandon.

M/M/n+G: QD Operational Regime.

Density of patience time at the origin $g_0 > 0$.

Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 + \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance measures

- $P\{W > 0\}$ decreases exponentially on n .
- Probability to abandon of delayed customers:

$$P\{\text{Ab}|W > 0\} = \frac{1}{n} \cdot \frac{1 + \gamma}{\gamma} \cdot \frac{g_0}{\mu} + o\left(\frac{1}{n}\right).$$

- Average wait of delayed customers:

$$E[W | W > 0] = \frac{1}{n} \cdot \frac{1 + \gamma}{\gamma} \cdot \frac{1}{\mu} + o\left(\frac{1}{n}\right).$$

- Linear relation between $P\{\text{Ab}\}$ and $E[W]$.

$$\boxed{\frac{P\{\text{Ab}\}}{E[W]} \sim g_0}$$

- Asymptotic distribution of wait:

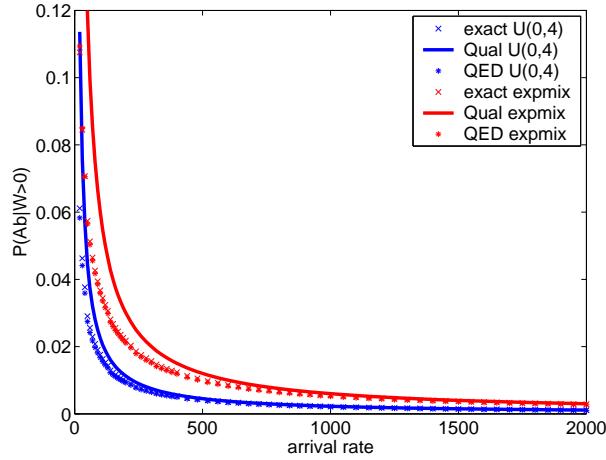
$$P\left\{ \frac{W}{E(S)} > \frac{t}{n} \mid W > 0 \right\} \sim e^{-(1-\rho)t}, \quad \rho = \frac{\lambda}{n\mu}.$$

QD Regime: Numerical Experiments

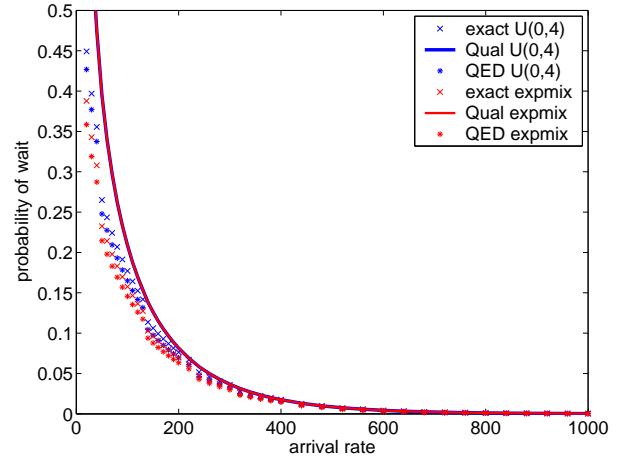
Patience distributions: Uniform, hyperexponential.

Service grade $\gamma = 1/9$, $\rho = 0.9$.

Probability to abandon given delay



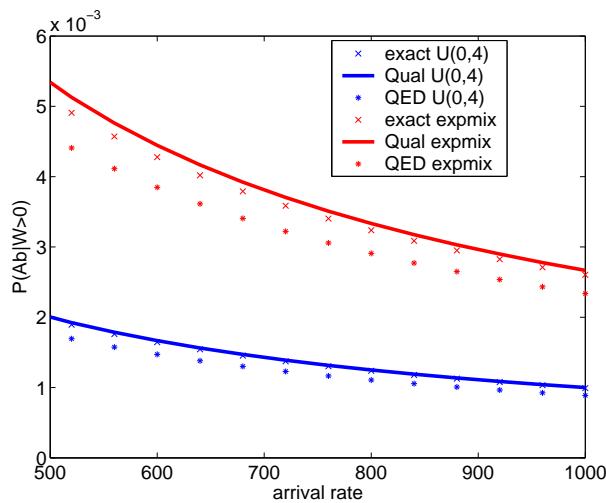
Probability of wait



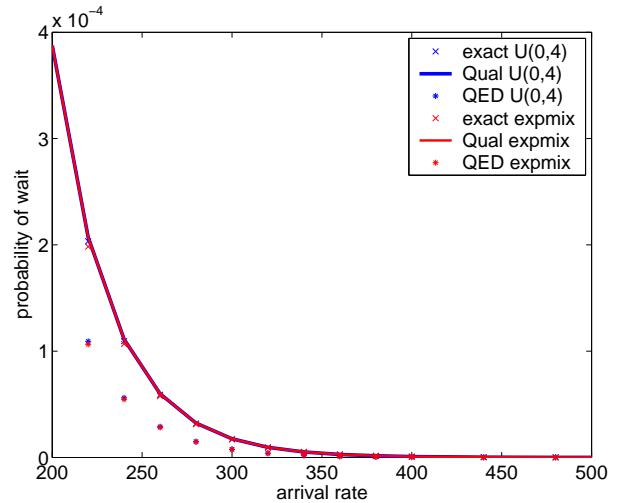
Overall, QED approximations are better than QD.

Service grade $\gamma = 0.25$, $\rho = 0.8$. Large arrival rate.

Probability to abandon given delay



Probability of wait



M/M/n+G: ED Operational Regime.

Assume $G(x) = \gamma$ has a unique solution x^* and $g(x^*) > 0$.

Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 - \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance measures

- $P\{W = 0\}$ decreases exponentially on n .
- Probability to abandon converges to:

$$P\{\text{Ab}\} \sim \gamma \approx 1 - \frac{1}{\rho}.$$

- Offered wait converges to x^* :

$$E[V] \sim x^*, \quad V \xrightarrow{p} x^*.$$

- Distribution G^* of $\min(x^*, \tau)$

$$G^*(x) = \begin{cases} G(x)/\gamma, & x \leq x^* \\ 1, & x > x^* \end{cases}$$

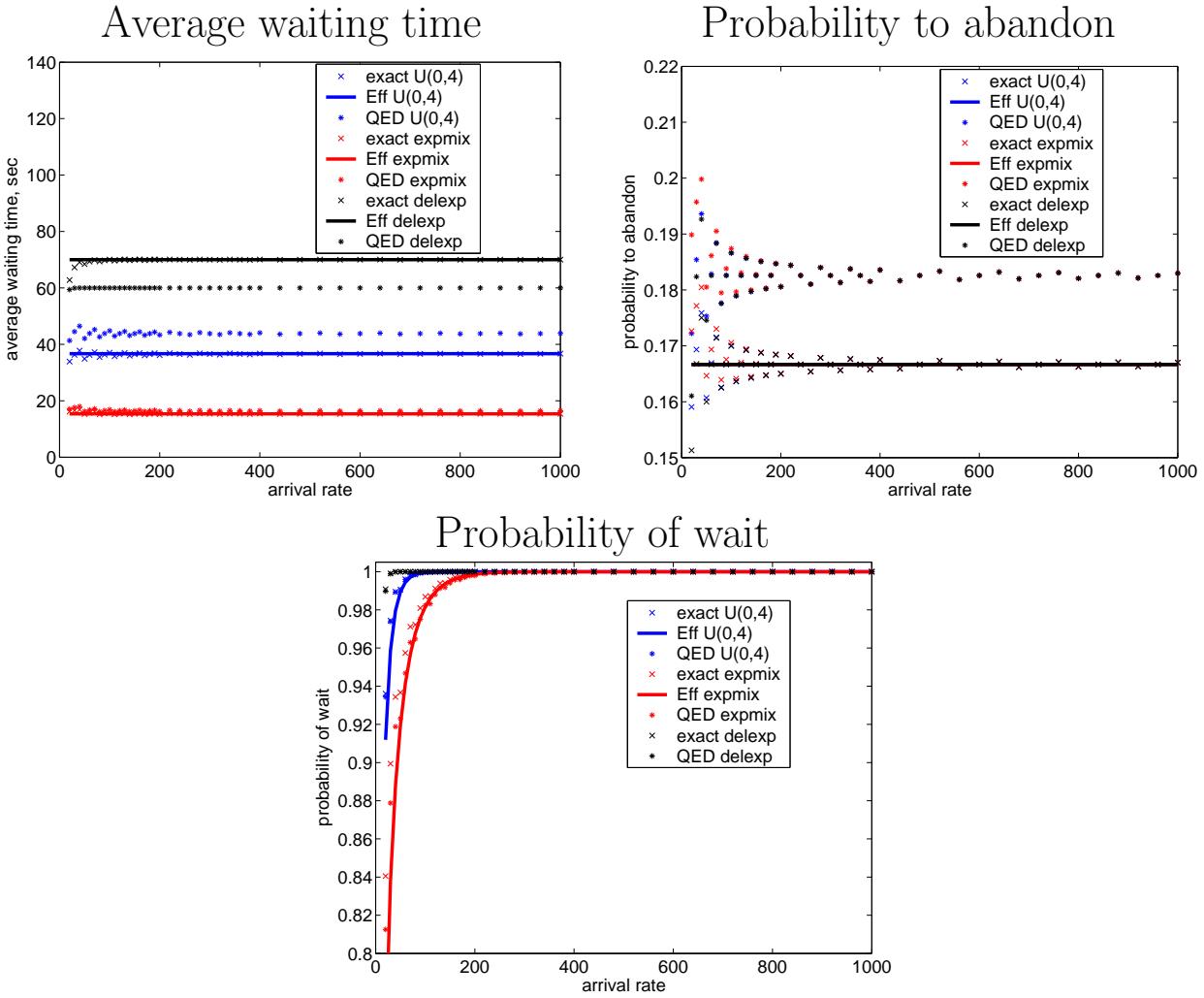
Asymptotic distribution of wait:

$$W \xrightarrow{w} G^*, \quad E[W] \rightarrow E[\min(x^*, \tau)].$$

ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed exponential.

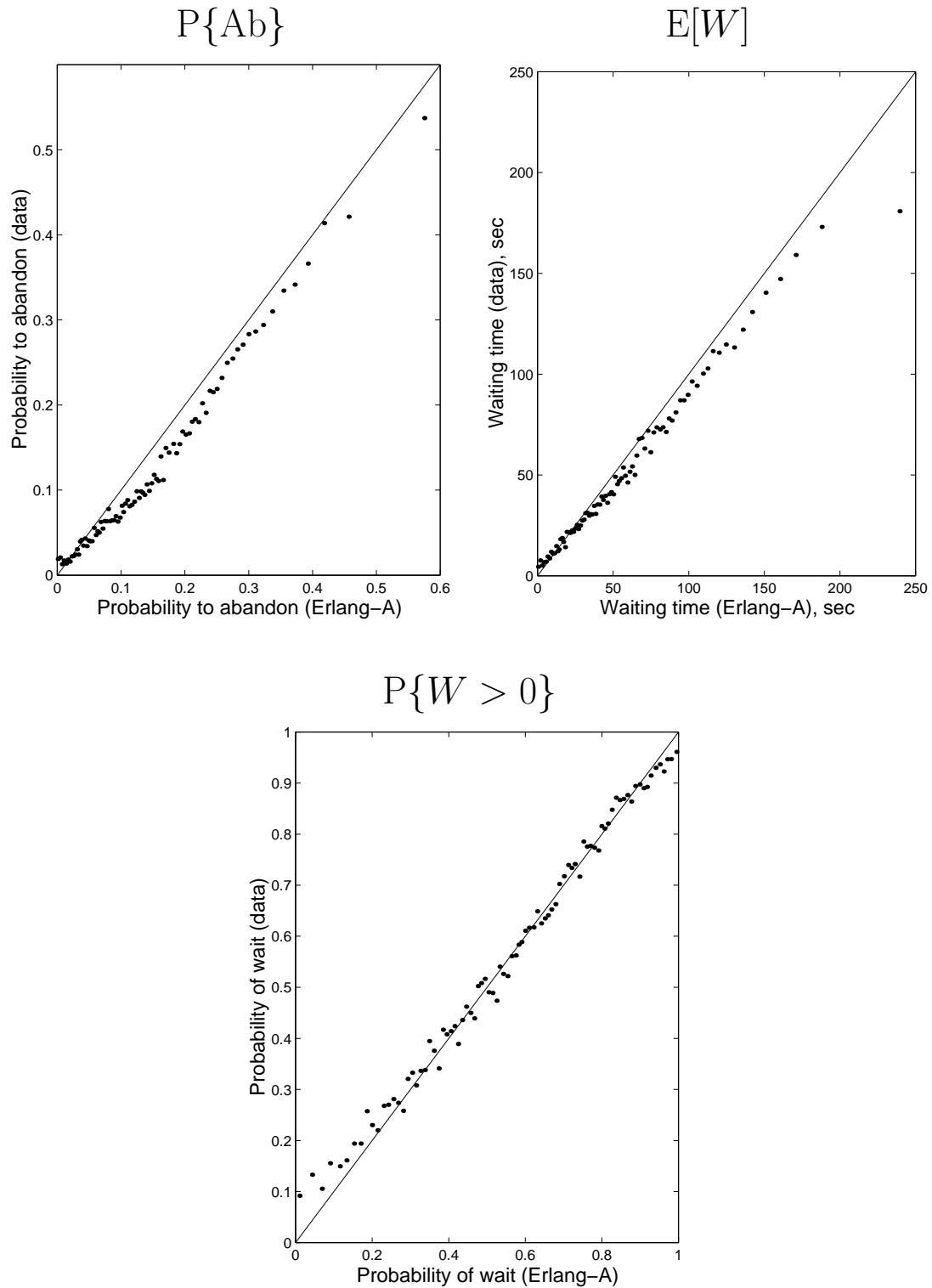
Service grade $\gamma = 1/6$, $\rho = 1.2$.



Fluid-limit ED approximations for $P\{\text{Ab}\}$ and $E[W]$ are better than QED.

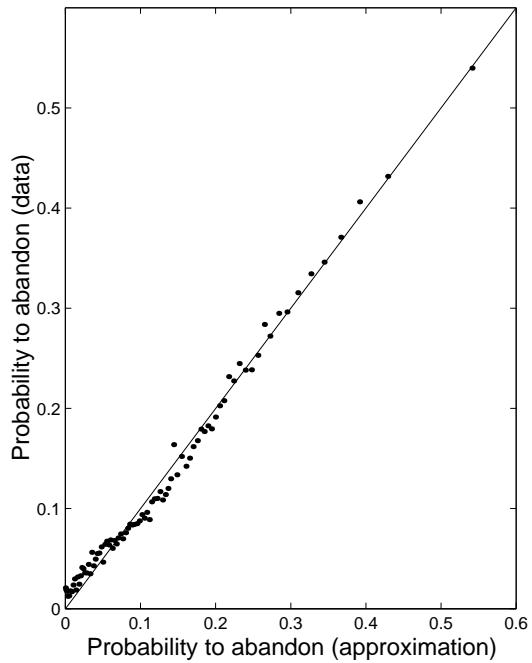
Fitting Erlang-A: Small Call Center

Erlang-A Formulae vs. Data Averages (Israeli Bank)

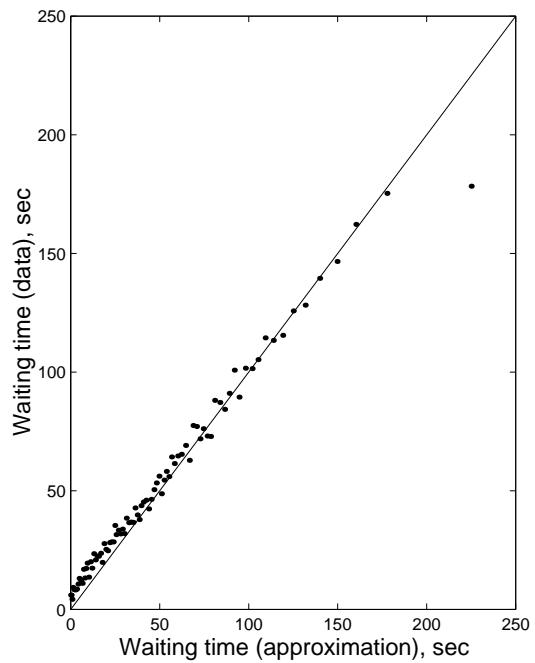


Erlang-A Approximations vs. Data Averages

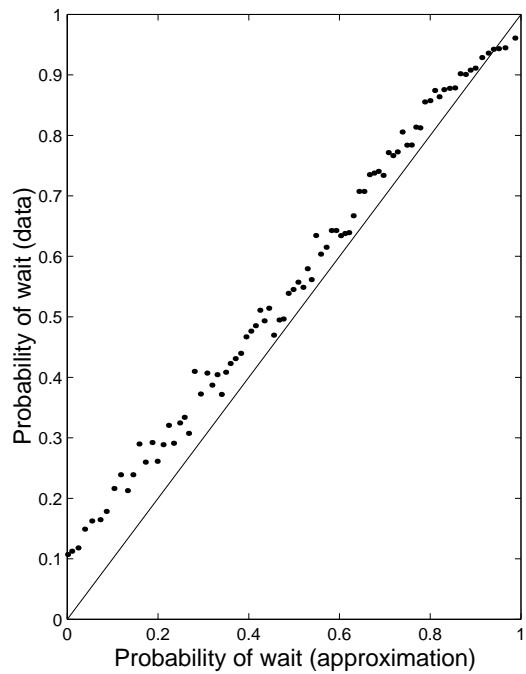
$P\{Ab\}$



$E[W]$



$P\{W > 0\}$



Fitting Erlang-A: Small Call Center

Comments and conclusions

- Points: hourly data vs. Erlang-A output;
- Formulae with continuous n used;
- Patience estimated via $P\{Ab\}/E[W]$ relation;
- Erlang-A estimates – close upper bounds;
- Erlang-A QED approximations – even better fit than exact formulae.

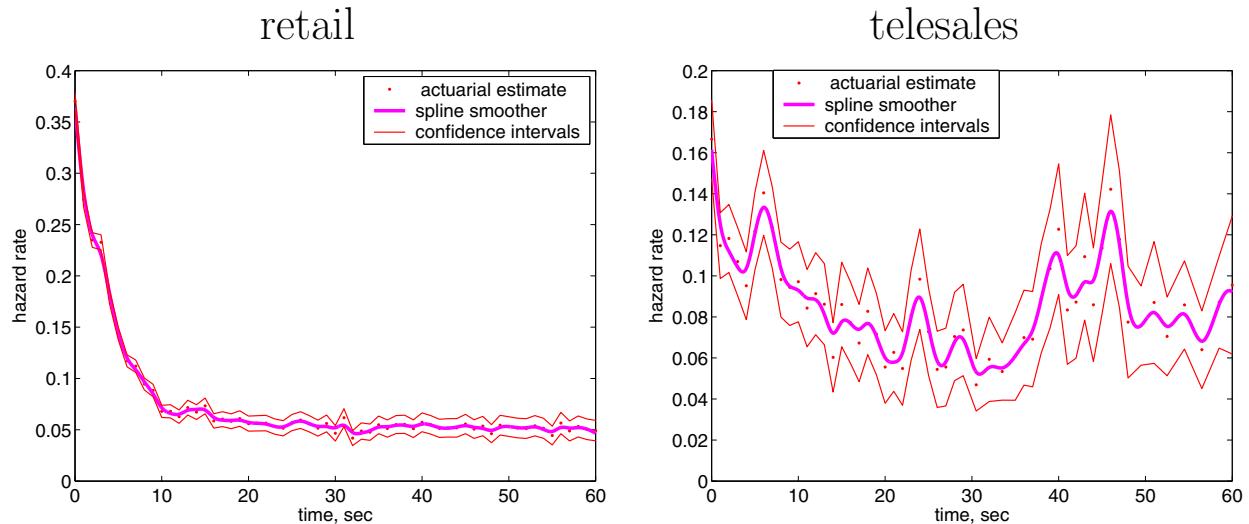
Fitting M/M/n+G: Large Call Center

Large US bank.

Daily volume 70,000 calls; 900-1200 agents positions on weekdays.
Two service types analyzed for 5 months.

	Calls	$E[S]$	$P\{W > 0\}$	$P\{Ab\}$	$E[W]$
Retail	3,451,743	224.6 sec	30.6%	1.16%	6.33 sec
Telesales	349,371	453.9 sec	24.3%	1.76%	9.66 sec

Estimates of hazard rate



Problems/Challenges:

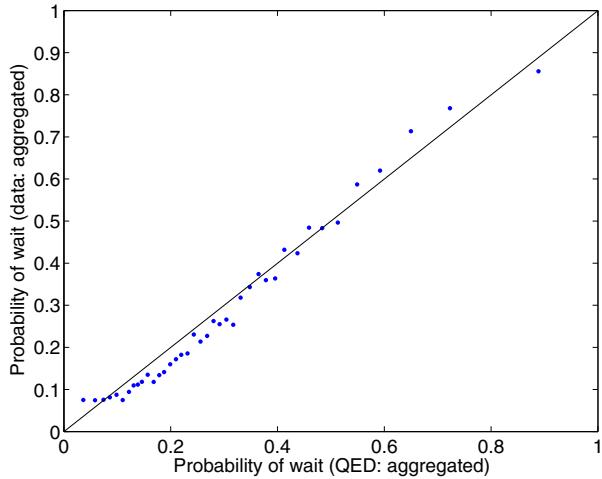
- Reliable data for number of agents n unavailable;
- Significant variability of hazard rate/density near the origin.

Approach: Estimate n via some performance measure ($P\{Ab\}$).
Fit other performance measure(s).

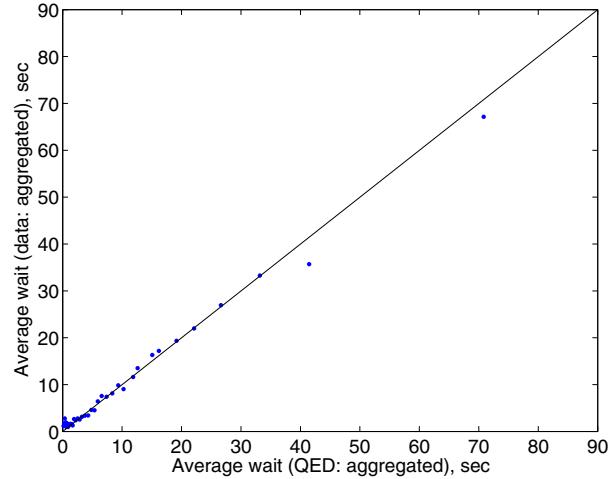
Substitute $g_0 :=$ estimate of $h(0) \Rightarrow$ unsatisfactory fit.

Solution: Substitute $g_0 :=$ overall $P\{Ab\}/E[W]$
to QED formulae.

Retail. $P\{W > 0\}$

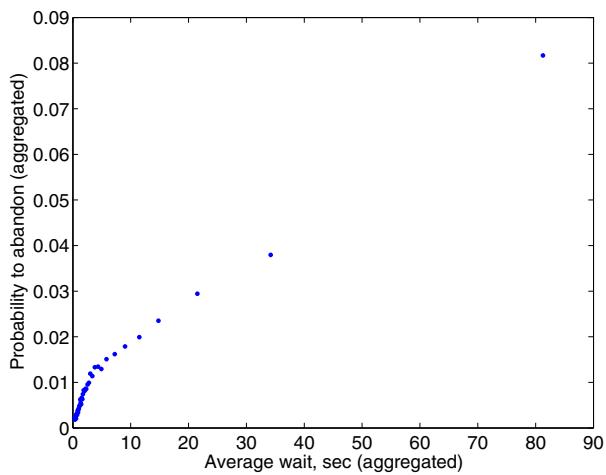


Telesales. $E[W]$

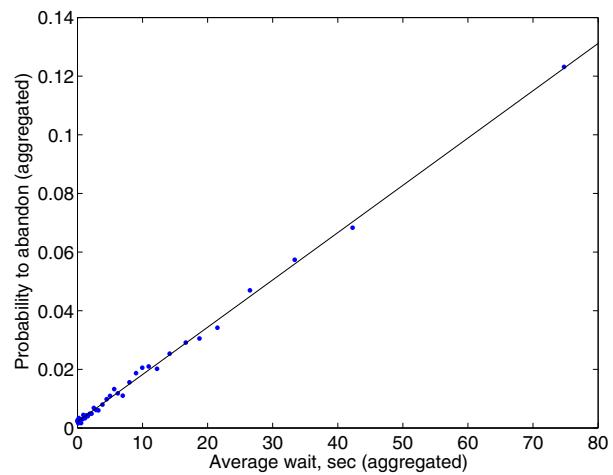


$P\{Ab\}/E[W]$ relation

Retail



Telesales



For telesales, hazard variability near the origin much smaller.

Hence, pattern much closer to straight line.

Dimensioning and QED regime

Erlang-C: Borst, Mandelbaum & Reiman, 2004.

Erlang-A, M/M/n+G with Zeltyn, in progress.

$$\text{Cost} = c \cdot n + d \cdot \lambda \mathbb{E}[W],$$

c – cost of staffing;

d – cost of delay (cost of abandonment can be considered too);

Erlang-C. Optimal staffing level:

$$n^* \approx R + y^*(r)\sqrt{R}, \quad r = \text{delay cost/staffing cost}.$$

$y^*(r)$ = optimal service grade, independent of λ :

$$y^*(r) = \arg \min_{0 < y < \infty} \left\{ y + \frac{r \cdot P_w(y)}{y} \right\},$$

where

$$P_w(y) = \left[1 + \frac{y}{h(-y)} \right]^{-1}.$$

Erlang-A. Optimal staffing level (conjecture):

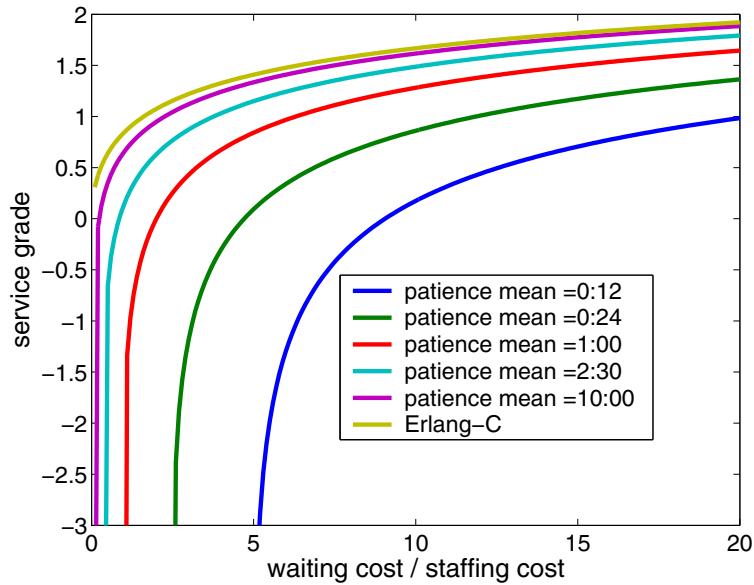
$$n^* \approx R + y^*(r; s)\sqrt{R}, \quad s = \sqrt{\mu/\theta},$$

$$y^*(r; s) = \arg \min_{-\infty \leq y < \infty} \{ y + r \cdot P_w(y; s) \cdot s \cdot [h(ys) - ys] \},$$

where

$$P_w(y; s) = \left[1 + \frac{h(ys)}{sh(-y)} \right]^{-1}.$$

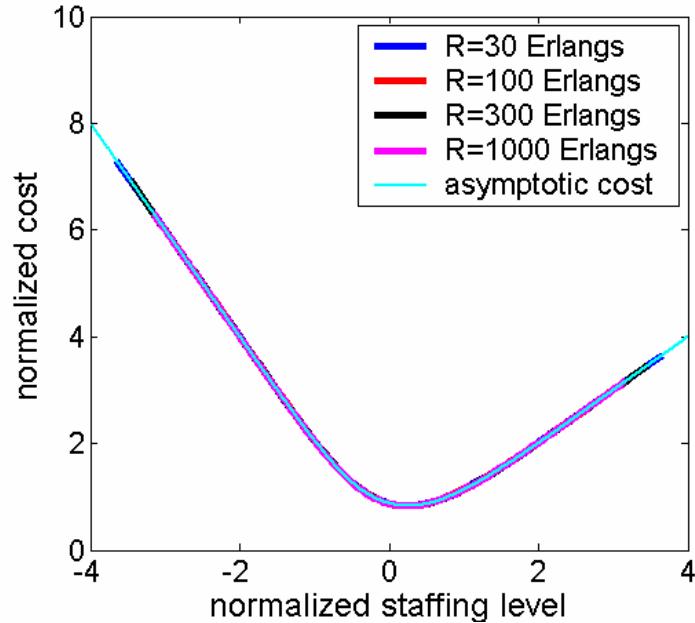
Optimal service grade. $E[S] = 1$ min.



- $r < \theta/\mu$ implies that “no service” is optimal.
- $r \leq 20 \Rightarrow y^* < 2$; $r \leq 500 \Rightarrow y^* < 3$!
- Numerical tests exhibit **remarkable** accuracy.

Actual Cost vs. Asymptotic Cost

$$\mu = 1, \theta = 1/3$$



$$\text{Normalized staffing level} = (n - R)/\sqrt{R};$$

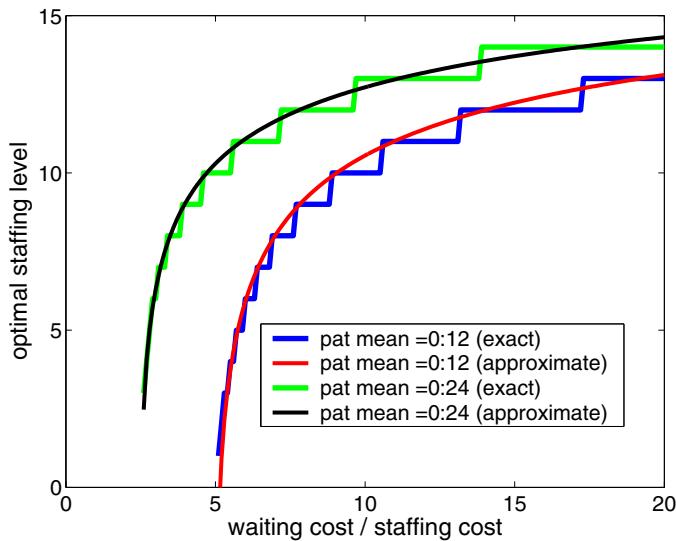
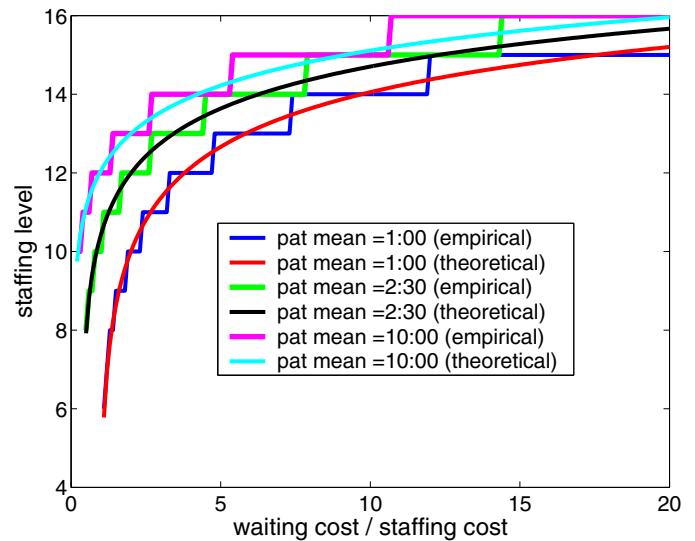
$$\text{Normalized cost} = (\text{cost} - cR)/\sqrt{R};$$

$$\text{Asymptotic cost} = c \cdot y + d \cdot P_w(y; s) \cdot s \cdot [h(ys) - ys],$$

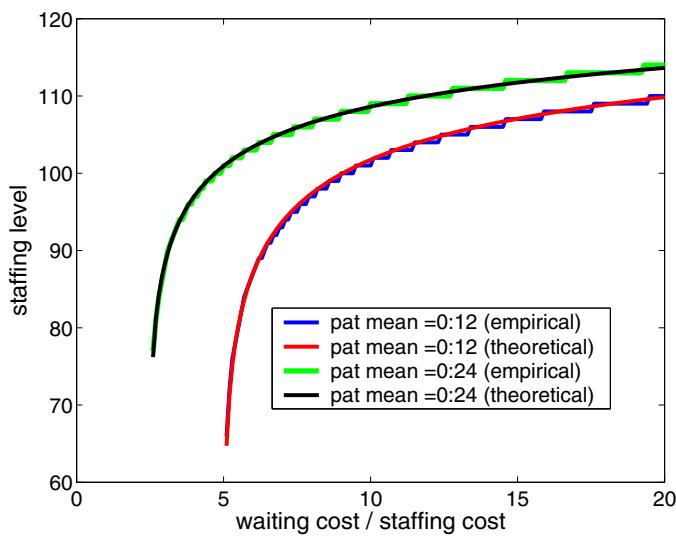
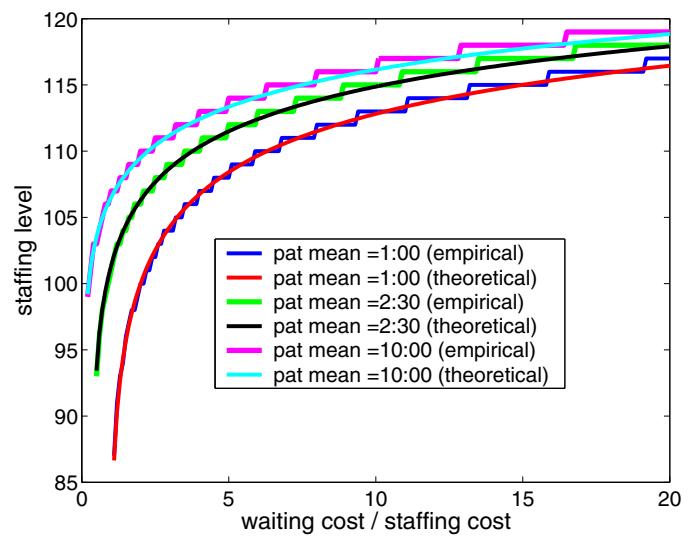
where $y = \text{QED service grade}$.

Erlang-A: Optimal Staffing

$$\lambda = 10, \mu = 1$$



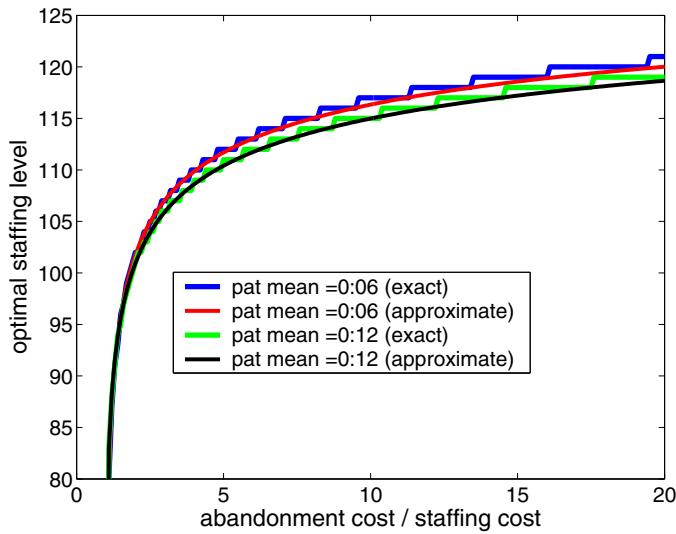
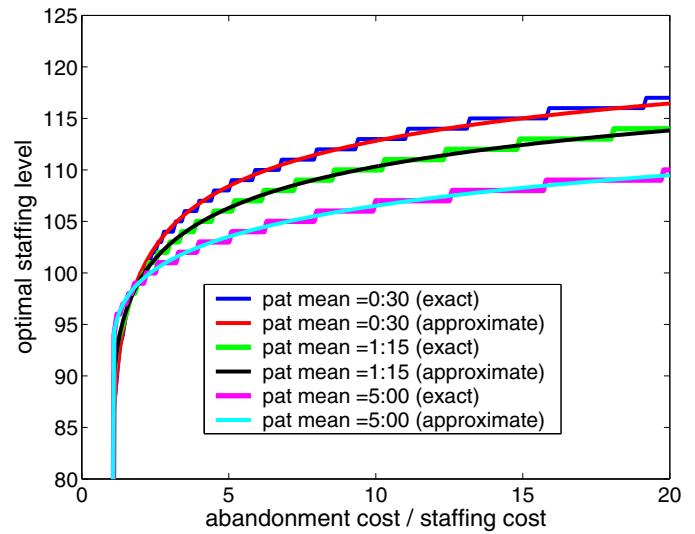
$$\lambda = 100, \mu = 1$$



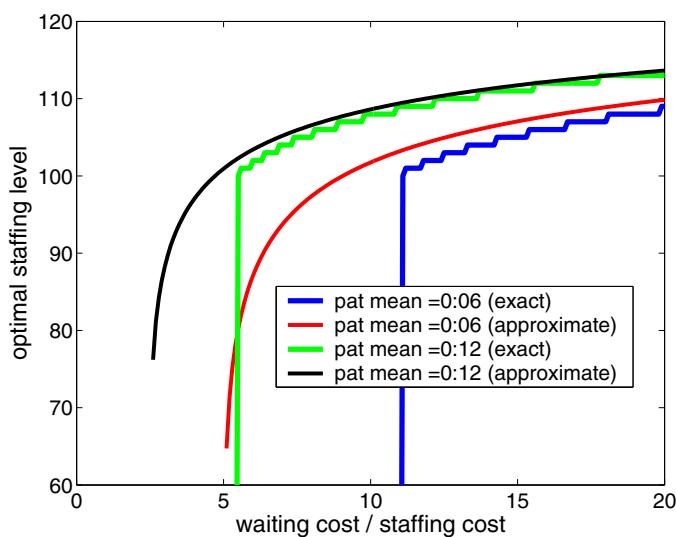
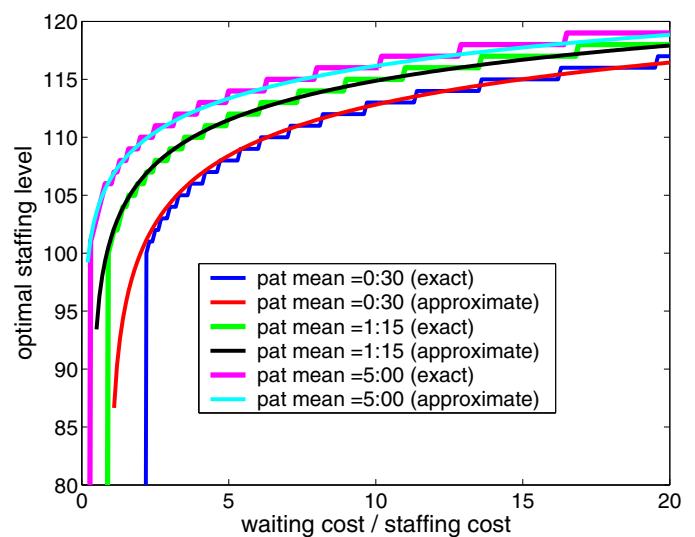
M/M/n+G: Optimal Staffing

Uniformly Distributed Patience

$$\text{Cost} = c \cdot n + d \cdot \lambda P\{\text{Ab}\}$$



$$\text{Cost} = c \cdot n + d \cdot \lambda E[W]$$



Conclusions

QED approximation: Careful balance of quality and efficiency.
Optimal staffing for linear staffing/waiting costs.

Can be performed using any software that provides the standard normal distribution (e.g. Excel). Works well for

- Number of servers n from 10's to 1000's;
- Agents highly utilized but not overloaded ($\sim 90\text{-}98\%$);
- Probability of delay 10-90%;
- Probability to abandon: 3-7% for small n , 1-4% for large n .

ED approximation: Useful for overloaded call centers.

Requires solving equation $G(x) = \gamma$, and integration (calculating $H(x^*)$). Works well for

- Number of servers $n \geq 100$.
- Agents very highly utilized (close to 100%);
- Probability of delay: more than 85%;
- Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance systems.

Additional Research Directions

Deterministic Service Times

- Jelenkovic, Mandelbaum and Momcilovic (2004) Heavy traffic limits for queues with many deterministic servers, *QUESTA*.

M/M/n/k Queue

- Massey and Wallace (2004) An Optimal Design of the M/M/C/K Queue for Call Centers, to appear in *QUESTA*.

Time-Dependent Arrival Rate

- Jennings, Mandelbaum, Massey and Whitt (1996) Server staffing to meet time-varying demand, *Management Science*.
- Feldman, Mandelbaum, Massey and Whitt (2004) Staffing of time-varying queues to achieve time-stable performance, submitted to *Management Science*.

Skills-Based Routing

- Gurvich, Armony and Mandelbaum (2004) Staffing and control of large-scale service systems with multiple customer classes and fully flexible servers, working paper.
- Armony and Mandelbaum (2004) Design, staffing and control of large service systems: The case of a single customer class and multiple server types, working paper.

ED Operational Regime

- Bassamboo, Harrison and Zeevi (2004) Design and Control of a Large Call Center: Asymptotic Analysis of an LP-based Method.
- Harrison and Zeevi (2004) A method for staffing large call centers using stochastic fluid models, to appear in *MSOM*.
- Whitt (2004) Fluid Models for Many-Server Queues with Abandonments, submitted to *Operations Research*.

Uncertainty about Arrival Rate

- Whitt (2004) Staffing a Call Center with Uncertain Arrival Rate and Absenteeism, submitted to *Management Science*.