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AVISHAI MANDELBAUM AND PETAR MOMČILOVIĆ2

Abstract. In many-server systems with heterogeneous servers, the Fastest-Server-First (FSF)
policy is known for its excellent performance. However, when service rates are unknown and/or
time-varying, implementing the FSF policy is not straightforward. We thus propose a rout-
ing algorithm, Performance-Based Routing, that approximates the FSF policy: servers are
ranked in a dynamic list, where the shorter the actual service times that a server exhibits –
the closer the server is to the head of the list; a customer is then routed to the lowest-index
(highest-in-the-list) idle server. It is argued that the algorithm is asymptotically equivalent
to FSF.

1. Introduction3

1.1. Motivation. The Fastest-Server-First (FSF) routing policy [2] assigns customers to a4

server with the highest service rate. Due to its excellent performance and intuitive nature, this5

policy serves as a benchmark in many-server queues, when the goal is to minimize customer6

waiting/sojourn times. The FSF policy belongs to a class of rank-based algorithms (also known7

as order-entry systems [14]): servers are represented by a ranked list, and a customer is routed8

to the idle server with the lowest index; in the FSF case, the servers are sorted according to9

their service rates.10

Implementing FSF in practice is not always straightforward due to two factors: (i) server11

rates might not be known – only rate estimates can be obtained by considering samples of12

service times [4]; and (ii) server rates might vary over time. The algorithm we propose,13

Performance-Based Routing (PBR), overcomes these challenges by dynamically rearranging14

the server list and routing customers to the available server with the lowest index (highest15

rank). The algorithm reorganizes the list, based on observed service times, in such a way that16

(on average) the faster the server the closer it is to the beginning of the list. Like the well-17

known cµ (or Gcµ [12, 11]) rule, the PBR algorithm does not require any knowledge about the18

arrival process – it performs well regardless of the arrival rate. In particular, it is robust across19

operational regimes, and it adapts to changing workloads. Finally, PBR is a low-complexity20

algorithm as each service completion triggers at most one transposition of server rankings in21

the list.22

1.2. Model and assumptions. We consider a sequence of first-come-first-served queues in-23

dexed by the number of servers N . Customers arrive to a single queue with parallel servers and24

finite or infinite waiting room (inverted-V model). Arrivals to the Nth system form a Poisson25

process with rate λN ; we omit the superscript N when the arrival rate does not vary with the26

system size. Servers are labeled by integers {1, 2, . . . , N}. For the Nth system, service times27

are independent across servers, and for a given server, say i, the sequence of service durations28

is i.i.d. with elements equal in distribution to SN
i ; the random variable SN

i is exponential, with29

the service rate given by µN
i = 1/ESN

i . The parameters {µN
i } are deterministic and, without30
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loss of generality, µN
1 ≥ µN

2 ≥ · · · ≥ µN
N . Service rates are bounded, i.e., µN

i ≤ µ, where µ < ∞1

does not change with N . The service capacity of the N -server system is thus given by2

CN =

N
∑

i=1

µN
i .

A routing policy specifies to which server a customer is routed, provided that there are idle3

servers (it is hence nonpreemptive). The FSF policy serves as our benchmark policy. Under4

FSF routing, a customer is routed to an idle server with the highest service rate. Note that5

this policy can be implemented only if the server rates are known to the router.6

Our focus is on many-server asymptotics, namely N → ∞. (Throughout the paper, we use7

the standard o, O and Θ asymptotic notation [6, Sect. 3.1].) The considered system is related8

to rank-based systems [14]. These are characterized by a vector l = (l1, . . . , lN ), which is some9

permutation of (1, 2, . . . , N): a customer is routed to server li only if servers l1, . . . , li−1 are10

busy; for example, FSF routing corresponds to l = (1, 2, . . . , N), in view of our assumed order11

on µN
i . Roughly speaking, in a rank-based system, servers can be classified into three groups:12

(i) those that are busy with probability close to 1, (ii) those that are idle with probability close13

to 1, and (iii) those that are busy/idle a constant fraction of their time. Informally, in the14

efficiency-driven (ED) regime (load close to capacity in the sense that λN ≈ CN − k, for some15

fixed k > 0), Θ(1) servers are in the third group (servers with indices corresponding to the last16

Θ(1) dimensions of l), while all other servers are in the first group. On the other hand, in the17

quality-driven (QD) regime (load being a constant fraction of the capacity: λN ≈ γCN for some18

γ ∈ (0, 1); a negligible fraction of customers experience delay), Θ(N) servers are in the first19

group (servers with indices l1, l2, . . .), Θ(N) servers are in the second group (servers with indices20

. . . , lN−1, lN ), and Θ(
√
N) servers are in the third group. Finally, in the quality-and-efficiency-21

driven (QED) regime (load and capacity relate via the square-root rule: λN ≈ CN −β
√
CN ; a22

constant fraction of customers experience delay), Θ(N) servers are in the first group (servers23

with indices l1, l2, . . .), no servers are in the second group, and Θ(
√
N) servers are in the third24

group (servers with indices . . . , lN−1, lN ).25

Now, compare an FSF system to another rank-based system, characterized by a vector l.26

We note that the two systems can be asymptotically equivalent even if the server ordering for27

the first two groups, the very-busy and -idle servers, differs. By equivalence we mean, again28

informally, that the stationary numbers of customers in the two systems are equal, say on a29

diffusion scale. For example, let30

µN
i =











3, 1 ≤ i ≤ ⌈N/3⌉,
2, ⌈N/3⌉ < i ≤ ⌈2N/3⌉,
1, ⌈2N/3⌉ < i ≤ N,

and λN = 11N/6 (the first 5N/6 servers are sufficient to keep the system stable). Then, the31

FSF system operates in the quality-driven regime (λN ≈ γCN with γ = 11/12). It can be32

shown that all servers with rates 3 and 2 are busy with probability close to 1, and that only33

servers with rate 1 can be idle for a non-negligible fraction of time. Moreover, a particular34

ordering of the servers with rates 3 and 2 does not play a role as the size of the system increases.35

For example, if l = (⌈N/3⌉+1, . . . , ⌈2N/3⌉, 1, . . . , ⌈N/3⌉, ⌈2N/3⌉+1, . . . , N), then the system36

is asymptotically equivalent to the FSF system (l = (1, 2, . . . , N)). On the other hand, when37

λN = 2N/3, the ordering of servers with rates 2 and 1 has asymptotically negligible effect, as38

long as fast servers (rate 3) correspond to the first indices of l, or equivalently,39

⌈N/3⌉
∑

i=1

(

µN
i − µN

li

)

= N −
⌈N/3⌉
∑

i=1

µN
li

= 0.
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The preceding equality arises from a particular choice of the input rate λN , as well as the1

structure of the sequence {µN
i }. In order to avoid the dependency on λN and {µN

i } (that2

is, provide robustness across operational regimes), we introduce the following quantity that3

measures closeness to FSF: given a server ordering l, let4

∆(l) = max
i∈{1,...,N}

i
∑

j=1

(

µN
j − µN

lj

)

. (1)

Note that ∆(l) ≥ 0 (
∑i

j=1 µ
N
j ≥ ∑i

j=1 µ
N
lj
, i = 1, . . . , N), with equality if and only if l5

corresponds to an FSF system. Informally, when ∆(l)/
√
N vanishes, as N → ∞, a rank-based6

QD or QED system defined by a vector l is asymptotically equivalent (in terms of the number7

of customers in the system) to the corresponding FSF system on the diffusion (
√
N) scale.8

1.3. Brief literature review. Rank-based routing policies, defined by fixed vectors, were9

studied in [14]. In particular, the authors considered relative performance of two systems10

defined by two different vectors. A rank-based system can be viewed as an extension of the11

well-known M/M/∞ storage process [13, 5, 1]: it consists of an infinite number of i.i.d. servers;12

these are indexed by the natural numbers, and a customer is routed to the lowest-index idle13

server. An FSF system with random server rates was studied in [3]. The author established14

a central limit theorem for the number of customers in the system when the system is in15

the QED regime. Under this model, roughly speaking, only servers with the slowest rates16

experience idleness. An asymptotic optimality (in the QED regime) of the FSF policy was17

shown in [2]. In [4], the authors consider a many-server QED system. Service rates of servers18

are random and do not change over time, but they are unknown to the router. Before the19

system starts operating, the router obtains samples of service times (individual realizations,20

one service time per server) and, based on these observations, decides on a (fixed priority)21

routing policy. This sampling occurs only once, since server rates do not change over time.22

Due to the QED regime, it is sufficient to identify
√
N -order servers with server rates close23

to the minimum possible rate (since only those servers have non-negligible idle times) so that24

the system remains asymptotically optimal. The authors show that it is sufficient to sample25

N1/2+δ servers, for some arbitrary δ > 0.26

2. Linear List27

We use a linear list to describe the state of our system (servers), operating under PBR.28

Upon a service completion by a server in position i ≥ 2 in the list, this server is moved forward29

by one position if the server in position (i− 1) is busy and eligible for a move; the latter server30

is moved back one position in that case, which entails that the servers in positions (i−1) and i31

are transposed [10, Sect. 6.1]. Once a (busy) server is moved one position down in the list, it32

becomes ineligible for a move until the server in front of it becomes busy. A service completion33

by the first server in the list does not trigger a rearrangement of the list.34

The idea behind PBR is to thrive to a list that is ordered based on service rates – the higher35

the service rate, the closer the server should be to the beginning of the list. The motivation36

for the rule according to which the list evolves is as follows.37

• Why transposition of busy servers? Consider two busy servers located in adjacent38

positions of the list. If the server that is lower in the list completes service earlier39

than the higher one, we use this as an indication that the order of these servers should40

be reversed. We do however require that servers are transposed only if both of them41

are busy. This condition is required in order to avoid scenarios where adjacent servers42

are first transposed and then transposed again before the server that moved up in43

the list becomes busy again. (Note that a service completion by a server while the44
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adjacent server is idle does not convey any information about their relative rates.) A1

consequence of not implementing this rule is illustrated in Example 1 below.2

• Why the eligibility rule? This rule is motivated by the light-load regime. The idea is3

to prevent a particular server from sliding down in the list “too quickly”. To illustrate4

this point, consider a list of 4 busy servers sorted in the decreasing order of their service5

rates; if λ ↓ 0, new arrivals are unlikely. Without the extra condition we impose, by the6

time all servers are idle, it is possible that the server initially in the first position (the7

fastest one) has moved to the last position (the server in the second position completes8

service first, then the one in the third position, and finally the one in the last position).9

With the eligibility condition, however, a server can drop only one position at a time.10

Indeed, as soon as the server initially in the first position moves to the second position,11

the server that moves to the first position is idle, and thus initially the highest server12

is ineligible to slide further in the list.13

The state of the system at time t is described by a triple (LN (t),BN (t), QN (t)); the process14

{(LN (t),BN (t), QN (t)), t ≥ 0} is right-continuous. The vector LN (t) ∈ L N represents the15

state of the list at time t, where L N is the set of all permutations of the vector (1, 2, . . . , N).16

In particular, LN (t) = (LN
1 (t), . . . ,LN

N (t)) = (l1, . . . , lN ) indicates that, at time t, the server17

with index li is in the list position i. The vector BN (t) ∈ {0, 1, 2}N indicates the set of servers18

that are busy at time t. In particular, if BN
i (t) = 1, then the server in the ith position in19

the list is busy and eligible for a move at time t; when BN
i (t) = 0, the server is idle; when20

BN
i (t) = 2, the server is busy, but ineligible for a move. The number of customers awaiting21

service at time t is QN (t). In a loss system, QN (t) ≡ 0 for all t (recall from Section 1.2 that22

the system can have either a finite or infinite buffer).23

Example 1 (Motivation). Consider a two-server loss system (N = 2) with µ = µ1 ≥ µ2 = 1,
and some λ ∈ (0,∞). (In this example we omit the superscript N in order to simplify the
notation.) Then there exist eight possible states for the pair (L,B); let π be the stationary
distribution of this pair. In a two-server system, the eligibility does not need to be considered
explicitly, since it is implied by the “busy” rule. Straightforward calculations yield:

π((1, 2), (1, 1))

π((2, 1), (1, 1))
=

µ1

µ2
,

π((1, 2), (1, 0))

π((2, 1), (1, 0))
=

λ+ µ1

λ+ µ2
,

π((1, 2), (0, 1))

π((2, 1), (0, 1))
=

(λ+ µ1)µ1

(λ+ µ2)µ2
,

π((1, 2), (0, 0))

π((2, 1), (0, 0))
=

(λ+ µ1)
2

(λ+ µ2)2
.

Note that, in stationarity, the routing algorithm results in {L = (1, 2)} being more probable24

than {L = (2, 1)}, regardless of the value of B, i.e., PBR routing biases the list toward the25

state in which servers are sorted in a decreasing order of rates. Additional calculations yield26

that there exists a value of the arrival rate λ that results in minimum preference of the server27

ordering (1, 2) over (2, 1), as measured by the ratio P[L = (1, 2)]/P[L = (2, 1)]. In Figure 1,28

we plot the minimum value of the scaled ratio29

µ−1
P[L = (1, 2)]

P[L = (2, 1)]
,

as well as the corresponding value of λ that achieves that minimum. It can be verified that30

lim
µ→∞

µ−1 inf
λ

P[L = (1, 2)]

P[L = (2, 1)]
= 1/2.

Thus, even in the worst-case scenario (in terms of the arrival rate), {L = (1, 2)} is more likely31

than {L = (2, 1)}.32

Finally, this example also illustrates why we require B1 = 1 for the two servers to be
transposed. To wit, consider the algorithm that transposes the order of servers (when the
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Figure 1. Illustration for Example 1. Depicted is the minimum value of the ratio
µ−1

P[L = (1, 2)]/P[L = (2, 1)], as a function of the faster server speed µ (solid line);
the corresponding value of the arrival rate λ that achieves this minimum is shown as
well (dashed line).

second server in the list completes service) regardless of the value of B1; let π̃ the stationary
distribution of (L,B) under this modified algorithm (a server is moved up in the list by one
position whenever the server completes a service). Then, we have

π̃((1, 2), (1, 1))

π̃((2, 1), (1, 1))
=

µ1

µ2

λ(λ+ µ1) + µ2(λ+ µ2)

λ(λ+ µ2) + µ1(λ+ µ1)
,

π̃((1, 2), (1, 0))

π̃((2, 1), (1, 0))
=

λ+ µ2

λ+ µ1
,

π̃((1, 2), (0, 1))

π̃((2, 1), (0, 1))
=

(λ+ µ1)µ1

(λ+ µ2)µ2
,

π̃((1, 2), (0, 0))

π̃((2, 1), (0, 0))
= 1.

Note that, in the limit as λ ↓ 0, the two states of L are equally likely since P[B = (0, 0)] → 1 as1

λ ↓ 0, i.e., the servers are unordered or, equivalently, no preference is given to faster service. �2

In the following section, we analyze the PBR policy in two asymptotic regimes: saturated3

and light load. In these two regimes, analyses are feasible since one does not need to keep4

track of the vector BN – in the saturated regime, BN is a vector of ones, while it is a vector5

of zeros in the light-load regime. We now provide an example of a system that operates in an6

intermediate regime, to illustrate that the algorithm performs well in such a regime as well.7

This example also demonstrates that the algorithm adapts to time-varying conditions.8

Example 2 (Quality-and-efficiency driven (QED) regime). Consider two infinite-buffer 100-9

server systems, where the service rate of server i is µi = 1 − (i − 1)/100, i = 1, . . . , 100. The10

first system operates under PBR routing, while the second system uses FSF routing. The two11

systems are subject to the same Poisson arrival stream of customers (arrival times, service12

requirements). Initially, at time t = 0, servers in the list (for the first system) are ordered13

in an increasing order of their rates (the first server in the list is slowest); also, there are 6014

customers in both systems – the 60 slowest and fastest servers are initially busy in the PBR15

and FSF systems, respectively. The arrival rate λ is taken to be16

λ =
60
∑

i=1

µi = 42.3,
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Figure 2. Illustration for Example 2. Performance of a PBR system (blue line)
compared to the FSF system (red line) under an intermediate regime. The arrival and
service times are equal in the two systems. At time t = 0, we started the PBR list in
the reversed order (slowest at the top). Averages over the trailing 100 time units are
shown, starting with t = 100.

i.e., the 60 fastest servers are sufficient to keep the both systems critically stable. The system1

capacities are C =
∑100

i=1 µi = 50.5 ≈ λ + 1.26
√
λ, i.e., the systems adhere to the so-called2

square-root staffing root and operate in the QED regime [9]. In Figure 2 we show typical3

sample paths of the numbers of customers in the systems, averaged over the trailing 100 time4

units. That is, we plot5

∫ t

t−100

(

QN (u) +

N
∑

i=1

1{BN
i
(u)6=0}

)

du;

this averaging is done in order to make the plot readable by reducing the short-term variability6

present in both systems. The blue line corresponds to the PBR system, and the red one to the7

FSF system. Observe that after an initial period where the list is reorganized, the performance8

of the PBR system is very close to the performance of the FSF system. �9

3. Main Results10

3.1. Saturated regime. In this subsection, we assume an saturated system, that is, λN ≡11

∞. In that regime, an arrival occurs immediately after a service completion and, hence,12

all work conserving routing policies are equivalent in terms of routing decisions, since service13

completions occur one at a time. However, the list management algorithm results in a particular14

server ordering (ranking); we argue that PBR (transposition rule) achieves a desirable server15

ordering in terms of low ∆(LN ) (compared to
√
N ; see (1)). Let LN = (LN

1 , . . . ,LN
N ) be a16

random vector with its distribution equal to the stationary distribution of {LN (t), t ≥ 0}. The17

process {LN (t), t ≥ 0} is a reversible Markov process, and it is straightforward to verify that18

its stationary distribution is given, for (l1, . . . , lN ) ∈ L N , by19

P[LN = (l1, . . . , lN )] =
1

ηN

N
∏

i=1

(

µN
li

)−i
, (2)
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where ηN is the normalization constant:1

ηN =
∑

l∈L N

N
∏

i=1

(

µN
li

)−i
.

Equivalently, the distribution of LN satisfies, for (l1, . . . , lN ) ∈ L N ,2

P[LN = (l1, . . . , lk+1, lk, . . . , lN )]

P[LN = (l1, . . . , lk, lk+1, . . . , lN )]
=

µN
lk+1

µN
lk

. (3)

Note that, in the stationary regime, a most likely state of the process {LN (t), t ≥ 0} is3

(1, 2, . . . , N), namely the servers are arranged according to their service rates; the probability4

of this most likely list state is given by5

1

ηN

N
∏

i=1

(

µN
i

)−i
.

The following theorem is our first result. It quantifies the quality of server ordering when6

PBR (transposition rule) is used. Informally, when the system operates in the QD or QED7

regime, the saturated regime is relevant in describing the server ordering in the subset of servers8

that are busy with probability 1.9

Theorem 1 (Saturated regime). Consider an N -server system operating under PBR in the10

saturated regime (λN ≡ ∞). Let {aN} be any monotonic sequence of reals such that, as11

N → ∞, aN → ∞. Then, as N → ∞,12

1

aN logN
∆(LN )

P→ 0. (4)

Proof. See Section 4.1. �13

Remark 1. The limit in the statement of the theorem holds for any set of service rates such that14

µ ≥ µN
i ≥ µN

i+1, for i = 1, . . . , N−1. Clearly, if µN
1 = µN

N , then the left-hand side of (4) is equal15

to 0 for all N (see (1)). When the service rates {µN
i } are of a specific form, more explicit bounds16

could be derived. For example, if µ = µN
1 = . . . = µN

⌊N/2⌋ and αµ = µN
⌊N/2⌋+1 = . . . = µN

N , for17

some α ∈ (0, 1) that does not change with N , then results from [8] yield, for c > 0,18

P
[

∆(LN ) > cµ
]

= P





⌊N/2⌋
∑

j=1

(

µN
j − µN

LN
j

)

> cµ



 ≤ αc/(1−α)

1− α
,

where the bound does not depend on N ; thus, in this specific example, ∆(LN )/aN
P→ 0, as19

N → ∞, for any monotonic sequence {aN} such that aN → ∞, as N → ∞. �20

Example 3 (Steady-state performance). Consider a 100-server system (N = 100) in the satu-21

rated regime. The server rates are given by µN
i = 1− 0.01(i − 1), i = 1, . . . , N , i.e., the server22

speeds decrease linearly from 1 to 0. Initially (at time t = 0) the list is ordered: LN
i (0) = i for23

i = 1, . . . , N . Next, for n ≥ 0, we define24

σn = max
Tn−1≤t<Tn

∆(LN (t)),

where Tn is the time when the system completes 105n service requests (T0 ≡ 0). In Figure 3,25

we show a typical sample path of the discrete-time process {σn, n ≥ 0}. The figure suggests26

that the list does not deviate significantly from its steady state even during long time intervals,27

as measured by ∆(LN (t)). �28
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Figure 3. Illustration for Example 3. In terms of ∆(LN (t)), the list does not deviate
significantly from its steady state. Each point represents the worst (highest) ∆(LN (t))
over an interval that is comparable to the chain’s mixing time (see Example 4).
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Figure 4. Illustration for Example 4. Initially, the list is in the reversed order. As
time progresses (service completions accumulate), faster servers are moved towards the
beginning of the list, resulting in lower values of ∆(LN (Tn)).

Example 4 (Mixing time). Consider the system described in the previous example, with the1

difference that initially (at time t = 0) the list is in the reversed order, i.e., LN
i (0) = 101 − i2

for i = 1, . . . , 100. This represents the worst-case scenario in terms of mixing time. Redefine3

Tn as the time when the system completes n service requests (T0 ≡ 0). In Figure 4, we plot4

a typical sample path of ∆(LN (Tn)), as a function of n. Note that the minimum number of5

transpositions required for the list to become ordered is 4950 in this case. As can be seen in6

Figure 4, the list approaches its steady state after 25 · 103 transpositions. �7

3.2. Light-load regime. In the saturated regime, there is no need to specify the routing8

policy in a finite (N < ∞) system, since at most one server becomes available at a time.9

However, in the case when multiple servers can be idle simultaneously, a routing algorithm10
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is required. We consider PBR routing: a customer is assigned to the server with the index1

min{i : BN
i = 0}; that server plausibly has the highest service rate. Indeed, the higher the2

service rate, the lower the index of the server should be.3

The following theorem characterizes the server ordering under PBR routing in the light-load4

regime (λ ↓ 0). The proof is based on a time-scale decomposition. In particular, when λ ↓ 0,5

customers arrive to a server in position i with rate Θ(λi). Hence, from the perspective of the6

server in the ith position, the list of servers in positions 1, . . . , i − 1 is in the steady state,7

since it operates on a faster time scale. We use this property to obtain a set of asymptotic8

equations for the stationary probabilities of a system with N servers. Informally, when the9

system operates in the QD regime, the light-load regime is relevant in describing the server10

ordering in the subset of servers that are idle with probability 1.11

Theorem 2 (Light-load regime). Consider an N -server system operating under PBR in the12

light-load regime (λ ↓ 0). Let {aN} be any monotonic sequence of reals such that aN → ∞, as13

N → ∞. Then, for any ε > 0, we have14

lim
N→∞

lim
λ↓0

P

[

1

aN logN
∆(LN ) > ε

]

= 0.

Proof. See Section 4.2. �15

4. Proofs16

4.1. Proof of Theorem 1. The proof is based on (2), namely that relative probabilities of17

list states are known (see (3)). We start with introducing relevant notation. For l ∈ L N , let18

σN
i (l) =

i
∑

j=1

(

µN
i − µN

lj

)

and µN (l) =

N
∏

j=1

(

µN
lj

)−j
. (5)

Define L N
i,0 ⊆ L N to be the set of all list states (permutations) such that sum rate of the19

first i servers in the list is maximal:20

L
N
i,0 =

{

l ∈ L
N : σN

i (l) = 0
}

;

the size of this set is given by21

|L N
i,0| =

(

mi

m̂i

)

i!(N − i)!,

where mi = {#j : µN
j = µN

i } and m̂i = {#j ≤ i : µN
j = µN

i }. Furthermore, for i ∈ {1, . . . , N}22

we introduce the following additional i ∧ (N − i) sets23

L
N
i,k =







l ∈ L
N : min

h∈L N
i,0

i
∑

j=1

1{lj≤i, hj≤i} = i− k







,

where k = 1, . . . , i ∧ (N − i) and 1{·} is the indicator function. The set L N
i,k consists of24

all permutations such that, by having exactly k servers from the first i positions in the list25

exchange with k servers located after position i, one can obtain a permutation from L N
i,0. The26

above definitions imply27

L
N =

i∧(N−i)
⋃

k=0

L
N
i,k. (6)

For example, if N = 3 and µ1 = 3, µ2 = 2, µ3 = 1, then L 3
2,0 = {(1, 2, 3), (2, 1, 3)}, L 3

2,1 =28

{(1, 3, 2), (3, 1, 2), (2, 3, 1), (3, 2, 1)} and L 3 = L 3
2,0 ∪ L 3

2,1.29
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Now, for l ∈ L N , let l← ∈ L N be such that ll←i = i, i = 1, . . . , N . For every l there exists a1

unique l←, and l←i represents the position of server i when the list is in state l. The set T N
i (l),2

l ∈ L N , is defined as follows:3

T
N
i (l) =

{

h ∈ L
N : h←lj < h←lj+1

, j 6= i,N
}

;

in words, T N
i (l) contains all permutations that maintain the same relative order of the first i4

and the last N − i servers as in l; the size of T N
i (l) is5

|T N
i (l)| =

(

N

i

)

.

For example, if N = 4 and l = (3, 2, 4, 1) then l← = (4, 2, 1, 3), |T 4
2 (l)| = 6 and T 4

2 (l) =6

{(3, 2, 4, 1), (3, 4, 2, 1), (3, 4, 1, 2), (4, 3, 2, 1), (4, 3, 1, 2), (4, 1, 3, 2)}. Finally, we note that7

L
N =

⋃

l∈L N
i,0

T
N
i (l). (7)

Next, we present three preliminary lemmas.8

Lemma 1. The following bound holds:9

max
l∈L N

i,0

|T N
i (l) ∩ L

N
i,k| ≤

(

i

k

)(

N − i

k

)

.

Remark 2. The statement of Lemma 1 holds with equality when µN
i+1 < µN

i . �10

Proof. The definitions of L N
i,k and T N

i (l) imply that, for any l ∈ L N
i,0,11

T
N
i (l) ∩ L

N
i,k ⊆ T

N
i,k (l) ≡







h ∈ T
N
i (l) :

k−1
∑

j=0

1{h←
li−j

>i} =

k
∑

j=1

1{h←
li+j
≤i} = k







,

and, hence, |T N
i (l)∩L N

i,k| ≤ |T N
i,k (l)|. The statement of the lemma follows from this inequality12

and13

|T N
i,k (l)| =

(

i

k

)(

N − i

k

)

;

the equality is due to the fact that there are
( i
k

)

ways to place servers li+1, . . . , li+k in the first i14

positions in the list, and there are
(N−i

k

)

ways to place servers li−k+1, . . . , li in the last (N − i)15

positions in the list. �16

Lemma 2. The following bound holds:17

max
l∈L N

i,0

max
h∈T N

i (l)∩L N
i,k

µN (h)

µN(l)
1{σN

i (h)≥µc} ≤ e−ck.

Proof. First, note that if l ∈ L N
i,0 then µN

lj
≥ µN

lk
, for any j ≤ i and k > i, and, therefore (2)

implies

max
h∈T N

i (l)∩L N
i,k

µN (h)

µN(l)
=

(

µN
li+1

µN
li+2

· · ·µN
li+k

µN
li−k+1

µN
li−k+2

· · ·µN
li

)k

=
k
∏

j=1

(

1− xjc
µ

µN
li−k+j

)k

≤
k
∏

j=1

(1− xjc)
k , (8)
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where1

xj ≡
1

cµ

(

µN
li−k+j

− µN
li+j

)

and the last inequality is due to µN
li−k+j

≤ µ. Second, l ∈ L N
i,0 and h ∈ T N

i (l) ∩ L N
i,k imply

σN
i (h) =

i
∑

j=1

(

µN
lj − µN

hj

)

≤
k
∑

j=1

(

µN
li−k+j

− µN
li+j

)

= cµ

k
∑

j=1

xj . (9)

Third, (8) and (9) yield the statement of the lemma since, for any l ∈ L N
i,0:

max
h∈T N

i (l)∩L N
i,k

µN (h)

µN(l)
1{σN

i (h)≥cµ} ≤ max
{yj≥0}:

∑k
j=1 yj≥1

k
∏

j=1

(

(1− yjc)
+
)k

=
(

(1− c/k)+
)k2

≤ e−ck,

where the last inequality follows from (1 − x)+ ≤ e−x, for all x ≥ 0, and (·)+ denotes the2

positive part. �3

Lemma 3. The following bound holds:4

P
[

σN
i (LN ) ≥ µc

]

≤
i∧(N−i)
∑

k=1

(

i

k

)(

N − i

k

)

e−ck.

Proof. Equations (2) and (5) result in

P

[

σN
i (LN ) ≥ µc, LN ∈ L N

i,k

]

P

[

LN ∈ L N
i,0

] =

∑

l∈L N
i,k

µN (l)1{σN
i (l)≥µc}

∑

l∈L N
i,0

µN (l)

≤
∑

l∈L N
i,0

∑

h∈T N
i (l)∩L N

i,k
µN (h)1{σN

i (h)≥µc}
∑

l∈L N
i,0

µN (l)
,

where the inequality is due to (7). The preceding further implies

P
[

σN
i (LN ) ≥ µc, LN ∈ L

N
i,k

]

≤ max
l∈L N

i,0

∑

h∈T N
i (l)∩L N

i,k
µN (h)1{σN

i (h)≥µc}

µN (l)

≤ max
l∈L N

i,0

{

|T N
i (l) ∩ L

N
i,k| max

h∈T N
i (l)∩L N

i,k

µN (h)

µN(l)
1{σN

i (h)≥µc}

}

≤
(

i

k

)(

N − i

k

)

e−ck, (10)
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where the last inequality follows from Lemmas 1 and 2. Equality (6) and (10) yield the
statement of the lemma:

P
[

σN
i (LN ) ≥ µc

]

≤
i∧(N−i)
∑

k=1

P
[

σN
i (LN ) ≥ µc, LN ∈ L

N
i,k

]

≤
i∧(N−i)
∑

k=1

(

i

k

)(

N − i

k

)

e−ck. �

Finally, we conclude this section with the proof of Theorem 1.1

Proof of Theorem 1. The union bound and Lemma 3 imply

P

[

max
i∈{1,...,N}

σN
i (LN ) > εaN logN

]

≤
N
∑

i=1

P
[

σN
i (LN ) > εaN logN

]

≤
N
∑

i=1

i∧(N−i)
∑

k=1

(

i

k

)(

N − i

k

)

e−εµ
−1kaN logN

≤ N2 max
1≤k≤⌊N/2⌋

N2ke−εµ
−1kaN logN

= max
1≤k≤⌊N/2⌋

Nk(2−εµ−1aN )+2, (11)

where the last inequality is due to2

(

i

k

)(

N − i

k

)

≤
(

N

2k

)

≤ N2k.

The statement of the theorem follows from (11). �3

4.2. Proof of Theorem 2. The basic idea of the proof is to obtain an asymptotic relation4

between the stationary probabilities of different list states, similar to (2). For two real-valued5

functions f(x) and g(x), we use the notation f(x) ∼ g(x), as x ↓ 0, to denote f(x)/g(x) → 1,6

as x ↓ 0. Next, we present two preliminary lemmas.7

Lemma 4. (Time-scale decomposition) Consider an N -server system with server speeds µ ≥8

µN
1 ≥ µN

2 ≥ · · · ≥ µN
N ≥ δ > 0 operating under the PBR policy. Then, for any l = (l1, . . . , lN ) ∈9

L N , as λ ↓ 0,10

P
[

LN = l
]

∼ P
[

LN
N = lN

]

P
[

LN−1(lN ) = (l1, . . . , lN−1)
]

, (12)

where LN−1(lN ) is the stationary list-order vector corresponding to the system with server rates11

(µN
1 , . . . , µN

lN−1
, µN

lN+1, . . . , µ
N
N ).12

Proof. Consider a time-embedded Markov chain {HN (n), n ∈ N} defined by HN (n) = LN (tn),13

where tn is the time when the nth idle period (all servers are idle) starts, i.e., t1 = inf{t > 0 :14
∑

BN
i (t) = 0} and, for n ≥ 1,15

tn+1 = inf

{

t > tn :

N
∑

i=1

BN
i (t) = 0, sup

tn≤s<t

N
∑

i=1

BN
i (s) > 0

}

;

let HN be a random variable with the distribution equal to the stationary distribution of16

{HN (n), n ∈ N}. Then, for all l ∈ L N ,17

P[HN = l] ∼ P[LN = l], (13)
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as λ ↓ 0, since the sequence of idle periods is i.i.d. with expectation equal to 1/λ and P[
∑BN

i =1

0] → 1, as λ ↓ 0. The transition probabilities pN (l, h), l, h ∈ L N , of the chain {HN (n), n ∈ N}2

satisfy pN (l, h) = O(λmax{i: li 6=hi}−1), as λ ↓ 0; this is due to the fact that at least max{i : li 6=3

hi} arrivals are needed in the original chain to occur during a single busy period (at least one4

server busy) in order for the transition to occur in the time-embedded chain. More precisely,5

as λ ↓ 0,6

pN (l, h) = Θ(λd(l,h)−1),

where d(l, h) is the minimum number of arrivals required to change the state of the list7

from l to h. For example, d((2, 1, 3, 4), (1, 2, 4, 3)) = 4, d((2, 1, 3, 4), (2, 3, 4, 1)) = 7 and8

d((1, 2, 3, 4), (4, 3, 2, 1)) = 14.9

In view of the preceding, {HN (n), n ∈ N} is a multi-level nearly completely decomposable10

Markov chain [7, Sect. 1.5], with the last level corresponding to the state of the last position11

in the list. Hence, (12) holds with L replaced with H. Recalling (13) completes the proof. �12

Lemma 5. (Stationary distribution) Let (l1, . . . , lN−2, i, j) ∈ L N . For the stationary distri-13

bution of the list-order vector LN we have, as λ ↓ 0,14

P
[

LN = (l1, . . . , lN−2, i, j)
] µN

j
∑N−2

k=1 µN
lk
+ µN

i

∼ P
[

LN = (l1, . . . , lN−2, j, i)
] µN

i
∑N−2

k=1 µN
lk
+ µN

j

.

(14)

Remark 3. Lemma 4 and Lemma 5 provide a set of equations that determine the distribution15

of LN . That is, these lemmas establish a light-load analog of (3). Let l, h ∈ L N be such that,16

for some n < N , we have ln = hn+1 < ln+1 = hn and li = hi, for i 6= n, n+ 1. Then, as λ ↓ 0,17

P
[

LN = l
]

µN
ln+1

∑n
k=1 µ

N
lk

∼ P
[

LN = h
]

µN
hn+1

∑n
k=1 µ

N
hk

.

For example, when N = 3, combining the two lemmas yields, for (i, j, k) ∈ L N , as λ ↓ 0,

P
[

LN = (i, j, k)
] µN

j

µN
i

∼ P
[

LN = (j, i, k)
] µN

i

µN
j

.

Moreover, Lemma 4 and Lemma 5 imply that the “quality” of stationary server ordering18

in the limit, as λ ↓ 0, is no worse than the ordering in the case λ → ∞. In particular, the19

following inequality holds:20

lim
λ↓0

P[LN = l]

P[LN = h]
≤

µN
hn

µN
ln

. (15)

�21

Proof. Consider the Markov chain {HN (n), n ∈ N} introduced in the proof of Lemma 4, as22

well as its stationary distribution. In view of (13), a time-scale decomposition (see Lemma 4)23

applies to this Markov chain as well. Suppose that {HN (n), n ∈ N} is in state l at some24

time n (recall that HN (n) = LN (tn), where tn is the time when the nth idle period starts).25

The probability that the server in the last position in the list becomes busy before the next26

idle period starts (at time tn+1) is given by, as λ ↓ 0,27

N−1
∏

k=1

λ

λ+
∑k

n=1 µ
N
ln

· (1 + o(λ)) ∼ λN−1
N−1
∏

k=1

1
∑k

n=1 µ
N
ln

,

since at least (N − 1) arrivals are needed once the last idle period is concluded; note that28

λ

λ+
∑k

n=1 µ
N
ln
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is the probability that an arrival occurs before a service completion in one of the first k servers1

in the list. Consequently, given that HN (n) = l, the probability that HN
N (n) 6= HN

N (n + 1)2

(there is a change in the last position in the list between two idle periods) is given by3

N−1
∏

k=1

λ

λ+
∑k

n=1 µ
N
ln

·
µN
lN

µN
lN−1

+ µN
lN

(1 + o(λ)) ,

as λ ↓ 0; this is because the server in the last position can move one position forward if and
only if the server in position (N − 1) does not complete service earlier. Indeed, if the server
in position (N − 1) completes service before the server in position N , then it will remain in
its position as an idle server or it will be replaced by a server ineligible for a move – in either
case, the last server will remain in its position. Then, the global balance equations for the sets
{l ∈ L N : lN = i} are as follows:

∑

l∈L N : lN=i

P
[

HN = l
]

N−1
∏

k=1

1
∑k

n=1 µ
N
ln

µN
i

µN
lN−1

+ µN
i

∼
∑

l∈L N : lN−1=i

P
[

HN = l
]

N−1
∏

k=1

1
∑k

n=1 µ
N
ln

µN
lN

µN
lN

+ µN
i

,

as λ ↓ 0. By considering the indices of the servers in the last two positions in the list and
applying Lemma 4, the previous equation can be rewritten in the following form:

∑

j 6=i

∑

l∈L N : lN−1=j,lN=i

P
[

(HN
1 , . . . ,HN

N−2) = (l1, . . . , lN−2)
] 1

µN
i + µN

j

N−2
∏

k=1

1
∑k

n=1 µ
N
ln

×

×
(

P[(HN
N−1,HN

N ) = (j, i)]
µN
i

∑N−2
k=1 µN

lk
+ µN

j

− P[(HN
N−1,HN

N ) = (i, j)]
µN
j

∑N−2
k=1 µN

lk
+ µN

j

)

∼ 0,

(16)

as λ ↓ 0. Now, assume that, as λ ↓ 0,4

P
[

HN = (l1, . . . , lN−2, i, j)
] µN

j
∑N−2

k=1 µN
lk
+ µN

i

∼ P
[

HN = (l1, . . . , lN−2, j, i)
] µN

i
∑N−2

k=1 µN
lk
+ µN

j

,

(17)
for (l1, . . . , lN−2, i, j) ∈ L N and N ≤ K − 1, for some K. Then, (17) also holds for N = K.5

Indeed, in view of Lemma 4 and the inductive assumption, (17) defines a set of probabilities for6

LK that solve (16) (the terms in parentheses in (16) vanish, as λ ↓ 0). Relations (13) and (17)7

yield the statement of the lemma. �8

Finally, we present the proof of Theorem 2.9

Proof of Theorem 2. It is sufficient to consider the case µN
N > 0 since, otherwise, servers with10

µN
i = 0 eventually end up at the end of the list.11

The proof is very similar to the proof of Theorem 1; it will thus help to recall the definitions
introduced there. For l ∈ L N

i,0, as in the proof of Lemma 2, we have

lim
λ↓0

max
h∈T N

i (l)∩L N
i,k

P[LN = h]

P[LN = l]
≤
(

µN
li+1

µN
li+2

· · ·µN
li+k

µN
li−k+1

µN
li−k+2

· · ·µN
li

)k

,
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where the inequality is due to Lemma 5 (see (15)). Therefore, a statement analogous to the1

statement of Lemma 2 holds:2

lim
λ↓0

max
l∈L N

i,0

max
h∈T N

i (l)∩L N
i,k

P[LN = h]

P[LN = l]
1{σN

i (h)≥µc} ≤ e−ck.

The rest of the proof can be obtained by following the same steps as in the proof of Theorem 1.3

�4
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