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Abstract In personalized queues, information at the level of individuals—customers
or servers—affects system dynamics. Such information is becoming increasingly
accessible, directly or statistically, as exemplified by personalized/precision medicine
(customers) or call center workforce management (servers). In the present work, we
take advantage of personalized information about customers, specifically knowledge
of their actual (im)patience while waiting to be served. This waiting takes place in
a many-server queue that alternates between over- and underloaded periods, hence
a fluid view provides a natural modeling framework. The parsimonious fluid view
enables us to parameterize and analyze partial information, and consequently calcu-
late and understand the benefits from personalized customer information. We do this by
comparing least-patience first (LPF) routing (personalized) against FCFS (relatively
info-ignorant). An example of a resulting insight is that LPF can provide significant
advantages over FCFS when the durations of overloaded periods are comparable to
(im)patience times.
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1 Introduction

A modeling paradigm for personalized queues In a personalized queueing system,
say M/M/n + M [17,47] for concreteness, interarrival times, service durations and
(im)patience are still all exponentially distributed, as usual, but their realizations for
individual customers and servers are assumed known, or partially known, prior to
decision making—for example prior to admitting customers into the system or prior
to matching them with servers. Personalized information is lacking from classical
protocols, for example FCFS or LCFES or random order, which are oblivious to when
exactly the next arrival will happen, or who is the least patient among the customers
waiting to be served, or who is the fastest server among those available to serve.

Why “paradigm”? Because essentially every queueing model can be “personalized,”
by making individual realizations of its primitives available to its decision proto-
cols, yet without altering the sub-models (distributions) of these primitives. While
there exists ample queueing research that fits this “personalized” scheme, for exam-
ple assigning high priority to a shortest processing time or to an earliest deadline, we
believe that acknowledging a common timely theme across this dispersed research is of
value—and hence worthy of the term “paradigm.” Furthermore, in existing schemes
full information is available, for example, individual service or patience times are
known exactly. Yet of great importance is also the practical case of partial information,
where knowledge about individual realizations is noisy (cf. triage process in emer-
gency departments, the goal of which is to reduce such noise). A central challenge in
our paradigm is thus the trade-off between information availability and performance.

We expect the paradigm of personalized queues to become increasingly practice-
relevant with the proliferation of personalized data. One example is [16], which
provides empirical support for a personalized server view—individual service dura-
tions. A second example is [18], which in fact motivated the present paper. It develops
inference tools that enable the personalization of customer impatience in telephone
queues. Making this personalized customer information available to discretionary con-
trol should yield a reduction in abandonment. Ultimately, one could combine the server
and customer views to form a more general manager view: here one takes into account
personalized information about both customers and servers.

On abandonment Customer abandonment is an effect that is prevalent in a variety
of service systems, from telephone call centers through internet sites to emergency
departments. It is typically desirable to reduce the abandonment rate, which often
serves as a proxy for service quality and value: through abandoning, a customer is
informing the service provider that the value of its service is unworthy of its wait. The
terms “abandonment” and “customer impatience” are context dependent. For example,
in call centers [40] or emergency departments [19], customer patience is the amount
of time that a customer is willing or able to wait for service; in terror queues [31],
abandonments correspond to terror attacks.

Nowhere is the significance of “abandonment” better encapsulated than in mass
casualty events (MCEs). During an MCE, customer “patience” is the longest time
period that a patient can survive without receiving medical care—an abandon-
ment is thus death [11]. Furthermore, MCEs are incidents where medical resources
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(personnel, equipment) are overwhelmed by the number and severity of casualties [44],
for example, it is not uncommon that the arrival rate to a hospital emergency depart-
ment (ED) triples or quadruples during such events. MCE workloads thus impose an
extreme strain on hospital resources (under normal circumstances hospitals already
operate close to their capacity—hence very long waiting times are ED routine). Con-
sequently, hospitals often maintain emergency plans that facilitate treatment of a large
number of casualties (note that despite such plans, medical personnel can experience
ethical dilemmas [42] as treatment must still be rationed due to limited resources).
Under such circumstances, a strategy that maximizes the number of saved lives is a
natural goal—that is, a strategy that minimizes abandonment.

MCE:s typify the realities that our models here capture: impatient customers that
seek, at rates that are time-varying over a finite time horizon, service that is to be
provided by multi-servers so as to minimize abandonment. In this context, personalized
information about customers is naturally their exact time to abandon—their patience;
and a policy that is a natural candidate for minimizing abandonment (and proved to
be such in special cases—see [46,49]) is one that assigns the highest priority (non-
preemptively) to a customer with the least patience.

Contributions In this paper, we introduce a many-server fluid model. It corresponds
to the many-server G;/GI/n + GI queue, but it can and should be viewed on its own
merit, namely a model for time-varying many-server queueing system with impatient
customers (we take the view that our fluid model and G, /GI/n + GI are alternatives for
capturing a given reality, each with its merits and flaws; and focusing on the former
renders somewhat of less significance the fact that it can be proved a limit of the
latter—such convergence is thus a fact that we do not establish formally here).

Fluid abandons the queue when its waiting times reaches its “patience.” In the model
with partial information, we assume that full information is available on individual
realizations of estimated (random) individual patience times, rather than the patience
times themselves. Patience times and their estimates are dependent and characterized
by a joint density function. No information on service times is available to the sched-
uler. Customers (fluid) with shorter estimated patience times are given priority over
customers with longer estimated patience times. That is, the (non-preemptive) least-
patient first (LPF) policy based on estimated patience times is implemented. Such a
model is very natural in the MCE context.

A benchmark for partial information is the model with full information. Although
unrealistic in some applications (for example, MCEs), such a model is important as
it provides bounds for the performance of models with partial information. In the full
information LPF model, the scheduler has full knowledge of individual realizations
of customer patience times (and, hence, residual patience times of customers awaiting
service at any moment of time). In both the cases of full and partial information, we
propose a numerical algorithm for evaluating relevant performance measures (queue
length, abandonment rate, etc.) of the fluid model. (For numerical benchmarking and
anecdotal interest only, we also consider an algorithm that corresponds to a fluid model
operating under most patient first (MPF) routing.)

To be more specific, we focus on time-varying fluid models that alternate between
over- and underloaded periods. As we now explain, these are circumstances when
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the advantages (fewer customers abandon) of LPF over FCFS can become signifi-
cant. In comparison, employing LPF instead of FCFS in a many-server queue, in the
quality-and-efficiency driven (QED) regime [20,39,50], decreases the probability of
abandonment from order 1/,/n to 1/n, with n being the number of servers; thus, for
n large enough and practically speaking, QED service levels under FCFS are already
too high to warrant a dramatic improvement (though, theoretically, 1/+/n and 1/n do
indeed differ significantly). Similarly, implementing LPF in a permanently overloaded
queue does not yield significant results since a constant fraction of customers abandon
regardless of the policy (unless service-time realizations can be taken into account). On
the other hand, when over- and underloaded time intervals are present, a personalized
policy can harmlessly shift the load in time (by delaying customers with long patience
times), which effectively reduces overloaded periods that cause the abandonment.

One should note that the behavior of LPF differs from that of a multi-class system
with static priorities. Indeed, the latter cannot mimic LPF, under which the “prior-
ity” of a customer awaiting service continuously increases as its remaining patience
decreases with time.

A comment on terminology Readers would recognize that LPF policy has been tra-
ditionally referred to as earliest deadline first (EDF). Such terminology connotes
system-imposed deadlines that are common in computing/communication and pro-
duction/manufacturing systems—these operate mostly in steady state with a few
servers [21,43,55]. In contrast, our LPF terminology fits patience which is inherently
a personal characteristic of the customer—and this is prevalent in service systems with
time-varying arrival rates and many servers.

Organization Our paper is organized as follows. Next we provide a brief literature
review, which is followed by a specification of our fluid model in Sect. 3. The LPF
policy under full information is considered in Sect. 4, accompanied by a corresponding
numerical algorithm. Our model and algorithm for the case of partial information
appear in Sect. 5. Based on numerical examples, we discuss various insights in Sect. 6.
The paper concludes in Sect. 7 with some further observations and commentary.

2 Literature review

Support for fluid models of time-varying many-server stochastic queueing systems was
provided by [37,38,41,48]. Analyses of many-server fluid models with abandonments
have mostly focused on systems operating under the FCFS policy. In particular, a sta-
tionary model was studied in [56]. Formal fluid limits for this model were established
in [30] by extending results for the model without abandonment from [32]. In [36], a
network of fluid models was considered, while a system with time-varying capacity
was investigated in [37]. A numerical algorithm for evaluating sample paths of FCFS
many-server fluid models with constant capacities was proposed in [27]. A fluid limit
of a multi-class many-server queueing network with abandonment and feedback is
studied in [28].

Early analyses of EDF can be found in [22-24]. There exist several variants of
this policy (preemptive/non-preemptive, etc.), with some shown to satisfy optimality
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properties. In particular, the non-preemptive version is optimal for feasibility [13] (that
is, if a collection of jobs can be scheduled in a way that ensures all the jobs complete by
their deadline, the EDF policy will schedule this collection of jobs so they all complete
by their deadline). In [49] it was argued that the EDF policy maximizes the expected
number of customers that meet their deadlines, within the class of work-conserving
non-preemptive policies, in the M/G/1 + G queue. Stability and optimality (under
various cost functions) of EDF in single-server systems were examined in [46]. In the
case when all customers are served (no abandonment), the EDF policy minimizes the
lateness and tardiness of the jobs that are in the system at an arbitrary time [54], as
well as any convex function of the average tardiness [45]. EDF scheduling was studied
in the context of conventional heavy traffic, both without [14,33] and with abandon-
ments [34]. A fluid limit of a heavily loaded EDF M /M /1 queue was considered
in [12]. Fluid limits of G/G/1 + G queues under EDF were investigated in [6].

Our partial information framework relates to studies of multi-class systems where
customer classes can be estimated/predicted [3,4]. Such models are considered under
the assumption that one is capable of achieving certain classification rates. For exam-
ple, this happens with nurses in emergency departments, who can estimate urgencies
of patient conditions with reasonable accuracy. Typically, a Bayesian view is adopted,
where classes are characterized by probability distributions of service/patience times
rather than realizations associated with individual patients; for example, [35]. Such
queueing models have been used to capture the triage process in emergency depart-
ments [51,52]. This multi-class approach and our framework have a common
feature—customer characteristics are estimated/predicted based on data available at
the customer’s arrival time. In addition, one can also extract some information about
individual customers based on their behavior in the system. For example, differentia-
tion among customers present in the waiting room can be obtained by considering their
(current) waiting durations (even in the case when all customers belong to the same
class). In general, two customers that spent different amounts of time in the waiting
room have different probabilities of abandoning the system (consider the conditional
distribution of patience). This approach has been exploited in [7], where the authors
argue for priority scheduling based on waiting times of customers present in the wait-
ing room. Informally, when the hazard function of patience is increasing (decreasing),
priority should be given to customers that spent more (less) time in the waiting room.

Finally, we remark that the trade-off between information availability and queueing
performance has been examined in [53], albeit in a different context. The authors
consider an overloaded single-server queue with admission control: the service and
arrival rates are | — p and A € (1 — p, 1), respectively. Under the constraint that jobs
can be rejected up to a rate p, the authors analyzed a policy that minimizes average
queue length, as a function of the time-window during which information on future
arrivals is available.

3 The fluid model

A flow of fluid (deterministic divisible quantity) arrives at a system that consists
of an unlimited waiting space and a service facility with a fixed finite processing

@ Springer



Queueing Syst

capacity s > 0 (throughout the paper we follow the notation and conventions of [56]).
Let Q(¢) and B(¢) be the amount of fluid awaiting service and obtaining service at
time ¢ > 0, respectively. The total fluid inflow over an interval [0, ] is A(t), where A
is an absolutely continuous function with A(¢) = f(; Ax)dx,t > 0;{A(t), t > O}isa
time-dependent arrival rate function. At time ¢, arriving fluid either enters the service
facility, if there is space available (B(¢#) < s), or joins the waiting room otherwise
(B(t) = s). The system satisfies the standard work-conservation condition: the queue
is non-empty if and only if there exists no spare capacity.

Assumption 1 (Work conservation and finite capacity) For all t > 0,
(s—B(t)) Q@) =0 and B(t) <s.

Let X (t) = B(t) + Q(t) be the total amount of fluid in the system at time 7. Then
Ot) = (X)) —s)T and B(t) = s — (s — X(¢))T = X (t) A s; here and later, the
symbols A and V represent the minimum and maximum operators, respectively.

Fluid flows out of the system from either the waiting room—by abandoning, or
from the service facility—after being served. Formally, a fraction F'(x) of fluid that
entered the queue at time ¢ abandons by time ¢ + x, provided it has not entered service
by then. In addition, a fraction G (x) of any quantity of arriving fluid requires service
of at most x time units after entering service. Here the functions F' and G are given
distribution functions, which are referred to as the abandonment and service distribu-
tion, respectively. Denote G := 1 — G and F := 1 — F. A bivariate distribution H
will serve as the joint distribution of true and estimated patience times (see Sect. 5).

As in [37], we consider a “smooth” model. Let C, < I be the set of
piecewise-continuous real-valued functions, i.e., functions that have only finitely many
discontinuity points in any finite interval, with left and right limits at each discontinu-
ity point (within the interval); here DD is the space of right-continuous functions with
left limits. The following assumption implies that the arrival rate A is bounded over
finite intervals [9, p. 122].

Assumption 2 (Smoothness) A and G are differentiable functions with derivatives A
and g in C,,; the distribution functions F" and H have densities f and A.

The generality of the distributions F and G renders Q(¢) and B(¢) insufficient for
capturing the state of the system at time —a more detailed description is needed,
which records the relevant history of fluid in the waiting room and service facility.
There are multiple ways to describe the state of fluid awaiting service, which we
elaborate on in the next sections. These multiple ways correspond to different models
for information and scheduling policies.

As for fluid in service, introduce a two-parameter function B such that B(z, x) is the
total quantity of fluid in service at time ¢ > 0 that has been in service for at most x > 0
time units; one has B(¢, co) = B(t). We follow the description of the service facility
provided in [37] for a FCFS fluid model. Note that fluid in service obeys the same
rules both in the FCFS model and the model we consider. Indeed, the LPF policy (like
FCFS) does not use any information about service times. Thus, our focus will be on
the description of the waiting room (in Sects. 4, 5). Presently, we provide some basic
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description of the service facility for completeness. The remaining three assumptions
in this section are from [37]—they ensure that the model of fluid in service is well
defined; see [37] for details on how various performance measures can be evaluated.
In particular, they imply that B(z, -) admits the representation

B(t,x) = /x b(t, u)du;
0

here b(t, x) is the density of fluid that spent x time units in service at time 7.

Assumption 3 (Initial fluid in service) Fluid in service at r = 0 satisfies
X
B(0,x) = / b(0,u)du and B(0) <s,
0

for some nonnegative integrable b(0, -) € C, such that

sup / 08+ 4
0 G(y)

0<s<t

Assumption 4 (Fundamental service evolution equation) For t > 0, x > 0 and
u>0:

G(x +u)

b(t +u,x +u)=>b(t,x) G

Let A(r) = f(; o (1) du be the total amount of fluid to abandon during the interval
[0, ¢], with «(¢) being the abandonment rate at time ¢ > O (it is defined in Sects. 4, 5).
Similarly, introduce E () to denote the amount of fluid that enters service in [0, 7].
The total amount of fluid to complete service during the interval [0, ¢] is denoted S(z).
We now deduce the following basic flow conservation equations, which hold for all
t>0:

0)=00)+A@) —A@) — E(t) and B@#) =BO)+E(@) —S@). (1)
These totals are determined by instantaneous rates [37]:
t
E(t) :=/ y)du, t=>0,
0
where y () := b(t, 0) is the rate at which fluid enters service at time ¢; and

t
S(t) ::/ o(u)du, t=>0,
0
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where o (¢) is the service completion rate at time 7, and is defined by

R g(x)
o(t) ._/0 b(r,x)—é(x) dx, t>0. 2)

Furthermore, in the special case of an initially empty system (g (0, x) = b(0, x) =

0, for all x > 0, or just X (0) = 0), the following is known to hold [27]:

t
B(t):f Gt —u)dEu) 3)
0
and
t
E@) = B() + / Bt — 1) dU (), @
0

where U is the renewal function associated with G, characterized by the renewal
equation [5, p. 143]:

1
U@) =G() +/ Ut —u)dG(u), 5)
0

forr > 0.

An additional regularity condition will now be imposed to define overloaded and
underloaded intervals. An overloaded interval starts at a time #; with (i) Q(¢;) > 0 or
@i1) Q(t;) =0, B(t1) = s and A(t;) > o (1), and ends at

Ty :=inf{lu >t;: Qu) =0 and A(u) < o(u)}. (6)

An underloaded interval starts at a time f, with (i) B(f;) < s or (ii) B(tx) = s,
QO(tr) = 0and A(rr) < o (t2), and ends at

T :=influ >t : Bu)=s and A(u) > o(u)}.

The underloaded interval may contain subintervals that are regarded as critically loaded
(Q@) =0, B(t) =s and A(t) = o (1)).

Assumption 5 (Finitely many switches in finite time) There are only finitely many
switches between overloaded and overloaded intervals in each finite time interval.
Each underloaded interval is of positive length.

Remark 1 The last assumption can be eliminated by considering the equivalence of
the fluid models in [26,30,37]; see [29] for details. The assumption simplifies the
analysis, since one can focus on underloaded and overloaded intervals separately.

To conclude our model specification, it seems worthwhile reviewing its primitives.
These are the service and patience time distributions (G and F') and the time-dependent
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arrival rate (1); then the initial states (at time ¢ = 0) of the service facility (density
b(0, -)) and the waiting room (densities ¢ (0, -) and ¢ (O, -, -) for the full and par-
tial information cases—see Sects. 4, 5); note that the partial information framework
requires also a joint density of true and estimated patience times (H—see Sect. 5).
All other variables/processes are outputs of the model.

4 Full information: a benchmark

In this section, we consider the least-patient first scheduling policy that exploits full
information. We define a two-parameter function Q, such that Q(z, x) is the total
quantity of fluid in the queue at time ¢ > 0, with remaining patience at most x > 0:

Q(t,x)=/0 q(t,u)du and Q(, 00) = Q(1); (N

q(t, x) can be interpreted as the density of fluid awaiting service with the remaining
patience x at time ¢ (during an overloaded period). The representation (7) is due to
Assumptions 6 and 7—see below. Without loss of generality, assume that the over-
loaded period begins at time 0 and ends at time 7 that satisfies (6); the value of T
need not to be known in advance [37]. The state of the waiting room at time ¢ = 0 is
defined by fluid density ¢ (0, -):

Assumption 6 (Initial fluid awaiting service) In the case of full information, fluid
waiting service at t = 0 satisfies, for some ¢ (0, -) € C,,

Q(O,x):/xq(O,u)du and Q(0) < oo.
0

4.1 Least-patient first

Under least-patient first scheduling, a quantity of fluid enters service only if no other
fluid with lesser remaining patience is present in the waiting room. We define p (t) €
[0, oo] to be the remaining patience of the least-patient fluid awaiting service:

p () :=inf{x > 0: g(t,x) > 0}; ®)

we set p(t) = oo when ¢g(t,x) = O for all x > 0 (the waiting room contains no
fluid, Q(t) = 0)—hence, p (T) = oco. At time ¢, the quantity p (¢) represents the
boundary between remaining patience times of fluid that enters service and fluid that
remains in the waiting room. During an overloaded period, the system can be in three
states: (i) overloaded with abandonment; (ii) overloaded with no abandonment, and
fluid in queue enters service; and (iii) overloaded with no abandonment, and fluid in
queue does not enter service. Based on the above definition, we have, for r > 0,

o) =/ q(t, x)dx. )
pL()
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We remark that the role of p, = {p,(¢), t > 0} in the analysis of the LPF system is
similar to that of the boundary waiting time in the FCFS system [27,36]. Informally,
py is a key quantity—all relevant functions associated with the model can be derived
from it. In general, p| need not be a continuous or differentiable function. However,
for sufficiently smooth model primitives, p is non-differentiable only at finitely many
points on any finite interval (for an illustration, see Example 1 below). Due to the LPF
policy, the abandonment rate at time ¢ is defined by

a(r) = (q(t,0) = b(r,0)"; (10)

recall that b(t,0) = y(¢) is the rate at which fluid enters the service facility. Thus,
only fluid with zero remaining patience times that cannot be accommodated in the
service facility abandons the system. Note that g (z, 0) = O implies «(#) = 0.

A quantity of fluid is present in the waiting room only if its remaining patience
(which decreases linearly) does not drop below the boundary value p, at any moment
from the time of its arrival (not just at the arrival time). In particular, consider a quantity
of fluid that arrives at the system with patience x at time u. This fluid is present in the
waiting room at time t > u,if x —y > py(u +y),forall0 <y <t —u,i.e., itis not
sufficiently impatient on the time interval [u, t]; here, x — y is the remaining patience
time after y time units spent in the waiting room. Next, let p (¢, u) be the initial (at
arrival) patience of the least-patient fluid that arrived at time « and is still present in the
waiting room at time ¢ > u (see Fig. 1). Based on the preceding, the value of p (¢, u)
is a solution of the following optimization problem: minz, s.t. z —y > p(u + ),
Vy € [0, t — u]. Note that the constraint can be rewritten:

z> sup {y+p,(u+y}

O<y<t—u
= sup {x —u+ py(x)},
u<x=<t
and consequently
pit,u) = sup {x —u+ p ()} (11)
u<x<t
a dual relation holds as well:
py(@) = inf {p (t,u) — ( —w)}. (12)
O<u<t

For ¢ such that p (¢) exists, (11) implies

opy(t,u)

Fya (I+ 15¢(f))+1{p¢(z,u)=t—u+p¢(t)}~ (13)

(For a function x differentiable at #, we use x(¢) to denote its derivative at ¢.)
The structure of the fluid content awaiting service at time ¢ can be determined
from p . Consider fluid in the waiting room with remaining patience x at time ¢. Such
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Fig. 1 LPF: an example of p .
Related quantities p (7, u) and
[ Ay (t, x)| are shown as well

|A, ()]

T+t—u
pl(t’u)

fluid is either present in the system at + = 0 or has arrived during the time interval
Ay, x) ={uc0,t]: py(t,u) <x+t—u}. The quantity |4 (z, x)|, the Lebesgue
measure of A 1(t, x), represents the length of a time interval over which fluid with
remaining patience x at time ¢ is accumulated in the waiting room (see Fig. 1). The
LPF policy and the fact that remaining patience times decrease linearly imply that the
density ¢ satisfies the following:

Assumption 7 (Fundamental LPF evolution equation) Fort > 0 and x > p(?),

t
q(t,x) =qO0,x + )l xtr=p,,0) +f Lp, )y <xte—uyA @) f(t —u+ x) du.
0
(14)

The assumption is based on the fact that fluid with remaining patience time x at
time ¢ must arrive at the system at time u € [0, ¢] (or be in the system at time 0) with
patience time x + (+ — u), and it should not leave the waiting room during the time
interval [u, ¢] (this condition is equivalent to u € A (¢, x)). The first term accounts
for fluid in the system initially: fluid with remaining patience (x + ¢) at time 0 will
have remaining patience x at time ¢, provided it did not leave the waiting room prior
to time ¢ (the event {x +¢ > p,(t,0)} = {0 € A (¢, x)}). The integral in (14)
accounts for fluid not initially in the system. Assumptions 6 and 7 imply that g (z, -)
is right-continuous, for all # > 0. Given p, (11) and (14) can be used to determine
q(t, p) (1)), the density of the “least-patient” fluid awaiting service at time #:

q(t, py () =q O, p () + D 1(p, 1) +1=p, .0)}

t
+ /0 Lip, ty=p, ) +t—uyru) f (& —u+ p(2))du. (15)
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Next, we derive an expression for Q(¢). To this end, substituting (14) in (9) yields

o0 o0
o() =/ g0, x)1{x>p, 0,0y dx + / Au) f(t +x —u)dudx
t+py (1) L) JA (t.x)

o0 [o,0] t
= f q(0,x)dx + / Au) f(t+x —u) l{pi([yu)_ku_[fx} du dx
py(t,0) Py Jo

o0 t o
:/ q(O,x)dx+/ / Au) f(t +x —u)dx du, (16)
p1(t,0) 0 Jpy@t,u)tu—t

where we used {x > p | (¢,0) > p,(t) +t} [see (1] and {x > p (t,u) +u —1t >
py ()} [see (12)]. Rewriting (16) renders an expression for the total amount of fluid
in the waiting room:

t
Q1) = 0(0) — Q(0, py(1,0)) +/0 Au) F(py(t,w)du, t>0. (17

Note that the fraction F( py (t, u)) of fluid arriving at the system at time u is present in
the waiting room at time ¢ > u. Thus, the integral in the preceding equality represents
the amount of fluid not initially in the system (at time ¢t = 0) that is in the waiting
room at time ¢.

Combining (1) and (17) yields an equation for p| . In particular, p is the maximal
solution of

t
/0 Au) F(py(t,u))du + Q(0, py(r,0)) — A() = E(1), (18)

with p () = 0 and [see (10)]

t
/ Lip, =0y dA(u) = 0. (19)
0

Since, in general, F and Q (0, -) can be constants on certain intervals, there could exist
multiple solutions of (18). The function p corresponds to the maximal solution due
to (8). The value of p (0) is determined by (8) and ¢(0, -) (Assumption 6). We note
that p appears only on the left-hand side of (18), while the right-hand side is known.

Assumption 8 For sufficiently smooth model primitives, p(-) is non-differentiable
only at finitely many points on any finite interval. Moreover, there exists a unique
solution p (-) > 0 of (18) under (19).

The last assumption is motivated by monotonicity (proving existence and unique-
ness is beyond the scope of the present paper). In particular, by introducing p (t) € R
such that p| (t) = py (¢t) — a(t), (18) can be rewritten without constraints [p () > 0
and (19)]:

t

t
/O)»(M)F(I%(t,u))dquQ(O,fu(ho))—/o py (w)du = E(1),
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Fig. 2 LPF: examples of densities describing fluid in the waiting room (left) and service (right) at time ¢.
When p () > 0 no abandonment occurs. Fluid enters the service facility either directly or via the waiting
room

where p| (t,u) = sup, <, <, {x —u + ﬁj(x)}. Then the left-hand side is monotonic
in p, which describes both p, and a: p (t) = ﬁj(r) and a(t) = ﬁj(r); note
that A(t) = féa(u)du =/ p (u)du. Our numerical algorithm is based on a
discrete-time analogue of (18)—see Sect. 4.4 for details. There, we argue that the
above mentioned monotonicity implies existence and uniqueness of a discrete-time
version of p . In Sect. 4.3, we provide two specific examples that illustrate how (18)
characterizes p . In the next section, we derive a differential version of (18). It provides
some insight into the LPF fluid model.

4.2 Differential version of (18)

A differential version of (18) can be obtained by considering y (), the rate at which fluid
enters the service facility. The case p (t) = Ois straightforward: y (t) = ¢ (¢, 0) —a(¢)
[see (10)]. On the other hand, when p () > 0, fluid entering service does that either
directly, or via the waiting room (see Fig. 2). The two cases can be combined into a
single equation (for t > 0 such that p is differentiable at ¢):

y(0) + a1y, =0y = MO F(p (1) + (1 + p )T q(, p (1)), (20)

where the second term on the right-hand side represents the rate of fluid transfer
between the waiting room and the service facility (recall that g(z,-) is right-
continuous). Specifically, if py(t) < —1, then no fluid in the queue enters service,
since p (1) decreases at least as fast as the remaining patience of the least-patient fluid
in the waiting room (which decreases at unit rate); the derivative being smaller than
—1 is due to external arrivals with patience times smaller than p (7). On the other
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hand, when p | (t) > —1, the least-patient fluid in the waiting room (the density of
such fluid is g (¢, p (t))) enters service, since its remaining patience decreases below
py(t). Formally, for t > O such that p| (t) > 0 (no abandonment, «(t) = 0) and p (¢)
exists, (18) and (13) result in

apy(t,0)
at

+)»(I)F(P¢(t))+f AMu) f(py(t,u) ————
=k(t)F(m(t))+61(0»PL(I)+t)(1+P¢(t)) Lip, t.0)=t4p, ()}

t
+ 1+ ﬁ¢(t))+/() Aw) f(t —u+pL(0) 1, w=1—utp,mydu. 21

v () =q(0, py(,0))

m( u)

Combining (15) and (21) yields (for ¢ such that p () > 0 and p (¢) exists):

y(®) = @) F(p 1)+ (1 + p )T q(t, py ().

Furthermore, (20) can be simplified by noting that p| (1) < —1 implies g (¢, p(¢)) =
0. Indeed, recall (15) and assume l{m (tu)y=p, () +t—u) = 1 for some u € [0, 7]; here
u is an integration variable. Under this assumption dp (¢, u)/dt = p (t) +1 < 0.
However, (13) yields dp (¢, u)/0t = 0. Hence, p(¢t,u) # p(t) +t — u, and (15)
results in g (¢, p (t)) = 0. Consequently, we have a differential version of (18):

YO +a® ]l n=0) = 2O F(py (1)) + (L4 py(1) g, py(1)). (22)

4.3 Examples

This subsection contains two examples.

Example 1 (G;/M /s + M LPF fluid model) Consider an initially empty (b(0, x) =
¢(0, x) = 0) fluid model with G (x) = e ™**, F(x) = e %, and A(t) = (1 +8)pus, for
some 6 > 0. This system evolves through three time periods: (i) during 0 < ¢ < fq,
some spare processing capacity exists (underloaded period); (ii) during # < t < 13,
there is no spare processing capacity, the queue is nonzero, and no fluid abandonment
occurs; and (iii) during ¢ > f,, fluid abandonment occurs. Below we derive a detailed
description of the evolution. Note that for 0 < ¢ < 7, the departure rate satisfies
(see (2) and [37, Proposition 2])

'
0(1‘):/ Mt —u)gu)du = (1 +6)us (1_6—;11)7
0

and, thus, flow conservation (1) yields (A(z;) = S(t1) + s)

:_1— 23
08 (23)
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Furthermore, fluid enters service at rate [37]

(I +&us, t<ty,
y() = { (24)
s, r =1,
while o () = s fort > 1. Hence, B(t) = E(t) — S(¢) implies
1+8)s(1—e M t<tm,
B(t):{( +8)s (1 —e™1), <n 25)
s, t> 1.

For t < t1, the system is in an underloaded period, implying that p () = oo, for
t < t1. The function {p (¢), t > 11} is determined by (18):

t
(1 +8)/m/

1

(l — 679”(“‘)) du = us(t — t1) + A1),

where E(t) is defined by (24). The solution of this equation is given by p, (t,u) =
t —u+ p,(t), where

00, 0<t=u,
_ (148 (1—e 0
P¢(t)— %logw, <t =<1, (26)
0, t=1n,

and, consequently, for t; <t < 13,

(146 —t))e 01 —1

5, (1) = -1, 27
pL(t) 64— (1—e 00 m) 27)
with p (t1+) = —1/2; from (26) it follows that
1 1+56
t =1i t)y=-1
pyt+) ff}}m() g log —
Then, 1, is the root of
1 148) (1 —e- 00—
—log( )( ) =0,
0 80t — 1)
or
80 —11) = (148) (1 - e—9<f2—’1>). (28)
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Now, (26) and (15) imply

us0s(t —ty), n=<t=<n,
t, 1)) = 29
9, Py {(1 + s (1—e0C=0) | 1> p, @
which in turn yields [see (10)]
a(t) = pis (5= (L4 80 ) 1y (30)

note that a(r) — usé, as t — oo. Based on (26), (27), (29) and (30), it is
straightforward to verify that (22) holds. Note that, p(#1+) satisfies y(1;+) =
A+ F(p,(ti+)), since g(t1+, py(t1i+)) = 0. Finally, observe that y(r) >
AF(py(t)) fort; <t < tp (i.e., fluid enters service both directly and via the waiting
room during the time interval (¢, 2)). Indeed, for t; < t < 7, (24) and (26) imply

T (1+6) (1 —e00-m)

B ot — 1)

850(t —
y(@®) —AF(p (1) = pus — (1 +8)us |:1 (rt—11) :|

X

where the inequality is due toe™ > 1 — x, for x > 0.

Example 2 (G;/D/s + D LPF: a non-smooth fluid model) Although we focus on
smooth models, LPF fluid models can be considered under more general conditions.
Here the formulation (18) comes to the rescue. For example, suppose G (x) = 1{y>1/)
and F(x) = l{y>4), with initial conditions given by b(0, x) = usljo<x<1/u) and
¢q(0,x) = 0. Let the arrival rate satisfy A(¢) = (1 + )us, for some § > 0. In that
case, b(t, x) = us ljp<x<1/u)» and E(t) = S(t) = ust, t > 0. Equation (18) renders
an equation for p:

t
a+ S)MS'/ 1{[,“,‘,“)261} du — A(t) = ust.
0

The solution of the preceding equation is given by

S +
H=(d———t) , t>0;
Py(®) ( 1+5) -

thus, no fluid abandonment occurs before time (1+6)d /8. Moreover, A(t) = Sus(t —
d(1468)/8)" and q(t, x) = (1 + 8)ius L{g—s1/(146))* <x<d)-

4.4 A numerical algorithm

In this subsection, we provide an algorithm (Algorithm 1) for computing relevant
functions of the fluid model under LPF. The algorithm is based on an algorithm for
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the FCFS system [27]. As in [27], we require that the system is initially (+ = 0)
empty (E(0) = B(0) = Q(0) = A(0) = 0, implying p | (0) = 00); this allows us to
utilize (4). The algorithm iteratively computes values of E(¢;), B(t;), Q(t;), A(t;) and
py(t;) fort; =i8,i =1,2,...,n, where § is a time step. The iterative step depends
on whether there exists spare capacity in the system.

Our algorithm requires evaluations of several integrals—see (31), (32) and (34).
Here, we do not specify a scheme for numerically evaluating those integrals, because
multiple methods can be used (based on the partition 0 =y < #; < --- < t,). Note
that determining the value of U (#;) is based on the integral equation (5). Multiple
methods for evaluating the integral in (5) can be used as well. For example, using the
trapezoidal rule yields

2G (1) X’: G(tj) — G(tj—1)

Uty) <~ ———
2 —-G(t1) 2-G()

(Ut —t) + U@ —1j-1)).
j=2

The rationale for the algorithm is as follows. Under the first case in the iteration
(B(ti—1) < s), some capacity is available at = #;_1, and one attempts to evaluate the
system state at time ¢ = #; under the same condition—thus, E(t;) <— A(t;) — A(ti—1)
(since there is no abandonment in [#; 1, #;]) and (31), which is based on (3). If it
turns out that indeed B(#;) < s, straightforward updates follow. However, if one
obtains B(t#;) = s, the queue content at time #; needs to be determined, along with
other relevant quantities. To this end, the amount of fluid that entered service by ¢
is computed via (32) [see (4)], and the balance equation (1) for the waiting room
is utilized—the system of equations (33)—(36) is a discrete-time analogue of (18).
Observe that the right-hand side in (33) is known, while the left-hand side depends on
py ().

The quantity Q(#;) [evaluated based on (17)] is monotone in p(¢;), and A(;) —
A(t;—1) is nonzero only if p(#;) = 0. These two facts imply that there exists a
maximum solution of (33)—(36). In particular, if p (#;) = Oimplies Q(#;) +A(t;—1) >
A(t;) — E(t;), then the solution of (33)—(36) is positive (and unique). Otherwise, the
solution is zero and A(t;) = A(t;) — E(t;) — Q(t;). Equation (36) is a discrete-time
version of (11). The second case in the iteration (B(t;_;) = s) follows the same
reasoning, except that one first attempts to verify that the system remains overloaded.

5 Partial information

We now consider the LPF policy under the assumption that only partial informa-
tion about fluid patience is available. We model partial information by means of a
bivariate distribution H, such that H (x, y) = [5 /¢ h(u, v) dv du represents the frac-
tion of arriving fluid with patience at most x and estimated patience at most y; then,
H(x,00) = F(x).

It is appropriate to think of h(x, y) as the density of arriving fluid with true
patience x and estimated (perceived) patience y. The distribution H defines two rele-
vant conditional distributions. For fluid with (true) patience x, the conditional density
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Algorithm 1

1: B(0) <~ 0, E(0) <0, Q(0) < 0,A0) < 0,U0) <0
2: p(0) <= 00, p(0,0) <— 00
3:fori=1,...,ndo

Nk

5
6:

Neliio N

._..—
=<

14:
15:
16:
17:
18:
19:
20:
21:

23:
24
25:
26:
27:

if B(t;_1) < s then
E@;) < A®) — A(ti—1)

> initialization
> initialization
> iterative step

i _
B(t;) < s /\/ G(t; —u)dEu) (31)
0
if B(t;) < s then > empty waiting room
py(t;) <00, Q(t;) < 0, A(f;) < A(1;—1)
else > B(t;)) =s
evaluate U (t;) based in (5)
[
E(t;) < B(1;) +/O B(t; — u) dU (u) (32)
p| (1;) < maximum solution of nonlinear equations (33)—(36):
o) + A@) = At) — E(;) (33)
li _
o) = fo 1) F(py (17, ) du 34)
At = A1) + (AW = E@) = A1) = 0))  1p, ()=o) (35)
Pyt 1) = jri‘?ﬁi{”‘ —ti+p IV (i —tj+py ), j=0,....i (36)
evaluate {p (1;, tj-)}ij=0 based on (36)
evaluate Q(#;) based on (34)
evaluate A(#;) based on (35)
else > B(ti_1)=s
B(tj) < s
evaluate E(t;) based on (32)
if A(tj) — A(ti—1)+ Q@ — 1) < E(t;) — E(tj—1) then > empty waiting room
E(t;) < A(t) — A(ti—1)
P () <00, Q(t;) < 0, A(tj) < A(ti—1)
evaluate B(f;) based on (31)
else > non-empty waiting room

p| () < maximum solution of (33)~(36)
evaluate {p (#;, tj)}s.:0 based on (36)
evaluate Q(t;) based on (34)

evaluate A(t;) based on (35)
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of estimated patience at y is given by h(x, y)/ fooo h(x,v)dv. Similarly, given that
estimated patience is equal to y, the conditional density of actual patience at x is given
by h(x, y)/ fooo h(u, y) du. Both conditional distributions can be estimated from (cen-
sored) data via statistical analysis (procedures to estimate individual patience times
are beyond the scope of this work, and are left for future research. Relevant references
include [1,8,10,15,40]).

We focus on a model where patience times are estimated only once—upon arrival.
Such a setup does arise in mass casualty events where triage is employed, or in call
centers that opt for such protocols. One could also consider models where patience
is (re)estimated periodically or continuously. In such models, the scheduling priority
(based on re-estimated patience) would change as new information becomes available.
The fact that fluid spent a certain amount of time awaiting service provides some
information about its patience, since it statistically distinguishes it from fluid that had
the same characteristics upon arrival but that has abandoned the system. Additional
personalized information could be obtained by proactively acquiring it (for example,
obtaining and/or providing information while waiting for a phone service, or via patient
reexamination in emergency departments). We also note that our estimates of patience
are numbers—a scheme that is appealing since it is straightforward to keep track of
such estimates. In a more general setting, probability distributions can be used to
describe estimated patience times.

Example 3 (Partial information) Let (7, 1) be a pair of random variables characteriz-
ing the true and estimated patience times for an infinitesimally small amount of fluid.
Suppose that

(m, ) 4 (eZ, ez) ,

where (Z, Z) is bivariate normal with EZ = EZ = 0, Var(Z) = Var(Z) = o2 and
Cov(Z,Z) = po?. That is, both patience and estimated patience are lognormally
distributed with parameters 6 and o (7,7 ~ InN (9, 02)), and the joint density
function is given by

_ (logx—9)2+(log y70)2—2p(logx—6)(log y—>0)
202(1-p2)

1
e s
2ro2xyy/1 — p?

x,y > 0. Under this setup, it is convenient to model dependency between 7 and 7,
since it is described by a single parameter (p)—the two are independent when p = 0,
and the two are equal when p = 1. Otherwise, the conditional density of true patience
at x > 0, given that the estimated patience is y > 0, is

h(x,y) =

1 _ (ogx—plogy—(1-p)§)*
h(x|y) = ——————e 202(1-p?) ,

V2roxy/1 —p?

or equivalently 7 |{#f = y} ~InAN(plny+ (1—p)b, o2(1 — p?)). The coefficient of
variation and mean of this conditional distribution are given by v/e”(1=r%) — | and
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2 2 . . . ..
yPel=P0+0"(1=p7)/2 regpectively; that is, the coefficient of variation does not vary
with y. For two independent patience times, their order (<, >) is the same as the order
of the corresponding estimated patience times with probability

/1 — ,02 /71/2 dx
T 0

1—psinx’

as expected, one obtains 1/2 and 1, for p = 0 and p = 1, respectively.

Introduce a three-parameter function Q such that Q(z, x, y) is the amount of fluid
awaiting service at time ¢ > 0, with patience at most x > 0 and estimated patience at
most y € R:

o, x,y) = /y /X q(t,u,v)dudv and Q(t, 00,00) = Q(1).
—00 JO

It is appropriate to think of g(¢, x, y) as the density of fluid in the waiting room
with true remaining patience x and estimated remaining patience y at time ¢ (see
Assumptions 9, 10). Note that, in the preceding equation, the integration covers also
negative values of estimated remaining patience times. In fact, negative values of
such times are feasible, since they decrease linearly over time. This corresponds to
situations where a quantity of fluid was supposed to abandon based on an estimate
on its arrival, but it remains in the waiting room due to a sufficiently large actual
patience time (for example, if actual and estimated remaining patience times are 5
and 1 at r = 0, respectively, then those values are 3 and —1 at t = 2, respectively).
We allow such negative values because they contain relative (ordering) information
about estimated patience times of fluid in the waiting room. On the other hand, actual
remaining patience times are always nonnegative—fluid abandons from the waiting
room as soon as the actual remaining patience time decreases to O [see (40)].

Assumption 9 (Initial fluid awaiting service) In the case of partial information, the
fluid waiting service at r = 0 satisfies

00, x,y) = /y /xq(O,u,v)dudv and Q(0) < oo,
—o0 J0

where ¢ (0, -, -) is bounded, with ¢(0, x, -) € C, for all x > 0.

In this section, we let p | () be the least estimated remaining patience of fluid present
in the waiting room:

Py =inf {y: sup gt x, ) > 0};

x>0

the definition of p (¢, u) is as in Sect. 4:

py(t,u):= sup {x —u+ py(x)}.

U<x<t
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Note that, unlike in Sect. 4, p(¢) can take negative values, since it characterizes
estimated patience rather than true patience. Based on the above definition, it follows
that

o) = / / 4(t.x, y) dx dy. 37
py(t) JO

The fact that both remaining patience and estimated remaining patience decrease
linearly at unit rate (until the corresponding fluid leaves the waiting room) motivates

the following assumption on the density of fluid awaiting service:

Assumption 10 (Fundamental LPF evolution equation) Fort > 0, x > O and y >
pL():

qt,x,y) =q0,x +1,y+1){y+r=p, .00}

t
+/0 l{m(,,u)syﬂ_u})\(u) h(t —u+x,t —u+y)du. (38)

An expression for Q(¢) can be derived by combining (37) and (38):

o0 o0
Q(t>=/ f 4(0, x, y) dx dy
py(t,0) Jt

o0 o0 t
+f / / Lip, ) +u—rt<yyr @) h(t —u +x,1 —u+y)dudxdy
py(t) JO 0

o0 o0
=/ / q(0, x,y)dxdy
py(t,0) Jt

t o o
+/ / / Au)h(x,y +1t —u) Yy>p, (.uy+u—ry dx dy du.
0 Jp @) Jt—u

Thus, one has

o o t
o) :/ / q(O,x,y)dxdy+/ Au) I:I(t—u,p¢(t,u))du, 39)
p t 0

1(2,0)

where H(x,y) = [/, yoo h(u, v) dvdu. The first term corresponds to fluid in the
waiting room at time ¢t = 0, while the second term represents fluid that arrived in
[0, t].

In order to define the abandonment rate (), we consider the actual remaining
patience rather than the estimated counterpart. In particular, fluid with zero (true)
remaining patience abandons the waiting room:

oo
a(t) :=/ q(t,0,y)dy, t>0, (40)
L)
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where (38) specifies ¢ (7,0, y) in terms of p. By substituting the expression for
q(t,0, y) in (40), one concludes that the abandonment rate obeys, for ¢ > 0,
o0 t o0
a(t) = / q0,t,y)dy +f Au) h(t —u, y)dydu. (41
P (t,0) 0 py(tu)

Consequently, the total amount of abandonment by time ¢, A(#), can be expressed in
a couple of ways: first, in view of (40), it satisfies

t o0
A = / / ¢(u, 0, y) dy du: 42)
0 Jpy(u

second, in view of (41), A(#) can be written as a sum of two terms that correspond to
fluid initially in the system and fluid arriving after time = 0:

t poo t t—u oo
A(t) =/ / q(O,x,y)dydx—i—/ A(u)/ / h(x,y)dydxdu.
0 Jpy(x,0) 0 0 Py (u+x,u)
(43)

Combining (1), (39) and the preceding equality yields an equation for p, . In particular,
p, is the maximal solution of

Q)+ A(r) = Q(0) + A1) — E(1), (44)

where Q(#) and A(¢) are given by (39) and (43). The left-hand side is nonnegative
and monotonic in p |, which motivates the following assumption:

Assumption 11 There exists a unique solution of (44), where (39) and (43) determine
Q(t) and A(t), respectively.

The rate y (¢) can be characterized by examining the two ways fluid can enter the
service facility. At time ¢, fluid enters service directly (without entering the waiting
room) at rate A(t) H (oo, py(t)), since no fluid with estimated patience below p (7)
is present in the waiting room. On the other hand, the transfer rate between the wait-
ing room and the service facility is proportional to ¢ (¢, x, p(¢)). Formally, taking
derivatives in (1), and utilizing (38), (39) and (41) yields

y () = A(t) —a(t) — Q1)

= At)H(co, py (1)) + (1 +m(t))+fo q(t,x, py () dx
— A1) Hoo, py (D) + (1 + m(r»/O g(t.x, py (1)) dx,

for t > 0 such that p (¢) is well-defined; the last equality follows from the fact that
the last integral is equal to O when p (r) < —1 (due to Assumption 10). The above
differential equation is an analogue of (22), which holds for the case of full information.
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Finally, we note that the numerical algorithm outlined in Sect. 4.4 is applica-
ble to evaluate fluid models under partial information with one modification: p (t;)
solves (33), with

t _
Q(ti)=/o Au) H(t; —u, py(t;, u)) du,

t; t o0
A(ty) :A(t,'_l)—f-/ / A(u)/ h(t —u,y)dydudz.
ti-1 /0 py(t,u)

We conclude this section with an example.

Example 4 (G,/M /s + M LPF fluid model with no information) Consider the setup
described in Example 1 with P_I(x, y) = e 0y, y > 0. In that case, even though
the distribution of the estimated patience times is the same as the distribution of actual
patience times, the two random variables are independent. As in Example 1, the queue
is empty during the time interval [0, #1], where #; is given by (23). However, unlike in
Example 1, the abandonment rate is positive for ¢ > ¢;. The form of H, (39) and (43)
yield, for t > 11,

t
A(t) =0/ O(u)du.
4]

Combining this equality with (1) and (24) results in

Q@) +46 /tt Qu)du = A(t) — E(1) =dus(t —11),
1
for t > t1. The solution of the preceding integral equation is
01 = 5% (1=e7) 1z, (45)
and consequently
a(t) = Sus (1 - e*"“*’l)) Lsr).

Equating (39) and (45) yields, for ¢t > #1,

1L A+ (1—e0m)
pi(t) = 5 10g 25 (1 — e*g(l*fl))

Note that p| (1) > —1,fort > t;,and p | (t,u) =t —u + p(1).

In steady state (as t — 00), L(c0)(1 — e~ ?P1(%)y = (1 — §)us is the rate at which
fluid enters service directly; on the other hand, A (co) e—0p1(00) /2 = §us is the transfer
rate of fluid from the waiting room to service—fluid with true/estimated patience times
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Fig. 3 Performance functions for the system described in Example 5, operating under LPF (green), MPF
(red) and FCFS (blue). No abandonment occurs under LPF. The function w represents the waiting time
of head-of-line fluid in the waiting room when FCFS is used. The function p4 represents the remaining
patience of the most patient fluid under the MFP policy (Color figure online)

(on arrival) in the set {(x, y) : y > p (00), x > y — p| (0c0)} enters the waiting room
and is eventually served.

6 Numerical examples

The proposed numerical algorithm was used for LPF; for FCFS, the algorithm in [27]
was used. The time step was set to 0.01, and the trapezoidal rule was used to evaluate
integrals. A modification of the proposed algorithms is used to evaluate performance
under MPF routing.
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Fig. 4 Performance functions for the system described in Example 5, operating under LPF (green), MPF
(red) and FCFS (blue). The function w represents the waiting time of head-of-line fluid in the waiting room
when FCFS is used. The function p4 represents the remaining patience of the most patient fluid under the
MEP policy (Color figure online)

Example 5 (LPF and MPF vs. FCFS) In this example, we compare LPF and MPF
to the FCFS policy. Consider an initially empty system with s = 1. The service and
patience distributions are as follows [27]: G(f) = (1 —e %)/2+ (1 —e~?/3)/2 and
F(t) = 1—e™ ! —te™!; the mean service time is 1, while mean patience time is 2. The
arrival rate is given by A(#) = 1 + 0.2 sin(#/2); hence, the system is critically loaded.
In Fig. 3, we show key performance measures of the system.

Observe that no fluid is lost in the system operating under the LPF policy—indeed,
the minimum remaining patience of fluid in the waiting room stays strictly positive
throughout the considered time interval. Informally, the overloaded period is short
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Fig.5 Performance functions for the system described in Example 6, for p = 0, 0.25, 0.5, 0.75 and 1. The
arrows indicate the direction of increase for p

enough and there exists a sufficient amount of fluid with large enough remaining
patience times that can be kept in the waiting room in order for fluid with short
remaining patience times to be sent to the service facility. As durations of overloaded
intervals increase, the amount of fluid with long patience times is not sufficient to
avoid abandonments—there does not exist enough fluid in the waiting room that can
be delayed without causing abandonments. In Fig. 4, we show the behavior of the
system with a modified arrival rate: A(z) = 1+ 0.2 sin(¢/8), i.e., the frequency of the
arrival rate function is decreased by a factor of 4.

Example 6 (Performance vs. amount of partial information) As in the previous exam-
ple, consider an initially empty system with s = 1. The service distribution is
exponential, G(x) = e, x > 0, while the joint distribution of patience and esti-
mated patience is as follows (see Example 3):

2+L2—2/)ML
H(x,y) = “20-% dvdu,

logx plogy u
2w/ 1 — / /
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x,y > 0and p € (0, 1). Then both marginal distributions are lognormal, with param-
eters (0, 1) (mean = /e ~ 1.65 and variance = (e — 1)e ~ 4.47). Informally, the
“level” of information contained in the estimated patience increases with the value
of the parameter p. In Fig. 5, we plot performance functions for the systems with
p =0,0.25,0.5,0.75 and 1, where p = 1 corresponds to the case of full information
(for these p’s, the coefficients of variation of the conditional distributions of patience
times are given by &~ 1.31, & 1.25, & 1.06, &~ 0.74 and 0, respectively—see Exam-
ple 3. Given two independent pairs of actual and estimated patience times, the actual
patience times are ordered in the same way the corresponding estimated times are
ordered with the respective probabilities 0.5, ~ 0.58, ~ 0.67, ~ 0.77 and 1). As evi-
dent from the figure, more information leads to less abandonment. Recall that p (¢)
is the least estimated remaining patience of the fluid present in the waiting room at
time ¢; in this example, p | (¢) > O for all #. Nevertheless, abandonment does occur,
since fluid leaves the system based on actual rather than estimated patience times.

7 Concluding remarks

In this final section, we discuss the relationship between our fluid models and a stochas-
tic queueing system with a finite number of servers (G;/GI/n + GI). As argued in [37]
for the FCFES case, deterministic fluid processes can provide approximations for mean
values of stochastic queueing processes. In the system with a finite number of servers,
arrivals are time-varying (the G;), service times are i.i.d. (the GI) and customers,
equipped with i.i.d. durations of patience, possibly abandon (the +GI); the arrival
sequence, service and patience times are mutually independent. The number of servers
corresponds to the processing capacity s of the fluid model.

When comparing fluid models with stochastic queueing systems, at least two
sources of errors can be identified. First, there exists an error stemming from the
deterministic nature of a fluid model, which does not take stochastic fluctuations into
account. For example, in the fluid model, it is assumed that customers with patience
times below p | () enter the service facility immediately upon arrival. However, such
customers enter service only once a customer completes service. It is possible to
develop correction terms for fluid functions that take this effect into account. To this
end, let ,(#) be the abandonment rate in an n-server system; for very large values
of n, one expects oy, (t)/n ~ a(t), where «(z) is the abandonment rate in the fluid
model at time . An extra term can hence be added to capture some of the present
stochastic variability:

Ofn(t) 1
~ A Fl| — 1 N
_n a(t) + A) < (t)) {p)()e(0,00)}>

here, the second term approximates the rate of customers abandoning before a single
departure occurs after their arrival. When p (¢) € (0, 00) (non-empty waiting room),
the service completion rate is equal to the rate at which customers enter service (due
to work conservation). Therefore, 1/(no (¢)) is an approximation of the mean time
between a customer arrival and the next service completion, and F(1/(no (¢))) is an
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Fig. 6 Performance functions for the systems described in Example 7. For the two finite stochastic systems
(50 and 250 servers), empirical averages are plotted (in green and red, respectively). Performance functions
for the fluid model are shown in blue. A corrected fluid approximation for the system with 50 servers is
shown with dashed lines (Color figure online)

approximation of the probability that a customer abandons before a single departure
occurs. Such a probability is proportional to 1/n and is negligible compared to the
leading «(¢) term, when n is large. Incorporating this extra term into the fluid model
equations leads to a corrected version (that depends on the number of servers) of our
numerical algorithm. In particular, we have

Alt) = Altim) + (AW) — E(t) — Alti—) — Q) 1 (p, =0y

1 1
A Fl—— )1 du, 46
+/t,-1 (u) <na(u)> {p, ()e(0,00)} du (46)

where tildes distinguish the present refined abandonment process from its previous
version (35). Note that the last term in (46) is proportional to 1/n for large n. Hence, as
also seen from the example at the end of the section, such a correction term produces
only marginal improvements in the quality of the approximation.
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Second, discrepancy between the fluid functions and sample means of stochastic
processes also arises because of the nonlinear nature of the system. Indeed, averag-
ing sample paths of stochastic processes could produce a bias relative to their fluid
functions due to Jensen’s inequality. The reader is referred to [2,25] for examples of
studies of such biases in queueing contexts. Somewhat different results are obtained
depending on whether one considers the total number in the system or, separately, the
number awaiting service and being served.

Our numerical experiments indicate that errors due to Jensen’s inequality play a
more prominent role than the errors discussed earlier. In fact, one expects (based on
the CLT) that errors due to nonlinearities are of the order 1/,/n. In general, better
results are obtained when a system does not operate in the critical regime (QED),
during which the queue size is close to 0 (Quality) and the service facility is close to
full (Efficiency).

Example 7 (Fluid approximation) Consider initially empty LPF systems with A () =
1 4 0.5sin(¢/2), and unit-rate exponential service and patience times. In addition
to the fluid model, we consider two corresponding queues with 50 and 250 servers
(arrival processes are Poisson with rates SOA(¢) and 250A(), respectively). In Fig. 6,
we plot relevant functions for the three systems. In particular, functions (X, Q, B,
A) corresponding to the fluid model are shown in blue. For the two finite systems
with n = 50 (green) and n = 250 (red), we plot empirical averages (scaled by
the number of servers) of queueing stochastic processes, based on 10,000 and 1000
replications, respectively. For the system with 50 servers, we also plot the corrected
fluid approximation [based on (46)] as well. As seen in the figure, this approximation
provides only a minor improvement, which is consistent with our discussion that led
to the example.
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