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Abstract

We consider the modeling of abandonment from a queueing system by impatient cus-

tomers. Within the proposed model, customers act rationally to maximize a utility function

that weights service utility against expected waiting cost. Customers are heterogeneous, in

the sense that their utility function parameters may vary across the customer population. The

queue is assumed invisible to waiting customers, who do not obtain any information regarding

their standing in the queue during their waiting period. Such circumstances apply, for exam-

ple, in telephone centers or other remote service facilities, to which we refer as tele-queues.

We analyze this decision model within a multi-server queue with impatient customers, and

seek to characterize the Nash equilibria of this system. These equilibria may be viewed as

stable operating points of the system, and determine the customer abandonment profile along

with other system-wide performance measures. We provide conditions for the existence and

uniqueness of the equilibrium, and suggest procedures for its computation. We also suggest

a notion of an equilibrium based on sub-optimal decisions, the myopic equilibrium, which

enjoys favorable analytical properties. Some concrete examples are provided to illustrate the

modeling approach and analysis. The present paper supplements previous ones which were

restricted to linear waiting costs or heterogeneous customer population.
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1 Introduction

A rich interplay exists between the performance of a service system and its customer charac-

teristics. Performance is obviously affected by customer characteristics such as arrival rate and

service requirements; but this dependence goes both ways, as customer characteristics may be

affected by the perceived performance measures, such as the anticipated delay. One obvious re-

lation is the effect that “quality of service” may have on the arrival rate, through the fraction

of returning customers and reputation effects. Indeed, a number of studies on queueing systems

(e.g. [10, 3, 11, 12]) have incorporated a “demand curve” approach, whereby arrival rate depends

on congestion (and possibly also on external pricing). The system operating point must then be

determined through an equilibrium analysis, which takes into account the variability of customer

characteristics.

Similar observations hold with respect to the abandonment characteristics of impatient cus-

tomers. We shall focus on the modeling of the customer abandonment profile, or patience, and its

dependence of system performance. The relevant aspects of the system performance are captured

here by the queueing delay, namely the distribution of the waiting time before admitted to service.

The queue is assumed invisible, in the sense that waiting customers do not have any information

regarding the queue condition, so that their estimates of the remaining waiting time rely solely

on prior beliefs and the elapsed waiting time. To model the presumed dependence of patience on

delay, we consider a rational decision model in which each customer seeks to maximize an appro-

priate utility function. Specifically, the abandonment time is chosen to maximize an individual

utility function which weights the utility of the required service with the expected waiting cost.

The system equilibrium now determines the abandonment profile. Our main interest here here is

in this equilibrium point and its properties – existence, uniqueness, and computation.

The rational viewpoint for abandonment modeling has been considered in several previous

studies. The papers [4] and [6] consider the model with homogeneous preferences, so that the

utility functions are identical for all customers. In [4], the authors consider an M/M/1 queue with

linear waiting costs and strict due times for service commencement, and show that the induced

equilibrium is a probabilistic split between an immediate abandonment and none at all. In [6], the

authors consider the multi-server (M/M/m) queue with nonlinear waiting costs, and show that
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the equilibrium is given by a randomized abandonment time, with identical distribution for all

customers. The generalization to heterogeneous preferences is taken up in [9], also in the context

of the M/M/m queue but with linear waiting costs.

For the basic queue model and utility function, it is first shown in [9] that an optimal decision

for each customer, who encounters all servers busy upon arrival, will always be to either abandon

immediately or else wait until being served. In other words, the option of abandonment during

wait is never optimal. This follows after observing that the hazard-rate function for the waiting

time in such a queue is non-decreasing; hence, with linear waiting cost, as time progresses it only

becomes less worthwhile to abandon. As this theoretical result does not conform with reality,

the model was modified by adding a fault state, real or subjective, so that with some probability

an arriving customer might never get served. This gives rise to a hazard rate function which

is eventually decreasing and thus facilitates a non-trivial abandonment profile, which turns out

unique under equilibrium conditions.

We revisit here the heterogeneous preferences model for the M/M/m queue [9], this time

allowing nonlinear waiting costs. Non-trivial abandonment times now arise when the waiting

costs are super-linear, without resort to the fault state. Obviously, nonlinear costs allow greater

flexibility in modeling different components of the waiting cost function, both from the economic

and psychological viewpoints. On the down side, nonlinear costs require more challenging analysis,

and might possibly result in non-uniqueness of the equilibrium point.

We mention that a simplified model for adaptive customer patience was considered in [13]. This

is a descriptive model which directly describes the aggregate population behavior as a function

of a single parameter, the expected waiting cost. That paper also contains a brief discussion of

waiting costs and their characteristics in the context of the abandonment problem.

The analysis of the proposed model can be divided into two parts. In the first, we consider

the nonlinear-cost model with minor restrictions on the cost structure. In this generality, little

can be said about the equilibrium point; in particular, it need not be unique, and a computation

procedure is not available. These difficulties arise as the individual utility functions (as induced

by the waiting time distribution, which itself needs to be determined) need not be unimodal, and

the possibility of local maxima renders the equilibrium analysis intractable. In order to arrive
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at a tractable equilibrium concept, we allow for suboptimal decisions of the customers, in the

form of the myopic decision rule: abandon at the first local maximum of the utility function,

namely as soon as the utility starts decreasing. The precise definition and a discussion of this

sub-optimal decision rule are presented in Section 2.3. The equilibrium that is induced by the

myopic decision rule is accordingly termed myopic equilibrium. We shall establish the uniqueness

of the myopic equilibrium under very week assumptions, and provide computational procedures

for its calculation.

The second part of our analysis concerns conditions which guarantee uniqueness for the global

(as opposed to myopic) equilibrium. Essentially, the required conditions are a complete ordering

of the waiting cost functions of the different customer types, and a concavity-like requirement

(Assumption B2 in Section 6) on the marginal waiting costs. Under these conditions it is shown

that the global equilibrium exists, is unique, and in fact coincides with the myopic equilibrium.

The paper is organized as follows. In Section 2 we present our basic model, including the

queueing system, customer abandonment model, and system equilibria. Section 3 presents some

preliminary analysis, which includes the characterization of extreme points of individual utility

functions in terms of the hazard rate function associated with the waiting time distribution, and

certain properties of this hazard rate which are central in our analysis. Some ideas and difficulties

related to equilibrium computation are outlined on this basis. The myopic equilibrium and its

properties are explored in Section 4. The complementary notion of the farsighted equilibrium,

which is mainly of interest for computational purposes, is briefly considered in the subsequent

section. Section 6 presents the results concerning the global equilibrium, focusing on sufficient

conditions for existence and uniqueness. In Section 7 we illustrate, through some examples, the

computational and modeling scope of our framework. We conclude, in Section 8, with some

suggestions for future research directions.

2 The Model

We proceed to describe the queueing system, and characterize the abandonment time of a waiting

customer in terms of an appropriate utility function. The notions of global equilibrium and myopic

equilibrium are then introduced.
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2.1 The Queueing System

Consider an M/M/m queue, with m servers and Poisson arrivals at with λ. Service times are

i.i.d. and exponentially distributed with mean 1/µ. The service discipline is first come first served

(FCFS), and the queue size is unlimited.

While waiting in queue, customers may decide to abandon the queue and give up the demanded

service. The decision whether to abandon the queue or not and the precise instant of abandonment

are determined individually by each customer, based on a decision model which is described next.

2.2 Individual Utility and Rational Decisions

After joining the queue, a customer may abandon at any time T ≥ 0 before being admitted

to service (T = 0 is the arrival instant). It is assumed that no information is conveyed to the

customer during the waiting period regarding the status of the queue and his or her position in

it. Thus, an abandonment policy for each customer is simply the time T he or she is willing to

wait for service before abandoning the queue.

Observe that a decision to abandon at T = 0 differs from not approaching the system at all,

as in the former case the customer will not abandon if admitted to a free server upon arrival.

We now define an individual utility function for each customer. Customers will be categorized

into different types according to their utility function parameters. Let z ∈ Z denote the type,

with Z the set of possible types. Further, a probability distribution PZ is prescribed over the

set of customer types, so that the type z of an arriving customer is randomly and independently

determined according to PZ .

A customer of type z is characterized by a triplet (Rz, Cz, Fz), with the following elements:

(i) Rz(t), the service utility function: Rz(t) is the utility (or reward) which the customer expects

to obtain by entering service, having waited t time units beyond arrival to the queue. We

assume that Rz(t) is strictly positive and continuous in t.

(ii) Cz(t), the waiting cost function: Cz(t) is the disutility of a customer who waits in queue

for t time units. Let C ′
z(t) := dCz(t)

dt denote the marginal waiting cost function. We assume

that Cz(t) is positive and increasing in t, and that C ′
z(t) is continuous in t.
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(iii) Fz(·), a probability distribution on [0,∞), which reflects the customer’s belief about the

offered waiting time V , namely the time he or she would have to wait in queue (without

abandoning) before being admitted to service.

Observe that Fz is in general a subjective quantity, conceived by each customer based on prior

experience, beliefs, and relevant information. In this paper we shall impose the following assump-

tion, that underlies the definition of system equilibrium.

Consistency Assumption: For each customer type z ∈ Z, the subjective distribution Fz coin-

cides with the actual distribution of the offered waiting time, which we denote by F .

This means that Fz ≡ F , and we omit the subscript z from Fz henceforth. Implicit in the

above assumption is that the virtual waiting time distribution for an arriving customer is well

defined and stationary. Indeed, this will be a consequence of Assumption A1 below, which implies

that all customers have finite patience, hence that the system is stable. Let F̄ = 1 − F denote

the survival function of F . Define the cost-to-reward ratio, or simply the cost-ratio, as

γz(t)
4
=

C ′
z(t)

Rz(t)
, t ≥ 0.

The function γz will play a key role in our analysis. It is reasonable to expect that γz(t) is

non-decreasing in t, but this will not be imposed.

Consider a customer who decides to abandon the queue after T ≥ 0 time units, if not admitted

to service by then. The actual waiting time will be W = min{V, T}, since abandonment occurs if

T < V , and otherwise the customer enters service. The expected utility for such a customer will

be

Uz(T ) = E(Rz(T )1{T ≥ V } − Cz(min{V, T}))

=
∫ T

0−
Rz(t)dF (t)−

∫ ∞

0−
Cz(min{t, T})dF (t) , (2.1)

where E stands for the expectation with respect to the distribution F of the offered waiting time

V . Note that F may include a point mass at the origin, thus representing the probability of

finding a free server immediately upon arrival. Therefore, Uz(0) = Rz(0)F (0).

Denote by Tz the abandonment time of a type-z customer (we assume that all customers of

the same type chose the same T ). The rational choice of Tz is the value T which maximizes the
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Figure 1: Global and local optima of the utility function

utility function Uz(T ), over T ≥ 0. If the maximizer is not unique, a specific one may be assigned

arbitrarily.

A note about randomized choices is in order here. In case the maximizer Tz in not unique,

then any probability distribution over the maximizing set of Uz(T ) may in fact be chosen; this

corresponds to the game-theoretic concept of randomized (or mixed) strategies, which are often

required to ensure existence of the Nash equilibrium. In this paper we shall not require randomized

choices, as we assume a continuum of user types (Assumption A2 below). Existence of equilibrium

in pure (non-randomized) choices is thereby facilitated. This may be contrasted with the model

of [6], where equilibrium with a single customer type is inherently randomized.

2.3 Myopic Decisions

So far, we have defined the optimal (or rational) choice for each customer as the abandonment

time which globally maximizes this customer’s utility function. In the following we shall consider

also locally optimal choices, namely the possibility of abandonment at local maxima of the utility

function. Of particular interest will be the notion of myopic choices.

The myopic decision rule chooses the abandonment time as the first local maximum of the

utility function. By convention, we refer to a weak local maximum in this definition. Thus, the

myopic decision is the smallest time T at which the utility function Uz(T ) is not strictly increasing

(see Figure 1). The concept of myopic decision, and the induced myopic equilibrium, will prove

most useful in the analysis to follow.
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As a solution concept of independent interest, the myopic decision rule may be advocated on

the following grounds:

1. It is plausible that abandonment decisions are taken online (cf. [9]), based on the customer’s

assessment of the current situation and the utility of further wait. The online choice at each

point of time is then whether to wait ”a little longer” or abandon immediately. Such

considerations would indeed lead to abandonment as soon as the utility starts declining.

2. Customers may lack precise information regarding the waiting time distribution (or its

hazard rate) for long waits, especially if they are inclined to abandon earlier times. They may

therefore base their assessment of the utility of longer waits on their short wait experience,

and will tend to extrapolate a local utility decrease.

2.4 System Equilibria

Suppose we are given an abandonment profile T = {Tz : z ∈ Z}, which assigns an abandonment

time Tz to each customer type z. Together with the type distribution PZ , this determines the

patience function, namely a probability distribution G on the abandonment time T of an arriving

customer. Specifically,

G(t)
4
= Prob{T ≤ t} = PZ{z : Tz ≤ t} , t ≥ 0 . (2.2)

Equivalently, the survival function associated with G is Ḡ(t)
4
= Prob{T > t} = PZ{z : Tz > t} .

Assuming rational choices, we can now define a mapping from the set of abandonment profiles

into itself. We have just seen how T determines the patience function G. Given G, the system

is an M/M/m+G queue, in which one can calculate the distribution function F of its offered

waiting time in steady state ([2, 5]). Invoking the consistency assumption described above now

yields the utility function (2.1) of each customer type. The mapped-into profile is finally given as

the collection of optimal points of the respective utilities.

A system equilibrium is a fixed point of this map. Under rational decisions this coincides with

the Nash equilibrium as each customer is maximizing his or her utility given the choices of all

others. For concreteness we refer to this equilibrium as a global equilibrium point. Note that one

can use a similar procedure to that of the previous paragraph to define a mapping from the set
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of offered waiting time distributions onto itself, and the equilibrium point it then equivalently

defined as a fixed point of this map. This latter definition will be useful in the ensuing analysis.

A myopic equilibrium is defined similarly, except that the abandonment time of each customer

is determined according to the myopic decision rule.

2.5 Additional Assumptions

In order to ensure that each customer eventually abandons, we shall make use (in Section 3.2) of

the following assumption.

Assumption A1 (All-leave). For each z ∈ Z, the cost ratio γz satisfies lim inft→∞ γz(t) > mµ.

Assumption A1 will be imposed throughout this paper, without further mention. We note that

much of the analysis below can be carried out under the weaker condition of queue stability, namely

λḠ(∞) < mµ ([2]). From Assumption A1 we will deduce that Ḡ(∞) = 0, so that stability is

trivially implied. However, the implication that all customers eventually abandon is quite natural

for reasonable customers, and furthermore it simplifies some of our arguments and computational

procedures.

To establish existence of a (myopic) equilibrium with a continuum of types, we shall require

certain continuity properties of optimal decisions. In particular, we need to prevent a small change

in the waiting time distribution from resulting in a sharp change in the customer abandonment

profile (or patience distribution). For that purpose, we shall require that the cost-ratio curves

γz(·) will not be too concentrated around one point or curve. This is made precise as follows.

Assumption A2 (Continuity). There exists a constant K > 0 such that the following holds. For

any continuous function h(t), t ≥ 0, and any ε ≥ 0,

PZ

{

z : sup
t≥0

[γz(t)− h(t)] ∈ [−ε, ε]

}

≤ Kε . (2.3)

The functions h can be further restricted to be non-decreasing, with range in (0,mµ], and

with derivative bounded by ḣ ≤ (mµ)2. Indeed, Assumption A2 is used in Lemma 4.3, where h

stand for the hazard rate function H(t) and may inherit its properties.

The following observations apply to Assumption A2.
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1. The probability in (2.3) is taken over those types z for which γz is upper-bounded by h + ε,

while γz(t) is ε-close to h(t) at some point t. That is, γz enters a sleeve of size ε around h,

but does not exceed it.

2. Assumption A2 implies, in particular, that the probability of any single type z is null. This

follows by taking h(t) = γz(t). Obviously, then, the set of types Z cannot be discrete.

3. Moreover, with ε = 0, we obtain that

PZ

{

z : sup
t≥0

[γz(t)− h(t)] = 0

}

= 0 .

The last set consists of those functions that touch h from below. Refer to a set of functions

that satisfies this condition (with some h) as an exposed set. Any exposed set must have

zero probability: that is the essence of Assumption A2.

An intrinsic characterization of an exposed set can be simply given by taking h as the upper

envelope (the supremum at each t) of the functions in that set. Put another way, any

function in an exposed set must be larger than all others at some point t.

To illustrate, the set {γz(t) = 1− (t− z)2 : z ∈ X} is exposed (for any X ⊂ IR), since each

γz is undominated from above at t = z. An appropriate “test function” here is h(t) = 1. On

the other hand, a set which consists of mutually dominated functions cannot be exposed,

unless it is a singleton. Thus, if {γz} consists of mutually dominated functions, as assumed

in Section 6, then the requirement is simply that any single function (or type) will have

zero probability. This also holds when {γz} consists of a finite union of sets of mutually

dominant function; see Example 3 in Section 7.

In the special case where the functions γz(t) are all linear in t, a subset {γz} is exposed if

and only if all lines γz(t) in it are tangent to a single convex function h(t). Indeed, the upper

envelope (or supremum) of a set of linear functions is convex, and any line that touches it

from below is tangential to it.

4. As noted, the set of types Z cannot be finite. However, any finite set of types can be slightly

perturbed to comply with our continuity assumption. Indeed, consider a finite set of cost-

ratio functions {γz, z ∈ Z}, so that the required continuity property does not hold. Define

γδ
z(t) = γz(t) + δ, with δ a small continuous random variable (e.g. uniformly distributed in
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[−δ0, δ0], with δ0 small). We can now take the pair z′ = (z, δ) as the new type designator,

distributed according to the product measure of z and δ; the resulting model is easily seen to

satisfy Assumption A2. As δ0 becomes smaller, the perturbed model essentially converges

to the finite-type model. From a descriptive viewpoint, it seems reasonable that different

customers, and even the same customer on subsequent visits to the queue, will have slightly

different cost parameters.

3 Preliminary Analysis

We collect in this section a few properties that will be used in the subsequent analysis. First we

show (following [9]) that the extremal points of the utility function occur at those points in time

when the hazard-rate of the offered waiting-time equals the cost ratio. We follow with some basic

queueing relations for the M/M/m+G queue that lead to a key differential relation for the hazard

rate function. We then provide a brief preview of equilibrium computation.

3.1 Extremal Points of the Utility Function

Recall the F is the distribution of the offered waiting-time, as perceived by all customers. Suppose

that F (t) is continuously differentiable for t > 0 (that is, it has a continuous density F ′, except

possibly for a point mass at t = 0), that F ′ has a right-limit at 0, and that F (t) < 1 for all

t < ∞. (These properties indeed follow from the expression (3.2) for F ′ that holds in our queue.)

Differentiating the utility function (2.1) with respect to T > 0 gives

U ′
z(T ) = Rz(T )F ′(T )− C ′

z(T )F̄ (T )

= Rz(T )F̄ (T )[H(T )− γz(T )] , (3.1)

where γz = C ′
z/Rz is the cost-ratio defined previously, and H is the hazard rate function associated

with the offered waiting time distribution F , namely

H(t) := F ′(t)/F̄ (t) , t > 0.
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We define H(0) = H(0+). The first order condition for a local extremum of Uz(T ) at T > 0 is

U ′
z(T ) = 0, which is is equivalent to

H(T ) = γz(T ) .

For a (strict) local maximum, (H − γz) should change sign from positive to negative at T . In

general there may be several local extrema of the utility function. Hence, a local characterization

is not sufficient to establish the global maximum. This accounts for much of the difficulty in the

analysis of the (Nash, or global) equilibrium and its properties in this model. As we shall see, the

notion of the myopic equilibrium works around these difficulties.

3.2 Basic queueing relations

Consider the M/M/m queue with a given patience distribution Ḡ(t). Under the stability condition

λḠ(∞) < µ, the probability density function of the offered waiting time at t > 0 is given by ([2],[5])

F ′(t) = λπm−1 exp(−
∫ t

0
I(s)ds) , t > 0 (3.2)

where πm−1 is a normalization constant, and

I(t) = mµ− λḠ(t) . (3.3)

By differentiating H = F ′/F̄ , we obtain

d
dt

H(t) = H(t)[H(t)− I(t)] , t > 0 . (3.4)

The following properties of the hazard rate function H(t) will be useful.

Lemma 3.1

(i) H(t) is non-decreasing in t. Furthermore, it is strictly increasing up to the point t0 ∈ [0,∞]

where G(t0) = G(∞), and constant thereafter: H(t0) = H(∞).

(ii) H(∞) = I(∞). If all customers have finite patience, namely Ḡ(∞) = 0, then

H(∞) = I(∞) = mµ .
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Proof: Part (i) is from [9], Proposition 3.2. As for (ii), note that by its definition in (3.3), I(t)

is non-decreasing and upper bounded by mµ, hence converges to some limit I(∞). It is easily

verified (either analytically from (3.2), or simply by noting that H(t) cannot be larger than the

service completion rate mµ) that H(t) is upper bounded by mµ, hence converges to a finite limit

H(∞). Invoking (3.4) again it follows that H(∞) = I(∞). It is further seen from (3.3) that

I(∞) = mµ when Ḡ(∞) = 0. 2

Note that H(∞) = mµ provides a terminal condition for the differential relation (3.4). The

finite patience condition which is required for this equality is enforced in our model through

Assumption A1 above. Indeed, since H(t) ≤ mµ it follows from (3.4) and A2 that the utility

function Uz(t) is strictly decreasing for t large enough, hence the optimal decision is always to

abandon at some finite time: Tz < ∞, for every type z.

3.3 Preview of equilibrium computation

Our plan is to use the differential relation in (3.4) as a starting point to establish key properties

of the equilibrium such as existence and uniqueness, and as a means to compute the equilibrium

point. Referring to the equilibrium problem introduced in the previous section, the patience

function G is not a-priori given but rather determined by the customer decision profile. Hence

I(·) is unknown, and must be determined together with H(·). In fact, at each point t, I(t) may

in general depend on the entire function H(·), so that (3.4) is a functional differential equation

which may be quite intractable.

In order to be able to directly integrate (3.4) to compute both H(·) and I(·), one of the

following properties would be required:

(F) I(t) is a function of {H(s), s ≤ t}. In that case we could integrate (3.4) forward in t.

(B) I(t) is a function of {H(s), s ≥ t}. In that case we could integrate (3.4) backward in t.

Unfortunately, for the optimal decision rule neither one of these needs to hold. We will however

show that under the myopic decision rule, property (F) does hold. This will provide the key to the

analysis of the myopic equilibrium in Section 4. Later we shall also consider the complementary

concept of farsighted equilibrium, for which property (B) is applicable. A somewhat more intricate
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argument will be required for the analysis of the global equilibrium.

4 Myopic Equilibrium Analysis

We consider here the system equilibrium under the assumption that all customers follow the

myopic decision rule. Our main result concerning the related equilibrium point is the following.

We remind that Assumption A1 (stability) is assumed throughout.

Theorem 4.1 (i) A myopic equilibrium is unique.

(ii) Assume A2. Then the myopic equilibrium exists.

To formulate the proof, let us first collect the basic relations that apply to our model under

myopic decisions. Assume that the system is in myopic equilibrium. Recall that a myopic customer

abandons at the first local maximum of the utility function. Equivalently, a customer abandons

as soon as the marginal utility function U ′
z(t) becomes non-positive. Recall further that the utility

function of a type-z customer is given by (2.1). Since the sign of U ′
z(t) is the same as that of

H(t)−γz(t), as seen in (3.1), then the myopic decision rule can be expressed as: abandon as soon

as H(t) ≤ γz(t). Equivalently, Tz is the smallest t for which H(t) ≤ γz(t). Since H is continuous,

this means:

• If H(0) < γz(0), abandon immediately at t = 0.

• Otherwise, abandon as soon as H(t) = γz(t).

A critical observation is that the question of whether or not a customer abandons by time t

depends only on {H(s), s ≤ t}. Specifically,

G(t) = PZ{z : Tz ≤ t} = PZ{z : H(s) ≤ γz(s) for some s ≤ t}. (4.1)

This expression may be substituted in (3.3) to give

I(t) = (mµ− λ) + λPZ{z : H(s) ≤ γz(s) for some s ≤ t}. (4.2)

13



As before, I(t) is non-decreasing (by its definition) and I(∞) = mµ. Combining the last equation

with (3.4), we have the following relation for H(t):

d
dt

H(t) = H(t)[H(t)− I(t)] (4.3)

H(∞) = mµ (4.4)

with I(t) given by (4.2). Recall also that H(t) is monotonically non-decreasing and bounded in

0 ≤ H ≤ mµ (Lemma 3.1).

As I(t) depends only on H(s) for s ≤ t, we can in principle forward integrate the differential

relation (4.3) to obtain H. This proceeds as follows:

1. Choose a candidate H(0).

2. Compute I(0) = (mµ− λ) + λPZ{z : H(0) ≤ γz(0)}.

3. Use the differential equation (4.3) and the expression (4.2) for I(t) to compute H(t) from

t = 0 to ∞.

4. Now check H(∞). If it equals mµ then this is an equilibrium solution, otherwise “try”

another H(0).

We can obviously restrict attention to those solutions H(t) that satisfy the above-noted properties

of the hazard rate function, namely: non-decreasing in t, and bounded in 0 ≤ H ≤ mµ.

The questions of existence and uniqueness of the equilibrium now reduce to the following:

• Existence: Does there exist H(0) so that the procedure above yields H(∞) = mµ ?

• Uniqueness: Can there be more than a single such H(0) ?

The key to uniqueness is in the following monotonicity property:

Lemma 4.2 Let H(t, H0) be a solution of (4.3)-(4.2) with initial conditions H(0) = H0. Restrict

attention to those values of H0 > 0 for which H(·) is non-decreasing and bounded. Then, for each

t > 0, the difference [H(t,H0)−H0] is monotone increasing in H0.
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Proof: Denote Ḣ = dH/dt. As we restrict attention to non-decreasing H, the right-hand side of

(4.3) is non-negative; thus Ḣ(t) is increasing in H(t) and decreasing in I(t). Starting at t = 0,

observe that I(0) depends on H(0) alone and is non-decreasing in it. Thus, (4.3) implies that

Ḣ(0) increases in H(0). It can further be seen that, for any t, if H increases over an entire interval

[0, t] then I(t) decreases, hence Ḣ(t) increases. From that we can conclude that if H(0) increases

then so does Ḣ on any interval [0, t], hence H(t)−H(0) increases. 2

Taking the limit in t, it follows that H(∞) − H(0) is increasing in H(0), hence H(∞) is

strictly increasing in H(0). This immediately implies that there exists at most one function H

of the required form that satisfies H(∞) = mµ. This established the uniqueness of the myopic

equilibrium.

We turn next to the proof of existence of a myopic equilibrium, under the continuity assump-

tion A2.

Lemma 4.3 Assume A2. Then

(i) For any H(0) ∈ (0,mµ), the differential equation (4.3)-(4.2) has a unique solution H(t),

which extends at least up to the point where H(t) = 0 or H(t) = mµ.

(ii) For each t > 0, H(t) is continuous in H(0).

Proof: Both properties follow by standard results on differential equation, by showing that I(t)

satisfies an appropriate Lipschitz condition. Observe, from (4.2), that I(t) = I(H(s), s ≤ t). We

start by showing that I(t) is Lipschitz continuous in its argument (H(s), s ≤ t), with respect to

the sup-norm. Fix t and H, and let Hε be an ε-perturbation of H on [0, t], namely

|Hε(s)−H(s)| ≤ ε , s ≤ t .

Define Iε(t) similarly to I(t), but with respect to Hε. Then

|Iε(t)− I(t)| = λ|PZ{z : Hε(s) ≤ γz(s), some s ≤ t}

−PZ{z : H(s) ≤ γz(s), some s ≤ t}|

≤ λPZ{z : γz(t) ≤ H(s) + ε for all s ≤ t , γz(t) > H(s)− ε for some s ≤ t}

≤ λKε
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where the last inequality follows directly by Assumption A2, with h(t) = H(t).

Using this functional bound in the differential equation (4.3), the stated properties follow as

in standard results for ordinary differential equations under a uniform Lipschitz condition. See,

e.g., [7], Theorem 2.2.1 (Lipschitz uniqueness theorem) and Theorem 3.1.1 (continuity in initial

conditions). 2

While H(t) is continuous in H(0) for any finite t, this property fails to hold for the limiting

value H(∞). Still, using the limiting properties of I(t) we show next that the required final value

of mµ is obtained for some initial conditions.

Lemma 4.4 Assume A2. Then there exists a solution H0(t) to (4.3)-(4.2) which is positive

non-decreasing and with H0(∞) = mµ.

Proof: Observe first that the solutions H(t) of (4.3)-(4.2) (with any initial condition H(0) > 0)

have the following properties:

a. Once Ḣ becomes strictly negative, equivalently H − I < 0, it remains that way (since then

H is decreasing while I non-decreasing, hence H − I remains negative), and eventually

decreases to Ḣ(∞)=0.

b. Once H(t) becomes larger than I(∞) = mµ, it increases to ∞. This actually happens in

finite time (since ẋ = x2 blows up in finite time).

c. The only remaining option is H(∞) = I(∞).

Hence, we have that:

• For H(0) small, H(∞) = 0.

• For H(0) large, H(t) →∞ (in finite time).

• In between, we may have a single point H(0) so that H(∞) = ∞. Uniqueness of such H(0)

follows from the monotonicity property in Lemma 4.2.

We can now establish the existence of the required solution. Let H(t; h) denote the solution that

corresponds to initial conditions H(0) = h. Let K be the set of initial conditions for which the
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solution blows up: K = {h : limt→∞H(t;h) = ∞}. Let k be then infimum of this set; note that

k > 0. We first claim that k 6∈ K. Indeed, by monotonicity (cf. Lemma 4.2) we know that the

solution H(t; k) is a lower bound on any other solution that blows up. If H(t; k) blows up (namely

k ∈ K), then at some time s we have H(s; k) = mµ + 2. We also know that for H(0) = h small

enough we have H(s; h) < mµ. Hence, by the continuity property of the last lemma there exists

some h0 < k for which H(s;h0) = mµ+1. But this solution must also blow up (as it is above the

threshold mµ as discussed above), so that k is not the infimum of K.

If follows then that H(t; k) does not blow up. On the other hand, we know that any solution

H(t;h) with h ∈ K is monotone increasing, hence H(t;h) ≥ k for all t and h ∈ K. Invoking again

the continuity property of Lemma 4.3, if follows that H(t; k) ≥ k > 0 for all t. As noted before

this implies that H(∞; k) = I(∞) = mµ, and the claim is satisfied with H0(·) := H(·; k). 2

We can now conclude the existence proof. Given the function H0(t) of the last lemma, define

the abandonment time for type z customers according to the myopic rule, Tz = min{t : H0(t) ≤

γz(t)}. To show that this is an equilibrium profile, we need to show that this leads to a hazard

rate function H(t) which coincides with H0(t) from which we started. Indeed, the above decision

profile induces the patience function G(t) as per (4.1) (with H(t) := H0(t)). The waiting time

distribution in now given by (3.3) and (3.2). Using the fact that H0(t) by its definition satisfies

(3.4) and H0(∞) > 0, it may be verified by substitution and integration that

F̄ (t) :=
∫ ∞

t
F ′(s)ds = H0(t)−1F ′(t)

hence H(t) := F ′(t)/F̄ (t) = H0(t), as required. 2

We finally summarize the computational procedure for the myopic equilibrium that falls off the

previous analysis. This computation involves the forward integration of the differential equation

(4.3)-(4.2), and a search procedure on H(0) so that H(∞) = mµ. Specifically:

• Starting with some arbitrary H(0), calculate H(t).

• If H(t) becomes larger than mµ, then stop; H(0) should be increased.

• If Ḣ(t) becomes non-positive, then stop; H(0) should be decreased.

• Otherwise, H(t) → mµ and this is the correct H(0).
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5 The Farsighted Equilibrium

We shall consider briefly an additional notion of a local equilibrium, the farsighted equilibrium,

which is complementary to the myopic one. While this equilibrium can hardly be justified as a

reasonable solution concept, it will turn out to be useful computationally.

The farsighted decision rule selects the abandonment time as the last (largest) local maximum

of the utility function. More precisely, if Uz(t) is the utility function, then the farsighted decision

is the largest time t at which U ′
z(t) ≥ 0 (and Tz = 0 if such t does not exist). Since Assumption

A1 is in effect, so that U ′
z(t) < 0 for t large enough (as indicated at the end of Section 3.2), it

follows that Tz is the largest time at which U ′
z(t) = 0. The farsighted equilibrium is the system

equilibrium induced by the farsighted decision rule.

As in the case of the myopic equilibrium, we can formulate this decision rule in terms of the

hazard rate function. Indeed, Tz is the largest time t for which

H(t) = γz(t)

(and Tz = 0 if this inequality is nowhere satisfied).

It follows that the question of whether a customer abandons at time t according to the far-

sighted decision rule depends only on the future values of the hazard rate function, namely on

{H(s), s ≥ t}. That will allow us to integrate the differential equation for H(t) backwards in

time. To that end, note that,

Ḡ(t) = PZ{z : Tz > t) = PZ{z : H(s) = γz(s) for some s > t} (5.1)

and

I(t) = mµ− PZ{z : H(s) = γz(s) for some s > t}. (5.2)

This expression for I(t) may be combined with the differential equation (4.3) and terminal con-

dition (4.4) to compute the farsighted equilibrium, using backward integration from t = ∞. In

contrast to the myopic equilibrium, no search procedure is required here, as the terminal condi-

tions actually serve as explicit initial conditions for backward integration.

Note that if T0 is an upper-bound on the abandonment times of all customer types, then

backward integration may start from T0 with terminal condition H(T0) = I(T0) = mµ (see Lemma
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3.1). Such an upper bound is given for instance by the minimal time T for which γz(T ) ≥ mµ for

all z.

Existence and uniqueness of the farsighted equilibrium may be established similarly to the

myopic equilibrium. In fact, uniqueness is easier to establish here since the search procedure for

H(0) is not required. We shall therefore not dwell on the details of these proofs.

We close this section by pointing to some useful relations between the two types of “local”

equilibria – the myopic and the farsighted – and the global equilibrium. First note that either one

of the local equilibria may turn out to be a global one. In the myopic equilibrium, for example,

this would be the case if for each customer type the myopic decision rule is in fact the optimal

one, namely if the first local maximum of the equilibrium utility function turns out to be the

global maximum. As this may not be simple to verify directly, the following observation may be

useful.

Recall that the myopic decision rule selects the first local maximum of the utility function,

and the farsighted rule selects the last local maximum. Obviously, if the two coincide for a given

utility function, then this function is unimodal and both are in fact a global maximum. This leads

to the following straightforward but potentially useful result.

Proposition 5.1 Suppose the myopic and farsighted equilibria coincide. Then they constitute a

global equilibrium as well.

Indeed, recall that the myopic decision rule selects the first local maximum of the utility function,

and the farsighted rule selects the last local maximum. Obviously, if the two coincide for a given

utility function, then this function is unimodal (it has exactly one local maximum) and this

local maximum is in fact a global maximum. The converse is also trivially true: if in a global

equilibrium the utility function of each customer is unimodal, then this equilibrium coincides with

both the myopic and the farsighted equilibria. Since each of the latter is unique, there may exist

at most one global equilibrium with the property that the utility function for each customer type

is unimodal.

An interesting conjecture is that the condition of the last proposition also leads to the unique-

ness of the global equilibrium. This is yet to be verified or disproved. In the forthcoming section

we shall formulate explicit conditions on the problem data that guarantee the uniqueness of the
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global equilibrium.

6 Global Equilibrium

For the general model discussed so far, uniqueness of the global equilibrium is not guaranteed.

In the present section, we shall impose additional conditions that guarantee the uniqueness of

the global equilibrium. Further, as this unique global equilibrium coincides with the myopic and

farsighted ones, its can be computed using the procedures outlined above for these equilibria. The

imposed conditions are essentially that customer types will be strictly ordered in terms of their

cost functions, and the marginal waiting cost will satisfy certain concavity properties.

Our first assumption concerns the complete ordering of customer types according to their cost

functions.

Assumption B1 (Ordering). There exists a (complete) order on the set Z of customer types, so

that for any y, z ∈ Z with y < z, at least one of the following holds:

(i) Ry(t) ≥ Rz(t) and C ′
y(t) < C ′

z(t), for all t ≥ 0.

(ii) Ry(t) = Rz(t) and γy(t) < γz(t), for all t ≥ 0.

The following three remarks concern this last assumption.

1. Assumption B1, together with (3.1), implies that U ′
y(t) > U ′

z(t) (for any F ).

2. Since γz = C ′
z/Rz, either condition in B1 implies that γy(t) < γz(t).

3. The equality Ry(t) = Rz(t) in the second condition is actually required to hold up to a

constant scaling factor. (Indeed, the utility function Uz may be rescaled without affecting

the optimal decision, and such rescaling is obtained by scaling both the service reward Rz

and the waiting cost function Cz by the same factor. Note that this does not affect the

cost-ratio γz.) For example, it holds if each Rz is constant in time.

In addition, we shall impose the following requirement on the cost-ratio functions.

Assumption B2 (Concavity). γ̈z(t) ≤ γ̇z(t)γz(t) for any z and t such that γ̇z(t) ≥ 0.
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An obvious sufficient condition for B2 is that γz(t) is (weakly) concave in t, namely γ̈z(t) ≤ 0.

We note that this condition is slightly stronger than the one that appears in [6] (in relation to

the homogeneous customer problem). Indeed, the latter requires the function [γ(t)− γ̇(t)/γ(t)] to

be monotone increasing, which can be differentiated to give γ̈ ≤ γ̇γ + (γ̇)2/γ. We conjecture that

the same condition would suffice here, however the details of the proof would be more involved.

The continuity condition A2 will be also used here. Under the order condition B1, the functions

h in A2 can be restricted to the set {γz}. The requirement is, essentially, that the set of functions

{γz} will sufficiently “spaced apart” under Pz.

The following theorem summarizes the main results of the present section.

Theorem 6.1 Assume A2 (Continuity), B1 (Ordering) and B2 (Concavity). Then the global

equilibrium is unique, and coincides with both the myopic and farsighted equilibrium points.

The proof is presented in the remainder of this section. Let us first sketch the main ideas in

the proof of uniqueness. Our goal is to show that, at any global equilibrium, each utility function

Uz(t) is unimodal; hence a global equilibrium coincides with the myopic equilibrium (and also

with the farsighted one), whose uniqueness has already been established. To show unimodality,

we note that at any (local) maximum t of Uz we have U ′
z(t) = 0, with U ′

z increasing; since U ′
z is

sign-equivalent to H − γz, these properties are shared by the latter. To show that there exists

at most one point with these properties, it would suffice that γz is concave in t (by assumption),

while H is convex, so that the difference (H − γz) is convex. Unfortunately, H is not a convex

function; indeed, it is increasing and upper bounded, hence must be concave on some part of its

domain. More refined analysis is therefore required. A basic observation will be that H does

in fact exhibit convex-like properties on those parts of the time axis at which no abandonment

occurs, namely that contain no points from the decision profile {Tz} (see Lemmas 6.3 and 6.4

below). Together with some monotonicity properties, this will lead to uniqueness of the maximum

point for each Uz, and hence to the uniqueness of the global equilibrium.

For the rest of this section we impose, without further note, the conditions of the last Theorem.

Lemma 6.2 Let {Tz} be an equilibrium profile corresponding to a global equilibrium. Then for

any y, z ∈ Z, y < z implies that Ty ≤ Tz. Furthermore, if Tz > 0 then Ty < Tz.
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Proof: As noted, Assumption B1 together with (3.1) imply that U ′
y(t) > U ′

z(t). Recalling that

Tz is a global maximum of Uz over t ≥ 0, this implies the assertion of the lemma. Indeed, for any

t < Ty we have Uz(t)−Uz(Ty) < Uy(t)−Uy(Ty) ≤ 0, implying that such t cannot be a maximum

of Uz, hence Tz ≥ Ty. Finally, if Tz > 0 then 0 = U ′
z(Tz) < U ′

y(Tz), hence Tz is not a maximum

of Uz, namely Ty 6= Tz. 2

Lemma 6.3 Let γ(t) > 0 satisfy the requirement of Assumption B2, namely γ̈(t) ≤ γ̇(t)γ(t)

whenever γ̇(t) ≥ 0. Let H(t) be a positive and strictly increasing function that satisfies Ḣ =

H(H − I0) on some interval (t0, t1) and for some constant I0. Then the difference f := H − γ

satisfies the following property: If f(t0) = f(t1) = 0 then f(t) < 0 for t ∈ (t0, t1).

Proof: Note first that

Ḧ = Ḣ(H − I0) + HḢ > HḢ . (6.1)

Strict inequality follows since for H to be strictly increasing on (t0, t1) we must have Ḣ = H(H−

I0) > 0 there, while H > 0 by assumption.

Suppose f(t) > 0 for some t ∈ (t0, t1). Then f(t) has a maximum point t∗ in (t0, t1), and at

that point we have:

f(t∗) ≥ 0, f ′(t∗) = 0, f ′′(t∗) ≤ 0 .

Since f = H − γ, this gives

H(t∗) ≥ γ(t∗), Ḣ(t∗) = γ̇(t∗), Ḧ(t∗) ≤ γ̈(t∗) .

Using these relations together with (6.1), we obtain at t = t∗ that

γ̈ ≥ Ḧ > HḢ ≥ γγ̇

while γ̇(t∗) = Ḣ(t∗) > 0, which contradicts the assumed property of γ. 2

Lemma 6.4 Let {Tz} be an equilibrium profile corresponding to a global equilibrium. Let I(t) be

given by (3.3) and (2.2), and let İ denote its time derivative (whenever it exists). Then, for any

t > 0, one of the following holds:

(a) t is interior to an interval over which İ = 0.
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(b) There exists a sequence (Tzi) which converges to t. Consequently, H(t)− γy(t) < 0 for any

y ∈ Z such that t > Ty, and H(t)− γy(t) > 0 for any y such that t < Ty.

Proof: It is evident from (2.2) that I is constant over each open interval which does not contain

points from {Tz}. Thus, if t is interior to such an interval then (a) follows. Otherwise, there must

exist a sequence (Tzi) which converges to t. Consider first the special case where t = Tz, for some

z. Take y ∈ Z for which Ty < t = Tz. By Lemma 6.2 this implies that z > y, and Assumption

B1 now yields γz < γy. Therefore,

H(t)− γy(t) = H(Tz)− γy(Tz) < H(Tz)− γz(Tz) = 0 ,

where the equality follows since Tz > 0 maximizes Uz, cf. (3.1). The proof for Ty > t = Tz is

identical. Finally, if Tz = t does not exist but a sequence Tzi → t is available, a simple limit

argument based on the continuity of H and γz establishes the same relations. 2

Lemma 6.5 Assume that the system is in global equilibrium. For any z ∈ Z, suppose Tz is a

maximum point of the utility function Uz. Then

(i) U ′
z > 0 for t < Tz.

(ii) U ′
z < 0 for t > Tz.

Consequently, Uz is strictly unimodal, in the sense that it has a single local maximum.

Proof: The main idea of the proof is as follows. Fix y ∈ Z. From (3.1) we know that U ′
y is sign

equivalent to H − γy. If t is such that İ(t) 6= 0 then H − γy will have the required sign (positive

for t > Tz, and negative for t < Tz). Else, t is in an interval where İ(t) 6= 0, and we can show

that the convex-like properties of H − γy (Lemma 6.3) will prevent H − γy from changing sign.

We proceed to make this argument more precise.

Let {Tz} be an equilibrium profile corresponding to a global equilibrium. Recall from (3.1)

that H(Tz) = γz(Tz) if Tz > 0, while H(Tz) ≤ γz(Tz) if Tz = 0. Assumption A1 implies that

Tz < ∞ for every z.

Fix y ∈ Z. Observe from (3.1) that U ′
y is sign equivalent to H − γy, this will often be used

below.
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We first establish part (ii) of the lemma, namely that U ′
y < 0 (equivalently, H − γy < 0) for

t > Ty. Essentially, we make a distinction between times where İ = 0 and those times where

İ 6= 0. Fixing t and referring to Lemma 6.4, either case (a) or case (b) of that lemma must hold.

If (b) holds, then indeed H − γy < 0 is implied by that lemma. Consider next the case that (a)

holds, namely t is interior to an interval over which İ = 0. Extend that interval (t0, t1) as much

as possible, while keeping t0 ≥ Ty. Let f(t) := H(t)− γz(t), as in Lemma 6.3. Note that f(t) is

continuously differentiable on that interval, as H(t) is given by (3.4) with I constant. In order to

apply Lemma 6.3 we again consider two possibilities:

(i) t0 = Ty. First we have f(t0) ≡ H(Ty)− γy(Ty) = 0. Turning to the end point t1, if t1 < ∞

then case (b) of Lemma 6.4 holds (by definition of t1), and as t1 > Ty we have f(t1) < 0.

If t1 = ∞, then since H(t) → mµ while Assumption A1 holds, then f(t′1) < 0 for t′1 large

enough. In either case it follows from Lemma 6.3 that f ≡ H − γy < 0 on (t0, t1), and in

particular at t as required.

(ii) t0 > Ty. Here again case (b) of Lemma 6.4 holds (by definition of t0), so that f(t0) < 0. As

before we have that f(t1) < 0. Then again from Lemma 6.3 it follows that f = H − γy < 0

at t ∈ (t0, t1).

We have thus shown in either case that U ′
y < 0 for t > Ty.

We next establish part (i), namely that U ′
y > 0 (equivalently, H − γy > 0) for t < Ty. Some

extra care is required here to prepare the conditions for application of Lemma 6.3. As Ty is a

maximum of Uz, then U ′
z(t) to the left of Ty should be initially negative. More precisely, there

exists an interval (t2, Ty) such that either (i) U ′
y(t) = 0 on that interval, or (ii) U ′

y(t) < 0 on that

interval. We first show that (i) is impossible. We claim in that case that there are no points from

{Tz} in (t2, Ty). Indeed, if z > y then Tz > Ty (by Lemma 6.2); if z < y then γz < γy implies that

Hz(t) − γz(t) < Hy(t) − γz(t) = 0, hence U ′
z(t) < 0 on (t2, Ty). It follows that Uz does cannot

have a maximum Tz on that interval. As there are no points from {Tz} in (t2, Ty), it follows by

Lemma 6.4 that İ(t) = 0 there. Recalling that Hy − γz = 0 follows from U ′
y = 0, this contradicts

Lemma 6.3.

We thus have that U ′
y(t) < 0 on the non-empty interval (t2, Ty). Extend t2 as much as

possible to the left. If t2 = 0 and Uy(0) < 0 then Uy(t) < 0 on [0, Ty) and we are done; otherwise
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Uz(t2) = 0. Assuming in what follows that the latter holds, we will show that in fact it leads

to a contradiction. (Unfortunately, a direct application of Lemma 6.3 to obtain a contradiction

is impossible since İ = 0 need not hold on that interval. However we will be able to apply the

lemma to another type x ≤ z on a sub-interval where İ = 0 does hold.)

Let t3 = inf{t ∈ (t2, Ty] : t ∈ {Tz} }. Note that İ = 0 on (t2, t3). Assume first that t3 ∈ {Tz},

namely t3 = Tx for some x ∈ Z. We will next show the existence of a sub-interval (t0, t1) ⊂ (t2, t3)

on which H − γx > 0, while H − γx = 0 at t0 and t1. But this contradicts Lemma 6.3.

We thus proceed to establish the existence of such (t0, t1). Note that Tx ≤ Ty, so that x ≤ y.

We first claim that Tx 6= t2, so that the interval (t2, t3) is non empty. Indeed, if x = y then

Tx = Ty > t2, while if x < y then H(t2) − γx(t2) < H(t2) − γy(t2) = 0, while H − γx = 0 must

hold at Tx which maximizes Ux. Next, as shown above with respect to Ty, there exists an interval

(t0, Tx) to the left of Tx on which H − γx > 0, while H − γx = 0 at t = Tx and at t = t0 (note

that t0 ≥ t2: if x = y then t0 = t2, while if x < y then t0 > t2 since H(t2) − γx(t2) < 0 as just

shown). Recalling that İ = 0 on (t2, t3), hence on its sub-interval (t0, Tx), we can apply Lemma

6.3 with t1 = Tx to obtain that H − γx < 0 on (t0, Tx), which yields the required contradiction.

We have thus completed the argument under the assumption that t3 ∈ {Tz}.

Assume next that t3 6∈ {Tz}. By definition of t3, there exists a decreasing sequence (Txi)

that converges to t3. We may now apply a continuity argument to obtain the same result as

before. Define a new customer type x with cost-ratio function γx(t) := supxi
γxi(t). Note that

the functions γxi are increasing in i, so that the last supremum can be replaced by a limit. If we

assign a PZ-measure zero to the new type then the system equilibrium is not modified. It may

be verified by continuity that Tx := t3 is a global maximum of the corresponding utility function

Ux(t). It may be further shown that the conclusion of Lemma 6.3 continue to hold for the new

type (even though the derivatives of γx may not be everywhere well defined). The argument above

can therefore be repeated to obtain a contradiction with the assumption that Uz(t2) = 0. This

establishes part (i), and completed the proof of Lemma 6.5. 2

Proof of Theorem 6.1. Lemma 6.5 immediately implies that any global equilibrium is also a

myopic (and farsighted) one. But uniqueness of the latter was established is Theorem 4.1, so that

the global equilibrium is unique. Existence of the global equilibrium will also be inferred from
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that of the myopic one. First, repeating the argument of Lemma 6.5 for the myopic equilibrium, it

follows similarly that the utility functions of all customers are unimodal at the myopic equilibrium

as well. Hence the myopic equilibrium is in fact a global one, and existence of the former has

been established in Theorem 4.1 under Assumption A2. 2

Theorem 6.1 thus established the uniqueness of the global equilibrium under the stated as-

sumptions, and enables its computation as either the myopic or the farsighted equilibrium. We

mention again that even if the conditions of this theorem are not satisfied then either one of these

“local” equilibria may still present a a global equilibrium, as may be verified after the explicit

computation of the local equilibria; see also the discussion at the end of the previous section and

Proposition 5.1 there. However, no guarantee of uniqueness is available in that case.

7 Illustrative Examples

We provide in this section a few examples that illustrate the computational process and obtainable

results. The latter also clearly manifest the descriptive power of our models.

In all the examples below, the cost-ratio γz is taken for convenience to be linear. We shall

further assume that the service utilities Rz(t) are all constant, so that γz ≡ C ′
z/Rz completely

describes the cost structure. The queue parameters are fixed at: λ = mµ = 2.

The first two examples illustrate the computational procedures and results for two different

types of linear costs. The third example considers a mixture of two customer classes that violates

the assumptions of Theorem 6.1. The last example addresses the issue of inverse modeling,

namely of determining a cost or population structure that gives rise to an a-priori given patience

distribution.

7.1 Example 1: Uniformly spaced costs with equal slopes

Let the cost-ratio function for type z customers be

γz(t) = z + t , t ≥ 0

with z uniformly distributed in [0, 1]. This z represents the initial cost-ratio for a type z customer,

and these costs increase at a uniform rate of 1 for all customers. The assumptions of Theorem 6.1
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Figure 2: The hazard rate and the patience probability density function for Example

1, computed with the farsighted procedure. The cost-ratio functions γz(t) = z + t

are also illustrated for z ∈ [0, 1], with their density corresponding to that of the type

z.

are satisfied, hence the equilibrium point is unique and can be computed as either the farsighted

or myopic equilibrium. We start by computing the hazard rate function H(t) at equilibrium using

the farsighted procedure. Here we backward integrate the differential equation (4.3) with the

expression (5.2) for I(t), starting with the boundary condition H(∞) = mµ = 2. In fact, it is

easily verified that all abandonment times are bounded by T0 = 2, since γz(2) ≡ 2 + z ≥ mµ for

all z ∈ [0, 1]. We can therefore take the terminal condition as H(2) = 2 (as per the remark in

Section 5). In the numeric computation, H(2.5) = 2 was used.

Numeric integration was carried out using simple Euler approximations, with a resolution of

N = 100 points per unit time. The computed function H(t) is shown in Figure 2, alongside with

an illustration of the functions γz(t) that were used in this example. The patience distribution

function G(t), and the corresponding density G′(t), may be easily obtained through (5.1). More

simple, it is calculated from (3.3), namely

Ḡ(t) = (mµ− I(t))/λ ,

where I(t) is obtained during the computation of H(t). G′(t) is depicted in 2(b). As expected, T

is bounded in [0, 2]. Its distribution is close to uniform, with some increase near the higher end.

For comparison, we compute H(t) for this example also using the myopic-equilibrium proce-

dure. Recall that this is based on forward-integrating (4.3) with I(t) from (4.2), and employing
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Figure 3: The hazard rate function H(t) for Example 1, computed with the myopic

equilibrium procedure, for different initial conditions H(0).

a scalar search procedure on H(0) so that H(∞) = mµ = 2. The results for different initial

conditions are shown in Figure 3, where the integration was carried out up to T = 2.5 with the

same resolution N = 100 as before. Note the high sensitivity of the final value to H(0). The

required terminal condition was obtained for H(0) = 0.87974, while the farsighted computation

above yielded H(0) = 0.87958. Evidently, the results of these two computations coincide.

7.2 Example 2: Uniformly Distributed Slopes

For the second example we take a family of cost-ratio functions with variable slope:

γz(t) = z t .

Obviously the type parameter z coincides with the slope. We choose its distribution so that the

angular density is uniform in the first quadrant: z = tan(θ), with θ uniformly distributed in [ε, π
2 ].

The offset ε is introduced for numerical convenience, and taken here as ε = 0.01. Again, the

assumptions of Theorem 6.1 are satisfied. The hazard rate function at equilibrium (computed

with the farsighted procedure) is shown in Figure 4, along with the patience density.

The abandonment profile in this example is of course quite different than in the previous one,

and can be related to the density of the cost functions that intersect the hazard rate function at

a given time. Similar changes may be induced by modifying the type density.
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Figure 4: H(t) and G′(t) for Example 2. The cost-ratio functions are γz(t) = z · t,

with uniform angular density (note the different axis scales).

7.3 Example 3: Unordered Cost Ratios

Assume next that the customer type is obtained as a mixture of two customer classes. The first

class is the same as in Example 1:

γz1(t) = z1 + t , z1 ∼ U [0, 1] .

The second class is given by

γz2(t) = −2z2 + 2t , z2 ∼ U [0, 1] .

Customers in this class are seen to have a lower initial cost, but it increases more rapidly in

time. The customer type z is then the class designator (1 or 2, with equal probabilities), and the

corresponding parameter z1 or z2. The situation is illustrated by the dotted lines in Figure 5.

Obviously, the cost-ratio functions are not ordered, as required in Theorem 6.1 so that existence

of a unique global equilibrium is not assured. Still, a unique myopic equilibrium does exist by

Theorem 4.1.

The myopic equilibrium was calculated and is depicted in Figure 5. The jump in the patience

density corresponds to the point where the second class start abandoning. It is easily seen that

each cost-ratio function intersects the hazard rate at most once, so that this equilibrium is also a

global one; this was indeed verified by computing the farsighted equilibrium that coincided with

the above (Proposition 5.1).
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Figure 5: H(t) and G′(t) for Example 3. The cost-ratio functions are a mixture of

two classes with different slopes.

7.4 Example 4: Reversed Modeling

In our modeling framework, the problem of inverse modeling concerns the the construction of an

appropriate customer cost structure to fit a given abandonment profile G(t). Obviously, this is a

basic step in fitting our model to empirical data. We shall illustrate here the following variant of

this problem: Suppose that the cost-ratio functions γz(t) are given; find a probability distribution

PZ on the type parameter z so that the induced equilibrium point gives rise to a-priori given

abandonment profile (patience distribution).

The queueing system is the same as above, and the cost functions are as in Example 1:

γz(t) = z + t .

Here the distribution of z (on the real line) is not given, and needs to be determined. Let the

required patience distribution be exponential with unit parameter:

Ḡ(t) = e−t , t ≥ 0 .

To outline the computation procedure, we first note the Ḡ uniquely determines the (required)

hazard rate function H(t), through (3.2), (3.3) and H = F ′/F̄ . Next, we compute the distribution

PZ on z that gives equality in (4.1). This density need not exist in general (see the comments

below). However, if it does, it leads to a myopic equilibrium with the required patience profile. In

general, it needs to be verified whether this equilibrium is a global one. This is assured however

if the cost structure satisfies the ordering assumption of Theorem 6.1.
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Figure 6: The probability density function of z for Example 5 (“inverse modeling”).

Furthermore, if the cost-ratio functions are ordered, say increasing in z, then Equation (4.1)

reduces to

G(t) = PZ{z : z ≥ z0(t)} ≡ 1− FZ(z0(t)) , (7.1)

where z0(t) is the minimal z which satisfies the inequality in (4.1). The function z0(t) is

increasing in t by its definition, and is easy to calculated once H(t) is given. Thus, the distributions

G(t) and FZ(z) are related through the “scale change” z0(t).

The resulting hazard rate H(t) and type probability density fZ(z) are shown in Figure 6. The

support of fZ corresponds to the first γz that does not intersect H. At the other end, when H

becomes constant the above-mentioned scale change z0(t) becomes linear, so that the lower end

of fz becomes exponential (as G′).

A few additional comments are in order, in light of the last example. Recall that an abandon-

ment (with T > 0) occurs at an intersection of the cost and the hazard rate functions. Thus, the

required hazard rate function determines only the values of the cost function at these intersection

points. The form of the cost functions away from these intersection points is therefore arbitrary.

At the intersection point, however, the slope of the cost must be larger than that of H(t) (for

otherwise we would have a maximum rather than a minimum of the utility function). This sets a

limitation on the hazard rate functions that are feasible with a given family of costs: for example,

the above choice of unity-slope γz cannot give rise to H(t) with slope larger than 1. In that case,
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cost functions with larger slopes must be introduced.

A more general modeling problem is that of inferring the shape of the cost functions in additions

to their distribution. A detailed discussion of this problem is outside the scope of the present

paper.

8 Concluding Remarks

We have considered in this paper the analysis of a basic queueing system with adaptive customer

patience, which is modeled through a customer-dependent, rational decision model. We have

demonstrated the existence and uniqueness of the system equilibrium point under certain con-

ditions on the waiting cost functions. Similar properties were established, under much broader

conditions, for the modified concept of the myopic equilibrium. It was further demonstrated how

these equilibria may be calculated and related to observed system characteristics. These results

suggest that the proposed framework may be employed as a useful tool for modeling customer

patience, alongside simplified models as the one suggested in [13].

Several key issues remain for further study. In modern call centers, selective information

regarding the queue status is supplied to waiting customers. It should be of major interest to

incorporate such information into our model, and investigate its consequences. On the practical

side, the calibration and validation of the proposed model using empirical data is called for.

More broadly, further study of the abandonment phenomena and its interaction with queueing

performance is required, based on empirical data and human decision modeling.
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