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Abstract

The subject of the present research is the M/M/n+G queue. This queue is characterized
by Poisson arrivals at rate λ, exponential service times at rate µ, n service agents and
generally distributed patience times of customers. The model is applied in the call center
environment, as it captures the tradeoff between operational efficiency (staffing cost) and
service quality (accessibility of agents).

In our research, three asymptotic operational regimes for medium to large call centers are
studied. These regimes correspond to the following three staffing rules, as λ and n increase
indefinitely and µ held fixed:
Efficiency-Driven (ED): n ≈ (λ/µ) · (1− γ) , γ > 0,
Quality-Driven (QD): n ≈ (λ/µ) · (1 + γ) , γ > 0, and
Quality and Efficiency Driven (QED): n ≈ λ/µ + β

√
λ/µ , −∞ < β < ∞.

In the ED regime, the probability to abandon and average wait converge to constants.
In the QD regime, we observe a very high service level at the cost of possible overstaffing.
Finally, the QED regime carefully balances quality and efficiency: agents are highly utilized,
but the probability to abandon and the average wait are small (converge to zero at rate
1/
√

n).
Numerical experiments demonstrate that, for a wide set of system parameters, the QED

formulae provide excellent approximation for exact M/M/n+G performance measures. The
much simpler ED approximations are still very useful for overloaded queueing systems.

Finally, empirical findings have demonstrated a robust linear relation between the fraction
abandoning and average wait. We validate this relation, asymptotically, in the QED and
QD regimes.



1 Introduction

1.1 The quality/efficiency tradeoff in call centers

During the last two decades, there has been an explosive growth in the number of companies

that provide services via the telephone, as well as in the variety of telephone services provided.

In the U.S. alone, the call center industry is estimated to employ several million agents which,

in fact, outnumber agriculture [17, 13, 40]. In Europe, the number of call center employees in

1999-2000 was estimated, for example, by 600,000 in the UK (2.3% of the total workforce) and

200,000 in Holland (almost 3%) [4].

A central challenge in designing and managing a service operation in general, and telephone-

based services in particular, is to achieve a desired balance between operational efficiency and

service quality. In our research, we treat the staffing aspect of the quality/efficiency tradeoff,

namely having the right number of agents in place. “The right number” means not too many,

saving operating costs, and not too few, avoiding excessive customers’ wait and abandonment.

The quality and efficiency levels of a well-run modern call center can be extraordinarily

high. Indeed, in a large performance-leader enterprise, many hundreds of agents could serve

many thousands of calling customers per hour; agents’ utilization levels could exceed 90-95%,

yet the service level could be very high. To reach these levels of performance, one presumes

that planning would require sophisticated stochastic queueing models. However, one actually

observes in practice that simple deterministic approaches lead to surprisingly good results. This

puzzling, often professionally frustrating phenomenon, can be explained via our models, as the

following example demonstrates.

Consider a call center with an average of 6000 calls per hour and service time of 4 minutes.

Such a call center gets an average of (6000 : 60) · 4 = 400 minutes of work per minute. The

deterministic approach then prescribes 400 service agents to cope with this load, which is a

questionable recommendation according to standard queueing models. For example, Erlang-C

(M/M/n) would then be unstable, and waiting times and queue-lengths would increase indefi-

nitely. But now assume that customers abandon, as they actually do, and assign a reasonable

parameter to their patience, say on the order of a service time. Then, about 50% of the cus-

tomers would be answered immediately upon calling, the average wait would be a mere 5 seconds,

agents’ utilization would be 98%, and all this at the cost of 2% abandonment – a remarkable

performance indeed. (See Remark 4.6 on page 15 for a formal discussion that explains how

sophisticated models do sometimes, but not always, lead to simple answers that are consistent

with the deterministic approach.)

Most call centers are far from achieving the levels of service cited above. To these, our

models would help climb the performance ladder, and this is where our contribution lies.

In light of the quality/efficiency tradeoff challenge, it is natural to model call centers by
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queueing systems. Note that unlike many other queues, call center queues are invisible: callers

cannot observe how long a queue is and their progress in it. Consequently, the abandonment

behavior of customers in tele-queues is different from face-to-face queues. See, for example

[17, 28, 39, 49].

1.2 Patience in invisible queues: the M/M/n+G model

As mentioned, the classical M/M/n queueing model, also called Erlang-C, is the model most

frequently used in workforce management of call centers. Erlang-C assumes Poisson arrivals

at a constant rate λ, exponentially distributed service times with a rate µ, and n indepen-

dent statistically-identical agents. (Time-varying arrival rates are accommodated via piecewise

constant approximations.) But Erlang-C does not allow abandonment, which is a significant

deficiency: customer abandonment is not a minor, let alone negligible, aspect of call center op-

erations; see Garnett et al. [18]. Specifically, and as demonstrated above, ignoring abandonment

can lead to wrong staffing decisions and distorted definitions of service level.

Figure 1: Schematic representation of the M/M/n+G queue
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In this paper, we enrich Erlang-C to the M/M/n+G queue, which has the following additional

feature: associated with each arriving caller there is a generally distributed patience time τ with

a common distribution G. An arriving customer encounters an offered waiting time V , defined

as the time that this customer would have to wait given that her or his patience is infinite. If

the offered wait exceeds the customer’s patience time, the call is then abandoned, otherwise the

customer awaits service. In both cases, the actual waiting time W is equal to min(V, τ). Our

treatment of the M/M/n+G model is based on Baccelli and Hebuterne [3].

M/M/n+G generalizes the M/M/n+M (Erlang-A) model with exponentially distributed pa-

tience times, which is the most tractable model with abandonment. (This model was introduced
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by Palm [37]. See also [18], [30] and [33].) M/M/n+M is already used in well-run call centers.

We now explain why it is important to study its generalization.

In Figure 2 we display hazard-rate estimates of the customers’ patience for two banks: a

large U.S. bank and a small Israeli one. In the two cases we observe different, but clearly

non-exponential patterns. (Recall that the hazard rate of an exponential random variable is

a constant.) American customers are very impatient at the beginning of their wait, but their

patience stabilizes after approximately 10 seconds. In contrast, Israeli customers have two clear

peaks of abandonment: approximately at 15 and at 60 seconds. (It turns out that these two

surges of abandonment take place immediately after two recorded messages to which customers

are exposed: the first one when they enter the queue and the second after approximately 1

minute.)

Therefore, at least in some applications (according to our experience, in most), customers’

patience times are non-exponential.

Figure 2: Bank data: hazard rates of patience times
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We now show that a non-exponential distribution of patience can significantly affect system

performance, when compared to the Erlang-A system with the same average patience. Consider

M/M/n+G with n = 100 and service rate µ = 1. Three patience distributions with the same

average patience are compared: exponential with average 2, constant 2 and uniform on [0,4].

We varied the arrival rate λ from 10 to 500, in step 2.5, plotting in Figure 3 two performance

measures: the probability to abandon and average wait. (We assume that the unit of time is

minutes.)

Observe that the two plots are not similar. The three average-wait curves are very different,

except for small values of λ when the wait is negligible. In contrast, the probability-to-abandon
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curves seem almost identical. Only if we zoom around λ = 100, there is a noticeable difference

between deterministic patience and the two other distributions.

From this example we conclude that:

• Patience-distribution can significantly affect performance of the M/M/n+G queue;

• The effect of the patience distribution strongly depends on the performance measure we

consider (average wait and probability to abandon, in our example);

• The effect of the patience distribution depends on the load that the system is working un-

der. Specifically, it is very important whether the offered load per agent λ
nµ is significantly

below 1, around 1, or significantly above 1.

Figure 3: Dependence of performance on patience distribution
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Another aspect of the abandonment phenomenon was explored in Mandelbaum and Zeltyn

[32], where we studied an empirical and theoretical relationship between the probability to

abandon P{Ab} and average wait E[W ]. As an example, consider data from our large U.S. bank

call center. First, P{Ab} and E[W ] were computed for 1649 hourly intervals that constitute 5

months of work between 7am and 24pm during weekdays. The left plot of Figure 4 presents

the resulting “cloud” of points, as they scatter on the plane. For the right plot, we are using

an aggregation procedure that is designed to emphasize dominating patterns. Specifically, the

1649 intervals were ordered according to their average waiting times, and adjacent groups of 40

points were aggregated (further averaged): this forms the 41 points of the second plot in Figure

4. (The last point of the aggregated plot is an average of 49 hour intervals.)
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We observe a remarkable linear fit that theoretically prevails for models with exponential

patience, but we see that it practically arises for non-exponential patience as well. The paper

[32] contains experimental and theoretical research on this issue. In the present paper, we add

support as to why the linear relation can arise in the M/M/n+G model with non-exponential

patience.

Figure 4: Telesales customers. Probability to abandon vs. average waiting time

aggregated
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1.3 Operational measures of performance

In order to apply a queueing model, one must first define relevant performance measures, and

then be able to calculate them. Moreover, since call centers can get very large (up to thousands

of agents), the implementation of these calculations must be both scalable and numerically

stable.

The most popular measure of operational (positive) performance is P{W ≤ T, Sr}, where

W is the waiting time, {Sr} is the event “customer gets service” and T is a target time that is

determined by Management/Marketing. However, as explained before, performance measures

must take into account those customers who abandon. Indeed, if forced into choosing a single

number as a proxy for operational performance, we recommend it to be the probability to abandon

P{Ab}, the fraction of customers who explicitly declare that the service offered is not worth its

wait. Some managers actually opt for the refinement P{W > ε; Ab}, for some small ε > 0, for

example ε = 3 seconds. The justification is that those who abandon within 3 seconds can not

be characterized as poorly served. There is also a practical rationale that arises from physical

limitations, specifically that such “immediate” abandonment could in fact be a malfunction or

an inaccuracy of the measurement devices.
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The single abandonment measure P{Ab} can be refined to account explicitly for those cus-

tomers who were in fact well-served. We propose the following four-dimensional service measure:

• P{W ≤ T ; Sr} - fraction of well-served;

• P{W > T ; Sr} - fraction served with a potential for improvement;

• P{W > ε; Ab} - fraction of poorly-served;

• P{W ≤ ε; Ab} - fraction of those whose service-level is undetermined, as explained above.

The approximations that are developed in our paper cover this multi-dimensional performance

measure. See Remark 4.4 on page 14.

1.4 The ED, QD and QED operational regimes

Table 1: Example of Half-Hour ACD Report

Time Calls Answered Abandoned% ASA AHT Occ% # of agents
Total 20,577 19,860 3.5% 30 307 95.1%
8:00 332 308 7.2% 27 302 87.1% 59.3
8:30 653 615 5.8% 58 293 96.1% 104.1
9:00 866 796 8.1% 63 308 97.1% 140.4
9:30 1,152 1,138 1.2% 28 303 90.8% 211.1
10:00 1,330 1,286 3.3% 22 307 98.4% 223.1
10:30 1,364 1,338 1.9% 33 296 99.0% 222.5
11:00 1,380 1,280 7.2% 34 306 98.2% 222.0
11:30 1,272 1,247 2.0% 44 298 94.6% 218.0
12:00 1,179 1,177 0.2% 1 306 91.6% 218.3
12:30 1,174 1,160 1.2% 10 302 95.5% 203.8
13:00 1,018 999 1.9% 9 314 95.4% 182.9
13:30 1,061 961 9.4% 67 306 100.0% 163.4
14:00 1,173 1,082 7.8% 78 313 99.5% 188.9
14:30 1,212 1,179 2.7% 23 304 96.6% 206.1
15:00 1,137 1,122 1.3% 15 320 96.9% 205.8
15:30 1,169 1,137 2.7% 17 311 97.1% 202.2
16:00 1,107 1,059 4.3% 46 315 99.2% 187.1
16:30 914 892 2.4% 22 307 95.2% 160.0
17:00 615 615 0.0% 2 328 83.0% 135.0
17:30 420 420 0.0% 0 328 73.8% 103.5
18:00 49 49 0.0% 14 180 84.2% 5.8
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Consider Table 1, which displays a typical daily ACD (Automatic Call Distributor) report

of a moderate-to-large call center in the U.S., from the Health Insurance industry. For every

half-hour interval, the report depicts the number of incoming calls, abandonment fraction, the

Average Speed of Answer (ASA), the Average Handling Time (AHT), the agents’ occupancy

and the average number of agents over the interval in consideration.

We observe that the performance level, presented by ASA and Abn%, varies significantly

over the day. We shall concentrate on three time intervals, highlighted in bold: 13:30, 14:30 and

17:00.

The first interval is characterized by 100% occupancy, relatively high abandonment rate

(9.4%) and considerable ASA (more than 1 minute). During this half-hour, the call center

is working in the Efficiency-Driven (ED) regime, in the sense that the emphasis is on agents’

utilization, or efficiency. (Note that the number of agents is smaller than in the adjacent intervals.

A probable cause could be lunch break.)

The interval that starts at 17:00 presents a contrasting service pattern. There is no aban-

donment and the average wait is negligible (2 sec). The agents’ occupancy is far below 100%

(83%). Such a service regime will be called Quality-Driven (QD), in the sense that the emphasis

is on customers’ service quality.

Finally, the last interval (14:30) demonstrates an intermediate service regime: utilization

is high (96.6%), and abandonment and waiting are neither negligible nor high. Since in this

half-hour, high efficiency and service level are achieved simultaneously, this operational regime

has been called QED (Quality and Efficiency-Driven).

The examples above show that there exist clear differences in operational-performance which,

as will now become clear, could be pre-designed (though we do not claim that this is the case

here). We shall now present formal definitions of the three operational regimes.

First, calculate the offered load R =
λ

µ
for the three intervals. We get

RED = 1061 :
1800
306

= 180.37

for the ED-interval (1800 is the number of seconds in an interval), RQD = 112.07 for the

QD-interval, and, finally, RQED = 204.69 for the QED-interval.

In the ED regime, we observe that the offered load RED (180.37) is considerably larger than

the number of agents n (163.4). This implies that agents could not have coped with the offered

load unless abandonment took place. The formal characterization of the ED regime is in terms

of the following relationship between n and RED:

n = RED · (1− γ) , (1.1)

where the constant γ > 0 is interpreted as a service grade: larger γ will imply larger wait and
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abandonment. In our example, γ = 1 − n/RED = 0.094, which is equal to %Abn. This is not

a coincidence, and an explanatory asymptotic statement will be presented in Theorem 6.1.

For the QD-regime, we have RQD = 112.07 and n = 135. The characterization of this regime

is

n = RQD · (1 + γ) , γ > 0 . (1.2)

Now we proceed to, what we believe is, the most important operational regime: QED at

14:30. In this regime, the difference between n (206.1) and RQED (204.69) is relatively small

and should not be quantified in units of R, as in (1.1) and (1.2). Furthermore, this difference

can be either positive or negative. The appropriate characterization turns out to be

n = RQED + β
√

RQED , −∞ < β < ∞ , (1.3)

where, in our example, the service grade β = (n−RQED)/
√

RQED = 0.10

Above we established the need to study models with general patience of customers. In

concert with this, Sections 4-6 will be dedicated to the operational regimes (1.1)-(1.3), within

the M/M/n+G queue framework.

2 Structure of the paper and summary of results

2.1 Structure and summary of the paper

Section 3 contains a Literature Review. Subsections 3.1 and 3.2 cover exact and asymptotic

results, respectively.

Sections 4-6 present a systematic treatment of the three operational regimes, described in

Subsection 1.4: the QED, Quality-Driven (QD) and Efficiency-Driven (ED) regimes, respec-

tively. We assume that the arrival rate λ and the number of agents n increase indefinitely, and

the service rate µ is held fixed.

The QED operational regime is studied in Section 4. Theorem 4.1 considers patience dis-

tributions with a positive density at the origin. Approximations for performance measures are

derived and an asymptotic linear relation between the probability to abandon and average wait

is established. Theorems 4.2 and 4.3 treat the balking phenomenon: customers that do not get

service immediately balk with probability P{Blk}.
Our main theoretical results on the QD operational regimes are summarized in Theorem

5.1. Then Theorem 6.1 explores the ED operational regime. Here, in contrast to the other

two regimes, patience behavior near the origin does not determine the values of asymptotic

performance measures.

The conclusions are presented in Section 7. Section 8 outlines some promising directions of

ongoing and future research.
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Our proofs are carried out within the framework of exact M/M/n+G calculations, presented

in Section 9. We show there that all the essential performance measures can be calculated via

several building blocks defined in formulae (9.1)-(9.5). These building blocks have an integral

form. Hence, for asymptotic analysis, we need a technique for asymptotic calculations of inte-

grals. Here the Laplace method is helpful, and its necessary background is developed in Section

10. Finally, selected proofs are presented in Section 11. Readers are referred to our Internet

Supplement [48] for more details.

2.2 Summary of the Internet Supplement [48]

We start with the present summary in Section 1. Then, in Section 2 we briefly describe the

results of Baccelli and Hebuterne [3] that are used in the following proofs. Sections 3 and 4

contain proofs of the results from Sections 9 and 10, respectively. Section 5 discusses relevant

properties of the hazard rate of the standard normal random variable. Sections 6-8 contain

proofs and additional numerical experiments for the three operational regimes: QED, QD and

ED, respectively. We also study two additional special cases in the framework of the QED

regime. (See Subsections 6.1.2 and 6.1.3 of the Internet Supplement.) In both cases, the density

of the patience distribution vanishes at the origin.

Then Section 9 explores the Economies-of-Scale (EOS) problem for the three regimes. Specif-

ically, assuming that the arrival rate increases by a factor m > 1, we apply the corresponding

operational regime and check how the most important performance measures change in these

circumstances. Finally, in Section 10 our models are applied to call center data of a large bank

in the USA.

3 Literature review

3.1 Relevant exact results for M/M/n+G

The seminal work on queueing systems with impatient customers is Palm [36, 37]. In particular,

Palm introduced the basic Erlang-A (M/M/n+M) queueing system with exponential patience

times.

Gnedenko and Kovalenko [19] analyzed the M/M/n+D queueing system (deterministic pa-

tience times). Jurkevic [26] applied their methods to the general M/M/n+G system. Inde-

pendently, the M/M/n+G queue was analyzed by Baccelli and Hebuterne [3] and Haugen and

Skogan [23]. Boxma and de Waal [7] developed several approximations for the probability to

abandon in the M/M/n+G queue and tested them via simulation.

The derivation of M/M/n+G performance measures continued in Brandt and Brandt [8, 9].

They considered the more general M(k)/M(k)/n+G system where arrival and service rates are
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allowed to depend on the number k of calls in the system. However, some of the results in [8, 9]

(for example, the distribution of total number-in-system) are new also for the M/M/n+G queue.

Another important branch of research is the estimation of the patience distribution in real

tele-queue systems. Palm [36] introduced a mathematical model for irritation which postulated

a Weibull distribution of patience times. Then he presented some real data that confirmed his

hypothesis. Kort [27] also used the Weibull distribution to model patience while waiting for a dial

tone. Baccelli and Hebuterne [3], using data from Roberts [38], fit it to an Erlang distribution

with 3 phases. Brown et al. [10], in research on a bank call center, observed the patience times

in the second plot of Figure 2. Finally, Daley and Servi [12] estimate Erlang-A parameters and

performance characteristics (in particular, probability to abandon) given incomplete empirical

data.

Concerning models of customers’ impatience, readers are referred to the papers of Zohar,

Mandelbaum and Shimkin [49] and Mandelbaum and Shimkin [28, 39], where it is assumed that

customers adapt their patience to the waiting patterns they expect to encounter. For further

references and a more complete survey see Gans, Koole and Mandelbaum [17].

3.2 Relevant asymptotic results

Although exact formulae for the Erlang-A and M/M/n+G queues are available, they are too

complicated for developing guidelines for call center managers. These formulae cannot provide

insight into practical questions of the type: “how many additional agents would one need if the

arrival rate doubles?”, “how sensitive is our model to a possible error in patience estimate?” etc.

Thus, approximations are useful for providing insight and simplifying computations. There

exist two main types of approximations: steady-state (provide asymptotic expressions for steady-

state performance measures like P{Ab} or E[W ]) and process-limit (provide asymptotics for

model processes like queue-length). In this paper, we develop steady-state approximations.

Below we review relevant asymptotic results, emphasizing applications of the square-root QED

staffing rule (Section 4) and of the ED operational regime (Section 6). In our research, which is

oriented towards call centers, we are mainly interested in models with a large number of agents

n. Formally, we assume that n and the arrival rate λ increase to infinity and, then, we index a

sequence of models by either n or λ. (As a rule, we omit this indexing in formulae.)

The square-root staffing rule (1.3) was described already by Erlang [15], as early as 1924.

He reports that it had in fact been in use at the Copenhagen Telephone Company since 1913.

A formal analysis for the Erlang-C queue appeared only in 1981, in the seminal paper of Halfin

and Whitt [21]. In that paper, the authors establish an important relation: as λ increase

indefinitely, sustaining the QED operational regime (1.3) with fixed β > 0 is equivalent to the

delay probability converging to a fixed level α, 0 < α < 1.
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Garnett, Mandelbaum and Reiman [18] studied the QED regime for Erlang-A with expo-

nential abandonment, establishing results that are analogous to [21]. In this case, the service

grade β can go negative, as in (1.3). QED analysis for the Erlang-B (M/M/n/n) model was

carried out by Jagerman [24]. He showed that for the staffing rule (1.3) the blocking probability

is of order 1/
√

n. The GI/D/n queueing model (general iid interarrival times, deterministic

service) in the QED framework was analyzed in Jelencović, Mandelbaum and Momc̆ilović [25].

The M/M/n/k model with possible busy signals (n agents, (k−n) waiting spaces in queue) was

treated by Massey and Wallace [35].

In addition, it turns out that the QED staffing regime can be analyzed in some Skill-Based

Routing (SBR) models. Armony and Mandelbaum [2], Gurvich [20] and Armony et al. [1]

explore two classical and basic SBR models:
∧

and
∨

-designs.

In [46], Whitt develops and validates an approximation for the M/G/n+G model with gen-

erally distributed iid service times. In fact, he approximates it by an M/M/n+M(k) Markovian

model with abandonment rates that depend on the number-in-system k. Whitt [47] provides

additional insight into the approximation proposed in [46]. He compares between ED approxi-

mations of the two models: exact M/G/n+G and approximate M/M/n+M(k) of [46].

Whitt [43] also presents a general fluid model (ED approximation) for the G/G/n+G queue

with general distributions of arrivals, services and patience times.

Since Erlang-A and other queueing models with abandonment are sensitive to changes in

the arrival rate (see Whitt [44]), it is important to consider models with uncertainty about the

arrival-rate. Recent papers of Whitt [45] and Harrison and Zeevi [22] study ED approximations

for such models and develop asymptotic rules of optimal staffing. In addition, Bassamboo,

Harrison and Zeevi [5] provides asymptotic routing methods. Note that the ED approximations

are cruder than the QED ones, which enables the analysis of very general models.

Finally, Ward and Glynn [41, 42] use another type of scaling. They analyze one-server

queues with abandonment (both exponential and general models), assuming that the arrival

rate is close to the service rate and the patience times become large. In this case, the reflected

Ornstein-Uhlenbeck process arises as a heavy traffic diffusion limit. In addition, the behavior

of the patience distribution near the origin turns out to play an important role, which is in line

with some of our results here.
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4 The QED operational regime

4.1 Formulation of results

4.1.1 Main case: patience distribution with positive density at the origin

Denote the patience-time density by g = {g(x), x ≥ 0}, assuming that the density exists at the

origin and its value g(0) ∆= g0 is strictly positive.

In most applications that we have encountered, a non-negligible abandonment rate during

the first seconds of wait was observed. Hence, there is a practical motivation to treat the case

g0 > 0, as the main one. In addition, it will turn out that there are significant theoretical reasons

for this emphasis. (E.g. see Remark 4.7.)

Consider an M/M/n+G queue. Fix the service rate µ and the patience distribution G.

Assume that the arrival rate λ →∞ and the staffing level n is given by

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ), λ →∞ , −∞ < β < ∞ . (4.1)

Define the hazard rate of the standard normal distribution by

h(x) =
φ(x)

1− Φ(x)
=

φ(x)
Φ̄(x)

. (4.2)

(Φ(x) is the standard normal cumulative distribution function, Φ̄(x) = 1− Φ(x) is the survival

function and φ(x) = Φ
′
(x) is the density.)

Let

β̂
∆= β

√
µ

g0
. (4.3)

Finally, in Theorem 4.1 and later, f ∼ g stands for lim
λ→∞

f(λ)/g(λ) = 1.

Theorem 4.1 (QED performance measures) In the QED operational regime, namely λ →
∞ and n as in (4.1), the performance measures of the M/M/n+G queueing system are approx-

imated by:

a. The delay probability converges to a constant that depends on β and the ratio g0/µ:

P{W > 0} ∼
[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

, (4.4)

In addition, if λ →∞ and P{W > 0} → α, with 0 < α < 1, then

n =
λ

µ
+ β

√
λ

µ
+ o(

√
λ) , (4.5)
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where α =

[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

.

b. The probability to abandon of delayed customers decreases at rate
1√
n

:

P{Ab|V > 0} =
1√
n
·
√

g0

µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (4.6)

The probability to abandon P{Ab} also decreases at rate
1√
n

and can be approximated by the

product of (4.4) with (4.6).

c. The average offered wait of delayed customers decreases at rate
1√
n

:

E[V |V > 0] =
1√
n
· 1
√

g0µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (4.7)

The average offered wait E[V ] also decreases at rate
1√
n

and can be approximated by the product

of (4.4) and (4.7).

d. The average waiting time is of the same order as the average offered wait:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (4.8)

e. The ratio between the probability to abandon and average wait converges to the (positive)

value of patience density at the origin:

P{Ab}
E[W ]

=
P{Ab|W > 0}
E[W |W > 0]

∼ g0 . (4.9)

f. The average offered wait and the average actual wait of abandoning customers decrease at

rate
1√
n

:

E[V |Ab] =
1√
n
· 1
√

g0µ

[
1

h(β̂)− β̂
− β̂

]
+ o

(
1√
n

)
. (4.10)

E[W |Ab] =
1√
n
· 1
2
√

g0µ

[
1

h(β̂)− β̂
− β̂

]
+ o

(
1√
n

)
, (4.11)

or, in other words,

E[W |Ab] ∼ 1
2
· E[V |Ab] . (4.12)

g. The asymptotic distribution of wait, or Total Service Factor(TSF), is given by the product

of the right-hand side of (4.4) with

P
{

W

E[S]
>

t√
n

∣∣∣∣ W > 0
}
∼

Φ̄
(

β̂ +
√

g0

µ
· t
)

Φ̄(β̂)
, t ≥ 0 , (4.13)
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where E[S] = 1/µ is the average service time.

h. The probability to abandon, given delay in queue, is asymptotically equal to

P
{

Ab
∣∣∣∣ W

E[S]
>

t√
n

}
=

1√
n
·
√

g0

µ
·
[
h

(
β̂ + t

√
g0

µ

)
− β̂

]
+ o

(
1√
n

)
. (4.14)

i. The average wait, given delay in queue, is asymptotically equal to

E
[
W

∣∣∣∣ W

E[S]
>

t√
n

]
=

1√
n
·
√

1
g0µ

·
[
h

(
β̂ + t

√
g0

µ

)
− β̂

]
+ o

(
1√
n

)
. (4.15)

Parts h and i together imply a generalization of part e:

P {Ab |W > t/
√

n}
E [W |W > t/

√
n ]

∼ g0 , t ≥ 0. (4.16)

Remark 4.1 (Role of g0) The patience density at the origin g0 plays a major role in our

approximations, which is to be expected. Indeed, since the waiting time in the QED regime

is small (converges to zero), the patience distribution near the origin determines asymptotic

behavior of the system.

Remark 4.2 (Queue-length) According to the Little’s Law E[Q] = λE[W ], where Q is the

steady-state queue-length. It follows that the average-in-queue is of order O(
√

n). The asymp-

totic distribution of Q is an interesting issue for future research.

Remark 4.3 The asymptotic statement (4.9), combined with results from Mandelbaum and

Zeltyn [32], provides additional support for the practically observed linear relation between the

probability to abandon and average wait. (Recall Figure 4.)

Remark 4.4 Theorem 4.1 enables one to calculate the four service measures from Subsection

1.3. Specifically, Parts b, g and h provide us with P{Ab}, P{W > T} and P{Ab|W > T},
respectively. The product of the last two is equal to P{W > T ; Ab}. The other three service

measures are easily derived. For example, P{W > T ; Sr} = P{W > T} − P{W > T ; Ab} .

Remark 4.5 Figure 5 illustrates the dependence (4.4) between the service grade β and the

delay probability, over varying values of the ratio µ/g0. In addition, we plotted the Halfin-

Whitt curve [21] for the Erlang-C queue, which is meaningful for positive β only. Note that

for large values of µ/g0 (very patient customers) the Erlang-A curves are close to the Erlang-C

curve.
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Figure 5: Asymptotic relations between service grade and delay probability
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Remark 4.6 (The special case β = 0) Note that when β = 0 in (4.1), the staffing level

asymptotically corresponds to the simple rule that does not take into account stochastic consid-

erations: assign the number of agents equal to the offered load λ/µ. In Erlang-C, this “naive”

approach would lead to system instability. However, in M/M/n+G (which is a much better fit

to the real world of call centers than Erlang-C) one would get a reasonable-to-good performance

level. For example, if the service rate µ is equal to the individual abandonment rate θ, and

β = 0, 50% of customers would get service immediately upon arrival. (Check Figure 5. Note

that for Erlang-C, 50% delay probability corresponds to β ≈ 0.5.) This suggests why some call

centers that are managed using simplified deterministic models actually perform at reasonable

service levels. (They obtain the “right answer” for the “wrong reasons”.)

Remark 4.7 (Relation to Garnett, Mandelbaum and Reiman [18]) Formula (4.4) gen-

eralizes the statement for the Erlang-A queue (exponential patience), derived in Garnett et al.

[18]. Namely,

P{W > 0} ∼ w

(
−β,

√
µ/θ

)
, (4.17)

where

w(x, y) =
[
1 +

h(−xy)
yh(x)

]−1

and θ is the abandonment rate (parameter of the exponential patience). Straightforward calcu-

lations reveal the equivalence between formulae (4.17) and (4.4), if we substitute g0 instead of

θ in (4.17). (Note that θ is indeed the density of exp(θ) at the origin.)

Approximations for other performance measures (for example, the probability to abandon

and average wait) were also derived in [18]. However, they do not coincide exactly with our
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approximations. The reason is that in Theorem 4.1 the lead asymptotic term is always presented

explicitly with respect to n or λ. On the other hand, the approximation formulae in [18] do not

display the lead term. For example, the analogue in [18] to our formula (4.6) is as follows:

P{Ab|V > 0} ≈ h(β
√

µ/θ)
h(β

√
µ/θ +

√
θ/(nµ))

.

Remark 4.8 The relation (4.12) can be explained in the following way. The offered wait in the

QED regime is small. Since a positive density at the origin exists, the conditional waiting-time

distribution of abandoning customers is approximately uniform on [0, V ]. Therefore, E[W |Ab] ∼
(1/2) · E[V |Ab].

Remark 4.9 In the Internet Supplement [48], we prove that

1
2
·
[

1
h(β̂)− β̂

− β̂

]
< h(β̂)− β̂ <

1
h(β̂)− β̂

− β̂ , −∞ < β̂ < ∞. (4.18)

In conjunction with Parts c, d and f, (4.18) implies corresponding asymptotic order relations

between E[W |Ab], E[W |W > 0], E[V |V > 0] and E[V |Ab]. In words, the average offered wait

of abandoning customers exceeds (asymptotically) the average actual wait of delayed customers

which, in turn, exceeds the average actual wait of abandoning customers.

4.1.2 Patience with balking

Assume that the patience-time distribution has an atom at the origin. In other words, if wait

is encountered, customers abandon immediately with probability P{Blk} > 0, or Ḡ(0) = 1 −
P{Blk}. From a practical point of view, this means that some customers refuse to wait at all.

(Readers surely recall such a situation from personal experience.)

Remark 4.10 Consider two events:

• {V > 0}, which means that “a customer did not get service immediately”;

• {W > 0}, which means “positive actual wait”.

In fact, {W > 0} is identical to {V > 0, τ > 0}.
In Theorem 4.1, we did not distinguish between {V > 0} and {W > 0} since P{τ = 0} = 0.

However, in the models with balking one must be careful in this respect.

Assume, in addition, that the survival function Ḡ is differentiable at the origin: Ḡ′(0) = −g0.

(Here g0 is the right-side derivative of the patience-time distribution function G at the origin.)
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Theorem 4.2 (QED performance measures with balking) Under the QED operational

regime (4.1), the performance measures of the M/M/n+G queue with balking are approximated

by:

a. Probability to encounter a queue decreases at rate
1√
n

:

P{V > 0} ∼ 1√
n
· h(−β)
P{Blk}

+ o

(
1√
n

)
. (4.19)

The delay probability decreases at rate
1√
n

:

P{W > 0} ∼ 1√
n
· (1− P{Blk}) · h(−β)

P{Blk}
+ o

(
1√
n

)
. (4.20)

b. Conditional probability to abandon P{Ab|V > 0} converges to the balking probability:

P{Ab|V > 0} = P{Blk}+
1
n
· g0

µ · P{Blk}
+ o

(
1
n

)
. (4.21)

Conditional probability to abandon P{Ab|W > 0} decreases at rate
1
n

:

P{Ab|W > 0} =
1
n
· g0

µ · P{Blk} · (1− P{Blk})
+ o

(
1
n

)
. (4.22)

The unconditional probability to abandon decreases at rate
1√
n

:

P{Ab} =
1√
n
· h(−β) + o

(
1√
n

)
. (4.23)

c. Conditional average offered wait E[V |V > 0] decreases at rate
1
n

:

E[V |V > 0] =
1
n
· 1
µ · P{Blk}

+ o

(
1
n

)
. (4.24)

The average offered wait decreases at rate
1

n3/2
:

E[V ] =
1

n3/2
· h(−β)
µ · P{Blk}2

+ o

(
1

n3/2

)
. (4.25)

d. Conditional average waiting time E[W |W > 0] decreases at rate
1
n

:

E[W |W > 0] =
1
n
· 1
µ · P{Blk}

+ o

(
1
n

)
. (4.26)

The average wait E[W ] decreases at rate
1

n3/2
:

E[W ] =
1

n3/2
· (1− P{Blk}) · h(−β)

µ · P{Blk}2
+ o

(
1

n3/2

)
. (4.27)
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Remark 4.11 In contrast to Theorem 4.1, the probabilities of wait (both P{W > 0} and

P{V > 0}) decrease at rate O(1/
√

n). If the balking probability P{Blk} = 1, (4.19) is equivalent

to Jagerman’s [24] QED result for M/M/n/n (Erlang-B). In addition, (4.23) demonstrates that

the M/M/n+G queue with any positive fraction of balking implies, in the QED regime, the same

fraction of lost customers as in M/M/n/n. In this sense, Balking turns out to be equivalent to

Blocking.

Formula (4.21) provides insight into this striking similarity. We observe that in the M/M/n+G

queue with balking, the fraction of customers that abandon after positive wait is negligible (the

second term of (4.21)), which makes it similar to Erlang-B in which all lost customers abandon

immediately.

Note that, given positive offered wait, a fixed proportion of the customers abandon, and the

system is similar to M/M/n+G in the quality-driven regime (fixed ρ). This is the reason why

the second term of (4.21) and formula (4.24) will have counterparts in the quality-driven results

(5.4) and (5.5) later on.

4.1.3 Patience with scaled balking

Below we treat a special case of M/M/n+G which, in practical terms, corresponds to small yet

non-negligible balking.

Assume that the balking probability depends on the system size n. Specifically, let Pn{Blk} =
pb√
n

, for some pb > 0. Assume that the derivative of the survival function Ḡn at the origin is

independent of the system size: Ḡ′
n(0) = −g0.

Theorem 4.3 (Performance measures) Under the QED operational regime (4.1), the per-

formance measures of the M/M/n+G queue with the scaled balking are approximated by:

a. The delay probability converges to a constant that depends on β, pb and
g0

µ
:

P{V > 0} ∼ P{W > 0} ∼
[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

, (4.28)

where

β̂
∆= (β + pb) ·

√
µ

g0
. (4.29)

b. Conditional probabilities to abandon decrease at rate
1√
n

:

P{Ab|V > 0} =
1√
n
·
[√

g0

µ
· h(β̂)− β

]
+ o

(
1√
n

)
. (4.30)
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P{Ab|W > 0} =
1√
n
·
√

g0

µ
·
[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (4.31)

The unconditional probability to abandon P{Ab} also decreases at rate
1√
n

and can be approx-

imated by the product of (4.30) and (4.28).

c. Conditional average offered wait E[V |V > 0] decreases at rate
1√
n

:

E[V |V > 0] =
1√
n
· 1
√

g0µ

[
h(β̂)− β̂

]
+ o

(
1√
n

)
. (4.32)

The average offered wait E[V ] also decreases at rate
1√
n

and can be approximated by the product

of (4.32) and (4.28).

d. The average waiting time is equivalent to the average offered wait:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (4.33)

e. The ratio between the probability to abandon of delayed customers and average wait of

delayed customers converges to the value of the patience density at the origin:

P{Ab|W > 0}
E[W |W > 0]

∼ g0 . (4.34)

Remark 4.12 Under scaled balking, we observe a clear similarity with the main case described

in Theorem 4.1 (positive patience density at the origin). Some results (formulae (4.28), (4.30)

and (4.32)) have exact counterparts in Theorem 4.1: the service grade β should be replaced by

(β + pb). We also derived the linear relation (4.34), although this result does not prevail for the

corresponding unconditional performance measures.

4.2 Numerical example

We proceed with analyzing the quality of the QED approximations. Four patience distributions

are considered, all with their means equal to 2:

• Uniform distribution on [0,4]: illustrates Theorem 4.1 with g0 = 0.25;

• Hyperexponential distribution (mixture of two exponentials, with means 1 and 3 respec-

tively): conforms to Theorem 4.1 with g0 = 2/3;

• Erlang (Gamma) distributions, two exponential phases, each with the mean equal to 1:

Theorem 6.2 from the Internet Supplement [48];

• Delayed exponential distribution equal to 1 + exp(mean=1): Theorem 6.4 from the Internet

Supplement [48].
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Figure 6: Service grade β = 0, performance measures and approximations
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We assume the service grade β = 0. (See Subsection 6.2 of the Internet Supplement [48]

for experiments with other values of β.) M/M/n+G queues with the service rate µ = 1 are

considered. Arrival rate λ increases from 20 to 1000 with a varying step (44 values of λ overall).

The number of agents n increases according to the QED staffing rule:

n =

[
λ

µ
+ β

√
λ

µ

]
, (4.35)

where, as usual, the square brackets in (4.35) denote the nearest integer value.

Then, for each M/M/n+G queue in consideration, exact (Section 9) and approximate cal-

culations are performed. The results are presented in four graphs. The first graph presents
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a scatterplot of the probability to abandon against average wait. The other three plots show

three different performance characteristics, as they change with the arrival rate: average wait,

the probability to abandon of delayed customers and the delay probability. Solid lines are for

approximations, and x’s are for exact values.

Figure 6 demonstrates a very good fit between approximations and exact values for λ > 100

(and the fit is reasonable even for small arrival rates starting with λ = 20). Note the straight-line

curves for the first two distributions in the first plot. (The two distributions with g0 = 0 give

rise to non-linear curves.)

5 The Quality-Driven operational regime

The quality-driven (QD) operational regime is defined by

n =
λ

µ
· (1 + γ) + o(

√
λ) , γ > 0 , (5.1)

as λ and n increase indefinitely. In the QD regime, the offered load per agent

ρ =
λ

nµ
→ 1

1 + γ
< 1 .

If o(
√

λ) ≡ 0 in (5.1), the relation between ρ and γ is exact and given by:

ρ =
1

1 + γ
and γ =

1− ρ

ρ
. (5.2)

Theorem 5.1 (QD performance measures) Assume that the density of the patience time

at the origin exists and is positive: g0 > 0. Then the performance measures of the M/M/n+G

queue in the QD regime are approximated by:

a. The delay probability decreases exponentially in n. Specifically,

P{W > 0} ∼ 1√
2πn

· 1
γ
·
(

1
1 + γ

)n−1

· exp
{

λγ

µ

}
. (5.3)

b. Probability to abandon given wait:

P{Ab|W > 0} =
1
n
· 1 + γ

γ
· g0

µ
+ o

(
1
n

)
=

1
n
· 1
1− ρ

· g0

µ
+ o

(
1
n

)
. (5.4)

(Note that if the o(
√

λ) deviation term in (5.1) is not equal to zero, the two o(1/n) terms in

(5.4) will not be identical.)

c. Average offered waiting time:

E[V | V > 0] =
1
n
· 1 + γ

γ
· 1
µ

+ o

(
1
n

)
=

1
n
· 1
1− ρ

· 1
µ

+ o

(
1
n

)
. (5.5)
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d. Average waiting time:

E[W ] ∼ E[V ]; E[W | W > 0] ∼ E[V | V > 0] . (5.6)

e. Ratio between the probability to abandon and average wait:

P{Ab}
E[W ]

∼ g0 . (5.7)

f. Total Service Factor:

P
{

W

E(S)
>

t

n

∣∣∣∣ W > 0
}
∼ e−(1−ρ)t . (5.8)

Remark 5.1 Assume that the staffing level (5.1) is kept exact: n =
λ

µ
· (1 + γ). Then the

asymptotic formula for the delay probability transforms to:

P{W > 0} ∼ 1√
2πn

· 1
1− ρ

· (ρe1−ρ)n (n →∞) .

Remark 5.2 If the deviation in (5.1) is larger than o(
√

λ), for example,

n =
λ

µ
· (1 + γ) + o(λ) ,

formulae (5.4)-(5.8) still prevail. However, the approximation (5.3) can go wrong.

Subsection 7.3 of the Internet Supplement [48] contains numerical experiments, where the

QD approximations are compared with the QED approximations and the exact M/M/n+G

performance measures. The main conclusion is that, unless wait and abandonment are very

small, the QED approximations are preferable over the QD ones. The QD formulae should be

applied only if the delay probability is or should be less than 5-10%.

6 The Efficiency-Driven operational regime

6.1 Formulation of results

In the Efficiency-Driven (ED) operational regime, staffing is determined by:

n =
λ

µ
· (1− γ) + o(

√
λ) , γ > 0 . (6.1)

The offered load per agent

ρ =
λ

nµ
→ 1

1− γ
> 1 .

If o(
√

λ) ≡ 0 in (6.1), the relation between ρ and γ is given by

ρ =
1

1− γ
and γ =

ρ− 1
ρ

. (6.2)
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Theorem 6.1 (ED performance measures) Assume that the equation

G(x) = γ

has a unique solution x∗. Assume further that the patience density at x∗ is positive: g(x∗) > 0.

Then the performance measures of the M/M/n+G queue in the ED operational regime are

approximated by:

a. Probability to get service immediately decreases exponentially:

P{W = 0} ∼ 1
γ
·

√
g(x∗)
2πλ

· exp{−λk(γ)} . (6.3)

where

k(γ) ∆= x∗ ·
(

1− nµ

λ

)
−
∫ x∗

0
G(u)du . (6.4)

b. Probability to abandon converges to the constant γ ≈ 1− 1
ρ
:

P{Ab} ∼ γ . (6.5)

c. The average offered wait E[V ] converges to the constant x∗:

E[V ] ∼ x∗ . (6.6)

The offered wait also converges to x∗ in probability:

V
p→ x∗ . (6.7)

d. Define the distribution G∗ = {G∗(x), x ≥ 0} by

G∗(x) =

{
G(x)
G(x∗) = G(x)

γ , x ≤ x∗

1, x > x∗

(In fact, G∗ is the distribution of the random variable min(x∗, τ), where τ is the patience time.)

Then the average waiting time W weakly converges to the distribution G∗:

W
w→ G∗ . (6.8)

In addition,

E[W ] → E[min(x∗, τ)] =
∫ x∗

0
Ḡ(u)du . (6.9)

e. Total Service Factor:

The asymptotic distribution of wait is given by:

P{V > t} ∼
{

1, t < x∗

0, t > x∗
. (6.10)
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P{W > t} ∼
{

Ḡ(t), t < x∗

0, t > x∗
. (6.11)

The distribution of wait around x∗ can be approximated in the following way.

Let −∞ < t < ∞. Then

P
{

V

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}
∼ Φ̄

(
t

√
g(x∗)

µ(1− γ)

)
. (6.12)

P
{

W

E(S)
>

x∗

E(S)
+

t√
n

∣∣∣∣ V > 0
}
∼ (1− γ) · Φ̄

(
t

√
g(x∗)

µ(1− γ)

)
. (6.13)

Remark 6.1 In the ED regime, the average waiting time does not converge to zero. Therefore,

in contrast to the QED and QD regimes, the patience density at the origin does not play an

important role in the ED approximations.

Remark 6.2 ED limits for the probability to abandon and waiting time can be obtained using

“fluid” (deterministic) considerations and hence are sometimes referred to as fluid limits. For

example, see results in Whitt [43] that are closely related to (6.5) and (6.9).

Remark 6.3 Assume that the staffing level (6.1) is kept exact: n = (λ/µ) · (1 − γ). Then we

can rewrite definition (6.4) as

k(γ) = γx∗ −
∫ x∗

0
G(u)du .

6.2 Numerical example

Three distributions that were used in Subsection 4.2, are studied again: uniform, hyperexpo-

nential and delayed exponential. Instead of the conditional probability P{Ab|W > 0}, we plot

P{Ab} (the delay probability is close to one and there are no reasons to distinguish between the

two performance measures). Note that, in contrast to the QED regime, the ED approximation

formulae are the same for distributions with both positive and zero densities at the origin.

The ED staffing rule is

n =
[

λ

ρµ

]
, ρ > 1 . (6.14)

The value γ = 1/6, which corresponds to ρ = 1.2 is chosen. Other assumptions are the same as

in Subsection 4.2.

In addition, we calculate the QED approximations using

β =
n− λ/µ√

λ/µ
,
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and compare them with the ED approximations.

In Figure 7, we observe that the ED approximations for P{Ab} and E[W ] converge to

constants (fluid limits) predicted by Theorem 6.1. The corresponding QED approximations do

not converge to fluid limits. In fact, the QED approximations for P{Ab} are close to −β/
√

n,

which converges to
√

ρ · (1−1/ρ). It differs from the proper fluid limit by a factor
√

ρ. However,

if ρ is close to one (e.g. 1.05), the QED approximations can be preferable, see Subsection 8.2 of

the Internet Supplement [48].

Figure 7: Offered load per server ρ = 1.2, performance measures and approximations
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7 Conclusions

Here we summarize our conclusions on the three operational regimes, analyzed in Sections 4-6,

and on the relation P{Ab}/E[W ] that has been explored in different contexts in this research.

QED regime. In contrast to the exact M/M/n+G formulae, our QED approximations can

be applied using any software that provides the standard normal distribution (e.g. Excel). We

observe that these approximations work very well for a wide range of M/M/n+G parameters.

Our rule-of-thumb recommendations for the use of QED formulae are the following:

• Number of servers n=10’s to 1000’s;

• Agents highly utilized but not overloaded (∼90-98%);

• Delay probability 10-90%;
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• Probability to abandon: 3-7% for small n, 1-4% for large n.

ED regime. These approximations are relatively simple to apply as well, although they require

solving the equation G(x) = γ, and then integration (calculating H(x∗)). Both can be performed

either numerically or analytically, depending on the patience distribution. We suggest to use

the ED approximations if:

• Number of servers n ≥ 100. (One can cautiously use n=10’s, if the probability to abandon

is large (>10%).)

• Agents very highly utilized (>95%);

• Delay probability: more than 85%;

• Probability to abandon: more than 5%.

QD regime. The QD approximations should be applied only for very high-performance sys-

tems. (For example, in emergency call centers.)

Linear P{Ab}/E[W ] relation. In the QED and QD operational regimes, the linear relation

P{Ab}/E[W ] prevails. Such a relation is also observed in practice, as demonstrated in Figure

4. Summarizing these facts and those established in Mandelbaum and Zeltyn [32], we conclude

that this phenomenon prevails in a very broad context: exact M/M/n+G performance measures,

different approximations and real data.

On practical implementation of the QED approximations. Based on our theoretical

results, the density of the patience time at the origin plays a critical role in the QED (and QD)

approximations. What are the practical consequences of this fact in the context of call centers?

The good news is that approximate performance measures depend only on the patience

distribution near the origin, which can be estimated via the Kaplan-Meier estimator (see, for

example, [11] or the Appendix of [49]). In other words, one does not need to infer the tail of the

patience distribution, the latter being usually a hard problem.

However, estimating the patience density at the origin and substituting this estimate into

the QED formulae can lead to unsatisfactory results (see Section 10 of the Internet Supplement

[48]). The reason is that the patience density can oscillate during the first seconds of wait and,

therefore, the limit results may not apply even for n = 100’s.

We offer two approaches to deal with this problem: first, one can estimate g0 as the average

density during the first x (say, 5-10) seconds of wait. The second approach is based on the linear

26



relation (4.9), substituting the ratio P{Ab}/E[W ] instead of g0. (This approach was used in

Section 10 of the Internet Supplement [48] and in [10].)

In addition, if there exists very significant abandonment during the first seconds of wait,

models that incorporate balking can be applicable (Theorems 4.2 and 4.3).

8 Ongoing and future research

Finally, we outline some directions worthy of further research.

Dimensioning the M/M/n+G queue. In our context, the term dimensioning was intro-

duced in Borst, Mandelbaum and Reiman [6]. The authors considered an optimization problem

for the Erlang-C queue, where the goal is to minimize the sum of staffing costs and waiting

costs. In other words, [6] developed a formal framework for the problem of the quality-efficiency

tradeoff, discussed in Subsection 1.1 of the Introduction. The ongoing research [34] is dedicated

to similar problems for the M/M/n+G queue. In addition to staffing and waiting costs, aban-

donment costs arise in this case. For a wide set of system parameters, a comparison between

the asymptotic QED staffing and exact optimal staffing demonstrates that the two staffing rules

are almost identical.

Queues with random arrival rate. In Brown et al. [10] it was shown that the Poisson

arrival rate in an Israeli call center varies from day to day and its prediction raises statistical

and practical challenges. Therefore, it is very important to study queueing models, where the

arrival rate Λ of a homogeneous Poisson arrival process is a random variable.

If E(Λ) → ∞ and its standard deviation is of the order
√

E(Λ), we expect that the QED

operational regime and the square-root staffing rule will arise again. However, if σ(Λ) is of the

order E(Λ), the “cruder” ED regime seems to be the most appropriate; see Whitt [45], and

Bassamboo, Harrison and Zeevi [5].

Queues with time-inhomogeneous arrival rates. Such queues are prevalent in practice

and their time-varying analysis poses a challenge. A common approach is to approximate the

time-varying arrival-rate by a piecewise-constant function; and then apply steady-state results

(as in this paper) during periods when the arrival rate is judged constant. An implicit assumption

is that the arrival rate is slow-varying with respect to the durations of services.

Recently, Feldman et al. [16] developed an alternative simulation-based algorithm for staffing

time-varying queues with abandonment. The algorithm is designed to achieve a given constant

probability of delay, generalizing the QED operational regime to queues with non-homogeneous

arrival rates. It is found in [16] that, with a proper definition of a time-varying offered load
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{Rt, t ≥ 0}, square-root staffing of the form

nt ≈ Rt + β
√

Rt

leads to a constant probability of delay α, where the relation between α and β is exactly that

of a corresponding time-homogeneous queue.

Data analysis. Additional studies of customers’ patience in tele-service should be performed.

Currently data collection in two large banks in the U.S. and Israel, and in an Israeli cellular-

phone company is in progress. If some special structures of patience are discovered, this will

lead to more detailed and specialized results, for which the present paper is a natural starting

point.

Generally distributed service times: M/G/n+G. In our research, we assumed exponen-

tial service times. However, this assumption seems to not apply for many call centers. In several

application we encountered (see [10], for example), the lognormal distribution provides an ex-

cellent approximation for service times. Therefore, it is very important to study the M/G/n+G

model with generally distributed service times. However, exact analysis of the M/G/n+G queue

seems prohibitively difficult, hence one should probably resort to approximations (see Whitt [46])

and simulation (see Mandelbaum and Schwartz [29]).

Process-limit results for M/M/n+G. In this paper, we focused on steady-state results,

both exact and approximate, for many M/M/n+G performance measures. Of interest are also

analogous process-limit results, as in Garnett et al. [18] for Erlang-A.

9 M/M/n+G queue: summary of performance measures

Here we summarize exact formulae for M/M/n+G performance measures. The following defi-

nitions and statements are largely based on Baccelli and Hebuterne [3], but many of them are

presented here for the first time.

Building blocks. Define H(x) ∆=
∫ x

0
Ḡ(u)du. Note that H(∞) = τ̄ , where τ̄ is the mean

patience-time.

Introduce the integrals

J(t) ∆=
∫ ∞

t
exp {λH(x)− nµx} dx , (9.1)

J1(t)
∆=

∫ ∞

t
x · exp {λH(x)− nµx} dx , (9.2)

JH(t) ∆=
∫ ∞

t
H(x) · exp {λH(x)− nµx} dx . (9.3)
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In addition, let

J
∆= J(0), J1

∆= J1(0), JH
∆= JH(0) . (9.4)

Finally, define

E ∆=

n−1∑
j=0

1
j!

(
λ

µ

)j

1
(n− 1)!

(
λ

µ

)n−1 =
∫ ∞

0
e−t

(
1 +

tµ

λ

)n−1

dt . (9.5)

Remark 9.1 A convenient way to calculate E is via recursion: define

Ek
∆=

∑k
j=0

1
j!

(
λ
µ

)j

1
k!

(
λ
µ

)k
, k ≥ 0,

and use

E0 = 1 ; Ek = 1 +
kµ

λ
· Ek−1 , 1 ≤ k ≤ n− 1 ; E = En−1 .

List of performance measures: Many important performance measures of the M/M/n+G

queue can be conveniently expressed via the building blocks above and the patience distribution

G. For example,

P{V > 0} =
λJ

E + λJ
, (9.6)

P{W > 0} =
λJ

E + λJ
· Ḡ(0) , (9.7)

P{Ab | V > 0} =
1 + (λ− nµ)J

λJ
, (9.8)

E[V ] =
λJ1

E + λJ
, (9.9)

E[V | V > 0] =
J1

J
, (9.10)

E[W ] =
λJH

E + λJ
, (9.11)

E[V | Ab] =
(λ− nµ)J1 + J

(λ− nµ)J + 1
, (9.12)

E[W | Ab] =
J + λJH − nµJ1

(λ− nµ)J + 1
, (9.13)

P{V > t} =
λJ(t)
E + λJ

, (9.14)

P{W > t} =
λḠ(t)J(t)
E + λJ

, (9.15)
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E[V | V > t] =
J1(t)
J(t)

, (9.16)

E[W | W > t] =
JH(t)− (H(t)− tḠ(t)) · J(t)

Ḡ(t)J(t)
, (9.17)

P{Ab | V > t} =
λ− nµ

λ
+

exp{λH(t)− nµt}
λJ(t)

, (9.18)

P{Ab | W > t} =
λ− nµ−G(t)

λḠ(t)
+

exp{λH(t)− nµt}
λḠ(t)J(t)

. (9.19)

See Section 3 of the Internet Supplement [48] for the proofs of formulae (9.6)-(9.19). The handout

of Mandelbaum and Zeltyn [31], prepared for a large U.S. bank, contains a summary of exact

and approximate performance measures of M/M/n+G.

10 Asymptotic behavior of integrals

We have seen that the building blocks of the M/M/n+G model have an integral form (recall

formulae (9.1)-(9.5)). In Sections 4-6 we shall calculate various approximations for these building

blocks and, consequently, for the M/M/n+G performance measures. To this end, we now develop

a general method and prove several lemmata that will help us in the task.

10.1 The Laplace method

In our proofs, we repeatedly derive asymptotic approximations for integrals that are expressed

in the form ∫ ∞

0
xm · e−fλ(x)dx , λ →∞ . (10.1)

As a rule, fλ(0) = 0, for all λ > 0, and fλ(x) → ∞, as λ → ∞, for all x > 0. Note that the

exponential term rapidly converges to zero, for x > 0. Hence, one could expect that, as λ →∞,

the value of (10.1) depends mainly on the behavior of the integrand near the origin.

An important special case is given by

∫ ∞

0
xm · exp

{
−bλkxl

}
dx =

Γ
(

m+1
l

)
lb

m+1
l

· λ−
k(m+1)

l , (10.2)

where k ≥ 0, l > 0, b > 0 and m ≥ 0. If m = 0 one gets

∫ ∞

0
exp

{
−bλkxl

}
dx =

Γ
(

1
l

)
lb1/l

· λ−k/l . (10.3)

But, generally, (10.1) cannot be calculated analytically, in which case we derive its approximation

in the spirit of de Bruijn [14]. The general approach is to show that
∫ ∞

δ
xm·e−fλ(x)dx is negligible

for some δ > 0 (δ can depend on λ). Then
∫ δ

0
xm · e−fλ(x)dx is approximated using the Taylor

expansion of fλ(x) near the origin and formulae (10.2)-(10.3) above.
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This technique is referred to in [14] as the Laplace method for the calculation of integrals.

We now apply it to derive several asymptotic statements.

10.2 Asymptotic results

Lemma 10.1 Let b1, k1, l1, l2 be positive numbers and let b2, k2,m be non-negative. In addition,

assume that l1 and l2 are integers. Consider a function r1 = {r1(λ), λ > 0} such that

r1(λ) ∼ λk1 , λ →∞. Finally, assume that

k1

l1
>

k2

l2
. (10.4)

Then ∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx

=
Γ
(

m+1
l1

)
l1b

m+1
l1

1

· λ−
k1(m+1)

l1 + o

(
λ
− k1(m+1)

l1

)
, λ →∞ , (10.5)

and ∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx

=
Γ
(

m+1
l1

)
l1[b1r1(λ)]

m+1
l1

−
b2Γ

(
m+l2+1

l1

)
l1b

m+l2+1

l1
1

· λk2−
k1(m+l2+1)

l1 + o

(
λ

k2−
k1(m+l2+1)

l1

)
. (10.6)

Remark 10.1 Note that the main term in the right hand side of (10.5) is equal to∫ ∞

0
xm · exp

{
−b1λ

k1xl1
}

dx .

Thus, the relation (10.4) determines the “dominant” term in the exponent. Moreover, the second

term in (10.6) is equal to ∫ ∞

0
xm · exp

{
−b1λ

k1xl1
}
· b2λ

k2xl2dx .

Therefore, Lemma 10.1 states, informally, that∫ ∞

0
xm · exp

{
−b1r1(λ)xl1 − b2λ

k2xl2
}

dx ≈
∫ ∞

0
xm · exp

{
−b1r1(λ)xl1

}
· [1− b2λ

k2xl2 ]dx .

We have seen that the asymptotic value of the integral from Lemma 10.1 is determined by

the inequality (10.4). What happens if the two ratios from (10.4) are equal? For our needs, it

is sufficient to answer this question for the two special cases, presented in Lemmata 10.2 and

10.3. Their proofs can be obtained via straightforward calculations.
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Lemma 10.2 Assume that b1 is an arbitrary number and that b2 > 0. Then∫ ∞

0
exp{−b1

√
λx− b2λx2}dx =

1√
2b2λ

· 1
h(b1/

√
2b2)

,

where h(·) is the hazard rate of the standard normal distribution.

Lemma 10.3 Under the conditions of Lemma 10.2,∫ ∞

0
x · exp{−b1

√
λx− b2λx2}dx =

1
2b2λ

·
[
1− b1√

2b2
· 1
h(b1/

√
2b2)

]
.

See Section 4 of the Internet Supplement [48] for the proofs.

11 Selected proofs

11.1 Proof of Theorem 4.1, a-e

We start with a lemma that provides asymptotics for several building blocks, introduced in

Section 9. That will make it easy to derive approximations for the performance measures.

Lemma 11.1 (Building blocks) Under the assumptions of Theorem 4.1, the building blocks

J , E , J1, and JH , defined in Section 9, are approximated by:

a.

J =
1√
n
· 1
√

µg0
· 1
h(β̂)

+ o

(
1√
n

)
, (11.1)

where β̂ was defined in (4.3).

b.

J1 =
1
n
· 1
µg0

[
1− β̂

h(β̂)

]
+ o

(
1
n

)
, JH =

1
n
· 1
µg0

[
1− β̂

h(β̂)

]
+ o

(
1
n

)
. (11.2)

c.

E =
√

n · 1
h(−β)

+ o(
√

n) . (11.3)

Proof of Lemma 11.1.

a. First, we present the proof for the case when the QED staffing rule prevails exactly:

n =
λ

µ
+ β

√
λ

µ
. (11.4)

Define

uλ(x) ∆=
∫ x

0

[
λ(Ḡ(u)− 1)− β

√
λµ
]
du . (11.5)
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Then, under the staffing rule (11.4)

J =
∫ ∞

0
exp{uλ(x)}dx . (11.6)

Since Ḡ(0) = 1 and Ḡ′(0) = −g0, ∀ε > 0 ∃ δ > 0 such that

|Ḡ(u)− 1 + g0 · u| ≤ εu for u ∈ [0, δ] . (11.7)

(See, for example, de Bruijn [14], page 65.) Using (11.5)-(11.7), we get∫ δ

0
exp

{
−β
√

λµx− λ(g0 + ε)x2

2

}
dx ≤

∫ δ

0
exp {uλ(x)} dx (11.8)

≤
∫ δ

0
exp

{
−β
√

λµx− λ(g0 − ε)x2

2

}
dx .

Now we construct a bound for
∫∞
δ exp{uλ(x)}dx, showing that, given λ → ∞, the asymptotic

behavior of
∫∞
0 exp{uλ(x)}dx depends only on the values of uλ(x) near the origin.

Since g0 > 0, the patience survival function Ḡ is strictly decreasing at the origin. Take

α
∆= 1− 1 + Ḡ(δ/2)

2
> 0 . (11.9)

Then, for λ large enough,

uλ(x) =
∫ x

0

[
λ(Ḡ(u)− 1)− β

√
λµ
]
du =

∫ δ/2

0
· · ·+

∫ x

δ/2
· · ·

≤ −δ

2
β
√

λµ−
∫ x

δ/2
αλdu = −δ

2
β
√

λµ− αλ

(
x− δ

2

)
.

Integrating, ∫ ∞

δ
exp {uλ(x)} dx ≤ exp

{
αλδ

2
− δ

2
β
√

λµ

}
· e−αλδ

αλ

=
exp

{
−αλδ

2 − δ
2β
√

λµ
}

αλ
= o

(
e−νλ

)
, ν > 0 .

In other words, ∣∣∣∣∣
∫ δ

0
exp {uλ(x)} dx−

∫ ∞

0
exp {uλ(x)} dx

∣∣∣∣∣ = o
(
e−νλ

)
. (11.10)

Using identical arguments, the same relation between
∫ δ
0 and

∫∞
0 can be derived for the two

other integrals from (11.8).

Now, applying Lemma 10.2 to (11.8), we derive that

1√
λ(g0 + ε)

1

h
(
β
√

µ
g0+ε

) + o
(
e−νλ

)
≤ J ≤ 1√

λ(g0 − ε)
1

h
(
β
√

µ
g0−ε

) + o
(
e−νλ

)
.
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If λ is large enough,

(1− ε)
1√

λ(g0 + ε)
1

h
(
β
√

µ
g0+ε

) ≤ J ≤ (1 + ε)
1√

λ(g0 − ε)
1

h
(
β
√

µ
g0−ε

) .

Since ε is arbitrary, and

λ ∼ nµ (λ, n →∞)

in the QED regime, we get the statement (11.1).

Finally, assume that the QED staffing rule prevails asymptotically in the sense of (4.1). Then

∀ε̃ > 0, for large λ we have

λ

µ
+ (1− ε̃)β

√
λ

µ
≤ n ≤ λ

µ
+ (1 + ε̃)β

√
λ

µ
,

and ∫ ∞

0
exp

{∫ x

0

[
λḠ(u)− (λ + (1 + ε̃)β

√
λµ)

]
du

}
dx ≤ J

≤
∫ ∞

0
exp

{∫ x

0

[
λḠ(u)− (λ + (1− ε̃)β

√
λµ)

]
du

}
dx .

Now we can proceed with the proof above for the exact QED staffing and get the same statement

using that ε̃ is arbitrary.

Remark 11.1 The following three main ideas, that are a part of the so-called Laplace method

(see de Bruijn [14]), were applied in the proof above:

• Taylor expansion is used in order to approximate sub-integral expressions in the building

blocks near the origin;

• Exponential bounds for
∫∞
δ integrals are developed;

• In the end, we explain how to replace the exact staffing (11.4) by the asymptotic staffing

(4.1).

These three steps should be used repeatedly in the proofs of Theorems 4.1, 4.2 and 4.3.

b. The proof is similar to Part a. Lemma 10.3 is used instead of Lemma 10.2.

c. In the QED regime,

E =
∫ ∞

0
e−t

(
1 +

µt

λ

)λ
µ

+β

√
λ
µ
−1

dt .

Changing variables: (t = λx, x = t
λ), we get

E = λ

∫ ∞

0
exp

{
−λx +

(
λ

µ
+ β

√
λ

µ
− 1

)
ln(1 + µx)

}
dx . (11.11)
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It is well known that

ln(1 + µx) = µx− µ2x2

2
+ O(x3) , x → 0 . (11.12)

Substitute into formula (11.11) the first two terms of the Taylor expansion (11.12):

EA
∆= λ ·

∫ ∞

0
exp

{
−λx +

(
λ

µ
+ β

√
λ

µ
− 1

)(
µx− µ2x2

2

)}
dx

= λ · exp

{
(β
√

λµ− µ)2

λµ + β
√

λµ3 − µ2

}
·
∫ ∞

0
exp

−
(

λµ + β
√

λµ3 − µ2
)x− β

√
λµ−µ

λµ+β
√

λµ3−µ2

2


2
 dx

∼ exp

{
β2

2

}
· λ
√

2π

λµ + β
√

λµ3 − µ2
· Φ

 β
√

λµ− µ√
λµ + β

√
λµ3 − µ2


∼

√
2πλ

µ
· exp

{
β2

2

}
· Φ(β) ∼

√
n

h(−β)
.

The Laplace argument, based on the Taylor expansion (see Remark 11.1), ensures that E ∼ EA,

given λ →∞.

Proof of Theorem 4.1.

a. Formula (9.6), Lemma 11.1, parts a and b, and the equivalence λ ∼ nµ (n → ∞), imply

that

P{W > 0} =
λJ

E + λJ
∼

√
nµ

h(β̂)
√

g0√
nµ

h(β̂)
√

g0
+

√
n

h(−β)

=

[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

.

Now we must prove the opposite direction: if the probability of wait converges to a constant,

then the QED staffing prevails. The probability-of-wait function

Pg0,µ(β) ∆=

[
1 +

√
g0

µ
· h(β̂)
h(−β)

]−1

is monotonically decreasing in β. Hence, the inverse function P−1
g0,µ(α), 0 < α < 1, is well-defined.

Assume that

Pλ,nλ
{W > 0} → α, 0 < α < 1, (11.13)

and take β = P−1
g0,µ(α). We must show that for all ε > 0 and λ large enough,

λ

µ
+ (β − ε)

√
λ

µ
≤ nλ ≤ λ

µ
+ (β + ε)

√
λ

µ
. (11.14)

Consider the staffing levels

n1
λ =

⌈
λ

µ
+ (β − ε)

√
λ

µ

⌉
and n2

λ =

⌊
λ

µ
+ (β + ε)

√
λ

µ

⌋
.
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According to formula (4.4),

Pλ,n1
λ
{W > 0} → Pg0,µ(β − ε) = α + δ1, δ1 > 0,

and

Pλ,n2
λ
{W > 0} → Pg0,µ(β + ε) = α− δ2, δ2 > 0.

Therefore, for λ large enough,

Pλ,n1
λ
{W > 0} > α +

δ1

2
and Pλ,n2

λ
{W > 0} < α− δ2

2
.

We know that P{W > 0} is monotonically decreasing in the staffing level n. This fact and

(11.13) imply that for λ large enough n1
λ < nλ < n2

λ, which proves (11.14).

b. Note that the definition of the QED regime implies

λ− nµ = −β
√

λµ + o(
√

λ) .

Applying the above to formula (9.8) and using the approximation for J from Lemma 11.1, we

get the expression for the conditional probability to abandon.

c. Direct consequence of (9.10).

d. Follows from (9.6), (9.10), (9.11) and Part c of Lemma 11.1.

e. Follows from b, c and d.

11.2 Proof of Theorem 5.1, a-e

Lemma 11.2 (Building blocks) Under the assumptions of Theorem 5.1:

a.

J =
1

nµ− λ
− g0

λ2γ3
+ o

(
1
λ2

)
. (11.15)

b.

J1 =
1

(nµ− λ)2
− 3g0

λ3γ4
+ o

(
1
λ3

)
. (11.16)

c.

E ∼
√

2πn · (1 + γ)n−1 · exp
{
−λγ

µ

}
. (11.17)

Proof of Lemma 11.2.

a. Lemma 10.1 with

m = 0, k1 = 1, l1 = 1, k2 = 1, l2 = 2,

implies that

JA
∆=
∫ ∞

0
exp

{
−λγx− f(λ)µx− λg0x

2

2

}
dx
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=
1

λγ + f(λ)µ
− 1

λ2

g0

γ3
+ o

(
1
λ2

)
=

1
nµ− λ

− 1
λ2

g0

γ3
+ o

(
1
λ2

)
, (11.18)

where the relation nµ− λ = λγ + f(λ)µ follows from the staffing rule (5.1), and f(λ) denotes

the deviation term o(
√

λ) from (5.1).

Standard Laplace arguments from Lemma 11.1 ensure that

J =
∫ ∞

0
exp

{∫ x

0

[
λ(Ḡ(u)− 1)

]
du− λγx− f(λ)µx

}
dx

can be substituted into (11.18) instead of JA.

b. The proof is very similar to part a.

c. Recall that

E =
∫ ∞

0
e−t

(
1 +

tµ

λ

)λ
µ

(1+γ)+f(λ)−1

dt = λ

∫ ∞

0
e−λx(1 + µx)

λ
µ

(1+γ)+f(λ)−1
dx . (11.19)

Now perform the change of variables y = x− γ/µ. (If the “f(λ)− 1” term in the power is not

taken into account, the expression under the integral (11.19) reaches a maximum at γ/µ.)

E = λ exp
{
−λ

γ

µ

}
·
∫ ∞

−γ/µ
exp

{
−λy +

[
λ

µ
(1 + γ) + f(λ)− 1

]
· ln(1 + γ + µy)

}
dy. (11.20)

We approximate E , replacing the logarithm in (11.20) by the first three terms of the Taylor

expansion above and changing integral limits to
∫∞
−∞:

EA = λ exp
{
−λ

γ

µ

}
· (1 + γ)n−1 ·

∫ ∞

−∞
exp

{
(f(λ)− 1) ·

[
µy

1 + γ
− µ2y2

2(1 + γ)2

]
− λµy2

2(1 + γ)

}
dy .

The last term in the exponent above determines the asymptotic value of the integral. For

example, using f(λ) = o(
√

λ),∫ ∞

−∞
exp

{
f(λ) · µy

1 + γ
− λµy2

2(1 + γ)

}
dy =

∫ ∞

−∞
exp

{
− λµ

2(1 + γ)
·
[
y − f(λ)

λ

]2
+

µ(f(λ))2

2λ(1 + γ)

}
dy

∼
√

2π

λ

√
1 + γ

µ
.

Therefore, taking into account n ∼ λ

µ
· (1 + γ), λ →∞,

EA ∼
√

2πn · (1 + γ)n−1 · exp
{
−λγ

µ

}
.

In order to validate the same result for E we apply the Laplace argument, based on the following

inequality: ∀ ε > 0 ∃ δ > 0 such that∣∣∣∣∣ln(1 + µy + γ)− ln(1 + γ)− µy

1 + γ
+

µ2y2

2(1 + γ)2

∣∣∣∣∣ ≤ εµ2y2

2(1 + γ)2
for y ∈ [−δ, δ].
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Proof of Theorem 5.1. In most cases, the proof is a straightforward application of the

formulae in Lemma 11.2.

a. Note that
1

nµ− λ
∼ 1

λγ
.

Then

P{W > 0} =
λJ

E + λJ
∼ λJ

E
∼ 1√

2πn
· 1
γ
·
(

1
1 + γ

)n−1

· exp
{

λγ

µ

}
.

b.

P{Ab|V > 0} =
1 + (λ− nµ)J

λJ
∼ (nµ− λ)g0

λ3γ3J
∼ g0

λ2γ2J
∼ g0

λγ
.

Recall that λ ∼ nµρ and γ ∼ 1− ρ

ρ
, (n →∞). This implies

P{Ab|V > 0} ∼ 1
n
· 1
1− ρ

· g0

µ
.

c.

E[V |V > 0] =
J1

J
∼ 1

nµ− λ
∼ 1

λγ
∼ 1

n
· 1
1− ρ

· 1
µ

.

d. The proof is similar to part d of Lemma 11.1.

e. A direct consequence of parts b-d.
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