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We propose a model for abandonments from a queue, due to excessive wait, as-
suming that waiting customers act rationally but without being able to observe the
queue length. Customers are allowed to be heterogeneous in their preferences and
consequent behavior. Our goal is to characterize customers’ patience via more basic
primitives, specifically waiting costs and service benefits: these two are optimally
balanced by waiting customers, based on their individual cost parameters and antic-
ipated waiting time. The waiting time distribution and patience profile then emerge
as an equilibrium point of the system. The problem formulation is motivated by
Teleservices, prevalently telephone- and Internet-based. In such services, customers
and servers are remote and queues are typically associated with the servers, hence
queues are invisible to waiting customers. Our base model is the M/M/m queue,
where it is shown that a unique equilibrium exists, in which rational abandonments
can occur only upon arrival (zero or infinite patience for each customer). As such
a behavior fails to capture the essence of abandonments, the base model is modi-
fied to account for unusual congestion or failure conditions. This indeed facilitates
abandonments in finite time, leading to a non-trivial, customer dependent patience
profile. Our analysis shows, quite surprisingly, that the equilibrium is unique in this
case as well, and amenable to explicit calculation.
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1. Introduction

The problem of customer abandonments from a queue, due to excessive
waiting times, is of considerable importance and concern in various applications.
Traditional queueing theory has dealt successfully with the analysis of queues
under the assumption of a given patience distribution; (patience is the time a
customer is willing to wait in queue). It is, however, also of obvious importance to
consider the factors which affect this distribution, such as individual preferences
and system performance. In this paper we take a decision-theoretic viewpoint
towards understanding the abandonment phenomena: the abandonment time for
each customer is based on an individual utility optimization, which balances per-
ceived waiting costs against the benefits of service, and from which the patience
distribution emerges as an equilibrium point.

1.1. Background and Motivation

On the application side, our study is motivated by the fast-expanding area of
Teleservices, which prominently include Telephone Call Centers and the emerging
Internet-based market. Our model assumptions, therefore, are geared towards
such systems where customers and service providers are remote from each other.
There is little need to elaborate here on the significance of Internet-based services.
As for Call Centers, these currently constitute a multi-billion dollar industry
which is rapidly expanding. (Some estimate the 1998 yearly revenues of the U.S.
market alone at about $5 billion, growing at a rate of over 27% annually.)

Customers of call centers increasingly demand quick and efficient service,
otherwise abandonments of waiting customers become prevalent and of major
concern. Indeed, AT&T studies [3] indicate that a 15 second wait to an operator
response caused 44% of the callers to abandon the call; for a 30 second wait
that figure increased to 69%. The Help Desk Institute, in its annual report [11],
specifies that about 43% of call centers have a target for the abandon-rate, and
about 40% of the call centers experience call abandon-rates over 10%. It should
be observed that in toll-free services such as 1-800, holding times of customers
(including ones that eventually abandon) are paid by service providers. With the
explosive growth of toll-free services, these costs have become a major economic
driver. Abandonments may also have a significant effect on system’s performance
[7], leading to an improved service level for the remaining customers. With these
observations, it is clear that the phenomena of abandonments must play a central
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role in any definition of teleservice quality and call-center efficiency, hence it
should be well understood and quantified.

1.2. Assumptions and Results

As we wait in queue for service, our willingness to wait further may well
be influenced by our assessments concerning the remaining time to service. This
effect is explicitly captured in our model, through a cost function that weights an-
ticipated waiting costs against service utility. A basic ingredient of this model is
customers’ expectations regarding their waiting times, which each customer sum-
marizes as a distribution function. We shall employ here a consistency assumption
(Section 2.3), namely that these expectations, formed for example through expe-
rience, coincide with the actual waiting time distribution in the queue. Since the
latter depends, in turn, on customer abandonment decisions, the system behav-
ior then emerges as a Nash equilibrium point, namely a fixed point of the map
induced by the individual decision model and consistency assumption.

Another factor that may have considerable influence on customer patience is
the on-line information available regarding the current system state or position in
queue; see, e.g. [12]. In the present paper we assume that such information is not
available to the customer, which is a realistic assumption in current call center
applications. Increasingly though, state information is purposely provided by call
centers, and the integration of such information into our model is an important
topic for further research.

Our decision model assumes service utilities that are time-invariant and
waiting costs that are linear in waiting times; these parameters may vary, how-
ever, across individual customers. As a base model, we consider the M/M/m
queue. We show (Theorem 7) that in this case the rational (individually opti-
mal) decision for each customer is either to abandon the queue immediately upon
arrival, or else to stay in the queue until served. Such a simple behavior is a con-
sequence of the property that the hazard rate function for the virtual waiting
time in the queue is increasing (IHR), for any M/M/m queue with general aban-
donments (M/M/m+G in the notation of [2]). While this leads to a complete
and relatively easy characterization of a unique equilibrium, it is obviously quite
unsatisfactory from a descriptive point of view, since finite abandonment times
prevail in practice.

Several options are available to address this deficiency, as elaborated in Sec-
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tion 6. Here we focus on the IHR issue. In reality, customers who are left waiting
for a long time are expected to start loosing confidence and, if anything, will
assess their likelihood of obtaining service in the near future as declining or even
diminishing. To accommodate such a tendency, we consider an extended model
which includes a fault option. According to this model, denoted M/M/m(q), each
arriving customer joins the regular queue with probability ¢, but with probability
(1 — q) will be placed at a fault position where service will never be provided,
without being notified of this situation. The modified model can be considered
both as addressing individual faults, where indeed individual customers are oc-
casionally ‘forgotten’ by the system; or system-scale faults, where occasionally
the system is malfunctioning and all arriving customers are subject to slow ser-
vice. This model also provides a proxy for other causes of congestion which are
not captured by the standard M/M/m queue, such as varying number of servers,
time-dependent arrival rates, service priorities, etc.

It turns out (Proposition 4) that the M/M/m(q) system has an eventually-
decreasing (and, in fact, unimodal) hazard rate function, which makes finite
abandonment times feasible as rational choices (Proposition 2). Naturally, this
additional option both enriches the space of potential equilibria and complicates
the analysis. Still, by exploiting the very special structure of the M/M/m+G
queue and some explicit expressions for its performance (Section 3.2), it will be
established that the M/M/m(q) model gives rise to a unique equilibrium point.
Formulas which allow to compute the equilibrium distribution of the abandon-
ment times are also obtained (Theorem 8).

Regarding the latter uniqueness result, it should be mentioned that Nash
equilibrium solutions are typically non-unique in an essential way, and multiple
unconnected equilibria may exist in general. In view of the heterogeneity in user
behavior, range of possible decisions and the complexity of a stochastic model,
it is hardly apparent that the equilibrium should be unique in the present case.
Some general methods have been suggested in the literature to establish unique-
ness of the Nash equilibrium in non-zero sum games, exploiting such properties
as convexity [18] and contraction [15]; however, none of these has been found
applicable to our problem. As it stands now, the uniqueness result rests on spe-
cific and explicit analysis, which in turn relies on the special structure of the
M/M/m+G queue.
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1.3. Related Research

Concerning previous literature, most related to the present study is the
work by Hassin and Haviv [9]. This paper considers a similar rational model
in an M/M/1 queue, but assuming that all customers have an identical cost
function. It is further assumed that the service utility vanishes once service is
not completed within a fixed time beyond arrival, that abandonments are possible
during service as well, and that customers may decide to reneg (not join the queue
at all). A unique equilibrium is shown to exist in which each customer joins the
queue with a fixed probability, and then stays until his service time expires.
While differences in details exist, this result is also a consequence of the IHR
property of the relevant queue and is closely related to the findings regarding
our base M/M/m model. A recent paper of Haviv and Ritov [10] considers again
the homogeneous customers case, but under a convex waiting cost, and shows
under certain conditions the existence of a unique equilibrium which induces a
continuous distribution of abandonment times.

A different temporal equilibrium problem is treated in [20] and [6], where
motorists optimize their arrival time at a congested bottleneck road, and a de-
terministic fluid traffic model is used. Additional work on individual equilibrium
in queues includes [16], [5], [8], [19] and [1].

It is both highly relevant and of historical interest to mention the classi-
cal work by Palm [17], who develops methods for estimating the inconvenience
experienced by customers due to delayed telephone connection. Palm proposed
a simple parametric model for the inconvenience, as a function of experienced
waiting time, and proceeded to estimate its parameters by linking inconvenience
to the abandonment rate and measuring the latter. The link is provided by an
M/M/m+G model, after postulating that the hazard rate of customers’ patience
is directly proportional to the marginal inconvenience (irritation in terms of [17]).
It is interesting to note that the empirical data used in [17] were collected in cer-
tain exchanges at the Stockholm area, where “relatively often, ... through errors
in dialing, ... (subscribers) would not receive any ringing tone, so that they
were presented with a delay time of unlimited duration.” An M/M/m(q) system
indeed!
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1.4. Contents

Our paper is structured as follows. The next section presents the model
description, including the individual decision model and the definition of equilib-
rium. Section 3 develops some preliminary results concerning rational decisions.
In particular, we explore the relation that exists between these decisions and the
monotonicity properties of the service hazard rate function, we recall the waiting
time distribution for the M/M/m queue with general patience distribution G,
and establish the monotonicity properties of the hazard rate function in this and
the M/M/m(q) model. Section 4 contains the main results regarding the unique-
ness and structure of the equilibrium, while the proofs of the relevant results for
the M/M/m(q) model are deferred to Section 5. Finally, Sections 6 and 7 of-
fer some concluding remarks, with a discussion of modeling choices and possible

extensions.

2. Model Formulation

This section presents the rational equilibrium model that is the subject of
this paper. We start by briefly introducing the queueing system, followed by
a definition of the individual decision model and the utility function employed
by each customer. We then consider the system as a whole and discuss the
equilibrium concept that results by reconciling customer expectations with actual

system performance.

2.1. The Basic Queue

Our base model is the M/M/m queue, with Poisson arrivals at rate A, i.i.d.
exponentially distributed service times with expected duration 1/u, and m servers
that cater to customers in order of arrival (FCFS). The queue capacity (buffer
size) is assumed infinite. We shall also consider an extension of this model,
where each arriving customer enters the main queue with probability ¢, but has
a probability (1—¢) of being placed in a fault position and never obtaining service.
This model will be denoted by M/M/m(q), with 0 < ¢ < 1, and will be further
elaborated on in section 3.2. We assume throughout that the queue is in steady
state.

During their waiting period in the queue, customers may decide to abandon
the queue and give up the offered service. Abandonments do not occur after ser-
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vice commences. Abandonment times are chosen individually by each customer,
based on a decision model which we now specify.

2.2. Indiwvidual Utility and Rational Decisions

After joining the system, a customer may abandon the queue at any time
T > 0 before admitted to service. It is assumed that no information is con-
veyed to customers during this period regarding the status of the queue or their
standing in it. Thus, an abandonment policy for each customer is simply the
time 7T she is willing to wait in the queue before abandoning it. (See Section 6
for some comments on the equivalent sequential, or “real-time”, formulation of
abandonment choices.)

Observe that a decision to abandon at T' = 0 is different than not joining
the system at all, since in the former case the customer enjoys the opportunity
of obtaining service immediately upon arrival. Such a decision corresponds to
the widely observed phenomenon of customers who abandon immediately upon
recognizing a delay.

We now define an individual utility function for the customers over their set
of choices. We consider a heterogeneous customer population, and customers will
be categorized into different types according to their decision model parameters.
Let z € Z denote the type, with Z the set of possible types.

A customer of type z will be characterized by the following elements:

(i) r,, the service utility, assumed to be positive.

(73) c,, the marginal cost of waiting, or simply the cost coefficient, also assumed
positive. The waiting cost (or disutility) is assumed linear in the waiting time,
and given by c,w, where w is the time until the customer abandons or is
admitted to service.

(731) F,(-), a probability distribution function which reflects the customer’s belief
about her virtual waiting time V, namely the time from her arrival until
she enters service, provided that she does not abandon the queue. Denote
F,=1-F..

Observe that F, as used here is a subjective quantity, which is required in order
to define the customer’s expected utility. (We shall later impose the consistency
condition that the subjective distributions F), all coincide with the distribution

function of the true virtual waiting time.)
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Define the cost-benefit ratio 7, := ¢, /r,. This parameter will play a central
role in our analysis.

Consider a customer that decides to abandon the queue after T" > 0 time
units if not admitted to service by then. The actual waiting time will be W =
min{V, T}, where abandonment occurs if 7' < V, and otherwise the customer
enters service. The expected utility for such a customer will be

U,T)=E,(r,1{T >V} —c,min{V,T})
T

— Oi[rz — ¢,v]|dF,(v) — ¢, TF,(T), (1)

where F, stands for the expectation with respect to the subjective probability
F,. Note that F, conceivably includes a point mass at T' = 0, representing the
probability of finding a free server immediately upon arrival, and the integral
is taken to include this point; thus, U,(0) = r,F,(0). Observe also that we do
not explicitly account for the expected time-in-service in this utility function;
however this may be easily incorporated in the service utility 7.

An optimal decision for a type-z customer is a time T, > 0 that maximizes
the expected utility U,. For concreteness, in case that the utility function attains
it maximum in more than one point we shall choose the later time. (Any other
choice may be made without affecting the results; indeed, in equilibrium it will
turn out that non-unique optimal choices may occur only for one specific customer
type, which has a zero measure according to the regularity assumption imposed
below.) This definition fixes T, as a deterministic quantity for each customer of
a given type z.

As already observed, with our utility function it is assumed implicitly that
waiting customers do not obtain information regarding the current state of the
queue or their standing in it. This justifies the convenient viewpoint that aban-
donment times are chosen once upon arrival to the queue.

To complete the system description, we require an additional quantity:

(iv) Py, a probability distribution over the set of customer types Z. The type
z of each customer is randomly chosen according to Pz, independently across
customers. We shall assume for simplicity that the cost-benefit ratio v,, con-
sidered as a random variable with distribution induced by Pz, has a density
on the (positive) real line.

Some comments regarding the customer type and its associated distribution
Pz are in order here. As defined, the type variable z parameterizes the distribu-
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tion F),, along with the cost coefficients r, and ¢,. However, under the consistent
equilibrium condition considered in the sequel all distributions F, must coincide
with the actual one, so that customer types differ only in the coefficients ¢, and
r,. Thus, Py can then be interpreted as a probability distribution over these
coefficients. Moreover, it will be seen that the maximizer of the utility function
U, depends only on the cost-benefit ratio v, = ¢,/r,, so that a customer type
may be identified with this ratio. The assumption that v, has a density under Py
is not crucial, but quite conveniently alleviates the need to consider randomized
decisions, which would otherwise be essential for the existence of an equilibrium
(see [9]). Apart from that, the distribution of vy, is general.

Suppose now that we are given the type distribution Pz, as well as the
customer parameters c,, r, and F, for each type z € Z. Assuming that customers
behave according to the decision model described above, and that the optimal
decisions T, are well-defined, this induces a distribution on the abandonment
times of each customer, namely a patience distribution G, which is i.i.d. across
customers. The model is then completely specified as an M/M/m+G queue, and
its performance can be analyzed using, e.g., the results of [2].

Our point of departure from M/M/m+G scenario concerns the assumption
that F, is given a-priori, without regard to actual system performance. This will
be replaced by a consistency assumption, which we consider next.

2.3. Equilibrium

As noted, given a patience distribution G, one can compute the system
statistics and in particular the “true” (or objective) distribution of the virtual
waiting time, denoted F. Our basic assumption here is the consistency require-
ment, that the subjective distributions held by all customers coincide with the
true one, namely F, = F for all z € Z. This leads to the following definition
of system equilibrium, which is just the Nash equilibrium under the consistency

assumption:

Definition 1. The system is in a consistent equilibrium (or just equilibrium) if
the following hold:

(1) Individual rationality: Each customer of type z is using an individually op-
timal abandonment time T, as defined above; recall that this choice is based
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on a utility function which involves the subjective virtual waiting time distri-
bution F}.

(i7) Consistency: The subjective and objective virtual waiting time distributions
coincide: F, = F, for every customer type z.

We then refer to the set {T,, z € Z} as an equilibrium (abandonment time) profile,
and to F' as the equilibrium distribution.

The consistency requirement implies that customers have complete knowl-
edge regarding the statistics of the waiting time in the system. In practice, such
knowledge may grow out of previous visits to system.

It is evident that the definition of equilibrium is not explicit, but rather
specifies F' as a fixed point of an appropriate map, which may be summarized in

the following two steps:

e F'— (G. Given F, the consistency assumption F, = F' together with other cus-
tomer utility and type characteristics (c,, r, and Pz) determine the patience
distribution G.

e G — F. Given the patience distribution G, the virtual waiting time distribu-
tion F' is determined through the queue dynamics.

Note that this map is on a space of probability distribution functions, so that we
obtain a functional fixed point condition. Another option is to consider the fixed
point of the map between decision profiles {T,}, as follows:

e {T,} — F. {T,} together with P determine the patience distribution G,
which in turn defines the queue statistics and the virtual waiting time distri-
bution F.

e FF — {T,}. The consistency assumption F, = F, together with the utility
parameters ¢, and r,, determine the optimal individual decisions {7 }.

Since the support of Z is in general of infinite cardinality, decision profiles belong
to an infinite-dimensional function space, and again we obtain a functional fixed-
point condition. We shall find this formulation more convenient for analysis than
the previous one

The prominent questions regarding the equilibrium point include existence,
uniqueness, structural properties, and computation. These are all addressed in
the sequel.
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3. Preliminary Analysis
3.1. Individual Optimization and the Hazard Rate

In this subsection we examine some properties of the optimal abandonment
times, and in particular their relation with the hazard rate function H, associated
with the virtual waiting time distribution F,. We consider here a fixed customer
type z, with a given subjective distribution F,. We will show that monotonicity
properties of the hazard rate function lead to interesting structural properties
of the optimal abandonment time, which will be instrumental in the equilibrium
analysis to follow.

Assume throughout that F,(t) is continuously differentiable for ¢ > 0 (that
is, it has a continuous density F7, except possibly for a point mass at ¢t = 0), and
that F] has a right-limit at 0. This smoothness property is indeed enjoyed by
all distribution functions that arise in later sections. Differentiating the utility
function (1) with respect to 7" > 0 gives

ULT)=1[r, — ¢.;T|F)(T) — c,F,(T) + ¢, TF.,(T)
=r,F/(T) - c,F,(T). (2)
Since r, > 0 by assumption, when F,(T) > 0 this may be written in the following
way:
UL(T) =r.F.(T)[F,(T)/F.(T) — 7]

=1, F(T)[H:(T) — 2], (3)

where 7y, = ¢,/r, is the cost-benefit ratio, and H, is the hazard rate function
associated with the virtual waiting time distribution F,, namely

H,(t) == F.(t)/F.(t), t>0.

We shall also define H,(0) = H,(0+). The first order condition for a local
optimum at 7' > 0, namely U.(T') = 0, can now be simply stated as

(T) =12

Thus, an abandonment can take place only when the hazard rate crosses a specific

H

18]

level, which is just the cost-benefit ratio.

We proceed to characterize the form of the optimal solution under certain
monotonicity assumptions on the hazard rate function. We shall consider the
following cases:
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a. Increasing hazard rate (IHR): H, is monotone increasing.
b. Decreasing hazard rate (DHR): H, is monotone decreasing.

c. Increasing-decreasing hazard rate (IDHR): H, is unimodal, initially increasing
and then decreasing.

In all cases we consider H,(t) for ¢ > 0. Note that monotonicity is not required
to be strict, so that the IDHR class includes the other two as special cases.

Consider the IHR case first. It is easily seen from (3) that in this case
U,(T) is either increasing, decreasing, or decreasing-increasing over [0,00), and
therefore will be globally maximized at one of the edges, namely T = 0 or oc.
The optimal decision is therefore one of the following:

1) T = 0: abandon immediately if not admitted to service upon arrival.

2) T = oo: never abandon.

The implication is that it is never optimal to abandon after a finite (non-zero)
amount of time.

The DHR case is considered next. Here H, decreases from H,(0) to H,(co).
In one extreme case the graph of H, may lie entirely below the level ., implying
U! negative and an optimal decision at 7' = 0. In the other extreme, the graph
of H, lies entirely above 7,, implying U, positive and an optimal decision at
T = o0. The interesting case is the intermediate one: when H, intersects 7y,, the
intersection point T, is easily seen from (3) to correspond to a global maximum
of the utility, and hence is the optimal decision.

We finally consider the IDHR case. Here v, can intersect H, at two points
at the most (see Figure 1), the first at the increasing part of H, and the second at
its decreasing part. The first intersection corresponds to a local minimum, hence
is of no consequence. If the second intersection does not exist, then the situation
is similar to the THR case, namely an optimal decision at 7' = 0 or T' = oo. If the
second intersection does exist, then similarly to the DHR case it corresponds to
a local maximum of H,, which in fact is the unique local maximum over T > 0.
In this case the global maximum can be either at that intersection, or at T' = 0.

We summarize these findings in the following proposition:

Proposition 2. Given F, and v, := ¢,/r,, let T, be the optimal abandonment
time with respect to the utility function (1). Then

(¢) In the IHR case, T, = 0 or T, = oc.



A. Mandelbaum and N. Shimkin / A Model for Rational Abandonments 13

U=utiility

y:=clr

H= hazard rate

T

Figure 1. An increasing-decreasing hazard rate. The wutility function U, is mazimized
either at T = 0, or at the intersection of v, with the decreasing part of H.

(77) In the DHR case, if v, intersects H,(T') then T, is that intersection point.
Otherwise, either v, is above H,(-) (i.e. H,(T') < 7y, for every T') and T, = 0,
or 7y, is below H,(-) and T, = co.

(#4¢) In the IDHR case, if 7y, intersects the decreasing part of H,(T") then either
T, is that intersection point or T, = 0. Otherwise, T, = 0 or oo, with T, =0

if v, is above H,(:) and T, = oo if vy, is below H,(-).

Discussion: Let us briefly discuss the three possible monotonicity assumptions
that were considered above. As we shall see in the next section, the actual hazard
rate in M /M /m + G queues is increasing for any patience distribution G, which
motivates the IHR case. However, from the subjective point of view of a waiting
customer this assumption does not seem to be realistic, since it implies that
customers who wait for a long time become more and more optimistic about the
opportunity of obtaining service in the near future, while in a typical scenario
we expect that customers eventually become pessimistic about obtaining service
speedily. The DHR case, on the other hand, excludes those cases where the
virtual waiting time is characterized by some typical value, and the hazard rate
will be increasing at least initially up to this value. The IDHR form is the
simplest one that accommodates both these tendencies. Moreover, while there
is no special reason to maintain a-prior: that the actual hazard rate in a system
will be unimodal, from the subjective point of view customers are hardly likely to
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adopt a more complicated form for their estimate of the hazard rate. Thus, the
IDHR case presents a very reasonable balance between simplicity and the ability
to capture the essential ingredients of the problem. We are thus led to consider
models where this form of the hazard rate arises naturally.

3.2. The M/M/m(q)+G Queue

We now consider some characteristics of the queueing models that are
treated in this paper, which are valid for any distribution G of the customer
patience. Of special interest are the distribution function F' of the virtual wait-
ing time, and the associated hazard rate function H = F'/F. We start by
recalling some explicit expressions for F' in the M/M/m+G queue, which play a
central role in our analysis. We then observe that the hazard rate function H is
increasing (IHR case) in this model. We shall then consider the M/M/m(q)+G
queue, where with probability (1 — ¢) customers are subjected to a fault state
with infinite waiting time. In this case the hazard rate function turns out to be
increasing-decreasing (IDHR).

Consider first the M/M/m+G queue, with patience distribution G. Each
customer is characterized by a patience T' which is stochastically chosen according
to G, independently of other arrival and service primitives. A customer aban-
dons the system if not admitted to service within 7" time units of arrival. The
distribution G may be defective, i.e. G(c0) < 1, so that some customers may
have infinite patience. The stability condition A[1 — G(00)] < mpu is assumed to
hold [2]. Denote G =1 — G, and let

I(t) = mu — AG(t).

Let F' denote the distribution function of the virtual waiting time V in steady
state. Then, from [2] we have

t
F'() = M1 exp(— /0 I(s)ds), ¢>0, (4)

where 7, 1 is the stationary probability of having exactly m — 1 servers occupied.
This probability is determined through the normalization condition

m—1 00
S +/0 Fl(t)dt = 1, (5)
j=0

and 7; = %(ﬁ)jm forj=0,...,m—1.
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We note that F' is well defined and F(t) # 0, as was assumed in section
3.1. Moreover, the second derivative F” also exists for all £ > 0 (except possibly
at jump points of G, where we may simply define F”" = —I - F'). Note also that
F(0—) =0, F(0) = 7' mj (an atom at ¢ = 0), and F(o0) = 1.

It is well known that for an exponential queue without abandonments, the
virtual waiting time V', given that V' > 0, is exponentially distributed, hence gives
rise to a constant failure rate. When abandonments are present, the following
property holds.

Proposition 3. The virtual waiting time distribution F in an M/M/m+G queue
is THR. Furthermore, the hazard rate H(t) is strictly increasing up to the first
point ¢ (possibly infinite) where G(t) = G(00), and is constant thereafter.

Proof. Differentiating H = F'/F and using F" = —1I - F' gives
B F”F + (Fl)2

H'(t) Ve (t)
_F(1) R !
= Fpl10 /1t F'(s)ds + F'(t)].

Let K(t) > 0 denote the positive term that precedes the square brackets. Since
I is increasing, F' > 0, and F” = —I - F', we obtain

H(t) > K(t)[— /too I(s)F'(s)ds + F'(t)] = K(t)[/too F(s)ds + F'(t)] = 0,

where F'(c0) = 0 was used for the last equality. It may also be seen that the
above inequality is strict unless I (equivalently G) is constant beyond ¢, which
establishes the claim.

We note that the IHR property may also be established by showing that F”/F" is
decreasing, and the latter equals —I(t) which is decreasing since G is decreasing.

However the direct calculation used is more instructive. O

Consider next the M/M/m(q)+G model. This model modifies the standard
M/M/m+G queue, by assuming that an arriving customer has a probability
(1 — q) of being positioned in a fault state, where he is neglected and never
admitted to service. It is important to note that the customer does not know
whether he is in a fault state or not.

It is evident that the active part of this queue, of customers that are not in
the fault state, is just a standard M/M/m+G queue with a modified arrival rate
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A¢ = qA. Let F' denote the virtual waiting time distribution in that queue, given
by the expressions above with A replaced by A;. Let Fj; denote the corresponding
quantity in the complete system. (Note that F' does depend on ¢ through A,
however this dependence is suppressed for notational convenience.)

An arriving customer joins with probability ¢ the main queue, where her
virtual waiting time V' is distributed according to F'; and with probability (1 —q)
is placed in a fault position, where V' = 0o by definition. It follows that

Fy(t):=P(V <t)=qF(t), t>0,

which is the basic relation for this model. Note also that Fq =1-F,=1—¢qF =
qF + (1 — q), and the corresponding hazard rate function can be expressed as

! ! /
]%:%:1fF:FF’

q q +9
where g = (1 — ¢)/q. It is not hard to verify that for 0 < ¢ < 1 the hazard rate
function H, will be eventually decreasing, in contrast to the standard case of ¢ = 1

t >0, (6)

as discussed above. Indeed, observe that for large ¢, Fq in the denominator of H,
converges to (1 — ¢), while the numerator decays exponentially as exp(—1I(00)t),
where I(00) = mu — A\;G(c0) > 0.

It is also easily seen that for ¢ close enough to 1 (so that g is small enough),
H, will inherit the increasing property from H := F'/F near t = 0, i.e., it
will be initially increasing. Therefore, the simplest class to which H, might
generally belong in terms of its monotonicity properties is the IDHR class, defined
in Section 3.1 — provided that H, is unimodal. This is verified in the following:

Proposition 4. The virtual waiting time in the M/M/m(q)+G model, with ¢ <
1, has the IDHR property; that is, the hazard rate function H, is unimodal and
eventually decreasing. Moreover, it is strictly decreasing with a strictly negative
first derivative beyond its maximal point.

Proof. For unimodality it suffices to verify that H,’l can have at most one sign
change, from positive to negative. Differentiating H, and noting that F"" = —IF’
by (4) gives

_F'(F+g)+(F)?

Hy = Hy(H, — 1), (7)

T (Ftg)?
Noting that F' > 0, hence Hy > 0, it follows that Hy is sign-equivalent to Hy —1I.
But since I is a non-decreasing function of ¢ by its definition, it immediately
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follows that once H, becomes (strictly) negative it will stay that way. This verifies
that H, is unimodal and, moreover, strictly decreasing beyond it maximum. [

Remark: In the definition of the M /M /m(q) system we have assumed that the
fault state is an individual state to which each customer is subjected indepen-
dently of the others. Another important interpretation may be given in terms
of a system fault. Assume that the whole system is in a fault state a fraction
(1 — q) of the time, during which all arriving customers are subjected to the
individual fault state as defined before. Then, provided transients between the
operating and fault states of the system can be neglected, as arriving customer
will enter a standard M/M/m queue with probability ¢, and the fault state oth-
erwise; thus, from the customer point of view the situation is equivalent in the
two cases. Note also that the system fault interpretation is close in spirit to a

server vacation model.

3.3. Some Properties of a Consistent Equilibrium

The consistency assumption implies, in particular, that the subjective dis-
tributions F, all coincide: F, = F. We now develop some consequences of this
equality. These properties are not restricted to the M/M/m queue.

We first establish the reassuring property that the rational abandonment
times are decreasing in the cost-benefit ratio.

Proposition 5. Let z and y be two customer types, with F, = F, := F and
7. < 7y- Then the respective individually optimal abandonment times satisfy
T, > Ty. Furthermore, the strict inequality 7, > T, holds provided that: 0 <
T, < oo, F' is continuous at T}, and F(T},) > 0.

Proof. We first observe that if F(7,) = 0, meaning that customers who wait
in the queue more than 7', will never obtain service, then waiting more than T,
cannot be optimal for any customer; thus 7, > Ty in this case. Assume henceforth
that F(T,) > 0.

The optimal decisions are obviously unaffected if we normalize each utility
function U, by 1/r,, that is replace U, by W, = r, 1U,. From (2), the derivative
of this normalized utility is

W!=F —~,F.
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Since F is non-negative, this derivative is decreasing in 7,, that is W/ > W;
at every point ¢, with strict inequality if F'(¢) > 0. This implies that W,(t2) —
W, (t1) > Wy (t2) — Wy (t1) for any pair of points to > ¢; > 0, with strict inequality
if F(t;) > 0. Now, if T, < T}, we can identify T, with ¢; and T, with ¢5, and
obtain

W.(T,) — W.(Ty) > W, (T,) — W,(T%).

However, this contradicts the assumptions that 7, is z-optimal (hence W, (T}) —
W,(T,) < 0) and T}, is y-optimal (hence Wy (T,) — W,(T) > 0). It follows that
T, < Ty is false, thus T, > T,.

To establish the strict inequality under the stated assumptions, note the the
continuity of F' at T, implies continuity of the utility function derivative W) at
that point, so that the first-order optimality condition W/(T,) = 0 must hold.
But as observed above, due to F(T,) > 0 the strict inequality Wé < W] holds at
Ty, so that Wy(T,) < 0, which implies that T, is not optimal in W,. O

The following lemma establishes a useful continuity property of optimal
abandonment times, which is valid when the hazard rate function is IDHR.

Lemma 6. Suppose that F, = F for all z € Z, and assume that the hazard
rate function H = F'/F is increasing-decreasing, and in fact strictly decreasing
beyond its maximum. Then the optimal abandonment times 7', are a continuous
function of ~,, for v, € (0,00), except for one possible jump from T, = 0 to a

positive value.

Proof. As established in Proposition 2, an optimal decision 7}, in the increasing-
decreasing case is either 0 or at the intersection of 7, with the decreasing part of
H. The present assertion is an immediate consequence of that fact. O

4. Existence, Uniqueness and Structure of the Equilibrium

We now turn to the questions of uniqueness, structure and computation of
the consistent equilibrium point. We first consider the relatively simple case of
the M/M/m queue, in Theorem 7, and then extend the results to the M/M/m(q)
model, for which the main results are summarized in Theorem 8. The detailed
derivations and proofs of the latter are deferred to the next section.
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The following theorem reveals the special structure of the equilibrium point
in the M/M/m model, that is essentially a consequence of the IHR property inher-
ent in the M/M/m+G queue. This structure is employed to establish uniqueness.

Theorem 7. Consider the M/M/m queue with the rational abandonment model.
Then there exists a unique consistent equilibrium point, which is of the following
form: T, =0 for v, >0, and T, = oo for v, < 0,

where the constant @ is the unique solution of the equation 6 = Iy, with Iy =
mu — APz{z : v, < 6}.

Proof. Assume that the system is in consistent equilibrium. From Proposition
3 we know that the hazard rate function is monotone increasing. It then follows
from part (i) of Proposition 2, together with the monotonicity in v, of the optimal
decisions established in Proposition 5, that any equilibrium point must be of the
stated form.

Uniqueness now follows using a basic monotonicity argument with respect to the
equilibrium parameter #. FEssentially, increasing # means that more customers
remain in the queue, hence the queue becomes more congested; but then less
customers will find it optimal to stay, leading to a unique balance point.

More formally, assume that customers are following the decision rule above with
some threshold 6. This leads to a patience distribution G' which satisfies G(t) =
G(0) = Pz{z : v, < 0} for t > 0. Substitution in equation (4) yields

F'(t) = Amp_1e 1ot

where Iy = [myu — AG(0)]. Consequently, by integration F(t) = I, 'F'(t), and
H(t) = F'/F = Iy; that is, the hazard rate is constant. Proposition 2 (DHR
case) implies then that the optimal abandonment times are T, = 0 if y, > Iy,
T, = oo if 7, < Iy, and neutral if Iy —y, = 0 (in which case we choose T, = o0
by convention). For the initially assumed and the latter optimal decision rules
to coincide it is required that @ = Iy. It remains to verify existence of a unique
solution to that equation. By its definition, I, is decreasing and continuous in
z (where the latter follows by our standing assumption that Pz has a density).
Thus z — I, is continuous, and strictly increasing from a negative value (at z = 0)

to +00, so that z = I, indeed has a unique solution. O

We remark that if Py was allowed to contain point masses, then a simi-
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lar result could be retained by allowing a probabilistic splitting of customers of
identical type (as in [9,10]).

Observe that under the established equilibrium profile, a fraction G(0) =
Pz{z : vy, <0} of arriving customers have infinite patience and will never aban-
don the queue, while the remaining customers will abandon immediately if not
admitted to service upon arrival. The distribution of non-zero waiting times in
this queue (that is the distribution of V' conditioned on V' > 0, which equals
F'(-)/F(0)) coincides with that of a standard M/M/m queue with arrival rate
AG(0). However, the chance of finding a free server upon arrival will be smaller
in the present case due to the effect of the impatient customers.

We have thus established the uniqueness of the consistent equilibrium in the
M/M/m queue, and obtained an explicit form for the equilibrium abandonment
decisions. The notable property of this equilibrium is that abandonments should
occur only immediately upon arrival; as noted, this is a consequence of the THR
property which is inherent in the M/M/m+G queue. Obviously, this structural
constraint presents a serious limitation of this model.

We now turn to the M/M/m(q) model. As has already been shown, the
introduction of the fault state introduces a decreasing tail in the hazard rate
function, and consequently abandonments after a finite wait in the queue become
feasible as a rational choice.

As soon as finite abandonment times are introduced, the fixed-point problem
becomes multi-dimensional, and a simple monotonicity argument as used in the
last proof cannot be applied to establish uniqueness of the equilibrium point.
To be specific, consider the case of only two customer types, z = 1 and z = 2,
and assume an equilibrium point with abandonment times 77 and T5. It is quite
reasonable that another equilibrium point with uniformly larger times (7] > T}
and T4 > T5) cannot exist, since then the system becomes more congested and a
rational choice should be to abandon earlier rather than later. However, if 77 and
T are modified in opposite directions (say, 7] > T} but T4 < T5), it is not clear
what would be the overall effect on the system, and whether these new values
might constitute an additional equilibrium.

This difficulty will be tackled by first establishing detailed structural prop-
erties that must hold in any equilibrium point. For this purpose we exploit the
special structure of the virtual waiting time distribution in the M/M/m(q)+G
queue, as inherited from the M/M/m+G queue. In the process we develop some
formulas and relations which will enable explicit computation of the equilibrium
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profile.

The next theorem summarizes our main findings concerning the structure
and computation of the equilibrium in the M/M/m(q) model. The following
quantities will be required. For 0 < v < oo, let

L, =mp—NPz{z:v, <~}

and define v° as the unique solution to I, —y = 0. Further define, for 0 <y <~°,

7) = exp( [ (1, =) dy).

L) = (55 + DI0),

where By, is specified in (18).

Theorem 8. Consider the M/M/m(q) model with rational abandonments.

(7) The consistent equilibrium exists and is unique.
(74) The equilibrium profile has one of the following two alternative forms:
a. If L(y°) > (1 — ¢)~!: Let 6 be the unique solution of L(f) = (1 —¢)~! on
(0,7°]. Then T, =0 for 7y, > 6, and
0y
z Iy - y

T, =7(v:) —7(0) 32/ dy for v, <80.
v

b. If L(v°) < (1 —q) ': T, =0 for v, > 7°, and

T, =T°+ "y
L=

dy for v, <~°,

Yz y
where T° > 0 is given by the solution to (23), namely
1 1—¢)7! 0
To:_log(( 9 ).
v° J(°)  NBm

(737) If the probability density of 7, is bounded in magnitude, then L(y°) = oo
and the equilibrium is necessarily in form (a).

(tv) The equilibrium hazard rate function H, is non-increasing. In fact, it is
strictly decreasing in case (a), while in case (b), Hy(t) = ~° for 0 < ¢ < T°,
and it is strictly decreasing thereafter.
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Figure 2. An illustration of the two possible equilibrium forms. The graph depicts the

equilibrium hazard rate function Hy(t) as a function of t. Since Hy(T,) = ., the inverse

function of H, displays the abandonment times T, as a function of v,. (The illustrated

equilibria corresponds to Exzample 1, with ¢ = 0.5 for case (a), ¢ = 0.85 for case (b), and
q = 0.755 in between.)

The proof of these results as well as some technical discussion are contained in
the next section.

The two possible forms of equilibrium are depicted in Figure 2. The exam-
ples below serve to further illustrate these results.

Given (iii) of the last theorem, it is evident that the equilibrium profile will
be in form (a) in most cases of interest. In fact, the question may be raised
whether form (b) of the equilibrium is obtainable at all. The following example
gives the positive answer.

Example 1: Let \; = 2, m = 1, p = 2, and Pz(2) = Pz{7 : 2/ < 2z} =
1 —+1—2-0.5zfor 0 <z <1, and arbitrary for z > 1. Note that Pz(0) = 0,
Pz(1) = 0.5, and the associated density fz equals (2/1 —z)~! — 0.5 on [0, 1],
hence is unbounded near 1. To determine the equilibrium form according to
Proposition 15 we evaluate J(z°). Here I, — 2z = 2y/1 —z on 0 < z < 1, with
stationary point z° = 1, and J(2°) = exp(fozo(2m)*1dz) = exp(l) = e.
Since 2°/\; By, = 0.5, the equilibrium will be in form (a) if 1.5 > (1—¢)7! (i.e.,
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q < 1—(1.5e)~! =~ 0.755), but in form (b) otherwise. Figure 2 shows the different
equilibrium profiles obtained for several choices of gq.

Finally, we show how explicit solutions may be computed when the customer
type distribution is specified.

@) (b)

1 T 1
— =2 0=0.85
0.9F - - p=15 0.9 - - 0=09 |
— p=1 0=0.95
0.8F p=0.5 | 0.8F q=0.97 | 4
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Figure 3. Fquilibrium profiles for an M/M/m(q) system with uniformly distributed cus-
tomer types (Example 2). In part (a) ¢ = 0.9 while p is modified, and in part (b) p =1
while q is modified.

Example 2: Uniform type distribution. To illustrate the computational results,

we consider the case of a uniform distribution Pz, namely v, is distributed uni-
formly on [0, 1]. Then

I, =mp — AgPz{z : v, <y} = mp — Agmin{y,1} fory>0.
Assume for simplicity that % < 1 (the computations otherwise are similar but
somewhat more cumbersome). Then the solution v° to v — I, = 0 is simply

— _mp
"YO = m NeXt,

v 1 1 0%
J(y) = exp / dy) = exp log
) s mp — (Ag + 1)y ) (/\q+1 S M L
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It may be seen that J(y°) = oo, hence L(y°) = oo, which implies that the
equilibrium profile must be in form (a), as implied by Theorem 8(iii). The
equilibrium parameter 6 is the solution to L(0) := (AqLBm +1)JO) =(1—-q) 1,
which needs to be evaluated numerically. Finally, T, = 7(v,) — 7(0) for v, < 0,
with

SR R T U
y(mp — (Ag + 1)y) mp g

Some numerical results for this example are presented in Figure 3 for a system

with parameters m = 1, A = 1. Part (a) of this figure presents the equilibrium
points obtained with ¢ fixed at 0.9, for several values of the service rate p. It
may be seen that as p increases, the fraction of customers who will not abandon
immediately (given by 6, in light of the uniform type distribution on [0, 1]) also
increases, approximately in linear proportion to u. However, the abandonment
times of those customers who choose to stay tend to become shorter. Part (b)
depicts the equilibria obtained for the same system, with u fixed at 1, and several
values of the service reliability parameter q. As ¢ increases, the abandonment
times of waiting customers become larger. However, the fraction of customers

who abandon immediately remains almost constant.

5. Proof of Theorem 8

In this section we provide the proofs for the main results in the previous
section concerning the M/M/m(q) model, as summarized in Theorem 8. The
analysis proceeds through several lemmas. We first identify in Lemma 9 the
general structure of the equilibrium profile, which is a consequence of the IDHR
property inherent in the M/M/m(q)+G queue: the abandonment times are zero
above some type threshold, and then are positive and increasing as the type
decreases below this threshold. The key Lemma 11 considers the positive part
of the abandonment profile, and derives an explicit function of the customer
types which specifies positive abandonment times to within a constant shift. The
transition from zero to positive abandonment times is addressed in Lemmas 10
and 12, which establish that this transition is either done continuously or at
a specific value of the type parameter. These results provide us with a set of
candidate equilibrium profiles, specified in Proposition 13, which are essentially
parameterized by a one-dimensional parameter and strictly dominate each other.
Uniqueness will then be established by using the normalization condition (5).
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For the purpose of the forthcoming analysis, it will be convenient to use a
canonical parameterization of the customer types, namely

zZ ="z,

which identifies the customer type with the cost-benefit ratio parameter. Accord-
ing to our assumptions on 7,, z is then distributed on (0,00) according to the
distribution Pz which admits a density. Except for replacing v, with z, other
notations are not affected. This canonical parameterization will be maintained
up to Theorem 8, where we summarize our main results.

We start by pointing to some basic relations that will be used repeatedly in
the following. Given a decision profile {77}, the virtual waiting time distribution
F in the active (M/M/m) part of the M/M/m(q) system is given by (4), with
I(t) = mu — X\,G(t), and

G(t) = Pz{z: T, > t}.
Assume next that {7} is a consistent equilibrium profile. Then we can deduce
the important observation that G(T}) is a fixed quantity for each z. Indeed,
monotonicity of T, in z (Proposition 5 with z = +,) implies that

G(T,) = Pz{? : Ty > T,} = Pz{7 : 2/ < 2z} := Py(2).

Obviously the latter is a function of z alone and does not depend on the particular
equilibrium considered. We thus obtain

I(T,) =mp — X\gPz(2) :=1,, (8)

where I, again depends only on z.

We further recall that optimality of T, implies that H(T,) = 7, whenever
T, > 0; hence H(T,) = z under parameterization z = ,.

The first lemma concerns the structure of an equilibrium profile, and is a
consequence of the IDHR property of the M/M/m(q)+G queue.

Lemma 9. Let {T’} be an equilibrium profile, and H,, the corresponding hazard
rate function. Then

(1) {T.} is of the following form, for some constant 6 > 0:

a. T, =0 for z > 6.

b. T, > 0 for z < 0, and is then specified by the intersection of z with the
decreasing part of H,; in particular, H,(T,) = =.
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c. z = 0 is indifferent between 7" = 0 and 7" = lim,y 7, > 0. By convention
we define Ty as the larger value.

(i7) T, is a strictly decreasing and continuously differentiable function of z on
0 < z <0, and Hg(t) is strictly decreasing for ¢ > Tj.

Proof. (i) By Proposition 4, H, is in the IDHR class. The stated form of the
equilibrium point then follows from Proposition 2(iii) combined with the mono-
tonicity result in Proposition 5. The neutrality of z = 6 follows from continuity
of the cost function in z. Finally, it is easily argued that for z small enough (di-
minishing waiting cost) it will be preferable to stay in the queue for some positive
time rather then abandon immediately, so that 8 > 0.

(it) By Proposition 4, H, is strictly decreasing beyond its maximum point.
But T} is already on the decreasing part, so that H,(T,) = z implies that T, is
strictly decreasing (and continuous) in z for z < 6.
To establish differentiability, note the F’ is continuous by its expression in (4),
hence so is H, = F'/(F + g). Also, for t > Ty,

G(t) = Pz{z: T, >t} = Pz{z : Hy(T,) < Hy(t)} = Pz{z: 2z < Hy(t)},
and since Pz has a density (i.e., is absolutely continuous) by assumption it follows
that G is continuous. Revisiting (4), where I = mu—X,G, it follows that F’, hence
H,, is continuously differentiable, and H,(T,) = z with H, strictly decreasing
implies the same for T,. O

Note that the definition of T, in Lemma 9 extends to every z > 0, even if z
is not in the support of Pz. This will conveniently enable to consider derivatives
with respect to z on the entire positive real line.

The next lemma establishes a basic cutoff value in the type (or cost-benefit
ratio) parameter, beyond which customers will necessarily choose to abandon the
queue immediately if not admitted to service upon arrival.

Lemma 10. Let I, = mu — A\yPz(z), as defined in (8). Then for every z > 0,
z—1, > 0 implies T, = 0. Equivalently, T, = 0 for z > z°, where 2 is the unique
solution of z — I, = 0.

Proof. Assume T, > 0. We proceed to show that z—1I, < 0, thereby verifying the
first assertion. Differentiating H,, as in the proof of Proposition 4, shows that H, ,’1
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is sign-equivalent to [H, — I]; hence H,(T}) is sign-equivalent to [H,(T,) — I(T%)],
while I(T,) = I by (8).

From Lemma 9, H; < 0 at t = T, > 0, so that Hy(T,) — I, < 0. However
the optimality condition for T, > 0 is Hy(T,) = z, so that z — I, < 0 follows, as
we set out to show. Finally, the existence of a unique solution to the equation
z — I, = 0 was established in the proof of Theorem 7. O

Next, we provide an explicit characterization of the equilibrium profile T,
for positive abandonment times, which specifies these times to within a constant
shift. This is done, essentially, by moving backwards on the waiting-time axis,
from large to small 7', and simultaneously constructing the equilibrium profile
and the virtual waiting time distribution F'.

Lemma 11. (i) There exists a function 7(z), independent of the equilibrium
point considered, so that every equilibrium profile satisfies, for some constant

C:
T,=17(2) + C whenever T, > 0.

(i) When T, > 0, both F'(T,) and F(T,) depend only on z but not on the par-
ticular equilibrium point. We denote these values as F! and F,, respectively.

Proof. (i) Let {T,} be an equilibrium profile, of the form specified in Lemma
9. Consider z < 0, where T, > 0 by definition of # and the optimality condition
H,(T,) = z holds. Recalling that H, = F'/(F + g), this optimality condition

may be written as
2 YFNT,) - F(T,) =g.
Differentiating with respect to z gives

T
F’(Tz)d =0,

dT, N
dz

—2 =1 o
—z “F (T, F'(T,)—=

where all derivatives are well defined (cf. Lemma 9(i7)).
From (4) we know that F"(T,) = —I(T,)F'(T,), where I(T,) = I, as
specified in (8). Substituting in the last equation and cancelling F' > 0 gives

(—2z ', + l)ddj;z =22 or

dT, 27!
dz  IL,—=z' )
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Since the right-hand side does not depend on the equilibrium point considered,

this establishes part (i) of the lemma, with

z =1
T(z):/ Iyy_ydy. (10)

We note that I, — z > 0 must hold for z < 6, since %& < 0 there by Lemma
9. See also a comment below Lemma 12 concerning the positivity of I, — z.
(#7) Starting again with the optimality condition
F(T,)
FT.)+g

multiplying both sides by — ddj;z we obtain

d dr,
— log(F (T, = -
7, 108(F(T2) +9) = —z—

Together with the initial conditions lim, o F/(T,) = F(co) = 0, this equation

=, —2)""

uniquely defines F(T,) as a function of z, namely

— z —
F(T.) = —g+gexpl | (1, —v)"dy) = F-. (1)
F'(T,) can now be determined by differentiation, or more simply via the opti-

mality condition:
FI(TZ) :Z(F(Tz)+g) = Fz{ (12)
O

Remark: An alternative proof to Lemma 11 could start with the basic differen-
tial relation (7) for the hazard rate H,(t). Together with the equalities I(T,) = I,
and z = Hy(T,) it implies that H, is a solution of the following autonomous
first-order differential equation: Hy = Hy(H, — Ip,), where Iy, ) is simply I,
evaluated at z = H,(t). Then (9) can be deduced from H,(T,) = z, namely that
T, is the inverse function of H,(t).

Let us briefly consider the options for the structure of the equilibrium profile,
in view of our results so far. Referring to Lemma 9, we can distinguish two cases
which give rise to different equilibrium structure: either Ty = 0, or Ty > 0. In
the former case the equilibrium is completely determined by the single parameter
0, since the equilibrium profile for positive abandonment times (z < 6, T, > 0)
is determined by Lemma 11. In the latter case, however, there seem to be two
independent parameters # and Ty, where the latter represents a jump in the
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equilibrium profile from Ty, = 0 to a positive value Ty > 0. We now examine the
second case more closely, and show that such a jump can occur only at a specific
value of . Furthermore, an interesting property of the hazard rate function is
established for this case.

Lemma 12. Refer to the equilibrium structure as established in Lemma 9, and
the cutoff value z° defined in Lemma 10. Suppose Ty > 0. Then 6 = 2°, and
Hy(t) = 2° for 0 <t < Tj.

Proof. From Lemma 9(c), Ty > 0 implies that
Uy(Ty) — Up(0) = 0. (13)
Recall that by (3),
Uy(t) is sign-equivalent to [H,(t) — 6]. (14)

Also, recall from the proof of Lemma 10 that H,(t) is sign-equivalent to [Hg(t) —
I(t)]. Now, on 0 <t < Ty, since there are no abandonments between 0 and Ty we
have G(t) := Pz{z : T, >t} = G(Ty), hence I(t) := mu — X\,G(t) = Iy, so that

H,(t) is sign-equivalent to [H(t) — Ip] on 0 <t < Tj. (15)

It follows from this sign equivalence that [H, — Iy] (and H;) must keep the same
sign on [0,Tp] — in fact it must be either strictly positive, or strictly negative, or
zero on that entire interval.

We are now ready to show that 0 = 2°. From Lemma 10 and the definition
of 6 it is obvious that 6 < 2z°, so that it is enough to show that 6 < z° is not
possible. But if 6 < 2°, then 6 < Iy follows by the definition of z° and the strict
monotonicity of (z — I,). Invoking the optimality condition at Ty gives

Hq(Tg) =0<lIy.

But then by (15), H,(Tp) < 0, and the sign preservation property established
above implies that H; < 0 on [0,7py]. Together with H,(Tp) = 6 this means that
Hy(t) —6 >0 on [0,7Ty), and by (14) this implies that Uy(¢) > 0 on that interval.
But this contradicts (13). It follows that § < z° cannot hold, hence § = 2° is
established.

Consider next the hazard rate function given that @ = z°. By definition of
z° we then have Iy = 0. Now, if H,(t) — 6 # 0 at ¢t = 0, it follows by the above
sign preservation property that is must keep the same sign on [0,7p], hence so
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does Uy. But this again contradicts (13), which establishes that H,(0) — 6 = 0,
and by the sign preservation property this must hold on the entire interval [0, Tp],
as asserted. O

A few comments are due regarding the last result. In the case of Tp > 0
(hence 6 = 2°), the utility function U,.(T") is constant (at its maximal value) for
0 <t < Tp; see (14). It follows that any choice of T in the interval [0,Tp] is
optimal for type z° customers in this case.

The fact that H, is constant on 0 < ¢ < Tj is of particular interest, since
it will allow to conclude that the hazard rate function in equilibrium is always
non-increasing.

The last proof also shows that the threshold 0 satisfies Iy — 6 > 0 (with
equality if @ = 2°, and strict inequality if 8 < z°). If follows by monotonicity that
I, — z > 0 for z < 0, which is consistent with the observation that the function
7(z) in (10) is strictly decreasing for z < 6.

We summarize our findings regarding the structure of an equilibrium point
in the following proposition. The two possible forms of equilibrium are illustrated
in Figure 2.

Proposition 13. Consider the M/M/m(q) model with rational abandonments.
In any equilibrium point,

(i) The equilibrium profile has one of the following two alternative forms, with

2% as defined in Lemma 10:

a. For some 6 < 2°, we have T, = 0 on z > #, and

0 ,—1
T, =71(z) —7(0) := / J dy forz<46. (16)
z Iy -y
b. For some constant T, > 0, T, = 0 for z > 2° (hence 6 = 2°), and
2° y*l
T, =T, -I—/ dy for z < 2°. (17)
z Iy -y

(it) The associated hazard rate function H, is non-increasing. In fact, in case
(b), Hy(t) = 2z° for 0 <t < To.

Proof. The stated form of the equilibrium follows from Lemma 9, combined with
Lemmas 10 and 11, where the the function 7 is specified in (10). The fact that
the hazard rate function is non-increasing follows from Lemma 9(ii) (for ¢ > Tj)
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and Lemma 12 (for 0 < ¢t < Tj), where the latter also established that H, = 2°
on the indicated interval. O

Given these structural characteristics of the equilibrium, we have essentially
obtained a one-dimensional parameterization of all possible equilibrium points.
It should be noted that these candidate equilibrium profiles are completely domi-
nated by each other; that is, the profile {T’,} is (weakly) increasing as 6 increases
from 0 to 2°, and then as T,o increases from 0 to infinity.

Uniqueness of the equilibrium may now be established by applying an ap-

propriate normalization condition.

Theorem 14. For the M/M/m(q) model with rational abandonments, a consis-
tent equilibrium exists and is unique.

Proof. Recall that F' is the virtual waiting time distribution in the active
(M/M/m) part of the M/M/m(q) system, and must satisfy the normalization
condition (5). Observe that ;-n:_ol mj = B'my,_1, where the constant By, is

given by

(18)

(Note that this coincides with the Erlang-B formula.) Also, (4) implies that
F'(0) = A\¢mm—1, so that (5) may be written as
1
A¢Bm,

F'(0) + /Ooo Fl(t)dt =1. (19)

We will show that only one of the candidate equilibrium points suggested by the
previous theorem satisfies this condition.

As already noted, the set of candidate equilibrium profiles may be consid-
ered a function of a single parameter, which first increases (as #) from 0 to 22,
and then increases (as T0) from 0 to infinity. Refer to this parameter as the
equilibrium parameter. Using relations implied by the optimality conditions, we
shall associate with each candidate equilibrium profile a virtual waiting time den-
sity F'(t), and show that the latter is an increasing function of the equilibrium
parameter (at every t), so that only one candidate F' can satisfy the normaliza-
tion condition above. Existence can be established by noting that F' is actually

continuously increasing in the equilibrium parameter, so that the normalization
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condition is satisfied by one of the candidate equilibria, which is therefore an
equilibrium point. Here we shall take a more direct approach, and derive explicit
expressions for the normalization condition on F’ which will turn out monotonic
and continuous, and which will also be useful for computational purposes.

To start, observe that any F'(t) associated with an equilibrium profile must
be strictly decreasing in t. Indeed, F"(t) = —I(t)F'(t) and

I(t) > I(0) =1y > [,o = 2° > 0;

here the first relation is by definition of I, the second by definition of 8 as the
cutoff value, the third since § < z° by Lemma 10, and the last two by definition
of 2°.

Consider first a candidate equilibrium in form (a), parameterized by 0 <
0 < 2°. Observe, from (16), that for a given 0, T, decreases continuously from
oo to 0 as z increases from 0 to 6. Furthermore, T, is strictly increasing in 6
at any z for which 7, > 0. Also recall, from Lemma 11(i7), that F'(T,) = FJ,
independent of the specific equilibrium, whenever 7, > 0. But since F'(t) is
strictly decreasing in t, as observed above, it is now easily shown that F'(¢) is
strictly increasing in 6 at every t. Indeed, refer to two candidate equilibria with
corresponding parameters 6 < 6. Denote by T, and F the quantities related to
6. Then for any t > 0 there exists z so that T, = ¢, and consequently

F'(t) = FI(T,) = F, = F'(T,) < F'(T.) = F'(1),
where the inequality follows from T, < T,.

Let us write explicitly the normalization condition for a candidate equilib-
rium in form (a). Note that (19) may be written as —— F'(0) + F(0) = 1. Using

k X¢Bm
the expressions (11) and (12) for F' and F' at time Ty = 0, we obtain
g
0J(0 - J(0)) =1
where
0
7(0) := exp( / (I — 2)"'dz). (20)
0
Collecting terms and noting that g = (1 — ¢)/q gives
1
0+1)J(0)=(1-q)". 21
(g 0+ DI0) = (1-a) (1)

Observe that the left hand side of this equality condition is continuously and
strictly increasing in 0 € [0, z°], from 1 to a positive value.
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Consider next a candidate equilibrium in form (b), parameterized by T,o >
0. Treat F'(t) separately on 0 < ¢t < T,o and t > T,o. On the latter interval it
may be shown that F’(t) is increasing in T,o, using the same argument as in form
(a). On the former interval, since we have there I(t) = I,o = z° (see above (15),
and the definition of 2z°), it follows by (4) that F'(t) = F'(0) exp(—z°t) there, so
that

F'(t) = F'(Tyo) exp(2°(Tyo — t)) for 0 <t < Tho. (22)

But since z° and F'(T,0) = F), are (positive) constants, it obviously follows that
F'(t) is strictly increasing in T, on this interval as well.

We proceed to express explicitly the normalization condition for a candidate
equilibrium in form (b). Here we start with (19) written as

1 T,o _
F'(0) + F'(t)dt + F(Ty,) = 1.
A¢Bm 0

Using the expressions (11) and (12) for F(T,0) and F'(T}0), together with (22),
we obtain after integration and rearranging terms,
o
(A B
q=m

where J(z°) is defined in (20). Again, the left hand side of this condition is a

continuously increasing function of T,o, from a positive value (which coincides

+e ) I(2°) = (1—q) 7", (23)

with the left hand side of (21) for @ = 2°) up to infinity as T, increases from 0
to infinity.

It follows that the normalization condition in (21) and (23) will be satisfied
for a unique equilibrium parameter. Thus, one and only one candidate equilib-
rium is consistent with the normalization condition (19), and is therefore the
unique equilibrium point of the system considered. O

We shall now use the expressions obtained in the last proof in order to
compute the equilibrium parameter, which specifies the actual equilibrium point
in the set of candidate equilibria.

Proposition 15. Let z° be defined as in Lemma 10, J(z) as in (20), and the

candidate equilibrium profiles defined in Proposition 13. If ( Aqle 2°+1)J(2%) >

(1—q) !, then the equilibrium point is of the form (a), with @ given by the solution

to (21). Otherwise, the equilibrium point is in form (b), with T,. obtained
explicitly from (23).
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Proof. The specified condition for selecting between the equilibrium forms is
just the normalization condition (21) for # = 2°, which coincides with (23) for
T,o = 0. The rest is a consequence of the previous proof. O

The next result shows that the equilibrium will be in form (a) in most cases
of practical interest. Recall however that in Example 1 above it was shown that

form (b) may arise under certain conditions.

Proposition 16. Assume that the density fz = % of z is bounded in mag-

nitude. Then the equilibrium profile is in form (a), as defined in Proposition
13.

Proof. We show that J(z°) = oo, which implies that the equilibrium is in form
(a) by Proposition 15. From (20), J(2°) = exp(f] (I, — 2)~'dz). Recall that
1,0 — 2° =0, and by strict monotonicity, I, — z > 0 for z < z°. Furthermore, for

z < 2°,
I —z= (I, —2) — (I;o — 2°) = \gPz{z' : 2 <2/ < 2°} + (2° — 2).
Let B < oo be an upper bound on fz(z); then
I, —2 < X\B(2° —2)+ (2° —2) = (\B+1)(2° — 2),

so that

ZO

J(2%) = exp((A\B + 1)—1/0 (2° — 2)"dz) = 0.

O

Theorem 8 is now a compendium of Theorem 14 and Propositions 13, 15 and 16.
Note that this theorem is stated in terms of the general parameterization of the
type variable, so that the canonical parameterization v, = z which was assumed
for convenience at the beginning of this section is not imposed; the formulas
for the general case are obtained simply by substituting v in place of z at the

appropriate places.

6. Modeling Choices and Options

Let us now briefly discuss some of the features of the models that have been
considered in this paper, and point out some alternative and additional elements
which may be of interest, and should be considered as part of future work.
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The starting point for our study was the M/M/m queue with rational aban-
donments, a utility function based on a linear waiting cost, and a consistent
equilibrium solution. As we have seen, for this model abandonments occur either
upon arrival or none at all, which is obviously contradictory to our common expe-
rience and, perhaps, common wisdom. Within the rational abandonment model,

several elements may cause this mismatch:

e Linearity of the waiting cost.
e The queueing model.

e The consistency assumption.

Costs: The assumption of a linear waiting cost is amenable to analysis, but
may be lacking an important component. The waiting cost may be reasonably
divided into two components: an alternative waiting cost and a psychological cost.
The first reflects the actual value of time, and may be viewed as the amount a
customer is willing to pay beforehand for someone else to wait in her place. This
component may be argued to be approximately linear. The additional psycholog-
ical component refers to the subjective feeling of impatience that develops while
waiting, and can be argued to be strictly convex. One can check that strictly
convex costs will induce abandonments in finite time. The equilibrium analysis,
however, may be considerably more difficult and less explicit than in the linear
case, and is not available at present.

The second and third points are centered around the shape of the hazard
rate function associated with the virtual waiting time. Even for nonlinear wait-
ing costs, and in fact under any abandonment profile, the hazard rate in any
M/M/m queue is increasing. As already pointed out, this seems to be at odds
with the subjective interpretation of the waiting time distribution. Indeed, ex-
cessive waits will often be interpreted by waiting customers as an indication that
the system performs below its standard performance, thus leading to a decrease
in the subjective hazard rate as perceived by the customer.

The queueing model: In this paper we have approached this discrepancy by
assuming that the system actually deviates from the basic M/M/m model. This
has been done in the simplest possible way that captures the desired effect of
a decreasing hazard rate — namely the inclusion of a fault state which is hit by
arriving customers with certain probability. More involved models of resource
deficiency and congestion may be of interest here, such as variable number of

servers, varying arrival rates, priorities, and variable number of servers. The
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latter is the closest one to the model of this paper, and can perhaps be analyzed
using similar methods. But either one of these factors tends to decrease the
hazard rate in time, as the relative (posterior) weight of possible unfavorable
circumstances increases while waiting. We finally note that heavy-tailed service
distributions (in an M/G/m queue model) could also lead to decreasing hazard
rate functions.

Consistency: An alternative approach for inducing a decreasing hazard rate
tail, is to attribute it to the subjective beliefs of customers, which need not coin-
cide with actual system performance. It may be argued that the virtual waiting
time distribution in a given system is never learned perfectly by the customers,
due to, say, limited experience, variation in time, prior belief, experience with
other systems, etc. This is especially relevant for the tail of the distribution,
since exceptionally long waiting times are rarely reached. We are thus lead to
the concept of a partially consistent equilibrium, which may be of independent
interest — where the subjective waiting time distribution is influenced by the ac-
tual one in some specified manner, but does not necessarily coincide with it. One
option may be to specify some parametric form for the subjective distributions,
and assume that this parameter is determined by some characteristics (e.g., the
mean) of the actual system performance.

We next point out some additional issues that have not been dealt with in
the present paper.

Retrials: These are obviously an important issue when abandonments are
concerned. Besides their effect on the arrival process, the option of retrial may
play a significant role in the abandonment decision. The incorporation of retrials
within the rational model is an important subject for future work.

Demand elasticity: An additional concern is the arrival rate, which was
assumed constant. In fact, we may expect the system performance (vis. the
virtual waiting time) to affect not only the abandonment decisions, but also the
decisions of some customers regarding whether to try to approach the system at
all. This may be accommodated within the current rational framework, simply
by appending some arrival cost to each customer type, and assuming that each
customer joins the system only if his utility for approaching the system (and
abandoning optimally) surpasses the arrival cost. This would lead the system to
stabilize on a new effective arrival rate, but should not affect the uniqueness and
structure of the equilibrium.

Real-time decisions: In our model formulation, abandonment times were
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considered as decision policies which are determined by customers upon arrival.
These policies may be easily re-interpreted as real time decisions, which may
seem more natural for the problem at hand. Specifically, while waiting a cus-
tomer continuously considers whether to abandon immediately, or wait further
and possibly abandon at some later time. Once the former becomes preferable, in
terms of residual utility, the customer leaves the queue. More formally, consider
a z-type customer who has been waiting for ¢ time units in the queue. Let F,(-|t)
denote this customer’s subjective distribution on his remaining virtual waiting
time V —¢. Possible decisions for this customer are to leave immediately (7' = 0)
or stay, in which case he can leave at any time 7" > 0 in the future. The (residual)
utility associated with a T-abandonment would be:

U.(T|t) == E,p(r,1{T > (V — )} — ¢, min{(V — £),T})

An optimal decision at time ¢ would then be to abandon immediately if T = 0
maximizes U,(T'|t), and stay otherwise.

As may be expected, this real-time decision pattern coincides with the initial
policy formulation, provided that customers are temporally consistent (cost pa-
rameters are not modified, and F,(-|t) is obtained from F,(-) via Bayes’ rule). The
real-time formulation may become useful in more complicated situations, where
partial on-line information is supplied to customers concerning their remaining
waiting time.

Asymptotic Analysis: Queueing Theory enjoys some universal laws which
are valid under very broad assumptions. An outstanding example is Kingman’s
discovery [14] that waiting-times in heavily-congested G/G/1 queues tend to an
exponential distribution. This fundamental law has been extended to cover the
G/G/m queue [13], and much more. It is of interest to identify analogous univer-
sal laws that pertain to customers’ patience. (Asymptotic analysis of queues with
abandonments has been carried out only under the very restrictive assumptions
of the M/M/m+M queue, namely exponentially distributed patience; see [7]).

Queueing Science: Our paper could be viewed as an initial theoretical step,
in an attempt to understand and model the patience (or impatience) of delayed
individuals, as reflected in common queueing situations. A natural next step is
a validation of the theory, either via laboratory experiments (as in [4]), or real-
world measurements (in the spirit of [17] and [3]). This validation is likely to
be followed by refinements or modifications of our theory, until a satisfactory
understanding of the phenomenon of abandonment is achieved.
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7. Conclusion

This paper suggests a rational decision framework for determining the aban-
donment times of waiting customers, assuming that these customers have no in-
formation regarding their standing in the queue. We focused here on the consis-
tent equilibrium solution, which supposes that customers’ expectations regarding
their waiting time in the queue coincide with actual system performance. The
utility function assumes a marginal waiting cost and service utility which are
constant in time, but may vary among customers.

Our main results concern the existence, uniqueness, structure and compu-
tation of the equilibrium in the M/M/m queue, and in the extended M/M/m(q)
system. In the former case it was shown that, due to an intrinsic increasing
hazard rate property, rational decisions are either to leave immediately if not
admitted to service upon arrival, or not to abandon at all. By introducing a
possible fault state into this basic system, a non-trivial abandonment profile has
been obtained in equilibrium.

In both cases, it turns out that the hazard rate function related to virtual
waiting time tends to become non-increasing in equilibrium: in the M/M/m case
it is (weakly) increasing in general but becomes flat in equilibrium, while in the
M/M/m(q) case it is increasing-decreasing in general but becomes decreasing
under the equilibrium abandonment profile. This points to a general tendency
which deserves further study.

We have pointed out several directions in which our basic models can and
should be generalized. Of immediate interest to us are the incorporation of convex
waiting costs, and the generalization of the fault state formulation to queues with
more general failure (or congestion) modes. At present it is not clear whether
a unique equilibrium exists in these models. The effect of intentionally supplied
status information to customers is of great importance in practice, and appropri-
ate methods for its incorporation and investigation within the rational model are
yet to be explored.

Naturally, the practical utility and further evolution of the models suggested
in this paper need to be evaluated in light of actual applications. A methodology
is required to estimate the basic model parameters (and especially the customer
parameters) from attainable measurements, and test the predictive capability of
this model under varying conditions. All in all, it is apparent that much remains
to be done in this area.
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