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We propose a model for abandonments from a queue, due to excessive wait, as-

suming that waiting customers act rationally but without being able to observe the

queue length. Customers are allowed to be heterogeneous in their preferences and

consequent behavior. Our goal is to characterize customers' patience via more basic

primitives, speci�cally waiting costs and service bene�ts: these two are optimally

balanced by waiting customers, based on their individual cost parameters and antic-

ipated waiting time. The waiting time distribution and patience pro�le then emerge

as an equilibrium point of the system. The problem formulation is motivated by

Teleservices, prevalently telephone- and Internet-based. In such services, customers

and servers are remote and queues are typically associated with the servers, hence

queues are invisible to waiting customers. Our base model is the M/M/m queue,

where it is shown that a unique equilibrium exists, in which rational abandonments

can occur only upon arrival (zero or in�nite patience for each customer). As such

a behavior fails to capture the essence of abandonments, the base model is modi-

�ed to account for unusual congestion or failure conditions. This indeed facilitates

abandonments in �nite time, leading to a non-trivial, customer dependent patience

pro�le. Our analysis shows, quite surprisingly, that the equilibrium is unique in this

case as well, and amenable to explicit calculation.

Keywords: Multiserver Exponential Queues, Abandonments, Nash Equilibrium,

Call Centers
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1. Introduction

The problem of customer abandonments from a queue, due to excessive

waiting times, is of considerable importance and concern in various applications.

Traditional queueing theory has dealt successfully with the analysis of queues

under the assumption of a given patience distribution; (patience is the time a

customer is willing to wait in queue). It is, however, also of obvious importance to

consider the factors which a�ect this distribution, such as individual preferences

and system performance. In this paper we take a decision-theoretic viewpoint

towards understanding the abandonment phenomena: the abandonment time for

each customer is based on an individual utility optimization, which balances per-

ceived waiting costs against the bene�ts of service, and from which the patience

distribution emerges as an equilibrium point.

1.1. Background and Motivation

On the application side, our study is motivated by the fast-expanding area of

Teleservices, which prominently include Telephone Call Centers and the emerging

Internet-based market. Our model assumptions, therefore, are geared towards

such systems where customers and service providers are remote from each other.

There is little need to elaborate here on the signi�cance of Internet-based services.

As for Call Centers, these currently constitute a multi-billion dollar industry

which is rapidly expanding. (Some estimate the 1998 yearly revenues of the U.S.

market alone at about $5 billion, growing at a rate of over 27% annually.)

Customers of call centers increasingly demand quick and eÆcient service,

otherwise abandonments of waiting customers become prevalent and of major

concern. Indeed, AT&T studies [3] indicate that a 15 second wait to an operator

response caused 44% of the callers to abandon the call; for a 30 second wait

that �gure increased to 69%. The Help Desk Institute, in its annual report [11],

speci�es that about 43% of call centers have a target for the abandon-rate, and

about 40% of the call centers experience call abandon-rates over 10%. It should

be observed that in toll-free services such as 1-800, holding times of customers

(including ones that eventually abandon) are paid by service providers. With the

explosive growth of toll-free services, these costs have become a major economic

driver. Abandonments may also have a signi�cant e�ect on system's performance

[7], leading to an improved service level for the remaining customers. With these

observations, it is clear that the phenomena of abandonments must play a central
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role in any de�nition of teleservice quality and call-center eÆciency, hence it

should be well understood and quanti�ed.

1.2. Assumptions and Results

As we wait in queue for service, our willingness to wait further may well

be in
uenced by our assessments concerning the remaining time to service. This

e�ect is explicitly captured in our model, through a cost function that weights an-

ticipated waiting costs against service utility. A basic ingredient of this model is

customers' expectations regarding their waiting times, which each customer sum-

marizes as a distribution function. We shall employ here a consistency assumption

(Section 2.3), namely that these expectations, formed for example through expe-

rience, coincide with the actual waiting time distribution in the queue. Since the

latter depends, in turn, on customer abandonment decisions, the system behav-

ior then emerges as a Nash equilibrium point, namely a �xed point of the map

induced by the individual decision model and consistency assumption.

Another factor that may have considerable in
uence on customer patience is

the on-line information available regarding the current system state or position in

queue; see, e.g. [12]. In the present paper we assume that such information is not

available to the customer, which is a realistic assumption in current call center

applications. Increasingly though, state information is purposely provided by call

centers, and the integration of such information into our model is an important

topic for further research.

Our decision model assumes service utilities that are time-invariant and

waiting costs that are linear in waiting times; these parameters may vary, how-

ever, across individual customers. As a base model, we consider the M/M/m

queue. We show (Theorem 7) that in this case the rational (individually opti-

mal) decision for each customer is either to abandon the queue immediately upon

arrival, or else to stay in the queue until served. Such a simple behavior is a con-

sequence of the property that the hazard rate function for the virtual waiting

time in the queue is increasing (IHR), for any M/M/m queue with general aban-

donments (M/M/m+G in the notation of [2]). While this leads to a complete

and relatively easy characterization of a unique equilibrium, it is obviously quite

unsatisfactory from a descriptive point of view, since �nite abandonment times

prevail in practice.

Several options are available to address this de�ciency, as elaborated in Sec-
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tion 6. Here we focus on the IHR issue. In reality, customers who are left waiting

for a long time are expected to start loosing con�dence and, if anything, will

assess their likelihood of obtaining service in the near future as declining or even

diminishing. To accommodate such a tendency, we consider an extended model

which includes a fault option. According to this model, denoted M/M/m(q), each

arriving customer joins the regular queue with probability q, but with probability

(1 � q) will be placed at a fault position where service will never be provided,

without being noti�ed of this situation. The modi�ed model can be considered

both as addressing individual faults, where indeed individual customers are oc-

casionally `forgotten' by the system; or system-scale faults, where occasionally

the system is malfunctioning and all arriving customers are subject to slow ser-

vice. This model also provides a proxy for other causes of congestion which are

not captured by the standard M/M/m queue, such as varying number of servers,

time-dependent arrival rates, service priorities, etc.

It turns out (Proposition 4) that the M/M/m(q) system has an eventually-

decreasing (and, in fact, unimodal) hazard rate function, which makes �nite

abandonment times feasible as rational choices (Proposition 2). Naturally, this

additional option both enriches the space of potential equilibria and complicates

the analysis. Still, by exploiting the very special structure of the M/M/m+G

queue and some explicit expressions for its performance (Section 3.2), it will be

established that the M/M/m(q) model gives rise to a unique equilibrium point.

Formulas which allow to compute the equilibrium distribution of the abandon-

ment times are also obtained (Theorem 8).

Regarding the latter uniqueness result, it should be mentioned that Nash

equilibrium solutions are typically non-unique in an essential way, and multiple

unconnected equilibria may exist in general. In view of the heterogeneity in user

behavior, range of possible decisions and the complexity of a stochastic model,

it is hardly apparent that the equilibrium should be unique in the present case.

Some general methods have been suggested in the literature to establish unique-

ness of the Nash equilibrium in non-zero sum games, exploiting such properties

as convexity [18] and contraction [15]; however, none of these has been found

applicable to our problem. As it stands now, the uniqueness result rests on spe-

ci�c and explicit analysis, which in turn relies on the special structure of the

M/M/m+G queue.
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1.3. Related Research

Concerning previous literature, most related to the present study is the

work by Hassin and Haviv [9]. This paper considers a similar rational model

in an M/M/1 queue, but assuming that all customers have an identical cost

function. It is further assumed that the service utility vanishes once service is

not completed within a �xed time beyond arrival, that abandonments are possible

during service as well, and that customers may decide to reneg (not join the queue

at all). A unique equilibrium is shown to exist in which each customer joins the

queue with a �xed probability, and then stays until his service time expires.

While di�erences in details exist, this result is also a consequence of the IHR

property of the relevant queue and is closely related to the �ndings regarding

our base M/M/m model. A recent paper of Haviv and Ritov [10] considers again

the homogeneous customers case, but under a convex waiting cost, and shows

under certain conditions the existence of a unique equilibrium which induces a

continuous distribution of abandonment times.

A di�erent temporal equilibrium problem is treated in [20] and [6], where

motorists optimize their arrival time at a congested bottleneck road, and a de-

terministic 
uid traÆc model is used. Additional work on individual equilibrium

in queues includes [16], [5], [8], [19] and [1].

It is both highly relevant and of historical interest to mention the classi-

cal work by Palm [17], who develops methods for estimating the inconvenience

experienced by customers due to delayed telephone connection. Palm proposed

a simple parametric model for the inconvenience, as a function of experienced

waiting time, and proceeded to estimate its parameters by linking inconvenience

to the abandonment rate and measuring the latter. The link is provided by an

M/M/m+G model, after postulating that the hazard rate of customers' patience

is directly proportional to the marginal inconvenience (irritation in terms of [17]).

It is interesting to note that the empirical data used in [17] were collected in cer-

tain exchanges at the Stockholm area, where \relatively often, ... through errors

in dialing, ... (subscribers) would not receive any ringing tone, so that they

were presented with a delay time of unlimited duration." An M/M/m(q) system

indeed!
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1.4. Contents

Our paper is structured as follows. The next section presents the model

description, including the individual decision model and the de�nition of equilib-

rium. Section 3 develops some preliminary results concerning rational decisions.

In particular, we explore the relation that exists between these decisions and the

monotonicity properties of the service hazard rate function, we recall the waiting

time distribution for the M/M/m queue with general patience distribution G,

and establish the monotonicity properties of the hazard rate function in this and

the M/M/m(q) model. Section 4 contains the main results regarding the unique-

ness and structure of the equilibrium, while the proofs of the relevant results for

the M/M/m(q) model are deferred to Section 5. Finally, Sections 6 and 7 of-

fer some concluding remarks, with a discussion of modeling choices and possible

extensions.

2. Model Formulation

This section presents the rational equilibrium model that is the subject of

this paper. We start by brie
y introducing the queueing system, followed by

a de�nition of the individual decision model and the utility function employed

by each customer. We then consider the system as a whole and discuss the

equilibrium concept that results by reconciling customer expectations with actual

system performance.

2.1. The Basic Queue

Our base model is the M/M/m queue, with Poisson arrivals at rate �, i.i.d.

exponentially distributed service times with expected duration 1=�, andm servers

that cater to customers in order of arrival (FCFS). The queue capacity (bu�er

size) is assumed in�nite. We shall also consider an extension of this model,

where each arriving customer enters the main queue with probability q, but has

a probability (1�q) of being placed in a fault position and never obtaining service.
This model will be denoted by M/M/m(q), with 0 < q < 1, and will be further

elaborated on in section 3:2. We assume throughout that the queue is in steady

state.

During their waiting period in the queue, customers may decide to abandon

the queue and give up the o�ered service. Abandonments do not occur after ser-
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vice commences. Abandonment times are chosen individually by each customer,

based on a decision model which we now specify.

2.2. Individual Utility and Rational Decisions

After joining the system, a customer may abandon the queue at any time

T � 0 before admitted to service. It is assumed that no information is con-

veyed to customers during this period regarding the status of the queue or their

standing in it. Thus, an abandonment policy for each customer is simply the

time T she is willing to wait in the queue before abandoning it. (See Section 6

for some comments on the equivalent sequential, or \real-time", formulation of

abandonment choices.)

Observe that a decision to abandon at T = 0 is di�erent than not joining

the system at all, since in the former case the customer enjoys the opportunity

of obtaining service immediately upon arrival. Such a decision corresponds to

the widely observed phenomenon of customers who abandon immediately upon

recognizing a delay.

We now de�ne an individual utility function for the customers over their set

of choices. We consider a heterogeneous customer population, and customers will

be categorized into di�erent types according to their decision model parameters.

Let z 2 Z denote the type, with Z the set of possible types.

A customer of type z will be characterized by the following elements:

(i) rz, the service utility, assumed to be positive.

(ii) cz, the marginal cost of waiting, or simply the cost coeÆcient, also assumed

positive. The waiting cost (or disutility) is assumed linear in the waiting time,

and given by czw, where w is the time until the customer abandons or is

admitted to service.

(iii) Fz(�), a probability distribution function which re
ects the customer's belief

about her virtual waiting time V , namely the time from her arrival until

she enters service, provided that she does not abandon the queue. Denote
�Fz = 1� Fz.

Observe that Fz as used here is a subjective quantity, which is required in order

to de�ne the customer's expected utility. (We shall later impose the consistency

condition that the subjective distributions Fz all coincide with the distribution

function of the true virtual waiting time.)
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De�ne the cost-bene�t ratio 
z := cz=rz. This parameter will play a central

role in our analysis.

Consider a customer that decides to abandon the queue after T � 0 time

units if not admitted to service by then. The actual waiting time will be W =

minfV; Tg, where abandonment occurs if T < V , and otherwise the customer

enters service. The expected utility for such a customer will be

Uz(T ) =Ez(rz1fT � V g � cz minfV; Tg)
=
Z T

0�
[rz � czv]dFz(v)� czT �Fz(T ) ; (1)

where Ez stands for the expectation with respect to the subjective probability

Fz. Note that Fz conceivably includes a point mass at T = 0, representing the

probability of �nding a free server immediately upon arrival, and the integral

is taken to include this point; thus, Uz(0) = rzFz(0). Observe also that we do

not explicitly account for the expected time-in-service in this utility function;

however this may be easily incorporated in the service utility rz.

An optimal decision for a type-z customer is a time Tz � 0 that maximizes

the expected utility Uz. For concreteness, in case that the utility function attains

it maximum in more than one point we shall choose the later time. (Any other

choice may be made without a�ecting the results; indeed, in equilibrium it will

turn out that non-unique optimal choices may occur only for one speci�c customer

type, which has a zero measure according to the regularity assumption imposed

below.) This de�nition �xes Tz as a deterministic quantity for each customer of

a given type z.

As already observed, with our utility function it is assumed implicitly that

waiting customers do not obtain information regarding the current state of the

queue or their standing in it. This justi�es the convenient viewpoint that aban-

donment times are chosen once upon arrival to the queue.

To complete the system description, we require an additional quantity:

(iv) PZ , a probability distribution over the set of customer types Z. The type

z of each customer is randomly chosen according to PZ , independently across

customers. We shall assume for simplicity that the cost-bene�t ratio 
z, con-

sidered as a random variable with distribution induced by PZ , has a density

on the (positive) real line.

Some comments regarding the customer type and its associated distribution

PZ are in order here. As de�ned, the type variable z parameterizes the distribu-
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tion Fz, along with the cost coeÆcients rz and cz. However, under the consistent

equilibrium condition considered in the sequel all distributions Fz must coincide

with the actual one, so that customer types di�er only in the coeÆcients cz and

rz. Thus, PZ can then be interpreted as a probability distribution over these

coeÆcients. Moreover, it will be seen that the maximizer of the utility function

Uz depends only on the cost-bene�t ratio 
z = cz=rz, so that a customer type

may be identi�ed with this ratio. The assumption that 
z has a density under PZ
is not crucial, but quite conveniently alleviates the need to consider randomized

decisions, which would otherwise be essential for the existence of an equilibrium

(see [9]). Apart from that, the distribution of 
z is general.

Suppose now that we are given the type distribution PZ , as well as the

customer parameters cz , rz and Fz for each type z 2 Z. Assuming that customers

behave according to the decision model described above, and that the optimal

decisions Tz are well-de�ned, this induces a distribution on the abandonment

times of each customer, namely a patience distribution G, which is i.i.d. across

customers. The model is then completely speci�ed as an M/M/m+G queue, and

its performance can be analyzed using, e.g., the results of [2].

Our point of departure from M/M/m+G scenario concerns the assumption

that Fz is given a-priori, without regard to actual system performance. This will

be replaced by a consistency assumption, which we consider next.

2.3. Equilibrium

As noted, given a patience distribution G, one can compute the system

statistics and in particular the \true" (or objective) distribution of the virtual

waiting time, denoted F . Our basic assumption here is the consistency require-

ment, that the subjective distributions held by all customers coincide with the

true one, namely Fz = F for all z 2 Z. This leads to the following de�nition

of system equilibrium, which is just the Nash equilibrium under the consistency

assumption:

De�nition 1. The system is in a consistent equilibrium (or just equilibrium) if

the following hold:

(i) Individual rationality: Each customer of type z is using an individually op-

timal abandonment time Tz, as de�ned above; recall that this choice is based
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on a utility function which involves the subjective virtual waiting time distri-

bution Fz .

(ii) Consistency: The subjective and objective virtual waiting time distributions

coincide: Fz = F , for every customer type z.

We then refer to the set fTz ; z 2 Zg as an equilibrium (abandonment time) pro�le,

and to F as the equilibrium distribution.

The consistency requirement implies that customers have complete knowl-

edge regarding the statistics of the waiting time in the system. In practice, such

knowledge may grow out of previous visits to system.

It is evident that the de�nition of equilibrium is not explicit, but rather

speci�es F as a �xed point of an appropriate map, which may be summarized in

the following two steps:

� F ! G. Given F , the consistency assumption Fz � F together with other cus-

tomer utility and type characteristics (cz, rz and PZ) determine the patience

distribution G.

� G! F . Given the patience distribution G, the virtual waiting time distribu-

tion F is determined through the queue dynamics.

Note that this map is on a space of probability distribution functions, so that we

obtain a functional �xed point condition. Another option is to consider the �xed

point of the map between decision pro�les fTzg, as follows:
� fTzg ! F . fTzg together with PZ determine the patience distribution G,

which in turn de�nes the queue statistics and the virtual waiting time distri-

bution F .

� F ! fTzg. The consistency assumption Fz � F , together with the utility

parameters cz and rz, determine the optimal individual decisions fTzg.
Since the support of Z is in general of in�nite cardinality, decision pro�les belong

to an in�nite-dimensional function space, and again we obtain a functional �xed-

point condition. We shall �nd this formulation more convenient for analysis than

the previous one

The prominent questions regarding the equilibrium point include existence,

uniqueness, structural properties, and computation. These are all addressed in

the sequel.
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3. Preliminary Analysis

3.1. Individual Optimization and the Hazard Rate

In this subsection we examine some properties of the optimal abandonment

times, and in particular their relation with the hazard rate functionHz associated

with the virtual waiting time distribution Fz. We consider here a �xed customer

type z, with a given subjective distribution Fz . We will show that monotonicity

properties of the hazard rate function lead to interesting structural properties

of the optimal abandonment time, which will be instrumental in the equilibrium

analysis to follow.

Assume throughout that Fz(t) is continuously di�erentiable for t > 0 (that

is, it has a continuous density F 0
z, except possibly for a point mass at t = 0), and

that F 0
z has a right-limit at 0. This smoothness property is indeed enjoyed by

all distribution functions that arise in later sections. Di�erentiating the utility

function (1) with respect to T > 0 gives

U 0
z(T ) = [rz � czT ]F

0
z(T )� cz �Fz(T ) + czTF

0
z(T )

= rzF
0
z(T )� cz �Fz(T ) : (2)

Since rz > 0 by assumption, when �Fz(T ) > 0 this may be written in the following

way:

U 0
z(T ) = rz �Fz(T )[F

0
z(T )= �Fz(T )� 
z]

= rz �Fz(T )[Hz(T )� 
z] ; (3)

where 
z = cz=rz is the cost-bene�t ratio, and Hz is the hazard rate function

associated with the virtual waiting time distribution Fz, namely

Hz(t) := F 0
z(t)= �Fz(t) ; t > 0:

We shall also de�ne Hz(0) = Hz(0+). The �rst order condition for a local

optimum at T > 0, namely U 0
z(T ) = 0, can now be simply stated as

Hz(T ) = 
z :

Thus, an abandonment can take place only when the hazard rate crosses a speci�c

level, which is just the cost-bene�t ratio.

We proceed to characterize the form of the optimal solution under certain

monotonicity assumptions on the hazard rate function. We shall consider the

following cases:
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a. Increasing hazard rate (IHR): Hz is monotone increasing.

b. Decreasing hazard rate (DHR): Hz is monotone decreasing.

c. Increasing-decreasing hazard rate (IDHR): Hz is unimodal, initially increasing

and then decreasing.

In all cases we consider Hz(t) for t � 0. Note that monotonicity is not required

to be strict, so that the IDHR class includes the other two as special cases.

Consider the IHR case �rst. It is easily seen from (3) that in this case

Uz(T ) is either increasing, decreasing, or decreasing-increasing over [0;1), and

therefore will be globally maximized at one of the edges, namely T = 0 or 1.

The optimal decision is therefore one of the following:

1) T = 0: abandon immediately if not admitted to service upon arrival.

2) T =1: never abandon.

The implication is that it is never optimal to abandon after a �nite (non-zero)

amount of time.

The DHR case is considered next. Here Hz decreases from Hz(0) to Hz(1).

In one extreme case the graph of Hz may lie entirely below the level 
z, implying

U 0
z negative and an optimal decision at T = 0. In the other extreme, the graph

of Hz lies entirely above 
z, implying U 0
z positive and an optimal decision at

T =1. The interesting case is the intermediate one: when Hz intersects 
z, the

intersection point Tz is easily seen from (3) to correspond to a global maximum

of the utility, and hence is the optimal decision.

We �nally consider the IDHR case. Here 
z can intersect Hz at two points

at the most (see Figure 1), the �rst at the increasing part of Hz and the second at

its decreasing part. The �rst intersection corresponds to a local minimum, hence

is of no consequence. If the second intersection does not exist, then the situation

is similar to the IHR case, namely an optimal decision at T = 0 or T =1. If the

second intersection does exist, then similarly to the DHR case it corresponds to

a local maximum of Hz, which in fact is the unique local maximum over T > 0.

In this case the global maximum can be either at that intersection, or at T = 0.

We summarize these �ndings in the following proposition:

Proposition 2. Given Fz and 
z := cz=rz , let Tz be the optimal abandonment

time with respect to the utility function (1). Then

(i) In the IHR case, Tz = 0 or Tz =1.
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Figure 1. An increasing-decreasing hazard rate. The utility function Uz is maximized

either at T = 0, or at the intersection of 
z with the decreasing part of H.

(ii) In the DHR case, if 
z intersects Hz(T ) then Tz is that intersection point.

Otherwise, either 
z is above Hz(�) (i.e. Hz(T ) < 
z for every T ) and Tz = 0,

or 
z is below Hz(�) and Tz =1.

(iii) In the IDHR case, if 
z intersects the decreasing part of Hz(T ) then either

Tz is that intersection point or Tz = 0. Otherwise, Tz = 0 or 1, with Tz = 0

if 
z is above Hz(�) and Tz =1 if 
z is below Hz(�).

Discussion: Let us brie
y discuss the three possible monotonicity assumptions

that were considered above. As we shall see in the next section, the actual hazard

rate in M=M=m+G queues is increasing for any patience distribution G, which

motivates the IHR case. However, from the subjective point of view of a waiting

customer this assumption does not seem to be realistic, since it implies that

customers who wait for a long time become more and more optimistic about the

opportunity of obtaining service in the near future, while in a typical scenario

we expect that customers eventually become pessimistic about obtaining service

speedily. The DHR case, on the other hand, excludes those cases where the

virtual waiting time is characterized by some typical value, and the hazard rate

will be increasing at least initially up to this value. The IDHR form is the

simplest one that accommodates both these tendencies. Moreover, while there

is no special reason to maintain a-priori that the actual hazard rate in a system

will be unimodal, from the subjective point of view customers are hardly likely to
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adopt a more complicated form for their estimate of the hazard rate. Thus, the

IDHR case presents a very reasonable balance between simplicity and the ability

to capture the essential ingredients of the problem. We are thus led to consider

models where this form of the hazard rate arises naturally.

3.2. The M/M/m(q)+G Queue

We now consider some characteristics of the queueing models that are

treated in this paper, which are valid for any distribution G of the customer

patience. Of special interest are the distribution function F of the virtual wait-

ing time, and the associated hazard rate function H = F 0= �F . We start by

recalling some explicit expressions for F in the M/M/m+G queue, which play a

central role in our analysis. We then observe that the hazard rate function H is

increasing (IHR case) in this model. We shall then consider the M/M/m(q)+G

queue, where with probability (1 � q) customers are subjected to a fault state

with in�nite waiting time. In this case the hazard rate function turns out to be

increasing-decreasing (IDHR).

Consider �rst the M/M/m+G queue, with patience distribution G. Each

customer is characterized by a patience T which is stochastically chosen according

to G, independently of other arrival and service primitives. A customer aban-

dons the system if not admitted to service within T time units of arrival. The

distribution G may be defective, i.e. G(1) < 1, so that some customers may

have in�nite patience. The stability condition �[1�G(1)] < m� is assumed to

hold [2]. Denote �G = 1�G, and let

I(t) = m�� � �G(t) :

Let F denote the distribution function of the virtual waiting time V in steady

state. Then, from [2] we have

F 0(t) = ��m�1 exp(�
Z t

0
I(s)ds); t � 0; (4)

where �m�1 is the stationary probability of having exactlym� 1 servers occupied.

This probability is determined through the normalization condition

m�1X
j=0

�j +
Z 1

0
F 0(t)dt = 1; (5)

and �j =
1
j!(

�
� )

j�0 for j = 0; : : : ;m� 1.
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We note that F 0 is well de�ned and �F (t) 6= 0, as was assumed in section

3.1. Moreover, the second derivative F 00 also exists for all t > 0 (except possibly

at jump points of G, where we may simply de�ne F 00 = �I � F 0). Note also that

F (0�) = 0, F (0) =
Pm�1

j=0 �j (an atom at t = 0), and F (1) = 1.

It is well known that for an exponential queue without abandonments, the

virtual waiting time V , given that V > 0, is exponentially distributed, hence gives

rise to a constant failure rate. When abandonments are present, the following

property holds.

Proposition 3. The virtual waiting time distribution F in an M/M/m+G queue

is IHR. Furthermore, the hazard rate H(t) is strictly increasing up to the �rst

point t (possibly in�nite) where G(t) = G(1), and is constant thereafter.

Proof. Di�erentiating H = F 0= �F and using F 00 = �I � F 0 gives

H 0(t) =
F 00 �F + (F 0)2

( �F )2
(t)

=
F 0(t)
�F (t)2

[�I(t)
Z 1

t
F 0(s)ds+ F 0(t)] :

Let K(t) > 0 denote the positive term that precedes the square brackets. Since

I is increasing, F 0 > 0, and F 00 = �I � F 0, we obtain

H 0(t) � K(t)[�
Z 1

t
I(s)F 0(s)ds+ F 0(t)] = K(t)[

Z 1

t
F 00(s)ds+ F 0(t)] = 0 ;

where F 0(1) = 0 was used for the last equality. It may also be seen that the

above inequality is strict unless I (equivalently G) is constant beyond t, which

establishes the claim.

We note that the IHR property may also be established by showing that F 00=F 0 is

decreasing, and the latter equals �I(t) which is decreasing since �G is decreasing.

However the direct calculation used is more instructive.

Consider next the M/M/m(q)+G model. This model modi�es the standard

M/M/m+G queue, by assuming that an arriving customer has a probability

(1 � q) of being positioned in a fault state, where he is neglected and never

admitted to service. It is important to note that the customer does not know

whether he is in a fault state or not.

It is evident that the active part of this queue, of customers that are not in

the fault state, is just a standard M/M/m+G queue with a modi�ed arrival rate
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�q = q�. Let F denote the virtual waiting time distribution in that queue, given

by the expressions above with � replaced by �q. Let Fq denote the corresponding

quantity in the complete system. (Note that F does depend on q through �q,

however this dependence is suppressed for notational convenience.)

An arriving customer joins with probability q the main queue, where her

virtual waiting time V is distributed according to F ; and with probability (1�q)

is placed in a fault position, where V =1 by de�nition. It follows that

Fq(t) := P (V � t) = qF (t) ; t � 0;

which is the basic relation for this model. Note also that �Fq := 1�Fq = 1�qF =

q �F + (1� q) ; and the corresponding hazard rate function can be expressed as

Hq =
F 0
q

�Fq
=

qF 0

1� qF
=

F 0

�F + g
; t > 0; (6)

where g = (1 � q)=q. It is not hard to verify that for 0 < q < 1 the hazard rate

functionHq will be eventually decreasing, in contrast to the standard case of q = 1

as discussed above. Indeed, observe that for large t, �Fq in the denominator of Hq

converges to (1� q), while the numerator decays exponentially as exp(�I(1)t),

where I(1) =m�� �q �G(1) > 0.

It is also easily seen that for q close enough to 1 (so that g is small enough),

Hq will inherit the increasing property from H := F 0= �F near t = 0, i.e., it

will be initially increasing. Therefore, the simplest class to which Hq might

generally belong in terms of its monotonicity properties is the IDHR class, de�ned

in Section 3.1 { provided that Hq is unimodal. This is veri�ed in the following:

Proposition 4. The virtual waiting time in the M/M/m(q)+G model, with q <

1, has the IDHR property; that is, the hazard rate function Hq is unimodal and

eventually decreasing. Moreover, it is strictly decreasing with a strictly negative

�rst derivative beyond its maximal point.

Proof. For unimodality it suÆces to verify that H 0
q can have at most one sign

change, from positive to negative. Di�erentiating Hq and noting that F 00 = �IF 0

by (4) gives

H 0
q =

F 00( �F + g) + (F 0)2

( �F + g)2
= Hq(Hq � I) ; (7)

Noting that F 0 > 0, hence Hq > 0, it follows that H 0
q is sign-equivalent to Hq�I.

But since I is a non-decreasing function of t by its de�nition, it immediately
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follows that onceH 0
q becomes (strictly) negative it will stay that way. This veri�es

that Hq is unimodal and, moreover, strictly decreasing beyond it maximum.

Remark: In the de�nition of the M=M=m(q) system we have assumed that the

fault state is an individual state to which each customer is subjected indepen-

dently of the others. Another important interpretation may be given in terms

of a system fault. Assume that the whole system is in a fault state a fraction

(1 � q) of the time, during which all arriving customers are subjected to the

individual fault state as de�ned before. Then, provided transients between the

operating and fault states of the system can be neglected, as arriving customer

will enter a standard M/M/m queue with probability q, and the fault state oth-

erwise; thus, from the customer point of view the situation is equivalent in the

two cases. Note also that the system fault interpretation is close in spirit to a

server vacation model.

3.3. Some Properties of a Consistent Equilibrium

The consistency assumption implies, in particular, that the subjective dis-

tributions Fz all coincide: Fz � F . We now develop some consequences of this

equality. These properties are not restricted to the M/M/m queue.

We �rst establish the reassuring property that the rational abandonment

times are decreasing in the cost-bene�t ratio.

Proposition 5. Let z and y be two customer types, with Fz = Fy := F and


z < 
y. Then the respective individually optimal abandonment times satisfy

Tz � Ty. Furthermore, the strict inequality Tz > Ty holds provided that: 0 <

Tz <1, F 0 is continuous at Tz, and �F (Tz) > 0.

Proof. We �rst observe that if �F (Tz) = 0, meaning that customers who wait

in the queue more than Tz will never obtain service, then waiting more than Tz
cannot be optimal for any customer; thus Tz � Ty in this case. Assume henceforth

that �F (Tz) > 0.

The optimal decisions are obviously una�ected if we normalize each utility

function Uz by 1=rz , that is replace Uz by Wz = r�1z Uz. From (2), the derivative

of this normalized utility is

W 0
z = F 0 � 
z �F :
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Since �F is non-negative, this derivative is decreasing in 
z, that is W 0
z � W 0

y

at every point t, with strict inequality if �F (t) > 0. This implies that Wz(t2) �
Wz(t1) �Wy(t2)�Wy(t1) for any pair of points t2 > t1 � 0, with strict inequality

if �F (t1) > 0. Now, if Tz < Ty, we can identify Tz with t1 and Ty with t2, and

obtain

Wz(Ty)�Wz(Tz) > Wy(Ty)�Wy(Tz) :

However, this contradicts the assumptions that Tz is z-optimal (hence Wz(Ty)�
Wz(Tz) � 0) and Ty is y-optimal (hence Wy(Ty) �Wy(Tz) � 0). It follows that

Tz < Ty is false, thus Tz � Ty.

To establish the strict inequality under the stated assumptions, note the the

continuity of F 0 at Tz implies continuity of the utility function derivative W 0
z at

that point, so that the �rst-order optimality condition W 0
z(Tz) = 0 must hold.

But as observed above, due to �F (Tz) > 0 the strict inequality W 0
y < W 0

z holds at

Tz, so that W 0
y(Tz) < 0, which implies that Tz is not optimal in Wy.

The following lemma establishes a useful continuity property of optimal

abandonment times, which is valid when the hazard rate function is IDHR.

Lemma 6. Suppose that Fz = F for all z 2 Z, and assume that the hazard

rate function H = F 0= �F is increasing-decreasing, and in fact strictly decreasing

beyond its maximum. Then the optimal abandonment times Tz are a continuous

function of 
z, for 
z 2 (0;1), except for one possible jump from Tz = 0 to a

positive value.

Proof. As established in Proposition 2, an optimal decision Tz in the increasing-

decreasing case is either 0 or at the intersection of 
z with the decreasing part of

H. The present assertion is an immediate consequence of that fact.

4. Existence, Uniqueness and Structure of the Equilibrium

We now turn to the questions of uniqueness, structure and computation of

the consistent equilibrium point. We �rst consider the relatively simple case of

the M/M/m queue, in Theorem 7, and then extend the results to the M/M/m(q)

model, for which the main results are summarized in Theorem 8. The detailed

derivations and proofs of the latter are deferred to the next section.
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The following theorem reveals the special structure of the equilibrium point

in the M/M/m model, that is essentially a consequence of the IHR property inher-

ent in the M/M/m+G queue. This structure is employed to establish uniqueness.

Theorem 7. Consider the M/M/m queue with the rational abandonment model.

Then there exists a unique consistent equilibrium point, which is of the following

form: Tz = 0 for 
z > �, and Tz =1 for 
z � �,

where the constant � is the unique solution of the equation � = I�, with I� =

m�� �PZfz : 
z < �g.

Proof. Assume that the system is in consistent equilibrium. From Proposition

3 we know that the hazard rate function is monotone increasing. It then follows

from part (i) of Proposition 2, together with the monotonicity in 
z of the optimal

decisions established in Proposition 5, that any equilibrium point must be of the

stated form.

Uniqueness now follows using a basic monotonicity argument with respect to the

equilibrium parameter �. Essentially, increasing � means that more customers

remain in the queue, hence the queue becomes more congested; but then less

customers will �nd it optimal to stay, leading to a unique balance point.

More formally, assume that customers are following the decision rule above with

some threshold �. This leads to a patience distribution G which satis�es �G(t) =
�G(0) = PZfz : 
z < �g for t � 0. Substitution in equation (4) yields

F 0(t) = ��m�1e
�I�t ;

where I� = [m� � � �G(0)]. Consequently, by integration �F (t) = I�1� F 0(t), and

H(t) = F 0= �F = I�; that is, the hazard rate is constant. Proposition 2 (DHR

case) implies then that the optimal abandonment times are Tz = 0 if 
z > I�,

Tz = 1 if 
z < I�, and neutral if I� � 
z = 0 (in which case we choose Tz = 1
by convention). For the initially assumed and the latter optimal decision rules

to coincide it is required that � = I�. It remains to verify existence of a unique

solution to that equation. By its de�nition, Iz is decreasing and continuous in

z (where the latter follows by our standing assumption that PZ has a density).

Thus z�Iz is continuous, and strictly increasing from a negative value (at z = 0)

to +1, so that z = Iz indeed has a unique solution.

We remark that if PZ was allowed to contain point masses, then a simi-
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lar result could be retained by allowing a probabilistic splitting of customers of

identical type (as in [9,10]).

Observe that under the established equilibrium pro�le, a fraction �G(0) =

PZfz : 
z < �g of arriving customers have in�nite patience and will never aban-

don the queue, while the remaining customers will abandon immediately if not

admitted to service upon arrival. The distribution of non-zero waiting times in

this queue (that is the distribution of V conditioned on V > 0, which equals

F 0(�)= �F (0)) coincides with that of a standard M=M=m queue with arrival rate

� �G(0). However, the chance of �nding a free server upon arrival will be smaller

in the present case due to the e�ect of the impatient customers.

We have thus established the uniqueness of the consistent equilibrium in the

M/M/m queue, and obtained an explicit form for the equilibrium abandonment

decisions. The notable property of this equilibrium is that abandonments should

occur only immediately upon arrival; as noted, this is a consequence of the IHR

property which is inherent in the M/M/m+G queue. Obviously, this structural

constraint presents a serious limitation of this model.

We now turn to the M/M/m(q) model. As has already been shown, the

introduction of the fault state introduces a decreasing tail in the hazard rate

function, and consequently abandonments after a �nite wait in the queue become

feasible as a rational choice.

As soon as �nite abandonment times are introduced, the �xed-point problem

becomes multi-dimensional, and a simple monotonicity argument as used in the

last proof cannot be applied to establish uniqueness of the equilibrium point.

To be speci�c, consider the case of only two customer types, z = 1 and z = 2,

and assume an equilibrium point with abandonment times T1 and T2. It is quite

reasonable that another equilibrium point with uniformly larger times (T 01 > T1
and T 02 > T2) cannot exist, since then the system becomes more congested and a

rational choice should be to abandon earlier rather than later. However, if T1 and

T2 are modi�ed in opposite directions (say, T 01 > T1 but T 02 < T2), it is not clear

what would be the overall e�ect on the system, and whether these new values

might constitute an additional equilibrium.

This diÆculty will be tackled by �rst establishing detailed structural prop-

erties that must hold in any equilibrium point. For this purpose we exploit the

special structure of the virtual waiting time distribution in the M/M/m(q)+G

queue, as inherited from the M/M/m+G queue. In the process we develop some

formulas and relations which will enable explicit computation of the equilibrium
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pro�le.

The next theorem summarizes our main �ndings concerning the structure

and computation of the equilibrium in the M/M/m(q) model. The following

quantities will be required. For 0 < 
 <1, let

I
 = m�� �qPZfz : 
z < 
g

and de�ne 
o as the unique solution to I
�
 = 0. Further de�ne, for 0 < 
 � 
o,

J(
) = exp(
Z 


0
(Iy � y)�1dy) ;

L(
) = (



�qBm
+ 1)J(
) ;

where Bm is speci�ed in (18).

Theorem 8. Consider the M/M/m(q) model with rational abandonments.

(i) The consistent equilibrium exists and is unique.

(ii) The equilibrium pro�le has one of the following two alternative forms:

a. If L(
o) � (1 � q)�1: Let � be the unique solution of L(�) = (1 � q)�1 on

(0; 
o]. Then Tz = 0 for 
z > �, and

Tz = �(
z)� �(�) :=
Z �


z

y�1

Iy � y
dy for 
z � � :

b. If L(
o) < (1� q)�1: Tz = 0 for 
z > 
o, and

Tz = T o +
Z 
o


z

y�1

Iy � y
dy for 
z � 
o ;

where T o > 0 is given by the solution to (23), namely

T o =
1


o
log(

(1� q)�1

J(
o)
� 
o

�qBm
) :

(iii) If the probability density of 
z is bounded in magnitude, then L(
o) =1
and the equilibrium is necessarily in form (a).

(iv) The equilibrium hazard rate function Hq is non-increasing. In fact, it is

strictly decreasing in case (a), while in case (b), Hq(t) � 
o for 0 � t � T o,

and it is strictly decreasing thereafter.
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Figure 2. An illustration of the two possible equilibrium forms. The graph depicts the

equilibrium hazard rate function Hq(t) as a function of t. Since Hq(Tz) = 
z, the inverse

function of Hq displays the abandonment times Tz as a function of 
z. (The illustrated

equilibria corresponds to Example 1, with q = 0:5 for case (a), q = 0:85 for case (b), and

q = 0:755 in between.)

The proof of these results as well as some technical discussion are contained in

the next section.

The two possible forms of equilibrium are depicted in Figure 2. The exam-

ples below serve to further illustrate these results.

Given (iii) of the last theorem, it is evident that the equilibrium pro�le will

be in form (a) in most cases of interest. In fact, the question may be raised

whether form (b) of the equilibrium is obtainable at all. The following example

gives the positive answer.

Example 1: Let �q = 2, m = 1, � = 2, and PZ(z) := PZfz0 : z0 < zg =

1 �p1� z � 0:5z for 0 � z � 1, and arbitrary for z > 1. Note that PZ(0) = 0,

PZ(1) = 0:5, and the associated density fZ equals (2
p
1� z)�1 � 0:5 on [0; 1],

hence is unbounded near 1. To determine the equilibrium form according to

Proposition 15 we evaluate J(zo). Here Iz � z = 2
p
1� z on 0 � z � 1, with

stationary point zo = 1, and J(zo) = exp(
R zo
0 (2

p
1� z)�1dz) = exp(1) = e.

Since zo=�qBm = 0:5, the equilibrium will be in form (a) if 1:5e � (1� q)�1 (i.e.,
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q � 1�(1:5e)�1 � 0:755), but in form (b) otherwise. Figure 2 shows the di�erent

equilibrium pro�les obtained for several choices of q.

Finally, we show how explicit solutions may be computed when the customer

type distribution is speci�ed.
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Figure 3. Equilibrium pro�les for an M/M/m(q) system with uniformly distributed cus-

tomer types (Example 2). In part (a) q = 0:9 while � is modi�ed, and in part (b) � = 1

while q is modi�ed.

Example 2: Uniform type distribution. To illustrate the computational results,

we consider the case of a uniform distribution PZ , namely 
z is distributed uni-

formly on [0; 1]. Then

I
 = m�� �qPZfz : 
z < 
g = m�� �qminf
; 1g for 
 � 0 :

Assume for simplicity that m�
�q+1 � 1 (the computations otherwise are similar but

somewhat more cumbersome). Then the solution 
o to 
 � I
 = 0 is simply


o = m�
�q+1 . Next,

J(
) = exp(
Z 


0

1

m�� (�q + 1)y
dy) = exp(

1

�q + 1
log


o


o � 

) = (


o


o � 

)

1
�q+1 :
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It may be seen that J(
o) = 1, hence L(
o) = 1, which implies that the

equilibrium pro�le must be in form (a), as implied by Theorem 8(iii). The

equilibrium parameter � is the solution to L(�) := ( �
�qBm

+ 1)J(�) = (1 � q)�1,

which needs to be evaluated numerically. Finally, Tz = �(
z) � �(�) for 
z � �,

with

�(
) =
Z 
 �1

y(m�� (�q + 1)y)
dy =

1

m�
log

m�� (�q + 1)




:

Some numerical results for this example are presented in Figure 3 for a system

with parameters m = 1, � = 1. Part (a) of this �gure presents the equilibrium

points obtained with q �xed at 0:9, for several values of the service rate �. It

may be seen that as � increases, the fraction of customers who will not abandon

immediately (given by �, in light of the uniform type distribution on [0; 1]) also

increases, approximately in linear proportion to �. However, the abandonment

times of those customers who choose to stay tend to become shorter. Part (b)

depicts the equilibria obtained for the same system, with � �xed at 1, and several

values of the service reliability parameter q. As q increases, the abandonment

times of waiting customers become larger. However, the fraction of customers

who abandon immediately remains almost constant.

5. Proof of Theorem 8

In this section we provide the proofs for the main results in the previous

section concerning the M/M/m(q) model, as summarized in Theorem 8. The

analysis proceeds through several lemmas. We �rst identify in Lemma 9 the

general structure of the equilibrium pro�le, which is a consequence of the IDHR

property inherent in the M/M/m(q)+G queue: the abandonment times are zero

above some type threshold, and then are positive and increasing as the type

decreases below this threshold. The key Lemma 11 considers the positive part

of the abandonment pro�le, and derives an explicit function of the customer

types which speci�es positive abandonment times to within a constant shift. The

transition from zero to positive abandonment times is addressed in Lemmas 10

and 12, which establish that this transition is either done continuously or at

a speci�c value of the type parameter. These results provide us with a set of

candidate equilibrium pro�les, speci�ed in Proposition 13, which are essentially

parameterized by a one-dimensional parameter and strictly dominate each other.

Uniqueness will then be established by using the normalization condition (5).
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For the purpose of the forthcoming analysis, it will be convenient to use a

canonical parameterization of the customer types, namely

z � 
z ;

which identi�es the customer type with the cost-bene�t ratio parameter. Accord-

ing to our assumptions on 
z, z is then distributed on (0;1) according to the

distribution PZ which admits a density. Except for replacing 
z with z, other

notations are not a�ected. This canonical parameterization will be maintained

up to Theorem 8, where we summarize our main results.

We start by pointing to some basic relations that will be used repeatedly in

the following. Given a decision pro�le fTzg, the virtual waiting time distribution

F in the active (M/M/m) part of the M/M/m(q) system is given by (4), with

I(t) = m�� �q �G(t), and

�G(t) = PZfz : Tz > tg:
Assume next that fTzg is a consistent equilibrium pro�le. Then we can deduce

the important observation that �G(Tz) is a �xed quantity for each z. Indeed,

monotonicity of Tz in z (Proposition 5 with z � 
z) implies that

�G(Tz) = PZfz0 : Tz0 > Tzg = PZfz0 : z0 < zg := PZ(z) :

Obviously the latter is a function of z alone and does not depend on the particular

equilibrium considered. We thus obtain

I(Tz) = m�� �qPZ(z) := Iz ; (8)

where Iz again depends only on z.

We further recall that optimality of Tz implies that H(Tz) = 
z whenever

Tz > 0; hence H(Tz) = z under parameterization z = 
z.

The �rst lemma concerns the structure of an equilibrium pro�le, and is a

consequence of the IDHR property of the M/M/m(q)+G queue.

Lemma 9. Let fTzg be an equilibrium pro�le, and Hq the corresponding hazard

rate function. Then

(i) fTzg is of the following form, for some constant � > 0:

a. Tz = 0 for z > �.

b. Tz > 0 for z < �, and is then speci�ed by the intersection of z with the

decreasing part of Hq; in particular, Hq(Tz) = z.
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c. z = � is indi�erent between T = 0 and T = limz"� Tz � 0. By convention

we de�ne T� as the larger value.

(ii) Tz is a strictly decreasing and continuously di�erentiable function of z on

0 < z � �, and Hq(t) is strictly decreasing for t > T�.

Proof. (i) By Proposition 4, Hq is in the IDHR class. The stated form of the

equilibrium point then follows from Proposition 2(iii) combined with the mono-

tonicity result in Proposition 5. The neutrality of z = � follows from continuity

of the cost function in z. Finally, it is easily argued that for z small enough (di-

minishing waiting cost) it will be preferable to stay in the queue for some positive

time rather then abandon immediately, so that � > 0.

(ii) By Proposition 4, Hq is strictly decreasing beyond its maximum point.

But T� is already on the decreasing part, so that Hq(Tz) = z implies that Tz is

strictly decreasing (and continuous) in z for z < �.

To establish di�erentiability, note the F 0 is continuous by its expression in (4),

hence so is Hq = F 0=( �F + g). Also, for t > T�,

�G(t) = PZfz : Tz > tg = PZfz : Hq(Tz) < Hq(t)g = PZfz : z < Hq(t)g ;

and since PZ has a density (i.e., is absolutely continuous) by assumption it follows

that �G is continuous. Revisiting (4), where I = m���q �G, it follows that F 0, hence

Hq, is continuously di�erentiable, and Hq(Tz) = z with Hq strictly decreasing

implies the same for Tz.

Note that the de�nition of Tz in Lemma 9 extends to every z > 0, even if z

is not in the support of PZ . This will conveniently enable to consider derivatives

with respect to z on the entire positive real line.

The next lemma establishes a basic cuto� value in the type (or cost-bene�t

ratio) parameter, beyond which customers will necessarily choose to abandon the

queue immediately if not admitted to service upon arrival.

Lemma 10. Let Iz = m� � �qPZ(z), as de�ned in (8). Then for every z > 0,

z� Iz > 0 implies Tz = 0. Equivalently, Tz = 0 for z > zo, where zo is the unique

solution of z � Iz = 0.

Proof. Assume Tz > 0. We proceed to show that z�Iz � 0, thereby verifying the

�rst assertion. Di�erentiating Hq, as in the proof of Proposition 4, shows that H 0
q
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is sign-equivalent to [Hq�I]; hence H 0
q(Tz) is sign-equivalent to [Hq(Tz)�I(Tz)],

while I(Tz) = Iz by (8).

From Lemma 9, H 0
q � 0 at t = Tz > 0, so that Hq(Tz) � Iz � 0. However

the optimality condition for Tz > 0 is Hq(Tz) = z, so that z � Iz � 0 follows, as

we set out to show. Finally, the existence of a unique solution to the equation

z � Iz = 0 was established in the proof of Theorem 7.

Next, we provide an explicit characterization of the equilibrium pro�le Tz
for positive abandonment times, which speci�es these times to within a constant

shift. This is done, essentially, by moving backwards on the waiting-time axis,

from large to small T , and simultaneously constructing the equilibrium pro�le

and the virtual waiting time distribution F .

Lemma 11. (i) There exists a function �(z), independent of the equilibrium

point considered, so that every equilibrium pro�le satis�es, for some constant

C:

Tz = �(z) +C whenever Tz > 0 :

(ii) When Tz > 0, both F 0(Tz) and �F (Tz) depend only on z but not on the par-

ticular equilibrium point. We denote these values as F 0
z and �Fz , respectively.

Proof. (i) Let fTzg be an equilibrium pro�le, of the form speci�ed in Lemma

9. Consider z < �, where Tz > 0 by de�nition of � and the optimality condition

Hq(Tz) = z holds. Recalling that Hq = F 0=( �F + g), this optimality condition

may be written as

z�1F 0(Tz)� �F (Tz) = g :

Di�erentiating with respect to z gives

�z�2F 0(Tz) + z�1F 00(Tz)
dTz
dz

+ F 0(Tz)
dTz
dz

= 0 ;

where all derivatives are well de�ned (cf. Lemma 9(ii)).

From (4) we know that F 00(Tz) = �I(Tz)F 0(Tz), where I(Tz) = Iz as

speci�ed in (8). Substituting in the last equation and cancelling F 0 > 0 gives

(�z�1Iz + 1)dTzdz = z�2, or

dTz
dz

= � z�1

Iz � z
: (9)
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Since the right-hand side does not depend on the equilibrium point considered,

this establishes part (i) of the lemma, with

�(z) =
Z z �y�1

Iy � y
dy : (10)

We note that Iz� z > 0 must hold for z < �, since dTz
dz < 0 there by Lemma

9. See also a comment below Lemma 12 concerning the positivity of Iz � z.

(ii) Starting again with the optimality condition

F 0(Tz)
�F (Tz) + g

= z ;

multiplying both sides by �dTz
dz we obtain

d

dz
log( �F (Tz) + g) = �z dTz

dz
= (Iz � z)�1

Together with the initial conditions limz!0
�F (Tz) = �F (1) = 0, this equation

uniquely de�nes �F (Tz) as a function of z, namely

�F (Tz) = �g + g exp(
Z z

0
(Iy � y)�1dy) := �Fz : (11)

F 0(Tz) can now be determined by di�erentiation, or more simply via the opti-

mality condition:

F 0(Tz) = z( �F (Tz) + g) := F 0
z : (12)

Remark: An alternative proof to Lemma 11 could start with the basic di�eren-

tial relation (7) for the hazard rate Hq(t). Together with the equalities I(Tz) = Iz
and z = Hq(Tz) it implies that Hq is a solution of the following autonomous

�rst-order di�erential equation: H 0
q = Hq(Hq � IHq ), where IHq(t) is simply Iz

evaluated at z = Hq(t). Then (9) can be deduced from Hq(Tz) = z, namely that

Tz is the inverse function of Hq(t).

Let us brie
y consider the options for the structure of the equilibrium pro�le,

in view of our results so far. Referring to Lemma 9, we can distinguish two cases

which give rise to di�erent equilibrium structure: either T� = 0, or T� > 0. In

the former case the equilibrium is completely determined by the single parameter

�, since the equilibrium pro�le for positive abandonment times (z < �, Tz > 0)

is determined by Lemma 11. In the latter case, however, there seem to be two

independent parameters � and T�, where the latter represents a jump in the
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equilibrium pro�le from T�+ = 0 to a positive value T� > 0. We now examine the

second case more closely, and show that such a jump can occur only at a speci�c

value of �. Furthermore, an interesting property of the hazard rate function is

established for this case.

Lemma 12. Refer to the equilibrium structure as established in Lemma 9, and

the cuto� value zo de�ned in Lemma 10. Suppose T� > 0. Then � = zo, and

Hq(t) = zo for 0 � t � T�.

Proof. From Lemma 9(c), T� > 0 implies that

U�(T�)� U�(0) = 0 : (13)

Recall that by (3),

U 0
�(t) is sign-equivalent to [Hq(t)� �] : (14)

Also, recall from the proof of Lemma 10 that H 0
q(t) is sign-equivalent to [Hq(t)�

I(t)]. Now, on 0 � t � T�, since there are no abandonments between 0 and T� we

have �G(t) := PZfz : Tz > tg = �G(T�), hence I(t) := m�� �q �G(t) = I�, so that

H 0
q(t) is sign-equivalent to [Hq(t)� I�] on 0 � t � T� : (15)

It follows from this sign equivalence that [Hq � I�] (and H 0
q) must keep the same

sign on [0; T� ] { in fact it must be either strictly positive, or strictly negative, or

zero on that entire interval.

We are now ready to show that � = zo. From Lemma 10 and the de�nition

of � it is obvious that � � zo, so that it is enough to show that � < zo is not

possible. But if � < zo, then � < I� follows by the de�nition of zo and the strict

monotonicity of (z � Iz). Invoking the optimality condition at T� gives

Hq(T�) = � < I� :

But then by (15), H 0
q(T�) < 0, and the sign preservation property established

above implies that H 0
q < 0 on [0; T� ]. Together with Hq(T�) = � this means that

Hq(t)� � > 0 on [0; T�), and by (14) this implies that U 0
�(t) > 0 on that interval.

But this contradicts (13). It follows that � < zo cannot hold, hence � = zo is

established.

Consider next the hazard rate function given that � = zo. By de�nition of

zo we then have I� = �. Now, if Hq(t) � � 6= 0 at t = 0, it follows by the above

sign preservation property that is must keep the same sign on [0; T�], hence so
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does U 0
�. But this again contradicts (13), which establishes that Hq(0) � � = 0,

and by the sign preservation property this must hold on the entire interval [0; T�],

as asserted.

A few comments are due regarding the last result. In the case of T� > 0

(hence � = zo), the utility function Uzo(T ) is constant (at its maximal value) for

0 � t � T�; see (14). It follows that any choice of T in the interval [0; T�] is

optimal for type zo customers in this case.

The fact that Hq is constant on 0 � t � T� is of particular interest, since

it will allow to conclude that the hazard rate function in equilibrium is always

non-increasing.

The last proof also shows that the threshold � satis�es I� � � � 0 (with

equality if � = zo, and strict inequality if � < zo). If follows by monotonicity that

Iz � z > 0 for z < �, which is consistent with the observation that the function

�(z) in (10) is strictly decreasing for z < �.

We summarize our �ndings regarding the structure of an equilibrium point

in the following proposition. The two possible forms of equilibrium are illustrated

in Figure 2.

Proposition 13. Consider the M/M/m(q) model with rational abandonments.

In any equilibrium point,

(i) The equilibrium pro�le has one of the following two alternative forms, with

zo as de�ned in Lemma 10:

a. For some � � zo, we have Tz = 0 on z > �, and

Tz = �(z)� �(�) :=
Z �

z

y�1

Iy � y
dy for z � � : (16)

b. For some constant Tzo > 0, Tz = 0 for z > zo (hence � = zo), and

Tz = Tzo +
Z zo

z

y�1

Iy � y
dy for z � zo : (17)

(ii) The associated hazard rate function Hq is non-increasing. In fact, in case

(b), Hq(t) = zo for 0 � t � Tzo .

Proof. The stated form of the equilibrium follows from Lemma 9, combined with

Lemmas 10 and 11, where the the function � is speci�ed in (10). The fact that

the hazard rate function is non-increasing follows from Lemma 9(ii) (for t > T�)
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and Lemma 12 (for 0 � t � T�), where the latter also established that Hq = zo

on the indicated interval.

Given these structural characteristics of the equilibrium, we have essentially

obtained a one-dimensional parameterization of all possible equilibrium points.

It should be noted that these candidate equilibrium pro�les are completely domi-

nated by each other; that is, the pro�le fTzg is (weakly) increasing as � increases
from 0 to zo, and then as Tzo increases from 0 to in�nity.

Uniqueness of the equilibrium may now be established by applying an ap-

propriate normalization condition.

Theorem 14. For the M/M/m(q) model with rational abandonments, a consis-

tent equilibrium exists and is unique.

Proof. Recall that F 0 is the virtual waiting time distribution in the active

(M/M/m) part of the M/M/m(q) system, and must satisfy the normalization

condition (5). Observe that
Pm�1

j=0 �j = B�1
m �m�1, where the constant Bm is

given by

Bm =

1
(m�1)!

�
�q
�

�m�1
Pm�1

j=0
1
j!

�
�q
�

�j : (18)

(Note that this coincides with the Erlang-B formula.) Also, (4) implies that

F 0(0) = �q�m�1, so that (5) may be written as

1

�qBm
F 0(0) +

Z 1

0
F 0(t)dt = 1 : (19)

We will show that only one of the candidate equilibrium points suggested by the

previous theorem satis�es this condition.

As already noted, the set of candidate equilibrium pro�les may be consid-

ered a function of a single parameter, which �rst increases (as �) from 0 to zo,

and then increases (as Tzo) from 0 to in�nity. Refer to this parameter as the

equilibrium parameter. Using relations implied by the optimality conditions, we

shall associate with each candidate equilibrium pro�le a virtual waiting time den-

sity F 0(t), and show that the latter is an increasing function of the equilibrium

parameter (at every t), so that only one candidate F 0 can satisfy the normaliza-

tion condition above. Existence can be established by noting that F 0 is actually

continuously increasing in the equilibrium parameter, so that the normalization
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condition is satis�ed by one of the candidate equilibria, which is therefore an

equilibrium point. Here we shall take a more direct approach, and derive explicit

expressions for the normalization condition on F 0 which will turn out monotonic

and continuous, and which will also be useful for computational purposes.

To start, observe that any F 0(t) associated with an equilibrium pro�le must

be strictly decreasing in t. Indeed, F 00(t) = �I(t)F 0(t) and

I(t) � I(0) = I� � Izo = zo > 0 ;

here the �rst relation is by de�nition of I, the second by de�nition of � as the

cuto� value, the third since � � zo by Lemma 10, and the last two by de�nition

of zo.

Consider �rst a candidate equilibrium in form (a), parameterized by 0 <

� � zo. Observe, from (16), that for a given �, Tz decreases continuously from

1 to 0 as z increases from 0 to �. Furthermore, Tz is strictly increasing in �

at any z for which Tz > 0. Also recall, from Lemma 11(ii), that F 0(Tz) = F 0
z,

independent of the speci�c equilibrium, whenever Tz > 0. But since F 0(t) is

strictly decreasing in t, as observed above, it is now easily shown that F 0(t) is

strictly increasing in � at every t. Indeed, refer to two candidate equilibria with

corresponding parameters � < �̂. Denote by T̂z and F̂ the quantities related to

�̂. Then for any t > 0 there exists z so that Tz = t, and consequently

F 0(t) = F 0(Tz) = F 0
z = F̂ 0(T̂z) < F̂ 0(Tz) = F̂ 0(t) ;

where the inequality follows from Tz < T̂z.

Let us write explicitly the normalization condition for a candidate equilib-

rium in form (a). Note that (19) may be written as 1
�qBm

F 0(0)+ �F (0) = 1. Using

the expressions (11) and (12) for �F and F 0 at time T� = 0, we obtain

g

�qBm
� J(�) + (�g + g J(�)) = 1 ;

where

J(�) := exp(
Z �

0
(Iz � z)�1dz) : (20)

Collecting terms and noting that g = (1� q)=q gives

(
1

�qBm
� + 1)J(�) = (1� q)�1 : (21)

Observe that the left hand side of this equality condition is continuously and

strictly increasing in � 2 [0; zo], from 1 to a positive value.
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Consider next a candidate equilibrium in form (b), parameterized by Tzo �
0. Treat F 0(t) separately on 0 < t � Tzo and t > Tzo . On the latter interval it

may be shown that F 0(t) is increasing in Tzo , using the same argument as in form

(a). On the former interval, since we have there I(t) = Izo = zo (see above (15),

and the de�nition of zo), it follows by (4) that F 0(t) = F 0(0) exp(�zot) there, so
that

F 0(t) = F 0(Tzo) exp(z
o(Tzo � t)) for 0 � t � Tzo : (22)

But since zo and F 0(Tzo) = F 0
zo are (positive) constants, it obviously follows that

F 0(t) is strictly increasing in Tzo on this interval as well.

We proceed to express explicitly the normalization condition for a candidate

equilibrium in form (b). Here we start with (19) written as

1

�qBm
F 0(0) +

Z Tzo

0
F 0(t)dt+ �F (Tzo) = 1 :

Using the expressions (11) and (12) for �F (Tzo) and F 0(Tzo), together with (22),

we obtain after integration and rearranging terms,

(
zo

�qBm
+ ez

oTzo )J(zo) = (1� q)�1 ; (23)

where J(zo) is de�ned in (20). Again, the left hand side of this condition is a

continuously increasing function of Tzo, from a positive value (which coincides

with the left hand side of (21) for � = zo) up to in�nity as Tzo increases from 0

to in�nity.

It follows that the normalization condition in (21) and (23) will be satis�ed

for a unique equilibrium parameter. Thus, one and only one candidate equilib-

rium is consistent with the normalization condition (19), and is therefore the

unique equilibrium point of the system considered.

We shall now use the expressions obtained in the last proof in order to

compute the equilibrium parameter, which speci�es the actual equilibrium point

in the set of candidate equilibria.

Proposition 15. Let zo be de�ned as in Lemma 10, J(z) as in (20), and the

candidate equilibrium pro�les de�ned in Proposition 13. If ( 1
�qBm

zo + 1)J(zo) �
(1�q)�1 ; then the equilibriumpoint is of the form (a), with � given by the solution

to (21). Otherwise, the equilibrium point is in form (b), with Tzo obtained

explicitly from (23).
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Proof. The speci�ed condition for selecting between the equilibrium forms is

just the normalization condition (21) for � = zo, which coincides with (23) for

Tzo = 0. The rest is a consequence of the previous proof.

The next result shows that the equilibrium will be in form (a) in most cases

of practical interest. Recall however that in Example 1 above it was shown that

form (b) may arise under certain conditions.

Proposition 16. Assume that the density fZ = dPZ
dz of z is bounded in mag-

nitude. Then the equilibrium pro�le is in form (a), as de�ned in Proposition

13.

Proof. We show that J(zo) =1, which implies that the equilibrium is in form

(a) by Proposition 15. From (20), J(zo) = exp(
R zo
0 (Iz � z)�1dz) . Recall that

Izo � zo = 0, and by strict monotonicity, Iz � z > 0 for z < zo. Furthermore, for

z < zo,

Iz � z = (Iz � z)� (Izo � zo) = �qPZfz0 : z � z0 < zog+ (zo � z) :

Let B <1 be an upper bound on fZ(z); then

Iz � z � �qB(z
o � z) + (zo � z) = (�qB + 1)(zo � z) ;

so that

J(zo) � exp((�qB + 1)�1
Z zo

0
(zo � z)�1dz) =1 :

Theorem 8 is now a compendium of Theorem 14 and Propositions 13, 15 and 16.

Note that this theorem is stated in terms of the general parameterization of the

type variable, so that the canonical parameterization 
z = z which was assumed

for convenience at the beginning of this section is not imposed; the formulas

for the general case are obtained simply by substituting 
 in place of z at the

appropriate places.

6. Modeling Choices and Options

Let us now brie
y discuss some of the features of the models that have been

considered in this paper, and point out some alternative and additional elements

which may be of interest, and should be considered as part of future work.
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The starting point for our study was the M/M/m queue with rational aban-

donments, a utility function based on a linear waiting cost, and a consistent

equilibrium solution. As we have seen, for this model abandonments occur either

upon arrival or none at all, which is obviously contradictory to our common expe-

rience and, perhaps, common wisdom. Within the rational abandonment model,

several elements may cause this mismatch:

� Linearity of the waiting cost.

� The queueing model.

� The consistency assumption.

Costs: The assumption of a linear waiting cost is amenable to analysis, but

may be lacking an important component. The waiting cost may be reasonably

divided into two components: an alternative waiting cost and a psychological cost.

The �rst re
ects the actual value of time, and may be viewed as the amount a

customer is willing to pay beforehand for someone else to wait in her place. This

component may be argued to be approximately linear. The additional psycholog-

ical component refers to the subjective feeling of impatience that develops while

waiting, and can be argued to be strictly convex. One can check that strictly

convex costs will induce abandonments in �nite time. The equilibrium analysis,

however, may be considerably more diÆcult and less explicit than in the linear

case, and is not available at present.

The second and third points are centered around the shape of the hazard

rate function associated with the virtual waiting time. Even for nonlinear wait-

ing costs, and in fact under any abandonment pro�le, the hazard rate in any

M/M/m queue is increasing. As already pointed out, this seems to be at odds

with the subjective interpretation of the waiting time distribution. Indeed, ex-

cessive waits will often be interpreted by waiting customers as an indication that

the system performs below its standard performance, thus leading to a decrease

in the subjective hazard rate as perceived by the customer.

The queueing model: In this paper we have approached this discrepancy by

assuming that the system actually deviates from the basic M/M/m model. This

has been done in the simplest possible way that captures the desired e�ect of

a decreasing hazard rate { namely the inclusion of a fault state which is hit by

arriving customers with certain probability. More involved models of resource

de�ciency and congestion may be of interest here, such as variable number of

servers, varying arrival rates, priorities, and variable number of servers. The
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latter is the closest one to the model of this paper, and can perhaps be analyzed

using similar methods. But either one of these factors tends to decrease the

hazard rate in time, as the relative (posterior) weight of possible unfavorable

circumstances increases while waiting. We �nally note that heavy-tailed service

distributions (in an M/G/m queue model) could also lead to decreasing hazard

rate functions.

Consistency: An alternative approach for inducing a decreasing hazard rate

tail, is to attribute it to the subjective beliefs of customers, which need not coin-

cide with actual system performance. It may be argued that the virtual waiting

time distribution in a given system is never learned perfectly by the customers,

due to, say, limited experience, variation in time, prior belief, experience with

other systems, etc. This is especially relevant for the tail of the distribution,

since exceptionally long waiting times are rarely reached. We are thus lead to

the concept of a partially consistent equilibrium, which may be of independent

interest { where the subjective waiting time distribution is in
uenced by the ac-

tual one in some speci�ed manner, but does not necessarily coincide with it. One

option may be to specify some parametric form for the subjective distributions,

and assume that this parameter is determined by some characteristics (e.g., the

mean) of the actual system performance.

We next point out some additional issues that have not been dealt with in

the present paper.

Retrials: These are obviously an important issue when abandonments are

concerned. Besides their e�ect on the arrival process, the option of retrial may

play a signi�cant role in the abandonment decision. The incorporation of retrials

within the rational model is an important subject for future work.

Demand elasticity: An additional concern is the arrival rate, which was

assumed constant. In fact, we may expect the system performance (vis. the

virtual waiting time) to a�ect not only the abandonment decisions, but also the

decisions of some customers regarding whether to try to approach the system at

all. This may be accommodated within the current rational framework, simply

by appending some arrival cost to each customer type, and assuming that each

customer joins the system only if his utility for approaching the system (and

abandoning optimally) surpasses the arrival cost. This would lead the system to

stabilize on a new e�ective arrival rate, but should not a�ect the uniqueness and

structure of the equilibrium.

Real-time decisions: In our model formulation, abandonment times were
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considered as decision policies which are determined by customers upon arrival.

These policies may be easily re-interpreted as real time decisions, which may

seem more natural for the problem at hand. Speci�cally, while waiting a cus-

tomer continuously considers whether to abandon immediately, or wait further

and possibly abandon at some later time. Once the former becomes preferable, in

terms of residual utility, the customer leaves the queue. More formally, consider

a z-type customer who has been waiting for t time units in the queue. Let Fz(�jt)
denote this customer's subjective distribution on his remaining virtual waiting

time V � t. Possible decisions for this customer are to leave immediately (T = 0)

or stay, in which case he can leave at any time T > 0 in the future. The (residual)

utility associated with a T -abandonment would be:

Uz(T jt) ==Ezjt(rz1fT � (V � t)g � czminf(V � t); Tg)

An optimal decision at time t would then be to abandon immediately if T = 0

maximizes Uz(T jt), and stay otherwise.

As may be expected, this real-time decision pattern coincides with the initial

policy formulation, provided that customers are temporally consistent (cost pa-

rameters are not modi�ed, and Fz(�jt) is obtained from Fz(�) via Bayes' rule). The
real-time formulation may become useful in more complicated situations, where

partial on-line information is supplied to customers concerning their remaining

waiting time.

Asymptotic Analysis: Queueing Theory enjoys some universal laws which

are valid under very broad assumptions. An outstanding example is Kingman's

discovery [14] that waiting-times in heavily-congested G/G/1 queues tend to an

exponential distribution. This fundamental law has been extended to cover the

G/G/m queue [13], and much more. It is of interest to identify analogous univer-

sal laws that pertain to customers' patience. (Asymptotic analysis of queues with

abandonments has been carried out only under the very restrictive assumptions

of the M/M/m+M queue, namely exponentially distributed patience; see [7]).

Queueing Science: Our paper could be viewed as an initial theoretical step,

in an attempt to understand and model the patience (or impatience) of delayed

individuals, as re
ected in common queueing situations. A natural next step is

a validation of the theory, either via laboratory experiments (as in [4]), or real-

world measurements (in the spirit of [17] and [3]). This validation is likely to

be followed by re�nements or modi�cations of our theory, until a satisfactory

understanding of the phenomenon of abandonment is achieved.
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7. Conclusion

This paper suggests a rational decision framework for determining the aban-

donment times of waiting customers, assuming that these customers have no in-

formation regarding their standing in the queue. We focused here on the consis-

tent equilibrium solution, which supposes that customers' expectations regarding

their waiting time in the queue coincide with actual system performance. The

utility function assumes a marginal waiting cost and service utility which are

constant in time, but may vary among customers.

Our main results concern the existence, uniqueness, structure and compu-

tation of the equilibrium in the M/M/m queue, and in the extended M/M/m(q)

system. In the former case it was shown that, due to an intrinsic increasing

hazard rate property, rational decisions are either to leave immediately if not

admitted to service upon arrival, or not to abandon at all. By introducing a

possible fault state into this basic system, a non-trivial abandonment pro�le has

been obtained in equilibrium.

In both cases, it turns out that the hazard rate function related to virtual

waiting time tends to become non-increasing in equilibrium: in the M/M/m case

it is (weakly) increasing in general but becomes 
at in equilibrium, while in the

M/M/m(q) case it is increasing-decreasing in general but becomes decreasing

under the equilibrium abandonment pro�le. This points to a general tendency

which deserves further study.

We have pointed out several directions in which our basic models can and

should be generalized. Of immediate interest to us are the incorporation of convex

waiting costs, and the generalization of the fault state formulation to queues with

more general failure (or congestion) modes. At present it is not clear whether

a unique equilibrium exists in these models. The e�ect of intentionally supplied

status information to customers is of great importance in practice, and appropri-

ate methods for its incorporation and investigation within the rational model are

yet to be explored.

Naturally, the practical utility and further evolution of the models suggested

in this paper need to be evaluated in light of actual applications. A methodology

is required to estimate the basic model parameters (and especially the customer

parameters) from attainable measurements, and test the predictive capability of

this model under varying conditions. All in all, it is apparent that much remains

to be done in this area.
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