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Arrival processes to service systems are prevalently assumed non-homogeneous Poisson. Though mathemati-

cally convenient, arrival processes are often more volatile, a phenomenon that is referred to as overdispersion.

Motivated by this, we analyze a class of stochastic models for which we develop performance approximations

that are scalable in the system size, under a heavy traffic condition. Subsequently, we show how this leads

to novel capacity sizing rules that acknowledge the presence of overdispersion. This, in turn, leads to robust

approximations for performance characteristics of systems that are of moderate size and/or may not operate

in heavy traffic. To illustrate the value of our approach, we apply it to actual arrival data of an emergency

department of a hospital.

1. Introduction

In service systems, a central question is how to match capacity and demand. By taking into account

the natural fluctuations of demand and capacity, stochastic models that describe congestion over

time have proved instrumental in quantifying performance and discovering near-optimal capacity

sizing rules. The bulk of the literature assumes perfect knowledge about the model primitives,

including the mean demand per time period. For large-scale service systems, like health care sys-

tems, communication systems or call centers, the dominant assumption is that demand arrives

according to a non-homogeneous Poisson process, which in practice translates into the assumption

that arrival rates are known for each basic time period (second, hour or day).

Although natural and convenient from a mathematical viewpoint, the Poisson assumption often

fails to be confirmed in practice. A deterministic arrival rate implies that the demand over any given

period is a Poisson random variable, whose variance equals its expectation. A growing number of
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empirical studies shows that the variance of demand typically deviates from the mean significantly.

Recent work of Kim et al. (2015a,b) reports variance being strictly less than the mean in health care

settings employing a appointment booking system. This reduction of variability can be accredited

to the goal of the booking system to create a more predictable arrival pattern. On the other hand,

in other scenarios with no control over the arrivals, the variance typically dominates the mean, see

Jongbloed and Koole (2001), Chen and Henderson (2001), Avramidis et al. (2004), Brown et al.

(2005), Maman (2009), Bassamboo and Zeevi (2009), Steckley et al. (2009), Gurvich et al. (2010),

Robbins et al. (2010), Bassamboo et al. (2010), Mehrotra et al. (2010), Gans et al. (2012), Zan

(2012) and Kim and Whitt (2014). The feature that variability is higher than one expects from

the Poisson assumption is referred to as overdispersion. The latter concept will be the center of

our attention.

Stochastic models with the Poisson assumption have been widely applied to optimize capacity

levels in service systems. The goal is to minimize operating costs while providing sufficiently high

Quality-of-Service in terms of performance measures such as mean delay or excess delay. When

stochastic models, however, do not take into account overdispersion, resulting performance esti-

mates are likely to be overoptimistic. The system then ends up being underprovisioned, which

possibly causes severe performance problems, particularly in critical loading.

To deal with overdispersion new models are needed, scaling rules must be adapted, and existing

capacity sizing rules need to be modified in order to incorporate a correct hedge against (increased)

variability. Within the realm of Poisson processes, overdispersion can be modeled by viewing the

arrival rate itself as being stochastic. The resulting doubly stochastic Poisson process, also known

as Cox process (first presented in Cox (1955)), gives rise to demand in a given interval that follows

a mixed Poisson distribution. In this paper, we consider a queueing model that has a doubly

stochastic Poisson process as input, and we identify the heavy-traffic regime in which it displays

Quality-and-Efficiency Driven (QED) behavior, first explored in the classical work of Halfin and

Whitt (1981). By this, one roughly means that for systems with large demand and capacity, in

heavy-traffic, the empty-queue probability is a controllable number strictly between 0 and 1, and

that the mean delay is negligible. The key idea is to approximate the behavior of the stochastic

model for a service system with that of a limiting process. The limiting process arises from a specific

relationship between the arrival rate and the capacity level as both grow large without bound. Of

the aforementioned papers, our work best relates to Maman (2009), in the sense that our model

applies to situations where the arrival rate is stochastic. We therefore expand the paradigm of the

QED regime, in order to have it accomodate for overdispersed demand that follows from a doubly

stochastic Poisson process.



Mathijsen et al.: Robust heavy-traffic approximations for service systems facing overdispersed demand
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 3

We divide time into periods of equal length, whereas demand in each period is then generated

in two steps. First, the rate Λ of the Poisson variable is drawn from some distribution on (0,∞)

and then a Poisson variable with that realized rate is generated. Hence, the arrival process is as if

it is influenced by an external factor Λ. The mean demand is then given by EΛ, while the variance

of the demand is VarΛ + EΛ. By selecting the distribution of the mixing factor Λ, the variance

can be made arbitrarily large, and only a deterministic Λ leads to a true Poisson process. The

uncertain arrival rate can also be viewed as forecast errors. Indeed, in many cases, the uncertainty

in forecasting the arrival rate can be large relative to the fluctuations naturally expected in Poisson

processes, and should then be taken into account.

Without parameter uncertainty, a popular rule to choose the number of servers s in a service

system, if the mean service time equals one, is s= EΛ +β
√
EΛ, for some tuning parameter β > 0.

This is the well-known square-root safety staffing rule, that underpins much of the literature on

systems in the QED regime (cf. Borst et al. (2004) and references therein). Whitt (1999) is among

the first to call for Poisson models with an uncertain arrival rate in view of forecast errors, and to

choose capacity levels accordingly. Using infinite server approximations, Whitt (1999) illustrates

that this choice of s is naive, and that parameter uncertainty related to overdispersion can be

accounted for by considering s= EΛ + β
√

VarΛ +EΛ. In a similar vein, Maman (2009) considers

the M/M/s+G system, assuming the arrival rate to be mixed Poisson with a Gamma distributed

Λ, which leads to an arrival rate with mean λ and a standard deviation of the form λc, where 0<

c≤ 1. The natural capacity prescription would then become s= λ+O(λc); without overdispersion,

c= 1/2. We provide additional support for these staffing rules, and show how they can be updated

to account for the fact that convergence towards heavy traffic can be slow. To illustrate our findings

in more detail, we now provide a description of our model.

1.1. A discrete stochastic model with overdispersed input

In operations management, overdispersion has predominantly been modeled in a Poissonian setting,

in which the arrival process is lifted from a Poisson process to a doubly stochastic Poisson process,

in order to explain the overdispersion observed in datasets in terms of arrival rate uncertainty.

Although the viewpoint of rate uncertainty is sensible and leads to a better fit with real data,

the actual process that drives demand is most likely neither Poisson nor mixed Poisson. The

papers on capacity sizing in service systems facing overdispersion, e.g. Maman (2009), Koçaga

et al. (2014), Whitt (1999) and Whitt (2006), depart from the premise that the arrival process

is of a Poissonian nature, and built on stochastic models for individual customer arrivals and

departures under Markovian assumptions, that is, queues of the M/M/s and M/M/s+M type.
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The classical birth-death processes that describe these systems are the main drivers, both for

performance evaluation, and as input for cost minimization problems.

We propose a basic queueing model that differs from the setting of these birth-death models,

but nonetheless captures the queueing facets of aforementioned service systems, while accounting

for the overdispersed arrival stream in a natural way. We divide time into periods of equal length,

and model the net input in period k as the difference between the incoming demand An(k) and

the capacity sn, which is assumed to be fixed for all periods. Our model represents processes

embedded at equidistant time points, driven by arrival counts in the periods between these time

points. Since the random variable An(k) leaves room for interpretations that do not rely on the

Poisson assumption, our model has a wide scope of applications. Let us mention some possible

interpretations:

(i) Many-sources paradigm. The canonical framework for large data-handling systems considers

a buffer that receives messages from n i.i.d. information sources. Source i generates Xi(k) data

packets in slot k, so that in total An(k) =
∑n

i=1Xi(k) packets join the buffer in slot k. The buffer

depletes through an output channel with a maximum transmission capacity of sn packets per time

slot. As such our model can be viewed as a discrete version of the Anick-Mitra-Sondhi model, see

Anick et al. (1982), with the additional feature that sources can be correlated, which then leads to

an overdispersed arrival process of packets.

(ii) Data fitting. The mixed Poisson model presents a useful way to fit both the mean and variance

to real data, particularly in case of overdispersion. The mixing distribution can be estimated

parametrically or non-parametrically, as proposed in Jongbloed and Koole (2001); see also Maman

(2009). A popular parametric family is the Gamma distribution, which gives rise to an effective

data fitting procedure that makes use of the fact that a Gamma mixed Poisson random variable

follows a negative binomial distribution. Hence, when process data for service systems is available,

and in particular gives information on mean and variance of demand, the fitted mixed Poisson

model can be fed into our stochastic model in order to evaluate the system’s performance.

(iii) Factor models. Although having received little attention in queueing theory, factor models

have a long history in the modeling of overdispersion in a wide variety of applications (see e.g.

Johnson et al. (1993), Section 8.3.2). The mixed Poisson model is one of the base models in the

rapidly expanding area of Credit Risk (e.g. Glasserman (2003)), and models the portfolio risk by

imposing positive correlation (overdispersion) among individuals loans in the form of a common

factor. The economical reasoning behind this can be transferred directly to service systems: There

is a common factor Λ that influences the behavior of all customers. Conditional on the realization of

Λ, customers all individually generate demand for the service systems. The mixed Poisson model is

just one of many possible mixture models that are fit for describing correlation and overdispersion.
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Since we have not made any further assumptions on An(k), we can feed into our system all sorts

of mixture models, like the mixed binomial model, or models with multiple factors.

(iv) Panel sizing. A matter of acute societal interest is accessing medical care in a timely manner.

The average primary care physician’s panel size is often too large for delivering consistently high

quality care under the traditional practice model. Case studies suggest that a primary care physician

providing all recommended acute, chronic, and preventive care for a panel of 2,500 patients receives

about 24 appointment requests per day, whereas the physician is only able to serve 12 patients

each day, thus creating huge backlogs (see Murray et al. (2003) and Green et al. (2007)). There

thus seems to be a mismatch between workload and primary care physicians’ capacity to deliver

consistently high quality care. Zacharias and Armony (2014) model this panel sizing problem in

terms of a queueing model for the appointment book of a clinic, with a panel of n patients and

which can schedule a maximum of sn patients per day. The realized schedule depends on the

appointment queue at the beginning of the working day. This new demand for day k, added to the

appointment queue, consists of new requests for appointments coming from the panel of n patients,

and can be captured by a random variable An(k) which is likely to be overdispersed.

(v) Open access. Our model is also suitable for describing service systems with open access

scheduling, which means that the system serves customers on a first-come-first-serve basis without

using an appointment book (Murray and Tantau (1999)). An example of this setting is given by

Izady (2015), who considers appointment capacity planning in specialty clinics. Indeed, particularly

in health care settings, open access gains popularity, because it holds the promise to strike the

proper balance between utilization and quality of service. Moreover, in some health care settings

like an emergency department, it is reasonable to assume that patients arrive without appointment

and should be treated on demand. In this paper, we apply our model to an open access setting in

a hospital in the far east, which we shall refer to as SKHospital. Here emergency patients require

diagnostic tests at the radiology department of the hospital. We shall demonstrate that our model

fits the data and that the capacity sizing rules that follow from this model can lead to significant

performance improvement.

1.2. A non-standard saddle point method

The other advantage of our model is its tractability. It is amenable to powerful mathematical

methods from complex and asymptotic analysis. For our heavy-traffic limits, we take an original

approach that starts from Pollaczek’s formula, which represents the transform of the stationary

queue length distributions in terms of a contour integral. From this classical transform represen-

tation, contour integrals for the zero-queue probability and the mean queue length follow imme-

diately. Contour integrals are often suitable for asymptotic evaluation (see e.g. Cohen (1982)),
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particularly for obtaining classical heavy traffic asymptotics. While we also subject the contour

integral representations to asymptotic evaluation, ours is not the classical heavy-traffic scaling.

This asymptotic analysis requires a non-standard saddle point method, tailored to the specific form

of the integral expressions that arise under overdispersed arrivals and QED-type capacity sizing

rules. This leads to asymptotic expansions for performance measures, of which the limiting forms

correspond to heavy-traffic limits, and pre-limit forms present refined approximations for pre-limit

systems (n<∞) in heavy traffic. Such refinements to heavy-traffic limits are commonly referred to

as corrected diffusion approximations; see Siegmund (1978), Blanchet and Glynn (2006), Asmussen

(2003).

Let us briefly explain why our saddle point method is non-standard. The saddle point method in

its standard form is typically suitable for large deviation regimes, for instance excess probabilities,

and it cannot be applied to asymptotically characterize other stationary measures such as the

mean or mass at zero. Indeed, in the presence of overdispersion the saddle point converges to one

(as n→∞), which is a singular point of the integrand, and renders the standard saddle point

method useless. Our non-standard saddle point method, originally proposed by de Bruijn (1981)

and recently applied in Janssen et al. (2015), aims specifically to overcome this challenge. In Section

5 we elaborate on the technicalities of this method and explain why relying directly on the path

of analysis of Janssen et al. (2015) is insufficient in the presence of overdispersion.

1.3. Contributions

The first set of results in this paper cover the mixed Poisson demand with general mixing factor

Λ. We prove that our stochastic model with Pois(Λ) demand and capacity set according to the

QED-type regime, converges to the Gaussian random walk. More specifically, denote the mean

and variance of the demand An(k) by µn and σ2
n, and assume that the system load ρn = µn/sn

approaches one such that (1− ρn)µn
σn
→ γ, as n→∞. Under additional assumptions on the growth

rates of µn and σn, the stationary queue length, normalized by σn, converges to the all-time maxi-

mum Mγ of a random walk with i.i.d. normal increments, having mean −γ and unit variance. This

Gaussian random walk is a sampled version of the Brownian motion, the properties of which are

well understood; see Chang and Peres (1997) and Janssen and van Leeuwaarden (2006). Carrying

over known results on Mγ yields heavy-traffic approximations for stationary performance measures.

As a result, for large-scale critical service systems, using the QED-type rule sn = µn + γσn for

matching capacity with demand, systems facing overdispersion can be dimensioned in such a way

that the delay probability is strictly between 0 and 1, and has mean delays that are asymptotically

negligible.
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The other question, also of operational significance but at a more refined level, concerns improv-

ing and understanding overdispersion by assessing its consequences. We focus on the impact on

stationary performance measures. Our heavy-traffic analysis and numerical examples show that

overdispersion can have tremendous adverse effects, both in terms of performance measures and

selection of capacity, the latter being a function of demand that provides a predetermined grade

of service. Moreover, we show that overdispersion causes the system to converge more slowly to its

limiting behavior. This slow convergence begs refinements to make our performance results more

broadly applicable. As it happens, our analytic approach is well-suited for the challenge.

This leads to our second set of results, for the more specific (yet practically relevant) case in

which Λn has a Gamma distribution with parameters an and 1/bn. While our first set of results

yields the conventional heavy-traffic approximation Qn ≈ σnMγ , for the invariant queue length Qn,

one of our robust refinements implies that the parameters γ and σn in this approximation should

be replaced by

γn = γ

√
1− 1

σ2
n/µn +σn/γ

and σ̃n =
γn
γ
σn + γn

(σ2
n

µn
− 1
)
. (1.1)

Close inspection of the functions γn and σ̃n show that γn → γ and σ̃n/σn → 1, for large n; it

follows that for large service systems, the difference between the classical and robust approximation

should be negligible. More importantly, for small and moderate n, the difference between γn and

σ̃n and their original counterparts is considerable, and the robust approximations are decisively

more accurate, particularly in situations of overdispersion.

1.4. Connection with literature on staffing

While all results reveal a clear impact of overdispersion on system performance, implications on

staffing are less pronounced. Whitt (2006) studies the M/GI/s+GI queue via an approximating

fluid model to show that overdispersion leads to severe performance degradation but, at the same

time, the effect on staffing/capacity sizing is less significant. Whitt attributes this to the fact that

the objective function over which performance is optimized, is relatively flat as a function of the

servers. Koçaga et al. (2014) consider the M/M/s+M queue with uncertain arrival rate and an

outsourcing option, and determine the asymptotically optimal policy as the solution to a cost-

minimization problem. Despite the presence of overdispersion, the results and numerical finding of

Koçaga et al. (2014) are similar to Borst et al. (2004): square-root capacity sizing is near optimal

and robust against many circumstances.

One way of understanding Koçaga et al. (2014) is that they consider a situation in which the

uncertainty of the arrival rate is of the exact same order as the natural system uncertainty. The
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present paper deals predominantly with higher levels of overdispersion that renders the square-

root rule invalid, rather than refining it as explained above. This is consistent with the arguments

of Ding and Koole (2014) who show that factor models used to forecast systems loads exhibit

significant overdispersion; such models are used in practice when service levels need to be scheduled

days or weeks in advance. In addition, Bassamboo et al. (2010) propose a capacity sizing rule for

the M/M/s+M queue with uncertain arrival rate. Exploiting a newsvendor approximation, the

optimal capacity sizing rule is shown to consist of a base capacity µn and an additional capacity

that is proportional to σn. When σ2
n/µn →∞, overdispersion is dominant, a situation which is

called in Bassamboo et al. (2010) the uncertainty-dominated regime.

Our work shows that in cases of mild yet dominating forms of overdispersion, capacity sizing

rules, based on hedging the natural fluctuations of the demand, lead to behavior that is favorable

over conventional staffing rules, if slow convergence properties that play a minor role in conventional

systems are taken into account appropriately. We expect that this slow convergence requires refine-

ments, not only at the level of performance measures as in this paper, but also in cost minimization

models, though we do not pursue this here.

1.5. Organisation

The remainder of this paper is structured as follows. Our model is introduced in Section 2. In

Section 3 we present our main theoretical results, including classical and robust heavy-traffic

approximations for the stationary queue length. In Section 4, we describe the numerical results and

demonstrate the heavy-traffic approximation for a real data set coming from a SKHospital. Section

5 contains the proof of the results formulated in Subsection 3.1, as where Section 6 contains the

technical details of those in Subsection 3.2.

2. Model description and preliminaries

We consider a discrete stochastic model in which time is divided into periods of equal length. At the

beginning of each period k= 1,2,3, ... new demand An(k) arrives to the system. The demands per

period An(1),An(2), ... are assumed independent and equal in distribution to some non-negative

integer-valued random variable An. The system has a service capacity sn ∈N per period, so that

the recursion

Qn(k+ 1) = max{Qn(k) +An(k)− sn,0}, k= 0,1,2, ..., (2.1)

with Qn(0) = 0. For brevity, we define µn := EAn and σ2
n = VarAn. The duality principle shows

that this expression is equivalent to

Qn(k+ 1)
d
= max

0≤j≤k

{∑j

i=1(An(i)− sn)
}
, k= 0,1,2, ..., (2.2)
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i.e. the maximum of the first k a random walk with steps distributed as An − sn. Even more so,

we can characterize Qn, the stationary queue length, as

Qn
d
= max

k≥0

{∑k

i=1(An(i)− sn)
}
. (2.3)

The behavior of Qn(k) greatly depends on the characteristics of An and sn. First, note that µn < sn

is a necessary condition for the maximum to be finite and therefore for the queue to be stable.

With this constraint in mind, we set sn = µn + γσn, with γ > 0, for which we provided intuition in

Section 1.

We further impose a heavy-traffic condition, ρn = µn/sn → 1, which for our choice of sn is

equivalent to requiring

(1− ρn)
µn
σn
→ γ, as n→∞. (2.4)

Another condition we impose is that

σ2
n

µn
→∞, n→∞, (2.5)

which roughly says that the overdispersed nature of the arrival process is persistent when n→∞.

Since we are mainly interested in the system in heavy traffic it is appropriate to look at the queue

length process in a scaled form. Filling in sn as well as dividing both sides of (2.3) by σn, gives

Qn

σn
= max

k≥0

{∑k

i=1

(An(i)−µn
σn

− γ
)}
. (2.6)

By defining Q̂n :=Qn/σn and Ân(i) := (An(i)−µn)/σn, we see that the scaled queue length process

is in distribution equal to the maximum of a random walk with i.i.d. increments distributed as

Ân−γ. Besides EÂn = 0 and Var Ân = 1, the scaled and centered arrival counts Ân has a few other

nice properties which we turn to later in this section.

The model in (2.1) is valid for any distribution of An, also for the original case where the number

of arrivals follows a Poisson distribution with fixed parameter λn, but (2.5) does not hold then.

We will deviate too much from this setting. Instead, we assume An to be Poisson distributed with

uncertain arrival rate rendered by the non-negative random variable Λn. This Λn is commonly

referred to as the prior distribution, while An is given the name of a Poisson mixture, see Grandell

(1997). The probability generating function (pgf) of An can be written in terms of the moment

generating function (mgf) of Λn, namely,

An(z) =E[E[zAn |Λn]] =E[exp(Λn(z− 1))] =Mn(z− 1), (2.7)

where Mn(t) is the mgf of Λ. From (2.7), we get

µn =EAn =EΛn, σ2
n = VarAn = VarΛn +EΛn, (2.8)
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so that µn <σ
2
n if Λn is non-deterministic. The condition in (2.5) hence translates to Var Λn/EΛn→

∞ for n→∞. The next result relates the converging behavior of the centered and scaled Λn to

that of Ân.

Lemma 1. Let µn, σ
2
n→∞ and σ2

n/µn→∞. If

Λ̂n :=
Λn−µn
σn

d⇒N (0,1), for n→∞, (2.9)

then Ân converges weakly to a standard normal variable as n→∞.

The proof can be found in Section 7.

The prevalent choice for Λn is the Gamma distribution. The Gamma-Poisson mixture turns out

to provide a very good fit to arrival counts experienced by service systems, as was observed by

Jongbloed and Koole (2001). Assuming Λn to be of Gamma type with scale and rate parameters

an and 1/bn, respectively, we get

An(z) =
( 1

1 + bn(1− z)

)an
, (2.10)

which is the pgf of the negative binomial distribution with parameters an and 1/(bn + 1), so that

µn = anbn, σ2
n = anbn(bn + 1). (2.11)

Hence, requiring bn →∞ as n→∞, gives the desired persistent overdispersion. An important

implication of Λn being a Gamma random variable is the following.

Corollary 1. Let Λn ∼Gamma(an,1/bn), An ∼Poisson(Λn) and an, bn→∞. Then Ân converges

weakly to a standard normal random variable as n→∞.

Proof With Lemma 1 in mind, it is sufficient to prove that Λ̂n⇒N (0,1) for this particular

choice of Λn. We do this by proving the pointwise convergence of the cf of Λ̂n to exp(−t2/2), the

cf of the standard normal distribution. Let ϕG(·) denote the characteristic function of a random

variable G. By basic properties of the cf,

ϕΛ̂n
(t) = e−iµnt/σn ϕΛn(t/σn) = e−iµnt/σn

(
1− ibnt

σn

)−an
= exp

[
− iµnt
σn
− an ln

(
1− ibnt

σn

)]
= exp

[
− iµnt
σn
− an

(
− i bnt
σn

+
b2
nt

2

2σ2
n

+O(b3
n/σ

3
n)
)]

= exp
[
− bn t

2

2(bn + 1)
+O (1/

√
an)
]
→ exp

(
−t2/2

)
, (2.12)

for n→∞. By Lévy’s continuity theorem this implies Λ̂n is indeed asymptotically standard normal.

�

The characterization of the arrival process as a Gamma-Poisson mixture be of vital importance

in later sections.
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2.1. Expressions for the stationary distribution

Our main focus is on the stationary queue length distribution, denoted by P (Qn = i) =

limk→∞ P(Qn(k) = i). Denote the pgf of Qn by

Q̃n(w) =
∞∑
i=0

P (Qn = i)wi. (2.13)

We next recall two characterizations of Q̃n(w) that play prominent roles in the remainder of our

analysis. Throughout we assume that the pgf of An, denoted by An(w), exists within |z|< r0, for

some r0 > 1, so that all moments of An are finite.

The first characterization of Q̃n(w) originates from a random walk perspective. As we see from

(2.3), the (scaled) stationary queue length is equal in distribution to the all-time maximum of a

random walk with i.i.d. increments distributed as An−γ (or Ân−γ in the scaled setting). Spitzer’s

identity, see e.g. (Asmussen 2003, Theorem VIII4.2), then gives

Q̃n(w) = exp
{ ∞∑
k=1

1

k
(E[w(

∑k
i=1{An(i)−sn})

+

]− 1)
}
, (2.14)

where (x)+ = max{x,0}. Hence,

EQn = Q̃′n(1) =
∞∑
k=1

1

k
E
[ k∑
i=1

(An(i)− sn)
]+

, (2.15)

VarQn = Q̃′′n(1) +Q′n(1)−
(
Q̃′n(1)

)2

=
∞∑
k=1

1

k
E
[( k∑

i=1

(An(i)− sn)

)+]2

, (2.16)

P (Qn = 0) = Q̃n(0) = exp
{
−
∞∑
k=1

1

k
P
(∑k

i=1(An(i)− sn)> 0
)}
. (2.17)

A second characterization follows from Pollaczek’s formula, see Abate et al. (1993), Janssen et al.

(2015):

Q̃n(w) = exp
{ 1

2πi

∫
|z|=1+ε

ln
(w− z

1− z

) (zsn −An(z))′

zsn −An(z)
dz
}
, (2.18)

which is analytic for |w|< r0, for some r0 > 1. Therefore, ε > 0 has to be chosen such that |w|<
1 + ε < r0. This gives

EQn =
1

2πi

∫
|z|=1+ε

1

1− z
(zsn −An(z))′

zsn −An(z)
dz, (2.19)

VarQn =
1

2πi

∫
|z|=1+ε

−z
(1− z)2

(zsn −An(z))′

zsn −An(z)
dz, (2.20)

P (Qn = 0) = exp
{ 1

2πi

∫
|z|=1+ε

ln
( z

z− 1

) (zsn −An(z))′

zsn −An(z)
dz
}
. (2.21)

These two sets of expressions for the characteristics of the queue reappear several times in the next

sections.
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3. Main results on robust approximations

3.1. Process-level convergence and stationary moments

Observe that (2.1) is in fact Lindley’s recursion for the waiting time in a D/G/1 system. Bearing

in mind the many-sources interpretation, for large n and sn, this recursion starts resembling that

of a D/D/1 system, which suggests that our system becomes nearly deterministic, and only due

to the traffic intensity increasing as in (2.4) the system displays interesting limiting behavior.

A more generic class of nearly deterministic queueing systems was introduced in Sigman and

Whitt (2011a,b), in terms of the Gn/Gn/1 system, where Gn indicates cyclic thinning of order

n, indicating that some point process is thinned to contain only every nth point. As n→∞,

the Gn/Gn/1 systems thus approaches the deterministic D/D/1 system. For Gn/Gn/1 systems,

Sigman and Whitt (2011a) establishes stochastic-process limits, and Sigman and Whitt (2011b)

derives heavy-traffic limits for stationary waiting times. In the framework of Sigman and Whitt

(2011a,b), the recursion (2.1) corresponds to a D/Gn/1 queue, where the sequence of service times

(An(k))k≥1 follows from a cyclically thinned sequence of i.i.d. random variables. For the Gn/D/1

queue, which describes the waiting-time process in a G/D/n queue, a similar result was obtained in

Jelenkovic et al. (2004). The main results in Jelenkovic et al. (2004), Sigman and Whitt (2011a,b)

were obtained under the assumption that ρn ∼ 1− γ/
√
n, in which case it follows from (Sigman

and Whitt 2011b, Theorem 3) that the rescaled stationary waiting time process converges to a

reflected Gaussian random walk.

We shall also identify the Gaussian random walk as the appropriate scaling limit for our station-

ary system. However, since the normalized natural fluctuations of our system are given by µn/σn

instead of
√
n, we assume that the load grows like ρn ∼ 1− γ

µn/σn
. Hence, in contrast to Jelenkovic

et al. (2004) and Sigman and Whitt (2011a,b), our systems’ characteristics display larger natural

fluctuations, due to the mixing factor that renders the arrivals. Yet, by matching this overdispersed

demand with the appropriate hedge against variability, we again obtain Gaussian limiting behav-

ior. Note that this is not surprising, since we saw in Lemma 1 that the increments start resembling

Gaussian behavior for n→∞. The following result summarizes this.

Theorem 1. Let Λn be a non-negative random variable such that (Λn−µn)/σn is asymptotically

standard normal with µn and σ2
n as defined in (2.8). Assume both µn, σ

2
n→∞ and σ2

n/µn→∞ as

n→∞. Then, for n→∞,

(i) Q̂n
d⇒Mγ,

(ii) P(Qn = 0)→ P(Mγ = 0),

(iii) E[Q̂n]→EMγ ,

(iv) Var Qn→Var Mγ
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where Mγ is the all-time maximum of a random walk with i.i.d. normal increments with mean −γ

and unit variance.

The proof of Theorem 1 is given in Section 7. The following result shows that Theorem 1 also

applies to Gamma mixtures, which is a direct consequence of Corollary 1.

Corollary 2. Let Λn be Gamma distributed with scale and rate parameters an and 1/bn, respec-

tively, such that an, bn→∞. Then the four convergence results of Theorem 1 hold true.

It follows from Theorem 1 that the scaled stationary queueing process converges under (2.4) to

a reflected Gaussian random walk. Hence, the performance measures of the original system should

be well approximated by the performance measures of the reflected Gaussian random walk, giving

rise to heavy-traffic approximations.

Like our original system, the Gaussian random walk falls in the classical setting of the reflected

one-dimensional random walk, whose behavior is characterized by Spitzer’s identity and Pollaczek’s

formula. In particular, Pollaczek’s formula gives rise to contour integral expressions for performance

measures that are easy to evaluate numerically, also in heavy-traffic conditions. Abate et al. (1993)

have considered the numerical evaluation of such integrals. For EMγ such an integral is as follows

EMγ =− 1

π

∫ ∞
0

Re
[1−ϕ(−z)

z2

]
dy, (3.1)

with ϕ(z) = exp(−γ z + 1
2
z2), the Laplace transform of a normal random variable with mean −γ

and unit variance, and z = x+ iy with an appropriately chosen real part x. Note that this integral

involves complex-valued numbers. Similar expressions appear for P(Mγ = 0) and VarMγ . The

following result simply rewrites these integrals in (3.1) in terms of a real integral (the derivation

is given in the e-companion) and uses the fact that the scaled queue length process mimics the

maximum of the Gaussian random walk for large n.

Corollary 3. Let µn, σn→∞ and σ2
n/µn→∞. Then the leading order behavior of P(Qn = 0),

EQn and VarQn is characterized by

P(Qn = 0)≈ exp
[ 1

π

∫ ∞
0

γ/
√

2
1
2
γ2 + t2

ln
(

1− e−
1
2
γ2−t2

)
dt
]
, (3.2)

EQn ≈
√

2σn
π

∫ ∞
0

t2

1
2
γ2 + t2

exp(− 1
2
γ2− t2)

1− exp(− 1
2
γ2− t2)

dt, (3.3)

VarQn ≈
√

2γσ2
n

π

∫ ∞
0

t2

( 1
2
γ2 + t2)2

exp(− 1
2
γ2− t2)

1− exp(− 1
2
γ2− t2)

dt. (3.4)
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3.2. Robust heavy-traffic approximations

To obtain more accurate approximations for EQn, VarQn and P(Qn = 0), using the Pollaczek’s

formula given in (2.18), we need to be more specific about the arrival process An and its pgf An(w).

In the remainder of this paper we work with the Gamma-Poisson mixture with parameters an and

bn, so that

An(w) =
( 1

1 + (1− z)bn

)an
. (3.5)

As mentioned earlier, Gamma mixing yields the negative binomial distribution, with pgf as in (3.5),

which allows us to establish the detailed asymptotic results in the next theorem.

Theorem 2. Let an, bn and sn be such that

(1− ρn)
√
an→ γ (3.6)

for some γ > 0, as n→∞. Then the leading order behavior of EQn is given by

EQn =

√
2γn
π

(bn + ρn
1− ρn

) ∫ ∞
0

t2

1
2
γ2
n + t2

exp(− 1
2
γ2
n− t2)

1− exp(− 1
2
γ2
n− t2)

dt (1 + o(1)), (3.7)

where

γ2
n = sn

(1− ρn
bn + 1

)2(
1 +

bn
ρn

)
. (3.8)

Furthermore, the leading order behavior of P(Qn = 0) and VarQn is given by

exp
[ 1

π

bn + ρn
bn + 1

∫ ∞
0

γn/
√

2
1
2
γ2
n + t2

ln
(

1− e−
1
2
γ2n−t

2
)
dt
]
, (3.9)

and
γ3
n/
√

2

π

(bn + ρn
1− ρn

)2( bn + 1

bn + ρn
+ 1
)∫ ∞

0

t2

( 1
2
γn + t2)2

exp(− 1
2
γn− t2)

1− exp(− 1
2
γ2
n− t2)

dt, (3.10)

respectively.

Note that we can write (3.7) as

EQn = σ̃nEMγn and VarQn ≈ σ̃2
nVarMγn (3.11)

with

σ̃n = γn

(bn + ρn
1− ρn

)
. (3.12)

This robust approximation for EQn is suggestive of the following two properties that extend

beyond the mean system behavior, and hold at the level of approximating the queue by σn times

the Gaussian random walk:

(i) At the process level, the space should be normalized with σn, as in (2.7). The approximation

(3.7) suggests that it is better to normalize with σ̃n. Although σ̃n → σn for n→∞, the σ̃n is

expected to lead to sharper approximations for finite n.
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(ii) Again at the process level, it seems better to replace the original hedge γ by the robust hedge

γn. This thus means that the original system for finite n is approximated by a Gaussian random

walk with drift −γn. Apart form this approximation being asymptotically correct for n→∞, it is

also expected to approximate the behavior better for finite n.

4. Numerical and empirical studies

4.1. Convergence of the robust hedge

We next examine the accuracy of the heavy-traffic approximations for EQn and VarQn, which

follow from Corollary 3 and Theorem 2. We expect the robust approximation to be considerably

better than the classical approximation when γn and σ̃n differ substantially from their limiting

counterparts. To further substantiate the convergence of γn to γ and σ̃n to σn we present the results

below.

Proposition 1. For bn, sn→∞ and bn ≤ sn,

γ2
n = γ2

(
1− 1

1 + bn +σn/γ

)
. (4.1)

Proof From (3.8), we have

γ2
n = sn

(1− ρn
bn + 1

)2(
1 +

bn
ρn

)
=

1

sn

(sn− anbn
bn + 1

)2(
1 +

sn
an

)
=

1

sn

γ2 anbn(bn + 1)

(bn + 1)2

(
1 +

sn
an

)
= γ2 bn

bn + 1

(
1 +

an
sn

)
=: γ2 F̄n. (4.2)

Now consider the factor F̄n.

F̄n =
bn

bn + 1

(
1 +

an
sn

)
=

bn
bn + 1

+
1

bn + 1

anbn
sn

= 1− 1

bn + 1

(
1− anbn

sn

)
= 1− 1

bn + 1

γ σn
sn

= 1− 1

bn + 1

1

1 + µn
γσn

= 1− 1

bn + 1 + 1
γ

√
anbn(bn + 1)

, (4.3)

which together with σ2
n = anbn(bn + 1) proves the proposition.

�

Note that γn always approaches γ from below. Also, (4.1) shows that bn is the dominant factor in

determining the rate of convergence of γn.

Proposition 2. Let σ̃n as in (3.12). Then

σ̃n = σn (1 +O(1/
√
anbn)) + bnγn. (4.4)
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Figure 1

Proof Straightforward calculations give

σ̃n = γn

(snbn + anbn
sn− anbn

)
=
γn
γ

bn
σn

(sn + an) =
γn
γ

√
bn

an(bn + 1)

(
an(b+ 1) + γ

√
anbn(bn + 1)

)
=
γn
γ

(√
anbn(bn + 1) + γbn

)
=
γn
γ
σn + γnbn. (4.5)

Applying Proposition 1 together with the observation√
1− 1

1 + bn +σn/γ
= 1 +O(1/

√
anbn) (4.6)

yields the result.

In Figure 1, we visualize the convergence speed of both parameters in case µn = n, σn = nδ with

δ= 0.7 and γ = 1. This implies an = n/(n2δ − 1) and bn = n2δ − 1.

We observe that γn starts resembling γ fairly quickly, as predicted by Proposition 1; σ̃n, on

the other hand, converges extremely slowly to its limiting counterpart. Since EQn and VarQn are

approximated by σ̃n and σ̃n, multiplied by a term that remains almost constant as n grows, the

substitution of σn by σ̃n, is essential for obtaining accurate approximations, as we illustrate further

in the next subsection.

4.2. Comparison between heavy-traffic approximations

We set, so that µn = n and σ2
n = n2δ with δ > 1

2
, so that sn = n+ γnδ, and an = n/(n2δ−1− 1) and

bn = n2δ−1− 1.

Tables 1 to 4 present numerical results for various parameter values. The exact values are cal-

culated using the expression in Appendix A.

Several conclusions are drawn from these tables. First observe that the heavy-traffic approxima-

tions based on the Gaussian random walk, (3.3) and (3.4), capture the right order of magnitude



Mathijsen et al.: Robust heavy-traffic approximations for service systems facing overdispersed demand
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 17

sn ρn EQn (3.3) (3.7)
√

VarQn (3.4) (3.10)
5 0.609 0.343 0.246 0.363 1.002 0.835 0.978

10 0.683 0.535 0.400 0.551 1.239 1.063 1.216
50 0.815 1.405 1.168 1.405 1.995 1.817 1.971

100 0.855 2.113 1.824 2.105 2.445 2.270 2.420
500 0.920 5.446 5.006 5.412 3.923 3.762 3.899

Table 1 Numerical results for the Gamma-Poisson case with γ = 1 and δ= 0.6.

sn ρn EQn (3.3) (3.7)
√

VarQn (3.4) (3.10)
5 0.550 0.462 0.284 0.479 1.162 0.896 1.130

10 0.587 0.852 0.521 0.855 1.570 1.213 1.528
50 0.668 3.197 2.093 3.106 3.0248 2.433 2.947

100 0.700 5.561 3.784 5.377 3.983 3.270 3.887
500 0.766 19.887 14.741 19.202 7.514 6.455 7.361

Table 2 Numerical results for the Gamma-Poisson case with γ = 1 and δ= 0.8.

sn ρn EQn (3.3) (3.7)
√

VarQn (3.4) (3.10)
5 0.949 11.532 11.306 11.495 3.634 3.559 3.602

10 0.961 17.565 17.268 17.548 4.474 4.398 4.444
50 0.979 46.368 45.869 46.418 7.241 7.168 7.218

100 0.984 70.340 69.735 70.430 8.910 8.839 8.888
500 0.991 184.900 183.989 185.108 14.422 14.357 14.404

Table 3 Numerical results for the Gamma-Poisson case with γ = 0.1 and δ= 0.6.

sn ρn EQn (3.3) (3.7)
√

VarQn (3.4) (3.10)
5 0.931 15.730 15.209 15.909 4.276 4.127 4.233

10 0.939 27.561 26.672 27.958 5.652 5.466 5.605
50 0.955 100.660 97.967 102.070 10.760 10.476 10.698

100 0.961 175.591 171.360 177.818 14.189 13.855 14.117
500 0.971 638.097 626.346 644.105 26.963 26.490 26.864

Table 4 Numerical results for the Gamma-Poisson case with γ = 0.1 and δ= 0.8.

for both EQn and
√

VarQn. However, the values are off, in particular for small sn and low ρn :=

EAn/sn. The inaccuracy also increases with the level of overdispersion. In contrast, the approxima-

tions that follow from Theorem 2, (3.7) and (3.10) are remarkably accurate. Even for small systems

with sn = 5 or 10, the approximations for EQn are within 6% of the exact value for small ρn and

within 2% for ρn close to 1. For
√

VarQn, these percentages even reduce to 3% and 1%, respec-

tively. For larger values of sn these relative errors naturally reduce further. Overall, we observe

that the approximations improve for heavily loaded systems, and the corrected approximations are

particularly useful for systems with increased overdispersion.

4.3. Capacity allocation in health care

We next apply our model and robust approximations to real-life patient arrivals. We consider

emergency patients who require diagnostic tests at the radiology department of a hospital. Green
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(2004) points out that patients at the radiology department can be roughly categorized into three

groups: Inpatients, outpatients and emergency patients. Inpatient and outpatient arrivals are rela-

tively predictable as these are usually by appointments. Emergency patients, on the other hand, are

inherently unpredictable: They typically require urgent care and therefore timely access to testing

facilities, as well as a quick assessment of the test results. This translates into emergency patients

getting priority over the other two groups in such settings, so that they do not experience any delay

caused by the groups of lower priority. However, patients from the same top-priority group can

still cause considerable congestion. A careful evaluation of capacity allocation is hence required,

bearing in mind that additional sophisticated pieces of medical equipment are very costly.

In the setting we study, capacity is defined by the number of time slots available to perform

radiology tests on emergency patients in a given time period, which we set at 24 hours. As radiology

tests are commonly performed in appointment slots of fixed length, the number of slots available

per day is also indirectly fixed. In terms of our model parameters, see Section 2, we have s as the

number of slots per day allocated to emergency patients, and A(k) the number of test requests

received by the department on day k. We omit the subscript n in this section due to the absence of

limits. Then EQ can be interpreted as the expected number of patients in stationarity whose test

is carried over to the next day. A more natural performance measure in this setting is the expected

waiting time, namely the time between the physician’s request and the actual start of the test.

However, Little’s law implies that there is a linear relation between the two, hence we choose to

only evaluate EQ.

The data set on which our empirical study is based originates from the emergency department of

SKHospital, monitored over a period of 76 days from September to November 2012. We extracted

information of ED patients referred to the radiology department by the ED physicians, which

includes the time the test request was made and the exact test type performed. The two test types,

X-ray and CT scans, are performed on different equipment and hence it makes sense to analyze

their queueing processes separately.

We refer to test requests as arrivals. The empirical cumulative distribution function of the number

of arrivals per day, for each type, are depicted by the black lines in Figure 2 and 2. The sample means

equal 69.81 and 17.47, for the X-ray and CT scans respectively, whereas the sample variances are

121.8 and 26.12. These values suggest that fitting a Poisson distribution is inappropriate, which is

visually backed up by the fitted Poisson cdf, depicted in Figure 2 by the red line. To strengthen this

claim, we tested both samples for the Poisson assumption using the dispersion test, see Appendix

B, and obtained p-values equal 7.01 · 10−3 and 3.57 · 10−3 respectively, which allow us to safely

reject the Poisson hypothesis in both cases.
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Figure 2 Empirical, fitted Poisson and fitted Gamma-Poisson cumulative distribution functions of the number of

arrivals.

In search for a better distributional fit with the arrivals count, we resort to Gamma-Poisson

mixtures. Here we employ the procedure in Jongbloed and Koole (2001), which is basically a

maximum loglikelihood method, to obtain estimates for the parameters a and b. This yields

âX−ray = 95.68, b̂X−ray = 0.7297, âCT = 37.19, b̂CT = 0.4698. (4.7)

Applying the bootstrapping method to the data and the fitted model, also described in the appendix

of Jongbloed and Koole (2001), returns p-values that equal 0.7354 and 0.2120 for X-ray and CT

scans, respectively. Therefore, the null hypothesis, stating that the data originated from a Gamma-

Poisson mixture, cannot be rejected. The cdfs of the fitted Gamma-Poisson distributions, plotted

in green in Figure 2, give visual confirmation of this claim as well. Naturally, we also compared

the estimated densities to the empirical pdf of the data. However, these fail to give a convincing

visual fit due to the relatively small sample size and are therefore omitted here.

We now have clear evidence that both the X-ray and CT scan facilities face an overdispersed

arrival stream. In our final step of the empirical study we now evaluate the accuracy of our per-

formance measure of interest EQ, and the consequences of assessing system performance while

ignoring the presence of overdispersion. We take the following approach: Trivially, we need to

choose s > EA in order for the system to be stable. Hence, we vary s from 70 to 80 for X-rays

and from 18 to 24 for CT scans and simulate the queue length process by sampling the number of

requests per day from the actual arrival counts. The number of iterations performed is 108 for each

configuration, excluding a warm-up interval of length 107 (days). Around the mean of Q obtained

from this simulation, we create a 95% confidence interval. Next, we approximate the expected sta-

tionary queue length under two scaling rules. Assuming Poisson arrivals, the appropriate capacity

allocation rule would be s = µ̂+ γ
√
µ̂, for some γ > 0. Our novel capacity sizing rule prescribes

s= µ̂+ γσ̂ = âb̂+ γ

√
âb̂(b̂+ 1). We compute the first approximation based on square-root safety
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s ρ EQ (± conf. iv.) EQsrs (3.3) (3.7) rel. error
70 0.997 328.313± 6.6 · 10−2 186.664 324.231 325.221 9.6 · 10−3

71 0.983 45.073± 1.0 · 10−2 24.946 45.290 45.308 5.4 · 10−3

72 0.970 21.988± 5.4 · 10−3 11.650 21.982 22.129 6.6 · 10−3

73 0.956 13.546± 3.6 · 10−3 6.847 13.455 13.649 7.8 · 10−3

74 0.943 9.230± 2.7 · 10−3 4.438 9.106 9.319 1.0 · 10−2

75 0.931 6.655± 2.1 · 10−3 3.031 6.513 6.731 1.2 · 10−2

76 0.919 4.949± 1.7 · 10−3 2.136 4.821 5.037 1.8 · 10−2

77 0.907 3.755± 1.4 · 10−3 1.534 3.650 3.861 2.8 · 10−2

78 0.895 2.884± 1.1 · 10−3 1.115 2.807 3.009 4.4 · 10−2

79 0.884 2.230± 1.0 · 10−3 0.816 2.183 2.374 6.5 · 10−2

80 0.873 1.734± 8.5 · 10−4 0.600 1.710 1.890 9.1 · 10−2

Table 5 Computational results for X-ray.

s ρ EQ (± conf.iv.) EQsrs (3.3) (3.7) rel. error
18 0.970 22.116 ± 4.9 · 10−3 14.235 21.965 21.724 1.8 · 10−2

19 0.919 6.289 ± 1.7 · 10−3 3.640 5.941 6.040 4.0·10−2

20 0.873 3.101 ± 1.0 · 10−3 1.589 2.772 2.917 6.0·10−2

21 0.832 1.767 ± 6.6 · 10−4 0.800 1.507 1.658 6.1·10−2

22 0.794 1.066 ± 4.6 · 10−4 0.425 0.874 1.016 4.7·10−2

23 0.760 0.653 ± 3.3 · 10−4 0.230 0.522 0.649 7.1·10−3

24 0.728 0.377 ± 2.3 · 10−4 0.124 0.315 0.424 1.2·10−1

Table 6 Computational results for CT scan.

capacity sizing by deducing γ for each s, which we substitute in EQsrs ≈
√
µ̂EMγ . Similarly, we

obtain γ from the new rule, and plug in this value, together with the fitted parameters â and b̂,

into (3.7). The results are given in Tables 5 and 6. The last column shows the 95% relative error

bound of the second approximation.

Based on these figures, we make several remarks. First, assuming the conventional regime

(neglecting overdispersion) the approximation severely overestimates system performance in both

queues. Because the square-root safety margin underestimates the stochastic fluctuations in the

arrival process, the safety parameter γ is overestimated, which leads to a smaller magnitude of

the approximated queue length process. This clearly illustrates the distorted view estimated per-

formance characteristics can give under the wrong scaling. Secondly, it is worth noticing the very

good proximity of (3.7) to the values obtained through simulation. As we expected, the quality of

the approximation deteriorates with increasing values of s. This makes sense, because we assumed

the system to be in heavy traffic in the derivation of the formulas. What is surprising, on the

other hand, is the fact that the approximation performs very well, even though the parameter b

is very small for these particular data sets, while the analysis of Theorem 2 assumes that a and b

become large. This demonstrates that the approximation scheme is remarkably robust and is able

to capture the pre-limit behavior of these types of queues very well.
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5. Proof of robust approximations (Theorem 2 )

For the proof of Theorem 2, we modify the special saddle point method developed in Janssen et al.

(2015) to account for the circumstance, caused by overdispersion, that the relevant saddle point and

the analyticity radius tend to 1, as n→∞. Our starting point is the probability generating function

of the number of arrivals per time slot, given in (3.5), which is analytic for |z| < 1 + 1/bn =: r.

Assuming the same choices of sn and thereby ρn as in Section 2, we consider

EQn =
1

2πi

∫
|z|=1+ε

1

1− z
(zsn −An(z))′

zsn −An(z)
dz, (5.1)

where 0 < ε < r0 − 1 < 1/bn = r − 1, with r0 the zero of zsn − An(z) outside |z| ≤ 1 of smallest

modulus. We set

g(z) =−lnz+
1

sn
lnAn(z) =−lnz− an

sn
ln (1 + (1− z)bn) , (5.2)

to be considered in the entire complex plane with branch cuts (−∞,0] and [r,∞). The relevant

saddle point zsp is the unique zero z of g′(z) with z ∈ (1, r0). Since

g′(z) =−1

z
+

ρn
1 + (1− z)bn

, (5.3)

this yields,

1 + (1− zsp)bn = ρnzsp, i.e., zsp = 1 +
1− ρn
ρn + bn

. (5.4)

We then find

EQn =
sn
2πi

∫
|z|=1+ε

g′(z)

z− 1

exp(sn g(z))

1− exp(sn g(z))
dz, (5.5)

and we take here 1 + ε = zsp. There are no problems with the branch cuts since we consider

exp(sng(z)) with integer sn.

We continue as in Janssen et al. (2015), Sec. 3, and thus we intend to substitute z = z(v) in the

integral in (5.5), where z(v) satisfies

g(z(v)) = g(zsp)− 1
2
v2 g′′(zsp) =: q(v) (5.6)

on a range − 1
2
δn ≤ v≤ 1

2
δn. Thus, we consider the approximate representation

−sn g′′(zsp)

2πi

∫ 1
2
δn

− 1
2
δn

v

z(v)− 1

exp(sn q(v))

1− exp(sn q(v))
dv (5.7)

of EQn. We have to operate here with additional care, since in the present case, the analyticity

radius r = 1 + 1/bn, the saddle point zsp as well as the outside zero r0 tend to 1 as n→∞.
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Specifically, proceeding under the assumptions that (1 − ρn)2an is bounded while an →∞ and

bn ≥ 1, we have from (5.4) that

zsp− 1 =
1− ρn
bn + ρn

=
1− ρn
bn

+O
(1− ρn

b2
n

)
, (5.8)

where the O-term is small compared to the first term of the right-hand side of (5.8) when bn→∞.

Next, we approximate r0, using that r0 > 1 satisfies

−ln r0−
ρn
bn

ln (1 + (1− r0)bn) = 0. (5.9)

Write r0 = 1 +u/bn, so that we get the equation

0 =−ln

(
1 +

u

bn

)
− ρn
bn

ln(1−u)

=− u
bn

(
1− ρn− 1

2

( 1

bn
+ ρn

)
u− 1

3

(−1

b2
n

+ ρn

)
u2 + · · ·

)
, (5.10)

where we have used the Taylor expansion of ln(1 +x) at x= 0. Thus we find

u=
2(1− ρn)

ρn + 1/bn
+O(u2) = 2(1− ρn) +O((1− ρn)2) +O

(1− ρn
bn

)
, (5.11)

and so,

r0 = 1 + 2
1− ρn
bn

+O
((1− ρn)2

bn

)
+O

(1− ρn
b2
n

)
. (5.12)

In (5.7) we choose δn so large that the integral has converged within exponentially small error

using ±δn as integration limits, and, at the same time, so small that there is a convergence power

series

z(v) = zsp + iv+
∞∑
k=2

ck(iv)k, for |v| ≤ 1
2
δn. (5.13)

To achieve these goals, we supplement the information on g(z), as given by (5.2)− (5.4), by

g′′(z) =
1

z2
+

ρnbn
(1 + (1− z)bn)2

, g′′(1) = 1 + ρnbn, g′′(zsp) =
1

z2
sp

(
1 +

bn
ρn

)
. (5.14)

Now

exp(sn q(v)) = exp(sn g(zsp)) exp(− 1
2
sn g

′′(zsp)v2), (5.15)

and

sn g
′′(zsp)v2 = sn bnv

2(1 + o(1)) = an(bn v)2(1 + o(1)). (5.16)

Therefore, (5.7) approximates EQn with exponentially small error where we take 1
2
δn of the order

1/bn.

We next aim at showing that we have a power series for z(v) as in (5.13) that converges for

|v| ≤ 1
2
δn with 1

2
δn of the order 1/bn.
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Lemma 2. Let

rn :=
1

2 bn
− (zsp− 1), mn := 2

3
ρnrn

√
bn + ρ−1

n

bn + ρn
, (5.17)

where we assume rn > 0, see (5.8). Then (5.13) holds with real coefficients ck satisfying

|ck| ≤
rn
mk
n

, k= 2,3, . . . . (5.18)

Proof We let

G(z) :=
2(g(z)− g(zsp)

g′′(zsp)(z− zsp)2
. (5.19)

Then G(zsp) = 1 and so we can write (5.6) as

F (z) := (z− zsp)
√
G(z) = iv (5.20)

when |z− zsp| is sufficiently small. Since F (zsp) = 0, F ′(zsp) = 1, the Bürmann-Lagrange inversion

theorem implies validity of a power series as in (5.19), with real ck since G(z) is positive and real

for real z close to zsp. We therefore just need to estimate the convergence radius of this series from

below.

To this end, we start by showing that

Re[g′′(z)]> 4
9
ρ2
n

bn + ρ−1
n

bn + ρn
, |z− zsp| ≤ rn. (5.21)

For this, we consider the representation

G(z) = 2

∫ 1

0

∫ 1

0

g′′(zsp + s t(z− zsp))

g′′(zsp)
t dsdt. (5.22)

We have for ζ ∈C and |ζ − 1| ≤ 1/2bn ≤ 1/2 from (5.14) that

Re[g′′(ζ)] = Re(1/ζ2) + ρnbnRe
[( 1

1 + (1− ζ)bn

)2]
≥ 4

9
(1 + ρnbn). (5.23)

To show the inequality in (5.23), it suffices to show that

min
|ξ−1|≤1/2

Re
( 1

ξ2

)
= 4

9
. (5.24)

The minimum in (5.24) is assumed at the boundary |ξ− 1|= 1/2, and for a boundary point ξ, we

write

ξ = 1 + 1
2

cosθ+ 1
2
i sinθ, 0≤ θ≤ 2π, (5.25)

so that

Re
( 1

ξ2

)
=

1 + cosθ+ 1
4

cos2θ

( 5
4

+ cosθ)2
. (5.26)
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Now
d

dθ

[1 + cosθ+ 1
4

cos2θ

( 5
4

+ cosθ)2

]
=

sinθ (1− cosθ)

4( 5
4

+ cosθ)3
(5.27)

vanishes for θ = 0, π,2π, where Re(1/ξ2) assumes the values 4/9, 4, 4/9, respectively. This shows

(5.24).

We use (5.24) with ζ + ξ and with ξ = 1 + (1− ζ)bn, with

ζ = ζ(s, t) = zsp + s t (z− zsp), 0≤ s, t≤ 1, (5.28)

where we take ζ such that |ζ − 1| ≤ 1/2bn. It is easy to see from 1< zsp < 1 + 1/2bn that |ζ − 1| ≤

1/2bn holds when |z − zsp| ≤ rn = 1/2bn − (zsp − 1). We have, furthermore, from (5.4) that 0 <

g′′(zsp)≤ 1 + bn/ρn. Using this, together with (5.23) where ζ is as in (5.28), yields

Re[G(z)]≤ 4

9

1 + ρnbn
1 + bn/ρn

2

∫ 1

0

∫ 1

0

t dsdt= 4
9
ρ2
n

bn + ρ−1
n

bn + ρn
(5.29)

when |z− zsp| ≤ rn, and this is (5.21).

We therefore have from (5.20) that

|F (z)|> rn ·
2

3
ρn

√
bn + ρ−1

n

bn + ρn
=mn, |z− zsp|= rn. (5.30)

Hence, for any v with |v| ≤mn, there is exactly one solution z = z(v) of the equation F (z)− iv= 0

in |z− zsp| ≤ rn by Rouché’s theorem. This z(v) is given by

z(v) =
1

2πi

∫
|z−zsp|=rn

F ′(z)z

F (z)− iv
dz, (5.31)

and depends analytically on v, |v| ≤mn. From |z(v)− zsp| ≤ rn, we can finally bound the power

series coefficients ck according to

|ck|=
∣∣∣ 1

2πi

∫
|iv|=mn

z(v)− zsp

(iv)k+1
d(iv)

∣∣∣≤ rn
mk
n

, (5.32)

and this completes the proof of the lemma.

�

Remark 1. We have zsp− 1 = o(1/bn), see (5.8), and so

rn =
1

2bn
(1 + o(1)), mn =

1

3bn
(1 + o(1)), (5.33)

implying that the radius of convergence of the series in (5.13) is indeed of order 1/bn (since we

have assumed bn ≥ 1).
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We let δn =mn, and we write for 0≤ v≤ 1
2
δn

v

z(v)− 1
+

−v
z(−v)− 1

=
−2iv Im(z(v))

|z(v)− 1|2
, (5.34)

where we have used that all ck are real, so that z(−v) = z(v)∗. Now from (5.18) and realness of the

ck, we have

Im(z(v)) = v+
∞∑
l=1

c2l+1(−1)l v2l+1 = v+O(v3), (5.35)

and in similar fashion

|z(v)− 1|2 = (zsp− 1)2 + v2 +O((zrmsp− 1)2v2) +O(v4) (5.36)

when 0≤ v ≤ 1
2
δn. The order terms in (5.35)-(5.36) are negligible in leading order, and so we get

for µQn via (5.7) the leading order expression

−sn g′′(zsp)

2πi

∫ 1
2
δn

0

−2iv2

(zsp− 1)2 + v2

exp(sn q(v))

1− exp(sn q(v))
dv. (5.37)

We finally approximate q(v) = g(zsp)− 1
2
g′′(zsp)v2. There is a z1, 1≤ z1 ≤ zsp such that

g(zsp) =− 1
2
(zsp− 1)2 g′′(z1), (5.38)

and, see (5.8) and (5.14),

g′′(z1) = g′′(zsp) +O((1− ρn)bn). (5.39)

Hence

sn q(v) =− 1
2
sn g

′′(zsp) [(zsp− 1)2 + v2] +O((1− ρn)bnsn(zsp− 1)2),

=− 1
2
sn g

′′(zsp)[(zsp− 1)2 + v2] +O((1− ρn)2an), (5.40)

where (5.8) has been used and anbn = sn(1 + o(1)) Therefore, the O-term in (5.40) tends to 0 by

our assumption that (1− ρn)2an is bounded. Thus, we get for µQn in leading order

sng
′′(zsp)

π

∫ 1
2
δn

0

v2

(zsp− 1)2 + v2

exp(− 1
2
g′′(zsp)sn((zsp− 1)2 + v2))

1− exp(− 1
2
g′′(zsp)sn((zsp− 1)2 + v2))

dv, (5.41)

When we substitute t = v
√
sn g′′(zsp)/2 and extend the integration in (5.41) to all t ≥ 0 (at the

expense of an exponentially small error), we get for µQn in leading order

=
1

π

√
2sn g′′(zsp)

∫ ∞
0

t2

1
2
γ2
n

exp(− 1
2
γ2
n− t2)

1− exp(− 1
2
γ2
n− t2)

dt, (5.42)

where

γ2
n = sn g

′′(zsp)(zsp− 1)2. (5.43)
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How using (5.4) and (5.14), we get the result of Theorem 2. A separate analysis of γn is provided

in Subsection 4.1.

A similar analysis, modeled after the one given in (Janssen et al. 2015, Subsecs. 5.2, 5.3) gives

under assumption (3.6) the leading-order expression

1

zspπ

∫ ∞
0

γn/
√

2
1
2
γ2
n + t2

ln(1− e−
1
2
γ2n−t

2

)dt (5.44)

for lnP(Qn = 0). Observe that the quantity in (5.44) is negative, but bounded away from −∞ when

γn is bounded away from 0. Furthermore, we find for the variance of Qn the approximation

γ3
n/
√

2

π

zsp + 1

(zsp− 1)2

∫ ∞
0

t2

( 1
2
γn + t2)2

exp(− 1
2
γn− t2)

1− exp(− 1
2
γ2
n− t2)

dt. (5.45)

6. Proof of Gaussian approximations (Corollary 3)

According to (Abate et al. 1993, (15)) we have for the maximum Mγ of a Gaussian random walk

with drift parameter −γ and unit variance

− ln [P(Mγ = 0)] = c0, EMγ = c1, Var Mγ = c2, (6.1)

where

cn =
(−1)nn!

π
Re
[∫ ∞

0

ln (1− exp(γ z+ 1
2
z2))

zn+1
dy
]
, (6.2)

in which z =−x+ i y, y≥ 0, and x is any fixed number between 0 and 2γ. We take x= γ, so that

γz+ 1
2
z2 =− 1

2
γ2− 1

2
y2 ≤ 0, y≥ 0. (6.3)

For n= 0, we then have

c0 =
1

π
Re
[∫ ∞

0

ln (1− exp(− 1
2
γ2− 1

2
y2))

−γ+ i y
dy

=− 1

π

∫ ∞
0

γ

γ2 + y2
ln (1− exp(− 1

2
γ2− 1

2
y2))dy,

=− 1

π

∫ ∞
0

γ/
√

2
1
2
γ2 + t2

ln (1− exp(− 1
2
γ2− t2))dt, (6.4)

where we used that

Re
[ 1

−γ+ i y

]
=
−γ

γ2 + y2
, (6.5)

together with the substitution y= t
√

2. For n= 1,2, · · · , we have by partial integration

cn =
(−1)nn!

π
Re
[∫ ∞

0

ln(1− exp(− 1
2
γ2− 1

2
y2))

(−γ+ i y)n+1
dy

=
(−1)n−1(n− 1)!

π
Im
[∫ ∞

0

ln(1− exp(− 1
2
γ2− 1

2
y2))d

( 1

(−γ+ i y)n

)]
=−(−1)n−1(n− 1)!

π
Im
[∫ ∞

0

y

(−γ+ i y)n
exp(− 1

2
γ2− 1

2
y2)

1− exp(− 1
2
γ2− 1

2
y2)

dy
]
, (6.6)
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where we have used that

Im
[ ln(1− exp(− 1

2
γ2− 1

2
y2))

(−γ+ i y)n

]∣∣∣∞
0

= 0. (6.7)

Using
1

(−γ+ i y)n
= (−1)n

(γ+ i y)n

(γ2 + y2)n
, (6.8)

we then get

cn =
(n− 1)!

π
Im
[∫ ∞

0

y(γ+ i y)n

(γ2 + y2)n
exp(− 1

2
γ2− 1

2
y2)

1− exp(− 1
2
γ2− 1

2
y2)

dy
]
. (6.9)

Hence for n= 1,2, we finally get by the substitution y= t
√

2

c1 =
1

π

∫ ∞
0

y2

γ2 + y2

exp(− 1
2
γ2− 1

2
y2)

1− exp(− 1
2
γ2− 1

2
y2)

dy

=

√
2

π

∫ ∞
0

t2

1
2
γ2 + t2

exp(− 1
2
γ2− t2)

1− exp(− 1
2
γ2− t2)

dt, (6.10)

c2 =
2γ

π

∫ ∞
0

y2

(γ2 + y2)2

exp(− 1
2
γ2− 1

2
y2)

1− exp(− 1
2
γ2− 1

2
y2)

dy

=
γ
√

2

π

∫ ∞
0

t2

( 1
2
γ2 + t2)2

exp(− 1
2
γ2− t2)

1− exp(− 1
2
γ2− t2)

dt, (6.11)

7. Proofs of convergence results (Theorem 1)

This section presents the details of the proof of Lemma 1 and Theorem 1, using the random walk

perspective of the process {Qn(k)}∞k=0. This section is structured as follows. The next two lemmata

are necessary for proving the first assertion of Theorem 1, concerning the weak convergence of the

scaled process to the maximum of the Gaussian random walk, which is summarized in Proposition

4. The two remaining propositions of this section show convergence of Q̂n at the process level as

well as in terms of the three characteristics.

Let us first fix some notation:

Yn(k) := Ân(k)− γ, Sn(k) =
k∑
i=1

Yn(i), (7.1)

with Sn0 = 0 and k= 1,2, .... Then (2.6) can be rewritten as

Q̂n
d
= max

0≤i≤k

{∑k

i=1Yn(i)
}

=:Mγ,n, (7.2)

Last, we introduce the sequence of independent normal random variables Z(1),Z(2), ... with mean

gamma and unit variance 1, and

Mγ
d
= max

k≥0
{
∑k

i=1Z(i)} (7.3)
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7.1. Proof of Lemma 1

Proof We show weak convergence of the random variable Ân, as defined in (7.1), to a standard

normal random variable. Since Λ̂n is asymptotically standard normal, its characteristic function

converges pointwise to the corresponding limiting characteristic function, i.e.

lim
n→∞

ϕΛ̂n
(t) = lim

n→∞
e−iµnt/σn ϕΛn(t/σn) = e−t

2/2, ∀t∈R. (7.4)

Furthermore, by definition of Ank ,

ϕAn
k
(t) =E

[
exp(Λn(eit− 1))

]
=ϕΛn

(
−i(eit− 1)

)
, (7.5)

so that

ϕÂn
k
(t) = e−iµnt/σn ϕAn

k
(t/σn) = e−iµnt/σnϕΛn

(
−i(eit/σn − 1)

)
. (7.6)

Now fix t∈R. By using

− i(eit/σn − 1) =
t

σn
− it2

2σ2
n

+O
(
t3/σ3

n

)
, (7.7)

we expand the last term in (7.6),

ϕΛn(t/σn) +
(
− i t

2

2σ2
n

+O
(
t3/σ3

n

))
ϕ′Λn(t/σn) +O

((
− i t

2

2σ2
n

+O
(
t3/σ3

n

))2

ϕ′′Λn(t/σn)
)

(7.8)

=ϕΛn(t/σn)−
( i t2

2σ2
n

+O
(
t3/σ3

n

))
ϕ′Λn(ζ) (7.9)

for some ζ such that |ζ − t/σn|< |i(1− eit/σn)− t/σn|. Also,

|ϕ′Λn(u)|=
∣∣∣∣ ddu

∫ ∞
−∞

eiuxdFΛn(x)

∣∣∣∣= ∣∣∣∣∫ ∞
0

ix eiux dFΛn(x)

∣∣∣∣
≤
∫ ∞
−∞
|ix eiux|dFΛn(x) =

∫ ∞
0

xdFΛn(x) = µn (7.10)

for all u∈R. Hence, by substituting (7.6),∣∣∣ϕÂn
k
(t)− e−iµnt/σnϕΛn(t/σn)

∣∣∣= ∣∣∣∣e−iµnt/σn ( i t22σ2
n

+O(t3/σ3
n)

)
ϕ′Λn(ζ)

∣∣∣∣
≤
(
t2

2σ2
n

+O(t3/σ3
n)

)
|ϕ′Λn(ζ)|

=
µnt

2

σ2
n

+O

(
µnt

3

σ3
n

)
, (7.11)

which tends to zero as n→∞ by our assumption that µn/σ
2
n→ 0. Finally,∣∣∣∣ϕÂnk (t)− e−

1
2
t2
∣∣∣∣≤ ∣∣∣ϕÂnk (t)− e−iµnt/σnϕΛn(t/σn)

∣∣∣+ ∣∣∣∣e−iµnt/σnϕΛn(t/σn)− e−
1
2
t2
∣∣∣∣ , (7.12)

in which both terms go to zero for n→∞, by (7.4) and (7.11). Hence ϕÂn(k)(t) converges to e−t
2/2

for all t∈R, so that we can conclude by Lévy’s continuity theorem that Ânk
d⇒N (0,1).

�
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7.2. Proof of Theorem 1

To secure convergence in distribution of Q̂n to Mγ , i.e. the maximum of a Gaussian random walk

with negative drift, the first assertion of Theorem 1. the following property of the sequence {Y n
k }n∈N

needs to hold.

Lemma 3. Let Yn(k) be defined as in (7.1) with µn, σ
2
n <∞ for all n ∈ N. Then the sequence

{(Y n
k )+}n∈N is uniform integrable, i.e.

lim
K→∞

sup
n

E[Yn(k)+|1{|Yn(k)+|≥K}] = 0. (7.13)

Proof Because the sequence {Yn(k)}k∈N is i.i.d. for all n, we omit the index k in this proof.

First, fix K > 0 and note that

E[|Y +
n |1{|Y +

n |≥K}
] =E[Y +

n 1{Y +
n ≥K}

] =E[Yn1{Yn≥K}]. (7.14)

This last expression can be bounded from above using the Cauchy-Schwarz inequality, so that

E[Yn1{Yn≥K}]≤E[Y 2
n ]1/2 P(Yn ≥K)1/2. (7.15)

By the definition of Yn, we know EYn =−γ and VarYn = VarAn/σ
2
n = 1. Using this information,

we find

E[Y 2
n ] = VarYn + (EYn)2 = 1 + γ2 (7.16)

and

P(Yn ≥K) = P(Yn + γ ≥K + γ)≤ P(|Yn + γ| ≥K + γ)

≤ VarYn
(K + γ)2

=
1

(K + γ)2
, (7.17)

where we used Chebyshev’s inequality for the last upper bound. Therefore,

lim
K→∞

sup
n

E[|Y +
n |1{|Y +

n |≥K}
] = lim

K→∞
sup
n

E[Yn1{Yn≥K}]

≤ lim
K→∞

sup
n

E[Y 2
n ]1/2 P(Yn ≥K)1/2

≤ lim
K→∞

√
1 + γ2

K + γ
= 0. (7.18)

�

By combining the properties proved in Lemma 1 and 3, the next result follows directly by (Asmussen

2003, Thm.X6.1).

Proposition 3. Let Q̂n as in (7.2), and µn, σ
2
n→∞ such that σ2

n/µn→∞. Then

Q̂n
d⇒Mγ , as n→∞. (7.19)
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Although Proposition 3 tells us that the properly scaled Qn converges to a non-degenerate

limiting random variable, it does not cover the convergence of its mean, variance and the empty-

queue probability. In order to secure convergence of these performance measures as well, we follow

the approach similar Sigman and Whitt (2011b).

Proposition 4. Let Q̂n as in (7.2), µn, σ
2
n→∞ such that σ2

n/µn→∞ and EÂ3
n <∞. Then

P(Q̂n = 0)→ P(Mγ = 0), (7.20)

EQ̂n→EMγ , (7.21)

Var Q̂n→Var Mγ , (7.22)

as n→∞.

F irst, we recall that Q̂n
d
=Mγ,n for all n ∈N, so that P(Q̂n = 0) = P(Mγ,n = 0), EQ̂n = EMγ,n

and Var Q̂n = Var Mγ,n as defined in (7.1). Our starting point is Spitzer’s identity, see (Asmussen

2003, p. 230),

E[eitMγ,n ] = exp
( ∞∑
k=1

1

k
(E[eit(Sn(k))+ ]− 1)

)
, (7.23)

with Sn(k) as in (7.1), and Mγ,n the all-time maximum of the associated random walk. Simple

manipulations of (7.23) give

lnP(Mγ,n = 0) =−
∞∑
k=1

1

k
P(Sn(k)> 0), (7.24)

EMγ,n =
∞∑
k=1

1

k
E[Sn(k)+] =

∞∑
k=1

1

k

∫ ∞
0

P(Sn(k)>x)dx, (7.25)

VarMγ,n =
∞∑
k=1

1

k
E[(Sn(k)+)2] =

∞∑
k=1

1

k

∫ ∞
0

P(Sn(k)>
√
x)dx. (7.26)

By Lemma 1, we know

P(Sn(k)> y) = P
(∑k

i=1Yn(i)> y
)
→ P

(∑k

i=1Z(i)> y
)
, (7.27)

for n→∞, where the Z(i)’s are independent and identically normally distributed with mean −γ

and variance 1. Because equivalent expressions to (7.24)-(7.26) apply to the limiting Gaussian

random walk, it is sufficient to show that the sums converge uniformly in n, so that we can apply

dominated convergence to prove the result.

We start with the empty-queue probability. To justify interchangeability of the infinite sum and

limit, note

P(Sn(k)> 0)≤ P(|Sn(k) + kγ|>kγ)≤ k

γ2k2
=

1

γ2k
, (7.28)
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where we used that ESn(k) = kEYn(1) =−kγ and VarSn(k) = k and apply Chebychev’s inequality,

so that
∞∑
k=1

1

k
P(Sn(k)> 0)≤

∞∑
k=1

1

γ2k2
<∞, ∀n∈N. (7.29)

Hence,

lim
n→∞

lnP(Q̂n = 0) = lim
n→∞

−
∞∑
k=1

1

k
P(Sn(k)> 0) =−

∞∑
k=1

1

k
lim
n→∞

P(Sn(k)> 0)

=−
∞∑
k=1

1

k
P(
∑k

i=1Z(i)> 0) = lnP(Mγ = 0), (7.30)

Finding a suitable upper bound on 1
k

∫∞
0

P(Q̂n >x)dx and 1
k

∫∞
0

P(Q̂n >
√
x)dx requires a bit more

work. We initially focus on the former, the latter follows easily. The following inequality from

Nagaev (1979) proves to be very useful:

P(S̄(k)> y)≤Cr
(k σ2

y2

)2

+ kP(X >y/r), (7.31)

where S̄(k) is the sum of k i.i.d. random variables distributed as X, with EX = 0 and Var X = σ2,

y > 0, r > 0 and Cr a constant only depending on r. We take r= 3 for brevity in the remainder of

the proof, although any r > 2 will suffice. We analyze the integral in two parts, one for the interval

(0, k) and one for [k,∞). For the first part, we have∫ k

0

P(Sn(k)>x)dx=

∫ k

0

P(
∑∞

i=1Ân(i)>x+ kγ)dx ≤
∫ k

0

P(
∑∞

i=1Ân(i)>kγ)dx

= kP(
∑k

i=1Ân(i)>kγ) ≤ C3

k2γ6
+ k2P(Ân(1)> 1

3
k), (7.32)

where we used (7.31) in the last inequality. Hence,

∞∑
k=1

1

k

∫ k

0

P(Sn(k)>x)dx ≤ C3

γ6

∞∑
k=1

k−3 +
∞∑
k=1

kP(Ân(1)> 1
3
k)≤C∗1 +

∞∑
k=1

kP(Ân(1)> 1
3
k). (7.33)

With the help of the inequality (see Sigman and Whitt (2011b)),

(b− a)aP(X > b)≤
∫ b

a

xP(X >x)dx ∀0<a< b, (7.34)

we get by taking a= (k− 1)/3 and b= k/3,

kP(Ân(1)> 1
3
k)≤ 9k

k− 1

∫ k/3

(k−1)/3

xP(Ân(1)>x)dx≤ 18

∫ k/3

(k−1)/3

xP(Ân(1)>x)dx, (7.35)

for k≥ 2. Since the tail probability for k= 1 is obviously bounded by 1, this yields

∞∑
k=1

kP(Ân(1)> 1
3
k)≤ 1 + 18

∞∑
k=2

∫ k/3

(k−1)/3

xP(Ân(1)>x)dx

≤ 1 +

∫ ∞
0

xP(Ân(1)>x)dx≤ 1 +E[Ân(1)2]<∞, (7.36)
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since Ân(1) has finite variance by assumption. This completes the integral over the first interval.

For the second part, we use (7.31) again to find∫ ∞
k

P(Sn(k)>x)dx=

∫ ∞
k

P(
∑∞

i=1Ân(i)>x+ kγ)dx≤
∫ ∞
k

P(
∑∞

i=1Ân(i)>x)dx

≤C3

∫ ∞
k

k2

x6
dx+ k

∫ ∞
k

P(Ân(1)> 1
3
x)dx=

5C3

k3
+ k

∫ ∞
k

P(Ân(i)> 1
3
x)dx.

(7.37)

So,
∞∑
k=1

1

k

∫ ∞
k

P(Sn(k)>x)dx≤C∗2 +
∞∑
k=1

∫ ∞
k

P(Ân(i)> 1
3
x)dx, (7.38)

for some constant C∗2 . Last, we are able to upper bound the second term in (7.38) by Tonelli’s

theorem:

∞∑
k=1

∫ ∞
k

P(Ân(i)> 1
3
x)dx≤

∫ ∞
1

xP(Ân(1)> 1
3
x)dx

≤ 9

∫ ∞
0

yP(Ân(1)> y)dy= 9E[Ân(1)2]<∞. (7.39)

Combining the results in (7.33), (7.36), (7.38) and (7.39), we find

∞∑
k=1

1

k

∫ ∞
0

P(Sn(k)>x)dx<∞, (7.40)

and thus

lim
n→∞

EQ̂n = lim
n→∞

∞∑
k=1

1

k

∫ ∞
0

P(Sn(k)>x)dx=
∞∑
k=1

1

k

∫ ∞
0

P(
∑k

i=1Z(i)>x)dx=EMγ . (7.41)

Finally, we show how the proof changes for the convergence of Var Q̂n. The expressions for EQ̂n

and Var Q̂n in (7.24) and (7.25) only differ in the term
√
x. Hence only minor modifications are

needed to also prove convergence of the variance. Note that boundedness of the integral over the

interval (0, k) in (7.32)-(7.36) remains to hold when substituting
√
x for x. (7.37) changes into∫ ∞

k

P(Sn(k)>
√
x)dx=

∫ ∞
k

P(
∑∞

i=1Ân(i)>
√
x+ kγ)dx

≤C3

∫ ∞
k

k2

(
√
x+ kγ)6

dx+ k

∫ ∞
k

P(Ân(1)> 1
3

√
x)dx

≤ C∗4
k

+ k

∫ ∞
k

P(Ân(1)> 1
3

√
x)dx, (7.42)

for some constant C∗4 , so that

∞∑
k=1

1

k

∫ ∞
k

P(Sn(k)>
√
x)dx≤C∗4 +

∞∑
k=1

∫ ∞
k

P(Ân(1)> 1
3

√
x)dx. (7.43)
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Lastly, we have

∞∑
k=1

∫ ∞
k

P(Ân(1)> 1
3

√
x)dx≤

∫ ∞
1

xP(Ân(1)> 1
3

√
x)dx

≤ 18

∫ ∞
0

y2P(Ân(1)> y)dy= 18E[Ân(1)3]<∞. (7.44)

Therefore the sum describing the variance is also uniformly convergent in n, so that interchanging

of infinite sum and limit is permitted and

lim
n→∞

Var Q̂n = lim
n→∞

∞∑
k=1

1

k

∫ ∞
0

P(Sn(k)>
√
x)dx=

∞∑
k=1

1

k

∫ ∞
0

P(
∑k

i=1Z(i)>
√
x)dx= Var Mγ .

(7.45)
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Appendix A: Numerical procedures

An alternative characterization of the stationary distribution is based on the analysis in Boudreau

et al. (1962) and considers a factorization in terms of (complex) roots:

Qn(w) =
(sn−EAn)(w− 1)

wsn −An(w)

sn−1∏
k=1

w− znk
1− znk

, (A.1)

where zn1 , z
n
2 ..., z

n
sn−1 are the sn− 1 zeros of zsn −An(z), in |z|< 1, yielding

EQn =
σ2
n

2(sn−µn)
− sn− 1 +µn

2
+

sn−1∑
k−1

1

1− znk
, (A.2)

P(Qn = 0) =
sn−µA
An(0)

s−1∏
k=1

znk
znk − 1

, (A.3)

which for our choice of An(z) becomes

EQn =
anbn(bn + 1)

2γ
√
anbn

−
2anbn + γ

√
anbn(bn + 1)− 1

2
+

sn−1∑
k=1

1

1− znk
, (A.4)

P(Qn = 0) = γ
√
anbn(bn + 1)(1 + bn)an

sn−1∏
k=1

znk
znk − 1

. (A.5)

where z1, ..., zsn−1 denote the zeros of zsn − GA
n (z) in |z| < 1. A robust numerical procedure to

obtain these zeros is essential for a base of comparison. We discuss two methods that fit these

requirements. The first follows directly from Janssen and van Leeuwaarden (2005).

Lemma 4. Define the iteration scheme

zn,l+1
k =wnk [An(zn,lk )]1/sn , (A.6)

with wnk = e2πik/sn and zn,0k = 0 for k = 0,1, ..., sn−1. Then zn,lk → znk for all k = 0,1, ..., sn − 1 for

l→∞.

Proof The successive substitution scheme given in (A.6) is the fixed point iteration scheme

described in Janssen and van Leeuwaarden (2005), applied to the pgf of our arrival process. The

authors show that, under the assumption of An(z) being zero-free within |z| ≤ 1, the zeros can be

approximated arbitrarily closely, given that the function [An(z)]1/sn is a contraction for |z| ≤ 1, i.e.∣∣∣ d
dz

[An(z)]1/sn
∣∣∣< 1. (A.7)

In our case, ∣∣∣ d
dz

[An(z)]1/sn
∣∣∣= ∣∣∣ d

dz
(1 + (1− z)bn)

−an/sn
∣∣∣= anbn

sn

∣∣∣1 + (1− z)bn
∣∣∣−an/sn−1

, (A.8)
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where anbn/sn = ρn is close to, but less than 1 and

|1 + (1− z)bn| ≥ |1 + bn| − |z|bn = 1 + (1− |z|)bn ≥ 1, (A.9)

when |z| ≤ 1. Hence the expression in (A.8) is less than 1 for all |z| ≤ 1. Evidently, An(z) is also

zero-free in |z| ≤ 1. Thus (Janssen and van Leeuwaarden 2005, Lemma 3.8) shows that zn,lk as in

(A.6) converges to the desired roots znk for all k as l tends to infinity.

�

Remark 2. The asymptotic convergence rate of the iteration in (A.6) equals d
dz

]An(z)]1/sn evalu-

ated at z = znk . Hence, convergence is slow for zeros near 1 and fast for zeros away from 1.

A different approach is based on the Bürmann-Lagrange inversion formula.

Lemma 5. Let wnk = e2πik/sn and αn = an/sn. Then the zeros of zsn −An(z) are given by

znk =
∞∑
l=1

1

l!

Γ[lαn + l− 1)

Γ(lαn)

bn + 1

bn

( bn
(bn + 1)αn+1

)l
(wnk )l, (A.10)

for k= 0,1, ..., sn− 1.

Proof Note that we are looking for z’s that solve

z [An(z)]−1/sn = z (1 + (1− z)bn)
an/sn =w, (A.11)

where w = wk = e2πik/sn . The Bürmann-Lagrange formula for z = z(w), as can be found in

(de Bruijn 1981, Sec. 2.2) for z = z(w) is given by

z(w) =
∞∑
l=1

1

l!

(
d

dz

)l−1
[(

z

z(1 + (1− z)bn)an/sn

)l]
z=0

wl

=
∞∑
l=1

1

l!

(
d

dz

)l−1 [(
1 + (1− z)bn)−l an/sn

)]
z=0

wl. (A.12)

Set αn = an/sn. We compute(
d

dz

)l−1 [
(1 + (1− z)bn)−lαn

]
z=0

=
Γ(lαn + l− 1)

Γ(lαn)

1 + bn
bn

(
bn

(1 + bn)αn+1

)l
. (A.13)

With cn = bn/(1 + bn)αn+1 and dn = (1 + bn)/bn, we thus have

z(w) = dn

∞∑
l=1

Γ(lαn + l− 1)

Γ(l+ 1)Γ(lαn)
clnw

l. (A.14)

By Stirling’s formula
Γ(lαn + l− 1)

Γ(l+ 1)Γ(lαn)
=

D

l
√
l

(
(αn + 1)αn+1

ααnn

)l
, (A.15)
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where D= α1/2
n (αn + 1)−3/2(2π)−1/2. Now,

(αn + 1)αn+1

ααnn
cn =

(αn + 1)αn+1

ααnn
· bn
(1 + bn)αn+1

=

(
bn + ρn
bn + 1

)ρn/bn+1(
1

ρn

)ρn/bn
. (A.16)

This determines the radius of convergence rBL of the above series for z(w):

1

rBL

:=

(
bn + ρn
bn + 1

)ρn/bn+1(
1

ρn

)ρn/bn
. (A.17)

The derivative with respect to ρn of the quantity(
1 +

ρn
bn

)
ln

(
bn + ρn
bn + 1

)
+
ρn
bn

ln

(
1

ρn

)
(A.18)

is given by
1

bn
ln
( bn + ρn
bnρn + ρn

)
> 0 (A.19)

for 0< ρn < 1 and bn > 0. Furthermore, the quantity in (A.18) vanishes at ρn = 1 and is therefore

negative for 0<ρn < 1 and bn > 0.

Remark 3. The formula for the radius of convergence in (A.17) clearly shows the decremental

effect of both having a large bn and or having ρn close to 1. The quantities Γ(lα+ l− 1)/(Γ(l+

1)Γ(lα)) in the power series for z(w) are not very convenient for recursive computation, although

normally α= an/sn is a rational number.

�

Appendix B: Statistical procedures

To calibrate our model to real data, we now discuss some statistical procedures to show the presence

of overdispersion and to estimate the parameters of the mixed Gamma-Poisson distribution. Let

x1, ..., xn denote the observed number of arrivals in consecutive time slots. These observations can

be interpreted as realizations of the random variables A1, ...,AN , and

āN =
1

N

N∑
i=1

xi, s̄2
N =

1

N − 1

∑
i=1

(xi− x̄i)2, (B.1)

the sample mean and variance with equivalent random variables Ân and S2
N , respectively. Several

tests with null hypothesis that x1, ..., xN originate from a (constant rate) Poisson distribution were

discussed by Brown and Zhao (2002). We mention two of them. The first is frequently referred to

as the dispersion test, and is based on the test statistic

DN =
(N − 1)S2

N

ĀN
, (B.2)

which is approximately chi-squared distributed with N − 1 degrees of freedom. When using a

significance level α, the critical value is equal to the (1−α)-th quantile of chi-squared distribution
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χ2
N−1,1−α. The second test, which is also used in Jongbloed and Koole (2001), involves the test

statistic

TN =
√
N/2

(S2
N

ĀN
− 1
)
, (B.3)

which is known as the Neyman-Scott test statistic. Under the null hypothesis TN tends to a standard

normal random variable for large N . Hence both test statistics rely on the ratio of the sample

variance and sample mean, which should be 1 if A1, ...,AN are indeed i.i.d. Poisson distributed.

Excessive values of DN and TN therefore raise the suspicion of overdispersed arrivals.

Once either (or both) of the Poisson tests rejects the hypothesis of arrivals originating from a

unicomponent Poisson process, we fit the data to the Gamma-Poisson mixture. Note that if we

assume Ai to be distributed as a Poisson random variable with random rate Λi, which is in turn

Gamma distributed with parameters a and 1/b, then Ai is in fact a negative binomial random

variable with parameters r= a and p= b/(b+1). Finding estimators â and b̂ therefore is equivalent

to fitting a negative binomial distribution to the data to obtain r̂ and p̂, followed by retrieving â= r̂

and b̂= p̂/(1− p̂). We proceed by applying the maximum likelihood estimation method described

in Jongbloed and Koole (2001) to find r̂ and p̂. This method prescribes to set r̂ to be the value of

r for which the profile loglikelihood function defined by

L(r) =
1

N

N∑
i=1

ai∑
j=1

ln(r+ j+ 1) + r ln r− (r+ āN) ln(r+ āN), (B.4)

is attained. Subsequently, p̂= r̂/(r̂+ āN), so that â= r̂ and b̂= r̂/āN .

Finally, given the estimators â and b̂, we need statistical evidence that the obtained Poisson

mixture indeed fits the data reasonably well. Here we again cite on Jongbloed and Koole (2001), who

give a method to retrieve the p-value for the goodness-of-fit based on bootstrap and Monte-Carlo

simulation. In our procedures we work with 1.000.000 replications of the Monte-Carlo simulation

to obtain the approximated p-value. We refer to the appendix of Jongbloed and Koole (2001) for

further details on this method.
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