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Abstract of the main paper

The subject of the present research is the M/M/n+G queue. This queue is characterized by

Poisson arrivals at rate λ, exponential service times at rate µ, n service agents and generally

distributed patience times of customers. The model is applied in the call center environment,

as it captures the tradeoff between operational efficiency (staffing cost) and service quality

(accessibility of agents).

In our research, three asymptotic operational regimes for medium to large call centers are

studied. These regimes correspond to the following three staffing rules, as λ and n increase

indefinitely and µ held fixed:

Efficiency-Driven (ED): n ≈ (λ/µ) · (1− γ) , γ > 0,

Quality-Driven (QD): n ≈ (λ/µ) · (1 + γ) , γ > 0, and

Quality and Efficiency Driven (QED): n ≈ λ/µ + β
√

λ/µ , −∞ < β < ∞.

In the ED regime, the probability to abandon and average wait converge to constants. In

the QD regime, we observe a very high service level at the cost of possible overstaffing. Finally,

the QED regime carefully balances quality and efficiency: agents are highly utilized, but the

probability to abandon and the average wait are small (converge to zero at rate 1/
√

n).

Numerical experiments demonstrate that, for a wide set of system parameters, the QED

formulae provide excellent approximation for exact M/M/n+G performance measures. The

much simpler ED approximations are still very useful for overloaded queueing systems.

Finally, empirical findings have demonstrated a robust linear relation between the fraction

abandoning and average wait. We validate this relation, asymptotically, in the QED and QD

regimes.



1 Summary of the Internet Supplement

The goal of this supplement is to elaborate on material presented in the main paper. To facilitate

the reading, statements of results from the main paper are repeated here. (Note that some results

are in fact expanded in the Supplement.) Table 1 displays the correspondence between results;

for example, Theorem 4.1 of the main paper is Theorem 6.1 in the Supplement.

Table 1: Relation between the statements from the main paper and the Internet
Supplement

Main Paper Internet Supplement
Theorem 4.1 Theorem 6.1
Theorem 4.2 Theorem 6.6
Theorem 4.3 Theorem 6.7
Theorem 5.1 Theorem 7.1
Theorem 6.1 Theorem 8.1
Lemma 10.1 Lemma 4.1
Lemma 11.1 Lemma 6.1

In Section 2 we briefly describe the results of Baccelli and Hebuterne [2] that are used in

the following proofs. Sections 3 and 4 contain proofs of the results from Sections 9 and 10

of the main paper, respectively. Section 5 discusses relevant properties of the hazard rate of

the standard normal random variable. Sections 6-8 contain proofs and additional numerical

experiments for the three operational regimes: the QED, Quality-Driven (QD) and Efficiency-

Driven (ED), respectively. We also study two additional special cases in the framework of the

QED regime. (See Subsections 6.1.2 and 6.1.3.) In both cases, the density of the patience

distribution vanishes at the origin.

Then Section 9 explores the Economies-of-Scale (EOS) problem for the three regimes. Specif-

ically, assuming that the arrival rate increases by a factor m > 1, we apply the corresponding

operational regime and check how the most important performance measures change in these

circumstances. Finally, in Section 10 our models are applied to call center data of a large bank

in the USA.

2 Summary of Baccelli-Hebuterne’s results on the M/M/n+G
queue

The analysis in [2] is based on a Markov process {(N(t), η(t)), t ≥ 0}, where N(t) is the number

of busy agents and η(t) is the virtual offered waiting time (the offered wait of a virtual customer

1



that arrives at time t). Then the steady-state characteristics are defined by:
v(x) ∆= lim

t→∞
lim
ε→0

P{N(t) = n, x < η(t) ≤ x + ε}
ε

, x ≥ 0

πj
∆= lim

t→∞
P{N(t) = j, η(t) = 0}, 0 ≤ j ≤ n− 1

(2.1)

Here v(x) is the density of the virtual offered waiting time. The unique solution of the steady-

state equations is given by

πj =
(

λ

µ

)j 1
j!

π0 , 0 ≤ j ≤ n− 1 (2.2)

v(x) = λ πn−1 exp
{

λ

∫ x

0
Ḡ(u)du− nµx

}
, (2.3)

where

π0 =

[
1 +

λ

µ
+ · · ·+

(
λ

µ

)n−1 1
(n− 1)!

(1 + λJ)

]−1

, (2.4)

J
∆=
∫ ∞

0
exp

{
λ

∫ x

0
Ḡ(u)du− nµx

}
dx . (2.5)

Moreover, probability to abandon can be calculated by

P{Ab} =
(

1− nµ

λ

)1−
n−1∑
j=0

πj

+ πn−1 . (2.6)

3 The M/M/n+G queue: summary of performance measures

Here we summarize exact formulae for M/M/n+G performance measures. Recall the definitions

from the main paper.

M/M/n+G primitives.

The M/M/n+G model requires four input parameters:

λ – arrival rate,

µ – service rate,

n – number of agents,

G – patience distribution (Ḡ – survival function).

Building blocks.

Define H(x) ∆=
∫ x

0
Ḡ(u)du. Note that H(∞) = τ̄ , where τ̄ is the mean patience-time.

Introduce the integrals

J
∆=

∫ ∞

0
exp {λH(x)− nµx} dx , (3.1)
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J1
∆=

∫ ∞

0
x · exp {λH(x)− nµx} dx , (3.2)

JH
∆=

∫ ∞

0
H(x) · exp {λH(x)− nµx} dx . (3.3)

In addition, let

J(t) ∆=
∫ ∞

t
exp {λH(x)− nµx} dx , (3.4)

J1(t)
∆=

∫ ∞

t
x · exp {λH(x)− nµx} dx , (3.5)

JH(t) ∆=
∫ ∞

t
H(x) · exp {λH(x)− nµx} dx . (3.6)

Finally, define

E ∆=

n−1∑
j=0

1
j!

(
λ

µ

)j

1
(n− 1)!

(
λ

µ

)n−1 =
∫ ∞

0
e−t

(
1 +

tµ

λ

)n−1

dt . (3.7)

List of performance measures:

Recall notation from the main paper:

P{Ab} – probability to abandon, P{Sr} – probability to be served,

Q – queue length, W – waiting time,

V – offered wait (time that a customer with infinite patience would wait).

Then

P{V > 0} =
λJ

E + λJ
, (3.8)

P{W > 0} =
λJ

E + λJ
· Ḡ(0) , (3.9)

P{Ab} =
1 + (λ− nµ)J

E + λJ
, (3.10)

P{Ab | V > 0} =
1 + (λ− nµ)J

λJ
, (3.11)

P{Sr} =
E + nµJ − 1
E + λJ

, (3.12)

E[V ] =
λJ1

E + λJ
, (3.13)

E[V | V > 0] =
J1

J
, (3.14)

E[W ] =
λJH

E + λJ
, (3.15)

E[Q] =
λ2JH

E + λJ
, (3.16)

E[V | Ab] =
(λ− nµ)J1 + J

(λ− nµ)J + 1
, (3.17)

3



E[W | Ab] =
J + λJH − nµJ1

(λ− nµ)J + 1
, (3.18)

E[V | Sr] = E[W | Sr] =
nµJ1 − J

E + nµJ − 1
, (3.19)

P{V > t} =
λJ(t)
E + λJ

, (3.20)

P{W > t} =
λḠ(t)J(t)
E + λJ

, (3.21)

E[V | V > t] =
J1(t)
J(t)

, (3.22)

E[W | W > t] =
JH(t)− (H(t)− tḠ(t)) · J(t)

Ḡ(t)J(t)
, (3.23)

P{Ab | V > t} =
λ− nµ

λ
+

exp{λH(t)− nµt}
λJ(t)

, (3.24)

P{Ab | W > t} =
λ− nµ−G(t)

λḠ(t)
+

exp{λH(t)− nµt}
λḠ(t)J(t)

. (3.25)

3.1 Proofs of (3.8)-(3.25)

Here we present the proofs of (3.8)-(3.25), one by one.

(3.8). First, (2.2)-(2.5) and definition (3.7) imply the useful formula

πn−1 =

1
(n− 1)!

(
λ

µ

)n−1

n−1∑
j=0

1
j!

(
λ

µ

)j

+
λJ

(n− 1)!

(
λ

µ

)n−1
=

1
E + λJ

. (3.26)

Then use that

P{V > 0} = 1−
n−1∑
j=0

πj =
∫ ∞

0
v(x)dx = λπn−1J , (3.27)

where the last equality of (3.27) follows from (2.3) and (2.5).

(3.9). Follows from

P{W > 0|V > 0} = Ḡ(0) .

(3.10). Formula (2.6) implies that

P{Ab} =
(

1− nµ

λ

)
· P{V > 0}+

1
E + λJ

.

Now substitute (3.8).

(3.11). Immediate consequence of (3.8) and (3.10).

(3.12).

P{Sr} = 1− P{Ab} .
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(3.13). Results from (3.26) and

E[V ] = λπn−1 ·
∫ ∞

0
x exp{λH(x)− nµx}dx .

(3.14). Formulae (3.8) and (3.13).

(3.15). According to formula (2.3), the survival function of the virtual wait is given by

P{V > t} ∆= V̄ (t) = λπn−1

∫ ∞

t
exp {λH(x)− nµx} dx .

Hence, the average wait is equal to

E[W ] =
∫ ∞

0
Ḡ(t)V̄ (t)dt = λπn−1

∫ ∞

0
Ḡ(t) ·

∫ ∞

t
exp {λH(x)− nµx} dxdt

and integrating by parts

E[W ] = λπn−1

∫ ∞

0
H(t) · exp {λH(t)− nµt} dt .

Then use formula (3.26) and definition (3.3).

(3.16). Follows from (3.15) and Little’s formula.

(3.17).

E[V |Ab] =
E[V · 1{τ≤V }]

P{Ab}
=

∫∞
0 xv(x)G(x)dx

P{Ab}
, (3.28)

where from (2.3) and (3.26)

v(x) =
λ exp{λH(x)− nµx}

E + λJ
. (3.29)

Integration by parts implies that∫ ∞

0
x[λḠ(x)− nµ] exp{λH(x)− nµx}dx

=
∫ ∞

0
xd [exp{λH(x)− nµx}] = −

∫ ∞

0
exp{λH(x)− nµx}dx = −J ,

and ∫ ∞

0
xG(x) exp{λH(x)− nµx}dx =

(λ− nµ)J1 + J

λ
, (3.30)

which, combined with (3.28), (3.29) and (3.10) implies

E[V |Ab] =
(λ− nµ)J1 + J

(λ− nµ)J + 1
.

(3.18). Similar to the previous calculation

E[W |Ab] =
E[τ · 1{τ≤V }]

P{Ab}
=

∫∞
0 xV̄ (x)dG(x)

P{Ab}
.

5



Note that

d[xG(x) + H(x)− x] = xdG(x) . (3.31)

Then ∫∞
0 xV̄ (x)dG(x)

P{Ab}
=

∫∞
0 v(x) · [xG(x) + H(x)− x]dx

P{Ab}
(use (3.29) and (3.10))

=
λ
∫∞
0 [xG(x) + H(x)− x] · exp{λH(x)− nµx}dx

1 + (λ− nµ)J
=

J + λJH − nµJ1

1 + (λ− nµ)J
,

where the last equality follows from (3.30) and the definitions of J1 and JH .

(3.19). This formula for E[V |Sr] can be checked via

E[V ] = E[V |Sr] · P{Sr}+ E[V |Ab] · P{Ab} .

Since the event {Sr} is equivalent to {W=V},

E[V |Sr] = E[W |Sr] .

(3.20). Follows from (3.29).

(3.21). Consequence of

P{W > t} = P{V > t} · P{τ > t} .

(3.22). Follows from definitions of J(t) and J1(t).

(3.23).

E[W |W > t] =
∫∞
t xw(x)dx

P{W > t}
, (3.32)

where w(x) is the waiting-time density. The denominator of (3.32) is equal to

P{W > t} = Ḡ(t)V̄ (t) = λπn−1Ḡ(t)
∫ ∞

t
exp{λH(x)− nµx}dx . (3.33)

Calculating the numerator of (3.32):∫ ∞

t
xw(x)dx =

∫ ∞

t
xv(x)Ḡ(x)dx +

∫ ∞

t
xV̄ (x)dG(x)

= λπn−1

[∫ ∞

t
xḠ(x) exp{λH(x)− nµx}dx +

+
∫ ∞

t
x

(∫ ∞

x
exp{λH(u)− nµu}du

)
dG(x)

]
(3.34)

Use (3.31) to show that the double integral in (3.34) is equal to∫ ∞

t
[xG(x) + H(x)− x] · exp{λH(x)− nµx}dx −
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− [tG(t) + H(t)− t] ·
∫ ∞

t
exp{λH(x)− nµx}dx . (3.35)

After some terms cancel, we get from (3.32), (3.33), (3.34) and (3.35) that

E[W |W > t] =
∫∞
t [H(x) + tḠ(t)−H(t)] · exp{λH(x)− nµx}dx

Ḡ(t) ·
∫∞
t exp{λH(x)− nµx}dx

=
JH(t)− (H(t)− tḠ(t)) · J(t)

Ḡ(t)J(t)
.

(3.24).

P{Ab|V > t} =
P{τ ≤ V ; V > t}

P{V > t}
=

∫∞
t G(x)v(x)dx∫∞

t v(x)dx

=
∫∞
t G(x) · exp{λH(x)− nµx}dx

J(t)
. (3.36)

Using integration by parts∫ ∞

t
[λḠ(x)− nµ] · exp{λH(x)− nµx}dx = − exp{λH(t)− nµt} .

Hence, ∫ ∞

t
G(x) · exp{λH(x)− nµx}dx =

(λ− nµ)J(t) + exp{λH(t)− nµt}
λ

. (3.37)

Now (3.36) and (3.37) imply

P{Ab | V > t} =
λ− nµ

λ
+

exp{λH(t)− nµt}
λJ(t)

.

(3.25).

P{Ab|W > t} =
P{τ ≤ V ; τ > t}
P{min(V, τ) > t}

=
∫∞
t V̄ (x)dG(x)

Ḡ(t)V̄ (t)

=
G(x)V̄ (x)|∞t +

∫∞
t G(x)v(x)dx

Ḡ(t)V̄ (t)
=

∫∞
t G(x) · exp{λH(x)− nµx}dx−G(t)J(t)

Ḡ(t)J(t)

=
λ− nµ−G(t)

λḠ(t)
+

exp{λH(t)− nµt}
λḠ(t)J(t)

.

4 Asymptotic behavior of integrals

Here we prove Lemma 4.1 (Lemma 10.1 from the main paper) and two additional lemmata that

will be needed in the following proofs.
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4.1 Asymptotic results

Lemma 4.1 Let b1, k1, l1, l2 be positive numbers and let b2, k2,m be non-negative. In addition,

assume that l1 and l2 are integers. Consider a function r1 = {r1(λ), λ > 0} such that

r1(λ) ∼ λk1 , λ →∞. Finally, assume that

k1

l1
>

k2

l2
. (4.1)

Then ∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx

=
Γ
(

m+1
l1

)
l1b

m+1
l1

1

· λ−
k1(m+1)

l1 + o

(
λ
− k1(m+1)

l1

)
, λ →∞ . (4.2)

and ∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx

=
Γ
(

m+1
l1

)
l1[b1r1(λ)]

m+1
l1

−
b2Γ

(
m+l2+1

l1

)
l1b

m+l2+1

l1
1

· λk2−
k1(m+l2+1)

l1 + o

(
λ

k2−
k1(m+l2+1)

l1

)
. (4.3)

Lemma 4.2 In addition to assumptions of Lemma 4.1, let k1 > k2 and assume that the function

r2 = {r2(λ), λ > 0} satisfies r2(λ) = o(λk2), λ →∞. Then∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2r2(λ)xl2

}
dx

=
Γ
(

m+1
l1

)
l1b

m+1
l1

1

· λ−
k1(m+1)

l1 + o

(
λ
− k1(m+1)

l1

)
. (4.4)

Remark 4.1 Note that r2(λ) does not need to be positive, which is in contrast to the corre-

sponding term λk2 in Lemma 4.1.

Remark 4.2 We can generalize (4.2) to

∫ ∞

0
xm·exp

{
−b1r1(λ)xl1 −

n∑
i=2

biλ
kixli

}
dx =

Γ
(

m+1
l1

)
l1b

m+1
l1

1

·λ−
k1(m+1)

l1 + o

(
λ
− k1(m+1)

l1

)
, λ →∞ ,

as long as
k1

l1
>

ki

li
prevails for 2 ≤ i ≤ n.
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Lemma 4.3 Let b, k, l, δ > 0, integer m ≥ 0, and −∞ < n < ∞. Assume that the function

r(λ) ∼ λk, λ →∞. Define a function

S(λ) ∆=
∫ ∞

δλn
xm · exp

{
−br(λ)xl

}
dx , λ > 0 ,

and assume

nl + k > 0 . (4.5)

Then there exists ν > 0 such that

S(λ) = o(e−λν
) . (4.6)

4.2 Proofs of Lemmata 4.1-4.3

Proof of Lemma 4.1.

Define

I
∆=
∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx

and

IA
∆=
∫ ∞

0
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2λ

k2xl2 ]dx .

Formula (10.2) from the main paper and straightforward calculations imply

IA =
Γ
(

m+1
l1

)
l1[b1r1(λ)]

m+1
l1

−
b2Γ

(
m+l2+1

l1

)
l1b

m+l2+1

l1
1

· λk2−
k1(m+l2+1)

l1 + o

(
λ

k2−
k1(m+l2+1)

l1

)
.

Now

|I − IA| = o

(
λ

k2−
k1(m+l2+1)

l1

)
(4.7)

will imply Lemma 4.1. If x > 0 and λk2xl2 ≤ 1, then there exists C > 0 such that

| exp{−b2λ
k2xl2} − (1− b2λ

k2xl2)| ≤ Cλ2k2x2l2 .

Define δ
∆= λ−k2/l2 and note that the condition λk2xl2 ≤ 1 is equivalent to x ≤ δ. Now∫ δ

0
xm · exp

{
−b1r1(λ)xl1

}
· | exp{−b2λ

k2xl2} − (1− b2λ
k2xl2)|dx

≤ C ·
∫ ∞

0
λ2k2xm+2l2 · exp

{
−b1r1(λ)xl1

}
dx

=
Cλ2k2

l1[b1r1(λ)]
m+2l2+1

l1

· Γ
(

m + 2l2 + 1
l1

)
= O

(
λ

2k2−
k1(m+2l2+1)

l1

)
= o

(
λ

k2−
k1(m+l2+1)

l1

)
,

where the last equality follows from (4.1). In order to complete the proof, we show that the

remainder
∫ ∞

δ
of the integrals can be ignored. Specifically, there exists ν > 0 such that

∫ ∞

δ
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx = o
(
e−λν

)
9



and ∫ ∞

δ
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2λ

k2xl2 ]dx = o
(
e−λν

)
.

The last two statements follow from Lemma 4.3. (Condition (4.5) applies due to (4.1).)

Proof of Lemma 4.2.

The proof is similar to the proof of Lemma 4.1. The integration domain is again divided by

δ = λ−k2/l2 . For large λ the inequality x ≤ δ implies |xl2r2(λ)| ≤ 1, which, in turn, implies

| exp{−b2r2(λ)xl2} − (1− b2r2(λ)xl2)| ≤ C[r2(λ)]2x2l2

for some C > 0. Then one shows that∣∣∣∣∣
∫ δ

0
xm · exp

{
−b1r1(λ)xl1 − b2r2(λ)xl2

}
dx−

∫ δ

0
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2r2(λ)xl2 ]dx

∣∣∣∣∣
= o

(
λ
− k1(m+1)

l1

)
,

and

∫ ∞

0
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2r2(λ)xl2 ]dx =

Γ
(

m+1
l1

)
l1b

m+1
l1

1

· λ−
k1(m+1)

l1 + o

(
λ
− k1(m+1)

l1

)
.

The last step is to prove “exponential bounds”:∫ ∞

δ
xm · exp

{
−b1r1(λ)xl1 − b2r2(λ)xl2

}
dx = o

(
e−λν

)
, ν > 0 , (4.8)

and ∫ ∞

δ
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2r2(λ)xl2 ]dx = o

(
e−λν

)
, ν > 0 .

In order to get (4.8), the condition k1 > k2 is needed. It enables us to find 0 < C1 < 1, such

that for x > δ and λ large enough,

exp
{
−b1r1(λ)xl1 − b2r2(λ)xl2

}
< exp

{
−b1C1r1(λ)xl1

}
,

and

exp
{
−b1r1(λ)xl1

}
· [1− b2r2(λ)xl2 ] < exp

{
−b1C1r1(λ)xl1

}
,

Now we can apply Lemma 4.3. (Its proof appears below.)

Proof of Lemma 4.3.

We perform a change of variables

z = br(λ)xl, x =
(

z

br(λ)

)1/l

, dx =
dz

br(λ)

(
z

br(λ)

)1/l−1

,

10



getting

S(λ) =
C2

r(λ)
m+1

l

·
∫ ∞

C1r(λ)λnl
e−zz

m+1
l
−1dz , (4.9)

where C1 and C2 are positive constants. Under condition (4.5), the lower bound C1r(λ)λnl of

the integral in (4.9) converges to infinity. Therefore, there exists α > 0 such that for λ large

enough,

S(λ) ≤ C2

r(λ)
m+1

l

·
∫ ∞

C1r(λ)λnl
e−αzdz =

C2

r(λ)
m+1

l

· exp{−C3r(λ)λnl} ,

where C3 is a positive constant. Since r(λ)λnl ∼ λnl+k, we can easily find ν > 0 such that (4.6)

is satisfied.

5 Some properties of the normal hazard-rate

In the sequel, we use some properties of the hazard rate function of the standard normal distri-

bution:

h(x) =
φ(x)

1− Φ(x)
=

φ(x)
Φ̄(x)

, (5.1)

where Φ(x) is its cumulative distribution function, Φ̄(x) = 1−Φ(x) is the survival function and

φ(x) = Φ
′
(x) is the density.

Figure 1: Normal hazard rate
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The derivative of the normal hazard rate is equal to

h
′
(x) = h(x) · (h(x)− x) (5.2)

and, consequently,

h(x)− x = [lnh(x)]
′
.
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The second derivative is

h
′′
(x) = h(x) · (2h2(x)− 3xh(x) + x2 − 1) . (5.3)

Theorem 1.3 from Durrett [4] states that(
1
x
− 1

x3

)
φ(x) ≤ Φ̄(x) ≤ 1

x
φ(x) , for x > 0.

Then it follows that:

h(x) ≥ x, −∞ ≤ x ≤ ∞ ,

h(x) ≤ x3

x2 − 1
, x > 1,

and

|h(x)− x| → 0 , as x →∞ . (5.4)

It is well-known that h is an increasing function (see Gupta and Gupta [7] for a general treatment

of multivariate normal case). Surprisingly, we have not found anywhere a proof that h is convex

and we shall need this fact. So we constructed an indirect proof, based on the convexity of the

Erlang-B formula [12], in the following way. Define the function

B(s, a) ∆=
[
a

∫ ∞

0
e−at(1 + t)sdt

]−1

.

For a > 0 and integer s > 0 it can be shown that

B(s, a) =

[
s∑

i=0

ai

i!

]−1

· as

s!
.

The last expression is equal to the Erlang-B blocking probability in the M/M/s/s system with

a =
λ

µ
. It has been proved in [12] that B(s, a) is convex in s in [0,∞), for all a > 0. Now define

B̃(β, a) ∆=
√

a ·B(a + β
√

a, a) .

Obviously B̃(β, a) is also convex in β over (−
√

a,∞). The QED result for the Erlang-B system,

derived by Jagerman [11], implies that

B̃(β, a) → h(−β) (a →∞) .

The pointwise limit of a sequence of convex functions is convex as well, implying that h is convex.

Finally, formula (5.4) and the convexity of h imply

h
′
(x) < 1 , −∞ < x < ∞ . (5.5)
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6 QED operational regime

6.1 Formulation of results

6.1.1 Main case: patience distribution with a positive density at the origin

The first lemma continues Lemma 11.1 from the main paper.

Lemma 6.1 (Building blocks) Under the assumptions of Theorem 4.1 from the main paper,

the building blocks J , E and J1, defined in Section 3, are approximated by:

a.

J =
1√
n
· 1
√

µg0
· 1
h(β̂)

+ o

(
1√
n

)
. (6.1)

b.

J1 =
1
n
· 1
µg0

[
1− β̂

h(β̂)

]
+ o

(
1
n

)
. (6.2)

c.

E =
√

n · 1
h(−β)

+ o(
√

n) . (6.3)

d. Define

J2
∆=
∫ ∞

0
x2 · exp

{
λ

∫ x

0
G(u)du− nµx

}
dx . (6.4)

Then

J2 =
1

n3/2
· 1
(µg0)3/2

[
β̂2 + 1
h(β̂)

− β̂

]
+ o

(
1

n3/2

)
. (6.5)

Theorem 6.1 (Performance measures) Under the assumptions of Theorem 4.1 from the

main paper, the performance measures of the M/M/n+G queueing system in the QED regime

are approximated by:

a. The delay probability converges to a constant that depends on β and the ratio g0/µ:

P{W > 0} ∼
[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

, (6.6)

In addition, if λ →∞ and P{W > 0} → α, with 0 < α < 1, then

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ) , (6.7)

where α =

[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

.

b. The probability to abandon of delayed customers decreases at rate
1√
n

:

P{Ab|V > 0} =
1√
n
·
√

g0

µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (6.8)
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The probability to abandon P{Ab} also decreases at rate
1√
n

and can be approximated by the

product of (6.6) with (6.8).

c. The average offered wait of delayed customers decreases at rate
1√
n

:

E[V |V > 0] =
1√
n
· 1
√

g0µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (6.9)

The average offered wait E[V ] also decreases at rate
1√
n

and can be approximated by the product

of (6.6) and (6.9).

d. The average waiting time is of the same order as the average offered wait:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (6.10)

e. The ratio between the probability to abandon and average wait converges to the (positive)

value of patience density at the origin:

P{Ab}
E[W ]

=
P{Ab|W > 0}
E[W |W > 0]

∼ g0 . (6.11)

f. The average offered wait and the average actual wait of abandoning customers decrease at

rate
1√
n

:

E[V |Ab] =
1√
n
· 1
√

g0µ

[
1

h(β̂)− β̂
− β̂

]
+ o

(
1√
n

)
. (6.12)

E[W |Ab] =
1√
n
· 1
2
√

g0µ

[
1

h(β̂)− β̂
− β̂

]
+ o

(
1√
n

)
, (6.13)

or, in other words,

E[W |Ab] ∼ 1
2
· E[V |Ab] . (6.14)

Moreover, the following inequality prevails:

1
2
·
[

1
h(β̂)− β̂

− β̂

]
< h(β̂)− β̂ <

1
h(β̂)− β̂

− β̂ , −∞ < β̂ < ∞. (6.15)

(See also Remark 4.7 from the main paper.)

g. The distribution of wait, given delay in queue, is asymptotically equal to

P
{

W

E[S]
>

t√
n

∣∣∣∣ W > 0
}
∼

Φ̄
(

β̂ +
√

g0

µ
· t
)

Φ̄(β̂)
, t ≥ 0 . (6.16)
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h. The probability to abandon, given delay in queue, is asymptotically equal to

P
{

Ab
∣∣∣∣ W

E[S]
>

t√
n

}
=

1√
n
·
√

g0

µ
·
[
h

(
β̂ + t

√
g0

µ

)
− β̂

]
+ o

(
1√
n

)
. (6.17)

i. The average wait, given delay in queue, is asymptotically equal to

E
[
W

∣∣∣∣ W

E[S]
>

t√
n

]
=

1√
n
·
√

1
g0µ

·
[
h

(
β̂ + t

√
g0

µ

)
− β̂

]
+ o

(
1√
n

)
. (6.18)

Parts h and i together imply a generalization of part e:

P {Ab |W > t/
√

n}
E [W |W > t/

√
n ]

∼ g0 , t ≥ 0. (6.19)

6.1.2 Patience distribution with density vanishing near the origin

We would like to cover models where customers are going through several stages of (im)patience

before reneging. (See, for example, Ishay [10] or Baccelli and Hebuterne [2]; the latter fit an

Erlang distribution with 3 phases to patience, using real data.) In such models, we cannot expect

significant abandonment near the origin, which suggests patience distributions with density

vanishing near the origin.

Lemma 6.2 (Building blocks) Assume that the density of patience time at the origin g0 = 0;

that the first (k − 1) derivatives vanish as well: g(i)(0) = 0, 1 ≤ i ≤ k − 1, and that the k-th

derivative is positive: g(k)(0) ∆= g0k > 0.

For β 6= 0 (positive or negative) let the QED staffing level be

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ) . (6.20)

If β = 0 let

n =
λ

µ
+ o (λs) , (6.21)

for some s <
1

k + 2
.

The asymptotic expression for E coincides with formula (11.3) from the main paper for all

the theorems of Section 6. The approximations for J and J1 are given by the following formulae:

a. If β > 0

J =
1

nµ− λ
− λg0k

(β
√

λµ)k+3
+ o

(
1

λ(k+1)/2

)
, (6.22)

J1 =
1

(nµ− λ)2
− (k + 3) · λg0k

(β
√

λµ)k+4
+ o

(
1

λ(k+2)/2

)
. (6.23)
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b. If β = 0

J =
1

k + 2
·
[
(k + 2)!

λg0k

]1/(k+2)

· Γ
(

1
k + 2

)
+ o

(
1

λ1/(k+2)

)
, (6.24)

J1 =
1

k + 2
·
[
(k + 2)!

λg0k

]2/(k+2)

· Γ
(

2
k + 2

)
+ o

(
1

λ2/(k+2)

)
. (6.25)

c. If β < 0

J ∼ exp

{
k + 1
k + 2

·
[
(k + 1)!

λg0k

]1/(k+1)

· (λ− nµ)(k+2)/(k+1)

}
·
√

2πk! · (λg0k)−1/(2k+2) · ((k + 1)!(λ− nµ))−k/(2k+2) , (6.26)

J1 ∼
(
−β

√
µ(k + 1)!

g0k

√
λ

)1/(k+1)

· J . (6.27)

Remark 6.1 Expression (6.26) increases exponentially due to the (λ − nµ)(k+2)/(k+1) term in

the exponent.

Theorem 6.2 (Performance measures) Under the assumptions of Lemma 6.2, the perfor-

mance measures of M/M/n+G are approximated by:

a. Delay probability.

If β > 0, the delay probability coincides (asymptotically) with the Erlang-C approximation

from Halfin and Whitt [9]:

P{W > 0} ∼
[
1 +

β

h(−β)

]−1

. (6.28)

If β = 0, the probability to get service immediately converges to zero at rate
1

nk/(2k+4)
:

P{W = 0} =
1

nk/(2k+4)
·
√

π

2
· k + 2

Γ
(

1
k+2

) · [ g0k

µk+1(k + 2)!

] 1
k+2

+ o

(
1

nk/(2k+4)

)
. (6.29)

If β < 0, the probability to get service immediately decreases to zero at an exponential rate:

P{W = 0} ≈ exp

{
−k + 1

k + 2
·
[
(k + 1)!

λg0k

]1/(k+1)

· (λ− nµ)(k+2)/(k+1)

}

·
g
1/(2k+2)
0k · (−β(k + 1)!)k/(2k+2)

λk/(4k+4) · µ(k+2)/(4k+4) ·
√

2πk! · h(−β)
. (6.30)

b. Probability to abandon.

If β > 0

P{Ab|V > 0} =
1

n(k+1)/2
· g0k

(βµ)k+1
+ o

(
1

n(k+1)/2

)
. (6.31)
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If β = 0

P{Ab|V > 0} =
1

n(k+1)/(k+2)
· k + 2

Γ
(

1
k+2

) · [ g0k

µk+1(k + 2)!

] 1
k+2

+ o

(
1

n(k+1)/(k+2)

)
. (6.32)

If β < 0

P{Ab|V > 0} =
−β√

n
+ o

(
1√
n

)
. (6.33)

c. Average offered waiting time.

If β > 0, the average offered wait is given by the Erlang-C approximation [9]:

E[V | V > 0] ∼ 1
βµ
√

n
. (6.34)

If β = 0

E[V | V > 0] =
1

n1/(k+2)
·
Γ
(

2
k+2

)
Γ
(

1
k+2

) · [(k + 2)!
µg0k

] 1
k+2

+ o

(
1

n1/(k+2)

)
. (6.35)

If β < 0

E[V | V > 0] =
1

n1/(2k+2)
·
[−β(k + 1)!

g0k

]1/(k+1)

+ o

(
1

n1/(2k+2)

)
. (6.36)

d. Average waiting time.

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (6.37)

Remark 6.2 The value −β/
√

n in formula (6.33) is the minimal reneging rate that is required

to avoid queue explosion. Indeed, one can check that −β/
√

n is asymptotically equivalent to

the “fluid limit” of the probability-to-abandon [6] 1− 1/ρ, given n →∞.

Remark 6.3 We do not study the case when all derivatives at the origin are zero but the

density is positive near the origin. We think that the answers here would depend on the specific

distribution (e.g. lognormal). In general, the case above is intermediate between those described

in Theorems 6.2 and 6.4.

Example. Phase-type patience times. An important special case of distributions, relevant

to Theorem 6.2, is phase-type (see Asmussen [1] or Ishay [10]). Here we study the behavior of

the phase-type density near the origin, which is essential if one is to apply Theorem 6.2.

Definition. Consider a continuous-time Markov process {X = Xt, t ≥ 0} with a finite state-

space {1, 2, . . . , k, ∆}, where 1, 2, . . . , k are transient states and ∆ is the absorbing state. The

distribution of X is characterized by:
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• Initial distribution q̄ = (q1, . . . , qk), where qi = P{X0 = i}, 1 ≤ i ≤ k (the process cannot

start from the absorbing state).

• Phase-type generator R, a k × k matrix of transition rates between the transient states.

We know that Rii < 0, Rij ≥ 0 for i 6= j, and
k∑

j=1

Rij ≤ 0, where 1 ≤ i, j ≤ k.

• Absorption intensities r̄ = (r1, . . . , rk)′. Overall, the generator of X can be written as

Q =

(
R r̄

0, . . . , 0 0

)
,

where every row in Q sums up to zero: r̄ = −R·1̄. (Here 1̄ is the vector with all components

equal to 1.)

Let

T
∆= inf{t > 0 : Xt = ∆}

denote the absorption time. Then FT (t) = Pq̄{T ≤ t} is a phase-type distribution with parame-

ters (q̄, R).

The cumulative distribution function of the phase-type distribution with parameters (q̄, R)

is,

FT (t) = 1− q̄ exp{Rt}1̄ ,

and it has a density

fT (t) = q̄ exp{Rt}r̄ . (6.38)

In order to apply Theorem 6.2, we must calculate the density at the origin and its derivatives.

From (6.38), the density at the origin is

fT (0) = q̄r̄

and its n-th derivative (for convenience, we denote also f
(0)
T (t) ∆= fT (t))

f
(n)
T (0) = q̄Rnr̄ , n ≥ 0 . (6.39)

Theorem 6.3 (Phase-Type patience) Represent the transient states of the underlying Markov

process of a phase-type distribution by a directed graph. Two states j and k are connected if

and only if Rjk > 0. For any initial state j (qj > 0), let Lj denote the number of states in a

minimal path that connects j with the absorbing state ∆. Define

L
∆= min

j:qj>0
Lj . (6.40)

(For example, L = n for the Erlang distribution with n phases and L = 1 for the hyperexpo-

nential distribution.)

Then f
(L−1)
T (0) > 0. Moreover, if L ≥ 2, then f

(i)
T (0) = 0 for 0 ≤ i ≤ L− 2.
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Now Theorem 6.3 and formula (6.39) enable us to apply Theorem 6.2 to phase-type distri-

butions.

6.1.3 Delayed distribution of patience

Assume that, up to a fixed time c > 0, customers do not abandon. For example, customers

could be listening to a recorded announcement. Such situations inspire us to consider delayed

distributions of patience, which can be represented by c + τ , where τ represents (im)patience as

before. The case of deterministic patience is important as well. As examples, one can consider

overflowing1, or Internet applications, where the waiting of jobs in queue is usually bounded.

Lemma 6.3 (Building blocks) Assume that the density of patience time vanishes over the

interval [0, c], for some c > 0. (That means that all customers are willing to wait at least c.)

Assume that the density of patience time is positive at c: gc > 0. For β 6= 0 (both negative and

positive) consider the staffing level

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ) .

For β = 0 let

n =
λ

µ
+ a , −∞ < a < ∞ . (6.41)

a. If β > 0

J =
1

nµ− λ
− e−c(nµ−λ)

√
λ

·
{

1
β
√

µ
− 1

h(β̂c)
√

gc

}
+ o

(
e−c(nµ−λ)

√
λ

)
, (6.42)

β̂c
∆= β

√
µ

gc
. (6.43)

If β = 0 and a 6= 0

J ∼ 1
µa

· (1− e−µac) . (6.44)

If β = 0 and a = 0

J ∼ c . (6.45)

If β < 0

J ∼ ec(λ−nµ)

√
λ

·
{

1
−β

√
µ

+
1

h(β̂c)
√

gc

}
. (6.46)

1Customers that do not get service within a deterministic target time are sent to another call center or to the
VRU.
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b. If β > 0

J1 =
1
λ
· 1
β2µ

+ o

(
1
λ

)
. (6.47)

If β = 0 and a 6= 0

J1 ∼ 1
µ2a2

· (1− e−µac)− ce−µac

µa
. (6.48)

If β = 0 and a = 0

J1 ∼ c2

2
. (6.49)

If β < 0

J1 ∼ cec(λ−nµ)

√
λ

·
{

1
−β

√
µ

+
1

h(β̂c)
√

gc

}
. (6.50)

Remark 6.4 In the case β = 0, performance measures are very sensitive to the remaining term

n − λ/µ . Therefore, in (6.41) this term is asymptotically small in comparison to o(
√

λ) in the

other cases.

Theorem 6.4 (Performance measures) Under the assumptions of Lemma 6.3, the perfor-

mance measures of the M/M/n+G system with delayed patience distribution are approximated

by:

a. Delay probability.

If β > 0, the asymptotic delay probability coincides with the Erlang-C approximation [9]:

P{W > 0} ∼
[
1 +

β

h(−β)

]−1

. (6.51)

If β = 0 and a 6= 0

P{W = 0} =
1√
n
·
√

π

2
· a

1− e−µac
+ o

(
1√
n

)
. (6.52)

If β = 0 and a = 0

P{W = 0} =
1√
n
· π

2
· 1
µc

+ o

(
1√
n

)
. (6.53)

If β < 0

P{W = 0} ∼ e−c(λ−nµ) ·
1

h(−β)
√

µ

− 1
β
√

µ + 1
h(β̂c)

√
gc

. (6.54)

b. Probability to abandon.

If β > 0

P{Ab|W > 0} ∼ e−c(nµ−λ)

√
λ

·
{

β
√

µ− β2µ

h(β̂c)
√

gc

}
. (6.55)
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If β = 0 and a 6= 0

P{Ab|W > 0} =
1
n
· ae−µac

1− e−µac
+ o

(
1
n

)
. (6.56)

If β = 0 and a = 0

P{Ab|W > 0} =
1
n
· 1
µc

+ o

(
1
n

)
. (6.57)

If β < 0

P{Ab|W > 0} =
−β√

n
+ o

(
1√
n

)
. (6.58)

(See Remark 6.2 on page 17.)

c. Average offered waiting time.

If β > 0

E[V | V > 0] =
1√
n
· 1
βµ

+ o

(
1√
n

)
(6.59)

(Erlang-C approximation).

If β = 0 and a 6= 0

E[V | V > 0] ∼ 1
µa

− ce−µac

1− e−µac
. (6.60)

If β = 0 and a = 0

E[V | V > 0] ∼ c

2
. (6.61)

If β < 0

E[V ] ∼ E[V | V > 0] ∼ c . (6.62)

d. Average waiting time.

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (6.63)

Remark 6.5 Formulae (6.60)-(6.63) imply that, for β ≤ 0, average wait (both offered and

actual) converges to positive constants. That distinguishes the case of delayed distributions

from Theorems 6.1 and 6.2, where E[W ] converged to zero.

The important case of deterministic patience times gives rise to similar statements:

Theorem 6.5 (Deterministic patience) Assume that patience time is deterministic and equal

to c > 0.

a. Delay probability.

If β > 0:

P{W > 0} ∼
[
1 +

β

h(−β)

]−1

. (6.64)
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If β = 0 and a 6= 0

P{W = 0} =
1√
n
·
√

π

2
· a

1− e−µac
+ o

(
1√
n

)
. (6.65)

If β = 0 and a = 0

P{W = 0} =
1√
n
· π

2
· 1
µc

+ o

(
1√
n

)
. (6.66)

If β < 0

P{W = 0} ∼ e−c(λ−nµ) · −β

h(−β)
. (6.67)

b. Probability to abandon.

If β > 0

P{Ab|W > 0} ∼ e−c(nµ−λ)

√
λ

· β√µ . (6.68)

If β = 0 and a 6= 0

P{Ab|W > 0} =
1
n
· ae−µac

1− e−µac
+ o

(
1
n

)
. (6.69)

If β = 0 and a = 0

P{Ab|W > 0} =
1
n
· 1
µc

+ o

(
1
n

)
. (6.70)

If β < 0

P{Ab|W > 0} =
−β√

n
+ o

(
1√
n

)
. (6.71)

c. Average offered waiting time.

If β > 0

E[V | V > 0] =
1√
n
· 1
βµ

+ o

(
1√
n

)
. (6.72)

If β = 0 and a 6= 0

E[V | V > 0] ∼ 1
µa

− ce−µac

1− e−µac
. (6.73)

If β = 0 and a = 0

E[V | V > 0] ∼ c

2
. (6.74)

If β < 0

E[V ] ∼ E[V | V > 0] ∼ c . (6.75)

d. Average waiting time.

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (6.76)
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6.1.4 Patience with balking

Lemma 6.4 (Building blocks) Consider the QED operational regime

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ), λ →∞ .

Assume that the patience-time distribution has an atom at zero. In other words, if wait is

encountered, customers abandon immediately with probability P{Blk} > 0, or Ḡ(0) = 1 −
P{Blk}. Assume, in addition, that the survival function Ḡ is differential at the origin: Ḡ′(0) =

−g0. (Here g0 is the right-side derivative of the patience-time distribution function at the origin.)

Then

a.

J =
1

λ · P{Blk}+ (nµ− λ)
− g0

λ2 · P{Blk}3
+ o

(
1
λ2

)
. (6.77)

b.

J1 =
1

n2µ2P{Blk}2
+ o

(
1
n2

)
. (6.78)

Theorem 6.6 (Performance measures) Under the assumptions of Lemma 6.4, the perfor-

mance measures of the M/M/n+G queueing system in the QED regime can be approximated

by:

a. Probability to encounter queue decreases at rate
1√
n

:

P{V > 0} ∼ 1√
n
· h(−β)
P{Blk}

+ o

(
1√
n

)
. (6.79)

Delay probability decreases at rate
1√
n

:

P{W > 0} ∼ 1√
n
· (1− P{Blk}) · h(−β)

P{Blk}
+ o

(
1√
n

)
. (6.80)

b. Conditional probability to abandon P{Ab|V > 0} converges to the balking probability:

P{Ab|V > 0} = P{Blk}+
1
n
· g0

µ · P{Blk}
+ o

(
1
n

)
. (6.81)

Conditional probability to abandon P{Ab|W > 0} decreases at rate
1
n

:

P{Ab|W > 0} =
1
n
· g0

µ · P{Blk} · (1− P{Blk})
+ o

(
1
n

)
. (6.82)
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The unconditional probability to abandon decreases at rate
1√
n

:

P{Ab} =
1√
n
· h(−β) + o

(
1√
n

)
. (6.83)

c. Conditional average offered wait E[V |V > 0] decreases at rate
1
n

:

E[V |V > 0] =
1
n
· 1
µ · P{Blk}

+ o

(
1
n

)
. (6.84)

The average offered wait decreases at rate
1

n3/2
:

E[V ] =
1

n3/2
· h(−β)
µ · P{Blk}2

+ o

(
1

n3/2

)
. (6.85)

d. Conditional average waiting time E[W |W > 0] decreases at rate
1
n

:

E[W |W > 0] =
1
n
· 1
µ · P{Blk}

+ o

(
1
n

)
. (6.86)

The average wait E[W ] decreases at rate
1

n3/2
:

E[W ] =
1

n3/2
· (1− P{Blk}) · h(−β)

µ · P{Blk}2
+ o

(
1

n3/2

)
. (6.87)

6.1.5 Patience with scaled balking

Lemma 6.5 (Building blocks) Assume that the patience distribution depends on the system

size n. Specifically, let the balking probability Pn{Blk} =
pb√
n

, for some pb > 0. Assume

that the derivative of the survival function Ḡn at the origin is independent of the system size:

Ḡ′
n(0) = −g0. Then

a.

J =
1√
n
· 1
√

µg0
· 1
h(β̂)

+ o

(
1√
n

)
, (6.88)

where

β̂
∆= (β + pb) ·

√
µ

g0
. (6.89)

b.

J1 =
1

nµg0

[
1− β̂

h(β̂)

]
+ o

(
1
n

)
. (6.90)
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Theorem 6.7 (Performance measures) Under the assumptions of Lemma 6.5, the perfor-

mance measures of the M/M/n+G queueing system in the QED regime can be approximated

by:

a. The probability of delay and positive offered wait converge to a constant that depends on

β, pb and
g0

µ
:

P{V > 0} ∼ P{W > 0} ∼
[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

, (6.91)

where β̂ is defined by formula (6.89).

b. Conditional probabilities to abandon decrease at rate
1√
n

:

P{Ab|V > 0} =
1√
n
·
[√

g0

µ
· h(β̂)− β

]
+ o

(
1√
n

)
. (6.92)

P{Ab|W > 0} =
1√
n
·
√

g0

µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (6.93)

The unconditional probability to abandon P{Ab} also decreases at rate
1√
n

and can be approx-

imated by the product of (6.92) and (6.91).

c. Conditional average offered wait E[V |V > 0] decreases at rate
1√
n

:

E[V |V > 0] =
1√
n
· 1
√

g0µ

[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (6.94)

The average offered wait E[V ] also decreases at rate
1√
n

and can be approximated by the product

of (6.94) and (6.91).

d. The average waiting time is equivalent to the average offered wait:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] (6.95)

e. The ratio between the probability to abandon of delayed customers and average wait of

delayed customers converges to the value of the patience density at the origin:

P{Ab|W > 0}
E[W |W > 0]

∼ g0 . (6.96)

6.2 Numerical experiments

In the main paper we analyzed the quality of QED approximations for service grade β = 0. Here

we perform experiments with several other service grades.

Example 1 (Figure 2): β = 0.5. The approximations for the first two distributions are

excellent again. The slopes of the two corresponding curves in the first plot remain the same as

25



in Figure 6 of the main paper: 0.25 and 2/3, respectively. Note that, in contrast to that figure,

the difference between exact values and approximations does not decrease monotonically in λ.

That is due to approximation of the QED staffing level in formula (4.35) from the main paper

by the nearest integer value.

Figure 2: Service grade β = 0.5, performance measures and approximations

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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The delayed exponential distribution also demonstrates very good fit: the average wait and

the delay probability are very close to the Erlang-C approximation, and the probability to

abandon decreases exponentially.

However, quality of approximations for the Erlang distribution is not so good (in fact, the

worst one among all special cases considered in this subsection). Approximations for the aver-
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age wait and the delay probability coincide with Erlang-C formulae (and, therefore, with the

approximation for delayed exponential). The fit of P{W > 0} is not bad at all. However, the

fit of E[W ] is less good and the fit of P{Ab|W > 0} is the worst of all. The reason seems to be

unstableness of approximation (6.31) for small positive service grades β.

Figure 3: Service grade β = 1, performance measures and approximations
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Example 2 (Figure 3): β = 1. Now the approximations for the Erlang distribution are much

better than in Figure 2. In particular, the fit of P{Ab|W > 0} graph is reasonable for small

values of λ and good for large values. (Recall from formula (6.31) that conditional probability
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to abandon decreases at rate 1/n.) In the delayed exponential case, the probability to abandon

is negligible for all values of λ.

Figure 4: Service grade β = −0.5, performance measures and approximations

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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Example 3 (Figure 4): β = −0.5. The fit for the first two distributions (g0 > 0) is fine.

The approximation for P{Ab|W > 0} coincides for the last two distributions with g0 = 0. (See

Remark 6.2.) The average wait decreases at rate n−1/4 for the Erlang patience and converges

to delay time in the delayed exponential case. Finally, in the last two cases delay probability

converges to one exponentially (but with very different rates).
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Figure 5: Service grade β = −1, performance measures and approximations
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Example 4 (Figure 5): β = −1. Here we encounter two interesting phenomena. First, the

conditional probabilities to abandon start to be very similar for the four distributions and close

to −β/
√

n. (Recall formula (4.6) from the main paper and take into account that h(β̂) is small

for large negative β.)

Another interesting phenomenon is observed in the last plot: P{W > 0} curve for exponential

mixture is relatively far from the uniform one. To explain it, note that for large negative β

P{W = 0} ≈

√
g0

µ · h(β̂)
h(−β)

1 +
√

g0

µ · h(β̂)
h(−β)

≈
√

g0

µ
· h(β̂)
h(−β)

,

29



recall that the normal hazard-rate h(·) decreases rapidly for large negative β̂, and that the

absolute value of β̂ is larger for the uniform distribution. (Recall definition (4.3) from the main

paper.)

Conclusions.

• Overall, the QED approximations are very good even for moderate staffing levels. Below

(Subsections 7.3 and 8.2) we compare them with the quality-driven and the efficiency-

driven approximations observing that, in most cases, the QED approximations are prefer-

able.

• In the main case (g0 > 0), the linear P{Ab} / E[W ] relation is confirmed for all values of

the service grade.

• For relatively large positive β we observe convergence to the Erlang-C asymptotic formulae

for the average wait and the delay probability.

• For relatively large negative β the probability to abandon converges to −β/
√

n for all

distributions in consideration. (Recall Remark 6.2 after Theorem 6.2.)

6.3 Proofs of the QED results

Proof of Lemma 6.1. We provide a detailed proof of b and prove a new asymptotic statement

d that was not presented in the main paper.

b. In the QED regime,

J1 =
∫ ∞

0
x · exp{hλ(x)}dx =

∫ ∞

0
x · exp

{∫ x

0

[
λ(Ḡ(u)− 1)− β

√
λµ
]
du

}
dx .

Straightforward calculations imply that

J1A
∆=
∫ ∞

0
x · exp

{
−xβ

√
λµ− λg0x

2

2

}
dx =

1
λg0

− β

λg0

√
2πµ

g0
exp

{
β2µ

2g0

}[
1− Φ

(
β

√
µ

g0

)]

=
1

nµg0

[
1− β̂

h(β̂)

]
+ o

(
1
n

)
. (6.97)

Asymptotic equivalence between J1 and J1A is demonstrated via the Laplace argument, using

inequality (11.7) from the main paper. Approximation for
∫ δ
0 integrals is proved very similarly

to a. Consider the second part of the argument, exponential bounds for the
∫∞
δ integrals above:∫ ∞

δ
x · exp{hλ(x)}dx ≤

∫ ∞

δ
x · exp

{
−αλ

(
x− δ

2

)
− δ

2
β
√

λµ

}
dx ,

(α was defined by formula (11.9) in the main paper)

= exp
{

αλ
δ

2
− δ

2
β
√

λµ

}
·
∫ ∞

δ
xe−αλxdx
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= exp
{

αλ
δ

2
− δ

2
β
√

λµ

}
·
[

δ

αλ
e−αλδ +

1
(αλ)2

e−αλδ
]

= o(e−νλ), ν > 0 . (6.98)

The tail part of the J1A integral,∫ ∞

δ
x · exp

{
−xβ

√
λµ− λg0x

2

2

}
dx ,

can be treated as a special case of J (linear survival function near the origin).

d. First, calculate the integral

J2A
∆=
∫ ∞

0
x2 exp

{
−β
√

λµx− λg0x
2

2

}
dx = exp

{
β2µ

2g0

}
·
∫ ∞

0
x2 exp


−λg0

(
x + β

g0

√
µ
λ

)2

2

 dx ,

(changing variables)

= exp

{
β2µ

2g0

}
·
∫ ∞

β
g0

√
µ
λ

(
y − β

g0

√
µ

λ

)2

exp

{
−λg0y

2

2

}
dy .

and, after exact calculations,

=
√

2π

(λg0)3/2

(
1 +

β2µ

g0

)[
1− Φ

(
β

√
µ

g0

)]
· exp

{
β2µ

2g0

}
− 1

(λg0)3/2
· β
√

µ

g0

=
1

(nµg0)3/2

[
β̂2 + 1
h(β̂)

− β̂

]
+ o

(
1

n3/2

)
.

The last equality follows from the definition of β̂ and λ ∼ nµ (λ, n →∞).

Finally, in the same way as in Parts a and b of Lemma 11.1 from the main paper, we can

validate the approximation of

J2 =
∫ ∞

0
x2 · exp

{
λ

∫ x

0
Ḡ(u)du− nµx

}
dx

by

J2A =
∫ ∞

0
x2 · exp

{
−β
√

λµx− λg0x
2

2

}
dx .

Proof of Theorem 6.1.

d. Here an alternative approach to the proof in the main paper is presented.

We must prove that

lim
λ→∞

Eλ[W ]
Eλ[V ]

= 1 ,

where the performance measures are indexed by the arrival rate in the QED regime. Recall that

W = min(V, τ), where V and τ are independent.

31



It can be derived from the proof of Lemma 6.1 (Part b) that, ∀ δ > 0,

lim
λ→∞

Eλ[V ;V > δ]
Eλ[V ]

=
∫∞
δ xvλ(x)dx∫∞
0 xvλ(x)dx

→ 0 . (6.99)

(Specifically, formula (6.98) shows that an exponential bound is available for
∫∞
δ .)

Now,

lim
λ→∞

Eλ[V ;V > τ ]
Eλ[V ]

= lim
λ→∞

(
Eλ[V ;V > τ ; τ > δ]

Eλ[V ]
+

Eλ[V ;V > τ ; τ < δ]
Eλ[V ]

)
(6.100)

≤ lim
λ→∞

Eλ[V ; τ < δ]
Eλ[V ]

= P{τ < δ} .

The first term of (6.100) converges to zero due to (6.99). The last equality follows from the

independence between V and τ . The probability P{τ < δ} can be made arbitrarily small,

since τ has no mass at zero. Hence,

lim
λ→∞

Eλ[V ;V > τ ]
Eλ[V ]

= 0 and lim
λ→∞

Eλ[V ;V ≤ τ ]
Eλ[V ]

= 1 . (6.101)

Now,

Eλ[W ] = Eλ[min(V ; τ)] = Eλ[V ;V ≤ τ ] + Eλ[τ ; τ < V ] ∼ Eλ[V ] .

The second statement of d follows from P{W > 0} ∼ P{V > 0}.

f. Use formula (3.17) and the QED asymptotics for J and J1:

E[V | Ab] =
(λ− nµ)J1 + J

(λ− nµ)J + 1

∼ −βµ
√

nJ1 + J

−βµ
√

nJ + 1

∼ 1√
n
·
−(β/g0) · (1− β̂/h(β̂)) + 1/(

√
µg0 · h(β̂))

1− β̂/h(β̂)

∼ 1√
n
· 1
√

g0µ

[
1

h(β̂)− β̂
− β̂

]
.

Now we shall prove formula (6.13). Note that

E[W |Ab] = E[τ |τ < V ] =
E[τ ; τ < V ]

P{Ab}
=

∫∞
0 E[τ ; τ < x]v(x)dx

P{Ab}

=
∫∞
0 v(x) (

∫ x
0 tdG(t)) dx

P{Ab}
,

where v(x) is the density of the offered wait (recall formula (2.3)). Then∫ x

0
tdG(t) = xG(x)−

∫ x

0
G(t)dt .
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Note that ∀ε > 0 ∃δ > 0 such that for x ∈ [0, δ],

(g0 − ε)x2 ≤ xG(x) ≤ (g0 + ε)x2

and
(g0 − ε)x2

2
≤
∫ x

0
G(t)dt ≤ (g0 + ε)x2

2
.

Then, for x ∈ [0, δ],
x2

2
(g0 − 3ε) ≤

∫ x

0
tdG(t) ≤ x2

2
(g0 + 3ε) .

Since
∫ x
0 tdG(t) is bounded by x2, we can construct an exponential bound for

∫∞
δ v(x) (

∫ x
0 tdG(t)) dx

in the spirit of Lemma 6.1, part b. Then, based on the Laplace method, we deduce that∫ ∞

0
v(x)

(∫ x

0
tdG(t)

)
dx ∼ g0

2

∫ ∞

0
x2v(x)dx ,

and

E[W |Ab] ∼ g0

2P{Ab}
· λπn−1J2 ∼ g0

2P{Ab}
· λJ2

E + λJ
. (6.102)

From part d of Lemma 6.1 we observe that the numerator of (6.102) is equal to

λg0J2 =
1

√
nµg0

·
[
1 + β̂2

h(β̂)
− β̂

]
+ o

(
1√
n

)
.

For the denominator of (6.102)

2P{Ab} · (E + λJ) = 2(1 + (λ− nµ)J) ∼ 2(1− βµ
√

nJ) ∼ 2 ·
(

1− β̂

h(β̂)

)
.

Dividing the numerator of (6.102) by the denominator:

E[V |Ab] =
1√
n
· 1
2
√

g0µ
· 1 + β̂2 − βh(β̂)

h(β̂)− β̂
+ o

(
1√
n

)

=
1√
n
· 1
2
√

g0µ
·
[

1
h(β̂)− β̂

− β̂

]
+ o

(
1√
n

)
.

Finally, we prove inequalities (6.15). The right one is a consequence of (5.2) and (5.5). The left

inequality is equivalent to

2h(x) > x +
1

h(x)− x

or

2h2(x)− 3xh(x) + x2 − 1 > 0 ,
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which follows from convexity of h and formula (5.3).

g. From formula (2.3) for the density of the virtual offered wait it follows that

P
{

V

E[S]
>

t
√

µ√
λ

∣∣∣∣ V > 0
}

=

∫ ∞

t/
√

λµ
exp

{∫ x

0

[
λ(Ḡ(u)− 1)− β

√
λµ
]
du

}
dx

J
. (6.103)

Then using the Laplace method we show that the last expression is equivalent to

∫ ∞

t/
√

λµ
exp

{
−β
√

λµx− λg0x
2

2

}
dx

J
=

exp

{
β2µ

2g0

}∫ ∞

t√
µλ

+ β
g0

√
µ
λ

exp

{
−λg0y

2

2

}
dy

J

(using the asymptotic expression for J , taken from Lemma 11.1 of the main paper, Part a)

∼
Φ̄
(

β̂ +
√

g0

µ
· t
)

Φ̄(β̂)
.

Now, in order to complete the proof, we need to substitute

√
λ

µ
by
√

n and the virtual offered wait

V by the waiting time W in the left-hand part of (6.103). The validity of the first substitution

can be verified using λ ∼ nµ.

For the second substitution we must prove

P{W > 0} ∼ P{V > 0} and P
{

W

E[S]
>

t√
n

}
∼ P

{
V

E[S]
>

t√
n

}
.

Both relations directly follow from W = min(V, τ) and V
p→ 0 (n →∞) (see part d).

h. Conditional probability to abandon:

P
{

Ab
∣∣∣∣ V

E[S]
>

t√
n

}
=

∫ ∞

t/
√

λµ
v(x)(1− Ḡ(x))dx∫ ∞

t/
√

λµ
v(x)dx

∼
g0

∫ ∞

t/
√

λµ
xv(x)dx∫ ∞

t/
√

λµ
v(x)dx

∼
g0

∫ ∞

t/
√

λµ
x exp

{
−β
√

λµx− λg0x
2

2

}
dx

∫ ∞

t/
√

λµ
exp

{
−β
√

λµx− λg0x
2

2

}
dx

. (6.104)

Calculating the numerator of (6.104), we get

1
λ

exp

{
−g0t

2

2µ
− βt

}
− β̂ ·

Φ̄
(

β̂ +
√

g0

µ
· t
)

Φ̄(β̂)

 .
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The denominator of (6.104) is equal to

1√
λg0

·
Φ̄
(

β̂ +
√

g0

µ
· t
)

Φ̄(β̂)
.

Dividing the numerator by the denominator, we get (6.17).

Proof of Lemma 6.2.

a. β > 0. Here and in the proofs below we denote o(·) deviation terms in the staffing rules

(6.20) and (6.21) by f(λ). Apply Lemma 4.1 with

k1 =
1
2
; l1 = 1; k2 = 1; l2 = k + 2; m = 0; (6.105)

(condition
k1

l1
>

k2

l2
is valid for k > 0) to derive that

JA
∆=
∫ ∞

0
exp

{
−β
√

λµx− f(λ)µx− λg0kx
k+2

(k + 2)!

}
dx (6.106)

=
∫ ∞

0
exp

{
−β
√

λµx− f(λ)µx
}

dx −
∫ ∞

0
exp

{
−β
√

λµx
}
· λg0kx

k+2

(k + 2)!
dx + o

(
1

λ(k+1)/2

)

=
1

nµ− λ
− λg0k

(β
√

λµ)k+3
+ o

(
1

λ(k+1)/2

)
.

(We use that nµ− λ = β
√

λµ + f(λ)µ.) Now note that

J =
∫ ∞

0
exp

{
λ

∫ x

0
Ḡ(u)du− λx− β

√
λµx− f(λ)µx

}
dx . (6.107)

Under the assumptions of Lemma 6.2, ∀ε > 0 ∃δ > 0 such that, for u ∈ [0, δ],

1− (g0k + ε)uk+1

(k + 1)!
≤ Ḡ(u) ≤ 1− (g0k − ε)uk+1

(k + 1)!
. (6.108)

From Lemma 4.3 (m = 0, n = 0, k = 1/2, l = 1), there exists ν > 0 such that∫ ∞

δ
exp

{
−β
√

λµx− f(λ)µx
}

dx = o
(
e−λν

)
. (6.109)

Formulae (6.108) and (6.109) enable us to apply the Laplace method in order to show that J

from (6.107) can be approximated by JA from (6.106).

We use a similar reasoning in order to derive (6.23). (Lemma 4.1 is applied with m = 1 and

other parameters taken from (6.105).) Specifically,

J1A
∆=
∫ ∞

0
x · exp

{
−β
√

λµx− f(λ)µx− λg0kx
k+2

(k + 2)!

}
dx (6.110)
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=
∫ ∞

0
x · exp

{
−β
√

λµx− f(λ)µx
}

dx −
∫ ∞

0
x · exp

{
−β
√

λµx
}
· λg0kx

k+2

(k + 2)!
dx + o

(
1

λ(k+1)/2

)

=
1

(nµ− λ)2
− (k + 3) · λg0k

(β
√

λµ)k+4
+ o

(
1

λ(k+2)/2

)
(λ →∞)

and, then substitute

J1 =
∫ ∞

0
x · exp

{
λ

∫ x

0
Ḡ(u)du− λx− β

√
λµx− f(λ)µx

}
dx

instead of (6.110).

b. β = 0. Using Lemma 4.2 with

k1 = 1, l1 = k + 2, k2 =
1

k + 2
, l2 = 1, m = 0,

we get

JA
∆=
∫ ∞

0
exp

{
−f(λ)µx− λg0kx

k+2

(k + 2)!

}
dx

=
1

k + 2
·
(

(k + 2)!
λg0k

)1/(k+2)

· Γ
(

1
k + 2

)
+ o

(
1

λ(k+1)/2

)
, (6.111)

and taking m = 1,

J1A
∆=
∫ ∞

0
x · exp

{
−f(λ)µx− λg0kx

k+2

(k + 2)!

}
dx

=
1

k + 2
·
(

(k + 2)!
λg0k

)2/(k+2)

· Γ
(

2
k + 2

)
+ o

(
1

λ(k+1)/2

)
. (6.112)

Then we use (6.108), the Laplace method and Lemma 4.3 in order to substitute

J =
∫ ∞

0
exp

{
λ

∫ x

0
Ḡ(u)du− λx− f(λ)µx

}
dx ,

and

J1 =
∫ ∞

0
x · exp

{
λ

∫ x

0
Ḡ(u)du− λx− f(λ)µx

}
dx ,

into (6.111) and (6.112), respectively. Note that Lemma 4.3 cannot be applied immediately to

get ∫ ∞

δ
exp

{
−f(λ)µx− λg0kx

k+2

(k + 2)!

}
dx = o

(
e−λν

)
and ∫ ∞

δ
exp

{
λ

∫ x

0
Ḡ(u)du− λx− f(λ)µx

}
dx = o

(
e−λν

)
(−f(λ) can be positive). However, this problem can be easily solved. For example,∫ ∞

δ
exp

{
−f(λ)µx− λg0kx

k+2

(k + 2)!

}
dx ≤

∫ ∞

δ
exp

{
−1

2
· λg0kx

k+2

(k + 2)!

}
dx
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for λ large enough.

c. β < 0. As in part a, we approximate J by

JA
∆=
∫ ∞

0
exp

{
−β
√

λµx− f(λ)µx− λg0kx
k+2

(k + 2)!

}
dx , (6.113)

and, then, apply the Laplace method to show that J ∼ JA. However, since −β is a positive num-

ber, the integrand increases near zero, which requires additional work that involves somewhat

cumbersome calculations. Define

x∗ =

(
[−β

√
λµ− f(λ)µ] · (k + 1)!

λg0k

)1/(k+1)

,

to be equal to the point where the integrand of (6.113) reaches a maximum (note that x∗

converges to zero at rate λ−1/(2k+2)). Performing the variable change y = x− x∗, we get

JA = exp{[−β
√

λµ− f(λ)µ] · x∗}

·
∫ ∞

−x∗
exp

{
−β
√

λµy − f(λ)µy − λg0k(y + x∗)k+2

(k + 2)!

}
dy . (6.114)

Note that ∫ −x∗

−∞
exp{−β

√
λµy}dy =

1
−β

√
λµ

exp{β
√

λµx∗} .

Since β is negative, the integral above decreases at rate
exp{−λk/(2k+2)}√

λ
and we can change the

integral limits in (6.114) to
∫∞
−∞. Now we expand (y+x∗)k+2 from (6.114). The free term (x∗)k+2

is taken out of the integral and the (k + 2)y(x∗)k+1 term is cancelled by [−β
√

λµ − f(λ)µ] · y.

We must show now that the quadratic term in the expansion dominates the others. In other

words,

JA ∼ exp

{
k + 1
k + 2

·
[
(k + 1)!

g0k

]1/(k+1)

· (λ− nµ)(k+2)/(k+1)

}
·
∫ ∞

−∞
exp

{
−λg0k

2k!
(x∗)ky2

}
dy

= exp

{
k + 1
k + 2

·
[
(k + 1)!

λg0k

]1/(k+1)

· (λ− nµ)(k+2)/(k+1)

}

·
√

2πk! · (λg0k)−1/(2k+2) · ((k + 1)!(λ− nµ))−k/(2k+2) .

We shall prove that the quadratic term in the integral (6.114) dominates the cubic term, an

argument that can be repeated for the terms with larger degrees of y using Remark 4.2. Ignoring

cumbersome constants, we must show that∫ ∞

−∞
exp

{
−λ(k+2)/(2k+2)y2 − λ(k+3)/(2k+2)y3

}
dy
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∼
∫ ∞

−∞
exp

{
− λ(k+2)/(2k+2)y2

}
dy =

√
2πλ−(k+2)/(4k+4) .

The equivalence above follows from Lemma 4.1 with

k1 =
k + 2
2k + 2

, l1 = 2, k2 =
k + 3
2k + 2

, l2 = 3,

(Note that condition (4.1) prevails for k > 0.)

Formula (6.27) for J1 is proved via the approximation

J1A ∼
∫ ∞

0
x · exp

{
−β
√

λµx− f(λ)µx− λg0kx
k+2

(k + 2)!

}
dx ∼ x∗ · JA ,

where the second equivalence is obtained via the change of variables y = x− x∗.

Proof of Theorem 6.2.

a. Delay probability.

β > 0. Recall the asymptotic expression for E :

E =

√
λ

µ
· 1
h(−β)

,

which does not depend on the patience distribution G. Hence,

P{W > 0} =
λJ

E + λJ
∼

√
λ

β
√

µ
√

λ
h(−β)

√
µ +

√
λ

β
√

µ

=
[
1 +

β

h(−β)

]−1

.

β = 0. From Part b of Lemma 6.2 and taking into account that E ∼
√

λ

µ
· π

2
:

P{W = 0} =
E

E + λJ
∼ E

λJ
∼ 1

λk/(2k+4)
·
√

π

2µ
· k + 2

Γ
(

1
k+2

) · [ g0k

(k + 2)!

] 1
k+2

∼ 1
nk/(2k+4)

·
√

π

2
· k + 2

Γ
(

1
k+2

) · [ g0k

µk+1(k + 2)!

] 1
k+2

.

β < 0. Use that

P{W = 0} ∼ E
λJ

∼ 1√
µλJ

· 1
h(−β)

.

b. Probability of delayed customers to abandon.

β > 0.

P{Ab|V > 0} =
1 + (λ− nµ)J

λJ
∼

λg0k

(β
√

λµ)k+2
√

λ

β
√

µ

38



∼ g0k

βk+1(λµ)(k+1)/2
∼ 1

n(k+1)/2
· g0k

(βµ)k+1
.

β = 0.

P{Ab|V > 0} =
1− (β

√
λµ + f(λ)µ)J
λJ

∼ 1
λJ

∼ 1
n(k+1)/(k+2)

· k + 2

Γ
(

1
k+2

) ·[ g0k

µk+1(k + 2)!

] 1
k+2

.

β < 0.

P{Ab|V > 0} =
1− (β

√
λµ + f(λ)µ)J
λJ

∼ −β

√
µ

λ
∼ −β√

n
.

c. Average offered waiting time.

β > 0.

E[V |V > 0] =
J1

J
∼ 1

β
√

λµ
∼ 1

βµ
√

n
.

β = 0.

E[V |V > 0] =
J1

J
∼ 1

n1/(2k+2)
·
[−β(k + 1)!

g0k

]1/(k+1)

.

β < 0.

E[V |V > 0] =
J1

J
∼ x∗ ∼ 1

n1/(2k+2)
·
[−β(k + 1)!

g0k

]1/(k+1)

.

d. Average waiting time.

Since the survival function Ḡ is strictly decreasing near the origin, the proof of Part d of Theorem

6.1 can be duplicated.

Proof of Theorem 6.3.

We start with some definitions. Consider the underlying Markov process of the phase-type

distribution FT . Let S0 denote the set of states that correspond to the positive values of the

initial distribution: i ∈ S0 iff qi > 0. Then let S1 be the set of states that can be reached by

one jump from some initial state. Formally, j ∈ S1 iff j 6∈ S0 and there exists i ∈ S0 such that

Rij > 0. Finally, we define recursively the set Sk which comprises states that can be reached by

k jumps: j ∈ Sk iff j 6∈ S0, . . . , Sk−1 and there exists i ∈ Sk−1 such that Rij > 0. According to

the definition (6.40) of L, the absorbing state ∆ ∈ SL.

We shall number the states of the underlying Markov process in the following way: first, the

states from S0, then the states that belong to S1, . . . , SL, etc. A relevant part of the generator
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matrix is equal to:

S0 S1 . . . Sl Sl+1 . . . SL−1 SL . . . ∆
S0 ? + 0 0 0 0 0 0 0 0
S1 ? ? + 0 0 0 0 0 0 0 0
. . . ? ? ? ? + 0 0 0 0 0 0
Sl ? ? ? ? + 0 0 0 0 0

Sl+1 ? ? ? ? ? + 0 0 0 0 0
. . . ? ? ? ? ? ? ? + 0 0 0

SL−1 ? ? ? ? ? ? ? + 0 +

Here ”?” means that the corresponding terms are irrelevant and ”0” that all terms in the

quadrant are zero. The sign ”+” means that there are no negative terms in the quadrant and

every column contains, at least, one positive term.

Formula (6.39) implies that we must prove

q̄Rlr̄ = 0 , 0 ≤ l ≤ L− 2, (6.115)

and

q̄RL−1r̄ > 0 . (6.116)

First, we want to show by induction that, for 0 ≤ l ≤ L− 1,

q̄Rl = (x1, . . . , xNl−1
,xNl−1+1, . . . , xNl,0, . . . , 0) , (6.117)

where all vector elements between xNl−1+1 and xNl
are positive. Statement (6.117) is clearly

true for l = 0 (if we assign N−1 = 0). Assume that it is true for some l ≥ 0. Then

q̄Rl+1 = (q̄Rl) ·R = (y1, . . . , yNl
,yNl+1, . . . , yNl+1,0, . . . , 0) .

The elements yNl+1, . . . , yNl+1
are positive since they are calculated by multiplying the positive

vector (xNl−1+1, . . . , xNl
) by the columns of Sl×Sl+1 non-negative quadrant (one positive element

in the column, at least). The elements after yNl+1
are zero since the upper part of the respective

generator columns (right of Sl+1 columns) is zero. Now note that

r̄ = (0, . . . , 0, rNl−2+1, . . . , rNl−1, . . .)
′ ,

where the vector (rNl−2+1, . . . , rNl−1
) contains one positive element, at least. Substituting l =

L− 1 in (6.117) and multiplying by r̄ we get (6.116). Equality (6.115) is obvious from (6.117),

l < L− 1.

Proof of Lemma 6.3. We proceed with the Laplace method from Lemma 11.1 of the main

paper, using that Ḡ(u) = 1, 0 ≤ u ≤ c, and approximating Ḡ(c + ε) ≈ 1− εgc, for small ε > 0.

a. β > 0.

J =
∫ ∞

0
exp

{∫ x

0
[λḠ(u)− λ− β

√
λµ− f(λ)µ]du

}
dx (6.118)
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=
∫ c

0
exp{−β

√
λµx− µf(λ)x}dx + exp{(−β

√
λµ− µf(λ))c}

·
[∫ ∞

c
exp

{
−β
√

λµ(x− c)− λgc(x− c)2

2

}
dx + o

(
1√
λ

)]

=
1

nµ− λ
·
[
1− e−c(nµ−λ)

]
+ e−c(nµ−λ) ·

∫ ∞

c
exp

{
−β
√

λµ(x− c)− λgc(x− c)2

2

}
dx

+ o

(
e−c(nµ−λ)

√
λ

)

=
1

nµ− λ
− e−c(nµ−λ)

√
λ

·
{

1
β
√

µ
− 1

h(β̂c)
√

gc

}
+ o

(
e−c(nµ−λ)

√
λ

)
.

β = 0.

J =
∫ c

0
e−µaxdx +

∫ ∞

c
exp

{
[λḠ(u)− λ− aµ]du

}
dx

∼
∫ c

0
e−µaxdx =


1
µa

· (1− e−µac) , a 6= 0

c , a = 0
.

β < 0. Define the expression in the exponent of (6.118) by hλ(x). Then, similar to the case

β > 0:

J =
∫ c

0
exp{hλ(x)}dx +

∫ ∞

c
exp{hλ(x)}dx

=
1

λ− nµ
·
[
ec(λ−nµ) − 1

]
+ ec(λ−nµ) ·

∫ ∞

c
exp

{
−β
√

λµ(x− c)− λgc(x− c)2

2

}
dx

+ o

(
ec(λ−nµ)

√
λ

)

=
ec(λ−nµ)

√
λ

·
{

1
−β

√
µ

+
1

h(β̂c)
√

gc

}
+ o

(
ec(λ−nµ)

√
λ

)
.

(The term
1

λ− nµ
is negligible if β < 0.)

b. β > 0. Here we need only the first approximation term, ignoring
∫ ∞

c
:

J1 =
∫ c

0
x exp{hλ(x)}dx +

∫ ∞

c
x exp{hλ(x)}dx ∼ 1

(nµ− λ)2
=

1
β2λµ

+ o

(
1
λ

)
.

β = 0.

J1 ∼
∫ c

0
xe−µaxdx =


1

µ2a2
· (1− e−µac)− ce−µac

µa
, a 6= 0

c2

2
, a = 0

.
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β < 0. ∫ c

0
x exp{hλ(x)}dx =

∫ c

0
xe(λ−nµ)xdx =

cec(λ−nµ)

λ− nµ
− ec(λ−nµ)

(λ− nµ)2
. (6.119)

The term
∫ ∞

c
x exp{hλ(x)}dx can be approximated by

∫ ∞

c
x · exp

{
(λ− nµ)x− λgc(x− c)2

2

}
dx = ec(λ−nµ)

∫ ∞

0
(y + c) · exp

{
−β
√

λµy − λgcy
2

2

}
dx

=
cec(λ−nµ)

h(β̂c)
√

λgc

+ o

(
ec(λ−nµ)

√
λ

)
. (6.120)

Now formulae (6.119) and (6.120) imply (6.50).

Proof of Theorem 6.4.

a. Delay probability.

β > 0. The asymptotic formula and its proof are the same as in Theorem 6.2.

β = 0. Substitute (6.44), (6.45) and formula (11.3) from the main paper into

P{W = 0} =
E

E + λJ
∼ E

λJ
.

β < 0.

P{W = 0} =
E

E + λJ
∼ E

λJ
∼ ec(λ−nµ) ·

1
h(−β)

√
µ

− 1
β
√

µ + 1
h(β̂c)

√
gc

.

b. Probability of delayed customers to abandon.

β > 0. Formula (6.55) is derived by substituting (6.42) into

P{Ab|W > 0} =
1 + (λ− nµ)J

λJ
.

β = 0. Substitute (6.44) and (6.45) into

P{Ab|W > 0} =
1 + (λ− nµ)J

λJ
=

1− aµJ

λJ
.

β < 0.

P{Ab|W > 0} =
1 + (λ− nµ)J

λJ
∼ λ− nµ

λ
∼ −β√

n
.

c. Average offered waiting time.

β > 0.

E[V |V > 0] =
J1

J
=

1
βµ
√

n
+ o

(
1√
n

)
.
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β = 0. Substitute (6.44), (6.45), (6.48) and (6.49) into

E[V |V > 0] =
J1

J
.

β < 0.

E[V |V > 0] =
J1

J
∼ c .

d. Average waiting time.

According to the formulation of the theorem, τ = c + Y , where c > 0 is a constant and Y is a

random variable with a positive density at the origin. First, we prove that for all δ > 0

lim
λ→∞

Eλ[V ; V > c + δ]
Eλ[V ]

= 0 .

(which turns out equivalent to the proof in Theorem 6.1, part d, after the change of variables

y = x− c). Then we continue along the lines of the proof of Theorem 6.1 via

lim
λ→∞

Eλ[V ; V > τ ]
Eλ[V ]

≤ P{τ < c + δ} ;

and

lim
λ→∞

Eλ[V ; V ≤ τ ]
Eλ[V ]

= 1 .

The proof of Theorem 6.5 is very similar to the proof of Theorem 6.4.

Proof of Lemma 6.4.

a. Recall that the patience survival function at the origin is equal to Ḡ(0) = 1 − P{Blk} and

g0 = −Ḡ
′
(0). Then ∀ε > 0 ∃δ > 0 such that, for u ∈ [0, δ],

1− P{Blk} − (g0 + ε)u ≤ Ḡ(u) ≤ 1− P{Blk} − (g0 − ε)u . (6.121)

We shall approximate J by

JA =
∫ ∞

0
exp

{
−λP{Blk}x− β

√
λµx− f(λ)µx− λg0x

2

2

}
dx

Applying Lemma 4.1 with

m = 0, k1 = 1, l1 = 1, k2 = 1, l2 = 2,

we get

JA =
1

λP{Blk}+ β
√

µλ + µf(λ)
− g0

λ2P{Blk}3 + o

(
1
λ2

)
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=
1

λP{Blk}+ (nµ− λ)
− g0

λ2P{Blk}3 + o

(
1
λ2

)
.

Now using the Laplace method and (6.121), we can prove that the same approximation is valid

for

J =
∫ ∞

0
exp

{
λ

∫ x

0
(Ḡ(u)− 1)du− β

√
λµx− f(λ)µx

}
dx .

b. Similar to a. (However, here only one approximation term is needed.)

J1 =
∫ ∞

0
x · exp

{
λ

∫ x

0
(Ḡ(u)− 1)du− β

√
λµx− f(λ)µx

}
dx ∼

∫ ∞

0
x · exp {−λP{Blk}x} dx

=
1

λ2 · P{Blk}2 ∼ 1
n2µ2 P{Blk}2 .

Proof of Theorem 6.6.

a. Formula (6.77) from Lemma 6.4 implies that

J =
1

λ · P{Blk}
+ o

(
1
λ

)
. (6.122)

Now the formula for the probability of positive offered wait follows from (3.8), (6.122) and

λ ∼ nµ (λ, n →∞) . Since

P{W > 0|V > 0} = 1− P{Blk} ,

formula (6.80) for the probability of actual wait prevails.

b. The conditional probability to abandon

P{Ab|V > 0} =
1 + (λ− nµ)J

λJ

=
1− [β

√
λµ + µf(λ)] ·

[
1

λP{Blk}+β
√

λµ+µf(λ)
− g0

λ2P{Blk}2

]
+ o

(
1
λ2

)
λ

λP{Blk}+β
√

λµ+µf(λ)
− λg0

λ2P{Blk}2 + o
(

1
λ

)
= P{Blk}+

1
n
· g0

µ · P{Blk}
+ o

(
1
n

)
.

Note that

P{Ab} = P{Ab;W = 0}+ P{Ab;W > 0} = P{Blk} ·P{V > 0}+ P{Ab|W > 0} ·P{W > 0}

= P{V > 0} · (P{Blk}+ (1− P{Blk}) · P{Ab|W > 0}) .

Hence,

P{Ab|W > 0} = (P{Ab|V > 0} − P{Blk}) · 1
1− P{Blk}

,
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which implies formula (6.82). Finally, (6.83) follows from formulae (6.79) and (6.81).

c. Statement (6.84) is a consequence of (3.14). Then formula (6.79) implies (6.85).

d. First we derive (6.87).

E[W ] = E[min(V, τ)] = E[min(V, τ)|τ > 0] · (1− P{Blk}) ∼ E[V ] · (1− P{Blk}) ,

where the last equivalence can be proved using the methods of Theorem 6.1, part d. Now

formulae (6.85) and (6.80) imply (6.86) and (6.87), respectively.

Proof of Lemma 6.5.

a. The proof is similar to Part a of Lemma 11.1 from the main paper, and is implied by

J =
∫ ∞

0
exp

{
λ

∫ x

0
Ḡ(u)du− nµx

}
dx =

∫ ∞

0
exp

{
λ

∫ x

0
(Ḡ(u)− 1)du− β

√
λµx− f(λ)µx

}
dx

∼
∫ ∞

0
exp

{
−(β + pb)

√
λµx− λg0x

2

2

}
dx , (6.123)

where (6.123) follows from

Pn{Blk} =
pb√
n
∼ pb

√
µ

λ
,

and the Laplace method.

The proof of Part b is identical to the proof of Lemma 6.1 (Part b), where β is replaced by

(β + pb).

Proof of Theorem 6.7.

a. Direct consequence of Lemma 6.5 (parts a and b):

P{V > 0} =
λJ

E + λJ
∼
[
1 +

√
g0

µ

]−1

.

Since the fraction of balking customers cannot exceed the order O

(
1√
n

)
we get

P{V > 0} ∼ P{W > 0}.

b. From Lemma 6.5,

P{Ab|V > 0} =
1− (nµ− λ)J

λJ
=

1√
n
·
[√

g0

µ
· h(β̂)− β

]
+ o

(
1√
n

)
.

Now note (see the proof of Theorem 6.6, Part b) that

P{Ab|W > 0} = (P{Ab|V > 0} − P{Blk}) · 1
1− P{Blk}

.
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Since 1− P{Blk} ∼ 1, the last expression is equivalent to

1√
n
·
[√

g0

µ
· h(β̂)− β − pb

]
+ o

(
1√
n

)
=

1√
n
·
√

g0

µ
· [h(β̂)− β̂] + o

(
1√
n

)
.

c.

E[V |V > 0] =
J1

J
∼ 1√

n
· 1
√

µg0
· [h(β̂)− β̂] .

d. As in the proof of Theorem 6.6, part d,

E[W ] ∼ E[V ] · (1− P{Blk}) ∼ E[V ] .

The equivalence between E[W |W > 0] and E[V |V > 0] follows from part a.

7 Quality-Driven operational regime

7.1 Formulation of results

Recall Theorem 7.1 from the main paper.

Theorem 7.1 (QD performance measures) Assume that the density of the patience time

at the origin exists and is positive: g0 > 0. Then the performance measures of the M/M/n+G

queue in the QD regime are approximated by:

a. The delay probability decreases exponentially in n. Specifically,

P{W > 0} ∼ 1√
2πn

· 1
γ
·
(

1
1 + γ

)n−1

· exp
{

λγ

µ

}
. (7.1)

b. Probability to abandon given wait:

P{Ab|W > 0} =
1
n
· 1 + γ

γ
· g0

µ
+ o

(
1
n

)
=

1
n
· 1
1− ρ

· g0

µ
+ o

(
1
n

)
. (7.2)

c. Average offered waiting time:

E[V | V > 0] =
1
n
· 1 + γ

γ
· 1
µ

+ o

(
1
n

)
=

1
n
· 1
1− ρ

· 1
µ

+ o

(
1
n

)
. (7.3)

d. Average waiting time:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (7.4)

e. Ratio between the probability to abandon and average wait:

P{Ab}
E[W ]

∼ g0 . (7.5)

f. Total Service Factor:

P
{

W

E(S)
>

t

n

∣∣∣∣ W > 0
}
∼ e−(1−ρ)t . (7.6)
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7.2 Proof of Theorem 7.1

In the main paper, we proved all parts of the theorem, except the last one.

f. The proof can be given along the lines of Theorem 6.1, part g. Sketch of the calculations is

given by:

P
{

W >
t

nµ

}
P{W > 0}

∼

∫ ∞

t/(nµ)
exp{−λγx}dx∫∞

0 exp{−λγx}dx
∼ exp

{−λγt

nµ

}
∼ e−ργt ∼ e−(1−ρ)t .

7.3 Numerical experiments

Two distributions that were already used in Subsection 6.2 are considered here again: uniform

with support [0, 4] and hyperexponential (mixture of two exponentials with means 1 and 3).

We do not use the other two distributions from Subsection 6.2, since in the QD regime our

approximations are established for g0 > 0 only. (Since the QD operational regime is often less

important than the QED regime, we did not try to duplicate the extensive set of special cases,

analyzed in Theorems 6.1-6.7.)

The experiments are performed according to guidelines in Subsection 6.2. The arrival rate

λ changes from 20 to 2000 (it has been from 20 to 1000 in the QED case). The quality-driven

staffing rule is

n =
[

λ

ρµ

]
, ρ < 1 .

Four values of ρ: 0.8, 0.9, 0.95 and 0.98 were chosen. In addition, we calculate the QED regime

approximation using

β =
n− λ/µ√

λ/µ
.

(The service grade β increases with λ and n.)

Example 1 (Figures 6,7): ρ = 0.8.

Figure 6 presents evolution of several performance measures in the format of Subsection 6.2.

Figure 7 studies our approximations when performance measures take very small values.

• Here and in all other special cases of Subsection 7.3, we observe an excellent linear fit

between the average wait and the probability to abandon. In general, if the offered wait

is small (QD and QED regimes) and patience density at the origin is positive, a linear

pattern prevails.

• The average wait and the delay probability decrease exponentially on λ. The approxima-

tion does not depend on the specific distribution. The conditional probability to abandon

decreases at rate 1/n or, the same, 1/λ. For small values of λ the exact values are some-

where between the QD and QED approximations. Figure 7 demonstrates that for large
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values of λ the quality-driven approximations are excellent (and much better than the

QED approximations).

Figure 6: Offered load per server ρ = 0.8, performance measures and approximations

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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Example 2 (Figure 8): ρ = 0.9.

For small values of λ the QED approximations are better than the quality-driven. For larger

values both types of approximations are good (and, again, one can check that the quality-driven

approximations are excellent for small values).

If we consider probability-to-abandon separately, the QD approximation is better for the

uniform distribution.

48



Figure 7: Offered load per server ρ = 0.8, performance measures and approximations.
Large values of arrival rate
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Example 3 (Figure 9): ρ = 0.95.

The quality-driven approximations are good only for n ≥ 500 (uniform distribution) or n ≥ 1000

(hyperexponential distribution). The QED approximations are excellent.

Conclusions.

It is reasonable to use the QD approximations, instead of QED, if the values of the performance

measures (probabilities of wait and abandonment, average wait) are small. For a “rule of thumb”,
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one can take the delay probability to be less than 0.1 (or even 0.05). The linear relation

P{Ab} = g0 · E[W ] prevails for all the special cases considered here. The reason is that this

relation is asymptotically true both in the QD and the QED regimes, where the waiting time

converges to zero.

Figure 8: Offered load per server ρ = 0.9, performance measures and approximations.
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Figure 9: Offered load per server ρ = 0.95, performance measures and approxima-
tions

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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8 Efficiency-Driven operational regime

8.1 Formulation of results

In the Efficiency-Driven (ED) operational regime, staffing is determined by:

n =
λ

µ
· (1− γ) + o(

√
λ) , γ > 0 . (8.1)

The offered load per agent

ρ =
λ

nµ
→ 1

1− γ
> 1 .
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If o(
√

λ) ≡ 0 in (8.1), the relation between ρ and γ is given by

ρ =
1

1− γ
and γ =

ρ− 1
ρ

. (8.2)

Lemma 8.1 (Building blocks) Assume that the equation

G(x) = γ

has a unique solution x∗ and that the patience density at x∗ is positive: g(x∗) > 0. Then

a.

J ∼
√

2π

λg(x∗)
· exp{λk(γ)} , (8.3)

where

k(γ) ∆= x∗ ·
(

1− nµ

λ

)
−
∫ x∗

0
G(u)du . (8.4)

(Note that the definition of x∗ implies that k(γ) > 0 for λ large enough.)

b.

E ∼ 1
γ

. (8.5)

c.

J1 ∼ x∗ · J ∼
√

2π

λg(x∗)
· x∗ · exp{λk(γ)} . (8.6)

Theorem 8.1 (Performance measures) Under the assumptions of Lemma 8.1, the perfor-

mance measures of the M/M/n+G queue in the efficiency-driven operational regime can be

approximated by:

a. Probability to get service immediately decreases exponentially:

P{W = 0} ∼ 1
γ
·

√
g(x∗)
2πλ

· exp{−λk(γ)} . (8.7)

b. Probability to abandon converges to the constant γ ≈ 1− 1
ρ
.

P{Ab} ∼ γ . (8.8)

c. The average offered wait E[V ] converges to the constant x∗.

E[V ] ∼ x∗ . (8.9)

The offered wait also converges to x∗ in probability:

V
p→ x∗ . (8.10)
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d. Define the distribution G∗ = {G∗(x), x ≥ 0} by

G∗(x) =

{
G(x)
G(x∗) = G(x)

γ , x ≤ x∗

1, x > x∗

(In fact, G∗ is the distribution of the random variable min(x∗, τ), where τ is the patience time.)

Then the average waiting time W weakly converges to the distribution G∗:

W
w→ G∗ . (8.11)

In addition,

E[W ] → E[min(x∗, τ)] =
∫ x∗

0
Ḡ(u)du . (8.12)

e. Total Service Factor.

The distribution of wait is given by:

P{V > t} ∼
{

1, t < x∗

0, t > x∗
. (8.13)

P{W > t} ∼
{

Ḡ(t), t < x∗

0, t > x∗
. (8.14)

The distribution of wait around x∗ can be approximated in the following way.

Let −∞ < t < ∞. Then

P
{

V

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}
∼ Φ̄

(
t

√
g(x∗)

µ(1− γ)

)
. (8.15)

P
{

W

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}
∼ (1− γ) · Φ̄

(
t

√
g(x∗)

µ(1− γ)

)
. (8.16)

8.2 Numerical Experiments

Three distributions that were considered above in Subsection 6.2 are used in our experiments:

uniform, hyperexponential and delayed exponential. Instead of the conditional probability

P{Ab|W > 0}, we plot P{Ab} (the delay probability is close to one and there are no rea-

sons to distinguish between the two performance measures). Note that, in contrast to the QED

regime, the ED approximation formulae are the same for distributions with both positive and

zero densities at the origin. (Although the rate of convergence of the approximations can be

very different for the two types of distributions.) As in Subsection 7.3, we compare between the

ED and QED approximations.

The ED staffing rule is

n =
[

λ

ρµ

]
, ρ > 1 . (8.17)

Four values of ρ: 1.05, 1.1, 1.2 and 1.5 were chosen. Other assumptions are the same as in

Subsection 6.2.

53



Figure 10: Offered load per server ρ = 1.05, performance measures and approxima-
tions
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Example 1 (Figure 10): ρ = 1.05.

• We observe that the probability to abandon and the average wait converge to fluid limits.

The limit for the probability to abandon is γ = 1 − 1
ρ
, independently of the patience

distribution. The limit for the average wait (8.12) depends on the specific patience-time

distribution.

• The QED approximations are better than the ED for small values of λ. However, we

observe that QED approximations for P{Ab} and E[W ] do not always converge to fluid

limits (see the delayed exponential distribution for average wait).

Example 2 (Figure 11): ρ = 1.1.

In this case, almost all QED approximations for P{Ab} and E[W ] do not converge to fluid

limits (although, for very small λ they can be superior to ED.)

8.3 Proofs of the ED results

Proof of Lemma 8.1.

a. In the ED operational regime,

J =
∫ ∞

0
exp

{
λγx− f(λ)µx + λ

∫ x

0
[Ḡ(u)− 1]du

}
dx .
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Figure 11: Offered load per server ρ = 1.1, performance measures and approxima-
tions
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It is straightforward to verify that the function

hλ(x) = λγx + λ

∫ x

0
[Ḡ(u)− 1]du

reaches a maximum at x∗. Changing variables: y = x− x∗, we get

J = exp{x∗ · (λ− nµ)} ·
∫ ∞

−x∗
exp

{
λγy − f(λ)µy + λ

∫ y+x∗

0
[Ḡ(u)− 1]du

}
dx . (8.18)

The three leading terms of the Taylor expansion for
∫ y+x∗

0 [Ḡ(u)− 1]du at y = 0 are given by∫ y+x∗

0
[Ḡ(u)− 1]du =

∫ x∗

0
[Ḡ(u)− 1]du− γy − 1

2
g(x∗)y2 + O(y3) .

Hence, ∀ε > 0 ∃δ > 0 such that for |y| < δ∫ x∗

0
[Ḡ(u)− 1]du− 1

2
g(x∗ + ε)y2 ≤ γy +

∫ y+x∗

0
[Ḡ(u)− 1]du

≤
∫ x∗

0
[Ḡ(u)− 1]du− 1

2
g(x∗ − ε)y2 . (8.19)

Define

JA = exp{λk(γ)} ·
∫ ∞

−∞
exp

{
−f(λ)µy − λg(x∗)y2

2

}
dy .

For f(λ) = o(
√

λ),

JA ∼
√

2π

λg(x∗)
· exp{λk(γ)} .
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Now we perform the Laplace argument, based on inequalities (8.19), obtaining

J ∼ JA .

The equivalence of the
∫ δ
−δ integrals is derived via the Taylor expansion (recall Lemma 11.1 from

the main paper, Part a). In addition, we must construct “exponential bounds” like in formula

(11.10) of the main paper for∫ ∞

δ
exp

{
λγy − f(λ)µy − λ

∫ x∗+y

x∗
G(u)du

}
dy (8.20)

and the corresponding integral
∫−δ
−∞.

Define

α = G

(
x∗ +

δ

2

)
− γ > 0 .

(The value of α is positive since G is strictly increasing at x∗.) Then the integral in (8.20) is

less or equal to∫ ∞

δ
exp

{
−f(λ)µy − λα

(
y − δ

2

)}
dy ≤ exp

{
λαδ

2

}
·
∫ ∞

δ
exp

{
−3

4
λαy

}
dy =

=
exp{−(λαδ)/4}

(3/4)λα
= o(e−νλ) , ν > 0 .

The bound for
∫−δ
−∞ is constructed in a similar way.

b. First we present an approximation

EA = λ

∫ ∞

0
exp {−λγx + µ(f(λ)− 1)x} dx ∼ 1

γ
. (8.21)

Then

E = λ

∫ ∞

0
e−λx(1 + µx)

λ
µ

(1−γ)+f(λ)−1
dx

= λ

∫ ∞

0
exp

{
−λx +

[
λ

µ
(1− γ) + f(λ)− 1

]
· ln(1 + µx)

}
dx

Now using ln(1 + µx) = µx + o(x) and the Laplace method, we get that

E ∼ EA .

c. In the ED regime,

J1 =
∫ ∞

0
x · exp

{
λγx− f(λ)µx + λ

∫ x

0
[Ḡ(u)− 1]du

}
dx

= ex∗·(λ−nµ) ·
∫ ∞

−x∗
(y + x∗) · exp

{
λγy − f(λ)µy + λ

∫ y+x∗

0
[Ḡ(u)− 1]du

}
dx
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= x∗ · J + ex∗·(λ−nµ) ·
∫ ∞

−x∗
x∗ · exp

{
λγy − f(λ)µy + λ

∫ y+x∗

0
[Ḡ(u)− 1]du

}
dx . (8.22)

Using Taylor expansion of
∫ y+x∗

0 [Ḡ(u) − 1]du (see part a of the proof), we get that the second

term of (8.22) has a smaller order than the first one, given λ →∞.

Proof of Theorem 8.1.

a. Probability to get service immediately.

P{W = 0} ∼ E
E + λJ

∼ E
λJ

∼ 1
γ
·

√
g(x∗)
2πλ

· exp{−λk(γ)} .

b. Probability to abandon.

P{Ab} =
1 + (λ− nµ)J

λJ
∼ λ− nµ

λ
∼ γ .

c. Offered waiting time.

E[V ] =
J1

J
∼ x∗ .

In order to prove V
p→ x∗, we must derive∫ ∞

x∗+δ
vλ(x)dx → 0 and

∫ x∗−δ

0
vλ(x)dx → 0 .

Both statements can be proved using “exponential bounds” (see the proof of (8.20)).

d. We have shown that

Vλ
w→ x∗ .

Hence, the pair (Vλ, τ) converges weakly to (x∗, τ), as a two-dimensional random vector. Since

the minimum function is continuous, the virtual waiting time

Wλ = min(x∗, τ) w→ min(x∗, τ) .

In order to prove convergence of expectations, it is sufficient to demonstrate uniform integrability

of {Wλ, λ ≥ 0}. Since Wλ ≤ Vλ, the uniform integrability can be shown for {Vλ, λ ≥ 0}. The

proof follows the pattern of proving (8.20). For example,

lim
λ→∞

∫ ∞

x∗+δ
xṽλ(x)dx = 0 .

e. Formulae (8.13) and (8.14) follow from parts c and d. The proof of (8.15) proceeds via

P

{
V > x∗ +

t√
n

∣∣∣∣ V > 0
}

=

∫∞
x∗+t/

√
n exp {λγx− f(λ)µx− λ

∫ x
0 G(u)du} dx∫∞

0 exp {λγx− f(λ)µx− λ
∫ x
0 G(u)du} dx
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=

∫∞
t/
√

n exp
{
λγy − f(λ)µy − λ

∫ y+x∗

0 G(u)du
}

dy∫∞
−x∗ exp

{
λγy − f(λ)µy − λ

∫ y+x∗

0 G(u)du
}

dx
∼

∫∞
t/
√

n exp
{
−λg(x∗)y2

2

}
∫∞
−∞ exp

{
−λg(x∗)y2

2

}
dy

(8.23)

= Φ̄

t

√
λg(x∗)

n

 = Φ̄

(
t

√
g(x∗)µ
(1− γ)

)
.

(The equivalence in (8.23) can be proved using the methods from Lemma 8.1, part a.) Then

P
{

V

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}
∼ Φ̄

(
t

√
g(x∗)

µ(1− γ)

)
.

Analyzing the actual waiting time,

P
{

W

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}

= Ḡ

(
x∗ +

t

µ
√

n

)
· P
{

V

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}

∼ (1− γ) · Φ̄
(

t

√
g(x∗)

µ(1− γ)

)
.

9 Economies of scale in the M/M/n+G queue

Consider m iid call centers that are pooled into a single operation. Each call center can be

modelled by an M/M/n+G queue with the same characteristics: arrival rate λ, service rate µ,

patience distribution G, and n servers, where n is determined by the manager of the call center.

Assume that all these call centers were run in one of the operational regimes studied in

Sections 6-8. If we sustain that regime in the pooled call center, how will performance change?

Will Economies Of Scale (EOS) drive improvements in service level? Tables 2-4 summarize

answers to these questions.

In Gans et al. [5] an EOS framework for the Erlang-C queue was developed. In this section,

we compare between Erlang-C and M/M/n+G, observing many similar EOS effects. That is

somewhat surprising, taking into account significant differences between the two models.

9.1 QED regime

Recall that in the QED operational regime, staffing level is determined by

n = [R + β
√

R] ,

where R is the offered load. In Erlang-C , β must be positive, but in M/M/n+G, −∞ < β < ∞.

Define the safety staffing ∆ as the difference between the staffing level n and the offered load

R = λ/µ. Again, for the Erlang-C queue we need ∆ > 0 to ensure system stability. In models

with abandonment, ∆ can become negative.
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Table 2: Economies of scale. QED regime.

Erlang-C Queue M/M/n+G Queue

Base Case Pooled Base Case Pooled

Offered load R =
λ

µ
mR R =

λ

µ
mR

Safety staffing ∆ > 0
√

m∆ −∞ < ∆ < ∞
√

m∆

Number of agents R + ∆ mR +
√

m∆ R + ∆ mR +
√

m∆

Service grade β =
∆√
R

β β =
∆√
R

β

P{W>0}
[
1 +

β

h(−β)

]−1

P{W>0}
[
1 +

h(rβ)
rh(−β)

]−1

P{W>0}

Occupancy
R

R + ∆
R

R + ∆√
m

R

R + ∆
· (1− P{Ab}) R

R + ∆√
m

·
(

1− P{Ab}√
m

)

P{Ab|W> 0} — —
β

∆r
· (h(rβ)− rβ)

1√
m
· P{Ab|W> 0}

ASA
1
∆

1√
m
·ASA

rβ

∆
· (h(rβ)− rβ)

1√
m
·ASA

TSF e−βt (TSF)
√

m Φ̄
(
rβ + t

r

)
Φ̄(rβ)

TSF ·
Φ̄
(
rβ + t

r

√
m
)

Φ̄
(
rβ + t

r

)

In order to get simple expressions that are straightforward to compare across regimes, we

modify the definitions of average wait (ASA) and Total Service Factor (TSF). Both performance

measures will be calculated only for delayed customers and they are measured in units of the

average service time.

Formally,

ASA ∆= E
[

W

E(S)

∣∣∣∣ W > 0
]

, (9.1)

and

TSF ∆= P
{

W

E(S)
>

t√
n

∣∣∣∣ W > 0
}

Definition (9.1) will be the same for the three regimes. In contrast, the definition of TSF will

be modified for each special case.

Table 2 illustrates Economies of Scale for the main case of the QED regime (positive patience

density at the origin). We make some changes in notation, in comparison to Theorem 6.1,
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defining

r
∆=
√

µ

g0
.

It will turn out that in each of the three regimes, one or several performance measures are held

constant after pooling. The boxed entries in Table 2, as well as in later tables, highlight those

performance measures. Indeed, in the QED case, the delay probability remains fixed under

pooling. In addition, we observe that in both queues the agents’ occupancy converges to 100%

and ASA decreases to ASA/
√

m. Finally, the probability to abandon decreases at rate 1/
√

m.

9.2 QD regime

Recall that the Quality-Driven operational regime of M/M/n+G is characterized by:

n = R · (1 + γ) ,

where the service grade γ is positive.

The definition of TSF in the QD regime is taken to be

TSF ∆= P
{

W

E(S)
>

t

n

∣∣∣∣ W > 0
}

.

Since abandonment is exponentially negligible in the QD regime, the M/M/n+G performance

measures, presented in Table 3, are identical to the Erlang-C case: ASA decreases to ASA/m,

TSF decreases to TSFm and the delay probability converges to zero exponentially. In addition,

the conditional probability to abandon in M/M/n+G decreases at rate 1/n.

9.3 ED regime

Recall that the definitions of the ED regime for Erlang-C and M/M/n+G are different:

n = R + γ

for Erlang-C (see Appendix of Gurvich [8], assume that n is integer), and

n = R · (1− γ) , γ > 0 ,

for M/M/n+G.

Let

TSF ∆= P
{

W

E(S)
> t

∣∣∣∣ W > 0
}

.

The ED results are summarized in Table 4. In both queues, essentially all customers are

delayed and agents are nearly 100% utilized. The waiting time remains asymptotically the same

after pooling (both the mean and distribution). In addition, from Section 8 the probability to

abandon in the M/M/n+G queue converges to the fluid limit 1− 1/ρ.
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Table 3: Economies of scale. QD regime.

Erlang-C Queue M/M/n+G Queue

Base Case Pooled Base Case Pooled

Offered load R =
λ

µ
mR R =

λ

µ
mR

Safety staffing ∆ > 0 m∆ ∆ > 0 m∆

Number of agents n = R + ∆ mR + m∆ n = R + ∆ mR + m∆

Service grade γ =
∆
R

γ γ =
∆
R

γ

P{W > 0} 1√
2πn

· (ρe1−ρ)n

1− ρ

1√
m
· (P{W > 0})m 1√

2πn
· (ρe1−ρ)n

1− ρ

1√
m
· (P{W > 0})m

Occupancy
1

1 + γ

1
1 + γ

1
1 + γ

1
1 + γ

P{Ab|W> 0} — —
1
n
· 1
1− ρ

· g0

µ

1
m
· P{Ab|W > 0}

ASA
1
n
· 1
1− ρ

1
m
·ASA

1
n
· 1
1− ρ

1
m
·ASA

TSF e−(1−ρ)t (TSF)m e−(1−ρ)t (TSF)m

9.4 Economies of Scale: conclusions

Each operational regime corresponds to one or several performance measures that are held

constant under pooling. Therefore, the following rules for the M/M/n+G queue can be deduced:

• If a call center manager would like, after pooling, to maintain agents utilization at a

constant level, smaller than 100%, the QD operational regime is appropriate. It implies

very high performance level, and essentially all customers get service immediately.

• If the objective is to fix the delay probability, the QED operational regime should be used.

It will combine high performance level (ASA, TSF, probability to abandon) and agents’

utilization that is not far from 100%.

• If it is enough to sustain the probability to abandon or/and waiting time, the understaffed

ED operational regime enables this goal.
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Finally, we observed close relations between EOS effects in the simple Erlang-C system and the

much more complicated M/M/n+G.

Table 4: Economies of scale. ED regime.

Erlang-C Queue M/M/n+G Queue

Base Case Pooled Base Case Pooled

Offered load R =
λ

µ
mR R =

λ

µ
mR

Safety staffing ∆ > 0 ∆ ∆ < 0 m∆

Number of agents n = R + ∆ mR + ∆ n = R + ∆ mR + m∆

Service grade γ = ∆ γ γ = −∆
R

γ

P{W > 0} 1 1 1 1

Occupancy 1 1 1 1

P{Ab} — — 1− 1
ρ

1− 1
ρ

ASA
1
∆

ASA
E[min(R, x∗)]

E(S)
ASA

TSF e−t∆ TSF


Ḡ(t/E(S)), t < x∗/E(S)

0, t > x∗/E(S)

TSF

10 Some statistical applications to call centers

10.1 General description of the data set

The source of our data is a large multi-site call center of a US bank. It has sites in New York,

Pennsylvania, Rhode Island, and Massachusetts. The daily volume on a regular day is up to

300,000 calls overall. The majority of these calls end at the VRU, but up to 70,000 are seeking

to reach agents. Only the latter will be considered here.

62



The number of agent positions at peak hours varies from 900-1200 on weekdays to 200-500

on weekends. Working hours are 24 hours a day, 7 days a week.

The call center provides many service types. In our research, we consider two of them. The

first one, Retail, is by far the most common. The second, Telesales, is the most common after

Retail, together with Business and Consumer Loans.

Call-by-call data was collected from March 2001 to October 2003. Our sample is taken from

the five-month period between September 2002 and January 2003. Since service patterns during

weekends are different, we analyze regular days only (Monday-Friday), considering calls that

arrive between 7am to 24pm.

Below in Table 5 we provide overall descriptive statistics for the two service types under

consideration:

Table 5: Retail and Telesales service types. Descriptive statistics

September 2002 - January 2003

Calls E[S] P{W > 0} P{Ab} E[W ]

Retail 3,451,743 224.6 sec 30.6% 1.16% 6.33 sec

Telesales 349,371 453.9 sec 24.3% 1.76% 9.66 sec

We observe that, overall, the system seems to work in the QED regime: the delay probability is

neither close to zero not to one, the probability to abandon and average wait are small. However,

there are huge difference between the M/M/n+G model and a large multi-site call center.

One of the most important differences lies in the protocol of customers’ service. When a

call arrives to the call center, it is sent to agents of a specific site. Only if a call is not served

within a deadline (around 10 seconds for Retail, different numbers for other types), it can be

sent to agents from other sites. This protocol violates work-conservation assumption: waiting

customers and available agents can easily co-exist.

In our work with this data, we used the Data-Mocca software [13], developed in the Statistics

Laboratory at the Technion.

10.2 Model primitives

In order to apply the M/M/n+G model, reliable data for its parameters should be obtained.

First, we need an hourly data for λ, µ and n. Second, we must calculate estimates of patience

distributions that are appropriate for our methods.
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Hourly arrival and service rates are calculated from our call-by-call data. Unfortunately,

detailed data on agents was not available in our database.

Patience times.

Figure 12: Hazard rates of patience.
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Figure 13: Survival functions of patience. Kaplan-Meier estimate.
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We produced estimates of the patience hazard and survival-function, based on overall call-

by-call data from 5 months, as mentioned before; actuarial estimator (see [3], for example), was

used.

Figure 12 demonstrates very unstable hazard pattern near the origin, especially for the Retail

service type. Figure 13 shows that customers are, overall, very patient: over 90% are willing to

wait more than one minute.

We checked that the monthly patience patterns are indeed stable over the five-month period

under consideration. However, for months out of this period, the patience hazard function can

be very different. A probable reason could be changes in the contents of announcements and

their timing. (Recall the second plot of Figure 2 from the main paper, where announcements

took place at 15 and 60 seconds of customers’ wait, implying peaks of abandonment.)

10.3 Performance measures

Three basic performance measures are considered here: P{W > 0}, P{Ab} and E[W ]. Below

we discuss several issues related to their measurement.

Delay probability. It turns out that the database contains a very large fraction of waiting

times that equal one second. (Around half of the observations! In addition, about 20% of waiting

times equal zero.) Since it is unreasonable to assume that 50% of customers experienced actual

positive wait of one second, the event {W = 0} was defined to be equivalent to a wait of 0 or 1

second in the database.

Probability to abandon. Abandonments that took place at 0 or 1 second were discarded.

Their meaning is unclear; probably they correspond to customers that decided to leave even

before they were sent to queue or service (e.g. at the VRU stage).

Waiting times. Since the event “a customer was served immediately” is equivalent to the

wait of 0 or 1 seconds in the database, all waiting times exceeding zero are reduced by 1 second.

10.4 Fitting QED approximations

Our main approach is the following. First, we estimate the number of agents n via fitting one

of our basic performance measures (the probability to abandon was chosen since it performed

the best). Specifically, we numerically solve the following equations, based on the hourly data:

P{Ab} = f(λ, µ, n, g0) ,

where n is unknown, f is the formula for the QED estimate from Theorem 6.1, λ and µ are

hourly arrival and service rates, respectively, and g0 is the patience density at the origin.
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Then, using this estimate of n, we try to fit other performance measures. Since the estimate

of n depends on QED formulae, such an experiment cannot “prove” that QED approximations

fit the data. However, a negative result would show that some problems exist in our approach.

An additional important question arises: which value should be substituted into the QED

formulae for g0? The most straightforward way is to substitute the hazard estimate at the origin

from Figure 12. Figure 14 compares the resulting QED approximations and the real-data hourly

values. The results are aggregated, as in Figure 4 from the main paper.

We observe a very strong bias between data values and model values. In our opinion, the

reason for the bias is instability of the two hazard estimates from Figure 12 near the origin.

Specifically, the limit statements from Theorem 6.1 prevail in practice, if the patience density

(or hazard rate) is more or less stable for typical values of waiting times. In our case, a typical

wait is equal to several seconds. (In the QED limit, the wait converges to zero.) However, since

the patience density oscillates significantly even within the range of several seconds, the limit

QED statements do not apply directly.

Figure 14: Fitting performance measures, g0:=hazard at zero
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As an answer to this challenge, we suggest to substitute for g0 the value of the ratio

P{Ab}/E[W ] into the QED formulae. (See Figure 15.) Now the fit for some performance

measures is good. It seems that the value of the ratio gives an appropriate weighted average of

the hazard rate near the origin.
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Figure 15: Fitting performance measures, g0:= P{Ab}/E[W ]
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10.5 Summary of our data analysis

In some of our experiments, we observed a good fit to the theoretical models. For example,

recall Figure 4 from the main paper and Figure 15. However, several problems and challenges

arise that do not enable us to characterize this data research as a definite success. The problems

that deserve further attention are as follows:

• During data collection, the detailed profiles of agents should be added to call-by-call data.

This will enable reliable estimates for the number of agents.

• The influence of the volatile customer behavior during the first few seconds of their wait

should be explored. Probably, in addition to the approach from Subsection 10.4, one could

try models with balking.

• The reality of a large modern call center is much more complicated than the M/M/n+G

model. For example, due to the service protocol described in Subsection 10.2, the FCFS

service discipline or work-conservation do not, in general, prevail. Hence, sometimes more

complicated models should be applied.
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