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Abstract

We view each station in a Jackson network as a queue of tasks, of a particular type,
which are to be processed by the associated specialized server. A complete pooling of queues,
into a single queue, and servers, into a single server, gives rise to an M/PH/1 queue, where
the server is flexible in the sense that it processes all tasks. We assess the value of complete
pooling by comparing the steady-state mean sojourn times of these two systems. The main
insight from our analysis is that care must be used in pooling. Sometimes pooling helps,
sometimes it hurts, and its effect (good or bad) can be unbounded. Also discussed briefly
are alternative pooling scenarios, for example complete pooling of only queues which results
in an M/PH/S system, or partial pooling which can be devastating enough to turn a stable
Jackson network into an unstable Bramson network. We conclude with some possible future

research directions.

1. Introduction

A fundamental problem in the design and management of stochastic service systems is that

of pooling, namely the replacement of several ingredients by a functionally equivalent single
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ingredient. We analyze the pooling phenomenon within the framework of queueing networks
where in our case, as will be explained momentarily, it can take one of three forms: pooling
queues (the demand), pooling tasks (the process) or pooling servers (the resources). Here we
consider pooling queues and servers simultaneously, but keep the task structure intact, and
we provide an efficiency index (5) to determine when such pooling is or is not advantageous.

Our models are described in terms of customers who seek service provided by servers.
Service amounts to a collection of tasks, of which there are a finite number of types. Two
main models are considered: in the first specialized model, each task type has a server
and a queue dedicated to it. For example, Figure 1 exhibits a queueing network in which

every customer requires a service that constitutes three tasks, and the tasks are carried out
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Figure 1: A specialized model with tasks attended by specialized servers.

successively, each by its own specialized server. Customers arrive at rate «, average task
durations are mj and servers’ capacities are c;. In the second flexible model, servers are
capable of handling all tasks and they collectively attend to a single queue of services. For
example, Figure 2 exhibits such a model, which arises through pooling the tandem network
from Figure 1: customers arrive at rate «, seeking the same three-task service as before;
they all join a single queue, which is now attended by a single flexible server of capacity
>k Ck-
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Figure 2: A flexible model with complete pooling into a single queue and a single flexible

server.



Customer arrivals are assumed Poisson and task durations exponential. (We comment
on these distributional assumptions in the Addendum.) As articulated in Section 2, we
allow a service to consist of a random sequence of tasks in a way that the service duration
has a phase-type distribution (a phase corresponds to a task). The specialized (unpooled)
model turns out to be a Jackson network [19], as in Figure 3, and the flexible (pooled)

architecture is modeled by an M/PH/1 system [26], as in Figure 4.
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Figure 3: A specialized model with task repetition and feedback.
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Figure 4: The flexible model, under complete pooling, that corresponds to Figure 3.

In addition to the above two main models, we also consider briefly alternative designs of
pooling. For example, Figure 5 depicts the network from Figure 1, with its queues pooled
into a single queue and the servers made flexible while still maintaining their individual

identities (see Section 5.3). Figure 6 depicts partial pooling of only queues and servers 1
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Figure 5: Complete pooling of queues only; servers are made flexible but maintain individual

identities.
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Figure 6: Partial pooling.
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Figure 7: Splitting services. FEach task returns to the end of the queue.

and 2 (see Section 5.4). Figure 7 depicts a split of the service so that a customer, upon

completion of a task, rejoins the queue (see Section 5.5), and additional designs are possible



as well. A common feature of our models is that service is unaltered. For example, in

Figures 1, 2, 5, 6 and 7, service always consists of tasks 1, 2 and 3 in succession.
1.1. Motivation

The present research arose from an analysis of a service network consisting of several spe-
cialized departments. The network was redesigned as a pooled single department, which
was still responsible for the same services but whose servers were flexible enough to process
all tasks. In trying to analyze this transition, we found that prevalent pooling models failed
to cover our network scenario.

Our models provide a new simple framework that helps in assessing the effects on pool-
ing of wutilization, variability and service design. While this is not aimed as a review pa-
per, our framework also relates, as it happens, rather disparate concepts and results, for
example [6, 19, 22, 26, 35, 37]. We believe that the usefulness of the framework goes be-
yond the original motivating applications, pertaining to the design of telephone call centers
[7], evaluation of communication networks [35], evolution (growth) of computer systems
[21], group-technology in manufacturing [8], team-based product development [1], business
reengineering [10, 13, 14, 24] (elaborated on below), and more.

Prior work on pooling seems to fall mainly into two categories: pool queues or pool
servers. (In most of our analysis we do both.) As an example, pooling only queues would
change several M/M/1 queues, say K, with arrival rate A and service rate y into an M/M /K
queue with arrival rate K\ and service rate p; results of this flavor are contained in [32, 35].
Pooling only servers would change an M/M/K queue with arrival rate A and service rate
p into an M/M/1 queue with arrival rate A and service rate K u; pooling of this type is
considered in [36]. For an illuminating depiction of these common pooling models, see [21],
Fig. 5.5. Pooling also arises as an asymptotic phenomenon under appropriate rescaling of

time and space [23, 29, 30]: for example, in heavy traffic, appropriate routing has the effect



of pooling servers (hence, in heavy traffic, the performance of the systems in Figures 2 and
5 coincides).

Our paper is in concert with current emphasis on business process reengineering [13, 14].
Indeed, referring to pooling as “integration of work,” Loch [24] predicts that “the one idea
from the reengineering era most likely to persist is that of integrated work.” Similarly,
in summarizing [13, 14], Buzacott [10] has “several tasks combined into one” as the first
assertion of the superiority of a system that is designed using reengineering principles.

Both [10] and [24] use tasks in series and the transition from Figure 1 to Figure 5 as
their paradigm for pooling in reengineering. It was shown in both [10] and [24] that the
pooled system (with a single queue) is superior to the unpooled alternative, and higher
task variability makes the advantage greater. The network-framework that we provide
allows the results of [10] and [24] to be viewed in a more illuminating perspective. First
we show, in Section 5.1, that pooling a tandem structure is always advantageous but for
more general architectures this need not be the case. In particular, it has been known [35]
that pooling a parallel structure can sometimes hurt unboundedly (see Section 5.2); we add
the observation that partial pooling can turn a stable system unstable (Section 5.3, based
on results of [6]). Second, the variability considered in [10, 24] is only task variability. In
general, however, there are additional sources of variability, and their effects on pooling,
as we now discuss, can be opposite to the variability effects in [10, 24]. Variability may
be either predictable or stochastic: first-order sources for predictable variability are service
design (e.g. scheduling tasks in tandem vs in parallel) or heterogeneity across task types (e.g.
varying means ); second-order sources for stochastic variability are, for example, fluctuations
of task durations within a task type (e.g. due to human factors).

Our framework allows the consideration of both predictable and stochastic service vari-

ability. The sources that we explore here, however, are mainly first-order structural, since



the tasks that constitute a service are not altered. (Stochastic task variability is fixed by
assuming an exponential duration for each task type.) In broad terms, with task variabil-
ity fixed and workload approximately balanced, the design of the service determines its
variability and, in turn, the effect of pooling: as servers’ utilization increases and service
variability decreases, pooling advantages are found to increase. This explains the apparent
contradiction with the conclusion of [10, 24]. (Note that a balanced workload need not be

optimal; see Section 4.)

1.2. Summary

The specialized and flexible models are introduced in Section 2. We start with a crude stabil-
ity analysis in Section 2.3, showing that flexibility increases the workload that a specialized
system can handle; see also Section 2.1 in Buzacott [10].

In Section 3 we quantify the effects of pooling in terms of an efficiency index (5), which
is the product of a utilization factor &, and a variability factor &,. We show that pooling
always helps in light traffic, since a customer at the pooled system typically enjoys a service
rate that is the total capacity of the specialized system. In heavy traffic, pooling effects can
go either way.

For given arrivals and services, resource utilization is determined by how capacity is
allocated among the servers. In Section 4 we use the square-root allocation of Kleinrock
[21] to show that optimal capacity allocation mitigates the advantage of pooling. This
advantage also decreases as variability increases. Indeed, crude analysis of the efficiency
index (5) reveals the insight that with low enough variability pooling is always advantageous.

In Section 5 we explore both network and pooling designs. Sections 5.1 and 5.2 treat
tandem and parallel systems respectively. With tandem tasks the structural variability is
small enough so that pooling always helps. For parallel tasks, as already discovered by Smith

and Whitt [35], the effect can go either way. In Section 5.3 we consider pooling queues only,



as in Figure 5. Performance is worse than with pooled servers, with the difference being
maximal in light traffic and diminishing in heavy traffic. In Section 5.4 we investigate the
effect of pooling design by considering partial pooling, as in Figure 6. It turns out that
one can interpret the recent results in Bramson [6] to show that partial pooling can turn
a stable system unstable. In Section 5.5 we require service splitting, as in Figure 7, rather
than pursuing service until all of its tasks are completed. Through an example we show that
the relative performance of these two systems depends on the structural variability of the
total service time. There are numerous additional pooling issues that can be pursued, within
the framework opened up here. Some are briefly discussed or mentioned in the concluding

Section 6.

2. The Models

In our two models, customers arrive for service according to a Poisson process, at a rate of
a per unit of time. A service constitutes a random sequence of tasks. There are K types
of tasks, indexed by k = 1,..., K, and we refer to a task of type k as simply task k. The
work content in task £ is exponentially distributed with mean my. Let ¢, be the probability
that task k is first in a given service, and let Pj; be the probability that task £ is a direct
successor of task 7; 1 — k§1 Pjj, is therefore the probability that service ends after task j.
Assume that arrivals_of customers are independent of services and that, within each
service, sequencing of tasks and task durations are all mutually independent. Also assume
that each service constitutes a finite number of tasks with probability one; this is equivalent

to the existence ol the matrix

R:[]_P]_lv

where P is the K-dimensional matrix P = [Pj;]. (The element R is the expected number

of times that a task £ is performed during a single service, given that j is the task to start



that service.)

To sum up, customer arrivals are characterized by a scalar «, and services by a triplet
(¢, P,m): ¢" = (q1,...,qK), P = [P] and m" = (mq,...,mg). (It is naturally assumed
that K > 2, a >0, m > 0 and ¢" R > 0.) Servers will be characterized momentarily, as

they are model-dependent.

2.1. The specialized model

In the specialized model, every task k has a server k dedicated to it, whose service capacity is
¢ > 0 units of work per unit of time. It follows that the processing times of task k& by server
k arei.i.d., each distributed exponentially with mean my/cg. Furthermore, envisioning tasks
of every type queueing up for processing at their respective dedicated servers, our specialized
model reduces to an open Jackson network [19] with K single-server stations, arrival rates
aq?, service rates ¢, /my, and a routing matrix P. (See Figure 3.)

We assume that the specialized system is stable (ergodic). This entails that each server

k has traffic intensity less than unity:

)\kmk
Pr = <1
Ck

here A = ag” R is the vector whose k-th coordinate \; stands for the effective arrival rate

(in units of task k) to server k. Equivalently, stability prevails if and only if

<o’ =N\ O
a<a®=N\—————

k (qTRM)k7
where M is the k-dimensional diagonal matrix, with My, = myg, k = 1,..., K. This is a
consequence of the representation

TrRM
= ol
Ck



2.2. The flexible model

In the flexible model, customers arrive for service as before, but now they obtain service
from a single flexible server, whose service capacity is c¢le (e is the k-dimensional vector
of one’s.) Services are as above, hence the work content in services are i.i.d., each with a
phase-type distribution [26] that is characterized by the triplet (¢, P,m/cTe): there are K
phases each corresponding to a task, the duration of phase k is exponential with mean my,
the initial phase is chosen according to ¢ and successive phases according to the routing
matrix P. In other words, the flexible model reduces to an M/PH/1 queue, in which the
average work content in a service is ¢! RMe and the server’s capacity is c¢!e; the average
service time is therefore ¢' RMe/cle. (See Figure 4.) We assume that this queue is stable

(ergodic), which entails that its traffic intensity satisfies

q'RMe

Te

< 1.

pl=a

Equivalently, stability prevails if and only if

T
j__cc¢

< —.
asa q"RMe

2.3. Stability analysis

The flexible system can handle any load that the specialized one can. This is formalized in

terms of each of the following two inequalities:

o’ <o, or (1)

To verify (1), note that for any positive vectors a and b,
CLTG ag ap
9T 6 FEE e b 3
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since the left hand-side is a convex combination of ag/bg, k = 1,..., K, namely,

She T
: J

Letting ay = ¢4 and b, = (¢ RM), establishes (1). Similarly, letting a;, = (¢ RM), and
b, = ¢, yields
pl = Zk:dkpz, dp = cp/c’e, (4)
which implies (2).
If @ > of then the flexible and specialized models are both unstable (have no steady
state), hence a steady-state comparison between them is vacuous. If a € [a® af), then
the specialized model is unstable while the flexible one is stable, in which case pooling is

advantageous trivially. One is left with o < a® < o/, which will be assumed from now on.

3. Performance analysis

Let W* and W/ denote the steady-state average sojourn-times in the specialized and flexible

models respectively. Then

1 Pr
Wwe=-3 &
azk:(l_pz)

by Little’s law and Jackson’s characterization of individual stations as M/M/1 queues in
steady state. For the flexible model, the Pollaczeck-Khintchine formula yields

p? 14 C?(S)

I _
W/ = E(S) L+ 75—

Here S is a phase-lype random variable characlerized by (¢, P,m/c"¢), whose moments are
given by [26]
n!

E(Sn) — WQT(RM)TLG, n Z 1,

and whose squared coefficient of variation is C*(S) = Var(S)/E(S)?. Define the efficiency

index of pooling to be & = W* /WY, Then pooling is advantageous, as far as average sojourn
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time is concerned, when & > 1. Simple algebra leads to the representation

15 s
e % ri K )
- f c2(S)
2 (L=ph) g

in which

14+ C*S)  E(5*)  ¢"(RM)%e

2 2B(S)2  (¢"RMe):?"
We write £ = £,&,, where
1y P
K 4 1=p; K
5u = kif and gv = - 2
# (1—pf)+ wa

are the utilization index and wvariability index respectively. They represent the effects of
utilization and variability on pooling efficiency, the analysis of which constitutes the rest of

the paper.

Ranges of the indices: The ranges are given by

1
gu & (?,OO), gv € (0,2[&7)7

and

& € (0, 00);

the indices can take on all values within the specified intervals, and the end-points of the

intervals provide tight asymptotic bounds. To elaborate, let

f(x)z(lfx), 0<a<l,

a strictly convex, strictly increasing function with f(0) = 0 and f(1—) = co. Then, using

(4), these properties imply

g — x> f(p}) < e fp}) 1 e

v

i 1
> .
FOCedipy) ~ Zadef(pl) — KVie — K
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One way for £, | + is to let pj | 0, for all k£ > 2, while maintaining p/ & pj, both being
bounded away from 0. This requires that ¢;/cTe T 1. On the other hand, &, T oo, for
example, as a | 0, /¢ | 0 for all k, and ¢;/¢; T oo for some pair j # k.

Turning to &,, the upper-bound 2K is an immediate consequence of C*(S) > 0 and
p! < 1. The lower bound 0 is approached as C*(S) 1 oo while maintaining p/ bounded

away from 0. Finally, the ranges of £ will emerge during later analysis.

Observations on variability and utilization: T1f variability is low enough, formally if C*(S) <
1, then & > 1 since £, > K; in other words pooling is advantageous. If utilization is
balanced, formally if p; = p?, Vj, k, (hence also p/ = pi, Vk,) then £ = 1 and pooling
efficiency is determined by the variability index. In particular, increasing utilization (p/ T 1)
and reducing variability (C*(S) | 0) attains the maximum pooling efficiency achievable

under balanced utilization (2K).

Light traffic: In light traffic, the pooled system is always better because its customers are
served at the pooled capacity of all specialized servers. Formally, light traffic prevails as

a | 0, while keeping the other parameters unaltered. Let £ = E(a) in (5). Then

. B (qTRM)k qTRMc
i £(e) = 3 0L ST (6)

CTE CTE

Vicr ) Agck

since the limiting efficiency belongs to the interval [ ], in view ol (3). Pooling,
therefore, is always better in light traffic, and it is K times better when the ¢;’s are all
equal.

Equation (6) can be explained with light traffic theory [31]. The light traffic limit of the
mean sojourn time is the mean sojourn time of a single customer that moves alone through
the system. For the pooled system, this timeis ¢ RMe/cle. For the specialized system, the

mean sojourn time is 3", (¢ RM);/cy,, since the k-th summand is the total time at station

k.
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Heavy traffic: There are two cases of heavy traffic: o® = af and o® < of. We consider the
case o = o here, and treat a® < o at the end of Section 4. The equality o® = af occurs
if and only if @ = ¢x/(¢" RM)y for all k, in which case p§ = p/ for all k. Let € = E(p) in

(5), where p denotes the common utilization. Then &€, = 1, and

) 2K
im&(r) = T emrgy -

This finite limit prevails even though, as p T 1, both W*(p) and W¥(p) grow unboundedly.

Indeed, as p T 1,

1+ C(8)

(1= p)W*(p) = KE(S), (1=pW(p) - E(S) 5

4. Division of Work, or Capacity Allocation

Fix «, ¢, P and m. Introduce an additional scalar v > 0, to be interpreted as total

available service capacity, and consider positive vectors ¢ such that ¢'e = 4. As before,

p! = aqTRMe/cTe = Zk: /\kmk/cTe < 1, hence p? is fixed, v > Zk:)\kmk, and &, is also fixed.

It follows that, as a function of ¢, the index £ = €(¢) is minimized by the solution to
Amy,

min 3" —HE
C

— cr — Ay,
s.t. ch:’y, c>0.
k

This is Kleinrock’s well-known capacity allocation problem [21, Section 5.7], solved by the

“square-root” allocation

\/)\kmk
2o\ Ay
J

Cr = )\kmk + (’)/ — Z)\jmj)
J

The corresponding value of € is given by the product of &,, in which p/ = m® X/, with

Fpvam) & (sVirin) <1 7

£ = _ -
Zk: Ay Zk:(qTRM)k
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The last inequality is a simple consequence of the Cauchy-Schwartz inequality, that also
guarantees equality to unity if and only if (¢" RM);, = (¢" RM);, Vk,j, in which case also
cy = ¢j, Vk,j. The quantity (¢" RM), represents the amount of work of task k that is
embodied in an arrival. Hence, under the optimal capacity allocation, &, = 1 if and only if
workload and capacity are both balanced.

Optimal capacity allocation typically results in uneven utilization of the servers (see
also [11] and [17]), which in turn is associated with a smaller benefit from pooling. That
is indicated by (7), from which it follows that £ < 2K; in words, pooling benefits do not
exceed 2K. This upper bound can be approached only in a balanced system that is both

heavily utilized (p/ T 1) and almost deterministic (C?(S) | 0).

Heavy traffic, continued: We can now treat the other case of heavy traffic, a® < of. If
a® < o, and a € [a®,af), as observed in Section 1, the specialized model explodes while
the flexible one is stable, so pooling is trivially advantageous. To allow for a meaningful
comparison, fix ¢, P, M and total capacity ~, then assume that for each «, the specialized
system employs the corresponding optimal capacity allocation. This makes o a function of
a, enforcing a®(a) T of, as @ T of. Thus, both the specialized and flexible system approach

heavy traffic, in a way that

2
i <Z (qTRM)k) 2K
lim £(p’) = —% ,
P11 Zk:(qTRM)k 1+ C%S)

by (5) and (7). The discussion that follows (7) applies here as well.

5. Design

This section is devoted to some effects of network design on pooling efficiency. In Subsections
5.1 and 5.2 respectively, we consider tasks that are processed in tandem and parallel. The

pooling of queues only, as depicted in Figure 5, is briefly discussed in Subsection 5.3. We
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then highlight possible negative effects of poor pooling design (with partial pooling) in
Subsection 5.4. In Subsection 5.5 we consider the effect of having customers rejoin the

queue for each task.

5.1. Tandem tasks

Here C'*(.9) is small enough to render pooling always advantageous. Indeed, for K tasks in
tandem, ¢; = 1 (so qx =0, k > 2), Pyyyr = 1 for k < K, p}, = amy/cy, pl = amTe/cle,

and C%(S) = mTm/(mTe)? < 1. Tt follows that &, > K, hence £ > 1 since &, > % always.
5.2. Parallel tasks

Here the effect of pooling can be good or bad. For K tasks in parallel (each service consists
of exactly one task, which is task & with probability ¢.), P = 0, pi = agumy/ci, and p/ =
aqtm/c'm. The service time of the pooled system is hyper-exponential, hence C%(5) > 1.

This also follows immediately from

1 —}—02(’5') Sk qkmi
=) 1
T T g 2L ®)

K K
where the last inequality is a consequence of viewing > qpmy and 5 gym} as the first and
% k

second moments of a discrete random variable.

From C?*(S) > 1 follows that & < K. Under optimal capacity allocation. in fact
E < K by &, < 1. The upper bound K is attained, for example, as follows: &£, = K when
myg = m, Vk, since then C?(S) = 1; €, =1 by letting also ¢, = 1/K,Vk.

We now show that it is possible for a pooled system to be arbitrarily worse than the
specialized one. To this end, we achieve £ | 0 by constructing families of parallel systems
that adhere to optimal capacity allocation, implying &, < 1, while having p/ fixed and
C%(S) 1 oo, implying &, | 0.

One way is to follow [35], where there exist tasks which are both rare and “challenging”.
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Such tasks rarely challenge the specialized system but, when pooled, they delay all other
tasks sufficiently to render pooling inefficient, unboundedly. The driver is variability, made
high enough for €& | 0. To be specific, vary g and my in a way that does not change the
K products grmy; simultaneously let, say, my T oo, while maintaining rmy/m; bounded for
all £ > 2; « is fixed to guarantee stability. (¢1 | 0 by pj = agymi/ci < 1 and my T oo,
thus tasks of type 1 are both rare and challenging.) It follows that p/, the optimal capacity
allocation, and the denominator in (8) are all constant, but C?*(S) 1 oo with the numerator
of (8).

A second way is to have slow servers in addition to challenging customers. Specifically,
in an optimal allocation, take ¢; T 4 and ¢; | 0 (hence Xyss¢r | 0 and Ypsoqr T 10 the
servers 2,..., K are the slow ones), while maintaining p? bounded away from 1. One can

then show that g.my/qm; — 0, Vk > 2. By (8)

L Cs) g
2 (14 ke g/ quma)?

verifying that, again, C*(S) T oc.
5.3. Heterogeneous servers

There are situations in which servers cannot be pooled into a single server and, while still
flexible, they must retain their individual identities. The flexible model would thus become
a multi-server single station (M/G/S), with phase-type service and possibly heterogeneous
servers, as depicted in Figure 3. Both systems enjoy the same stability region [4], never-
theless performance is now worse than with a single server because service is not always
rendered at the maximal capacity ¢’e. (This can be verified through coupling.)

A comparison between our specialized system and a flexible system with heterogeneous
servers would require formulae for the M/PH/S queue with heterogeneous servers. Such

formulae do not exist so we restrict our attention below to light and heavy traffic. In

17



specific cases, there exists approximations which enable certain (approximate) comparisons.
For example, Buzacott [10] uses second-moment approximations to compare series systems
(as in Figure 1 and 3) while varying stochastic variability of tasks.

In light traffic, the performance of the single server could be made better than the
heterogeneous system by a factor of ¢f'e¢/V, ¢,. Indeed, by the light-traffic rationale [31],
the mean sojourn time of the single-server system is E(S)/cfe. For the heterogeneous
system, assume that services are always performed by the fastest available server. The
mean sojourn time, in light traffic, is then £(S)/V} ¢k, which yields the above factor.

The heavy traffic limit of the single server and the heterogeneous system coincide [18].
One expects, therefore, that the difference in performance between the systems is maximal in
light traffic, and it diminishes as utilization increases to heavy traffic. A precise justification

would require a comparison via stochastic ordering.

5.4. Partial pooling

In partial pooling, K specialized servers are pooled into K’ < K servers, typically more
flexible, thus resulting in a queueing network with K’ stations. In this section we show, by
way of examples, that it is possible for partial pooling to make a stable system unstable.
Our examples are based upon networks introduced by Bramson [6], which have opened up
a yet uncharted research territory.

We start with a specialized system that is a tandem network, as in Subsection 5.1, with

K taken odd for notational convenience. Let

a=1; me=mrg=d, mp=20, k+#2, K;
01225, CQZl_(](_3)67
C3,C54....CK_32 = 2/([( - 3),
C4,C6y....CK_1 — 2(5,

C[(:l*26.
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Bramson [6] chose first 252 < d < 1, then K large enough for d* =2 < 1/50, and finally é small
enough so that 0 < ¢ < (1 — d)/50(K — 2)®. The specialized network is, therefore, stable
(p; <1, 1 <k < K) and its (complete) pooling, as in Subsection 5.1, is advantageous.

We consider now two (related) poolings. In the first, depicted in Figure 8, the K servers

are pooled into 3 servers as follows: server 1 attends to tasks 1 and K’ server 2 serves

c2teat o texgo =1 cates+ ot exg_2=1

o1+ er =1 @
— i 25 Y il
- ms

@_
o || |

Figure 8: Bramson’s unstable network obtained by partial pooling.

W

tasks 2,4,..., K — 1; server 3 cares for tasks 3,5,..., K — 2. Thus, a customer starts with
server 1, moves on to 2, then 3, back to 2, and so on, until service K — 1 at server 2,
then the last service back at 1 and finally out. Each server uses the FIFO discipline, under
which Bramson [6] proved that the network is unstable. (See his comment, immediately
following the statement of Theorem 1.) In particular, with probability 1, the sojourn time
of customers increases to infinity, as ¢ T co. Instability arises because the system roughly
alternates between busy periods of server 2, attending mainly to incoming tasks 2 while
starving server 1, and busy periods of server 1, attending to tasks K while starving server
2. The starvation of both servers is a consequence of FIFO, under which ample é-tasks

are forced into queueing behind few d-tasks. (A more refined and quantitative intuition is

provided in [6].)
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The second pooling is into 2 servers as follows: server 1 serves tasks 1 and K and server
2 attends to the rest. The service discipline is again FIFO, where immediate feedbacks at
server 2 (of tasks 2,..., K —2) join the end of the queue, upon service completion. (There
were no immediate feedbacks in our first example.) Thus, a service starts at server 1, moves
on to 2 where it cycles for K — 2 times, then back to 1 and out. Again. such a network was
proved unstable in [6], Theorem 1, following the same rationale as above.

In the second pooling, server 2 could have served tasks 2,..., K — 2 of a given service
in succession, rather than separating the service so that a task joins the end of the queue
upon service completion. Then the system would have been stable [4], which gives rise to

the general issue of splitting services. We address this next.

5.5. Splitting services

Suppose that, after a task completion, each customer returns to the end of the (single)
queue; see Figure 7. Thus, the queue consists of services that are at different stages of their
processing. Although such a protocol seems naive, there are circumstances under which it is
superior (in terms of mean wait) to having services carried out in an uninterrupted manner.
For its performance analysis, one must retain task-identities in queue. An exact analysis is
then possible [34], in terms of a set of linear equations whose solution yields mean waiting
times. More explicit results can be obtained in heavy traffic [12, 28]. We just examine a
special case, with the aim of showing that the advantage can go either way.

In our special case, all tasks have exponential service requirements with the same mean,
m. This gives rise to a product-form system [5, 20], under which the distribution of total
queue length is that of an M/M/1 queue with traffic intensity p/. The sojourn time per

‘pass’ is thus m/[cTe(1 — p/)], and the mean number of passes through the queue is ¢7 Re.
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If we let W™ denote the mean sojourn time in the naive system, we obtain

!
m P
W"=——q"Re |1
re! e[_+1—94
For this case, M = ml, implying that
, I 2
m pl 1+ CS)
W/ = ——q"Re |1
cTeq ¢ [ + 1 —pt 2

We thus see that W™ is less than (resp. equal to, greater than) W/ if C2(S) > 1 (resp.
C*(S) =1, C*(S) < 1): the naive protocol is superior under high variability. Note that, in
this special case, W™ < W?*. (The comparison amounts to the inequality £, > 1/K, which

was established in Section 3.)

6. Addendum

We conclude the paper with a discussion of our distributional assumptions and possible

further research directions.

Distributional Assumptions: Only the exponential tasks require an elaboration since the
role of the Poisson process as a model for exogenous random arrivals is well established.
Empirical experience [3, 25] with human services supports the phase-type service structure,
as evidence suggests that homogeneous human tasks are surprisingly often exponential.
Admittedly, however, exponentially distributed task times will not be a good assumption for
all applications. Then the simplicity of the resultant analysis becomes a driving motivation:
explicit results make it easier to obtain insights from the analysis. (One could in fact analyze
generally distributed tasks, in the spirit of [10, 38, 39] and in analytical support of [24]; this
would require approximations of non-parametric Jackson networks and it is left as a possible
avenue for future research.) Although there is a basis for questioning the universality of

exponentially distributed task times, it should be pointed out that the distribution of the
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total service time as a phase-type distribution is not a practical restriction because phase-

type distributions are dense in the set of all distributions (see, for example [2]).

Stochastic Ordering: Most of our results invite finer comparisons, via various stochastic
ordering schemes. For example, under what conditions would complete pooling of a tandem
network lead to stochastically smaller sojourn times? (For an example of this type of result,
see [9], Example 1.7.1.) Beyond the basic assessment of flexible vs. specialized models, other
possibilities include parametric analysis, from light to heavy traffic (see the discussion at
the end of Subsection 5.3) or an investigation of the effects of task-variability, for example

refining [10].

Control: 1t is possible to maintain identities of tasks, or customer-types. One reason is
to identify the types that benefit and those that suffer from pooling. More generally, this
enables the incorporation of control (admission, sequencing, routing), with the goal of im-
proving performance. Recall the devastating effects of FIFO, within the partial pooling of
Subsection 5.3. Also note that pooling all servers into a single server while maintaining task
identities raises the question of task sequencing, as analyzed in [15], [16], [22], [37]. With ap-
propriate sequencing control (allowing preemption) the pooled system can always be made
at least as good as the unpooled system. This is achieved by reproducing in the pooled
system (using preemption) the performance of the original unpooled system. Preemption
plays an important role here because with it certain customer types can be made effec-
tively invisible to some other types, thus preventing the phenomenon of “challenging” tasks
from Section 5.2. (The well-known formula for the waiting times in the M/G/1 queue with

non-preemptive priorities [21] allow the reproduction of the arguments from Section 5.2.)

Economies of Scale: Consider a parallel specialized network, with statistically identical tasks
and servers (equal my's and ¢;’s). Then € = K since &, = 1 and C'*(S) = 1. In words, pool-

ing advantage equals the number of servers pooled. This is a manifestation of economies of
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scale because the pooled larger-scale system can achieve, with higher utilization, the service
level provided by the specialized system. Such higher utilization could be the outcome of
reduced capacity, hence reduced cost. In the spirit of reengineering [24], one often seeks to
take advantage of economies of scale (increasing K by pooling), in a way that outweighs the
variability overhead that ensue (C?(S) increasing). The desirable outcome is an operation
that is as efficient as mass production (p/ near unity) and as flexible as customized services
(large C'*(9)), yet provides a very high operational service level (fast response, due to short
and predictable sojourn times.)

The notion of flexible specialization [27] or mass customization is a current key concept
in manufacturing strategy. This is also a main goal in the design of distributed telephone
call centers [7] and packet switches for integrated broadband telecommunication networks
[33]. The main obstacle to achieving this goal is the significant transactional overhead
that arises due to pooling. Consider, for example, the time-overhead required for matching
queueing customers to servers that become idle, in a face-to-face service operation with, say,
20 servers in parallel that attend to a single queue. Another interesting example involving
overhead is to trade off transportation times in the specialized model (adding ample-server

stations) against set-up times in the flexible model, due to switching among task-types.

The general issue here is cost/benefit analysis of economies of scale (increasing K or p/)
in the presence of various pooling-dependent constraints and overheads. Special attention

can be given to specific topologies, for example hub-networks.

More Networks: Analyze pooling within queueing networks that are richer in features and
capabilities, for example fork-join networks, where one must also trade off the effects of
coordination and synchronization; or finite-buffer networks, with various blocking protocols,

giving rise to the option of pooling buffers.
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