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Abstract

We view each station in a Jackson network as a queue of tasks� of a particular type�

which are to be processed by the associated specialized server� A complete pooling of queues�

into a single queue� and servers� into a single server� gives rise to an M�PH�� queue� where

the server is �exible in the sense that it processes all tasks� We assess the value of complete

pooling by comparing the steady
state mean sojourn times of these two systems� The main

insight from our analysis is that care must be used in pooling� Sometimes pooling helps�

sometimes it hurts� and its e�ect �good or bad� can be unbounded� Also discussed brie�y

are alternative pooling scenarios� for example complete pooling of only queues which results

in an M�PH�S system� or partial pooling which can be devastating enough to turn a stable

Jackson network into an unstable Bramson network� We conclude with some possible future

research directions�

�� Introduction

A fundamental problem in the design and management of stochastic service systems is that

of pooling� namely the replacement of several ingredients by a functionally equivalent single

�



ingredient� We analyze the pooling phenomenon within the framework of queueing networks

where in our case� as will be explained momentarily� it can take one of three forms� pooling

queues �the demand�� pooling tasks �the process� or pooling servers �the resources�� Here we

consider pooling queues and servers simultaneously� but keep the task structure intact� and

we provide an e�ciency index ��� to determine when such pooling is or is not advantageous�

Our models are described in terms of customers who seek service provided by servers�

Service amounts to a collection of tasks� of which there are a �nite number of types� Two

main models are considered� in the �rst specialized model� each task type has a server

and a queue dedicated to it� For example� Figure � exhibits a queueing network in which

every customer requires a service that constitutes three tasks� and the tasks are carried out
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Figure �� A specialized model with tasks attended by specialized servers�

successively� each by its own specialized server� Customers arrive at rate �� average task

durations are mk and servers	 capacities are ck� In the second �exible model� servers are

capable of handling all tasks and they collectively attend to a single queue of services� For

example� Figure 
 exhibits such a model� which arises through pooling the tandem network

from Figure �� customers arrive at rate �� seeking the same three�task service as before�

they all join a single queue� which is now attended by a single 
exible server of capacity

P
k ck�
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Figure 
� A 
exible model with complete pooling into a single queue and a single 
exible
server�






Customer arrivals are assumed Poisson and task durations exponential� �We comment

on these distributional assumptions in the Addendum�� As articulated in Section �� we

allow a service to consist of a random sequence of tasks in a way that the service duration

has a phase�type distribution �a phase corresponds to a task�� The specialized �unpooled�

model turns out to be a Jackson network ���	� as in Figure 
� and the �exible �pooled�

architecture is modeled by an M�PH�� system ��
	� as in Figure ��
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Figure 
� A specialized model with task repetition and feedback�
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Figure �� The �exible model� under complete pooling� that corresponds to Figure 
�

In addition to the above two main models� we also consider brie�y alternative designs of

pooling� For example� Figure � depicts the network from Figure �� with its queues pooled

into a single queue and the servers made �exible while still maintaining their individual

identities �see Section ��
�� Figure 
 depicts partial pooling of only queues and servers �
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Figure �� Complete pooling of queues only� servers are made �exible but maintain individual
identities�
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Figure �� Partial pooling�
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Figure �� Splitting services� Each task returns to the end of the queue�

and � �see Section ��	
� Figure � depicts a split of the service so that a customer� upon

completion of a task� rejoins the queue �see Section ���
� and additional designs are possible

	



as well� A common feature of our models is that service is unaltered� For example� in

Figures �� �� �� � and �� service always consists of tasks �� � and � in succession�

���� Motivation

The present research arose from an analysis of a service network consisting of several spe�

cialized departments� The network was redesigned as a pooled single department� which

was still responsible for the same services but whose servers were 	exible enough to process

all tasks� In trying to analyze this transition� we found that prevalent pooling models failed

to cover our network scenario�

Our models provide a new simple framework that helps in assessing the e
ects on pool�

ing of utilization� variability and service design� While this is not aimed as a review pa�

per� our framework also relates� as it happens� rather disparate concepts and results� for

example ��� ��� ��� ��� ��� ��
� We believe that the usefulness of the framework goes be�

yond the original motivating applications� pertaining to the design of telephone call centers

��
� evaluation of communication networks ���
� evolution �growth� of computer systems

���
� group�technology in manufacturing ��
� team�based product development ��
� business

reengineering ���� ��� ��� ��
 �elaborated on below�� and more�

Prior work on pooling seems to fall mainly into two categories� pool queues or pool

servers� �In most of our analysis we do both�� As an example� pooling only queues would

change severalM�M�� queues� sayK� with arrival rate � and service rate � into anM�M�K

queue with arrival rate K� and service rate �� results of this 	avor are contained in ���� ��
�

Pooling only servers would change an M�M�K queue with arrival rate � and service rate

� into an M�M�� queue with arrival rate � and service rate K�� pooling of this type is

considered in ���
� For an illuminating depiction of these common pooling models� see ���
�

Fig� ���� Pooling also arises as an asymptotic phenomenon under appropriate rescaling of

time and space ���� ��� ��
� for example� in heavy tra�c� appropriate routing has the e
ect
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of pooling servers �hence� in heavy tra�c� the performance of the systems in Figures � and

� coincides��

Our paper is in concert with current emphasis on business process reengineering ��	� �
��

Indeed� referring to pooling as �integration of work�
 Loch ��
� predicts that �the one idea

from the reengineering era most likely to persist is that of integrated work�
 Similarly�

in summarizing ��	� �
�� Buzacott ���� has �several tasks combined into one
 as the �rst

assertion of the superiority of a system that is designed using reengineering principles�

Both ���� and ��
� use tasks in series and the transition from Figure � to Figure � as

their paradigm for pooling in reengineering� It was shown in both ���� and ��
� that the

pooled system �with a single queue� is superior to the unpooled alternative� and higher

task variability makes the advantage greater� The network�framework that we provide

allows the results of ���� and ��
� to be viewed in a more illuminating perspective� First

we show� in Section ���� that pooling a tandem structure is always advantageous but for

more general architectures this need not be the case� In particular� it has been known �	��

that pooling a parallel structure can sometimes hurt unboundedly �see Section ����� we add

the observation that partial pooling can turn a stable system unstable �Section ��	� based

on results of ����� Second� the variability considered in ���� �
� is only task variability� In

general� however� there are additional sources of variability� and their e�ects on pooling�

as we now discuss� can be opposite to the variability e�ects in ���� �
�� Variability may

be either predictable or stochastic� �rst�order sources for predictable variability are service

design �e�g� scheduling tasks in tandem vs in parallel� or heterogeneity across task types �e�g�

varying means�� second�order sources for stochastic variability are� for example� �uctuations

of task durations within a task type �e�g� due to human factors��

Our framework allows the consideration of both predictable and stochastic service vari�

ability� The sources that we explore here� however� are mainly �rst�order structural� since
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the tasks that constitute a service are not altered� �Stochastic task variability is �xed by

assuming an exponential duration for each task type�� In broad terms� with task variabil�

ity �xed and workload approximately balanced� the design of the service determines its

variability and� in turn� the e�ect of pooling� as servers� utilization increases and service

variability decreases� pooling advantages are found to increase� This explains the apparent

contradiction with the conclusion of 	
�� �
�� �Note that a balanced workload need not be

optimal� see Section 
��

���� Summary

The specialized and �exible models are introduced in Section �� We start with a crude stabil�

ity analysis in Section ���� showing that �exibility increases the workload that a specialized

system can handle� see also Section ��
 in Buzacott 	
���

In Section � we quantify the e�ects of pooling in terms of an e�ciency index ���� which

is the product of a utilization factor Eu and a variability factor Ev� We show that pooling

always helps in light tra�c� since a customer at the pooled system typically enjoys a service

rate that is the total capacity of the specialized system� In heavy tra�c� pooling e�ects can

go either way�

For given arrivals and services� resource utilization is determined by how capacity is

allocated among the servers� In Section 
 we use the square�root allocation of Kleinrock

	�
� to show that optimal capacity allocation mitigates the advantage of pooling� This

advantage also decreases as variability increases� Indeed� crude analysis of the e�ciency

index ��� reveals the insight that with low enough variability pooling is always advantageous�

In Section � we explore both network and pooling designs� Sections ��
 and ��� treat

tandem and parallel systems respectively� With tandem tasks the structural variability is

small enough so that pooling always helps� For parallel tasks� as already discovered by Smith

and Whitt 	���� the e�ect can go either way� In Section ��� we consider pooling queues only�
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as in Figure �� Performance is worse than with pooled servers� with the di�erence being

maximal in light tra�c and diminishing in heavy tra�c� In Section ��� we investigate the

e�ect of pooling design by considering partial pooling� as in Figure �� It turns out that

one can interpret the recent results in Bramson ��� to show that partial pooling can turn

a stable system unstable� In Section ��� we require service splitting� as in Figure 	� rather

than pursuing service until all of its tasks are completed� Through an example we show that

the relative performance of these two systems depends on the structural variability of the

total service time� There are numerous additional pooling issues that can be pursued� within

the framework opened up here� Some are brie
y discussed or mentioned in the concluding

Section ��

�� The Models

In our two models� customers arrive for service according to a Poisson process� at a rate of

� per unit of time� A service constitutes a random sequence of tasks� There are K types

of tasks� indexed by k � �� � � � �K� and we refer to a task of type k as simply task k� The

work content in task k is exponentially distributed with mean mk� Let qk be the probability

that task k is 
rst in a given service� and let Pjk be the probability that task k is a direct

successor of task j� � �
KP

k��

Pjk is therefore the probability that service ends after task j�

Assume that arrivals of customers are independent of services and that� within each

service� sequencing of tasks and task durations are all mutually independent� Also assume

that each service constitutes a 
nite number of tasks with probability one� this is equivalent

to the existence of the matrix

R � �I � P ����

where P is the K�dimensional matrix P � �Pjk�� �The element Rjk is the expected number

of times that a task k is performed during a single service� given that j is the task to start

�



that service��

To sum up� customer arrivals are characterized by a scalar �� and services by a triplet

�q� P�m�� qT � �q�� � � � � qK�� P � �Pjk� and mT � �m�� � � � �mK�� �It is naturally assumed

that K � �� � � 	� m � 	 and qTR � 	�� Servers will be characterized momentarily� as

they are model
dependent�

���� The specialized model

In the specialized model� every task k has a server k dedicated to it� whose service capacity is

ck � 	 units of work per unit of time� It follows that the processing times of task k by server

k are i�i�d�� each distributed exponentially with meanmk�ck� Furthermore� envisioning tasks

of every type queueing up for processing at their respective dedicated servers� our specialized

model reduces to an open Jackson network ���� with K single
server stations� arrival rates

�qT � service rates ck�mk and a routing matrix P � �See Figure 
��

We assume that the specialized system is stable �ergodic�� This entails that each server

k has tra�c intensity less than unity�

�sk �
�kmk

ck
� ��

here � � �qTR is the vector whose k
th coordinate �k stands for the e�ective arrival rate

�in units of task k� to server k� Equivalently� stability prevails if and only if

� � �s �
�

k

ck
�qTRM�k

�

where M is the k
dimensional diagonal matrix� with Mkk � mk� k � �� � � � �K� This is a

consequence of the representation

�sk � �
�qTRM�k

ck
�

�



���� The �exible model

In the �exible model� customers arrive for service as before� but now they obtain service

from a single �exible server� whose service capacity is cTe �e is the k�dimensional vector

of one�s�� Services are as above� hence the work content in services are i�i�d�� each with a

phase�type distribution ��	
 that is characterized by the triplet �q� P�m�cT e�� there are K

phases each corresponding to a task� the duration of phase k is exponential with mean mk�

the initial phase is chosen according to q and successive phases according to the routing

matrix P � In other words� the �exible model reduces to an M�PH�� queue� in which the

average work content in a service is qTRMe and the server�s capacity is cT e
 the average

service time is therefore qTRMe�cT e� �See Figure ��� We assume that this queue is stable

�ergodic�� which entails that its tra�c intensity satis�es

�f � �
qTRMe

cTe
� ��

Equivalently� stability prevails if and only if

� � �f �
cT e

qTRMe
�

���� Stability analysis

The �exible system can handle any load that the specialized one can� This is formalized in

terms of each of the following two inequalities�

�s
� �f � or ���

�f �
�
k

�sk� ���

To verify ���� note that for any positive vectors a and b�

aTe

bTe
�

��
k

ak
bk
�
�
k

ak
bk

�
� ���
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since the left hand�side is a convex combination of ak�bk� k � �� � � � �K� namely�
P

k

ak
P

k

bk
�
X
k

bkP
j

bj

ak
bk
�

Letting ak � ck and bk � �qTRM�k establishes ���� Similarly� letting ak � �qTRM�k and

bk � ck yields

�f �
X
k

dk�
s
k� dk � ck�c

T e� ���

which implies ����

If � � �f then the 	exible and specialized models are both unstable �have no steady

state�� hence a steady�state comparison between them is vacuous� If � � 
�s� �f �� then

the specialized model is unstable while the 	exible one is stable� in which case pooling is

advantageous trivially� One is left with � � �s � �f � which will be assumed from now on�

�� Performance analysis

LetW s andW f denote the steady�state average sojourn�times in the specialized and 	exible

models respectively� Then

W s �
�

�

X
k

�sk
��� �sk�

by Little�s law and Jackson�s characterization of individual stations as M�M�� queues in

steady state� For the 	exible model� the Pollaczeck�Khintchine formula yields

W f � E�S�

�
� �

�f

��� �f �

� � C��S�

�

�
�

Here S is a phase�type random variable characterized by �q� P�m�cTe�� whose moments are

given by 
�
�

E�Sn� �
n�

�cTe�n
qT �RM�ne� n � ��

and whose squared coe�cient of variation is C��S� � V ar�S��E�S��� De�ne the e�ciency

index of pooling to be E � W s�W f � Then pooling is advantageous� as far as average sojourn

��



time is concerned� when E � �� Simple algebra leads to the representation

E �

�

K

P

k

�s
k

���s
k

�f

���f

�
K

�� � �f� � �f
��C��S�

�

� ���

in which

� � C��S�

�
�

E�S��

�E�S��
�
qT �RM��e

�qTRMe��
�

We write E � EuEv� where

Eu �

�
K

P

k

�s
k

���s
k

�f

���f

and Ev �
K

�� � �f � � �f ��C��S�
�

are the utilization index and variability index respectively� They represent the e	ects of

utilization and variability on pooling e
ciency� the analysis of which constitutes the rest of

the paper�

Ranges of the indices� The ranges are given by

Eu � �
�

K
���� Ev � ��� �K��

and

E � ������

the indices can take on all values within the speci
ed intervals� and the end�points of the

intervals provide tight asymptotic bounds� To elaborate� let

f�x� �
x

��� x�
� � � x � ��

a strictly convex� strictly increasing function with f��� � � and f���� � �� Then� using

���� these properties imply

Eu �
�
K

P
k f��

s
k�

f�
P

k dk�
s
k�

�
�
K

P
k f��

s
k�

P
k dkf��

s
k�
�

�

K

cTe
W
k ck

�
�

K
�

��



One way for Eu �
�

K
is to let �sk � �� for all k � �� while maintaining �f � �s

�
� both being

bounded away from �� This requires that c��c
T e � �� On the other hand� Eu � �� for

example� as � � �� ��ck � � for all k� and cj�ck � � for some pair j �� k�

Turning to Ev� the upper�bound �K is an immediate consequence of C��S� � � and

�f � �� The lower bound � is approached as C��S� � � while maintaining �f bounded

away from �� Finally� the ranges of E will emerge during later analysis�

Observations on variability and utilization� If variability is low enough� formally if C��S� �

�� then E � � since Ev � K	 in other words pooling is advantageous� If utilization is

balanced� formally if �sk � �sj� �j� k� �hence also �f � �sk� �k�� then Eu � � and pooling

e
ciency is determined by the variability index� In particular� increasing utilization ��f � ��

and reducing variability �C��S� � �� attains the maximum pooling e
ciency achievable

under balanced utilization ��K��

Light tra�c� In light tra
c� the pooled system is always better because its customers are

served at the pooled capacity of all specialized servers� Formally� light tra
c prevails as

� � �� while keeping the other parameters unaltered� Let E � E��� in ���� Then

lim
���

E��� �
X
k

�qTRM�k
ck

�
qTRMe

cT e
� � � ���

since the limiting e
ciency belongs to the interval
h
cT e

�kck
� cT e

�kck

i
� in view of �
�� Pooling�

therefore� is always better in light tra
c� and it is K times better when the ck�s are all

equal�

Equation ��� can be explained with light tra
c theory �
��� The light tra
c limit of the

mean sojourn time is the mean sojourn time of a single customer that moves alone through

the system� For the pooled system� this time is qTRMe�cT e� For the specialized system� the

mean sojourn time is
P

k�q
TRM�k�ck� since the k�th summand is the total time at station

k�

�




Heavy tra�c� There are two cases of heavy tra�c� �s � �
f and �s � �f � We consider the

case �s � �f here� and treat �s � �f at the end of Section �� The equality �s � �f occurs

if and only if �s � ck��qTRM�k for all k� in which case �sk � �f for all k� Let E � E��� in

���� where � denotes the common utilization� Then Eu � 	� and

lim
���

E��� �

K

	 � C��S�
�

This �nite limit prevails even though� as � � 	� both W s��� and W f ��� grow unboundedly�

Indeed� as � � 	�

�	� ��W s���� KE�S�� �	� ��W f���� E�S�
	 � C��S�



�

�� Division of Work� or Capacity Allocation

Fix �� q� P and m� Introduce an additional scalar � � 
� to be interpreted as total

available service capacity� and consider positive vectors c such that cT e � �� As before�

�f � �qTRMe�cT e �
P

k

�kmk�c
T e � 	� hence �f is �xed� � �

P

k

�kmk� and Ev is also �xed�

It follows that� as a function of c� the index E � E�c� is minimized by the solution to

min
c

X
k

�kmk

ck � �kmk

�

s�t�
X
k

ck � �� c � 
 �

This is Kleinrock�s well�known capacity allocation problem �
	� Section ����� solved by the

�square�root� allocation

ck � �kmk �

�
�� �X

j

�jmj

�
A
p
�kmkP

j

q
�jmj

�

The corresponding value of E is given by the product of Ev� in which �f � mT���� with

Eu �

�

K

�P
k

p
�kmk

�
�

P
k

�kmk

�

�

K

�P
k

q
�qTRM�k

�
�

P
k

�qTRM�k
� 	� ���

	�



The last inequality is a simple consequence of the Cauchy�Schwartz inequality� that also

guarantees equality to unity if and only if �qTRM�k � �qTRM�j � �k� j� in which case also

ck � cj� �k� j� The quantity �qTRM�k represents the amount of work of task k that is

embodied in an arrival� Hence� under the optimal capacity allocation� Eu � � if and only if

workload and capacity are both balanced�

Optimal capacity allocation typically results in uneven utilization of the servers �see

also ���� and ��	��� which in turn is associated with a smaller bene
t from pooling� That

is indicated by �	�� from which it follows that E � �K� in words� pooling bene
ts do not

exceed �K� This upper bound can be approached only in a balanced system that is both

heavily utilized ��f � �� and almost deterministic �C��S� � 
��

Heavy tra�c� continued� We can now treat the other case of heavy tra�c� �s � �f � If

�s � �f � and � � ��s� �f �� as observed in Section �� the specialized model explodes while

the �exible one is stable� so pooling is trivially advantageous� To allow for a meaningful

comparison� 
x q� P�M and total capacity �� then assume that for each �� the specialized

system employs the corresponding optimal capacity allocation� This makes �s a function of

�� enforcing �s��� � �f � as � � �f � Thus� both the specialized and �exible system approach

heavy tra�c� in a way that

lim
�f��

E��f � �

�

K

�P
k

q
�qTRM�k

�
�

P
k

�qTRM�k

�K

� � C��S�
�

by ��� and �	�� The discussion that follows �	� applies here as well�

�� Design

This section is devoted to some e�ects of network design on pooling e�ciency� In Subsections

��� and ��� respectively� we consider tasks that are processed in tandem and parallel� The

pooling of queues only� as depicted in Figure �� is brie�y discussed in Subsection ���� We

��



then highlight possible negative e�ects of poor pooling design �with partial pooling� in

Subsection ���� In Subsection ��� we consider the e�ect of having customers rejoin the

queue for each task�

���� Tandem tasks

Here C��S� is small enough to render pooling always advantageous� Indeed� for K tasks in

tandem� q� � � �so qk � 	� k � 
�� Pk�k�� � � for k � K� �sk � �mk�ck� �
f � �mTe�cT e�

and C��S� � mTm��mTe�� � �� It follows that Ev � K� hence E � � since Eu �
�

K
always�

���� Parallel tasks

Here the e�ect of pooling can be good or bad� For K tasks in parallel �each service consists

of exactly one task� which is task k with probability qk�� P � 	� �sk � �qkmk�ck� and �f �

�qTm�cTm� The service time of the pooled system is hyper�exponential� hence C��S� � ��

This also follows immediately from

� � C��S�



�

P
k qkm

�
k

�
P

k qkmk��
� � � �
�

where the last inequality is a consequence of viewing
KP

k

qkmk and
KP

k

qkm
�
k as the �rst and

second moments of a discrete random variable�

From C��S� � � follows that Ev � K� Under optimal capacity allocation� in fact

E � K by Eu � �� The upper bound K is attained� for example� as follows� Ev � K when

mk � m��k� since then C��S� � �� Eu � � by letting also qk � ��K��k�

We now show that it is possible for a pooled system to be arbitrarily worse than the

specialized one� To this end� we achieve E � 	 by constructing families of parallel systems

that adhere to optimal capacity allocation� implying Eu � �� while having �f �xed and

C��S� � �� implying Ev � 	�

One way is to follow ����� where there exist tasks which are both rare and �challenging��

��



Such tasks rarely challenge the specialized system but� when pooled� they delay all other

tasks su�ciently to render pooling ine�cient� unboundedly� The driver is variability� made

high enough for E � �� To be speci�c� vary qk and mk in a way that does not change the

K products qkmk� simultaneously let� say� m� � �� while maintaining mk�m� bounded for

all k � �� � is �xed to guarantee stability� �q� � � by �s
�
� �q�m��c� � 	 and m� � ��

thus tasks of type 	 are both rare and challenging�
 It follows that �f � the optimal capacity

allocation� and the denominator in ��
 are all constant� but C��S
 � � with the numerator

of ��
�

A second way is to have slow servers in addition to challenging customers� Speci�cally�

in an optimal allocation� take c� � � and q� � � �hence
P

k�� ck � � and
P

k�� qk � 	� the

servers �� � � � �K are the slow ones
� while maintaining �s
�
bounded away from 	� One can

then show that qkmk�q�m� � �� �k � �� By ��


	 
 C��S


�
�

	�q�

�	 

P

k�� qkmk�q�m�

�
�

verifying that� again� C��S
 � ��

���� Heterogeneous servers

There are situations in which servers cannot be pooled into a single server and� while still

�exible� they must retain their individual identities� The �exible model would thus become

a multi�server single station �M�G�S
� with phase�type service and possibly heterogeneous

servers� as depicted in Figure �� Both systems enjoy the same stability region ���� never�

theless performance is now worse than with a single server because service is not always

rendered at the maximal capacity cTe� �This can be veri�ed through coupling�


A comparison between our specialized system and a �exible system with heterogeneous

servers would require formulae for the M�PH�S queue with heterogeneous servers� Such

formulae do not exist so we restrict our attention below to light and heavy tra�c� In

	�



speci�c cases� there exists approximations which enable certain �approximate� comparisons�

For example� Buzacott ���� uses second	moment approximations to compare series systems

�as in Figure � and 
� while varying stochastic variability of tasks�

In light tra�c� the performance of the single server could be made better than the

heterogeneous system by a factor of cTe�
W
k ck� Indeed� by the light	tra�c rationale �
���

the mean sojourn time of the single	server system is E�S��cT e� For the heterogeneous

system� assume that services are always performed by the fastest available server� The

mean sojourn time� in light tra�c� is then E�S��
W
k ck� which yields the above factor�

The heavy tra�c limit of the single server and the heterogeneous system coincide �����

One expects� therefore� that the di
erence in performance between the systems is maximal in

light tra�c� and it diminishes as utilization increases to heavy tra�c� A precise justi�cation

would require a comparison via stochastic ordering�

���� Partial pooling

In partial pooling� K specialized servers are pooled into K � � K servers� typically more

�exible� thus resulting in a queueing network with K � stations� In this section we show� by

way of examples� that it is possible for partial pooling to make a stable system unstable�

Our examples are based upon networks introduced by Bramson ���� which have opened up

a yet uncharted research territory�

We start with a specialized system that is a tandem network� as in Subsection ���� with

K taken odd for notational convenience� Let

� � �� m� � mK � d� mk � �� k �� ��K �

c� � ��� c� � �� �K � 
�� �

c�� c�� � � � � cK�� � ���K � 
� �

c�� c�� � � � � cK�� � �� �

cK � �� �� �

��



Bramson ��� chose �rst ���

���
� d � �� thenK large enough for dK�� � ����� and �nally � small

enough so that � � � � �� � d	����K � 
	�� The specialized network is� therefore� stable

��s
k
� �� � � k � K	 and its �complete	 pooling� as in Subsection ���� is advantageous�

We consider now two �related	 poolings� In the �rst� depicted in Figure �� the K servers

are pooled into 
 servers as follows� server � attends to tasks � and K� server 
 serves

m�

mK��

mK��

� m�

mK

c� � cK � �

m� m�

c� � c� � � � �� cK�� � �

mK��

m�

c� � c� � � � �� cK�� � �

Figure �� Bramson�s unstable network obtained by partial pooling�

tasks 
� �� � � � �K � �� server 
 cares for tasks 
� �� � � � �K � 
� Thus� a customer starts with

server �� moves on to 
� then 
� back to 
� and so on� until service K � � at server 
�

then the last service back at � and �nally out� Each server uses the FIFO discipline� under

which Bramson ��� proved that the network is unstable� �See his comment� immediately

following the statement of Theorem ��	 In particular� with probability �� the sojourn time

of customers increases to in�nity� as t � �� Instability arises because the system roughly

alternates between busy periods of server 
� attending mainly to incoming tasks 
 while

starving server �� and busy periods of server �� attending to tasks K while starving server


� The starvation of both servers is a consequence of FIFO� under which ample ��tasks

are forced into queueing behind few d�tasks� �A more re�ned and quantitative intuition is

provided in ����	

��



The second pooling is into � servers as follows� server � serves tasks � and K and server

� attends to the rest� The service discipline is again FIFO� where immediate feedbacks at

server � �of tasks �� � � � �K � �� join the end of the queue� upon service completion� �There

were no immediate feedbacks in our �rst example�� Thus� a service starts at server �� moves

on to � where it cycles for K � � times� then back to � and out� Again� such a network was

proved unstable in �	
� Theorem �� following the same rationale as above�

In the second pooling� server � could have served tasks �� � � � �K � � of a given service

in succession� rather than separating the service so that a task joins the end of the queue

upon service completion� Then the system would have been stable ��
� which gives rise to

the general issue of splitting services� We address this next�

���� Splitting services

Suppose that� after a task completion� each customer returns to the end of the �single�

queue� see Figure 
� Thus� the queue consists of services that are at di�erent stages of their

processing� Although such a protocol seems naive� there are circumstances under which it is

superior �in terms of mean wait� to having services carried out in an uninterrupted manner�

For its performance analysis� one must retain task�identities in queue� An exact analysis is

then possible ���
� in terms of a set of linear equations whose solution yields mean waiting

times� More explicit results can be obtained in heavy tra�c ���� ��
� We just examine a

special case� with the aim of showing that the advantage can go either way�

In our special case� all tasks have exponential service requirements with the same mean�

m� This gives rise to a product�form system ��� ��
� under which the distribution of total

queue length is that of an M�M�� queue with tra�c intensity �f � The sojourn time per

�pass� is thus m��cTe�� � �f �
� and the mean number of passes through the queue is qTRe�

��



If we let W n denote the mean sojourn time in the naive system� we obtain

W n �
m

cT e
qTRe

�
� �

�f

� � �f

�
�

For this case� M � mI� implying that

W f �
m

cT e
qTRe

�
� �

�f

� � �f
� � C��S�

�

�
�

We thus see that W n is less than �resp� equal to� greater than� W f if C��S� � � �resp�

C��S� � �� C��S� � ��� the naive protocol is superior under high variability� Note that� in

this special case� W n � W s� �The comparison amounts to the inequality Eu � ��K� which

was established in Section 	��

�� Addendum

We conclude the paper with a discussion of our distributional assumptions and possible

further research directions�

Distributional Assumptions� Only the exponential tasks require an elaboration since the

role of the Poisson process as a model for exogenous random arrivals is well established�

Empirical experience 
	� ��� with human services supports the phase
type service structure�

as evidence suggests that homogeneous human tasks are surprisingly often exponential�

Admittedly� however� exponentially distributed task times will not be a good assumption for

all applications� Then the simplicity of the resultant analysis becomes a driving motivation�

explicit results make it easier to obtain insights from the analysis� �One could in fact analyze

generally distributed tasks� in the spirit of 
��� 	�� 	�� and in analytical support of 
���� this

would require approximations of non
parametric Jackson networks and it is left as a possible

avenue for future research�� Although there is a basis for questioning the universality of

exponentially distributed task times� it should be pointed out that the distribution of the

��



total service time as a phase�type distribution is not a practical restriction because phase�

type distributions are dense in the set of all distributions �see� for example �����

Stochastic Ordering� Most of our results invite �ner comparisons� via various stochastic

ordering schemes� For example� under what conditions would complete pooling of a tandem

network lead to stochastically smaller sojourn times	 �For an example of this type of result�

see �
�� Example ������� Beyond the basic assessment of 
exible vs� specialized models� other

possibilities include parametric analysis� from light to heavy tra�c �see the discussion at

the end of Subsection ���� or an investigation of the e�ects of task�variability� for example

re�ning �����

Control� It is possible to maintain identities of tasks� or customer�types� One reason is

to identify the types that bene�t and those that su�er from pooling� More generally� this

enables the incorporation of control �admission� sequencing� routing�� with the goal of im�

proving performance� Recall the devastating e�ects of FIFO� within the partial pooling of

Subsection ���� Also note that pooling all servers into a single server while maintaining task

identities raises the question of task sequencing� as analyzed in ����� ����� ����� ����� With ap�

propriate sequencing control �allowing preemption� the pooled system can always be made

at least as good as the unpooled system� This is achieved by reproducing in the pooled

system �using preemption� the performance of the original unpooled system� Preemption

plays an important role here because with it certain customer types can be made e�ec�

tively invisible to some other types� thus preventing the phenomenon of �challenging� tasks

from Section ���� �The well�known formula for the waiting times in the M�G�� queue with

non�preemptive priorities ���� allow the reproduction of the arguments from Section �����

Economies of Scale� Consider a parallel specialized network� with statistically identical tasks

and servers �equal mk�s and ck�s�� Then E � K since Eu � � and C��S� � �� In words� pool�

ing advantage equals the number of servers pooled� This is a manifestation of economies of

��



scale because the pooled larger�scale system can achieve� with higher utilization� the service

level provided by the specialized system� Such higher utilization could be the outcome of

reduced capacity� hence reduced cost� In the spirit of reengineering ����� one often seeks to

take advantage of economies of scale �increasing K by pooling�� in a way that outweighs the

variability overhead that ensue �C��S� increasing�� The desirable outcome is an operation

that is as e	cient as mass production ��f near unity� and as 
exible as customized services

�large C��S��� yet provides a very high operational service level �fast response� due to short

and predictable sojourn times��

The notion of 
exible specialization ���� or mass customization is a current key concept

in manufacturing strategy� This is also a main goal in the design of distributed telephone

call centers ��� and packet switches for integrated broadband telecommunication networks

����� The main obstacle to achieving this goal is the signi
cant transactional overhead

that arises due to pooling� Consider� for example� the time�overhead required for matching

queueing customers to servers that become idle� in a face�to�face service operation with� say�

�� servers in parallel that attend to a single queue� Another interesting example involving

overhead is to trade o� transportation times in the specialized model �adding ample�server

stations� against set�up times in the 
exible model� due to switching among task�types�

The general issue here is cost�bene
t analysis of economies of scale �increasing K or �f �

in the presence of various pooling�dependent constraints and overheads� Special attention

can be given to speci
c topologies� for example hub�networks�

More Networks� Analyze pooling within queueing networks that are richer in features and

capabilities� for example fork�join networks� where one must also trade o� the e�ects of

coordination and synchronization� or 
nite�bu�er networks� with various blocking protocols�

giving rise to the option of pooling bu�ers�

��
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