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STRONG APPROXIMATIONS 
FOR TIME-DEPENDENT QUEUES 

AVI MANDELBAUM AND WILLIAM A. MASSEY 

A time-dependent Mt/Mt/1 queue alternates through periods of under-, over-, and 
critical loading. We derive period-dependent, pathwise asymptotic expansions for its queue 
length, within the framework of strong approximations. Our main results include time-depen- 
dent fluid approximations, supported by a functional strong law of large numbers, and 
diffusion approximations, supported by a functional central limit theorem. This complements 
and extends previous work on asymptotic expansions of the queue-length transition probabili- 
ties. 

1. Introduction. The governing laws for the evolution of real-world queueing 
systems vary with time. Yet queueing research and practice, spanning a period of over 
nine decades, have been devoted almost exclusively to time-homogeneous models. 
Such models can indeed provide reasonable approximations for slowly varying sys- 
tems. However, there are many time-dependent phenomena, such as rush hour or 
periodicity, that they fail to capture. Time-dependent models are difficult to analyze, 
even in a Markovian setting. Our goal therefore, is to develop a rigorous framework 
for their asymptotic approximations, starting in this paper with the Mr/Mr/1 queue. 

A Markovian analysis of a time-homogeneous queueing system entails encoding its 
dynamics into Kolmogorov's forward (or backward) differential equations. Their 
solution yields the transition probabilities for the queueing model of the system. 
However, Kolmogorov's equations rarely have closed-form solutions, hence one 
resorts to steady state analysis. This reduces the problem from solving a set of 
differential equations to solving linear equations. The solution of the latter yields the 
steady state probabilities for the queueing model. 

Time-dependent queueing systems also can be modelled by continuous-time Markov 
chains, but they must be time-inhomogeneous. Their transition probabilities solve 
Kolmogorov's equations as well, but one cannot expect explicit solutions in view of 
the complexity already encountered in the time-homogeneous case. Worse still, it is 
not immediately clear what constitutes a steady state analysis for time-inhomoge- 
neous systems (at least when its evolution is not periodic; see for example Asmussen 
and Thorisson (1987), Bambos and Walrand (1989), Harrison and Lemoine (1977), 
Heyman and Whitt (1984), Lemoine (1989), Rolski (1981, 1990)). In particular, 
approximating the behavior of the system in the here and now by its behavior at time 
"infinity" is typically futile. 

A time-inhomogeneous analogue to steady state analysis was proposed in the Ph.D. 
Thesis by Massey (1981) (see also Massey (1985) and Keller (1982)), where it was 
coined uniform acceleration. Here one scales all the average instantaneous transition 
rates of the Markovian model by a factor of 1/c. As e 0, each rate increases in 
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absolute terms, or is accelerated, but the ratio of any two rates relative to each other 
is held fixed. 

Uniform acceleration enables a dynamic asymptotic analysis of time-inhomoge- 
neous queueing models, which yields asymptotic expansions that vary over time. 
Moreover, when applied to time-inhomogeneous Markovian systems, it reduces to 
either steady state or heavy traffic analysis. (See the examples in ??4.1 and 4.4.) In 
Massey (1985), uniform acceleration gave rise to an asymptotic expansion of the 
transition probabilities for the queue length process of a time dependent M/M/1 
queue, hereafter denoted by Mt/Mt/1. This provided a rigorous foundation to the 
earlier work of Newell (1968) and Keller (1982). It also led to the proper notion of a 
time-dependent traffic intensity parameter, namely p*(t) defined in (3.1) below and 
elaborated on in ?7. 

The purpose of this paper is to complement and refine Newell (1968), Massey 
(1981, 1985) and Keller (1982). We do this through an asymptotic analysis of the 
queue length sample paths, within the unifying framework of the strong approxima- 
tion theorems, introduced by Koml6s, Major and Tusnady (1976). Strassen was the 
first to prove a strong approximation result, then Skorohod introduced his embedding 
of random walks in a Brownian motion, and Keifer used it to establish answers to 
questions about best convergence rates (see Cs6rgo and Revesz (1981) and Cs6rgo 
and Horvath (1993) for a survey on the historical evolution of the subject). However, 
the framework operate within is the one by Koml6s, Major, and Tusnady (1976). 
Specifically, in ?2, we apply uniform acceleration directly to the sample paths (2.1) of 
the queue Mt/Mt/1. The outcome is the asymptotic expansion (2.7). Its derivation 
relies on a functional strong law of large numbers (FSLLN, Theorem 2.1) and a 
functional central limit theorem (FCLT, Theorem 2.2). Both theorems are conse- 
quences of the strong approximation results in Theorem 2.3. The FSLLN limit (2.4) is 
deterministic and, as shown later, has the interpretation of a fluid flow system. 
Viewing the original model as a microscopic description, this deterministic fluid 
model provides a macroscopic fluid approximation of the queue which, furthermore, 
is the zeroth-order term in the asymptotic expansion (2.7) of its sample paths. The 
stochastic FCLT limit (2.2) then deserves to be referred to as a mesoscopic first-order 
refinement of the fluid model. 

During its evolution, the Mt/Mt/1 queue can alternate between underloaded, 
critically loaded and overloaded phases. These phases are determined by its fluid 
approximation, and the phase transitions are summarized in Figure 3.1. Moreover, 
the asymptotic expansion (2.7) can be localized to each phase, and this is outlined in 
?3 and substantiated in ??8-10. In ?4, we specialize our results to the time-homoge- 
neous M/M/1 queue and to two periodic models. Finally, ??5 and 6 are devoted to 
proving Theorems 2.1-2.3 and their supporting assertions. Of special importance is 
Lemma 5.2, which provides the sample-path intuition behind our main asymptotic 
expansion (2.7). 

The literature on time-inhomogeneous models, like the MM/Mt/1 queue, is not vast. 
Insight and calculations have been commonly based on either approximations (Luchak 
(1956), Newell (1968), Keller (1982), Massey (1981, 1985), Rothkopf and Oren (1979), 
for example), or simulation (Green, Kolesar, and Svornos (1991) for example). Exact 
results are rarely available, with the notable exception of networks with Poisson 
arrivals and infinite server nodes (see Eick, Massey and Whitt (1993a, b) as well as 
Massey and Whitt (1993)). For a textbook treatment of some aspects of time-depen- 
dent queues, see Hall (1991), for example. Our paper focuses only on Poissonian 
single-stations, but we are also studying time-inhomogeneous Markovian networks 
(Mandelbaum and Massey, in preparation), for which the current paper is a prerequi- 
site. Our framework also accommodates more general point processes, as in Chap- 
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ter 10 of Lipster and Shiryaev (1989). This latter work employs uniform acceleration 
of state-dependent queues, as also in Anulova (1989), Krichagina, Lipster, and 
Puhalski (1988), and Yamada (1984). Finally we note that the first application of the 
Komlos, Major and Tusnady theorem is due to Rosenkrantz (1980). The results of 
paper suggest that it might be possible to obtain estimates, in terms of c, on the rates 
of convergence of the distributions of certain functionals to their limits. 

Notations. Denote by D = D[0, oo) the space of all functions x: [0, oo) -> [R1 such 
that x(0) = 0, x is right-continuous at 0, and x is either right- or left-continuous at 
every t > 0. (This is a slight deviation from the common convention in which 
functions in D are taken right-continuous.) For x e D, define x to be the upper 
envelope of the function x, that is 

x(t) sup x(s), t > 0. 
0 < s < t 

The completed graph F(x) of x is defined to be the subset of [0, oo) x IR such that 

(1.1) (x) = {(t,y)lx(t -) < y <x(t +)}, 

with the convention x(0 - ) = 0. A parametric representation of F(x) is a function 
(r, g): [0, oo) -> F(x) which is onto, continuous, and T is nondecreasing. A sequence 
x, is M1-convergent to x if there exist parametric representations (r,, gn) of x, 
which converge, uniformly on compact subsets of [0, oo), to some parametric represen- 
tation (r, g) of x. Formally, for all t > 0, lkr, - r\I, V Ilgn - gllt -> 0, as n Too, where 

Ilxll = sup Ix(s)l, 

for any x E D. Ml-convergence induces the Ml-topology on D, under which D is a 
Polish space (Pomerade (1976)). It is weaker than the more prevalent J1-topology, 
which happens to be too strong for our purposes. (See the concluding paragraph of ?2 
for an elaboration.) M1-convergence is metrizable, for example (as in Whitt (1980)) by 
defining 

d(xl, x2) = e-[1 A dt(x, x2)] dt, 

where dt(x1, x2) = inf(lrTl - r211t + llgl - g211t), the infimum being taken over all 
possible parametrizations (ri, gi) of xi, for i = 1, 2. 

Consider a family {xele > 0} and a function y, all elements in D. For some 
real-valued function f(e), the little-o notation 

x = f()y + o(f()), 

stands for 

lim d f( )xy) =0. 

This is equivalent to d(xE/f(E), y) -> 0, for almost all t > 0 or, in words, 
lim, 0 xE/f(E) = y in M1. The big-O notation 

XE =f(E)y + O(f(E)), 
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means that for some e0 > 0, 

1 
sup XE - < 

O<E<E0 f(E) 

where 

ilxll = e-t[1 A Iixllt] dt. 

When used with stochastic processes XE and Y, defined on a common probability 
space with sample paths in D, little-o and big-O indicate the above types of 
asymptotic behavior for almost all sample paths. Finally, Ml-convergence for stochas- 
tic processes, say limE e 0 XE/f(E) = Y, holds if and only if there exists realizations of 
XE and Y, on a common probability space, for which Ml-convergence holds almost 
surely (Skorohod 1956, Pomerade 1976, Ethier and Kurtz 1986). 

2. General asymptotic expansions. Our model for the queue-length process of 
an Mt/Mt/1 queue is taken to be 

(2.1) Q(t) - X(t) - inf X(s), t > 0. 
O<s<t 

Here, 

(2.2) X(t) N+ (fA(r) dr - N- l (r) dr) 

N+ and N- are two independent Poisson processes with unit rate, A is a continuous 
nonnegative function, tu is continuous and positive, and Q(0) = 0 is assumed for 
simplicity. The process X represents the difference between the cumulative number 
of actual arrivals and potential departures for Q. The jumps of Q coincide with those 
of X whenever Q is strictly positive. Otherwise Q equals zero and X(t) equals its 
infimum over the time interval [0, t]. In this case, a unit increase in X causes a unit 
increase in Q. However, a unit decrease for X is matched by a unit decrease for the 
running infimum for X, which results in no change for Q. (Only in this last case, is a 
potential departure not realized.) 

We derive asymptotic expansions of Q by uniformly accelerating its instantaneous 
transition rates. Formally, for each e > 0, introduce a stochastic process QE by 

(2.3) Q(t) XE(t) - inf XE(s), t > 0, 
0 s < t 

in which 

XE(t) N(f A(r)dr)- N-( if(r) dr) 

THEOREM 2.1 (FSLLN). The following functional strong law of large numbers holds 
for QE: 

limeQe(t, ) = Q()(t) a.s. 
E O 
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where 

(2.4) Q(0)(t) = [A(r) - (r)] dr - min f[A(r) - (r)] dr, 
*'0~~~~~~O 0< s < t 

and the convergence is uniform on compact subjects of t > 0. 

The proof of Theorem 2.1, as well as those of Theorems 2.2 and 2.3, are deferred 
to ?5. Theorem 2.1 gives rise to the asymptotic expansion 

(2.5) Qe(t,)= wQ)- +o() a.s., 

from which the deterministic process Q(O) emerges as a first-order, macroscopic, fluid 
approximation for Q. Indeed, Q(0) can be animated as the fluid level in a buffer that 
is governed by the following dynamics (Chen and Mandelbaum 1991a): The buffer is 
empty at time t = 0. At time t > 0, the exogenous inflow rate is A(t), and the 
potential outflow rate is JL(t). Finally, the actual outflow rate is strictly below its 
potential only when the buffer is empty, in which case it coincides with the inflow 
rate. With this interpretation, the quantity 

Y(?)(t) - min f[A(r) - -(r)] dr, 

represents the cumulative potential outflow that is lost prior to time t. 
Now define &t to be the set of all times s up to t at which the fluid level is zero, 

but no potential outflow is lost during [s, t]. Thus 

(t - {( < s < tlQ(?)(s) = 0 and Y(?)(s) = Y(?)(t)}. 

THEOREM 2.2 (FCLT). The following functional central limit theorem holds for QE: 

(2.6) lim E(Q(t) - Q( (t) Q1)(t) 

where 

Q(')(t) W( t[A(r) + It(r)] dr)- min W(j [A(r) + t(r)] dr) 

W = {W(t)lt > 0} is standard Brownian motion, and the convergence is weak with 
respect to Skorohod's Ml-topology on D[O, oo). Here it is assumed that Q(1) has a finite 
number of discontinuities on any compact subset of [0, oo). 

The nature of the discontinuities for Q(1) will be elaborated on in Theorem 3.1. 
The FCLT refines (2.5) in distribution, and gives rise to the asymptotic expansion 

(2.7) Q d(t) Q(t) + Q(1)(t) + 1) Q 
6E ve \Q Ve 

from which the stochastic process Q(1) emerges as a second-order, mesoscopic, 
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diffusion approximation for the deviation of Q from its fluid approximation Q(O). Our 
FSLLN and FCLT results are consequences of 

THEOREM 2.3 (STRONG APPROXIMATION). The parametrized family {QIe > 0} can 

be realized on a probability space (fl, , P), supporting two independent, standard 
Brownian motions W+ and W- in a way that 

QE(t, ) =X(t,w) - min XE(s, ) + O(loge) a.s. 
O s< t 

where 

(2.8) Xe(t) = [A(r) - (r)] dr + W+ A(r) dr - W- (r) dr) 

It is now possible to motivate the presence of M1 in Theorem 2.2. Indeed, the 

process XE has continuous sample paths, and so does Q(O). Thus, up to a negligible 
V/O(log e) term, the left-hand side of (2.6) is continuous. The limit Q(1), on the other 

hand, need not be continuous (see Theorem 3.1 for a precise characterization). Since 
continuous functions can not converge to a discontinuous one in the commonly used 

J1-topology (the "largest jump" functional is J,-continuous), one must use M1. 

3. Local asymptotic expansions. We now refine our asymptotic analysis of the 

Mt/Mt/1 queue. Let p(t) A(t/l(t), and define 

(3.1) p*(- sup r) dr t > 0, 
O<s<t s(r) dr 

with the convention p*(0) = A(0)//(0). The quantity p* is the Mt/Mt/1 traffic 
intensity function introduced in Massey (1981). It will be seen that the functions p and 

p* summarize the information embodied in the fluid model that is relevant to 
accelerating the stochastic model. In particular, p* identifies three exhaustive asymp- 
totic regions for Mt/Mt/1 as follows: 

* Underloaded: p*(t) < 1. 
* Critically Loaded: p*(t) = 1. 
* Overloaded: p*(t) > 1. 

An equivalent characterization of these asymptotic regions, in terms of (t and p(t), 
will be given in ?7. We also show there, that p* is a continuous function of t. By 
Lindelof's theorem, the underloaded and overloaded regions decompose into a 
countable disjoint union of open intervals. The set of critically loaded times is closed. 
For our asymptotic expansions, we must further divide it into the following four 
subregions: 
* Onset of Critical Loading: p*(t) = 1, and there exists a sequence ln T t such that 

p*(ln) < 1 for all n. 
* Middle of Critical Loading: p*(t) = 1, p* > 1 on some open interval containing t, 

and there exists a sequence In T t such that p*(ln) = 1 for all n. 
* End of Critical Loading: p*(t) = 1, p* > 1 on some open interval where t is its 

right endpoint, there exists a sequence In T t such that p*(1n) = 1 for all n, and 
there exists a sequence rn l t such that p*(rn) < 1 for all n. 

* End of Overloading: p*(t) = 1, and p* > 1 on some open interval where t is its 
right endpoint. 
Whereas the M/M/1 has three static types of asymptotic behavior (see ?4.1), the 

Mt/Mt/1 has six types, and a single process may alternate among all of them over 
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= open set [ = consists of open sets and points 

O 1 = nowhere dense set 
. = next possible transition 

FIGURE 3.1. Phase transition diagram for the asymptotic regions. 

time. Figure 3.1 consists of a diagram that shows possible phase transitions among 
asymptotic regions. A rectangle denotes a region that is an open set, in the case of 
underloaded and overloaded, or potentially has a nonempty interior with a dashed 
boundary, in the case of the middle of critical loading. (This assertion follows from 
the observation that any open subset of critically loaded times must always be in the 
middle of critical loading.) The circles denote closed sets that are nowhere dense. 

The first theorem concerns sample-path properties of the asymptotic diffusion 
term. 

THEOREM 3.1 (SAMPLE PATHS OF Q(1)). The process Q(1) is upper semicontinuous, 
almost surely. It is discontinuous at time t, with a nonzero probability, if and only if t is 
the end-point of overloading or critical loading. The set of such points is nowhere dense. 

The proof of Theorem 3.1 is deferred to the end of ?7. We proceed with localizing 
our asymptotic expansions to the various regions. 

THEOREM 3.2 (UNDERLOADED). AS the time points t1 < t2 < '' vary through the 
underloaded region, 

(3.2) limQE(ti) Q(t), 

for all i = 1,2,..., where the Q(ti)'s are mutually independent random variables, and 
the distribution of Q(ti) is geometric, with parameter p(ti). 

The proof of Theorem 3.2 will be given in ?8. The geometric limiting marginal 
distributions can be anticipated from Massey (1985), who proved 
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THEOREM 3.3 (TRANSITION PROBABILITIES). Suppose that A and Ct are infinitely 
differentiable functions on the positive real line. As E 0, QE(t) converges in distribution 
to a probability measure if and only if p*(t) < 1, at all t > O. Moreover, the distribution 

of QE(t) has then the following asymptotic series: 

00 

p(Qe(t) = n) E k 
Ek_j(k)(t), e 0, 

k=O 

where 7r0)(t) = (1 - p(t))p(t)n, and the r(k)(t)'s are, for each fixed integer k > 1, the 

unique solution to the equations 

,,f~\ (k + 1) t_,(kS+1)(t) d .(k)[ (t)rrk+l)(t) 
- A(t)k)(t)= dt (t) 

and 

A(t) ),+ll)(t) + /_(t)T,1(k+l)((t) - (A(t) + ,( t)) ,1(k+1)(t) = d(kt) 

for all n > 1. 

A simple consequence of Theorem 3.3 is 

limP(QE(t) > 0)= fp(t) if p*(t) < 1, 
eim o 1 otherwise, 

which holds for all t > 0. Both Theorems 3.2 and 3.3 clarify the common practice of 

approximating the Mt/Mt/1 queue, when underloaded at time t, by the M/M/1 
queue with traffic intensity p = p(t). In particular, such an approximation is not 
justified when p(t) < 1 while p*(t) > 1. 

For the next theorem, define 

(3.3) QE(s,t) -X(s, t) - inf XE(r, t), O < s < t 
s r< t 

where 

X'(s, t) -Ne +(s, t) - E- (s, t), 

+(s, t,) N+(el A(r) dr) - N+ fi A(r) dr 

and N- is defined similarly in terms of N-. The process {Qe(s, t)lt > s} has the same 
distribution as Q' conditioned to be zero at time s. 

THEOREM 3.4 (ONSET OF CRITICAL LOADING). Consider a point t that is an onset of 
critical loading. If A and Au are differentiable in a neighborhood about t, and 

A() ) k)(t) ' 
A(t +,) = tL(t) + Ak! +o( k), 
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for some k > 1, then for all pairs of real numbers To < T, we have 

QE(t 1E/(2k+l)T1O2t + dl/(k+l)T' d 1 1 
Qt + /(2 + )To, t + e /((To, T) - inf W(TO, 0)] 2k 1/ \+ T 

T<o<.<T 

+ E(k /(2k + 1) 

where 

- A(k)(t) 
W(ToT) = (k ) [rk+l- To+l] + W(21(t)(T- To)). 

The proof of Theorem 3.4 will be given in ?9. We have rescaled space and time so 
that the original queueing process, now evolving over T > To, converges to a reflected 
Brownian motion with polynomial drift. For example, with k = 1, we have 1/(2k + 1) 
= k/(2k + 1) = 1/3 and the drift is quadratic. For k = 2, we have 1/(2k + 1) = 1/5, 
k/(2k + 1) = 2/5, and the drift is cubic. These last two pairs of exponents for e 
correspond to the time and queue length scalings given by Newell (1968) and (1982) 
for diffusion approximations at "transition through saturation" (page 270 of Newell 
1982) and "a mild rush hour" (page 275) respectively. 

Now introduce the process 

W(s, t) = W(fo[A(r) + Ip(r)] dr) - W([A(r) + AI(r)] dr) 0 < s < t. 

The next two theorems are immediate consequences of Theorems 2.2 and 3.1. 

THEOREM 3.5 (MIDDLE AND END OF CRITICAL LOADING). AS the point t varies 
through the middle or end of critical loading, 

Q ) - sup W(s,t) + o- 
vE s Et v E 

where t = sup It. 

Recall that sup,s W(s, t) = Q(l)(t) hence, by Theorem 3.1, it is continuous at t in 
the middle of critical loading, for almost all sample paths. Furthermore, if t belongs 
to an interval (1, r) of critical loading (which is by definition the middle of critical 
loading), and (t is a closed interval, then over (1, t) the queueing process rescales to 
a driftless, reflected Brownian motion. On the other hand, for t at the end of critical 
loading, Q(1) is still left-continuous for almost every sample path, but it is not 
right-continuous at t with a positive probability. 

THEOREM 3.6 (OVERLOADED). AS t varies through the overloaded region, 

d t lrtA1A1 _ 

QE(t) - [ A(r) - i(r)] dr + L 
sup W(s,t*) + W(t, t) + o . 

where t* = sup ct < t. 

With this theorem, one can demonstrate the phenomenon that each time of peak 
arrival rate lags behind a time of peak congestion, or peak queue length. Assume for 
simplicity, that ,u is constant. Now suppose that Q(O) attains a positive local maximum 
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at t, a time of overloading. Note that (t*, t) is the maximal time interval prior to t 
over which overloading occurs. (In particular, t* is a time for the onset of overload- 
ing.) It follows that if l* = sup er for every intermediate time I E (t*, t), then 
/* = t* and so A(t) = ut must hold. Since A(t*) = /u as well, A must attain some 
maximal value between t* and t. 

THEOREM 3.7 (END OF OVERLOADING). If overloading ends at time t, and A and IL 
are continuous in a neighborhood of t, then for all T, 

A_+ 
QE(t + XvT)- - sup W(s,t) + (A(t)- ((t))T + o(-. 

se4t-{t} 

The proof of Theorem 3.7 will be given in ?10. Theorems 3.5 and 3.7 clarify an 
issue not addressed thoroughly in either Massey (1981) or Newell (1968). Proposition 
6.3 of Massey (1981) hints at this behavior by showing that the mean queue length at 
the end of overloading, can grow no faster than 1/ CVc. Note that at the end of 
overloading A(t) - t(t) < 0. Hence the leading asymptotic term for the end of 
overloading grows linearly in T, for sufficiently negative T, but converges to zero as 
TT + o. 

4. Examples. 

4.1. The M/M/1 queue. For the time-homogeneous M/M/1 queue, A(t) A 
and tu(t) - t. Our formulas then reduce to 

Q(0)(t) = (A - t)t - min (A -)s 
O<s<t 

and 

Q(1)(t) = W((A + ,t)t) - min W((A + t)s), 
s (e t 

where 

(t = ({ < s < tl(A - t) (t - s) = Q(?)(t)}. 

For all t > 0, our theorems now reduce to: 

QE(t) = (A - t) t +o ) a.s. 

and 

(4.1) 

1 (A - )t + W((A + /)t) +o - 
1 

if A >, E 
-t W((A + It)t) - min W((A + ()s) +o if A -, 

Q + o(1 ) if A < , 

IQ +o(l) ifA <p., 

where Q is a geometrically distributed random variable with parameter p = A/t. 
Notice that (4.1) summarizes the asymptotic results for Theorems 4.6.14 and 4.6.16 of 

42 



STRONG APPROXIMATIONS FOR TIME-DEPENDENT QUEUES 43 

Prabhu (1980). When A -= /, the limit Q(I) of xEQe is the well-studied, reflected 
Brownian motion (RBM). Time-homogeneous models can, in fact, be analyzed in a 
considerably wider scope. For example, the above results for A > Au, are a special case 
of the heavy traffic limit theorems for multiple channel queues in Iglehart and Whitt 
(1970, Theorems 2.1 and 2.2). Also, Chen and Mandelbaum (1991b), following 
Reiman (1984), generalize most of the above to nonparametric Jackson networks. 
There A, the effective arrival rate to a node, must first be calculated by appropriate 
traffic equations. A node is called nonbottleneck if A < A, balanced bottleneck; if 
A = At and strict bottleneck if A > tu. The asymptotic expansions (4.1) are established 
only for bottlenecks. 

4.2. A specific Mt/Mt/l queue. The present example illustrates the relationship 
between the arrival rates A, the service rates /L, the evolution of the set-valued 
function JEt, the fluid model Q(0), and the diffusion approximation Q(1). In Figure 4.1, 
the middle graph is that of A and tu, where IL is assumed to be constant. The graph 
immediately above it is that of a and its upper envelope x, with 

a(t) = ft[x(s) - A(s)] ds. 
^o 

A B , C 

'I I I 
I I I 

I - I I 
I I 

I I I 

D E F G 
I I 

I I 
I 

I I 
I I 

t 

ia t 
f t a I l I t 

BM I I RBMI BM I RBMI 

Q(1 t 

~_ _ 

FIGURE 4.1. Graphs for (t,, a and a, A and /u, Q(O), and a realization of Q(). 
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The fluid model Q(?)(t), plotted on the graph that is second from the bottom, is equal 
to a(t) - a(t), which is the vertical gap between the curves a and a. The topmost 
graph is a plot of t versus (It, where (t is represented as a subset of the vertical line 
that passes through t. Notice that the set of points in kt is held fixed when t passes 
through time of overloading, and new time points are added to it during times of 
critical loading, but all points are lost except for the current time points during times 
of underloading. Finally, the bottom most graph is a realization of the diffusion term 
Q(1). Notice that it evolves, depending on the regime, as either zero, Brownian motion 
or reflected Brownian motion. If the time interval regions in Figure 4.1 are indicated 
by the letters A through G, and the boundary point between regions is denoted as AB 
for example, then we can characterize the boundary points and regions as follows: 

* Underloaded: A, C 
* Onset of Critical Loading: AB, CD 
* Middle of Critical Loading: D, F, DE 
* End of Critical Loading: FG 
* Overloaded: B, E 
* End of Overloading: BC, EF 

When interpreting Figure 4.1, readers may find it useful to consult Proposition 7.2, 
which characterizes the regions in terms of either p*(t) or both )t and p(t). 

4.3. A simple periodic queue, and Lindley's equations. Let A(t) = A(0) + 
A sin(2rt/T), t > 0, for some period T > 0 and amplitude A > 0. Take ,t(t) - t to 
be constant. Assume that A(0) > A, to maintain A nonnegative. Then the queue is 
permanently underloaded when Au > A(0) + A, and overloaded after a finite time 
when /j < A(0). For the case A(0) < tu < A(0) + A, the queue alternates periodically 
between over- and underloading. The case A(0) = , is particularly simple and 
pleasant to deal with. The fluid model Q(O) is then positive at all times, except for 
times tn = nT, n = 1, 2,..., which are end-of-periods for A. Accordingly, the queue 
is always overloaded, except at the {tn's, which are end-of-overloading epochs. 
Furthermore, 

Q(1)(t) =B(t)- min B(tn), t > 0, 
n <t/T 

where B(t) = W[2,Lt + (AT/27)(1 - cos(27rt/T))], t > O. In recursive form, 

Q(1)(t) = [B(t) - B(tn)] + Q()(tn), t E [tn, tn+l), 

and 

Q()(tn+l) [Q(1) (tn+ -)] + [B(tn+l) -B(tn) + Q(1)(tn)]+, 

for n > 0, starting with Q(1)(0)= 0. We recognize this last recursion as Lindley's 
equations with the i.i.d. increments 

In = B(tn+) -B(tn) N(O, 2T). 

It follows that 

n >0, 
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for all n > 0; hence 

lim -Q()(nT) A V2iL T max W(t). 
n-->o n 0<t<l 

4.4. The general periodic case and long-range planning. Consider A and Au in 
(2.1) and (2.2) which are periodic. Suppose that A has period-length T; denote by 

- 1 T 
A = A(s) ds, 

the average inflow per period, and define i similarly. We accelerate the time 
evolution by a factor of n = 1, 2,.... Formally, this entails looking at Qn(t) = Q(nt), 
t > 0, constructed from Xn(t) = X(nt). Letting n To yields the M/M/1-like asymp- 
totic expansions 

Qn(t) = n(A - )+t + o(n) a.s. 

and 

n(A - iL)t + fn4W((A + /)t) + o([n) if A > J, 

Q"(t) 
d 

n [ ((W (A + Fl)t) - min W((A + )s)] + o(vn) ifA = I. 

In real-world terms, these latter asymptotic expansions can be thought of as being 
appropriate for strategic planning, at the corporate level of decision making, where 
long-range goals are formulated. The time-horizon is then typically measured in 
quarters or years; hence details must be suppressed. In contrast, our (2.7) expansion 
might be suitable for operational/regulatory control, at the shop-floor level of 
decision making. In this context of decision making, details count, since they must be 
responded to within a time-horizon of weeks or days, perhaps even hours or seconds. 

5. Proof of the main theorems. 

Proof of Theorems 2.1-2.3. If N+ is a unit rate Poisson process, a standard 
Brownian motion W+ can be realized with it on a probability space (fl, -, P), such 
that 

IN+ (t,w) - t- Wf(t,w)I 
K+(Io)- sup log(2') t) < oo a.s. 

t>0 log(2 v t) 

THEOREM 5.1 (STRONG APPROXIMATIONS FOR LEVY PROCESSES). Let M be a Levy 
process with E[exp M(1)] < o. Then M can be realized on a probability space such that 

s M(t, ) - ltt - W(O-2t, ) ) sup < oo a.s., 

where /L = E[M(1)], 0a2 = Var[M(1)], and W is a standard. Brownian motion. Conse- 

quently, 

M(t, w) = ALt + W(o-2t, ) + O(log t) a.s. 

for large t. 
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PROOF. See Corollary 5.5 of Chapter 7 in Ethier and Kurtz (1986). 1 
Now let N- be another unit rate Poisson process independent of N+ with 

corresponding standard Brownian motion W-, which is also independent of W+. Just 
like K+, we construct K- out of N- and W-. For all E > 0, we have 

(E1 s r) dr - s 1 s) N( fA(r)dr - A(r)dr- W+( -fA(r)dr) 
\ 

J 
t 

< K+*log 2 V - A(r) dr a.s. 

for all 0 < s < t. We have a similar pathwise inequality for N-((1/E)f3O(r) dr), and 
combining these results gives us 

(5.1) XE(s) - e 
[A(r) - t(r)] dr W (+ W- j r) d (r) dr) 

1 t 1 t 
< K log 2 V f- A(r) dr + log 2 V - f/( r) dr a.s. 

\ ?2 f/ ) f -'o 

for all 0 < s < t, where K = max(K+, K-). 
From this bound, the functional strong law of large numbers limit for Qe (Theorem 

2.1) follows since we can rewrite Q' as 

Qe(t) 
= sup [XE(t) -Xc(s)], 

O<s<t 

and combine this with the following results: First, if a and b are bounded functions 
on [0, t] then 

(5.2) sup a(s) sup b(s) < sup a(s) b(s)|. 
O<s<t O<s<t O<s t 

Second, we have 

limEWf-t) = 0 a.s. 

Finally, we get from (5.1), 

limeX(s) = f'[A(r) 
- Lt(r)] dr a.s. 

which establishes the FSLLN (Theorem 2.1). 
Theorem 2.3 follows from (5.2) and (5.1), since 

sup QE(t) - max [XE-(t)- E(s)l] < 2 (Ilog e + (r(T)) a.s. 
0<t< T 0 0<s< t 

where XE is defined by (2.8), and 

a(T) = log4 + log( A(r) dr) + log( t(r) dr) 
VO ) fo ) 
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Finally, for the FCLT (Theorem 2.2), we observe that for all e > 0, 

XE(s) 
d 

e 
f [A(r) - L(r)] :dr + W( [A(r) + /l(r)] dr), t > 0. 

Here W is a standard Brownian motion, and equality holds between distributions of 
stochastic processes (equivalently, between all their finite-dimensional distributions). 
It then follows that 

(5.3) 

d t 
max [XE(t) -XE(s)] d max 

- [A(r) - x(r)] dr 
0< s<t 0sst ? 

+ W( [A(r) + u(r)] dr) - W( [A(r) + (r)] dr)) 

Our main asymptotic expansion is an immediate consequence of the fundamental 
lemma below, and the sample path continuity of W. 

LEMMA 5.2 (FUNDAMENTAL LEMMA). Let x and y be real-valued continuous func- 
tions on [0, oo). Then with respect to Skorohod's Ml-topology, 

(5.4) 

(1 1 1. 1 
max -x(s) + -ry(s) - max x(s) +- ) maxy(s) + o (- as e O, 

o0<s <t 15 - - s 0 t.<s.<t 0ASAt E 4 6 0As-t 4 SE, - E 

where 

(5.5) o 0 < s < tlx(s) = max x(u)}. 

Here we assume that y, given by 

(5.6) y(t)= maxy(s), 
sE t 

has a finite number of discontinuities in every finite subinterval of [0, oo). 

REMARKS. (1) The relation (5.4) amounts to 

0im 
-x + ~-=y 

- -x =y, in Ml,. 

It is equivalent to 

(5.7) lim (x + ey -x) =y 

as well as 

(5.8) lim (nx +y - n) = =, 
n Too 
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both in M1, and it implies 

limE -x -+ -y1 = , u.o.c. 

(2) The representation (5.7) is that of a directional derivative of the function 
x -* x, at the point x, in the direction y. The representation (5.8) is the one we find 
most convenient to actually prove, and we do it in the next section. 

(3) The restriction on the discontinuities of y stems from our method of proof. We 
have no reason to suspect that Lemma 5.2 fails to hold for arbitrary continuous x and 
y. (Some form of continuity seems to be needed. For example, with 

?x(t)= 
t, 

0-4<t<, {1, 0< ? <t< <1, 
2 - t, t>l, y(t) t 

the left-hand side of (5.8) is identically 1 while y(t) = 0 for t > 1.) 

To apply Lemma 5.2 in our situation, note first that each sample path on the 
right-hand side of (5.3) is of the form 

(5.9) + ) -[ + ) (x) 

with 

4(x) x - x, 

and 

x(t) = t[A(r) - (r)] dr, y(t) = W(f[A(r) + p(r)] dr). 

Letting 1 0 in (5.9), and relying on the continuity of y, gives 

1 1 
lim-[q x(x + y) -p()] = im - (x + ey - x) 
ES0 E E J,0 

=y- lim (x+ey -x)=y-y., 

where 

y,(t) = miny(s), 

and 

t = (0 < s < ta(t) - a(s) = a(t) - a(t)} 

= {o< s < tl ? [A(r) - (r)l dr = Q()(t)} 

= (0 < s < tIQ()(s) = 0 and Y(0)(s) = Y()(t). 

This concludes the proofs of Theorems 2.1-2.3. u 
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6. Proof of the fundamental lemma. Our goal in the present section is to 
establish the monotone convergence 

(6.1) Yn = nx + y - nx . y, in M1, 

as n T oo and under the assumptions of Lemma 5.2. We start with monotone pointwise 
convergence, then proceed with a careful path-analysis of yn and y that culminates in 
Ml-convergence. 

LEMMA 6.1 (MONOTONICITY). (n + 1)x + y - (n + 1)x < nx + y - nx. 

PROOF. Equivalently 

(n + 1)x + y- nx + y x, 

which is obtained by substituting f = (n + 1)x + y and g = nx + y into 

(6.2) f- f -g 

and we are done. [ 

LEMMA 6.2 (POINTWISE CONVERGENCE). Let sn(t) be a point in [0, t] where nx + y 
attains its maximum over that interval. Then, as n oo, 

(6.3) y[sJ(t)] -'(t), n{x[sn(t)] -x(t)} -0, forallt >O, 

hence the convergence (6.1) holds pointwise. 

PROOF. We have 

(6.4) y[sn(t)] > y[sn(t)] + n(x[sn(t)] -x(t)}, 

> y(s) + n[x(s) - x(t)], for 0 < s < t, 

=y(s), for s E c)t 

implying that 

(6.5) lim y[sn(t)] > y(Ot), t > 0. 
n ---> oo 

We now verify 

(6.6) lim y[s,(t)] < y(t), t > 0, 
n -- o00 

which, combined with (6.5) and (6.4), will end the proof. First, observe that the limit 
s.,(t) of any convergent subsequence sn,(t) -> so(t) must belong to (D. (Otherwise 
n{x[s,,(t)] - (t)} -t) -oo, contradicting (6.4).) Next, take a subsequence of the 
bounded sequence {y[s,(t)]} that converges to lim .ooy[s,(t)]. Without loss of 
generality, sn(t) -> so(t) E pt; hence 

(6.7) lim y[sn(t)] = y[s(t)] < y(t), 
n - oo 

and this completes the proof. o 
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LEMMA 6.3 (UPPER SEMICONTINUOUS LIMIT. The function y is upper semicontinu- 
ous and the convergence in (6.1) is uniform over compact subsets of continuity points 
for 5. 

PROOF. Monotone decreasing limits of continuous functions must be upper semi- 
continuous. Monotone convergence of continuous functions to a continuous limit 
must be uniform on compacts, by Dini's theorem. a 

For x E D let Is"at(x) equal the number of intersections of x with the strip [a, /3] 
during the time interval [s, t]. This number equals N if it is possible to find N + 1 
points to < t1 < ... < tN in [s, t] with the property that either 

(6.8) x(t0) < a, x(tl) >3, x(t2) < a,..., 

or 

(6.9) x(to) > 3, x(tl) < a, x(t2) > 3,..., 

and it is impossible to find N + 2 points with this property. The number of 
intersections is arbitrarily taken to be -1 if no such N exists (which occurs when x 
stays within (a, /3) during [s, t]). 

LEMMA 6.4 (SKOROHOD 1956, ?2.2.11, p. 267). Given x, x E D, then x -> x in M 
if and only if 

(6.10) lim Is'l(x) = Is'(x), n Too, 

for all 0 < s < t which are points of continuity of the limit x, and for almost all 
a < f3 EE R1. 

We have already verified that the convergence in ?6.1 is pointwise monotone 
convergence of continuous functions. But this need not imply M1-convergence. 
Indeed, simple counterexamples can be constructed with x(t) = 1[l1,)(t), and xn x 
in a way that I1/21/2(xn) > 3 while 11/421/2(x) = 1. However, Lemma 6.3 guaran- 
tees (6.10) for [s, t] over which y is continuous. Furthermore, the assumed isolated 
discontinuities of y allows one to verify (6.10) only for [s, t] in which y has a single 
point of discontinuity, and this will now be carried out. 

LEMMA 6.5 (CONTINUITY CONDITIONS). Given a continuous function x, the function 
y is continuous at t > 0, for all continuous functions y, if and only if one of the 
following mutually exclusive statements holds: 

(i) t o 4t. 
(ii) Pt0 = {t}. 
(iii) t E <(t {t), t is not isolated in (Pt, and (t c (, for some r > t. 

These conditions can be recast in terms of x as: 
(i) x(t) < x(t). 
(ii) x(l) < x(t) = (t), for all I e [0, t). 
(iii) x(l) = x(t) = x(t) for some I < t, x(l,) = x(t) for some sequence ln ? t, and 

x(t) = x(r) for some r > t. 

LEMMA 6.6 (LEFT DISCONTINUITY CONDITIONS). The following three statements are 
equivalent: 

(i) The function y is left discontinuous at t > 0, for some continuous function y. 
(ii) t E (t {t}(, and the point t is isolated in Pt. 
(iii) For some s E [0, t) and all I E (s, t), 

x(s) = x(t) = x(t) and x(l) <x(t), 
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in which case the discontinuity is of the form 

(6.12) y(l) = y(t -) < y(t +) = y(t). 

LEMMA 6.7 (RIGHT DISCONTINUITY CONDITIONS). The following three statements 
are equivalent: 

(i) The function y is right discontinuous at t > 0, for some continuous function y. 
(ii) t E c t - {t}, and r c (t, r] for all r > t. 
(iii) For some 0 < I < t and all r > t, 

(6.13) x(l) = x(t) = x(t) < x(r) 

in which case, the discontinuity is of the form 

(6.14) y(t -) = y(t) > y(t +) = y(t). 

Proofs of Lemmas 6.5, 6.6 and 6.7. If t e <t, then x(t) <x(t). Since x is 
continuous, then x is strictly less than x on an open neighborhood of t. It follows 
that the set <>s equals )t for all s in this open neighborhood. Therefore y is constant 
on this open set, and so y is continuous at t. 

If t E (It, then x(t) = x(t). Now suppose that Pt = {t}. For all s > 0, P5s is 
a compact subset of [0, s]. For some continuous function y, there exists a u5 E b s 
such that y(us) = y(s). To prove that y is continuous at t, it is sufficient to show 
that lim5_ u5 = t. Let {sn,n > 1} be a sequence such that limn. s,n = t and 
n - 

Usn 
= v, for some v. By compactness, we can always find such a sequence. Since 

0 < un < s, for all n > 1, we have 0 < v < t. On the other hand, 

x(v) = lim x(uS) 
= lim X(Sn) = 

x(t). 
n -> oo n - oo 

Consequently, v E 4t and so v = t. Hence in general, the limit exists and must 
equal t. 

If t cE (t 0 {t}, and t is not an isolated point in (<t, then there exists a strictly 
increasing sequence {lnIn > 1} where lim oo In = t such that In E (t for all n > 1. 
Moreover, <>, = It n [0, I,] since x is an increasing function, and x(l,) = x(t) by 
definition. The sequence of sets I, form an ascending chain, so y(ln) is a monotone 
increasing sequence with y(l,) < y(t). Hence limn,oo (ln) exists, and 

lim y(ln) > Y(1n) 
n -> oo 

for all n since ln E (PI. But 

y(t) = (l,,) v sup y(s) = lim y(l) V y(t) = limy(ln). 
setC,n(ln,t] 

n -~ oo n - oo 

So for any 1 arbitrarily close to t from below, we can find some ln< 1 and 
consequently 

y(Wn) < W) < y( 

This shows that y is left-continuous at t. 
Conversely, if t E ()t {t}, and t is isolated, let r - sup(Pt - {t}) < t. This gives 

us Ir =- ' for all r < r < t, and c3t = - U {t}. We can find a continuous function y 
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such that y(t) is greater than any value of y on i(. So for all continuous functions y, 
y will not necessarily be left-continuous at t, but 

(6.15) y(t -) = limy(l) = () < (t) 
Tlt 

If t e )t = {t}, and there exists some r > t such that q)t C Dr, it follows that 
4( c ()t for all t < s < r. From this we get ()t = )r n [0, t] and 

y(t) <y(r) < y(t) V maxy(s), 
t<s<r 

which gives us right-continuity for y at t. 
Conversely, if for all r > t, we have that ()t is not a subset of ()r, then x(t) < 

maxt,<<r x(s). This means that (r is a subset of (t, r] and so 

(6.16) y(t +) = limy(r) = y(t) <(t). 
r t 

Since (<t - {t), there exists some continuous function y such that y(t) - y(t); hence 
y is not necessarily right-continuous at t. 

Finally, every statement made here in terms of (t can be restated in terms of x. 
[] 

LEMMA 6.8. The function y has left limits at all t > 0, right limits at all t > 0, 
y(0) = x(O) and 

(6.17) y(t) = y(t -) v (t +), t > O. 

Equivalently, y is an upper semicontinuous function in D. 

PROOF. At t > 0, y is either left-continuous or y is flat to the left of t. In any 
case, y(t - ) exists. At t > 0, either y is right-continuous or (6.13) prevails. When the 
latter applies, let rn, t. Then y(rn) = y(sn) for some sn e ()r n (t, r]. Conse- 
quently, s, --> t, which implies y(r=) = y(sn) -> y(t + ). Again, y(t + ) exists in all 
cases. In fact, a review of the various alternatives analyzed in Lemmas 6.6 and 6.7 
reveals that, for all t > 0, either y(t) = y(t + ) or y(t) = y(t - ). Upper semiconti- 
nuity now yields (6.17). n 

LEMMA 6.9. The function y is flat to the left of its discontinuities. 

PROOF. Fix t > 0, a point of discontinuity for y. The assertion is clear if t e ()t is 
isolated (left-discontinuity). Otherwise (right-discontinuity), let In E <)t be such that 
In t. Then 

(ln) (t -) =(t) > (t +) = y(t). 

Now y(l,) = y(u,) for some u, E (l - c t. Let u be a cluster point of {un}. Then 
u < t since y(u), being a cluster point of {F(l,)}, satisfies y(u) = y(t) > y(t). Finally, 
u e c(t; hence u E u and (>. is monotone nondecreasing over [u, t]. One deduces 
that y(u) > y(u) = y(t) > y(u), revealing a point u < t for which y(u) = y(t). Since 
y is monotone over [u, t], we are done. o 

Intermediate summary. We have shown that 
(i) y(t) = y(t - ) v y(t + ) at all t > 0; y(0) = y(0). 
(ii) y is flat to the left of its jumps. 
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Consider a complete excursion of x from x which starts at s and ends at t. By this we 
mean that s is a point of left-increase for x (x(l) < x(s) for all 0 < I < s, denoted by 
X T s - ), and that t is a point of right-increase for x (X(t) < x(r) for all r > t, 
denoted by xc t + ). For such an excursion, 

(i) y(s) = y(s); s is a point of continuity for y; 
(ii) y(') is monotone nondecreasing over [s, t], possibly with jumps. 
(iii) Finally, 

y(t) > y(t -) t -) < (t) = y (t +) = y(t), left-discontinuity at t; 

y(t) < y(t -) y (t -) = y(t) > y(t +) = y(t), right-discontinuity at t; 

y(t) =y(t -) (t) y(t) = y(t ) - y(t), continuity at t. 

Before going on, readers may find it useful to draw the graph of 

(6.18) y,(u) = n[x(u) - x(t)] + y(u), s < u < t, 

over an excursion [s, t] as above, and then analyze the convergence yL, y over [s, t], 
as n T o. (A key observation is that y,(u) = y(u), for all u E c|t and all n > 1. Thus, 
the component n[x(u) - x(t)], s < u < t, decomposes into negative excursions of x 
from x, each of which is "hanging" on successive points in 4)t.) 

LEMMA 6.10 (M1-CONVERGENCE AROUND LEFT-DISCONTINUITIES). Let t > 0 be 
such that y(t) = y(t + ) > y(t - ). Then the convergence (6.10) applies over a neigh- 
bourhood of t. 

PROOF. Choose e > 0 so that x and y are flat over [t - , t], and y has no 
discontinuities over (t, t + e]. For such e, 

(i) y, is monotone nondecreasing over [t - E, t], and 
(ii) y 4 yn uniformly over [t, t + e]. 

This verifies (6.10) over [t - e, t + e]. n 

LEMMA 6.11 (M1-CONVERGENCE AROUND RIGHT-DISCONTINUITIES). Let t > 0 be 
such that y(t) = y(t - ) > y(t + ). Then the convergence (6.10) applies over a neigh- 
bourhood of t. 

PROOF. We are going momentarily to check that: 
(i) There exists e > 0 for which the y,'s are all flat over [t - E, t]; and 
(ii) For all n large enough, either y, is monotone decreasing over [t, 0o) or there 

exists a sequence r,, t for which dy, = -n dx over [t, r,), y,(r) = y(rn), and 

(6.19) sup (s) < sup y(s), for all 8 > 0. 
t <s r, + t<s <r,,+ + 

It follows that the only way to violate (6.10) is to have a < 3 E [R1 and a sequence 
un > r,, u, $ t, such that (r,) < a and ,(u,) > 3. This, however, gives rise to 
lim, t y(s) < a and lim, t y(s) > /8, which contradicts the existence of y(t + ). 

To verify (i), recall that y is flat to the left of t, choose e, 8 > 0 so that for all n 
large enough, 

n[x(s) - x(t)] + y(s) < y(s) - 8 < yn(s) - 8, 
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deduce that 

(6.20) nx +y < nx +y - 8, on[t - E,t], 

and conclude that nx + y is flat over [t - e, t]. By Lemma 6.6, x is flat to the left t, 
which establishes (i). 

The continuity of x and y guarantees (6.20), perhaps with a smaller 8 > 0, also on 
a neighbourhood to the right of t. It follows that dyn = -ndx on that neighbour- 
hood. If Yn') has points of increase beyond time t, there must exist u > t for which 

(nx + y)(u) = nx(u) + y(u) < nx(u) + y(u), 

thus y,(u) < y(u). With ,(t) > y(t) > (t - ) = y(t), continuity implies the exis- 
tence of r E [t, u] where Uy(r) = y(r). Along the same lines 

(iii) If there exists N for which yN(r) = y(r) at some r > t, then for each n > N 
there exists rn > t such that y(rn) = y(rn). 

Indeed, yn(r) decreases in n, consequently y(r) > y5(r) for all n > N, and since 
UY(t) > y(t), there exists u E (t, r] at which yU(u) = y(u). Finally, let 

r = 
inf{s > t: (nx + y)(s) = (nx + y)(s)} < oo. 

Then for all 8 > 0, as in Lemma 6.1, 

(nx + y)(r + 8) - nx(r + 8) = sup (nx +y)(s) - sup nx(s) 
t<s<r+ t<s<r+ 

< sup y(s), 
t<s <r+ 

which concludes the proof of Lemma 6.11. o 
EXAMPLE. We now give an example to show that the error term o(1/ q<) in 

Lemma 5.2 is tight. Take, 

Xn(S) -a ' sn+l and y(s) - -,3 (t - s) 

where a and B3 are positive constants. By taking the derivative with respect to s of 
(1/)x,(s) + (1/ E )y(s), we get for sufficiently small E, that this sum of functions 
will realize its maximum on [0, t] at 

a (n +1 

This in turn gives us 

(I / , , 1 6 ^ t I 1n i 13 
lln 

max x(s) + Y y(s)= +(+ 1 O<s<t E-y 
7 

l1n n + a (n + 1) 

For arbitrary n, we see that the o(1/ Vc) description for the error is tight. Notice also 
that y(t) = -,/t, which is continuous in t, and the error is independent of t. This 
illustrates the uniform convergence of the expansion in E. 
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7. Properties of the traffic intensity parameter. This section is devoted to 
establishing useful properties of p*. They will be used to complete the proof of 
Theorem 3.1, at the end of the section. 

PROPOSITION 7.1. The function p* is continuous on [O, oo). 
REMARK. For the unstable example given in Heyman and Whitt (1984), A is a step 

function, /u is constant, and p* is a discontinuous function of time. 
PROOF OF PROPOSITION 7.1. Define a bivariate function R on the set {(s, t)10 < 

s < ti such that 

(7 ( ) dr/lfsI(r) dr if s < t, 
(7.1) R(s, t) p( 

{p(t() drifs> t. 

Since A and /u are continuous, then fstA(r)dr and fstlt(r)dr are continuously 
differentiable as functions of s and 

(7.2) lim t'(r) dr 
sit fst{(r)dr 

It follows that R is continuous on the closed set {(s, t)10 < s < t) and uniformly 
continuous on the compact set {(s, t)10 < s < t < T} for some fixed T. 

Now p*(t) = supo0<st R(s, t), so for all t and t' we have 

Ip*(t) -p*(t')l A sup R(s,t)- sup R(s,t') 
O< st 0< st' 

< sup R(s,t) - sup R(s, ') 
O< st O< s < t 

+ sup R(s,t')- sup R(s,t')i 
< s t <s <t 

< sup R(s,t) -R(s,t')I + sup R(s,t')- sup R(s,t'). 
0< s< t 0<s<Ot 0<s<t 

By the uniform continuity of R, the above bounds give us limt _t Ip*(t) - p*(t')l = 0, 
and this completes the proof. a 

The sets t for t > 0, are determined by the fluid limit. In the proposition below, 
we use this relation to describe the three main asymptotic regions in terms of the 
fluid approximation: 

PROPOSITION 7.2. The following statements hold for all t > 0: 
(i) We have p*(t) < 1 if and only if It = {t} and p(t) < 1. 
(ii) We have p*(t) = 1 if and only if t EE ct and either (ct {t} or p(t) = 1 occurs. 
(iii) We have p*(t) > 1 if and only if t e Pt. 

PROOF. It is sufficient to prove only the first and third statements since the second 
one will follow from them. Recall that 

Q(0)(t) = sup f [A(r) - r(r)] dr 
O?s6t s 

and (t consists of the times s such that fst[A(r) - pI(r)] dr = Q(?)(t) for all 0 < s < t. 
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It follows that (>D = {t} if and only if f,t[A(r) - i(r)]dr < 0 for all 0 < s < t. 
Combining this with 

p(t) = lim ftA(r) 
dr 

t ftA ( r ) dr 

gives us the first statement. 
For the third statement, we observe that t 4 Ft if and only if Q(?)(t) > 0. This is 

equivalent to having lf[A(r) - (r)] dr > 0 for some 0 < s < t, which is equivalent 
to p*(t) > 1. o 

LEMMA 7.3. If tn t t with p*(tn) = 1, then p(t) = 1. 

PROOF. Since p* is continuous, we have p*(t) 1. By the definition of p*, we 
either have p(t) = 1, or there exists some 0 < s* < t such that 

(7.3) tA(r) dr= ft,u(r) dr. 

On the other hand, p*(t) = 1 means that for all n, 

(7.4) f A(r) dr < ft(r) dr. 
n tn 

For all sufficiently large n, we have s* < tn < t, and p*(tn) = 1 gives us 

(7.5) A(r) dr < ( r) dr. 

Combining (7.4) and (7.5) with (7.3), we get for all sufficiently large n, 

ftA(r) dr = ftl(r) dr. 
n tn 

Therefore, we have 

fttA(r) dr 
p(t) = lim n = 1, 

n oo ftt f((r) dr 

which completes the proof. D 

LEMMA 7.4. If p* > 1 on (tl, t2) with p*(tl) = p*(t2) = 1, then 

ft2A() dr= ft2(r)dr. 
t tl 

PROOF. By the definition of Q(?)(t) and (It, we have 

Q(0)(t) = f[A(r) - (r)] dr 

where t* = sup Pt. If t1 < t < t2, then t 0 <t, t* < t, and (Pt* = t. Since t* E 4t*, 
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we must have p*(t*) < 1 and t* < t1. By the continuity of Q(O), we have 

l2A(r) dr= [(r)dr. 
t2 t2 

where t* < t1. However p*(tl) = p*(t2) = 1, so we must have 

ft2A(r) dr < ft2t (r) dr and ft A(r) dr < f;tl(r) dr. 

Combining these two inequalities with the previous equality gives us the lemma. u 

LEMMA 7.5. If p* > 1 on [t, t2] with p*(tl) = p*(t2) = 1, then 

ft2A(r) dr = 2(r) dr. 

PROOF. The set A - (tIp(t)> 1) n [t1, t2] is open. By Lindelof's theorem, it 
must equal a countable union of disjoint intervals where p* equals one on the 
endpoints. By our previous lemma, we have 

f[A(r) - (r)] dr = 0. 

So it is sufficient for us to prove that 

(7.6) | [,A(r) -(- tr)] dr = 0. 
[t, t2]-A 

This complement of A relative to [t,, t2], is a closed subset of the times when p* 
equals one. With the exception of a countable number of points (the endpoints of the 
open intervals in A), every point t in this set has a sequence within the set where 
tn T t. By Lemma 7.3, this means that p(t) = 1 for all such t or A(t) = L(t), and the 
lemma follows. o 

PROOF OF THEOREM 3.1. By Proposition 7.2 and Lemma 6.5, we have that Q(')(t) 
is continuous at t whenever p*(t) - 1. It now remains to be shown that each subcase 
for p*(t) = 1 implies continuity or discontinuity. 

If the onset of critical loading occurs, then there exists a sequence sn t with 
p*(sn) < 1 for all n. Now p*(t) = 1 implies t E (t. If s E (t and s < t, then 

)sn C ()sm for all s < sn < Sm < t. 

But p*(sn) < 1 implies sn = {s,}, which means that Sn = sm. By contradiction, we 
have proved that )t = {t}. By Lemma 6.5, this makes Q(1) continuous at t. 

If t, t t where p*(t,) = 1 and p* > 1 on [t1, t], then by Lemma 7.5, we have 

| [A(r) -/(r)] dr = 0. 

It follows that tn E (tn C t, and so tn e t for all n. As a consequence, t E ct {t}, 
and t is not an isolated point. It follows from Lemma 6.5, that Q(1) is left-continuous 
whenever t is in the middle or end of critical loading. 
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If in addition, p* > 1 on an open interval with t as the left endpoint, then there 
exists some s > t such that Pt c s which makes Q(1) continuous at t if it is a time 
for the middle of critical loading. 

If t is at the end of critical loading, then there exists as sequence such that s, , t 
with Fs, = {s,}. Since t E (t but Dt 0 {t}, then Dt cannot be a subset of (Ps for all 
t < s. Therefore, Q(1) cannot be right-continuous at t for almost all sample paths. 

Finally, if t is the end of overloading, then (>, ? {t}, but t is an isolated point of 

(Pt, so Q(1) cannot be left-continuous at t on almost all sample paths. o 

8. Underloaded or local equilibrium. 

PROOF OF THEOREM 3.2. We will show by induction on N, that for all t1 < ... 

< t, with p*(ti) < 1, i = 1,..., N, we get 

N 

limP(QE(tl) > nl,..., Qe(tN) > nN) n- p(ti). 
E 10 i=1 

Case [N = 1]. There exists some 8 > 0 such that p* is strictly less than one on the 
closed interval [t1 - 5, t1]. By (2.3) and (3.3), we can rewrite QE(t1) as 

QE(tl) 
= [XE(tl) 

- 
X(ti - 8) + QE(tI - )] v Q 

(tl 
- s, tl). 

By (2.2), we have 

limE[Xe(tl) - X(tl - 8)] = [A(r) - p(r)] dr < 0 a.s. 

and by Theorem 2.1 we have 

limeQE(tl - 8) = 0. 

Combining these two results gives us 

lim [XE(tl) - XE(t - 8) + QE(t1 - 5)] = -oo a.s. 
EI O 

which finally leads to 

(8.1) lim [QE(tj) QE(t - 6 t)] = 0 a.s. 
E10 

So it is sufficient to show that QE(t1 - 8, t1) converges to a geometric distribution 
with parameter p(t1). 

Let Q+ be an M/M/1 queue length process with arrival and service rates 

A'+() = sup A(s) and ,'u+() = inf Jt(s) 
tl-6 <s <t tl--6<S<t1 

respectively. Similarly, define Q- to be an M/M/1 queue length process with arrival 
and service rates 

A-() = inf A(s) and /,-(8)= sup A,(s) 
tl-5<s<tl tl-- <<t1 
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respectively. By stochastic dominance, we have 

Q-(8/e) <stQE(t1 - , t) < stQ+ (/ ). 

So for all n > 0, we have 

P(Q-(8/e) > n) < P(Qe(t - S, tl) > n) < P(Q+(S/6) > n). 

Taking the limit as E 1 0, we get 

A-(8) n J.O 

(uA-(,) 
) < limP(Q( t - , t) > n) < lim P(Qe(t - , t) > n)< +(8) ) 

\_ (?) / e S0 ES0 

By (8.1), this means that for all n > 0, 

( -() < limP(QE(tl) > n) < limP(Q(tl) > n) < +^) ) / 
ES0 E0A 

But 8 can be made arbitrarily small. Since 

limA+(6) = limA-(8) =/A(t), 
aso0 5o 

and a similar relationship holds between / +(8), /t -(), and ,(t), we then get 

limP(QE(tl) > n) = p(t,)". 
Ca 

Case [N --> N + 1]. Observe that if ti < ... < tN < tNv1, where p*(ti) < 1 for all 
i = 1,..., N + 1, then there exists some 5 > 0 such that p* is strictly less than one 
on [tN+l - 8, tN+l], and tN < tN+ - 8. From this it follows that QE(tN+l - 8, tN+l) 
is independent of the random vector (QE(tl),..., QE(tN)). By induction hypothesis, 
we then have for all ni > 0, 

E$O 
lim P(Q (tl) > n ,, .Q(tN) N, E(tN+- , 1( ) > N+n)) 

= 
lmP(Q(t) n,, ) (Q(t ,t > ) 

= limP(QE(tl) > nl,..., QE(tN) > nN)* P(QE(tN+1 ,tN+1) > nN+1) 

N 

- p(ti)'i * p(tN+l)nN+l 
i=1 

N+1 
= p(ti)n', 

i=1 

and this completes the proof. o 
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9. Onset of critical loading. 

LEMMA 9.1. Let A and pI satisfy the hypotheses of Theorem 3.4. We then have for 
our new time scale To and T (not necessarily positive) with To < T, 

limek/(2k+l)XE(t, + el/(2k+l)To, tl + el/(2k+l)T) 
E$O 

A(k)(tl) 
[Tkl 

- +l - ] + W(2.(tl)(T - To)) a.s. 
(k + 1)! 

PROOF. We have in general 

EbXE(tl + EaTo, t1 + eaT) 

- eb-l |I [A(r) 
- ,u(r)] dr + wL2-1 | 

t [A(r) + /p(r)] dr 
tl + eaTo t + EaTo 

+ O(eb log ), 

where a and b are positive constants that are to be determined. By our hypothesis, 

b-1 tl+EaT [A(r) - (r)] dr = A(k(t) k T ]a(k+l)+b- 
E tiEaTo (k + 1)! 

+ o(ea(k+l)+b-l) 

and 

E 2b 1 [A(r) + p(r)] dr = 2b(tl)(T - TO)Ea+2- + O(Ea+2b-1). 
tl +eaTo 

Our goal is now to obtain Brownian motion with drift in the limit as e approaches 
zero. The leading terms for the drift and the Brownian motion expressions will be 
nonzero only when we employ the conditions 

a(k+ 1) + b = 1 and a + 2b= 1. 

These conditions yield a unique solution for a and b, namely 

1 k 
a= 2k+ 1 and b 2k+ 1 

which completes the proof. [ 

10. End of overloading. 

PROOF OF THEOREM 3.7. From Theorem 2.2, it follows that 

lim Q(t) d max W(, t). 
e I 0 s E ~q, 
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Now let r be a nonnegative number. We will use r for positive T, and -r for 
negative T. 

For the case of T > 0, we have 

QE(t + /r) = sup [XE(t + X/r) - X(s)] 
O<s<t 

V sup [X'(t + v/r) - X(S)] 
t<s<t+ v/~ 

= [x (t + vx) -XE(t) + QE(t)] 

V sup [XE(t + 7r)- X(t + v/-)]. 
0<r-<r 

The theorem follows for this case from observing that 

limV '[XE(t + v/E) - X(t)] = (A(t) - )(t))r + o(1) a.s., 
eJ0 

and 

r sup XE(t + Vr) - XE(t + /o-) 

= max (A(t) - L(t))(r - a) + o(1) = o(1). 

The last step follows since A(t) < Iu(t) by hypothesis. 
For T < 0, let T = -r. Since 

QE(t - -r7) = XE(t- fEr) 
- 

XE(t) + sup [XE(t) 
- 

XE(s)] 
O s < t - vT 

and 

lim / [xE(t 
- Vr) - Xe(t)] = -(A(t) - L(t))r a.s., 

ESO 

we need only show that 

limv- sup [XE(t) -XE(s)] 
d 

maxW(s,t) V (A(t) -Iu(t))T. E ,0 O<s<t- /T' SEt 

To show this, let YE(s) = v/[XE(t) - XE(s)]. We then have 

v * E sup [XE(t) - X(s)] 
0 < s < t - /E- 

= sup Y(s) V sup Y'(s) V sup YE(s), 
0<s<t+86 t1+S<st-- 6 t- <s<t- V/er 
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where t1 sup((t - {t}), and the constant 8 > 0 is sufficiently small. By Theorem 

5.1, we have 

E(S) 1 jt[A(r) - 
p(r)] dr + W(s, t)+ o(l). 

vE s 

Combining this with Lemma 5.2, we get 

lim sup YE(s) - sup W(s,t) 
E6 t <O<tl+5 St ,-{ t} 

and 

lim sup yE(s) 
d - o, 

e6O tl+6S<s<t8 

so it remains to show that 

lim lim sup 
S 0 e t-8<s<t- VJ 

we can construct a process yE(s), having the same distribution as YE(s) such 

lim sup YE(S) 
E ,0 t-8 <S <t-qrT 

= lim sup -t[A(r) -t(r)] dr + W(s,t) 
EO t- <S<t-<,T FT V s 

< max WV(s,t) 
t-< s<t 

< max W(s,t) + 
t-5<s<t 

+ lim sup 1 - [A(r) - _(r)] dr 
E IO t-8<s.<t- vr VE S 

lim 
1 

[A(r) -(r)]dr 

< max W(s,t) + (A(t) - (t))r a.s. 
t-5<s<t 

On the other hand, 

(A(t) - (t))r= lim [A(r) 
EO --E t FT- -r[ 

= limYe(t - ViEr) 
E 1O 

< lim sup YE(s) a.s. 
E , 0 t-8 <s <t- VET 

This establishes (10.1), since 8 can be made arbitrarily small. o 

(10.1) 

Now, 
that 

Ll(r)] dr 
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