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Abstract In personalized queues, information at the level of individuals—customers

or servers—affects system dynamics. Such information is becoming increasingly

accessible, directly or statistically, as exemplified by personalized/precision medicine

(customers) or call center workforce management (servers). In the present work, we

take advantage of personalized information about customers, specifically knowledge

of their actual (im)patience while waiting to be served. This waiting takes place in

a many-server queue that alternates between over- and underloaded periods, hence

a fluid view provides a natural modeling framework. The parsimonious fluid view

enables us to parameterize and analyze partial information, and consequently calcu-

late and understand the benefits from personalized customer information. We do this by

comparing least-patience first (LPF) routing (personalized) against FCFS (relatively

info-ignorant). An example of a resulting insight is that LPF can provide significant

advantages over FCFS when the durations of overloaded periods are comparable to

(im)patience times.
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1 Introduction

A modeling paradigm for personalized queues In a personalized queueing system,

say M/M/n + M [17,47] for concreteness, interarrival times, service durations and

(im)patience are still all exponentially distributed, as usual, but their realizations for

individual customers and servers are assumed known, or partially known, prior to

decision making—for example prior to admitting customers into the system or prior

to matching them with servers. Personalized information is lacking from classical

protocols, for example FCFS or LCFS or random order, which are oblivious to when

exactly the next arrival will happen, or who is the least patient among the customers

waiting to be served, or who is the fastest server among those available to serve.

Why “paradigm”? Because essentially every queueing model can be “personalized,”

by making individual realizations of its primitives available to its decision proto-

cols, yet without altering the sub-models (distributions) of these primitives. While

there exists ample queueing research that fits this “personalized” scheme, for exam-

ple assigning high priority to a shortest processing time or to an earliest deadline, we

believe that acknowledging a common timely theme across this dispersed research is of

value—and hence worthy of the term “paradigm.” Furthermore, in existing schemes

full information is available, for example, individual service or patience times are

known exactly. Yet of great importance is also the practical case of partial information,

where knowledge about individual realizations is noisy (cf. triage process in emer-

gency departments, the goal of which is to reduce such noise). A central challenge in

our paradigm is thus the trade-off between information availability and performance.

We expect the paradigm of personalized queues to become increasingly practice-

relevant with the proliferation of personalized data. One example is [16], which

provides empirical support for a personalized server view—individual service dura-

tions. A second example is [18], which in fact motivated the present paper. It develops

inference tools that enable the personalization of customer impatience in telephone

queues. Making this personalized customer information available to discretionary con-

trol should yield a reduction in abandonment. Ultimately, one could combine the server

and customer views to form a more general manager view: here one takes into account

personalized information about both customers and servers.

On abandonment Customer abandonment is an effect that is prevalent in a variety

of service systems, from telephone call centers through internet sites to emergency

departments. It is typically desirable to reduce the abandonment rate, which often

serves as a proxy for service quality and value: through abandoning, a customer is

informing the service provider that the value of its service is unworthy of its wait. The

terms “abandonment” and “customer impatience” are context dependent. For example,

in call centers [40] or emergency departments [19], customer patience is the amount

of time that a customer is willing or able to wait for service; in terror queues [31],

abandonments correspond to terror attacks.

Nowhere is the significance of “abandonment” better encapsulated than in mass

casualty events (MCEs). During an MCE, customer “patience” is the longest time

period that a patient can survive without receiving medical care—an abandon-

ment is thus death [11]. Furthermore, MCEs are incidents where medical resources

123

Author's personal copy



Queueing Syst

(personnel, equipment) are overwhelmed by the number and severity of casualties [44],

for example, it is not uncommon that the arrival rate to a hospital emergency depart-

ment (ED) triples or quadruples during such events. MCE workloads thus impose an

extreme strain on hospital resources (under normal circumstances hospitals already

operate close to their capacity—hence very long waiting times are ED routine). Con-

sequently, hospitals often maintain emergency plans that facilitate treatment of a large

number of casualties (note that despite such plans, medical personnel can experience

ethical dilemmas [42] as treatment must still be rationed due to limited resources).

Under such circumstances, a strategy that maximizes the number of saved lives is a

natural goal—that is, a strategy that minimizes abandonment.

MCEs typify the realities that our models here capture: impatient customers that

seek, at rates that are time-varying over a finite time horizon, service that is to be

provided by multi-servers so as to minimize abandonment. In this context, personalized

information about customers is naturally their exact time to abandon—their patience;

and a policy that is a natural candidate for minimizing abandonment (and proved to

be such in special cases—see [46,49]) is one that assigns the highest priority (non-

preemptively) to a customer with the least patience.

Contributions In this paper, we introduce a many-server fluid model. It corresponds

to the many-server G t/GI/n + GI queue, but it can and should be viewed on its own

merit, namely a model for time-varying many-server queueing system with impatient

customers (we take the view that our fluid model and G t/GI/n+GI are alternatives for

capturing a given reality, each with its merits and flaws; and focusing on the former

renders somewhat of less significance the fact that it can be proved a limit of the

latter—such convergence is thus a fact that we do not establish formally here).

Fluid abandons the queue when its waiting times reaches its “patience.” In the model

with partial information, we assume that full information is available on individual

realizations of estimated (random) individual patience times, rather than the patience

times themselves. Patience times and their estimates are dependent and characterized

by a joint density function. No information on service times is available to the sched-

uler. Customers (fluid) with shorter estimated patience times are given priority over

customers with longer estimated patience times. That is, the (non-preemptive) least-

patient first (LPF) policy based on estimated patience times is implemented. Such a

model is very natural in the MCE context.

A benchmark for partial information is the model with full information. Although

unrealistic in some applications (for example, MCEs), such a model is important as

it provides bounds for the performance of models with partial information. In the full

information LPF model, the scheduler has full knowledge of individual realizations

of customer patience times (and, hence, residual patience times of customers awaiting

service at any moment of time). In both the cases of full and partial information, we

propose a numerical algorithm for evaluating relevant performance measures (queue

length, abandonment rate, etc.) of the fluid model. (For numerical benchmarking and

anecdotal interest only, we also consider an algorithm that corresponds to a fluid model

operating under most patient first (MPF) routing.)

To be more specific, we focus on time-varying fluid models that alternate between

over- and underloaded periods. As we now explain, these are circumstances when
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the advantages (fewer customers abandon) of LPF over FCFS can become signifi-

cant. In comparison, employing LPF instead of FCFS in a many-server queue, in the

quality-and-efficiency driven (QED) regime [20,39,50], decreases the probability of

abandonment from order 1/
√

n to 1/n, with n being the number of servers; thus, for

n large enough and practically speaking, QED service levels under FCFS are already

too high to warrant a dramatic improvement (though, theoretically, 1/
√

n and 1/n do

indeed differ significantly). Similarly, implementing LPF in a permanently overloaded

queue does not yield significant results since a constant fraction of customers abandon

regardless of the policy (unless service-time realizations can be taken into account). On

the other hand, when over- and underloaded time intervals are present, a personalized

policy can harmlessly shift the load in time (by delaying customers with long patience

times), which effectively reduces overloaded periods that cause the abandonment.

One should note that the behavior of LPF differs from that of a multi-class system

with static priorities. Indeed, the latter cannot mimic LPF, under which the “prior-

ity” of a customer awaiting service continuously increases as its remaining patience

decreases with time.

A comment on terminology Readers would recognize that LPF policy has been tra-

ditionally referred to as earliest deadline first (EDF). Such terminology connotes

system-imposed deadlines that are common in computing/communication and pro-

duction/manufacturing systems—these operate mostly in steady state with a few

servers [21,43,55]. In contrast, our LPF terminology fits patience which is inherently

a personal characteristic of the customer—and this is prevalent in service systems with

time-varying arrival rates and many servers.

Organization Our paper is organized as follows. Next we provide a brief literature

review, which is followed by a specification of our fluid model in Sect. 3. The LPF

policy under full information is considered in Sect. 4, accompanied by a corresponding

numerical algorithm. Our model and algorithm for the case of partial information

appear in Sect. 5. Based on numerical examples, we discuss various insights in Sect. 6.

The paper concludes in Sect. 7 with some further observations and commentary.

2 Literature review

Support for fluid models of time-varying many-server stochastic queueing systems was

provided by [37,38,41,48]. Analyses of many-server fluid models with abandonments

have mostly focused on systems operating under the FCFS policy. In particular, a sta-

tionary model was studied in [56]. Formal fluid limits for this model were established

in [30] by extending results for the model without abandonment from [32]. In [36], a

network of fluid models was considered, while a system with time-varying capacity

was investigated in [37]. A numerical algorithm for evaluating sample paths of FCFS

many-server fluid models with constant capacities was proposed in [27]. A fluid limit

of a multi-class many-server queueing network with abandonment and feedback is

studied in [28].

Early analyses of EDF can be found in [22–24]. There exist several variants of

this policy (preemptive/non-preemptive, etc.), with some shown to satisfy optimality
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properties. In particular, the non-preemptive version is optimal for feasibility [13] (that

is, if a collection of jobs can be scheduled in a way that ensures all the jobs complete by

their deadline, the EDF policy will schedule this collection of jobs so they all complete

by their deadline). In [49] it was argued that the EDF policy maximizes the expected

number of customers that meet their deadlines, within the class of work-conserving

non-preemptive policies, in the M/G/1 + G queue. Stability and optimality (under

various cost functions) of EDF in single-server systems were examined in [46]. In the

case when all customers are served (no abandonment), the EDF policy minimizes the

lateness and tardiness of the jobs that are in the system at an arbitrary time [54], as

well as any convex function of the average tardiness [45]. EDF scheduling was studied

in the context of conventional heavy traffic, both without [14,33] and with abandon-

ments [34]. A fluid limit of a heavily loaded EDF M/M/1 queue was considered

in [12]. Fluid limits of G/G/1 + G queues under EDF were investigated in [6].

Our partial information framework relates to studies of multi-class systems where

customer classes can be estimated/predicted [3,4]. Such models are considered under

the assumption that one is capable of achieving certain classification rates. For exam-

ple, this happens with nurses in emergency departments, who can estimate urgencies

of patient conditions with reasonable accuracy. Typically, a Bayesian view is adopted,

where classes are characterized by probability distributions of service/patience times

rather than realizations associated with individual patients; for example, [35]. Such

queueing models have been used to capture the triage process in emergency depart-

ments [51,52]. This multi-class approach and our framework have a common

feature—customer characteristics are estimated/predicted based on data available at

the customer’s arrival time. In addition, one can also extract some information about

individual customers based on their behavior in the system. For example, differentia-

tion among customers present in the waiting room can be obtained by considering their

(current) waiting durations (even in the case when all customers belong to the same

class). In general, two customers that spent different amounts of time in the waiting

room have different probabilities of abandoning the system (consider the conditional

distribution of patience). This approach has been exploited in [7], where the authors

argue for priority scheduling based on waiting times of customers present in the wait-

ing room. Informally, when the hazard function of patience is increasing (decreasing),

priority should be given to customers that spent more (less) time in the waiting room.

Finally, we remark that the trade-off between information availability and queueing

performance has been examined in [53], albeit in a different context. The authors

consider an overloaded single-server queue with admission control: the service and

arrival rates are 1 − p and λ ∈ (1 − p, 1), respectively. Under the constraint that jobs

can be rejected up to a rate p, the authors analyzed a policy that minimizes average

queue length, as a function of the time-window during which information on future

arrivals is available.

3 The fluid model

A flow of fluid (deterministic divisible quantity) arrives at a system that consists

of an unlimited waiting space and a service facility with a fixed finite processing
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capacity s > 0 (throughout the paper we follow the notation and conventions of [56]).

Let Q(t) and B(t) be the amount of fluid awaiting service and obtaining service at

time t ≥ 0, respectively. The total fluid inflow over an interval [0, t] is Λ(t), where Λ

is an absolutely continuous function with Λ(t) =
∫ t

0 λ(x) dx , t ≥ 0; {λ(t), t ≥ 0} is a

time-dependent arrival rate function. At time t , arriving fluid either enters the service

facility, if there is space available (B(t) < s), or joins the waiting room otherwise

(B(t) = s). The system satisfies the standard work-conservation condition: the queue

is non-empty if and only if there exists no spare capacity.

Assumption 1 (Work conservation and finite capacity) For all t ≥ 0,

(s − B(t)) Q(t) = 0 and B(t) ≤ s.

Let X (t) = B(t) + Q(t) be the total amount of fluid in the system at time t . Then

Q(t) = (X (t) − s)+ and B(t) = s − (s − X (t))+ = X (t) ∧ s; here and later, the

symbols ∧ and ∨ represent the minimum and maximum operators, respectively.

Fluid flows out of the system from either the waiting room—by abandoning, or

from the service facility—after being served. Formally, a fraction F(x) of fluid that

entered the queue at time t abandons by time t + x , provided it has not entered service

by then. In addition, a fraction G(x) of any quantity of arriving fluid requires service

of at most x time units after entering service. Here the functions F and G are given

distribution functions, which are referred to as the abandonment and service distribu-

tion, respectively. Denote Ḡ := 1 − G and F̄ := 1 − F . A bivariate distribution H

will serve as the joint distribution of true and estimated patience times (see Sect. 5).

As in [37], we consider a “smooth” model. Let Cp ⊆ D be the set of

piecewise-continuous real-valued functions, i.e., functions that have only finitely many

discontinuity points in any finite interval, with left and right limits at each discontinu-

ity point (within the interval); here D is the space of right-continuous functions with

left limits. The following assumption implies that the arrival rate λ is bounded over

finite intervals [9, p. 122].

Assumption 2 (Smoothness) Λ and G are differentiable functions with derivatives λ

and g in Cp; the distribution functions F and H have densities f and h.

The generality of the distributions F and G renders Q(t) and B(t) insufficient for

capturing the state of the system at time t—a more detailed description is needed,

which records the relevant history of fluid in the waiting room and service facility.

There are multiple ways to describe the state of fluid awaiting service, which we

elaborate on in the next sections. These multiple ways correspond to different models

for information and scheduling policies.

As for fluid in service, introduce a two-parameter function B such that B(t, x) is the

total quantity of fluid in service at time t ≥ 0 that has been in service for at most x ≥ 0

time units; one has B(t,∞) = B(t). We follow the description of the service facility

provided in [37] for a FCFS fluid model. Note that fluid in service obeys the same

rules both in the FCFS model and the model we consider. Indeed, the LPF policy (like

FCFS) does not use any information about service times. Thus, our focus will be on

the description of the waiting room (in Sects. 4, 5). Presently, we provide some basic
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description of the service facility for completeness. The remaining three assumptions

in this section are from [37]—they ensure that the model of fluid in service is well

defined; see [37] for details on how various performance measures can be evaluated.

In particular, they imply that B(t, ·) admits the representation

B(t, x) =
∫ x

0

b(t, u) du;

here b(t, x) is the density of fluid that spent x time units in service at time t .

Assumption 3 (Initial fluid in service) Fluid in service at t = 0 satisfies

B(0, x) =
∫ x

0

b(0, u) du and B(0) ≤ s,

for some nonnegative integrable b(0, ·) ∈ Cp such that

sup
0≤s≤t

∫ ∞

0

b(0, y) g(s + y)

Ḡ(y)
dy < ∞.

Assumption 4 (Fundamental service evolution equation) For t ≥ 0, x ≥ 0 and

u ≥ 0:

b(t + u, x + u) = b(t, x)
Ḡ(x + u)

Ḡ(x)
.

Let A(t) =
∫ t

0 α(u) du be the total amount of fluid to abandon during the interval

[0, t], with α(t) being the abandonment rate at time t ≥ 0 (it is defined in Sects. 4, 5).

Similarly, introduce E(t) to denote the amount of fluid that enters service in [0, t].
The total amount of fluid to complete service during the interval [0, t] is denoted S(t).

We now deduce the following basic flow conservation equations, which hold for all

t ≥ 0:

Q(t) = Q(0) + Λ(t) − A(t) − E(t) and B(t) = B(0) + E(t) − S(t). (1)

These totals are determined by instantaneous rates [37]:

E(t) :=
∫ t

0

γ (u) du, t ≥ 0,

where γ (t) := b(t, 0) is the rate at which fluid enters service at time t ; and

S(t) :=
∫ t

0

σ(u) du, t ≥ 0,
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where σ(t) is the service completion rate at time t , and is defined by

σ(t) :=
∫ ∞

0

b(t, x)
g(x)

Ḡ(x)
dx, t ≥ 0. (2)

Furthermore, in the special case of an initially empty system (q(0, x) = b(0, x) =
0, for all x ≥ 0, or just X (0) = 0), the following is known to hold [27]:

B(t) =
∫ t

0

Ḡ(t − u) dE(u) (3)

and

E(t) = B(t) +
∫ t

0

B(t − u) dU (u), (4)

where U is the renewal function associated with G, characterized by the renewal

equation [5, p. 143]:

U (t) = G(t) +
∫ t

0

U (t − u) dG(u), (5)

for t ≥ 0.

An additional regularity condition will now be imposed to define overloaded and

underloaded intervals. An overloaded interval starts at a time t1 with (i) Q(t1) > 0 or

(ii) Q(t1) = 0, B(t1) = s and λ(t1) > σ(t1), and ends at

T1 := inf{u ≥ t1 : Q(u) = 0 and λ(u) ≤ σ(u)}. (6)

An underloaded interval starts at a time t2 with (i) B(t2) < s or (ii) B(t2) = s,

Q(t2) = 0 and λ(t2) ≤ σ(t2), and ends at

T2 := inf{u ≥ t2 : B(u) = s and λ(u) > σ(u)}.

The underloaded interval may contain subintervals that are regarded as critically loaded

(Q(t) = 0, B(t) = s and λ(t) = σ(t)).

Assumption 5 (Finitely many switches in finite time) There are only finitely many

switches between overloaded and overloaded intervals in each finite time interval.

Each underloaded interval is of positive length.

Remark 1 The last assumption can be eliminated by considering the equivalence of

the fluid models in [26,30,37]; see [29] for details. The assumption simplifies the

analysis, since one can focus on underloaded and overloaded intervals separately.

To conclude our model specification, it seems worthwhile reviewing its primitives.

These are the service and patience time distributions (G and F) and the time-dependent
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arrival rate (λ); then the initial states (at time t = 0) of the service facility (density

b(0, ·)) and the waiting room (densities q(0, ·) and q(0, ·, ·) for the full and par-

tial information cases—see Sects. 4, 5); note that the partial information framework

requires also a joint density of true and estimated patience times (H—see Sect. 5).

All other variables/processes are outputs of the model.

4 Full information: a benchmark

In this section, we consider the least-patient first scheduling policy that exploits full

information. We define a two-parameter function Q, such that Q(t, x) is the total

quantity of fluid in the queue at time t ≥ 0, with remaining patience at most x ≥ 0:

Q(t, x) =
∫ x

0

q(t, u) du and Q(t,∞) = Q(t); (7)

q(t, x) can be interpreted as the density of fluid awaiting service with the remaining

patience x at time t (during an overloaded period). The representation (7) is due to

Assumptions 6 and 7—see below. Without loss of generality, assume that the over-

loaded period begins at time 0 and ends at time T that satisfies (6); the value of T

need not to be known in advance [37]. The state of the waiting room at time t = 0 is

defined by fluid density q(0, ·):
Assumption 6 (Initial fluid awaiting service) In the case of full information, fluid

waiting service at t = 0 satisfies, for some q(0, ·) ∈ Cp,

Q(0, x) =
∫ x

0

q(0, u) du and Q(0) < ∞.

4.1 Least-patient first

Under least-patient first scheduling, a quantity of fluid enters service only if no other

fluid with lesser remaining patience is present in the waiting room. We define p↓(t) ∈
[0,∞] to be the remaining patience of the least-patient fluid awaiting service:

p↓(t) := inf{x ≥ 0 : q(t, x) > 0}; (8)

we set p↓(t) = ∞ when q(t, x) = 0 for all x ≥ 0 (the waiting room contains no

fluid, Q(t) = 0)—hence, p↓(T ) = ∞. At time t , the quantity p↓(t) represents the

boundary between remaining patience times of fluid that enters service and fluid that

remains in the waiting room. During an overloaded period, the system can be in three

states: (i) overloaded with abandonment; (ii) overloaded with no abandonment, and

fluid in queue enters service; and (iii) overloaded with no abandonment, and fluid in

queue does not enter service. Based on the above definition, we have, for t ≥ 0,

Q(t) =
∫ ∞

p↓(t)

q(t, x) dx . (9)
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We remark that the role of p↓ = {p↓(t), t ≥ 0} in the analysis of the LPF system is

similar to that of the boundary waiting time in the FCFS system [27,36]. Informally,

p↓ is a key quantity—all relevant functions associated with the model can be derived

from it. In general, p↓ need not be a continuous or differentiable function. However,

for sufficiently smooth model primitives, p↓ is non-differentiable only at finitely many

points on any finite interval (for an illustration, see Example 1 below). Due to the LPF

policy, the abandonment rate at time t is defined by

α(t) := (q(t, 0) − b(t, 0))+; (10)

recall that b(t, 0) = γ (t) is the rate at which fluid enters the service facility. Thus,

only fluid with zero remaining patience times that cannot be accommodated in the

service facility abandons the system. Note that q(t, 0) = 0 implies α(t) = 0.

A quantity of fluid is present in the waiting room only if its remaining patience

(which decreases linearly) does not drop below the boundary value p↓ at any moment

from the time of its arrival (not just at the arrival time). In particular, consider a quantity

of fluid that arrives at the system with patience x at time u. This fluid is present in the

waiting room at time t ≥ u, if x − y ≥ p↓(u + y), for all 0 ≤ y ≤ t − u, i.e., it is not

sufficiently impatient on the time interval [u, t]; here, x − y is the remaining patience

time after y time units spent in the waiting room. Next, let p↓(t, u) be the initial (at

arrival) patience of the least-patient fluid that arrived at time u and is still present in the

waiting room at time t ≥ u (see Fig. 1). Based on the preceding, the value of p↓(t, u)

is a solution of the following optimization problem: min z, s.t. z − y ≥ p↓(u + y),

∀y ∈ [0, t − u]. Note that the constraint can be rewritten:

z ≥ sup
0≤y≤t−u

{y + p↓(u + y)}

= sup
u≤x≤t

{x − u + p↓(x)},

and consequently

p↓(t, u) = sup
u≤x≤t

{x − u + p↓(x)}; (11)

a dual relation holds as well:

p↓(t) = inf
0≤u≤t

{p↓(t, u) − (t − u)}. (12)

For t such that ṗ↓(t) exists, (11) implies

∂p↓(t, u)

∂t
= (1 + ṗ↓(t))+1{p↓(t,u)=t−u+p↓(t)}. (13)

(For a function x differentiable at t , we use ẋ(t) to denote its derivative at t .)

The structure of the fluid content awaiting service at time t can be determined

from p↓. Consider fluid in the waiting room with remaining patience x at time t . Such
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Fig. 1 LPF: an example of p↓.

Related quantities p↓(t, u) and

|A↓(t, x)| are shown as well

tu0

x

x

p↓(t)

p↓(t, u)

|A↓(t, x)|

+ t − u

fluid is either present in the system at t = 0 or has arrived during the time interval

A↓(t, x) = {u ∈ [0, t] : p↓(t, u) ≤ x + t −u}. The quantity |A↓(t, x)|, the Lebesgue

measure of A↓(t, x), represents the length of a time interval over which fluid with

remaining patience x at time t is accumulated in the waiting room (see Fig. 1). The

LPF policy and the fact that remaining patience times decrease linearly imply that the

density q satisfies the following:

Assumption 7 (Fundamental LPF evolution equation) For t ≥ 0 and x ≥ p↓(t),

q(t, x) = q(0, x + t)1{x+t≥p↓(t,0)} +
∫ t

0

1{p↓(t,u)≤x+t−u}λ(u) f (t − u + x) du.

(14)

The assumption is based on the fact that fluid with remaining patience time x at

time t must arrive at the system at time u ∈ [0, t] (or be in the system at time 0) with

patience time x + (t − u), and it should not leave the waiting room during the time

interval [u, t] (this condition is equivalent to u ∈ A↓(t, x)). The first term accounts

for fluid in the system initially: fluid with remaining patience (x + t) at time 0 will

have remaining patience x at time t , provided it did not leave the waiting room prior

to time t (the event {x + t ≥ p↓(t, 0)} = {0 ∈ A↓(t, x)}). The integral in (14)

accounts for fluid not initially in the system. Assumptions 6 and 7 imply that q(t, ·)
is right-continuous, for all t ≥ 0. Given p↓, (11) and (14) can be used to determine

q(t, p↓(t)), the density of the “least-patient” fluid awaiting service at time t :

q(t, p↓(t)) = q(0, p↓(t) + t)1{p↓(t)+t=p↓(t,0)}

+
∫ t

0

1{p↓(t,u)=p↓(t)+t−u}λ(u) f (t − u + p↓(t)) du. (15)
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Next, we derive an expression for Q(t). To this end, substituting (14) in (9) yields

Q(t) =
∫ ∞

t+p↓(t)

q(0, x)1{x≥p↓(t,0)} dx +
∫ ∞

p↓(t)

∫

A↓(t,x)

λ(u) f (t + x − u) du dx

=
∫ ∞

p↓(t,0)

q(0, x) dx +
∫ ∞

p↓(t)

∫ t

0

λ(u) f (t + x − u) 1{p↓(t,u)+u−t≤x} du dx

=
∫ ∞

p↓(t,0)

q(0, x) dx +
∫ t

0

∫ ∞

p↓(t,u)+u−t

λ(u) f (t + x − u) dx du, (16)

where we used {x ≥ p↓(t, 0) ≥ p↓(t) + t} [see (11)] and {x ≥ p↓(t, u) + u − t ≥
p↓(t)} [see (12)]. Rewriting (16) renders an expression for the total amount of fluid

in the waiting room:

Q(t) = Q(0) − Q(0, p↓(t, 0)) +
∫ t

0

λ(u) F̄(p↓(t, u)) du, t ≥ 0. (17)

Note that the fraction F̄(p↓(t, u)) of fluid arriving at the system at time u is present in

the waiting room at time t ≥ u. Thus, the integral in the preceding equality represents

the amount of fluid not initially in the system (at time t = 0) that is in the waiting

room at time t .

Combining (1) and (17) yields an equation for p↓. In particular, p↓ is the maximal

solution of

∫ t

0

λ(u) F(p↓(t, u)) du + Q(0, p↓(t, 0)) − A(t) = E(t), (18)

with p↓(t) ≥ 0 and [see (10)]

∫ t

0

1{p↓(u)>0} dA(u) = 0. (19)

Since, in general, F and Q(0, ·) can be constants on certain intervals, there could exist

multiple solutions of (18). The function p↓ corresponds to the maximal solution due

to (8). The value of p↓(0) is determined by (8) and q(0, ·) (Assumption 6). We note

that p↓ appears only on the left-hand side of (18), while the right-hand side is known.

Assumption 8 For sufficiently smooth model primitives, p↓(·) is non-differentiable

only at finitely many points on any finite interval. Moreover, there exists a unique

solution p↓(·) ≥ 0 of (18) under (19).

The last assumption is motivated by monotonicity (proving existence and unique-

ness is beyond the scope of the present paper). In particular, by introducing p̃↓(t) ∈ R

such that p̃↓(t) = p↓(t) − α(t), (18) can be rewritten without constraints [p↓(t) ≥ 0

and (19)]:

∫ t

0

λ(u) F( p̃↓(t, u)) du + Q(0, p̃↓(t, 0)) −
∫ t

0

p̃−
↓ (u) du = E(t),
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λ(t)
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γ(t)

γ(t)

γ(t)

γ(t)

σ(t)

α(t)

00

0

xx

x

x

q(t, x)

q(t, x)

q(t, x)

Q(t)

Q(t)

Q(t)

b(t, x)

B(t)

q(t, p↓(t))

q(t, p↓(t)) = 0
p↓(t)

p↓(t)

0 = p↓(t)

Fig. 2 LPF: examples of densities describing fluid in the waiting room (left) and service (right) at time t .

When p↓(t) > 0 no abandonment occurs. Fluid enters the service facility either directly or via the waiting

room

where p̃↓(t, u) := supu≤x≤t {x − u + p̃+
↓ (x)}. Then the left-hand side is monotonic

in p̃↓, which describes both p↓ and α: p↓(t) = p̃+
↓ (t) and α(t) = p̃−

↓ (t); note

that A(t) =
∫ t

0 α(u) du =
∫ t

0 p̃−
↓ (u) du. Our numerical algorithm is based on a

discrete-time analogue of (18)—see Sect. 4.4 for details. There, we argue that the

above mentioned monotonicity implies existence and uniqueness of a discrete-time

version of p↓. In Sect. 4.3, we provide two specific examples that illustrate how (18)

characterizes p↓. In the next section, we derive a differential version of (18). It provides

some insight into the LPF fluid model.

4.2 Differential version of (18)

A differential version of (18) can be obtained by consideringγ (t), the rate at which fluid

enters the service facility. The case p↓(t) = 0 is straightforward: γ (t) = q(t, 0)−α(t)

[see (10)]. On the other hand, when p↓(t) > 0, fluid entering service does that either

directly, or via the waiting room (see Fig. 2). The two cases can be combined into a

single equation (for t ≥ 0 such that p↓ is differentiable at t):

γ (t) + α(t)1{p↓(t)=0} = λ(t)F(p↓(t)) + (1 + ṗ↓(t))+q(t, p↓(t)), (20)

where the second term on the right-hand side represents the rate of fluid transfer

between the waiting room and the service facility (recall that q(t, ·) is right-

continuous). Specifically, if ṗ↓(t) ≤ −1, then no fluid in the queue enters service,

since p↓(t) decreases at least as fast as the remaining patience of the least-patient fluid

in the waiting room (which decreases at unit rate); the derivative being smaller than

−1 is due to external arrivals with patience times smaller than p↓(t). On the other
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hand, when ṗ↓(t) > −1, the least-patient fluid in the waiting room (the density of

such fluid is q(t, p↓(t))) enters service, since its remaining patience decreases below

p↓(t). Formally, for t ≥ 0 such that p↓(t) > 0 (no abandonment, α(t) = 0) and ṗ↓(t)

exists, (18) and (13) result in

γ (t) = q(0, p↓(t, 0))
∂p↓(t, 0)

∂t

+ λ(t) F(p↓(t)) +
∫ t

0

λ(u) f (p↓(t, u))
∂p↓(t, u)

∂t
du

= λ(t)F(p↓(t)) + q(0, p↓(t) + t) (1 + ṗ↓(t))+ 1{p↓(t,0)=t+p↓(t)}

+ (1 + ṗ↓(t))+
∫ t

0

λ(u) f (t − u + p↓(t)) 1{p↓(t,u)=t−u+p↓(t)} du. (21)

Combining (15) and (21) yields (for t such that p↓(t) > 0 and ṗ↓(t) exists):

γ (t) = λ(t)F(p↓(t)) + (1 + ṗ↓(t))+ q(t, p↓(t)).

Furthermore, (20) can be simplified by noting that ṗ↓(t) < −1 implies q(t, p↓(t)) =
0. Indeed, recall (15) and assume 1{p↓(t,u)=p↓(t)+t−u} = 1 for some u ∈ [0, t]; here

u is an integration variable. Under this assumption ∂p↓(t, u)/∂t = ṗ↓(t) + 1 < 0.

However, (13) yields ∂p↓(t, u)/∂t = 0. Hence, p↓(t, u) �= p↓(t) + t − u, and (15)

results in q(t, p↓(t)) = 0. Consequently, we have a differential version of (18):

γ (t) + α(t)1{p↓(t)=0} = λ(t)F(p↓(t)) + (1 + ṗ↓(t)) q(t, p↓(t)). (22)

4.3 Examples

This subsection contains two examples.

Example 1 (G t/M/s + M LPF fluid model) Consider an initially empty (b(0, x) =
q(0, x) = 0) fluid model with Ḡ(x) = e−µx , F̄(x) = e−θx , and λ(t) = (1+δ)µs, for

some δ > 0. This system evolves through three time periods: (i) during 0 ≤ t < t1,

some spare processing capacity exists (underloaded period); (ii) during t1 ≤ t < t2,

there is no spare processing capacity, the queue is nonzero, and no fluid abandonment

occurs; and (iii) during t ≥ t2, fluid abandonment occurs. Below we derive a detailed

description of the evolution. Note that for 0 ≤ t ≤ t1, the departure rate satisfies

(see (2) and [37, Proposition 2])

σ(t) =
∫ t

0

λ(t − u) g(u) du = (1 + δ)µs
(

1 − e−µt
)

,

and, thus, flow conservation (1) yields (Λ(t1) = S(t1) + s)

t1 = 1

µ
log

1 + δ

δ
. (23)
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Furthermore, fluid enters service at rate [37]

γ (t) =
{

(1 + δ)µs, t < t1,

µs, t ≥ t1,
(24)

while σ(t) = s for t ≥ t1. Hence, B(t) = E(t) − S(t) implies

B(t) =
{

(1 + δ)s
(

1 − e−µt
)

, t ≤ t1,

s, t ≥ t1.
(25)

For t < t1, the system is in an underloaded period, implying that p↓(t) = ∞, for

t ≤ t1. The function {p↓(t), t > t1} is determined by (18):

(1 + δ)µs

∫ t

t1

(

1 − e−θp↓(t,u)
)

du = µs(t − t1) + A(t),

where E(t) is defined by (24). The solution of this equation is given by p↓(t, u) =
t − u + p↓(t), where

p↓(t) =

⎧

⎪

⎨

⎪

⎩

∞, 0 ≤ t ≤ t1,

1
θ

log
(1+δ)

(

1−e−θ(t−t1)
)

δθ(t−t1)
, t1 < t ≤ t2,

0, t ≥ t2,

(26)

and, consequently, for t1 < t < t2,

ṗ↓(t) = (1 + θ(t − t1))e
−θ(t−t1) − 1

θ(t − t1)
(

1 − e−θ(t−t1)
) > −1, (27)

with ṗ↓(t1+) = −1/2; from (26) it follows that

p↓(t1+) = lim
t↓t1

p↓(t) = 1

θ
log

1 + δ

δ
.

Then, t2 is the root of

1

θ
log

(1 + δ)
(

1 − e−θ(t−t1)
)

δθ(t − t1)
= 0,

or

δθ(t2 − t1) = (1 + δ)

(

1 − e−θ(t2−t1)
)

. (28)
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Now, (26) and (15) imply

q(t, p↓(t)) =
{

µsθδ(t − t1), t1 ≤ t ≤ t2,

(1 + δ)µs
(

1 − e−θ(t−t1)
)

, t ≥ t2,
(29)

which in turn yields [see (10)]

α(t) = µs
(

δ − (1 + δ)e−θ(t−t1)
)

1{t≥t2}; (30)

note that α(t) → µsδ, as t → ∞. Based on (26), (27), (29) and (30), it is

straightforward to verify that (22) holds. Note that, p↓(t1+) satisfies γ (t1+) =
λ(t1+)F(p↓(t1+)), since q(t1+, p↓(t1+)) = 0. Finally, observe that γ (t) >

λF(p↓(t)) for t1 < t < t2 (i.e., fluid enters service both directly and via the waiting

room during the time interval (t1, t2)). Indeed, for t1 < t < t2, (24) and (26) imply

γ (t) − λF(p↓(t)) = µs − (1 + δ)µs

[

1 − δθ(t − t1)

(1 + δ)
(

1 − e−θ(t−t1)
)

]

= µsδ

[

θ(t − t1)

1 − e−θ(t−t1)
− 1

]

> 0,

where the inequality is due to e−x > 1 − x , for x > 0.

Example 2 (G t/D/s + D LPF: a non-smooth fluid model) Although we focus on

smooth models, LPF fluid models can be considered under more general conditions.

Here the formulation (18) comes to the rescue. For example, suppose G(x) = 1{x≥1/µ}
and F(x) = 1{x≥d}, with initial conditions given by b(0, x) = µs1{0≤x<1/µ} and

q(0, x) = 0. Let the arrival rate satisfy λ(t) = (1 + δ)µs, for some δ > 0. In that

case, b(t, x) = µs 1{0≤x<1/µ}, and E(t) = S(t) = µst , t ≥ 0. Equation (18) renders

an equation for p↓:

(1 + δ)µs

∫ t

0

1{p↓(t,u)≥d} du − A(t) = µst.

The solution of the preceding equation is given by

p↓(t) =
(

d − δ

1 + δ
t

)+
, t > 0;

thus, no fluid abandonment occurs before time (1+δ)d/δ. Moreover, A(t) = δµs(t −
d(1 + δ)/δ)+ and q(t, x) = (1 + δ)µs 1{(d−δt/(1+δ))+≤x<d}.

4.4 A numerical algorithm

In this subsection, we provide an algorithm (Algorithm 1) for computing relevant

functions of the fluid model under LPF. The algorithm is based on an algorithm for
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the FCFS system [27]. As in [27], we require that the system is initially (t = 0)

empty (E(0) = B(0) = Q(0) = A(0) = 0, implying p↓(0) = ∞); this allows us to

utilize (4). The algorithm iteratively computes values of E(ti ), B(ti ), Q(ti ), A(ti ) and

p↓(ti ) for ti = iδ, i = 1, 2, . . . , n, where δ is a time step. The iterative step depends

on whether there exists spare capacity in the system.

Our algorithm requires evaluations of several integrals—see (31), (32) and (34).

Here, we do not specify a scheme for numerically evaluating those integrals, because

multiple methods can be used (based on the partition 0 = t0 < t1 < · · · < tn). Note

that determining the value of U (ti ) is based on the integral equation (5). Multiple

methods for evaluating the integral in (5) can be used as well. For example, using the

trapezoidal rule yields

U (ti ) ← 2G(ti )

2 − G(t1)
+

i
∑

j=2

G(t j ) − G(t j−1)

2 − G(t1)

(

U (ti − t j ) + U (ti − t j−1)
)

.

The rationale for the algorithm is as follows. Under the first case in the iteration

(B(ti−1) < s), some capacity is available at t = ti−1, and one attempts to evaluate the

system state at time t = ti under the same condition—thus, E(ti ) ← Λ(ti ) − A(ti−1)

(since there is no abandonment in [ti−1, ti ]) and (31), which is based on (3). If it

turns out that indeed B(ti ) < s, straightforward updates follow. However, if one

obtains B(ti ) = s, the queue content at time ti needs to be determined, along with

other relevant quantities. To this end, the amount of fluid that entered service by ti
is computed via (32) [see (4)], and the balance equation (1) for the waiting room

is utilized—the system of equations (33)–(36) is a discrete-time analogue of (18).

Observe that the right-hand side in (33) is known, while the left-hand side depends on

p↓(ti ).

The quantity Q(ti ) [evaluated based on (17)] is monotone in p↓(ti ), and A(ti ) −
A(ti−1) is nonzero only if p↓(ti ) = 0. These two facts imply that there exists a

maximum solution of (33)–(36). In particular, if p↓(ti ) = 0 implies Q(ti )+ A(ti−1) >

Λ(ti ) − E(ti ), then the solution of (33)–(36) is positive (and unique). Otherwise, the

solution is zero and A(ti ) = Λ(ti ) − E(ti ) − Q(ti ). Equation (36) is a discrete-time

version of (11). The second case in the iteration (B(ti−1) = s) follows the same

reasoning, except that one first attempts to verify that the system remains overloaded.

5 Partial information

We now consider the LPF policy under the assumption that only partial informa-

tion about fluid patience is available. We model partial information by means of a

bivariate distribution H , such that H(x, y) =
∫ x

0

∫ y

0 h(u, v) dv du represents the frac-

tion of arriving fluid with patience at most x and estimated patience at most y; then,

H(x,∞) = F(x).

It is appropriate to think of h(x, y) as the density of arriving fluid with true

patience x and estimated (perceived) patience y. The distribution H defines two rele-

vant conditional distributions. For fluid with (true) patience x , the conditional density
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Algorithm 1

1: B(0) ← 0, E(0) ← 0, Q(0) ← 0, A(0) ← 0, U (0) ← 0 ⊲ initialization

2: p↓(0) ← ∞, p↓(0, 0) ← ∞ ⊲ initialization

3: for i = 1, . . . , n do ⊲ iterative step

4: if B(ti−1) < s then

5: E(ti ) ← Λ(ti ) − A(ti−1)

6:

B(ti ) ← s ∧
∫ ti

0
Ḡ(ti − u) dE(u) (31)

7: if B(ti ) < s then ⊲ empty waiting room

8: p↓(ti ) ← ∞, Q(ti ) ← 0, A(ti ) ← A(ti−1)

9: else ⊲ B(ti ) = s

10: evaluate U (ti ) based in (5)

11:

E(ti ) ← B(ti ) +
∫ ti

0
B(ti − u) dU (u) (32)

12: p↓(ti ) ← maximum solution of nonlinear equations (33)–(36):

Q(ti ) + A(ti ) = Λ(ti ) − E(ti ) (33)

Q(ti ) =
∫ ti

0
λ(u) F̄(p↓(ti , u)) du (34)

A(ti ) = A(ti−1) +
(

Λ(ti ) − E(ti ) − A(ti−1) − Q(ti )
)+

1{p↓(ti )=0} (35)

p↓(ti , t j ) = max
j≤k<i

{tk − t j + p↓(tk )} ∨
(

ti − t j + p↓(ti )
)

, j = 0, . . . , i (36)

13: evaluate {p↓(ti , t j )}i
j=0

based on (36)

14: evaluate Q(ti ) based on (34)

15: evaluate A(ti ) based on (35)

16: else ⊲ B(ti−1) = s

17: B(ti ) ← s

18: evaluate E(ti ) based on (32)

19: if Λ(ti ) − Λ(ti−1) + Q(ti − 1) ≤ E(ti ) − E(ti−1) then ⊲ empty waiting room

20: E(ti ) ← Λ(ti ) − A(ti−1)

21: p↓(ti ) ← ∞, Q(ti ) ← 0, A(ti ) ← A(ti−1)

22: evaluate B(ti ) based on (31)

23: else ⊲ non-empty waiting room

24: p↓(ti ) ← maximum solution of (33)–(36)

25: evaluate {p↓(ti , t j )}i
j=0 based on (36)

26: evaluate Q(ti ) based on (34)

27: evaluate A(ti ) based on (35)
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of estimated patience at y is given by h(x, y)/
∫ ∞

0 h(x, v) dv. Similarly, given that

estimated patience is equal to y, the conditional density of actual patience at x is given

by h(x, y)/
∫ ∞

0 h(u, y) du. Both conditional distributions can be estimated from (cen-

sored) data via statistical analysis (procedures to estimate individual patience times

are beyond the scope of this work, and are left for future research. Relevant references

include [1,8,10,15,40]).

We focus on a model where patience times are estimated only once—upon arrival.

Such a setup does arise in mass casualty events where triage is employed, or in call

centers that opt for such protocols. One could also consider models where patience

is (re)estimated periodically or continuously. In such models, the scheduling priority

(based on re-estimated patience) would change as new information becomes available.

The fact that fluid spent a certain amount of time awaiting service provides some

information about its patience, since it statistically distinguishes it from fluid that had

the same characteristics upon arrival but that has abandoned the system. Additional

personalized information could be obtained by proactively acquiring it (for example,

obtaining and/or providing information while waiting for a phone service, or via patient

reexamination in emergency departments). We also note that our estimates of patience

are numbers—a scheme that is appealing since it is straightforward to keep track of

such estimates. In a more general setting, probability distributions can be used to

describe estimated patience times.

Example 3 (Partial information) Let (π, π̂) be a pair of random variables characteriz-

ing the true and estimated patience times for an infinitesimally small amount of fluid.

Suppose that

(π, π̂)
d=

(

eZ , eẐ
)

,

where (Z , Ẑ) is bivariate normal with EZ = EẐ = θ , Var(Z) = Var(Ẑ) = σ 2 and

Cov(Z , Ẑ) = ρσ 2. That is, both patience and estimated patience are lognormally

distributed with parameters θ and σ (π, π̂ ∼ ln N (θ, σ 2)), and the joint density

function is given by

h(x, y) = 1

2πσ 2xy
√

1 − ρ2
e
− (log x−θ)2+(log y−θ)2−2ρ(log x−θ)(log y−θ)

2σ2(1−ρ2) ,

x, y ≥ 0. Under this setup, it is convenient to model dependency between π and π̂ ,

since it is described by a single parameter (ρ)—the two are independent when ρ = 0,

and the two are equal when ρ = 1. Otherwise, the conditional density of true patience

at x ≥ 0, given that the estimated patience is y ≥ 0, is

h(x | y) = 1
√

2πσ x
√

1 − ρ2
e
− (log x−ρ log y−(1−ρ)θ)2

2σ2(1−ρ2) ,

or equivalently π |{π̂ = y} ∼ ln N (ρ ln y + (1−ρ)θ, σ 2(1−ρ2)). The coefficient of

variation and mean of this conditional distribution are given by
√

eσ 2(1−ρ2) − 1 and
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yρe(1−ρ)θ+σ 2(1−ρ2)/2, respectively; that is, the coefficient of variation does not vary

with y. For two independent patience times, their order (<, >) is the same as the order

of the corresponding estimated patience times with probability

√

1 − ρ2

π

∫ π/2

0

dx

1 − ρ sin x
;

as expected, one obtains 1/2 and 1, for ρ = 0 and ρ = 1, respectively.

Introduce a three-parameter function Q such that Q(t, x, y) is the amount of fluid

awaiting service at time t ≥ 0, with patience at most x ≥ 0 and estimated patience at

most y ∈ R:

Q(t, x, y) =
∫ y

−∞

∫ x

0

q(t, u, v) du dv and Q(t,∞,∞) = Q(t).

It is appropriate to think of q(t, x, y) as the density of fluid in the waiting room

with true remaining patience x and estimated remaining patience y at time t (see

Assumptions 9, 10). Note that, in the preceding equation, the integration covers also

negative values of estimated remaining patience times. In fact, negative values of

such times are feasible, since they decrease linearly over time. This corresponds to

situations where a quantity of fluid was supposed to abandon based on an estimate

on its arrival, but it remains in the waiting room due to a sufficiently large actual

patience time (for example, if actual and estimated remaining patience times are 5

and 1 at t = 0, respectively, then those values are 3 and −1 at t = 2, respectively).

We allow such negative values because they contain relative (ordering) information

about estimated patience times of fluid in the waiting room. On the other hand, actual

remaining patience times are always nonnegative—fluid abandons from the waiting

room as soon as the actual remaining patience time decreases to 0 [see (40)].

Assumption 9 (Initial fluid awaiting service) In the case of partial information, the

fluid waiting service at t = 0 satisfies

Q(0, x, y) =
∫ y

−∞

∫ x

0

q(0, u, v) du dv and Q(0) < ∞,

where q(0, ·, ·) is bounded, with q(0, x, ·) ∈ Cp for all x ≥ 0.

In this section, we let p↓(t) be the least estimated remaining patience of fluid present

in the waiting room:

p↓(t) := inf
{

y : sup
x≥0

q(t, x, y) > 0
}

;

the definition of p↓(t, u) is as in Sect. 4:

p↓(t, u) := sup
u≤x≤t

{x − u + p↓(x)}.
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Note that, unlike in Sect. 4, p↓(t) can take negative values, since it characterizes

estimated patience rather than true patience. Based on the above definition, it follows

that

Q(t) =
∫ ∞

p↓(t)

∫ ∞

0

q(t, x, y) dx dy. (37)

The fact that both remaining patience and estimated remaining patience decrease

linearly at unit rate (until the corresponding fluid leaves the waiting room) motivates

the following assumption on the density of fluid awaiting service:

Assumption 10 (Fundamental LPF evolution equation) For t ≥ 0, x ≥ 0 and y ≥
p↓(t):

q(t, x, y) = q(0, x + t, y + t)1{y+t≥p↓(t,0)}

+
∫ t

0

1{p↓(t,u)≤y+t−u}λ(u) h(t − u + x, t − u + y) du. (38)

An expression for Q(t) can be derived by combining (37) and (38):

Q(t) =
∫ ∞

p↓(t,0)

∫ ∞

t

q(0, x, y) dx dy

+
∫ ∞

p↓(t)

∫ ∞

0

∫ t

0

1{p↓(t,u)+u−t≤y}λ(u) h(t − u + x, t − u + y) du dx dy

=
∫ ∞

p↓(t,0)

∫ ∞

t

q(0, x, y) dx dy

+
∫ t

0

∫ ∞

p↓(t)

∫ ∞

t−u

λ(u) h(x, y + t − u) 1{y≥p↓(t,u)+u−t} dx dy du.

Thus, one has

Q(t) =
∫ ∞

p↓(t,0)

∫ ∞

t

q(0, x, y) dx dy +
∫ t

0

λ(u) H̄(t − u, p↓(t, u)) du, (39)

where H̄(x, y) =
∫ ∞

x

∫ ∞
y

h(u, v) dv du. The first term corresponds to fluid in the

waiting room at time t = 0, while the second term represents fluid that arrived in

[0, t].
In order to define the abandonment rate α(t), we consider the actual remaining

patience rather than the estimated counterpart. In particular, fluid with zero (true)

remaining patience abandons the waiting room:

α(t) :=
∫ ∞

p↓(t)

q(t, 0, y) dy, t ≥ 0, (40)
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where (38) specifies q(t, 0, y) in terms of p↓. By substituting the expression for

q(t, 0, y) in (40), one concludes that the abandonment rate obeys, for t ≥ 0,

α(t) =
∫ ∞

p↓(t,0)

q(0, t, y) dy +
∫ t

0

λ(u)

∫ ∞

p↓(t,u)

h(t − u, y) dy du. (41)

Consequently, the total amount of abandonment by time t , A(t), can be expressed in

a couple of ways: first, in view of (40), it satisfies

A(t) =
∫ t

0

∫ ∞

p↓(u)

q(u, 0, y) dy du; (42)

second, in view of (41), A(t) can be written as a sum of two terms that correspond to

fluid initially in the system and fluid arriving after time t = 0:

A(t) =
∫ t

0

∫ ∞

p↓(x,0)

q(0, x, y) dy dx +
∫ t

0

λ(u)

∫ t−u

0

∫ ∞

p↓(u+x,u)

h(x, y) dy dx du.

(43)

Combining (1), (39) and the preceding equality yields an equation for p↓. In particular,

p↓ is the maximal solution of

Q(t) + A(t) = Q(0) + Λ(t) − E(t), (44)

where Q(t) and A(t) are given by (39) and (43). The left-hand side is nonnegative

and monotonic in p↓, which motivates the following assumption:

Assumption 11 There exists a unique solution of (44), where (39) and (43) determine

Q(t) and A(t), respectively.

The rate γ (t) can be characterized by examining the two ways fluid can enter the

service facility. At time t , fluid enters service directly (without entering the waiting

room) at rate λ(t) H(∞, p↓(t)), since no fluid with estimated patience below p↓(t)

is present in the waiting room. On the other hand, the transfer rate between the wait-

ing room and the service facility is proportional to q(t, x, p↓(t)). Formally, taking

derivatives in (1), and utilizing (38), (39) and (41) yields

γ (t) = λ(t) − α(t) − Q̇(t)

= λ(t) H(∞, p↓(t)) + (1 + ṗ↓(t))+
∫ ∞

0

q(t, x, p↓(t)) dx

= λ(t) H(∞, p↓(t)) + (1 + ṗ↓(t))

∫ ∞

0

q(t, x, p↓(t)) dx,

for t ≥ 0 such that ṗ↓(t) is well-defined; the last equality follows from the fact that

the last integral is equal to 0 when ṗ↓(t) < −1 (due to Assumption 10). The above

differential equation is an analogue of (22), which holds for the case of full information.
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Finally, we note that the numerical algorithm outlined in Sect. 4.4 is applica-

ble to evaluate fluid models under partial information with one modification: p↓(ti )

solves (33), with

Q(ti ) =
∫ ti

0

λ(u) H̄(ti − u, p↓(ti , u)) du,

A(ti ) = A(ti−1) +
∫ ti

ti−1

∫ t

0

λ(u)

∫ ∞

p↓(t,u)

h(t − u, y) dy du dt.

We conclude this section with an example.

Example 4 (G t/M/s + M LPF fluid model with no information) Consider the setup

described in Example 1 with H̄(x, y) = e−θ(x+y), x, y ≥ 0. In that case, even though

the distribution of the estimated patience times is the same as the distribution of actual

patience times, the two random variables are independent. As in Example 1, the queue

is empty during the time interval [0, t1], where t1 is given by (23). However, unlike in

Example 1, the abandonment rate is positive for t > t1. The form of H , (39) and (43)

yield, for t ≥ t1,

A(t) = θ

∫ t

t1

Q(u) du.

Combining this equality with (1) and (24) results in

Q(t) + θ

∫ t

t1

Q(u) du = Λ(t) − E(t) = δµs(t − t1),

for t ≥ t1. The solution of the preceding integral equation is

Q(t) = δµs

θ

(

1 − e−θ(t−t1)
)

1{t≥t1}, (45)

and consequently

α(t) = δµs
(

1 − e−θ(t−t1)
)

1{t≥t1}.

Equating (39) and (45) yields, for t > t1,

p↓(t) = 1

θ
log

(1 + δ)
(

1 − e−2θ(t−t1)
)

2δ
(

1 − e−θ(t−t1)
) .

Note that ṗ↓(t) > −1, for t > t1, and p↓(t, u) = t − u + p↓(t).

In steady state (as t → ∞), λ(∞)(1 − e−θp↓(∞)) = (1 − δ)µs is the rate at which

fluid enters service directly; on the other hand, λ(∞) e−θp↓(∞)/2 = δµs is the transfer

rate of fluid from the waiting room to service—fluid with true/estimated patience times
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Fig. 3 Performance functions for the system described in Example 5, operating under LPF (green), MPF

(red) and FCFS (blue). No abandonment occurs under LPF. The function w represents the waiting time

of head-of-line fluid in the waiting room when FCFS is used. The function p↑ represents the remaining

patience of the most patient fluid under the MFP policy (Color figure online)

(on arrival) in the set {(x, y) : y ≥ p↓(∞), x ≥ y − p↓(∞)} enters the waiting room

and is eventually served.

6 Numerical examples

The proposed numerical algorithm was used for LPF; for FCFS, the algorithm in [27]

was used. The time step was set to 0.01, and the trapezoidal rule was used to evaluate

integrals. A modification of the proposed algorithms is used to evaluate performance

under MPF routing.
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Fig. 4 Performance functions for the system described in Example 5, operating under LPF (green), MPF

(red) and FCFS (blue). The function w represents the waiting time of head-of-line fluid in the waiting room

when FCFS is used. The function p↑ represents the remaining patience of the most patient fluid under the

MFP policy (Color figure online)

Example 5 (LPF and MPF vs. FCFS) In this example, we compare LPF and MPF

to the FCFS policy. Consider an initially empty system with s = 1. The service and

patience distributions are as follows [27]: G(t) = (1 − e−2t )/2 + (1 − e−2t/3)/2 and

F(t) = 1− e−t − te−t ; the mean service time is 1, while mean patience time is 2. The

arrival rate is given by λ(t) = 1 + 0.2 sin(t/2); hence, the system is critically loaded.

In Fig. 3, we show key performance measures of the system.

Observe that no fluid is lost in the system operating under the LPF policy—indeed,

the minimum remaining patience of fluid in the waiting room stays strictly positive

throughout the considered time interval. Informally, the overloaded period is short
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Fig. 5 Performance functions for the system described in Example 6, for ρ = 0, 0.25, 0.5, 0.75 and 1. The

arrows indicate the direction of increase for ρ

enough and there exists a sufficient amount of fluid with large enough remaining

patience times that can be kept in the waiting room in order for fluid with short

remaining patience times to be sent to the service facility. As durations of overloaded

intervals increase, the amount of fluid with long patience times is not sufficient to

avoid abandonments—there does not exist enough fluid in the waiting room that can

be delayed without causing abandonments. In Fig. 4, we show the behavior of the

system with a modified arrival rate: λ(t) = 1 + 0.2 sin(t/8), i.e., the frequency of the

arrival rate function is decreased by a factor of 4.

Example 6 (Performance vs. amount of partial information) As in the previous exam-

ple, consider an initially empty system with s = 1. The service distribution is

exponential, Ḡ(x) = e−x , x ≥ 0, while the joint distribution of patience and esti-

mated patience is as follows (see Example 3):

H(x, y) = 1

2π
√

1 − ρ2

∫ log x

−∞

∫ log y

−∞
e
− u2+v2−2ρuv

2(1−ρ2) dv du,
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x, y ≥ 0 and ρ ∈ (0, 1). Then both marginal distributions are lognormal, with param-

eters (0, 1) (mean = √
e ≈ 1.65 and variance = (e − 1)e ≈ 4.47). Informally, the

“level” of information contained in the estimated patience increases with the value

of the parameter ρ. In Fig. 5, we plot performance functions for the systems with

ρ = 0, 0.25, 0.5, 0.75 and 1, where ρ = 1 corresponds to the case of full information

(for these ρ’s, the coefficients of variation of the conditional distributions of patience

times are given by ≈ 1.31, ≈ 1.25, ≈ 1.06, ≈ 0.74 and 0, respectively—see Exam-

ple 3. Given two independent pairs of actual and estimated patience times, the actual

patience times are ordered in the same way the corresponding estimated times are

ordered with the respective probabilities 0.5, ≈ 0.58, ≈ 0.67, ≈ 0.77 and 1). As evi-

dent from the figure, more information leads to less abandonment. Recall that p↓(t)

is the least estimated remaining patience of the fluid present in the waiting room at

time t ; in this example, p↓(t) > 0 for all t . Nevertheless, abandonment does occur,

since fluid leaves the system based on actual rather than estimated patience times.

7 Concluding remarks

In this final section, we discuss the relationship between our fluid models and a stochas-

tic queueing system with a finite number of servers (G t/GI/n+GI). As argued in [37]

for the FCFS case, deterministic fluid processes can provide approximations for mean

values of stochastic queueing processes. In the system with a finite number of servers,

arrivals are time-varying (the G t ), service times are i.i.d. (the GI) and customers,

equipped with i.i.d. durations of patience, possibly abandon (the +GI); the arrival

sequence, service and patience times are mutually independent. The number of servers

corresponds to the processing capacity s of the fluid model.

When comparing fluid models with stochastic queueing systems, at least two

sources of errors can be identified. First, there exists an error stemming from the

deterministic nature of a fluid model, which does not take stochastic fluctuations into

account. For example, in the fluid model, it is assumed that customers with patience

times below p↓(t) enter the service facility immediately upon arrival. However, such

customers enter service only once a customer completes service. It is possible to

develop correction terms for fluid functions that take this effect into account. To this

end, let αn(t) be the abandonment rate in an n-server system; for very large values

of n, one expects αn(t)/n ≈ α(t), where α(t) is the abandonment rate in the fluid

model at time t . An extra term can hence be added to capture some of the present

stochastic variability:

αn(t)

n
≈ α(t) + λ(t) F

(

1

nσ(t)

)

1{p↓(t)∈(0,∞)};

here, the second term approximates the rate of customers abandoning before a single

departure occurs after their arrival. When p↓(t) ∈ (0,∞) (non-empty waiting room),

the service completion rate is equal to the rate at which customers enter service (due

to work conservation). Therefore, 1/(nσ(t)) is an approximation of the mean time

between a customer arrival and the next service completion, and F(1/(nσ(t))) is an
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Fig. 6 Performance functions for the systems described in Example 7. For the two finite stochastic systems

(50 and 250 servers), empirical averages are plotted (in green and red, respectively). Performance functions

for the fluid model are shown in blue. A corrected fluid approximation for the system with 50 servers is

shown with dashed lines (Color figure online)

approximation of the probability that a customer abandons before a single departure

occurs. Such a probability is proportional to 1/n and is negligible compared to the

leading α(t) term, when n is large. Incorporating this extra term into the fluid model

equations leads to a corrected version (that depends on the number of servers) of our

numerical algorithm. In particular, we have

Ã(ti ) = Ã(ti−1) + (Λ(ti ) − E(ti ) − Ã(ti−1) − Q(ti ))
+1{p↓(ti )=0}

+
∫ ti

ti−1

λ(u) F

(

1

nσ(u)

)

1{p↓(u)∈(0,∞)} du, (46)

where tildes distinguish the present refined abandonment process from its previous

version (35). Note that the last term in (46) is proportional to 1/n for large n. Hence, as

also seen from the example at the end of the section, such a correction term produces

only marginal improvements in the quality of the approximation.
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Second, discrepancy between the fluid functions and sample means of stochastic

processes also arises because of the nonlinear nature of the system. Indeed, averag-

ing sample paths of stochastic processes could produce a bias relative to their fluid

functions due to Jensen’s inequality. The reader is referred to [2,25] for examples of

studies of such biases in queueing contexts. Somewhat different results are obtained

depending on whether one considers the total number in the system or, separately, the

number awaiting service and being served.

Our numerical experiments indicate that errors due to Jensen’s inequality play a

more prominent role than the errors discussed earlier. In fact, one expects (based on

the CLT) that errors due to nonlinearities are of the order 1/
√

n. In general, better

results are obtained when a system does not operate in the critical regime (QED),

during which the queue size is close to 0 (Quality) and the service facility is close to

full (Efficiency).

Example 7 (Fluid approximation) Consider initially empty LPF systems with λ(t) =
1 + 0.5 sin(t/2), and unit-rate exponential service and patience times. In addition

to the fluid model, we consider two corresponding queues with 50 and 250 servers

(arrival processes are Poisson with rates 50λ(t) and 250λ(t), respectively). In Fig. 6,

we plot relevant functions for the three systems. In particular, functions (X , Q, B,

A) corresponding to the fluid model are shown in blue. For the two finite systems

with n = 50 (green) and n = 250 (red), we plot empirical averages (scaled by

the number of servers) of queueing stochastic processes, based on 10,000 and 1000

replications, respectively. For the system with 50 servers, we also plot the corrected

fluid approximation [based on (46)] as well. As seen in the figure, this approximation

provides only a minor improvement, which is consistent with our discussion that led

to the example.
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