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Arrival processes to service systems are prevalently assumed non-homogeneous Poisson. Though mathemati-
cally convenient, arrival processes are often more volatile, a phenomenon that is referred to as overdispersion.
Motivated by this, we analyze a class of stochastic models for which we develop performance approximations
that are scalable in the system size, under a heavy traffic condition. Subsequently, we show how this leads
to novel capacity sizing rules that acknowledge the presence of overdispersion. This, in turn, leads to robust
approximations for performance characteristics of systems that are of moderate size and/or may not operate
in heavy traffic. To illustrate the value of our approach, we apply it to actual arrival data of an emergency

department of a hospital.

1. Introduction

In service systems, a central question is how to match capacity and demand. By taking into account
the natural fluctuations of demand and capacity, stochastic models that describe congestion over
time have proved instrumental in quantifying performance and discovering near-optimal capacity
sizing rules. The bulk of the literature assumes perfect knowledge about the model primitives,
including the mean demand per time period. For large-scale service systems, like health care sys-
tems, communication systems or call centers, the dominant assumption is that demand arrives
according to a non-homogeneous Poisson process, which in practice translates into the assumption
that arrival rates are known for each basic time period (second, hour or day).

Although natural and convenient from a mathematical viewpoint, the Poisson assumption often
fails to be confirmed in practice. A deterministic arrival rate implies that the demand over any given

period is a Poisson random variable, whose variance equals its expectation. A growing number of
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empirical studies shows that the variance of demand typically deviates from the mean significantly.
Recent work of Kim et al.| (2015a.b) reports variance being strictly less than the mean in health care
settings employing a appointment booking system. This reduction of variability can be accredited
to the goal of the booking system to create a more predictable arrival pattern. On the other hand,
in other scenarios with no control over the arrivals, the variance typically dominates the mean, see
Jongbloed and Koole| (2001)), |Chen and Henderson (2001), Avramidis et al.| (2004)), Brown et al.
(2005)), Maman, (2009)), Bassamboo and Zeevi (2009), Steckley et al.| (2009)), |(Gurvich et al.| (2010),
Robbins et al.| (2010), Bassamboo et al. (2010), Mehrotra et al. (2010), Gans et al. (2012), Zan
(2012) and Kim and Whitt| (2014]). The feature that variability is higher than one expects from
the Poisson assumption is referred to as owverdispersion. The latter concept will be the center of
our attention.

Stochastic models with the Poisson assumption have been widely applied to optimize capacity
levels in service systems. The goal is to minimize operating costs while providing sufficiently high
Quality-of-Service in terms of performance measures such as mean delay or excess delay. When
stochastic models, however, do not take into account overdispersion, resulting performance esti-
mates are likely to be overoptimistic. The system then ends up being underprovisioned, which
possibly causes severe performance problems, particularly in critical loading.

To deal with overdispersion new models are needed, scaling rules must be adapted, and existing
capacity sizing rules need to be modified in order to incorporate a correct hedge against (increased)
variability. Within the realm of Poisson processes, overdispersion can be modeled by viewing the
arrival rate itself as being stochastic. The resulting doubly stochastic Poisson process, also known
as Cox process (first presented in |Cox (1955)), gives rise to demand in a given interval that follows
a mixed Poisson distribution. In this paper, we consider a queueing model that has a doubly
stochastic Poisson process as input, and we identify the heavy-traffic regime in which it displays
Quality-and-Efficiency Driven (QED) behavior, first explored in the classical work of Halfin and
Whitt| (1981). By this, one roughly means that for systems with large demand and capacity, in
heavy-traffic, the empty-queue probability is a controllable number strictly between 0 and 1, and
that the mean delay is negligible. The key idea is to approximate the behavior of the stochastic
model for a service system with that of a limiting process. The limiting process arises from a specific
relationship between the arrival rate and the capacity level as both grow large without bound. Of
the aforementioned papers, our work best relates to [Maman| (2009), in the sense that our model
applies to situations where the arrival rate is stochastic. We therefore expand the paradigm of the
QED regime, in order to have it accomodate for overdispersed demand that follows from a doubly

stochastic Poisson process.
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We divide time into periods of equal length, whereas demand in each period is then generated
in two steps. First, the rate A of the Poisson variable is drawn from some distribution on (0, c0)
and then a Poisson variable with that realized rate is generated. Hence, the arrival process is as if
it is influenced by an external factor A. The mean demand is then given by EA, while the variance
of the demand is Var A + EA. By selecting the distribution of the mixing factor A, the variance
can be made arbitrarily large, and only a deterministic A leads to a true Poisson process. The
uncertain arrival rate can also be viewed as forecast errors. Indeed, in many cases, the uncertainty
in forecasting the arrival rate can be large relative to the fluctuations naturally expected in Poisson
processes, and should then be taken into account.

Without parameter uncertainty, a popular rule to choose the number of servers s in a service
system, if the mean service time equals one, is s = EA 4+ 3vEA, for some tuning parameter 8 > 0.
This is the well-known square-root safety staffing rule, that underpins much of the literature on
systems in the QED regime (cf. Borst et al.| (2004)) and references therein). [Whitt| (1999)) is among
the first to call for Poisson models with an uncertain arrival rate in view of forecast errors, and to
choose capacity levels accordingly. Using infinite server approximations, |[Whitt| (1999)) illustrates
that this choice of s is naive, and that parameter uncertainty related to overdispersion can be
accounted for by considering s = EA 4 3v/Var A+ EA. In a similar vein, Maman| (2009) considers
the M /M /s+ G system, assuming the arrival rate to be mixed Poisson with a Gamma distributed
A, which leads to an arrival rate with mean A and a standard deviation of the form A¢, where 0 <
¢ < 1. The natural capacity prescription would then become s = A+ O(A¢); without overdispersion,
¢ =1/2. We provide additional support for these staffing rules, and show how they can be updated
to account for the fact that convergence towards heavy traffic can be slow. To illustrate our findings

in more detail, we now provide a description of our model.

1.1. A discrete stochastic model with overdispersed input

In operations management, overdispersion has predominantly been modeled in a Poissonian setting,
in which the arrival process is lifted from a Poisson process to a doubly stochastic Poisson process,
in order to explain the overdispersion observed in datasets in terms of arrival rate uncertainty.
Although the viewpoint of rate uncertainty is sensible and leads to a better fit with real data,
the actual process that drives demand is most likely neither Poisson nor mixed Poisson. The
papers on capacity sizing in service systems facing overdispersion, e.g. Maman (2009)), Kocaga
et al. (2014), Whitt| (1999) and Whitt (2006), depart from the premise that the arrival process
is of a Poissonian nature, and built on stochastic models for individual customer arrivals and

departures under Markovian assumptions, that is, queues of the M/M/s and M/M/s+ M type.
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The classical birth-death processes that describe these systems are the main drivers, both for
performance evaluation, and as input for cost minimization problems.

We propose a basic queueing model that differs from the setting of these birth-death models,
but nonetheless captures the queueing facets of aforementioned service systems, while accounting
for the overdispersed arrival stream in a natural way. We divide time into periods of equal length,
and model the net input in period k as the difference between the incoming demand A, (k) and
the capacity s,, which is assumed to be fixed for all periods. Our model represents processes
embedded at equidistant time points, driven by arrival counts in the periods between these time
points. Since the random variable A, (k) leaves room for interpretations that do not rely on the
Poisson assumption, our model has a wide scope of applications. Let us mention some possible
interpretations:

(i) Many-sources paradigm. The canonical framework for large data-handling systems considers
a buffer that receives messages from n i.i.d. information sources. Source i generates X;(k) data
packets in slot k, so that in total A, (k) =) | X;(k) packets join the buffer in slot k. The buffer
depletes through an output channel with a maximum transmission capacity of s, packets per time
slot. As such our model can be viewed as a discrete version of the Anick-Mitra-Sondhi model, see
Anick et al. (1982), with the additional feature that sources can be correlated, which then leads to
an overdispersed arrival process of packets.

(ii) Data fitting. The mixed Poisson model presents a useful way to fit both the mean and variance
to real data, particularly in case of overdispersion. The mixing distribution can be estimated
parametrically or non-parametrically, as proposed in |Jongbloed and Koole| (2001); see also Maman
(2009). A popular parametric family is the Gamma distribution, which gives rise to an effective
data fitting procedure that makes use of the fact that a Gamma mixed Poisson random variable
follows a negative binomial distribution. Hence, when process data for service systems is available,
and in particular gives information on mean and variance of demand, the fitted mixed Poisson
model can be fed into our stochastic model in order to evaluate the system’s performance.

(iii) Factor models. Although having received little attention in queueing theory, factor models
have a long history in the modeling of overdispersion in a wide variety of applications (see e.g.
Johnson et al. (1993), Section 8.3.2). The mixed Poisson model is one of the base models in the
rapidly expanding area of Credit Risk (e.g. |Glasserman, (2003))), and models the portfolio risk by
imposing positive correlation (overdispersion) among individuals loans in the form of a common
factor. The economical reasoning behind this can be transferred directly to service systems: There
is a common factor A that influences the behavior of all customers. Conditional on the realization of
A, customers all individually generate demand for the service systems. The mixed Poisson model is

just one of many possible mixture models that are fit for describing correlation and overdispersion.
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Since we have not made any further assumptions on A, (k), we can feed into our system all sorts
of mixture models, like the mixed binomial model, or models with multiple factors.

(iv) Panel sizing. A matter of acute societal interest is accessing medical care in a timely manner.
The average primary care physician’s panel size is often too large for delivering consistently high
quality care under the traditional practice model. Case studies suggest that a primary care physician
providing all recommended acute, chronic, and preventive care for a panel of 2,500 patients receives
about 24 appointment requests per day, whereas the physician is only able to serve 12 patients
each day, thus creating huge backlogs (see [Murray et al.| (2003) and (Green et al.| (2007)). There
thus seems to be a mismatch between workload and primary care physicians’ capacity to deliver
consistently high quality care. |Zacharias and Armony| (2014) model this panel sizing problem in
terms of a queueing model for the appointment book of a clinic, with a panel of n patients and
which can schedule a maximum of s, patients per day. The realized schedule depends on the
appointment queue at the beginning of the working day. This new demand for day k, added to the
appointment queue, consists of new requests for appointments coming from the panel of n patients,
and can be captured by a random variable A, (k) which is likely to be overdispersed.

(v) Open access. Our model is also suitable for describing service systems with open access
scheduling, which means that the system serves customers on a first-come-first-serve basis without
using an appointment book (Murray and Tantau| (1999))). An example of this setting is given by
Izady| (2015), who considers appointment capacity planning in specialty clinics. Indeed, particularly
in health care settings, open access gains popularity, because it holds the promise to strike the
proper balance between utilization and quality of service. Moreover, in some health care settings
like an emergency department, it is reasonable to assume that patients arrive without appointment
and should be treated on demand. In this paper, we apply our model to an open access setting in
a hospital in the far east, which we shall refer to as SKHospital. Here emergency patients require
diagnostic tests at the radiology department of the hospital. We shall demonstrate that our model
fits the data and that the capacity sizing rules that follow from this model can lead to significant

performance improvement.

1.2. A non-standard saddle point method

The other advantage of our model is its tractability. It is amenable to powerful mathematical
methods from complex and asymptotic analysis. For our heavy-traffic limits, we take an original
approach that starts from Pollaczek’s formula, which represents the transform of the stationary
queue length distributions in terms of a contour integral. From this classical transform represen-
tation, contour integrals for the zero-queue probability and the mean queue length follow imme-

diately. Contour integrals are often suitable for asymptotic evaluation (see e.g. (Cohen| (1982))),
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particularly for obtaining classical heavy traffic asymptotics. While we also subject the contour
integral representations to asymptotic evaluation, ours is not the classical heavy-traffic scaling.
This asymptotic analysis requires a non-standard saddle point method, tailored to the specific form
of the integral expressions that arise under overdispersed arrivals and QED-type capacity sizing
rules. This leads to asymptotic expansions for performance measures, of which the limiting forms
correspond to heavy-traffic limits, and pre-limit forms present refined approximations for pre-limit
systems (n < 00) in heavy traffic. Such refinements to heavy-traffic limits are commonly referred to
as corrected diffusion approzimations; see Siegmund| (1978]), Blanchet and Glynn| (2006), Asmussen
(2003).

Let us briefly explain why our saddle point method is non-standard. The saddle point method in
its standard form is typically suitable for large deviation regimes, for instance excess probabilities,
and it cannot be applied to asymptotically characterize other stationary measures such as the
mean or mass at zero. Indeed, in the presence of overdispersion the saddle point converges to one
(as n — 00), which is a singular point of the integrand, and renders the standard saddle point
method useless. Our non-standard saddle point method, originally proposed by de Bruijn (1981)
and recently applied in Janssen et al.| (2015), aims specifically to overcome this challenge. In Section
we elaborate on the technicalities of this method and explain why relying directly on the path

of analysis of |Janssen et al. (2015) is insufficient in the presence of overdispersion.

1.3. Contributions

The first set of results in this paper cover the mixed Poisson demand with general mixing factor
A. We prove that our stochastic model with Pois(A) demand and capacity set according to the

QED-type regime, converges to the Gaussian random walk. More specifically, denote the mean

2
n’’

and variance of the demand A, (k) by u, and o2, and assume that the system load p,, = ,/sn
approaches one such that (1 — pn)ﬁ—z — 7, as n — oco. Under additional assumptions on the growth
rates of u, and o,, the stationary queue length, normalized by o,,, converges to the all-time maxi-
mum M., of a random walk with i.i.d. normal increments, having mean —v and unit variance. This
Gaussian random walk is a sampled version of the Brownian motion, the properties of which are
well understood; see |Chang and Peres (1997)) and |Janssen and van Leeuwaarden, (2006). Carrying
over known results on M, yields heavy-traffic approximations for stationary performance measures.
As a result, for large-scale critical service systems, using the QED-type rule s, = p,, + yo, for
matching capacity with demand, systems facing overdispersion can be dimensioned in such a way

that the delay probability is strictly between 0 and 1, and has mean delays that are asymptotically
negligible.
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The other question, also of operational significance but at a more refined level, concerns improv-
ing and understanding overdispersion by assessing its consequences. We focus on the impact on
stationary performance measures. Our heavy-traffic analysis and numerical examples show that
overdispersion can have tremendous adverse effects, both in terms of performance measures and
selection of capacity, the latter being a function of demand that provides a predetermined grade
of service. Moreover, we show that overdispersion causes the system to converge more slowly to its
limiting behavior. This slow convergence begs refinements to make our performance results more
broadly applicable. As it happens, our analytic approach is well-suited for the challenge.

This leads to our second set of results, for the more specific (yet practically relevant) case in
which A,, has a Gamma distribution with parameters a,, and 1/b,. While our first set of results
yields the conventional heavy-traffic approximation @, ~ o, M., for the invariant queue length @,,
one of our robust refinements implies that the parameters v and o, in this approximation should

be replaced by

2

1 - Tn o
Yo=Yyl - ———— and Jn:—on+vn<—"—1>. (1.1)
\/ %/ b+ on /Y g fin

Close inspection of the functions +, and &, show that -, — v and &,/0, — 1, for large n; it
follows that for large service systems, the difference between the classical and robust approximation
should be negligible. More importantly, for small and moderate n, the difference between ~, and
0, and their original counterparts is considerable, and the robust approximations are decisively

more accurate, particularly in situations of overdispersion.

1.4. Connection with literature on staffing

While all results reveal a clear impact of overdispersion on system performance, implications on
staffing are less pronounced. |Whitt| (2006) studies the M/GI/s+ GI queue via an approximating
fluid model to show that overdispersion leads to severe performance degradation but, at the same
time, the effect on staffing/capacity sizing is less significant. Whitt attributes this to the fact that
the objective function over which performance is optimized, is relatively flat as a function of the
servers. Kocaga et al. (2014) consider the M/M/s+ M queue with uncertain arrival rate and an
outsourcing option, and determine the asymptotically optimal policy as the solution to a cost-
minimization problem. Despite the presence of overdispersion, the results and numerical finding of
Kogaga et al.| (2014) are similar to Borst et al.| (2004): square-root capacity sizing is near optimal
and robust against many circumstances.

One way of understanding [Kogaga et al. (2014) is that they consider a situation in which the

uncertainty of the arrival rate is of the exact same order as the natural system uncertainty. The
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present paper deals predominantly with higher levels of overdispersion that renders the square-
root rule invalid, rather than refining it as explained above. This is consistent with the arguments
of Ding and Koole| (2014) who show that factor models used to forecast systems loads exhibit
significant overdispersion; such models are used in practice when service levels need to be scheduled
days or weeks in advance. In addition, Bassamboo et al.| (2010) propose a capacity sizing rule for
the M/M/s+ M queue with uncertain arrival rate. Exploiting a newsvendor approximation, the
optimal capacity sizing rule is shown to consist of a base capacity u, and an additional capacity
that is proportional to o,. When o2 /u, — oo, overdispersion is dominant, a situation which is
called in Bassamboo et al.|(2010) the uncertainty-dominated regime.

Our work shows that in cases of mild yet dominating forms of overdispersion, capacity sizing
rules, based on hedging the natural fluctuations of the demand, lead to behavior that is favorable
over conventional staffing rules, if slow convergence properties that play a minor role in conventional
systems are taken into account appropriately. We expect that this slow convergence requires refine-
ments, not only at the level of performance measures as in this paper, but also in cost minimization

models, though we do not pursue this here.

1.5. Organisation

The remainder of this paper is structured as follows. Our model is introduced in Section 2. In
Section 3 we present our main theoretical results, including classical and robust heavy-traffic
approximations for the stationary queue length. In Section 4, we describe the numerical results and
demonstrate the heavy-traffic approximation for a real data set coming from a SKHospital. Section
5 contains the proof of the results formulated in Subsection 3.1, as where Section 6 contains the

technical details of those in Subsection 3.2.

2. Model description and preliminaries

We consider a discrete stochastic model in which time is divided into periods of equal length. At the
beginning of each period k=1,2,3,... new demand A4,,(k) arrives to the system. The demands per
period A,(1),A,(2),... are assumed independent and equal in distribution to some non-negative
integer-valued random variable A,,. The system has a service capacity s, € N per period, so that

the recursion

Qn(k+1) = max{Q, (k) + A, (k) — 5,0},  k=0,1,2,..., (2.1)

with @,,(0) = 0. For brevity, we define p, :=[EA, and o2 = Var A,,. The duality principle shows

that this expression is equivalent to

Qu(k+1)2 max {Zle(An(i) - sn)}, k=0,1,2,..., (2.2)

0<j<k
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i.e. the maximum of the first k£ a random walk with steps distributed as A,, — s,,. Even more so,
we can characterize @),,, the stationary queue length, as

QuE max{ T (4, (1) —s,)}. (2.3

k>0
The behavior of @,,(k) greatly depends on the characteristics of A,, and s,,. First, note that u, < s,
is a necessary condition for the maximum to be finite and therefore for the queue to be stable.
With this constraint in mind, we set s,, = u,, +y0,, with v > 0, for which we provided intuition in
Section [

We further impose a heavy-traffic condition, p, = p,/s, — 1, which for our choice of s, is
equivalent to requiring

(1—pn)% =, as n — 00. (2.4)

Another condition we impose is that
o2
- — 00, n — 0o, (2.5)
L
which roughly says that the overdispersed nature of the arrival process is persistent when n — oo.
Since we are mainly interested in the system in heavy traffic it is appropriate to look at the queue
length process in a scaled form. Filling in s,, as well as dividing both sides of (2.3|) by o, gives
On :maX{Zle(M—y)}. (2.6)

o, k>0 On

By defining Q,, := Q,,/0, and A, (i) := (A, (i) — jtn) /0w, We see that the scaled queue length process
is in distribution equal to the maximum of a random walk with i.i.d. increments distributed as
fln — . Besides IEAn =0 and Var An =1, the scaled and centered arrival counts An has a few other
nice properties which we turn to later in this section.

The model in is valid for any distribution of A,,, also for the original case where the number
of arrivals follows a Poisson distribution with fixed parameter A,, but does not hold then.
We will deviate too much from this setting. Instead, we assume A,, to be Poisson distributed with
uncertain arrival rate rendered by the non-negative random variable A,. This A, is commonly
referred to as the prior distribution, while A,, is given the name of a Poisson mixture, see |Grandell
(1997). The probability generating function (pgf) of A, can be written in terms of the moment

generating function (mgf) of A,,, namely,
A, (2) =E[E[z*"|A,]] =E[exp(A, (2 —1))] = M, (2 — 1), (2.7)
where M,,(t) is the mgf of A. From ({2.7)), we get

un =EA, =EA,, o2 =Var A, =VarA, +EA,, (2.8)
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so that p,, < o2 if A, is non-deterministic. The condition in (2.5 hence translates to Var A,,/EA,, —
oo for m — oo. The next result relates the converging behavior of the centered and scaled A,, to

that of A,,.

LEMMA 1. Let p,,0% — o0 and o2 /p, — oco. If

A, = M:d>./\f(0,1), for n — oo, (2.9)

On

then A, converges weakly to a standard normal variable as n — oco.

The proof can be found in Section

The prevalent choice for A,, is the Gamma distribution. The Gamma-Poisson mixture turns out
to provide a very good fit to arrival counts experienced by service systems, as was observed by
Jongbloed and Koole (2001). Assuming A,, to be of Gamma type with scale and rate parameters

a, and 1/b,, respectively, we get

An(z) = (anl(l_z))" (2.10)

which is the pgf of the negative binomial distribution with parameters a,, and 1/(b,, + 1), so that
by = Qpby,, 02 =a,b, (b, +1). (2.11)

Hence, requiring b, — oo as n — oo, gives the desired persistent overdispersion. An important

implication of A, being a Gamma random variable is the following.

COROLLARY 1. Let A,, ~ Gamma(a,,1/b,), A, ~ Poisson(A,,) and a,,b, — oco. Then A, converges

weakly to a standard normal random variable as n — oo.

Proof With Lemma 1| in mind, it is sufficient to prove that A, = A(0,1) for this particular
choice of A,. We do this by proving the pointwise convergence of the cf of A, to exp(—t?/2), the
cf of the standard normal distribution. Let ¢g(-) denote the characteristic function of a random
variable G. By basic properties of the cf,
ib,t\ —an
o)

0-77/

:_z’unt —anln<1 _ ibntﬂ

= exp
On On
LT gt byt b2t2 s s
=exp| L an< i +0(bn/an))}
=exp _—Lﬁ—i—O(l/\/a )] — exp (—t°/2) (2.12)
L 2(b, +1) " ’ '

for n — co. By Lévy’s continuity theorem this implies A,, is indeed asymptotically standard normal.
O
The characterization of the arrival process as a Gamma-Poisson mixture be of vital importance

in later sections.
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2.1. Expressions for the stationary distribution

Our main focus is on the stationary queue length distribution, denoted by P(Q, = i) =

limy_, . P(Q,, (k) =1). Denote the pgf of Q,, by
Qun(w) =) P(Q, =i’ (2.13)

We next recall two characterizations of Qn(w) that play prominent roles in the remainder of our
analysis. Throughout we assume that the pgf of A,,, denoted by A, (w), exists within |z| < r, for
some 1 > 1, so that all moments of A,, are finite.

The first characterization of Q, (w) originates from a random walk perspective. As we see from
, the (scaled) stationary queue length is equal in distribution to the all-time maximum of a
random walk with i.i.d. increments distributed as A,, —~ (or A, — «v in the scaled setting). Spitzer’s

identity, see e.g. (Asmussen|2003, Theorem VIII4.2), then gives

oo

Qu(w) =exp{ " L Bttt 1)), (214)

k=1

where (z)* = max{z,0}. Hence,

B0, = () = 3" B[S ) 5] (215)

2 1 k - 2
VarQ, = QL) +Q, (1) - (Q1) = kE[(Z(An<i> - sn>> K (2.16)
P(Q,=0)=Q,(0) = exp{i;P(Zf_l(An(i) —5)>0) }. (2.17)

A second characterization follows from Pollaczek’s formula, see |Abate et al.| (1993)), |Janssen et al.

(2015):

~ 1 w—z\ (7 — A, (2))
(W) =expl L 1 ( ) d } 2.1
@n(w) exp{ 271 /|z|_1+s 1) e o A, (2) ‘ (2.18)
which is analytic for |w| < g, for some 7o > 1. Therefore, £ > 0 has to be chosen such that |w| <

1+e < rg. This gives

_ ! 1 (= A(2))
Q= 2 |z|=1+¢ 1—2 2z8n— An(z) dz, (2'19)
1 —2 (7= Al))
VO = o /|z|—1+s (1—2)% 2 — Au(2) dz, (2.20)
)= e L ) - A
P(Q,=0)= exp{ i /z—1+5 ln(z — 1) o — A (2) dz}. (2.21)

These two sets of expressions for the characteristics of the queue reappear several times in the next

sections.
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3. Main results on robust approximations
3.1. Process-level convergence and stationary moments

Observe that is in fact Lindley’s recursion for the waiting time in a D/G/1 system. Bearing
in mind the many-sources interpretation, for large n and s, this recursion starts resembling that
of a D/D/1 system, which suggests that our system becomes nearly deterministic, and only due
to the traffic intensity increasing as in the system displays interesting limiting behavior.
A more generic class of nearly deterministic queueing systems was introduced in [Sigman and
Whitt| (2011ajb)), in terms of the G, /G, /1 system, where G, indicates cyclic thinning of order
n, indicating that some point process is thinned to contain only every nth point. As n — oo,
the G,,/G,/1 systems thus approaches the deterministic D/D/1 system. For G, /G, /1 systems,
Sigman and Whitt| (2011a)) establishes stochastic-process limits, and Sigman and Whitt| (2011b)
derives heavy-traffic limits for stationary waiting times. In the framework of Sigman and Whitt
(2011ayb)), the recursion corresponds to a D/G,, /1 queue, where the sequence of service times
(A, (k))r>1 follows from a cyclically thinned sequence of i.i.d. random variables. For the G,,/D/1
queue, which describes the waiting-time process in a G/D/n queue, a similar result was obtained in
Jelenkovic et al.| (2004). The main results in |Jelenkovic et al.| (2004)), Sigman and Whitt| (2011ab))
were obtained under the assumption that p, ~ 1 —+/+/n, in which case it follows from (Sigman
and Whitt|2011b, Theorem 3) that the rescaled stationary waiting time process converges to a
reflected Gaussian random walk.

We shall also identify the Gaussian random walk as the appropriate scaling limit for our station-

ary system. However, since the normalized natural fluctuations of our system are given by u, /o,

instead of y/n, we assume that the load grows like p,, ~1— #Jgn. Hence, in contrast to |Jelenkovic
et al.| (2004)) and |Sigman and Whitt| (2011alb), our systems’ characteristics display larger natural
fluctuations, due to the mixing factor that renders the arrivals. Yet, by matching this overdispersed
demand with the appropriate hedge against variability, we again obtain Gaussian limiting behav-
ior. Note that this is not surprising, since we saw in Lemma([I] that the increments start resembling

Gaussian behavior for n — co. The following result summarizes this.

THEOREM 1. Let A, be a non-negative random variable such that (A, — p,)/o, is asymptotically
standard normal with p, and o2 as defined in [2.8)). Assume both i,,02 — 0o and 02 /1, — o0 as
n— oo. Then, for n — oo,

(i) Qu 0,

(i) P(Q =0) —P(M, =0),

(i) EQ.] > EM,,

(iv) Var @, — Var M,
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where M., is the all-time maximum of a random walk with i.i.d. normal increments with mean —vy

and unit variance.

The proof of Theorem [I] is given in Section [7| The following result shows that Theorem [1] also

applies to Gamma mixtures, which is a direct consequence of Corollary

COROLLARY 2. Let A,, be Gamma distributed with scale and rate parameters a,, and 1/b,,, respec-

tively, such that a,,b, — co. Then the four convergence results of Theorem [1| hold true.

It follows from Theorem |1 that the scaled stationary queueing process converges under to
a reflected Gaussian random walk. Hence, the performance measures of the original system should
be well approximated by the performance measures of the reflected Gaussian random walk, giving
rise to heavy-traffic approximations.

Like our original system, the Gaussian random walk falls in the classical setting of the reflected
one-dimensional random walk, whose behavior is characterized by Spitzer’s identity and Pollaczek’s
formula. In particular, Pollaczek’s formula gives rise to contour integral expressions for performance
measures that are easy to evaluate numerically, also in heavy-traffic conditions. |Abate et al. (1993)
have considered the numerical evaluation of such integrals. For EM, such an integral is as follows

IEMW:—jT/OORe[l_(;(_z)} dy, (3.1)

with ¢(z) = exp(—yz + 1 2?), the Laplace transform of a normal random variable with mean —v
and unit variance, and z =z + 4y with an appropriately chosen real part . Note that this integral
involves complex-valued numbers. Similar expressions appear for P(M, = 0) and Var M,. The
following result simply rewrites these integrals in in terms of a real integral (the derivation
is given in the e-companion) and uses the fact that the scaled queue length process mimics the

maximum of the Gaussian random walk for large n.

COROLLARY 3. Let p,,0, — 0o and 2/, — oo. Then the leading order behavior of P(Q,, = 0),
EQ, and Var (@, is characterized by

1 [ \/§ 19 9
P(Q, =0) =exp [W/o Jyé_i_tzln(l —e 2"t )dt}, (3.2)
2

2 . ) t2 e _ 1 2—t2
IEanfg / - < 2 )2 dt, (3.3)
™ Jo 372 +t2 L—exp(—372 —1?)
2 2 o] t2 e _ 1 2—t2
Varan\[W”/ _t ey ), (3.4)
m o (372+1?)?1—exp(—37*—1?)
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3.2. Robust heavy-traffic approximations

To obtain more accurate approximations for EQ,,, Var @, and P(Q, = 0), using the Pollaczek’s
formula given in (2.18]), we need to be more specific about the arrival process A,, and its pgf A, (w).
In the remainder of this paper we work with the Gamma-Poisson mixture with parameters a,, and

b,,, so that

A, (w) = (H—(ll—,z)b) (3.5)

As mentioned earlier, Gamma mixing yields the negative binomial distribution, with pgf as in (3.5]),

which allows us to establish the detailed asymptotic results in the next theorem.

THEOREM 2. Let a,,b, and s, be such that

(L= pu)van =~ (3.6)

for some v >0, as n— o0o. Then the leading order behavior of EQ,, is given by

V29 (butp *or exp(—37n — %)
E n:”(ﬂﬂ)/ 3 Tn dt (14 o(1)). .
¢ & L—pn/ Jo 392412 1—exp(—3i92 —t?) (1+0(1)) (3.7)
where

1—pn\2 b

2 n n
— o 1 *)- 3.8
Tn=? <bn+1> ( +pn (3-8)

Furthermore, the leading order behavior of P(Q, =0) and Var Q,, is given by

exp[1 bu + pn /000 0/ V2 In (1 —e_%ﬁ_tQ) dt], (3.9)

T b, +1 1242
and .
'Vf;/ﬁ(bnﬂ)n)z( b + 1 +1) /OO r P31 (3.10)
™ 1_pn bn+pn 0 (%7n+t2)2 1—exp(—%’yg—t2) ’ '
respectively.

Note that we can write (3.7)) as

EQ,=6,EM, and VarQ,~ao> VarM,, (3.11)
with
- b, + pn
=Yl 7 —)- 3.12
Gu=" (1_pn) (3.12)

This robust approximation for EQ), is suggestive of the following two properties that extend
beyond the mean system behavior, and hold at the level of approximating the queue by o, times
the Gaussian random walk:

(i) At the process level, the space should be normalized with o,,, as in . The approximation
(3.7) suggests that it is better to normalize with &,. Although &, — o, for n — oo, the &, is

expected to lead to sharper approximations for finite n.
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(ii) Again at the process level, it seems better to replace the original hedge « by the robust hedge
~,. This thus means that the original system for finite n is approximated by a Gaussian random
walk with drift —-,,. Apart form this approximation being asymptotically correct for n — oo, it is

also expected to approximate the behavior better for finite n.

4. Numerical and empirical studies
4.1. Convergence of the robust hedge

We next examine the accuracy of the heavy-traffic approximations for EQ, and Var(@,, which
follow from Corollary [3] and Theorem [2 We expect the robust approximation to be considerably
better than the classical approximation when ~, and &, differ substantially from their limiting
counterparts. To further substantiate the convergence of «, to v and &,, to o,, we present the results

below.

ProrosiTIiON 1. For b,,s, — oo and b, < s,,

75:72<1— W) (4.1)

Proof From (3.8]), we have
1—p,\2 b 1 /s,—a,b,\? s
2 n n n nvn n
Tn =9 (bn—i—l) ( Pn Sn b,+1 ay,

1% apba(b,+1) S\ o by an\ oz
s, (b +1)2 (Han)_7 mel(lJr )_'7 Fr. (42)

Sn

Now consider the factor F,.

7 by, <1+a7n)_ by, L 1 ayb,
"b,+1 s,/ b,+1 b,+1 s,

_q_ ! (1_anbn>:1_ L yon

b, +1 Sy b,+1 s,
1 1 1
=1- 11j:1_ - , (4.3)
n 1142 bn+1+;«/anbn(bn+1)
which together with o2 = a,,b, (b, + 1) proves the proposition.
]

Note that ~, always approaches v from below. Also, (4.1) shows that b, is the dominant factor in

determining the rate of convergence of ~,.

PROPOSITION 2. Let G, as in (3.12). Then

G =0 (1+O(1//anbn)) + buyn. (4.4)
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Proof Straightforward calculations give

On="n (M> . b—" ($n+a,) = In bin (an(b—I— 1) 4+ vV anb, (b, + 1))

Sp — anbn ’7 On ’Y an(bn + 1)

_n _n
= (\/anbn(bn+1)+7bn) o b (4.5)

Applying Proposition [I] together with the observation

1
\/1 T oy = OO/ Vanb) (4.6)

yields the result.

In Figure [l we visualize the convergence speed of both parameters in case p, =n, o, = n’ with
§=0.7 and v = 1. This implies a,, =n/(n* — 1) and b, =n?* — 1.

We observe that +, starts resembling « fairly quickly, as predicted by Proposition (I} &,, on
the other hand, converges extremely slowly to its limiting counterpart. Since EQ,, and Var @Q,, are
approximated by o, and &,, multiplied by a term that remains almost constant as n grows, the
substitution of o,, by &, is essential for obtaining accurate approximations, as we illustrate further

in the next subsection.

4.2. Comparison between heavy-traffic approximations
We set, so that p,, =n and 02 =n* with § > 1, so that s, =n+n°, and a, =n/(n**~* — 1) and
b, =n*"1-1.

Tables [1] to 4] present numerical results for various parameter values. The exact values are cal-
culated using the expression in Appendix [A]

Several conclusions are drawn from these tables. First observe that the heavy-traffic approxima-

tions based on the Gaussian random walk, (3.3)) and (3.4)), capture the right order of magnitude
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] _pa] EQ. B3 B[V Qe BA) BI0)
510.609 [ 0.343 0.246 0.363 1.002 0.835 0.978
10 {0.683 | 0.535 0.400 0.551 1.239 1.063 1.216
50 10.815|1.405 1.168 1.405 1.995 1.817 1.971
100 | 0.855 | 2.113 1.824 2.105 2.445 2.270 2.420
500 1 0.920 | 5.446 5.006 5.412 3.923 3.762 3.899
Table 1 Numerical results for the Gamma-Poisson case with v =1 and § = 0.6.
il pe] EQ. B3 B[ VVaQ, B B0
510.550 | 0.462 0.284 0.479 1.162 0.896 1.130
10]0.587| 0.852 0.521 0.855 1.570 1.213 1.528
5010.668 | 3.197 2.093 3.106 3.0248 2.433 2.947
100 |0.700 | 5.561 3.784 5.377 3.983 3.270 3.887
500 | 0.766 | 19.887 14.741 19.202 7.514 6.455 7.361
Table 2 Numerical results for the Gamma-Poisson case with vy =1 and § =0.8.
sl ] EQ. B3 BDNVarQ, B B0
510.949| 11.532 11.306 11.495 3.634 3.559 3.602
1010.961 | 17.565 17.268 17.548 4.474 4.398 4.444
50(0.979| 46.368 45.869 46.418 7.241 7.168 7.218
1001 0.984 | 70.340 69.735 70.430 8.910 8.839 8.888
500 | 0.991 | 184.900 183.989 185.108 14.422 14.357 14.404
Table 3 Numerical results for the Gamma-Poisson case with v =0.1 and ¢ = 0.6.
Sn| po| BQ. B3 B.7)[vVarQ, (3.4) (3.10)
510.931| 15.730 15.209 15.909 4.276  4.127 4.233
101 0.939 | 27.561 26.672 27.958 5.652 5.466 5.605
501 0.955 | 100.660 97.967 102.070 10.760 10.476 10.698
1001 0.961 | 175.591 171.360 177.818 14.189 13.855 14.117
500 | 0.971 | 638.097 626.346 644.105 26.963 26.490 26.864
Table 4

for both EQ,, and /Var@,,. However, the values are off, in particular for small s,, and low p,, :

Numerical results for the Gamma-Poisson case with v=0.1 and § =0.8.

EA, /s,. The inaccuracy also increases with the level of overdispersion. In contrast, the approxima-
tions that follow from Theorem and are remarkably accurate. Even for small systems
with s, =5 or 10, the approximations for EQ,, are within 6% of the exact value for small p, and
within 2% for p,, close to 1. For y/Var@Q,,, these percentages even reduce to 3% and 1%, respec-

tively. For larger values of s, these relative errors naturally reduce further. Overall, we observe

that the approximations improve for heavily loaded systems, and the corrected approximations are

particularly useful for systems with increased overdispersion.

4.3. Capacity allocation in health care

We next apply our model and robust approximations to real-life patient arrivals. We consider

emergency patients who require diagnostic tests at the radiology department of a hospital. |Green
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(2004)) points out that patients at the radiology department can be roughly categorized into three
groups: Inpatients, outpatients and emergency patients. Inpatient and outpatient arrivals are rela-
tively predictable as these are usually by appointments. Emergency patients, on the other hand, are
inherently unpredictable: They typically require urgent care and therefore timely access to testing
facilities, as well as a quick assessment of the test results. This translates into emergency patients
getting priority over the other two groups in such settings, so that they do not experience any delay
caused by the groups of lower priority. However, patients from the same top-priority group can
still cause considerable congestion. A careful evaluation of capacity allocation is hence required,
bearing in mind that additional sophisticated pieces of medical equipment are very costly.

In the setting we study, capacity is defined by the number of time slots available to perform
radiology tests on emergency patients in a given time period, which we set at 24 hours. As radiology
tests are commonly performed in appointment slots of fixed length, the number of slots available
per day is also indirectly fixed. In terms of our model parameters, see Section [2| we have s as the
number of slots per day allocated to emergency patients, and A(k) the number of test requests
received by the department on day k. We omit the subscript n in this section due to the absence of
limits. Then EQ can be interpreted as the expected number of patients in stationarity whose test
is carried over to the next day. A more natural performance measure in this setting is the expected
waiting time, namely the time between the physician’s request and the actual start of the test.
However, Little’s law implies that there is a linear relation between the two, hence we choose to
only evaluate EQ.

The data set on which our empirical study is based originates from the emergency department of
SKHospital, monitored over a period of 76 days from September to November 2012. We extracted
information of ED patients referred to the radiology department by the ED physicians, which
includes the time the test request was made and the exact test type performed. The two test types,
X-ray and CT scans, are performed on different equipment and hence it makes sense to analyze
their queueing processes separately.

We refer to test requests as arrivals. The empirical cumulative distribution function of the number
of arrivals per day, for each type, are depicted by the black lines in Figure[2land [2] The sample means
equal 69.81 and 17.47, for the X-ray and CT scans respectively, whereas the sample variances are
121.8 and 26.12. These values suggest that fitting a Poisson distribution is inappropriate, which is
visually backed up by the fitted Poisson cdf, depicted in Figure[2] by the red line. To strengthen this
claim, we tested both samples for the Poisson assumption using the dispersion test, see Appendix
and obtained p-values equal 7.01-1073 and 3.57 - 1073 respectively, which allow us to safely

reject the Poisson hypothesis in both cases.
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Figure 2 Empirical, fitted Poisson and fitted Gamma-Poisson cumulative distribution functions of the number of
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arrivals.

In search for a better distributional fit with the arrivals count, we resort to Gamma-Poisson
mixtures. Here we employ the procedure in Jongbloed and Koole (2001, which is basically a

maximum loglikelihood method, to obtain estimates for the parameters a and b. This yields
(X —ray =95.68,  bx_ray =0.7297, acr =37.19, bor = 0.4698. (4.7)

Applying the bootstrapping method to the data and the fitted model, also described in the appendix
of |Jongbloed and Koole| (2001), returns p-values that equal 0.7354 and 0.2120 for X-ray and CT
scans, respectively. Therefore, the null hypothesis, stating that the data originated from a Gamma-
Poisson mixture, cannot be rejected. The cdfs of the fitted Gamma-Poisson distributions, plotted
in green in Figure [2] give visual confirmation of this claim as well. Naturally, we also compared
the estimated densities to the empirical pdf of the data. However, these fail to give a convincing
visual fit due to the relatively small sample size and are therefore omitted here.

We now have clear evidence that both the X-ray and CT scan facilities face an overdispersed
arrival stream. In our final step of the empirical study we now evaluate the accuracy of our per-
formance measure of interest EQ), and the consequences of assessing system performance while
ignoring the presence of overdispersion. We take the following approach: Trivially, we need to
choose s > EA in order for the system to be stable. Hence, we vary s from 70 to 80 for X-rays
and from 18 to 24 for CT scans and simulate the queue length process by sampling the number of
requests per day from the actual arrival counts. The number of iterations performed is 10® for each
configuration, excluding a warm-up interval of length 107 (days). Around the mean of Q obtained
from this simulation, we create a 95% confidence interval. Next, we approximate the expected sta-
tionary queue length under two scaling rules. Assuming Poisson arrivals, the appropriate capacity
allocation rule would be s = ji + vy/fi, for some v > 0. Our novel capacity sizing rule prescribes

sS=j+v6= ab+ Y1/ dB(B +1). We compute the first approximation based on square-root safety
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s p| EQ (£ conf. iv.) EQ= (3-3) (3.7) | rel. error
7010.997 | 328.313+ 6.6-107% 186.664 324.231 325.221[9.6-103
7110983 | 45.0734+ 1.0-1072 24.946 45.290 45.308 |5.4-1073
7210.970 | 21.9884+ 5.4-1072 11.650 21.982 22.129 |6.6-1073
7310.956 | 13.546+ 3.6-10~2 6.847 13.455 13.649 |7.8-1073
7410943 | 9.230+ 2.7-1073 4.438 9.106 9.319 |1.0-1072
75(0.931| 6.6554 2.1-1073 3.031 6.513 6.731 |1.2-1072
7610919 | 4.949+ 1.7-1073 2.136 4.821 5.037 |1.8-1072
7710.907| 3.7554 1.4-1073 1.534 3.650 3.861 |2.8-1072
7810.895| 2.884+ 1.1-1073 1.115 2.807 3.009 |4.4-1072
7910.884 | 2.2304+ 1.0-1073 0.816 2.183 2.374 16.5-1072
80]0.873 | 1.734+ 8.5-107* 0.600 1.710 1.890 [9.1-1072

Table 5 Computational results for X-ray.

p| EQ (£ confiv.) E@™ (3.3) (3.7) |rel. error
18 10.970 | 22.116 4 4.9-107° 14.235 21.965 21.724|1.8-1072
1910.919| 6.289 £ 1.7-107% 3.640 5.941 6.040 | 4.0-1072
20(0.873 | 3.101 & 1.0-10~2* 1.589 2.772 2.917 | 6.0-1072
21]0.832| 1.767 & 6.6-10~* 0.800 1.507 1.658 | 6.1-1072
2210.794 | 1.066 4 4.6-10"* 0.425 0.874 1.016 | 4.7-1072
2310.760 | 0.653 &+ 3.3-10~* 0.230 0.522 0.649 | 7.1-1073
2410.728 | 0.377 £2.3-107* 0.124 0.315 0.424 | 1.2.107!

Table 6 Computational results for CT scan.

capacity sizing by deducing v for each s, which we substitute in EQ™* = /A EM,,. Similarly, we
obtain « from the new rule, and plug in this value, together with the fitted parameters a and b,
into (3.7)). The results are given in Tables [5[ and @ The last column shows the 95% relative error
bound of the second approximation.

Based on these figures, we make several remarks. First, assuming the conventional regime
(neglecting overdispersion) the approximation severely overestimates system performance in both
queues. Because the square-root safety margin underestimates the stochastic fluctuations in the
arrival process, the safety parameter « is overestimated, which leads to a smaller magnitude of
the approximated queue length process. This clearly illustrates the distorted view estimated per-
formance characteristics can give under the wrong scaling. Secondly, it is worth noticing the very
good proximity of to the values obtained through simulation. As we expected, the quality of
the approximation deteriorates with increasing values of s. This makes sense, because we assumed
the system to be in heavy traffic in the derivation of the formulas. What is surprising, on the
other hand, is the fact that the approximation performs very well, even though the parameter b
is very small for these particular data sets, while the analysis of Theorem [2] assumes that a and b
become large. This demonstrates that the approximation scheme is remarkably robust and is able

to capture the pre-limit behavior of these types of queues very well.
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5. Proof of robust approximations (Theorem 2| )

For the proof of Theorem [2| we modify the special saddle point method developed in |[Janssen et al.
(2015)) to account for the circumstance, caused by overdispersion, that the relevant saddle point and
the analyticity radius tend to 1, as n — co. Our starting point is the probability generating function
of the number of arrivals per time slot, given in (3.5)), which is analytic for |2| <1+ 1/b, =:7.

Assuming the same choices of s,, and thereby p,, as in Section [2| we consider

EQ, — 1 1 (25— A,(2))

= d 1
210 Jimpe 1 =2 250 — Ay (2) = (5:1)

where 0 <e <rg—1<1/b, =71 —1, with o the zero of z°» — A,,(z) outside |z| <1 of smallest
modulus. We set
1 an,
g(z)=—Inz+ . InA,(z)=-lnz— . In(1+(1—2)b,), (5.2)
to be considered in the entire complex plane with branch cuts (—o0,0] and [r,00). The relevant

saddle point zg, is the unique zero z of ¢'(z) with z € (1,ry). Since

1 P
1) — = n 9.3
this yields,
1+ (1= 2p)bp = pr2sp, 1€, zpp=1+ b (5.4)
We then find
Sn 9'(z) exp(sng(2))
EQ.=-= / dz, 5.5
2 J sy 2~ 11— exp(sng(2)) >

and we take here 1 4 ¢ = z,,. There are no problems with the branch cuts since we consider

exp(s,g(z)) with integer s,,.

We continue as in Janssen et al.| (2015)), Sec. 3, and thus we intend to substitute z = z(v) in the

integral in (5.5)), where z(v) satisfies
9(2(v)) = g(zp) — 30° 9" (25p) =1 q(v) (5.6)

on a range —%(5n <v< %571- Thus, we consider the approximate representation

(5.7)

1
—$u 9" (%p) /25" v exp(s.q(v))
2mi L, z(v) =1 1 —exp(s,q(v))

of EQ,. We have to operate here with additional care, since in the present case, the analyticity

radius 7 = 1 + 1/b,,, the saddle point z, as well as the outside zero ry tend to 1 as n — oc.
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Specifically, proceeding under the assumptions that (1 — p,)2a, is bounded while a, — oo and

b, > 1, we have from ([5.4]) that

1—pn 1—pn 1—pn
1= - 0( ) 5.8

where the O-term is small compared to the first term of the right-hand side of (5.8) when b,, — occ.

Next, we approximate 7y, using that ry > 1 satisfies

flnrofg—nln(l—f—(lfro)bn):(). (5.9)

n

Write 7o =1+ u/b,, so that we get the equation

0=-—In <1+u> —p—"ln(l—u)

b, b,
:—l?"(l—pn—;(lil—i-pn>u—§(;%+pn)u2+~~->, (5.10)
where we have used the Taylor expansion of In(1+ z) at x = 0. Thus we find
_ m FOW?) =2(1 - po) +O((1 = pu)?) + O<1 ;;“), (5.11)
and so,
r0:1+21;np”+O<<1_bf”)2>+0<1;%p"). (5.12)

In (5.7) we choose 9, so large that the integral has converged within exponentially small error
using +4,, as integration limits, and, at the same time, so small that there is a convergence power
series

z(v) =Zsp+iv+ch(iv)k, for [v] < 16,. (5.13)

k=2
To achieve these goals, we supplement the information on g(z), as given by (5.2) — (5.4]), by

J'(z) = ; b (ll)nfn,%)bn)Q’ G"() =14 pubn,  §"(2) = Zip (1 n zn) (5.14)
Now
exp (s, q(v)) = exp(s, 9(2ep)) exP(—3 50 9" (2) V), (5.15)
and
80 9" (2p)0? = 8, b,0° (1 + 0(1)) = a,, (b, v)*(1 + o(1)). (5.16)

Therefore, approximates EQ),, with exponentially small error where we take %571 of the order
1/b,.

We next aim at showing that we have a power series for z(v) as in that converges for
|v| < 16, with 36, of the order 1/b,.
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1 b + ;"
Ty = Tbn - (Zsp - 1)7 My = gpnrn\/rpn7 (517)

where we assume 1, >0, see (5.8). Then (5.13) holds with real coefficients ¢, satisfying

LEMMA 2. Let

r

ool < T k=23, (5.18)

Proof We let

D) _
Then G(zs,) =1 and so we can write (5.6) as

F(z):=(2—29)VG(z) =iv (5.20)

when |z — z,| is sufficiently small. Since F(zy,) =0, F'(z) = 1, the Biirmann-Lagrange inversion
theorem implies validity of a power series as in , with real ¢, since G(z) is positive and real
for real z close to zy,. We therefore just need to estimate the convergence radius of this series from
below.

To this end, we start by showing that
Re[g”(2)] > 2 p2 " |2 — 2ep| <7 (5.21)
p

For this, we consider the representation

_2// Z“"Ht —2o)) 4 s ar. (5.22)

9" (2sp)

We have for ( € C and |[( —1|<1/2b, <1/2 from ([5.14) that

1 2
" — 2 > 4 . .
Relg"(¢)] = Re(1/¢*) + pub, Re| (1 i C)bn> | =40+ p.b) (5.23)
To show the inequality in (5.23)), it suffices to show that

. 1 4
|§—r{1\1§nl/2Re<?) =3 (5.24)

The minimum in (5.24)) is assumed at the boundary [ — 1| =1/2, and for a boundary point &, we

write

§=1+1cosf+3isind, 0<6<2m, (5.25)

so that

(1):1+C089+}1€OS29 (5.26)

‘e (24 cos6)?
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Now

d[1~|—cos0+icos29]_sin9(1—cos0) (5.27)
df (2 +cos)? ~ 4(2 +cosb)? )
vanishes for § =0, 7,27, where Re(1/£?) assumes the values 4/9, 4, 4/9, respectively. This shows
(6.24).

We use (5.24) with ( + ¢ and with £ =1+ (1 —()b,,, with
C=((s,t)=zsp+st(2—25), 0<s,t<1, (5.28)

where we take ¢ such that | — 1] <1/2b,. It is easy to see from 1 < z,, <1+ 1/2b, that |( —1| <
1/2b,, holds when |z — zy,| <7, =1/2b, — (25, — 1). We have, furthermore, from (5.4 that 0 <

9" (zsp) <1+b,/pyn. Using this, together with (5.23|) where ( is as in ([5.28)), yields

4 1+p,b, 4 2 bn +p
< — t t=:p 2
RelGI:)| < § 5 7 / / dsdt =42 5L (5.20)

when |z — z,,| <7, and this is (5.21)).
We therefore have from ([5.20) that

[F ()| >0 5 =M, |2—zp|=Tn (5.30)

Hence, for any v with |v| <m,,, there is exactly one solution z = z(v) of the equation F(z) —iv=0

in |z — zop| <7, by Rouché’s theorem. This z(v) is given by

z(v) = ﬁ mdz, (5.31)

|z—zsp|=rn

and depends analytically on v, |v| <m,,. From |z(v) — zs,| <7, we can finally bound the power
series coefficients ¢, according to

1 Z(U)_Zsp . Tn
=|— ——d < — .32
o =g [ Ty < (53)

n

and this completes the proof of the lemma.

REMARK 1. We have z,, — 1 =0(1/b,), see (5.§)), and so

a4, (5.33)

1
—(1+0(1)), m,= 3.

2b,,

Tn =

implying that the radius of convergence of the series in (5.13]) is indeed of order 1/b, (since we

have assumed b,, > 1).
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We let d,, = m,,, and we write for 0 <v < %571

v v —2iwIm(z(v))
0 =1 =1 o) =1

(5.34)

where we have used that all ¢, are real, so that z(—v) = z(v)*. Now from ([5.18) and realness of the

¢, we have

Im(z(v)) =v+ Y cupa(—1) 0" =v+0?), (5.35)
1=1
and in similar fashion
|2(v) = 1> = (25p — 1)* +0° + O((2pmsp — 1)?0?) + O(v?) (5.36)

when 0 <v < 14,. The order terms in (5.35)-(5.36) are negligible in leading order, and so we get
for pg, via (5.7)) the leading order expression

1 .
—Sn g”(zsp) /26n — 2402 eXp(Sn Q(U)) dv (5 37)
2mi 0 (zep —1)2+ 02 1 —exp(s,q(v)) '

We finally approximate q(v) = g(zsp) — %g“(zsp)v2. There is a 21, 1 < 21 < 2y, such that

9(zsp) = _%(Zsp - 1)29”(21), (5.38)
and, see and ,
9"(z1) = 9" (25p) + O((1 = pu)bw). (5.39)

Hence

Sn Q(U) = _%Sn QII(ZSP) [(ZSP - 1)2 +U2] =+ O((l - pn)bnsn('zw - 1)2)7
=—15,9"(2p)[(zep — 1) +0°] + O((1 — py)’an), (5.40)

where (5.8) has been used and a,b, = s, (1 + o(1)) Therefore, the O-term in (5.40) tends to 0 by

our assumption that (1 — p,)?a, is bounded. Thus, we get for ug, in leading order

1
Sng//(zsp) /26” UQ exp(_%g//(zsp)sn((zsp - 1)2 + UQ))
™ 0 (ZSp - 1)2 +v? 11— eXp(_%g”(ZSP)Sn((ZSP - 1)2 +U2))

When we substitute ¢t = v/s, 9" (zsp)/2 and extend the integration in (5.41)) to all £ >0 (at the

expense of an exponentially small error), we get for pq, in leading order

1 o0 t2 ex _ 1.2 _t2
= — 25ng//(zsp) / 1.2 p( 2’)/171 2 )2 dt7 (542)
™V o 37 1—exp(=57; —t7)

dv, (5.41)

where

V= 509" (Zsp) (2 — 1) (5.43)
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How using and , we get the result of Theorem |2| A separate analysis of +, is provided
in Subsection [4.1]
A similar analysis, modeled after the one given in (Janssen et al.|[[2015, Subsecs. 5.2, 5.3) gives
under assumption the leading-order expression
! / LY */52 In(1 — e~ 27%) gt (5.44)
ZspT Jo §’yn+t

for InPP(Q,, =0). Observe that the quantity in ({5.44) is negative, but bounded away from —oo when

v, is bounded away from 0. Furthermore, we find for the variance of Q,, the approximation

’Yi/ﬁ Zsp + 1 /OO t? exp(—%’yn —t?)
™ (Zsp - 1)2 0 (%Vn + t2)2 11— exp(—%’yfl - t2)

dt. (5.45)

6. Proof of Gaussian approximations (Corollary 3]

According to (Abate et al.||1993| (15)) we have for the maximum M, of a Gaussian random walk

with drift parameter —y and unit variance
—In[P(M,=0)]=cy, EM,=c¢;, VarM,=c,, (6.1)

where

(6.2)

T antl )

—1)"n! ©In (1 —exp(yz+ 222
. )nRe[/ (1=explyz+3527) )
0
in which z=—x+1dy, y >0, and z is any fixed number between 0 and 2v. We take z =y, so that
yz+ 320 =—-19"—1y? <0, y>o0. (6.3)

For n =0, we then have

1 < In (1= 1.2 1,2
cO:Re[/ n (1 —exp(—37° — 3y ))dy
Q 0

o —y+iy
~—2 | e m e~ b,
:—% /Ow;’éﬂln(l—exp(—;vz —1%))dt, (6.4)
where we used that .
Re[—’y%—iy} - 72_%-7342’ (65)

together with the substitution y =tv/2. For n=1,2,--- , we have by partial integration
—1)"n! *n(1 —exp(—21y2 — 192
o = )nRe[/ (1—exp(=37"—3v")
0

ﬂ-nfl O(o—’Y+Z'y)n+l
—) =D [ exp(~37” ~ 3v°)
e e e L (6:5)
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where we have used that

1 ]_i 1,2 1,2 oo
(=7 +iy)" 0
Using
1 (y+iy)"
S ——— L UL Y 6.8
(—y+iy)" ) (V2 +y?*)n 6.8
we then get
_1 ! oo . n _l 2_l 2
= )Im[/ yly i) _ep(=gr—gv) g (6.9)
m o (PHy)" 1—exp(—372—354?)

Hence for n=1,2, we finally get by the substitution y = tv/2

ol /°° 2 exp(—3iv’ —397) a
=1
™ Jo 72+y21—exp(—%72—%y2)
f exp(—lv2 —t%)
5 +t2 T At (6.10)
Y exp(—3y )
27 oy exp(—37° — 34%)
Cy — — 2 dy
0 (7 +y) 1 —exp(—372 —39°)
'yf exp(—lf—tz) p 611
+t221—ex NPT (6.11)
p(—37%—t?)

7. Proofs of convergence results (Theorem (1)

This section presents the details of the proof of Lemma [1] and Theorem [I} using the random walk
perspective of the process {Q,,(k)}2,. This section is structured as follows. The next two lemmata
are necessary for proving the first assertion of Theorem [I} concerning the weak convergence of the
scaled process to the maximum of the Gaussian random walk, which is summarized in Proposition
The two remaining propositions of this section show convergence of Q.. at the process level as
well as in terms of the three characteristics.

Let us first fix some notation:

Y, (k)= A, (k) —v, Sa(k)=>_Y,(i), (7.1)
i=1
with S =0 and k=1,2,.... Then (2.6) can be rewritten as
Qvn = ggaggc{zl Yo (i (i )} t My, (7.2)

Last, we introduce the sequence of independent normal random variables Z(1), Z(2), ... with mean

gamma and unit variance 1, and

= max{z Z(1)} (7.3)

k>0
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7.1. Proof of Lemma [I

Proof We show weak convergence of the random variable fln, as defined in ([7.1]), to a standard
normal random variable. Since A, is asymptotically standard normal, its characteristic function

converges pointwise to the corresponding limiting characteristic function, i.e.

lim oy (£) = lim e /7 g, (/o) =e /2, VtER. (7.4)

n—oo n—oo

Furthermore, by definition of A},

pap(t) =E [exp(An(e” = 1))] = pa, (=il = 1)), (7.5)
so that
P an(t) = e 1T (tfo,) = ey, (—i(e™ T — 1)) (7.6)
Now fix t € R. By using .
i(eitn — 1) = Utn - 2"‘;% LO(8)0%), (7.7)

we expand the last term in ([7.6]),

onn(t/n) + (—”2 +0(/03) ) e, (t/on) + o((—”Q 10 (8/0) ¢ (t/o))  (78)

202 207,
= o, (t o)) 7.9
=on,(tfon) = (5,2 +0 (8/52) )2, (©) (7.9)
for some ( such that |¢ —t/o,| < |i(1—e*/7") —t/o,|. Also,
/ d = uT = : iuT
=g [~ evarn @) =| [ e an, @)
U J o 0

< / lize™*|dFy, (1) = / rdFy, (x) = p, (7.10)
—00 0
for all u € R. Hence, by substituting (7.6)),

Zipnt/on (”2 +o(t3/ai)> so’An(C)‘

~ _ —1 nt/a'n o
SOAZ (t) € . goAn (t/an) 20_%

< (7 +0(/32) ) 61, ©)

2 3
_ 0 (""t > , (7.11)

2 3
On On

which tends to zero as n — co by our assumption that p, /o2 — 0. Finally,

. 1
e_”‘"t/""cp,\n (t)on) — e 2t , (7.12)

L —1 o
eap®) =72 < [ (0) = e T, (t0n) | +

in which both terms go to zero for n — oo, by (7.4 and (7.11)). Hence ¢4 ) (t) converges to et'/2
for all £ € R, so that we can conclude by Lévy’s continuity theorem that A7 AN (0,1).
O
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7.2. Proof of Theorem (1]

To secure convergence in distribution of Q" to M, i.e. the maximum of a Gaussian random walk
with negative drift, the first assertion of Theorem the following property of the sequence {Y;" },.en
needs to hold.

LEMMA 3. Let Y, (k) be defined as in (7.1) with p,,02 < oo for all n € N. Then the sequence

{(Y")* haen is uniform integrable, i.e.

1
K—oo
Proof Because the sequence {Y,,(k)}rey is i.d.d. for all n, we omit the index k in this proof.

First, fix K > 0 and note that
E[|Yn+|1{|y,j|21<}] = E[Yn+1{Y7j'ZK}] = E[Ynl{YnzK}]- (7.14)
This last expression can be bounded from above using the Cauchy-Schwarz inequality, so that
E[Y,1{v,>xy] SE[Y]V2P(Y, > K)V2. (7.15)

By the definition of Y,,, we know EY,, = —y and VarY,, = Var A,, /02 = 1. Using this information,
we find
E[Y?] =VarY, + (EY,)? =1+~? (7.16)

and

P(Y, > K)=P(Y,+7> K +7) <P(|Y, +7|> K +7)
Vary,, 1
_ , 717
P T Ky o

where we used Chebyshev’s inequality for the last upper bound. Therefore,

A sng[|Yn+|1{|m2K}] = lim S:PE[Ynl{YnzK}]

< lim sup E[Y?]'? P(Y, > K)/?

—)oon

T LA2
< lim ﬂ:O.

i 7.18

O
By combining the properties proved in Lemma and the next result follows directly by (Asmussen
2003, Thm.X6.1).

PROPOSITION 3. Let Q, as in (7.2), and p,,0% — oo such that o2/, — co. Then

Qn:d>My, as n — 00. (7.19)
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Although Proposition [3] tells us that the properly scaled @, converges to a non-degenerate
limiting random variable, it does not cover the convergence of its mean, variance and the empty-
queue probability. In order to secure convergence of these performance measures as well, we follow

the approach similar Sigman and Whitt| (2011b)).

PROPOSITION 4. Let Q,, as in (7.2), fin,02 — 00 such that 02/, — 0o and EA? < oo. Then

P(On = 0) — P(M, = 0), (7.20)
EQ, —EM,, (7.21)
Var Q,, — Var M,, (7.22)

as n — Q0.

F irst, we recall that Q, < M, ,, for all n €N, so that P(Q, = 0) =P(M,, =0), EQ, =EM,,,
and Var Qn = Var M, ,, as defined in (|7.1). Our starting point is Spitzer’s identity, see (Asmussen
2003, p. 230),

(E[eit(Sn()*] _ 1)), (7.23)

=

Ele" ] = exp(3

k=1

with S, (k) as in (7.1)), and M, , the all-time maximum of the associated random walk. Simple
manipulations of ((7.23)) give

B, =0)= 3 % (S, (k) > 0), (7.24)
EM, =Y —E[S, (k)= % /OOO P(S, (k) > z) dz, (7.25)

Var M, =>  ZE[(S,(k))] =) % /0 h P(S, (k) > vz)dz. (7.26)
By Lemma [I, we know

B(S, (k) > ) =P (XL, Ya0) > y) = B (T, 2() > ). (7.27)

for n — oo, where the Z(i)’s are independent and identically normally distributed with mean —~
and variance 1. Because equivalent expressions to — apply to the limiting Gaussian
random walk, it is sufficient to show that the sums converge uniformly in n, so that we can apply
dominated convergence to prove the result.
We start with the empty-queue probability. To justify interchangeability of the infinite sum and
limit, note
k 1

B(S,(k) > 0) < P8, (k) + 1] > k1) < 3 = o (7.28)
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where we used that ES,, (k) = kEY,,(1) = —kv and Var S,,(k) = k and apply Chebychev’s inequality,
so that

1 — 1
> ZP(S(k) > 0) < > 2 <%0 vn e N. (7.29)
k=1 k=1
Hence,
. 1
lim nP(Q,, =0) = lim — Z P(S. ZE im P(S, (k) >0)
k=1

:_Zk (X8 Z(i) > 0) =InP(M,, = 0), (7.30)

Finding a suitable upper bound on + fo Qn > r)dz and + fo Qn > \/x)dx requires a bit more
work. We initially focus on the former, the latter follows easily. The following inequality from

Nagaev| (1979) proves to be very useful:

_ ko2 2

P(S(k) > y) < C, (7‘2) FEP(X > y/r), (7.31)
where S(k) is the sum of k i.i.d. random variables distributed as X, with EX =0 and Var X = o2,
y >0, r>0 and C, a constant only depending on r. We take r =3 for brevity in the remainder of
the proof, although any r > 2 will suffice. We analyze the integral in two parts, one for the interval

(0,k) and one for [k,00). For the first part, we have

k

/O P(S, (k) > o)da = /O P(X% A(i) > @ + ky)de < /0 P(X, An(i) > ky)da

=kP(XF AL (1) > ky) < kfsﬁ (A (1) > LK), (7.32)

where we used ((7.31)) in the last inequality. Hence,

Z / >xda;<—2k +ZkIP %k)ng+ikP(ﬁn(1)>§k). (7.33)

k=1

With the help of the inequality (see [Sigman and Whitt| (2011b)),

b
(b—a)aP(X >b) < / zP(X >z)de V0<a<b, (7.34)
we get by taking a = (k—1)/3 and b= k/3,
R 9k [*3 R k/3 R
FB(AL (1) > k) < 28 2P(A,(1) > 2)dz < 18 / eP(A(1) > 2)dz,  (7.35)
k=1 Jx 13 (k—1)/3

for k> 2. Since the tail probability for k=1 is obviously bounded by 1, this yields

ik]P’(/ln(l) >1k) <1+ 18i/k/3 zP(A, (1) > z)dx

— J(k—1)/3
<1 +/ P(A,(1) > z)de <1+E[A,(1)%] < oo, (7.36)
0
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since An(l) has finite variance by assumption. This completes the integral over the first interval.

For the second part, we use ([7.31]) again to find

/k TBS (k) > 2)da = /k TB(Y® (i) > 3+ ky)da < /k TB(YE, A (1) > 2)de

oo 1.2 0o oo
<oy [ o [TRA >t =204k [T RG> Lo
k k k
(7.37)

So,
Z / ) > d:c<C*+Z/ 1z)da, (7.38)

for some constant Cj. Last, we are able to upper bound the second term in (7.38)) by Tonelli’s

theorem:
Z/ ) > sx)dr < /00 2P(A, (1) > sx)dx
k 1
<9/Oo yP(A,(1) > y)dy = 9E[A, (1)?] < . (7.39)
0
Combining the results in (7.33), (7.36), (7.38) and (7.39), we find

g: ]1/ ) > x)dz < o0, (7.40)

and thus

lim EQ, = lim Z / )> 2 dw—z / P(SE 2(0) > a)de =EM,.  (7.41)

n—00 n—oo

Finally, we show how the proof changes for the convergence of Var Q... The expressions for EQ,
and VarQ, in (7.24) and (7.25) only differ in the term \/z. Hence only minor modifications are

needed to also prove convergence of the variance. Note that boundedness of the integral over the

interval (0,%) in (7.32)-(7.36]) remains to hold when substituting /x for z. (7.37) changes into
/ P(S, (k) > v/Z)dz = / PSS, An(i) > & + ky)da
k k

< C4 dx+k/ P(A,(1) > LV/z)dz
k

e’} k2
/k (\/O:EJrkv)G
C +k/ P(A,(1) > Ly/x)dz, (7.42)

k

for some constant Cf, so that

i;/ >\Fdx<c*+2/ P(A,(1) > tv/z)da. (7.43)
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Lastly, we have

oo

> [ B> R [ aP(A,0)> 1A

k=1

<18 /OO y*P(A,(1) > y)dy = 18E[A,(1)?] < co. (7.44)

Therefore the sum describing the variance is also uniformly convergent in n, so that interchanging

of infinite sum and limit is permitted and

JE&VMQ"ZJH&Z / >\fdx—z / P(XY  Z(i) > Vx)de = Var M,.
(7.45)
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Appendix A: Numerical procedures

An alternative characterization of the stationary distribution is based on the analysis in |Boudreau

et al.| (1962) and considers a factorization in terms of (complex) roots:

s, —EA,))(w—1 nbap — o
Qulw) = — _Xi(w) ) E -2 (A1)
where 27, 23...,20 _; are the s, — 1 zeros of z°» — A, (z), in |z| <1, yielding
EQ, = —— —8"_1+“"+SHZ_1 ! (A.2)
2(8p — fin) 2 e~ 1—z
Sn—fia T 2T
P(Q, =0)= an(O) E ZZ"_‘I, (A.3)

which for our choice of A, (z) becomes

by(b,+1)  2a,b, + bbb, +1)—1 1
anbn(by +1)  2a YV @nba( ) +Z

EQ, = A4
@n 2v\/anb, 2 P 11—z (A4)
Sp—1 Zn
P(Qn =0) =vv/anb, (b, + 1)1 +b,)" [] znir (A.5)
k=1 7k

where 21, ...,2,, 1 denote the zeros of z°» — G“(z) in |z| < 1. A robust numerical procedure to
obtain these zeros is essential for a base of comparison. We discuss two methods that fit these

requirements. The first follows directly from |Janssen and van Leeuwaarden| (2005).

LEMMA 4. Define the iteration scheme

= w[Au (), (A.6)
with w} = e2™*/s0 and 2"° =0 for k=0,1,...,5,_1. Then 2" — 27" for all k=0,1,...,s, — 1 for
l — 0.

Proof The successive substitution scheme given in (A.6) is the fixed point iteration scheme
described in |Janssen and van Leeuwaarden| (2005)), applied to the pgf of our arrival process. The
authors show that, under the assumption of A, (z) being zero-free within |z| <1, the zeros can be

approximated arbitrarily closely, given that the function [A,, (2)]*/*" is a contraction for |z| <1, i.e.

ATNE

<1 (A.7)

In our case,

da
dz

d _
= (=2

A2 | = |
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where a,b, /s, = p, is close to, but less than 1 and
1+ (1—=2)b,| > |1+, —|2]b, =1+ (1—|2|)b, > 1, (A.9)

when |z| < 1. Hence the expression in ({A.8]) is less than 1 for all |z| < 1. Evidently, A, (z) is also
zero-free in |z| < 1. Thus (Janssen and van Leeuwaarden| 2005, Lemma 3.8) shows that z}"' as in

(A.6]) converges to the desired roots 2z} for all k as [ tends to infinity.
O

REMARK 2. The asymptotic convergence rate of the iteration in (A.6) equals “£]A, (z)]"/*" evalu-

ated at z=z}'. Hence, convergence is slow for zeros near 1 and fast for zeros away from 1.
A different approach is based on the Biirmann-Lagrange inversion formula.

LEMMA 5. Let w} = e?™*/*n and o, = a,/s,. Then the zeros of z°» — A, (z) are given by

1 Tl +1—1) b, +1 b, Lo
z::T I(lay,) b, ((bn+1)an+1) (wi), (A.10)

fork=0,1,....s, — 1.

Proof Note that we are looking for z’s that solve

2[An(2)] Vo = 2 (14 (1= 2)b,) ™" = w, (A.11)

2mik/sn

where w = w, = e The Biirmann-Lagrange formula for z = z(w), as can be found in

(de Bruijn||1981}, Sec. 2.2) for z = z(w) is given by

Z(w)zii <(Z>H [(z(1+(1_zz)bn)an/sn>l] w!

z=0

() s a2

Set a,, = a,,/s,. We compute

d\'"" v Do, +1-1) 1+, by :
<dz> (A4 (1=2)b,) ] _ = T (o) h ((1+bn)an+1)' (A.13)

With ¢, =b,/(14b,)* ™" and d,, = (1 +b,,)/b,, we thus have

lan—i—l— 1) L
=d, E . Al4

By Stirling’s formula
T(la,+1-1) D ((a,+1)+ (A.15)
L+ (lan) V1 agn ’ '
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where D = al/?(a,, +1)73/2(27)~1/2. Now,

(n 1)t - (an 1)t by bu+pa " 1\
lan+ )™ _ _
bt 1

n
aon agn (1+40b,)ontt

This determines the radius of convergence rgy, of the above series for z(w):

i _ <bn+pn>Pn/bn+1 < 1 )Pn/bn (A 17)

TBL bn + 1 pj

The derivative with respect to p, of the quantity

1+—1 —In| — Al
(*bn>“<bn+1>+bn“<pn> (A.15)
is given by 1 )
n 1 Pn
—1 ) S0 A.19
by, n(bnanrpn) ~ ( )

for 0 < p, <1 and b, > 0. Furthermore, the quantity in (A.18)) vanishes at p, =1 and is therefore
negative for 0 < p, <1 and b, > 0.

REMARK 3. The formula for the radius of convergence in (A.17)) clearly shows the decremental
effect of both having a large b, and or having p, close to 1. The quantities I'(la+1—1)/(T'({ +
1)T'(ler)) in the power series for z(w) are not very convenient for recursive computation, although

normally o =a,/s, is a rational number.

Appendix B: Statistical procedures

To calibrate our model to real data, we now discuss some statistical procedures to show the presence
of overdispersion and to estimate the parameters of the mixed Gamma-Poisson distribution. Let
T1,...,x, denote the observed number of arrivals in consecutive time slots. These observations can

be interpreted as realizations of the random variables A4, ..., Ay, and

N
_ 1 -2 1 7 .\2
—~Y _ 3 (@ -z B.1
N Nizlx“ N N—1i:1(“’1 ) (B-1)

the sample mean and variance with equivalent random variables A, and S 2, respectively. Several
tests with null hypothesis that xy, ..., zy originate from a (constant rate) Poisson distribution were
discussed by |[Brown and Zhao (2002). We mention two of them. The first is frequently referred to
as the dispersion test, and is based on the test statistic

(N -1)5%

Dy —
N Ax

, (B.2)

which is approximately chi-squared distributed with N — 1 degrees of freedom. When using a

significance level a, the critical value is equal to the (1 — a)-th quantile of chi-squared distribution
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X~N_1.1-a- The second test, which is also used in |Jongbloed and Koole (2001), involves the test

statistic

Ty =/N/2 (f_lfzv— ) (B.3)

N

which is known as the Neyman-Scott test statistic. Under the null hypothesis Ty tends to a standard
normal random variable for large N. Hence both test statistics rely on the ratio of the sample
variance and sample mean, which should be 1 if A,,..., Ay are indeed i.i.d. Poisson distributed.
Excessive values of Dy and Ty therefore raise the suspicion of overdispersed arrivals.

Once either (or both) of the Poisson tests rejects the hypothesis of arrivals originating from a
unicomponent Poisson process, we fit the data to the Gamma-Poisson mixture. Note that if we
assume A; to be distributed as a Poisson random variable with random rate A;, which is in turn
Gamma distributed with parameters a and 1/b, then A; is in fact a negative binomial random
variable with parameters r =a and p=1>0/(b+ 1). Finding estimators a and b therefore is equivalent
to fitting a negative binomial distribution to the data to obtain 7 and p, followed by retrieving a =7
and b= p/(1 —p). We proceed by applying the maximum likelihood estimation method described
in |Jongbloed and Koole| (2001)) to find 7 and p. This method prescribes to set 7 to be the value of
r for which the profile loglikelihood function defined by

N q
L(r) = % ;;m(rﬂ 1) ring — (4 an) In(r + ay), (B.4)
is attained. Subsequently, p =7 /(7 +ay), so that @ =7 and b=#/ay.

Finally, given the estimators a and 3, we need statistical evidence that the obtained Poisson
mixture indeed fits the data reasonably well. Here we again cite on|Jongbloed and Koole|(2001), who
give a method to retrieve the p-value for the goodness-of-fit based on bootstrap and Monte-Carlo
simulation. In our procedures we work with 1.000.000 replications of the Monte-Carlo simulation
to obtain the approximated p-value. We refer to the appendix of |[Jongbloed and Koole| (2001) for
further details on this method.
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