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STRONG APPROXIMATIONS
FOR TIME-DEPENDENT QUEUES

AVI MANDELBAUM anp WILLIAM A. MASSEY

A time-dependent M, /M, /1 queue alternates through periods of under-, over-, and
critical loading. We derive period-dependent, pathwise asymptotic expansions for its queue
length, within the framework of strong approximations. Our main results include time-depen-
dent fluid approximations, supported by a functional strong law of large numbers, and
diffusion approximations, supported by a functional central limit theorem. This complements
and extends previous work on asymptotic expansions of the queue-length transition probabili-
ties.

1. Introduction. The governing laws for the evolution of real-world queueing
systems vary with time. Yet queueing research and practice, spanning a period of over
nine decades, have been devoted almost exclusively to time-homogeneous models.
Such models can indeed provide reasonable approximations for slowly varying sys-
tems. However, there are many time-dependent phenomena, such as rush hour or
periodicity, that they fail to capture. Time-dependent models are difficult to analyze,
even in a Markovian setting. Our goal therefore, is to develop a rigorous framework
for their asymptotic approximations, starting in this paper with the M,/M,/1 queue.

A Markovian analysis of a time-homogeneous queueing system entails encoding its
dynamics into Kolmogorov’s forward (or backward) differential equations. Their
solution yields the transition probabilities for the queueing model of the system.
However, Kolmogorov’s equations rarely have closed-form solutions, hence one
resorts to steady state analysis. This reduces the problem from solving a set of
differential equations to solving linear equations. The solution of the latter yields the
steady state probabilities for the queueing model.

Time-dependent queueing systems also can be modelled by continuous-time Markov
chains, but they must be time-inhomogeneous. Their transition probabilities solve
Kolmogorov’s equations as well, but one cannot expect explicit solutions in view of
the complexity already encountered in the time-homogeneous case. Worse still, it is
not immediately clear what constitutes a steady state analysis for time-inhomoge-
neous systems (at least when its evolution is not periodic; see for example Asmussen
and Thorisson (1987), Bambos and Walrand (1989), Harrison and Lemoine (1977),
Heyman and Whitt (1984), Lemoine (1989), Rolski (1981, 1990)). In particular,
approximating the behavior of the system in the here and now by its behavior at time
“infinity” is typically futile.

A time-inhomogeneous analogue to steady state analysis was proposed in the Ph.D.
Thesis by Massey (1981) (see also Massey (1985) and Keller (1982)), where it was
coined uniform acceleration. Here one scales all the average instantaneous transition
rates of the Markovian model by a factor of 1/e. As € |0, each rate increases in
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absolute terms, or is accelerated, but the ratio of any two rates relative to each other
is held fixed.

Uniform acceleration enables a dynamic asymptotic analysis of time-inhomoge-
neous queueing models, which yields asymptotic expansions that vary over time.
Moreover, when applied to time-inhomogeneous Markovian systems, it reduces to
either steady state or heavy traffic analysis. (See the examples in §§4.1 and 4.4.) In
Massey (1985), uniform acceleration gave rise to an asymptotic expansion of the
transition probabilities for the queue length process of a time dependent M/M/1
queue, hereafter denoted by M,/M,/1. This provided a rigorous foundation to the
earlier work of Newell (1968) and Keller (1982). It also led to the proper notion of a
time-dependent traffic intensity parameter, namely p*(¢) defined in (3.1) below and
elaborated on in §7.

The purpose of this paper is to complement and refine Newell (1968), Massey
(1981, 1985) and Keller (1982). We do this through an asymptotic analysis of the
queue length sample paths, within the unifying framework of the strong approxima-
tion theorems, introduced by Komlés, Major and Tusnady (1976). Strassen was the
first to prove a strong approximation result, then Skorohod introduced his embedding
of random walks in a Brownian motion, and Keifer used it to establish answers to
questions about best convergence rates (see Csorgd and Révész (1981) and Csorgd
and Horvath (1993) for a survey on the historical evolution of the subject). However,
the framework operate within is the one by Komlds, Major, and Tusnady (1976).
Specifically, in §2, we apply uniform acceleration directly to the sample paths (2.1) of
the queue M,/M,/1. The outcome is the asymptotic expansion (2.7). Its derivation
relies on a functional strong law of large numbers (FSLLN, Theorem 2.1) and a
functional central limit theorem (FCLT, Theorem 2.2). Both theorems are conse-
quences of the strong approximation results in Theorem 2.3. The FSLLN limit (2.4) is
deterministic and, as shown later, has the interpretation of a fluid flow system.
Viewing the original model as a microscopic description, this deterministic fluid
model provides a macroscopic fluid approximation of the queue which, furthermore,
is the zeroth-order term in the asymptotic expansion (2.7) of its sample paths. The
stochastic FCLT limit (2.2) then deserves to be referred to as a mesoscopic first-order
refinement of the fluid model.

During its evolution, the M,/M,/1 queue can alternate between underloaded,
critically loaded and overloaded phases. These phases are determined by its fluid
approximation, and the phase transitions are summarized in Figure 3.1. Moreover,
the asymptotic expansion (2.7) can be localized to each phase, and this is outlined in
§3 and substantiated in §§8-10. In §4, we specialize our results to the time-homoge-
neous M/M/1 queue and to two periodic models. Finally, §§5 and 6 are devoted to
proving Theorems 2.1-2.3 and their supporting assertions. Of special importance is
Lemma 5.2, which provides the sample-path intuition behind our main asymptotic
expansion (2.7).

The literature on time-inhomogeneous models, like the M,/M, /1 queue, is not vast.
Insight and calculations have been commonly based on either approximations (Luchak
(1956), Newell (1968), Keller (1982), Massey (1981, 1985), Rothkopf and Oren (1979),
for example), or simulation (Green, Kolesar, and Svornos (1991) for example). Exact
results are rarely available, with the notable exception of networks with Poisson
arrivals and infinite server nodes (see Eick, Massey and Whitt (1993a,b) as well as
Massey and Whitt (1993)). For a textbook treatment of some aspects of time-depen-
dent queues, see Hall (1991), for example. Our paper focuses only on Poissonian
single-stations, but we are also studying time-inhomogeneous Markovian networks
(Mandelbaum and Massey, in preparation), for which the current paper is a prerequi-
site. Our framework also accommodates more general point processes, as in Chap-
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ter 10 of Lipster and Shiryaev (1989). This latter work employs uniform acceleration
of state-dependent queues, as also in Anulova (1989), Krichagina, Lipster, and
Puhalski (1988), and Yamada (1984). Finally we note that the first application of the
Koml6s, Major and Tusnady theorem is due to Rosenkrantz (1980). The results of
paper suggest that it might be possible to obtain estimates, in terms of €, on the rates
of convergence of the distributions of certain functionals to their limits.

Notations. Denote by D = D[0, ) the space of all functions x: [0, ) — R! such
that x(0) = 0, x is right-continuous at 0, and x is either right- or left-continuous at
every ¢ > 0. (This is a slight deviation from the common convention in which
functions in D are taken right-continuous.) For x € D, define X to be the upper
envelope of the function x, that is

xX(t) = sup x(s), t>0.

o<ss<t

The completed graph T'(x) of x is defined to be the subset of [0, ) X R such that

(1.1) I(x) = {(£,y)lx(t =) <y <x(t +)},

with the convention x(0 — ) = 0. A parametric representation of I'(x) is a function
(7, g): [0,0) - I'(x) which is onto, continuous, and 7 is nondecreasing. A sequence
x, is M,-convergent to x if there exist parametric representations (7,, g,) of x,
which converge, uniformly on compact subsets of [0, ), to some parametric represen-
tation (7, g) of x. Formally, for all > 0, ||l=, — 7ll; V llg, — gll. = 0, as n 7 ®, where

lixll, = sup [x(s)],

0<s<t

for any x € D. M -convergence induces the M,-topology on D, under which D is a
Polish space (Pomerade (1976)). It is weaker than the more prevalent J,-topology,
which happens to be too strong for our purposes. (See the concluding paragraph of §2
for an elaboration.) M,-convergence is metrizable, for example (as in Whitt (1980)) by
defining

d(x,,x,) = /0 e [1 Ad(x,,x,)] dt,

where d(x, x,) = inf(|l7, — 7,l; + llg; — g,ll), the infimum being taken over all
possible parametrizations (7;, g;,) of x,, for i = 1,2.

Consider a family {x€|le > 0} and a function y, all elements in D. For some
real-valued function f(e), the little-o notation

x<=f(e)y +o(f(e)),

stands for

li?(l)d(f(lejxe’ y) = 0.

This is equivalent to d/(x</f(e),y) —» 0, for almost all ¢> 0 or, in words,
lim_ , x¢/f(e) =y in M,. The big-O notation

x¢=f(e)y + 0(f(e)),
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means that for some ¢, > 0,

sup
0<e<e

1
M ‘YU <

where

Ixll = fome*fn Allxll,] de.

When used with stochastic processes X€ and Y, defined on a common probability
space with sample paths in D, little-o and big-O indicate the above types of
asymptotic behavior for almost all sample paths. Finally, M,-convergence for stochas-
tic processes, say lim_ |, X¢/f(e) = Y, holds if and only if there exists realizations of
X¢ and Y, on a common probability space, for which M;-convergence holds almost
surely (Skorohod 1956, Pomerade 1976, Ethier and Kurtz 1986).

2. General asymptotic expansions. Our model for the queue-length process of
an M,/M,/1 queue is taken to be

(2.1) 0(1) =X(1) = inf X(s), 130,
Here,
(22) X0y =N ( [a0) ar ) = N [t ar)

N* and N~ are two independent Poisson processes with unit rate, A is a continuous
nonnegative function, p is continuous and positive, and Q(0) = 0 is assumed for
simplicity. The process X represents the difference between the cumulative number
of actual arrivals and potential departures for Q. The jumps of Q coincide with those
of X whenever Q is strictly positive. Otherwise Q equals zero and X(t) equals its
infimum over the time interval [0, ¢]. In this case, a unit increase in X causes a unit
increase in . However, a unit decrease for X is matched by a unit decrease for the
running infimum for X, which results in no change for Q. (Only in this last case, is a
potential departure not realized.)

We derive asymptotic expansions of Q by uniformly accelerating its instantaneous
transition rates. Formally, for each € > 0, introduce a stochastic process Q¢ by

(2.3) Q(t) =X(t) — 0inf X<(s), t>0,

<s<t

in which
X<(1) EN*(%[(:A(r) dr) —N_(%foty,(r) dr).

THEOREM 2.1 (FSLLN). The following functional strong law of large numbers holds
for Q¢:

li{r(l)eQE(t,w) =Q09(t) a.s.
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where

@4 Q1) = ['IAr) = w(n)] dr— min [[Nr) = ()] dr,

and the convergence is uniform on compact subjects of t = 0.

The proof of Theorem 2.1, as well as those of Theorems 2.2 and 2.3, are deferred
to §5. Theorem 2.1 gives rise to the asymptotic expansion

(2.5) 0(t,0) = 2QO(1) + 0(%) as.

from which the deterministic process Q@ emerges as a first-order, macroscopic, fluid
approximation for Q. Indeed, O can be animated as the fluid level in a buffer that
is governed by the following dynamics (Chen and Mandelbaum 1991a): The buffer is
empty at time ¢t = 0. At time t > 0, the exogenous inflow rate is A(¢), and the
potential outflow rate is u(z). Finally, the actual outflow rate is strictly below its
potential only when the buffer is empty, in which case it coincides with the inflow
rate. With this interpretation, the quantity

YO(t) = - min [[A(r) = u(r)] dr,

0<s<t Y0

represents the cumulative potential outflow that is lost prior to time ¢.
Now define @, to be the set of all times s up to ¢ at which the fluid level is zero,
but no potential outflow is lost during [s, ¢]. Thus

P, = {0 <5 <tlQO(s) = 0and YO(s) = YO(1)}.
TueoreM 2.2 (FCLT). The following functional central limit theorem holds for Q¢:
(26) lim Ve (0°(1) = ¢ £ (1)
€l

where

0N(1) = W(fot[)t(r) + u(r)] dr) - snéiqriW(Ls[A(r) + w(r)] dr|,

W = {W()lt > 0} is standard Brownian motion, and the convergence is weak with
respect to Skorohod’s M -topology on DI0, ). Here it is assumed that Q™ has a finite
number of discontinuities on any compact subset of [0, ).

The nature of the discontinuities for Q® will be elaborated on in Theorem 3.1.
The FCLT refines (2.5) in distribution, and gives rise to the asymptotic expansion

(2.7) Q0 (1) £ %Q(O)(t) + —\/1€=Q‘”(t) + o(—‘/t:)

from which the stochastic process Q' emerges as a second-order, mesoscopic,
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diffusion approximation for the deviation of Q from its fluid approximation Q. Our
FSLLN and FCLT results are consequences of

TueorREM 2.3 (STRONG APPROXIMATION). The parametrized family {Q¢le > 0} can
be realized on a probability space (Q, &, P), supporting two independent, standard
Brownian motions W* and W~ in a way that

Q%(t,w) = X(t,w) — min X(s,0) + O(loge) a.s.

o<ss<t

where

(2.8) Xe(1) = —El—fot[)\(r) —u(r)] dr + W+(%f0t)\(r) dr) - W_(%j;)tu(r) dr).

It is now possible to motivate the presence of M, in Theorem 2.2. Indeed, the
process X¢ has continuous sample paths, and so does 0O, Thus, up to a negligible
Ve O(log €) term, the left-hand side of (2.6) is continuous. The limit O, on the other
" hand, need not be continuous (see Theorem 3.1 for a precise characterization). Since
continuous functions can not converge to a discontinuous one in the commonly used
J,-topology (the “largest jump” functional is J,-continuous), one must use M.

3. Local asymptotic expansions. We now refine our asymptotic analysis of the
M,/M,/1 queue. Let p(t) = A(#)/u(t), and define

(g = JsA(r) dr S

S = e a7

with the convention p*(0) = A(0)/u(0). The quantity p* is the M,/M,/1 traffic

intensity function introduced in Massey (1981). It will be seen that the functions p and

p* summarize the information embodied in the fluid model that is relevant to

accelerating the stochastic model. In particular, p* identifies three exhaustive asymp-

totic regions for M,/M,/1 as follows:
* Underloaded: p*(t) < 1.
e Critically Loaded: p*(¢) = 1.
 Overloaded: p*() > 1.

An equivalent characterization of these asymptotic regions, in terms of ®, and p(1),

will be given in §7. We also show there, that p* is a continuous function of ¢. By

Lindel6f’s theorem, the underloaded and overloaded regions decompose into a

countable disjoint union of open intervals. The set of critically loaded times is closed.

For our asymptotic expansions, we must further divide it into the following four

subregions:

e Onset of Critical Loading: p*(¢) = 1, and there exists a sequence [, T ¢ such that
p*(1,) < 1 for all n.

e Middle of Critical Loading: p*(¢) = 1, p* > 1 on some open interval containing ¢,
and there exists a sequence [, 7 ¢ such that p*(/,) = 1 for all n.

» End of Critical Loading: p*(¢) = 1, p* > 1 on some open interval where ¢ is its
right endpoint, there exists a sequence [, 1 ¢ such that p*(,) = 1 for all n, and
there exists a sequence r, | ¢ such that p*(r,) < 1 for all n.

* End of Overloading: p*(¢) = 1, and p* > 1 on some open interval where ¢ is its
right endpoint.

Whereas the M/M/1 has three static types of asymptotic behavior (see §4.1), the

M,/M,/1 has six types, and a single process may alternate among all of them over
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Onset of
Critical
Loading
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Critical — Overloaded
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Underloaded
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Critical
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= open set = _} = consists of open sets and points

———
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Ficure 3.1. Phase transition diagram for the asymptotic regions.

time. Figure 3.1 consists of a diagram that shows possible phase transitions among
asymptotic regions. A rectangle denotes a region that is an open set, in the case of
underloaded and overloaded, or potentially has a nonempty interior with a dashed
boundary, in the case of the middle of critical loading. (This assertion follows from
the observation that any open subset of critically loaded times must always be in the
middle of critical loading.) The circles denote closed sets that are nowhere dense.

The first theorem concerns sample-path properties of the asymptotic diffusion
term.

THeEOREM 3.1 (SAMPLE PatHs oF QW).  The process Q¥ is upper semicontinuous,
almost surely. It is discontinuous at time t, with a nonzero probability, if and only if t is
the end-point of overloading or critical loading. The set of such points is nowhere dense.

The proof of Theorem 3.1 is deferred to the end of §7. We proceed with localizing
our asymptotic expansions to the various regions.

THEOREM 3.2 (UNDERLOADED).  As the time points t, < t, < -+ vary through the
underloaded region,

(3.2) lim 0“(1,) £ 0(1),

foralli=1,2,..., where the Q(ti)’s are mutually independent random variables, and
the distribution of Q(t,) is geometric, with parameter p(t,).

The proof of Theorem 3.2 will be given in §8. The geometric limiting marginal
distributions can be anticipated from Massey (1985), who proved
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THEOREM 3.3 (TRANSITION PROBABILITIES). Suppose that A and w are infinitely
differentiable functions on the positive real line. As € |0, Q<(¢) converges in distribution

to a probability measure if and only if p*(t) < 1, at all t > 0. Moreover, the distribution
of Q<(t) has then the following asymptotic series:

P(Q(t) =n) = kioekrr,gk)(t), €l0,

where wO(t) = (1 — p(t)p(t)", and the w(t)s are, for each fixed integer k > 1, the
unique solution to the equations

p()m D) = M) mE (1) = —776">(t)

and

M) TEED(E) + w(£)mEAD(e) = (A(2) + ()7 0(e) = _,n.(k)(t)

foralln > 1

A simple consequence of Theorem 3.3 is

p(t) if p*(1) <1,
1 otherwise,

limP(Q*(1) > 0) = {

which holds for all ¢ > 0. Both Theorems 3.2 and 3.3 clarify the common practice of
approximating the M,/M,/1 queue, when underloaded at time ¢, by the M/M/1
queue with traffic intensity p = p(¢). In particular, such an approximation is not
justified when p(¢) < 1 while p*(¢) > 1.

For the next theorem, define

(3.3) Qc(s,t) =X(s,t) — inf X<(r,t), 0<s<t,

s<r<t

where

X<(s,t) = NX(s,t) — N-(s,1),

N (s, t)—N+( f)t(r)dr)— (%fos)t(r)dr),

and 1\7; is defined similarly in terms of N ™. The process {Q(s, £)|t > s} has the same
distribution as Q¢ conditioned to be zero at time s.

THEOREM 3.4 (ONSET OF CRITICAL LOADING). Consider a point t that is an onset of
critical loading. If A and w are differentiable in a neighborhood about t, and

(k
Mt + 1) =p(r) + ( ) ™ + o(7Y),
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for some k > 1, then for all pairs of real numbers T, < T, we have

1 . L s
Q(t + €!/CHDT, 1 + !/@kIDT) 4 W[W(TO’T) — inf W(T,,0)
€

Ty<o<T

1
+ 0( 6k/(2k+1))

where

AXB(1)

W(T,,T) = )t

[T = T ]+ WRR()(T - Ty)).

The proof of Theorem 3.4 will be given in §9. We have rescaled space and time so
that the original queueing process, now evolving over T > T,,, converges to a reflected
Brownian motion with polynomial drift. For example, with k = 1, we have 1/Q2k + 1)
= k/Q2k + 1) = 1/3 and the drift is quadratic. For k = 2, we have 1/2k + 1) = 1/5,
k/Q2k + 1) = 2/5, and the drift is cubic. These last two pairs of exponents for e
correspond to the time and queue length scalings given by Newell (1968) and (1982)
for diffusion approximations at “transition through saturation” (page 270 of Newell
1982) and “a mild rush hour” (page 275) respectively.

Now introduce the process

W(s,t) = W(fot[)x(r) + r(r)] dr) - W(f(:[)\(r) + u(r)] dr), 0<s<t.

The next two theorems are immediate consequences of Theorems 2.2 and 3.1.

THEOREM 3.5 (MIDDLE AND END OF CRITICAL LOADING). As the point t varies
through the middle or end of critical loading,

Q<(t) £ —é— sup W(s,t) + o(-‘/lez)

sed,

where t = sup D,.

Recall that supseq,lW(s, t) = QW(¢) hence, by Theorem 3.1, it is continuous at ¢ in
the middle of critical loading, for almost all sample paths. Furthermore, if ¢ belongs
to an interval (/, r) of critical loading (which is by definition the middle of critical
loading), and ®, is a closed interval, then over (I, ¢) the queueing process rescales to
a driftless, reflected Brownian motion. On the other hand, for ¢ at the end of critical
loading, QV is still left-continuous for almost every sample path, but it is not
right-continuous at ¢ with a positive probability.

THEOREM 3.6 (OVERLOADED). As t varies through the overloaded region,

Qc(1) £ %];[A(r) —u(r)] dr + _\IE_ sup W(s, %) + W(r*,1)| + o(—}e—).

sed,

where t* = sup ®, < 1.

With this theorem, one can demonstrate the phenomenon that each time of peak
arrival rate lags behind a time of peak congestion, or peak queue length. Assume for
simplicity, that u is constant. Now suppose that Q@ attains a positive local maximum
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at ¢, a time of overloading. Note that (¢*,t) is the maximal time interval prior to ¢
over which overloading occurs. (In particular, ¢* is a time for the onset of overload-
ing.) It follows that if [* = sup ®, for every intermediate time [/ € (¢*,¢), then
I* =t* and so A(¢) = u must hold. Since A(#*) = u as well, A must attain some
maximal value between ¢* and ¢.

TreOREM 3.7 (END OF OVERLOADING).  If overloading ends at time t, and A and p
are continuous in a neighborhood of t, then for all T,

.
c(t+veT) S | s W(s,t) + (AMt) — u(t))T +0(—1—).
Qe+ Vel Sz | sup Wls,t) + (A1) = (1) v
The proof of Theorem 3.7 will be given in §10. Theorems 3.5 and 3.7 clarify an
issue not addressed thoroughly in either Massey (1981) or Newell (1968). Proposition
6.3 of Massey (1981) hints at this behavior by showing that the mean queue length at
the end of overloading, can grow no faster than 1/ Ve . Note that at the end of
overloading A(#) — u(t) < 0. Hence the leading asymptotic term for the end of
overloading grows linearly in 7', for sufficiently negative T, but converges to zero as
T1 + oo,

4. Examples.

4.1. The M/M/1 queuwe. For the time-homogeneous M/M/1 queue, A(t) = A
and w(¢) = w. Our formulas then reduce to

QO(t) = (A — u)t — ,min (A —p)s

<SS

and

QO(1) = W((A + p)t) = min W((A + u)s),
where

P, ={0<s<tl(a—p) (t-5) =00}

For all ¢t > 0, our theorems now reduce to:

Q(t) = —i—()t —,u,)+t +o(%) a.s.

and
(4.1)
%()&—,u,)t+ ‘/—IZ—W(()\'F,LL)t) +0(%) itA>u,
o(t) = % W((A +u)t) — olllsigtW((A +,u,)s)] +0(%) ifA=p,
0 +o(1) if A <p,

where Q is a geometrically distributed random variable with parameter p = A/u.
Notice that (4.1) summarizes the asymptotic results for Theorems 4.6.14 and 4.6.16 of
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Prabhu (1980). When A = u, the limit O of Ve Q¢ is the well-studied, reflected
Brownian motion (RBM). Time-homogeneous models can, in fact, be analyzed in a
considerably wider scope. For example, the above results for A > u, are a special case
of the heavy traffic limit theorems for multiple channel queues in Iglehart and Whitt
(1970, Theorems 2.1 and 2.2). Also, Chen and Mandelbaum (1991b), following
Reiman (1984), generalize most of the above to nonparametric Jackson networks.
There A, the effective arrival rate to a node, must first be calculated by appropriate
traffic equations. A node is called nonbottleneck if A < u, balanced bottleneck if
A = p and strict bottleneck if A > w. The asymptotic expansions (4.1) are established
only for bottlenecks. ‘

4.2. A specific M,/M,/1 queue. The present example illustrates the relationship
between the arrival rates A, the service rates w, the evolution of the set-valued
function ®,, the fluid model Q, and the diffusion approximation QV. In Figure 4.1,
the middle graph is that of A and u, where w is assumed to be constant. The graph
immediately above it is that of a and its upper envelope X, with

a(t) = ['[w(s) = A(5)] s

Ficure 4.1. Graphs for ®,, a and @, A and u, O, and a realization of Q.
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The fluid model Q©(¢), plotted on the graph that is second from the bottom, is equal
to a(t) — a(t), which is the vertical gap between the curves @ and a. The topmost
graph is a plot of ¢ versus ®,, where ®, is represented as a subset of the vertical line
that passes through ¢. Notice that the set of points in @, is held fixed when ¢ passes
through time of overloading, and new time points are added to it during times of
critical loading, but all points are lost except for the current time points during times
of underloading. Finally, the bottom most graph is a realization of the diffusion term
QWM. Notice that it evolves, depending on the regime, as either zero, Brownian motion
or reflected Brownian motion. If the time interval regions in Figure 4.1 are indicated
by the letters A through G, and the boundary point between regions is denoted as AB
for example, then we can characterize the boundary points and regions as follows:

e Underloaded: A, C

¢ Onset of Critical Loading: AB, CD

e Middle of Critical Loading: D, F, DE

¢ End of Critical Loading: FG

¢ QOverloaded: B, E

¢ End of Overloading: BC, EF
When interpreting Figure 4.1, readers may find it useful to consult Proposition 7.2,
which characterizes the regions in terms of either p*(¢) or both ®, and p(¢).

43. A simple periodic queue, and Lindley’s equations. Let A(z) = A(0) +
Asinwt/T), t = 0, for some period T > 0 and amplitude A4 > 0. Take u(z) = u to
be constant. Assume that A(0) > A, to maintain A nonnegative. Then the queue is
permanently underloaded when u > A(0) + A, and overloaded after a finite time
when p < A(0). For the case AM0) < u < A(0) + A, the queue alternates periodically
between over- and underloading. The case A(0) = u is particularly simple and
pleasant to deal with. The fluid model Q© is then positive at all times, except for
times t, = nT, n = 1,2,..., which are end-of-periods for A. Accordingly, the queue
is always overloaded, except at the {z,)}’s, which are end-of-overloading epochs.
Furthermore,

O0Y(t) =B(t) — min B(z,), t>0,
n<t/T

where B(t) = W[2ut + (AT/2w)(1 — cosQmwt/T))], t > 0. In recursive form,
00(1) = [B(1) = B(1,)] + QP(1,), 1 € [t,,0,,1),
and
0V(t,11) = [QP(ter =)] " = [ B(tair) = B(1,) + 0V(1,)] ",

for n > 0, starting with Q®(0) = 0. We recognize this last recursion as Lindley’s
equations with the i.i.d. increments

&, = B(t,.,) — B(t,) £ N(0,2T).

It follows that

\%
=2

00(t,) L max{0,£,,&, + £,y &+ 0 +E),  n
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for all n > 0; hence
lim —LQ(“(nT) 4 /2uT max W(t).
n—w \/17 0<r<1

4.4. The general periodic case and long-range planning. Consider A and u in
(2.1) and (2.2) which are periodic. Suppose that A has period-length T'; denote by

- 1,7
)\=Tj;)\(s)ds,

the average inflow per period, and define w similarly. We accelerate the time
evolution by a factor of n = 1,2, ... . Formally, this entails looking at Q"(t) = Q(nt),
t » 0, constructed from X"(¢) = X(nt). Letting n 1 yields the M/M/1-like asymp-
totic expansions

Q"(t) =n(A —E) t+o(n) as.

and
, n(X—ﬁ)tJm/EW((X +ﬁ)t)+o(\/ﬁ) if A >,
e = (X +m)t) = min W((X +E)s)] +o(n) ifX =7

In real-world terms, these latter asymptotic expansions can be thought of as being
appropriate for strategic planning, at the corporate level of decision making, where
long-range goals are formulated. The time-horizon is then typically measured in
quarters or years; hence details must be suppressed. In contrast, our (2.7) expansion
might be suitable for operational/regulatory control, at the shop-floor level of
decision making. In this context of decision making, details count, since they must be
responded to within a time-horizon of weeks or days, perhaps even hours or seconds.

5. Proof of the main theorems.

Proof of Theorems 2.1-2.3. If N* is a unit rate Poisson process, a standard
Brownian motion W* can be realized with it on a probability space (), %, P), such
that

IN*(t,w) —t — W' (t,0)]
log(2 Vv t)

k*(w) = sup <o as.

t=0

THEOREM 5.1 (STRONG APPROXIMATIONS FOR LEVY PROCEsSES). Let M be a Lévy
process with Elexp M(1)] < «. Then M can be realized on a probability space such that

IM(t,0) — pt — W(ot, )|
log(2 Vv t)

sup
t=0

<o a.s.
where u = E[MQ1)], 02 = VarlM(1)], and W is a standard. Brownian motion. Conse-
quently,

M(t,0) = ut + W(o?t,w) + O(logt) a.s.

for large t.
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Proor. See Corollary 5.5 of Chapter 7 in Ethier and Kurtz (1986). O

Now let N~ be another unit rate Poisson process independent of N* with
corresponding standard Brownian motion W™, which is also independent of W™, Just
like «k*, we construct k= out of N~ and W~. For all € > 0, we have

N* ( f/\(r)dr) - —[,\(r) dr — W+(1[A(r)dr)

Kkt log(2 \% %fot/\(r) dr) a.s.

for all 0 < s < ¢. We have a similar pathwise inequality for N~((1/e)[3u(r) dr), and
combining these results gives us

(5.1) ’X‘(s) - —f [A(r) = u(r)] dr - W+( /A(r) dr) W (lfos/.:.(r)dr)

‘- [log(Z v %/(:)\(r) dr) + 1og(2 v %fo‘u(r) dr” a.s.

for all 0 < s < ¢, where k = max(x ™, k7). _
From this bound, the functional strong law of large numbers limit for Q¢ (Theorem
2.1) follows since we can rewrite Q€ as

Q°(1) = sup [X<(¢) —X(s)],

0<s<t

and combine this with the following results: First, if a and b are bounded functions
on [0, ¢] then

(5.2) sup a(s) — sup b(s)l sup |a(s) — b(s)].

0<ss<t 0<s<t O<s<t

Second, we have

hmeW( )—0 as.
el0

Finally, we get from (5.1),

lime X“(s) = jos[/\(r) ~u(r)]dr as.

which establishes the FSLLN (Theorem 2.1).
Theorem 2.3 follows from (5.2) and (5.1), since

sup[Q°(1) ~ max [Xe(t)—XE(s)” <2k - (llogel + o(T)) as.

where X¢ is defined by (2.8), and

1og(f0T,\(r) dr)

o(T) = log4 +

+ log(fOT,u,(r)dr) .
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Finally, for the FCLT (Theorem 2.2), we observe that for all € > 0,

- 1 r¢ 1 t

Xe(s) £ = [[a(r) - dr + — W\ [ [A(r) + ar|, t>0.
()£ [0 = w)]idr + W 1) + )]

Here W is a standard Brownian motion, and equality holds between distributions of
stochastic processes (equivalently, between all their finite-dimensional distributions).
It then follows that

(5.3)
max [ X<(r) — X<(s)] £ max [ f[)\(r) — u(r)] dr

0<s<t

4 T/%(W(fot[/\(r) F ) =W [0+ ) d))]

Our main asymptotic expansion is an immediate consequence of the fundamental
lemma below, and the sample path continuity of W.

LemMmA 5.2 (FUNDAMENTAL LEMMA).  Let x and y be real-valued continuous func-
tions on [0, ). Then with respect to Skorohod’s M,-topology,

(5.4)
[max x(S)+TY(s)) logfjtx(5)+%sn;§y(s)+o(—[—) as € 10,
where

(5.5) ® ={0<s <tlx(s) = maxx(u)}

O<u<t

Here we assume that y, given by
(5.6) J(t) = maxy(s),
sed,

has a finite number of discontinuities in every finite subinterval of [0, ).

RemMarks. (1) The relation (5.4) amounts to

lim Ve

el0

It is equivalent to

ol — -
(5.7) llir(l)-e—(x+ey—x)=y,
as well as
(5.8) lim (nx +y — n¥) =y,
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both in M, and it implies

(2) The representation (5.7) is that of a directional derivative of the function
x — X, at the point x, in the direction y. The representation (5.8) is the one we find
most convenient to actually prove, and we do it in the next section.

(3) The restriction on the discontinuities of § stems from our method of proof. We
have no reason to suspect that Lemma 5.2 fails to hold for arbitrary continuous x and
y. (Some form of continuity seems to be needed. For example, with

[t 0«1, _J1, 0<t<1,
x(t)—{Z—t, t>1, y(1) {0, t>1,

the left-hand side of (5.8) is identically 1 while 5(¢) = 0 for ¢ > 1.)

To apply Lemma 5.2 in our situation, note first that each sample path on the
right-hand side of (5.3) is of the form

(5.9) Llo(x+vey) = o),
with

o(x) =x—x,
and

K1) = [TA0) =l are () = W[ [TaC) + ur)]

Letting € |0 in (5.9), and relying on the continuity of y, gives

1 . 1
g%;[go(x +ey) —p(x)] = gfg[y - c(x+ey—x)

1
=y~ 11%;(x+ey—z)=y—y*,

where
ya (1) = miny(s),
and
®, = {0 <s < tla(t) — a(s) = a(t) - a(1)}

- {0 <s< tlf:[)t(r) = u(r)ldr= Q(O)(t)}

={0<s<tlQ®(s) =0 and YO(s) = YO(r)}.

This concludes the proofs of Theorems 2.1-2.3. O
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6. Proof of the fundamental lemma. Our goal in the present section is to
establish the monotone convergence

(6.1) J,=nx+y-—nx|y, inM,

as n 7o and under the assumptions of Lemma 5.2. We start with monotone pointwise
convergence, then proceed with a careful path-analysis of 7, and j that culminates in
M ,-convergence.

LemMmA 6.1 (Monotonicrty). (n+ 1)x +y — (n + DX < nx +y — nx.

Proor. Equivalently

(n+Dx+y—-—m+y<X,

which is obtained by substituting f = (n + 1)x + y and g = nx + y into

(6.2) f-8<f-¢
and we are done. O

LemMA 6.2 (PoINTWISE CONVERGENCE).  Let 5,(¢) be a point in [0, t] where nx + y
attains its maximum over that interval. Then, as n 1o,

(6.3) y[s.(0)] = 5(t),  n{x[s,()] —x(¢t)} >0, forallt>0,

hence the convergence (6.1) holds pointwise.

Proor. We have

(6.4) y[s(D)] = y[s.(0)] + n{x[s,()] = %(1)},

> y(s) +n[x(s) —%(t)], for0 <s <t,
=y(s), fors € ¢,
implying that
(6.5) lim y[5,()] >5(1), 0
We now verify
(6.6) m y[s,(0)] <3(1), 0,
n—w

which, combined with (6.5) and (6.4), will end the proof. First, observe that the limit
s{t) of any convergent subsequence s,/(t) = s.(t) must belong to ®,. (Otherwise
n{x[s,(¢)] — ¥(¢)} > —, contradicting (6.4).) Next, take a subsequence of the
bounded sequence {y[s,(¢)]} that converges to lim,-« y[s,(¢)]. Without loss of
generality, 5,(1) = s(t) € ®,; hence

(6.7) lim y[s,(1)] = y[s.)] <5(1),

n—®

and this completes the proof. o
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Lemma 6.3 (UppER SEMICONTINUOUS Limit.  The function § is upper semicontinu-
ous and the convergence in (6.1) is uniform over compact subsets of continuity points

for y.

Proor. Monotone decreasing limits of continuous functions must be upper semi-
continuous. Monotone convergence of continuous functions to a continuous limit
must be uniform on compacts, by Dini’s theorem. O

For x € D let I, B(x) equal the number of intersections of x with the strip [«, 8]
during the time 1nterval [s, t]. This number equals N if it is possible to find N + 1

points #, < t; < -+ <ty in[s, ¢] with the property that either
(6.8) x(t) <@, x(t) =B, x(1) <a

or

(6.9) x(ty) =B,  x(t) <a, x(t)=B,...,

and it is impossible to find N + 2 points with this property. The number of
intersections is arbitrarily taken to be —1 if no such N exists (which occurs when x
stays within («, 8) during [s, t]).

Lemma 6.4 (SKoroHOD 1956, §2.2.11, p. 267). Given x,,, x € D, then x,, — x in M,
if and only if

(6.10) llrnI"‘ P(x,) =IP(x), nte,

for all 0 <s <t which are points of continuity of the limit x, and for almost all
a<pBeR.

We have already verified that the convergence in §6.1 is pointwise monotone
convergence of continuous functions. But this need not imply M -convergence.
Indeed, simple counterexamples can be constructed with x(#) = 1, ,(¢), and x, | x
in a way that I/33/7(x,) > 3 while 111//5‘ 3/3(x) = 1. However, Lemma 6.3 guaran-
tees (6.10) for [s, ¢] over which y is continuous. Furthermore, the assumed isolated
discontinuities of y allows one to verify (6.10) only for [s, ] in which 7 has a single

point of discontinuity, and this will now be carried out.

LemMma 6.5 (ContiNuiTY CONDITIONS).  Given a continuous function x, the function
y is continuous at t > 0, for all continuous functions y, if and only if one of the
following mutually exclusive statements holds:

)t & D,

(i) @, = {1).

(iii) t € ®, # {1), t is not isolated in ®,, and ®, < ®, for some r > t.
These conditions can be recast in terms of x as:

(i) x(2) <x().

() x(D) <x(¢) =x(2), foralll €[0,1).

(i) x(1) = x(¢) = %(t) for some | <t, x(1,) = %(t) for some sequence 1,1 t, and
x(¢) = x(r) for some r > t.

Lemma 6.6 (LerT DiscontiNuiTy CONDITIONS).  The following three statements are
equivalent:

(i) The function j is left discontinuous at t > 0, for some continuous function y.

(ii) ¢ € ®, # {t}, and the point t is isolated in ®,.

(iii) For some s €[0,t) and all | € (s, 1),

(6.11) x(s) =x(t) =x(t) and x(l) <x(t),
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in which case the discontinuity is of the form
(6.12) F() =5(t =) <9(t+) =y(1).

Lemma 6.7 (RigHT Discontinuity ConDITIONS).  The following three statements
are equivalent :

(1) The function y is right discontinuous at t > 0, for some continuous function y.

(i) t € D, # {t}, and ®, c (¢, r] forall r > t.

(iii) For some 0 <l < tand all r > ¢,

(6.13) x(l) =x(t) =x(t) <x(r)
in which case, the discontinuity is of the form
(6.14) J(t =) =3(t) >3(t+) =y(1).

Proofs of Lemmas 6.5, 6.6 and 6.7. If ¢ & ®,, then x(¢) <X(¢). Since x is
continuous, then x is strictly less than ¥ on an open neighborhood of ¢. It follows
that the set ®; equals @, for all s in this open neighborhood. Therefore j is constant
on this open set, and so y is continuous at .

If t e ®, then x(¢#) =Xx(¢). Now suppose that ®, = {r}. For all s >0, ®,

a compact subset of [0, s]. For some continuous functlon y, there exists a u, € <I>S
such that y(u,) = §(s). To prove that y is continuous at ¢, it is sufficient to show
that lim, ,, u, =¢. Let {s,/n > 1} be a sequence such that lim,_ s, =¢ and
noely =0, for some v. By compactness, we can always find such a sequence. Since
0<u, <s,forall n>1, we have 0 < v < ¢. On the other hand,

Sn

x(v) = li_r)r(lmx(usn) = li_r)n x(s,) =X(1).

Consequently, v € @, and so v = ¢. Hence in general, the limit exists and must
equal .

If t € ®, #{t}, and ¢ is not an isolated point in ®,, then there exists a strictly
increasing sequence {/,|n > 1} where llm,,_,oo I, =t such that [, € @, for all n >
Moreover, ®, = ®, N [0,7,] since ¥ is an increasing function, and x(l ) =x(¢) by
definition. The sequence of sets <I>, form an ascending chain, so y(/,) is a monotone
increasing sequence with y(/,) < $(¢). Hence lim, _,,, y(/,) exists, and

lim y(1,) = y(l,)
n—ow
for all n since I, € ®, . But

y(t) =3(l,) Vv sup  y(s) = lim §(/,) Vy(t) = lim y(l,).
sed,n(,, ] n—e n—e

So for any [ arbitrarily close to ¢ from below, we can find some [/, <! and
consequently

y(L) <3(1) <3(1).

This shows that y is left-continuous at ¢.
Conversely, if ¢t € ®, # {t}, and ¢ is isolated, let 7 = sup(®, — {t}) < ¢. This gives
us &, = @ _forall 7 <r <t,and ®, = ®_U {r}. We can find a continuous function y
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such that y(¢) is greater than any value of y on ®_. So for all continuous functions y,
7 will not necessarily be left-continuous at ¢, but

(6.15) y(t—) = llm)’(l) =J(7) <¥(1).

If t € ®, # {t}, and there exists some r >t such that ®, ¢ ®,, it follows that
®, c P, for all # <s < r. From this we get ®, = ®, N [0, ¢] and

(1) <¥(r) <y(t) vV max y(s),
I<s<r
which gives us right-continuity for y at ¢.
Conversely, if for all r > ¢, we have that ®, is not a subset of ®,, then x(1) <
max, _, ., x(s). This means that ®, is a subset of (¢, 7] and so

(6.16) j(t+) = hmy(r) =y(t) <y(1).

Since @, # {¢}, there exists some continuous function y such that y(¢) # y(¢); hence
y is not necessarily right-continuous at ¢.

Finally, every statement made here in terms of ®, can be restated in terms of x.

o

LemmA 6.8. The function y has left limits at all t > 0, right limits at all t > 0
7(0) = x(0) and

(6.17) J(t) =y(t =) vy(t+), t>0.

Equivalently, § is an upper semicontinuous function in D.

Proor. At ¢t > 0, y is cither left-continuous or j is flat to the left of ¢. In any
case, y(t — ) exists. At ¢t > 0, either y is right-continuous or (6.13) prevails. When the
latter applies, let r,|t. Then j(r,) =y(s,) for some s, € ®, N (tr,]. Conse-
quently, s, — ¢, which implies j(r,) = y(s,) = y(¢t + ). Again, y(¢ + ) exists in all
cases. In fact, a review of the various alternatives analyzed in Lemmas 6.6 and 6.7
reveals that, for all ¢ > 0, either 7(¢) = y(t + ) or y(¢) = y(t+ — ). Upper semiconti-
nuity now yields (6.17). o

LeMMA 6.9. The function y is flat to the left of its discontinuities.

Proor. Fix t > 0, a point of discontinuity for y. The assertion is clear if t € ®, is
isolated (left-discontinuity). Otherwise (right-discontinuity), let /, € ®, be such that
[, 1t Then

()19t =) =3(1) >3(r +) = y(1).

Now y(l,) = y(u,) for some u, € ®, C ®,. Let u be a cluster point of {u,}. Then
u < t since y(u), being a cluster point of {x(l )}, satisfies y(u) = §(¢) > y(¢). Finally,
u € ®,; hence u € ¢, and ®. is monotone nondecreasing over [u, ¢]. One deduces
that j(u) > y(u) = y(t) y(w), revealing a point u < ¢ for which $(u) = y(¢). Since
y is monotone over [u, t], we are done. O

Intermediate summary. We have shown that
@ y(&) =3 =) vyt +)atall t > 0; 7(0) = y(0).
(i) § is flat to the left of its jumps.
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Consider a complete excursion of x from x which starts at s and ends at ¢. By this we
mean that s is a point of left-increase for x (¥(/) < X(s) for all 0 </ < s, denoted by
X71s —), and that ¢ is a point of right-increase for ¥ (%(¢) < x(r) for all r > ¢,
denoted by X 1 ¢ + ). For such an excursion,

1) y(s) = y(s); s is a point of continuity for 7;

(i) y(-) is monotone nondecreasing over [s, t], possibly with jumps.

(iii) Finally,

y(t) >¥(t =) =9(t =) <y(t) =y(t +) = y(¢t), left-discontinuity at ¢;
y(t) <y(t =) =73(t—) =9(t) >y(t +) =y(t), right-discontinuity at ¢;
y(t) =3(t =) =3(t =) =39(t) =y(t +) = y(t), continuity at ¢.

Before going on, readers may find it useful to draw the graph of

(6.18) vo(u) =nlx(u) —x(t)] +y(u), s<u<t,

over an excursion [s, t] as above, and then analyze the convergence y, | ¥ over [s, 1,
as n 7. (A key observation is that y,(«) = y(u), for all u € ®, and all n > 1. Thus,
the component n[x(u) — ¥(¢)], s < u < t, decomposes into negative excursions of x
from X, each of which is “hanging” on successive points in ®,.)

LemMMA 6.10 (M-CONVERGENCE AROUND LEFT-DISCONTINUITIES). Let t > 0 be
such that y(t) = y(¢t + )> y(¢t — ). Then the convergence (6.10) applies over a neigh-
bourhood of t.

Proor. Choose € > 0 so that ¥ and j are flat over [t — ¢,¢t], and § has no
discontinuities over (¢, t + €]. For such e,

(i) y, is monotone nondecreasing over [t — ¢, t], and

(i) ¥, ! ¥ uniformly over [¢, ¢ + €l.
This verifies (6.10) over [t — €, t + €]. O

Lemma 6.11 (M 1-CONVERGENCE AROUND RiGHT-DisconTiNurTiEs).  Let ¢ > 0 be
such that y(t) = (¢t — ) > y(t + ). Then the convergence (6.10) applies over a neigh-
bourhood of t.

Proor. We are going momentarily to check that:
(i) There exists € > 0 for which the §,’s are all flat over [ — ¢, ¢]; and
(ii) For all n large enough, either y, is monotone decreasing over [, ) or there

exists a sequence r, | ¢t for which dy, = —ndx over [t,r,), 7,(r,) = y(r,), and
(6.19) sup  ¥,(s) < sup y(s), forall §>0.
t<s<r,+o t<s<r,+o

It follows that the only way to violate (6.10) is to have @ < 8 € R! and a sequence
u,>r,, u,lt, such that 3,(r,) <a and y,(u,) > B. This, however, gives rise to
lim;,, y(s) < @ and lim, ;, y(s) > B, which contradicts the existence of y(t + ).

To verify (i), recall that 7 is flat to the left of ¢, choose €, 8 > 0 so that for all n
large enough,

n[x(s) —x(6)] +y(s) <F(s) =8 <F,(s) =8, se[t—et],



54 A. MANDELBAUM & W. A. MASSEY

deduce that

(6.20) nx+y<nc+y—90, on[t—e,rt],

and conclude that nx + y is flat over [t — ¢, ¢]. By Lemma 6.6, X is flat to the left ¢,
which establishes (i).

The continuity of x and y guarantees (6.20), perhaps with a smaller § > 0, also on
a neighbourhood to the right of ¢. It follows that dy, = —ndx on that neighbour-
hood. If J,(-) has points of increase beyond time ¢, there must exist u > ¢ for which

(rx +y)(u) = nx(u) +y(u) <nx(u) +y(u),

thus 7, (u) <y(u). With 7 (t) > 5(¢t) > (¢t — ) = y(¢), continuity implies the exis-
tence of r € [¢,u] where 7,(r) = y(r). Along the same lines

(iii) If there exists N for which y,(r) = y(r) at some r > ¢, then for each n > N
there exists r, > ¢ such that y,(r,) = y(r,).

Indeed, y,,(r) decreases in n, consequently y(r) > y,(r) for all n > N, and since
y.(t) > y(t), there exists u € (¢, r] at which y,(u) = y(u). Finally, let

r= inf{s > t:(nx +y)(s) = (nx +y)(s)} <.
Then for all 6 > 0, as in Lemma 6.1,

(mx +y)(r+08) —nx(r+8)= sup (mx+y)(s)— sup nx(s)

t<s<r+9é t<s<r+é

< sup y(s),

(<s<r+o

which concludes the proof of Lemma 6.11. .
ExampLE. We now give an example to show that the error term o(1/ Ve) in
Lemma 5.2 is tight. Take,

x,(s) = —a-s""' and y(s)=-B-(t—s)

where @ and B are positive constants. By taking the derivative with respect to s of

(1/e)x,(s) + (1/ Ve )y(s), we get for sufficiently small e, that this sum of functions
will realize its maximum on [0, ¢] at

o= (2 )/

a-(n+1)

This in turn gives us

Bt 1 pn B v
Orggi(t o)+ \/_y(s)) Ve " Vel-1/n n+1(a'(n+1)) '

For arbitrary n, we see that the o(1/ Ve ) description for the error is tight. Notice also
that y(¢) = — B¢, which is continuous in ¢, and the error is independent of ¢. This
illustrates the uniform convergence of the expansion in e.
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7. Properties of the traffic intensity parameter. This section is devoted to
establishing useful properties of p*. They will be used to complete the proof of
Theorem 3.1, at the end of the section.

ProvposiTioN 7.1.  The function p* is continuous on [0, ).

RemMAaRK. For the unstable example given in Heyman and Whitt (1984), A is a step
function, w is constant, and p* is a discontinuous function of time.

Proor or ProposiTioN 7.1. Define a bivariate function R on the set {(s, )0 <
s < t} such that

‘A(r)dr/lu(r)dr ifs<t,
p(1) if s>t
Since A and p are continuous, then [/A(r)dr and ['u(r)dr are continuously
differentiable as functions of s and

. JIA(r) dr
7.2 lim <——~— = p(t).
72 ste [iu(r)dr pl)
It follows that R is continuous on the closed set {(s, )0 <s < ¢} and uniformly
continuous on the compact set {(s, £)I0 < s < t < T} for some fixed 7.

Now p*(t) = sup,_, ., R(s, 1), so for all ¢ and ¢ we have

[p*(t) — p*()] <| sup R(s,t) — sup R(s,t)

0<s<t O<s<t’

<| sup R(s,t) — sup R(s,t)
0<s<t 0<s<t
+| sup R(s,t') — sup R(s,t’)|

0<s<t O<s<t

< sup |R(s,t) —R(s,t')| +

O<s<t

sup R(s,t') — sup R(s,t")|.

0<s<t 0<s<t

By the uniform continuity of R, the above bounds give us lim, _, , [p*(#) — p*(¢')| = 0,
and this completes the proof. 0O

The sets ®, for ¢ > 0, are determined by the fluid limit. In the proposition below,
we use this relation to describe the three main asymptotic regions in terms of the
fluid approximation:

ProposiTiON 7.2.  The following statements hold for all t > 0:

(i) We have p*(t) < 1 if and only if ®, = {t} and p(t) < 1.

(ii) We have p*(t) = 1 if and only if t € ®, and either ®, + {t} or p(t) = 1 occurs.
(iii) We have p*(t) > 1 if and only if t & D,.

Proor. It is sufficient to prove only the first and third statements since the second
one will follow from them. Recall that

0O(t) = sup ['A(r) = u(r)] dr

<s<tTS

and @, consists of the times s such that [/[A(r) — u(r)ldr = QO(¢) forall 0 < 5 < ¢.
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It follows that ®, = {¢} if and only if [/[A(r) — u(r)]ldr <0 for all 0 <s <.
Combining this with

. JiA(r) dr
P(t) - lslm fst,U«(") dr’

gives us the first statement.

~ For the third statement, we observe that ¢ & ®, if and only if Q©(¢) > 0. This is
equivalent to having [/[A(r) — u(r)ldr > 0 for some 0 < s < ¢, which is equivalent
to p*(t) > 1. o

Lemma 7.3. If t, 1t with p*(t,) = 1, then p(t) = 1.

Proor. Since p* is continuous, we have p*(¢) = 1. By the definition of p*, we
either have p(¢) = 1, or there exists some 0 < s* < ¢ such that

(7.3) fsi)\(r) dr = fsi,.b(r) dr.

On the other hand, p*(¢) = 1 means that for all n,

t t
7.4 A(r)dr < r)dr.
(74) f,n (r) ftnu( )

For all sufficiently large n, we have s* < t, <t, and p*(¢,) = 1 gives us

t

(7.5) j;;")\(r) dr < /;";L(r) dr.

*

Combining (7.4) and (7.5) with (7.3), we get for all sufficiently large n,

ft)\(r) dr = /tu(r) dr.

3

n [

Therefore, we have

i
PO = Ty ~

which completes the proof. o

Lemma 7.4, If p* > 1 on (t, t,) with p*(¢t,) = p*(t,) = 1, then
ftz/\(r) dr = ftzlu,(r) dr.
t t
Proor. By the definition of Q(¢) and ®,, we have

t
®

09(t) = /t [A(r) —p(r)] dr

where ¢* = sup d,. If ¢, <t <1,,thent ¢ P, t* <t,and ®,« = ®,. Since t* € P

¥
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we must have p*(t*) < 1 and ¢* < t,. By the continuity of O, we have

f:)\(r) dr = f:u(r) dr.

2

where 5 < t,. However p*(¢,) = p*(¢,) = 1, so we must have

f:/\(r) dr < ftltzu(r) dr and ftl

3

A(r)dr < [Mu(r) dr.
G

Combining these two inequalities with the previous equality gives us the lemma. o

LemMmA 7.5. If p* > 1 on [t,,t,] with p*(t)) = p*(t,) = 1, then
ftz)\(r) dr = fiz/,b(r) dr.
t t

Proor. The set A4 = {t|p*(¢+) > 1} N [¢,,t,] is open. By Lindel6f’s theorem, it
must equal a countable union of disjoint intervals where p* equals one on the
endpoints. By our previous lemma, we have

J [A(r) = ()] dr =

So it is sufficient for us to prove that

(7.6) [, JA) —u(n]dr=0

t, 1] -

This complement of A relative to [¢,,¢,], is a closed subset of the times when p*
equals one. With the exception of a countable number of points (the endpoints of the
open intervals in A), every point ¢ in this set has a sequence within the set where
t,1t. By Lemma 7.3, this means that p(¢) = 1 for all such ¢ or A(¢) = u(¢), and the
lemma follows. 0O

ProOF oF THEOREM 3.1. By Proposition 7.2 and Lemma 6.5, we have that QV(¢)
is continuous at ¢ whenever p*(¢) # 1. It now remains to be shown that each subcase
for p*(¢) = 1 implies continuity or discontinuity.

If the onset of critical loading occurs, then there exists a sequence s, 7¢ with
p*(s,) < 1 for all n. Now p*(¢) = 1 implies t € ®,. If s € &, and s < ¢, then

O, CcP  foralls <s, <5, <1.

But p*(s,) < 1 implies ®; = {s,}, which means that s, = s,,. By contradiction, we
have proved that ®, = {¢}. By Lemma 6.5, this makes Q(l) continuous at f.
If ¢, 7t where p*(t,,) =1and p* > 1 on [¢,, ¢], then by Lemma 7.5, we have

JIAr) = ()] dr =0

n

It follows that ¢, € ®, € ®,,andso ¢, € ®, for all n. As a consequence, t € &, + {t},
and ¢ is not an 1solated point. It follows from Lemma 6.5, that QO is left-continuous
whenever ¢ is in the middle or end of critical loading.
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If in addition, p* > 1 on an open interval with ¢ as the left endpoint, then there
exists some s > ¢ such that ®, C ®, which makes Q™ continuous at ¢ if it is a time
for the middle of critical loading.

If ¢ is at the end of critical loading, then there exists as sequence such that s, | ¢
with ®, = {s,}. Since ¢ € ®, but &, # {1}, then @, cannot be a subset of @, for all
t < s. Therefore, Q¥ cannot be right-continuous at ¢ for almost all sample paths.

Finally, if ¢ is the end of overloading, then ®, # {¢}, but ¢ is an isolated point of
P, so Q" cannot be left-continuous at ¢ on almost all sample paths. ©

8. Underloaded or local equilibrium.

Proor or THEOREM 3.2. We will show by induction on N, that for all £, < -~
<ty, with p*(t,) <1,i=1,..., N, we get

N
mP(Q“(11) > -, 0%(ty) > ny) = TTo(t)™

Case [N = 1]. There exists some & > 0 such that p* is strictly less than one on the
closed interval [¢, — §, £,]. By (2.3) and (3.3), we can rewrite Q°(¢,) as

0c(ty) = [X°(1;) = X<(t; = 8) + Q(t; — )] V Q(t, = 8,1).
By (2.2), we have
lime[ X<(t;) — X*(t, — 8)] = /tl [A(r) —p(r)]dr <0 as.
€l0 £H—8
and by Theorem 2.1 we have

li €(t, —86) =0.
GI%GQ(I )

Combining these two results gives us

11?3[Xf(t1) = X(t; —8) + Q(t; = 8)] = —» as.

which finally leads to
(8.1) li%[Qe(tl) - Q(t; —8,4)] =0 as.

So it is sufficient to show that Q<(¢, — §,¢,) converges to a geometric distribution
with parameter p(t,).
Let Q* be an M/M/1 queue length process with arrival and service rates

AT(8) = sup A(s) and wu*(8) = inf u(s)

t—8<s<t, f—8<s <ty

respectively. Similarly, define O~ to be an M/M/1 queue length process with arrival
and service rates '

A7(8) = inf A(s) and u (8)= sup u(s)

t—0<s <t 1 —8<s<t
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respectively. By stochastic dominance, we have
Q7(8/e) < Q°(t; — 8,1;) <407 (3/e).
So for all n > 0, we have
P(Q7(8/e) > n) < P(Q(t, —8,t,) >n) <P(Q"(8/¢) >n).

Taking the limit as € |0, we get

)\ b 8 ) = < TP O — 5 AT )\
(u‘(a)) < ImP(Q*(r = 8,0) > n) < mP(Q*( B,t)>n)<( "G )

By (8.1), this means that for all n > 0,

)\_(6) n . . o — . N /\+(5) n
(,f(a)) < ?THSP(Q (1) =n) < il?;P(Q (1)) > n) < ( 3 ) _

But § can be made arbitrarily small. Since
LimA*(8) = limA~(8) = A(¢),
limA™(0) = lmA~(3) = A()
and a similar relationship holds between w*(8), u~(8), and u(z), we then get
liil(l)P(Qs(l‘l) >n) =p(t)".

Case [N — N + 1]. Observe that if t; < -+ <ty <ty,,, Where p*(¢;,) <1 for all
i=1,..., N+ 1, then there exists some & > 0 such that p* is strictly less than one
on [ty —6,ty,q), and ty < ty,, — 8. From this it follows that Q“(¢y,, — 8, ty. )
is independent of the random vector (Q<(¢,),..., Q(¢y)). By induction hypothesis,
we then have for all n; > 0,

llmP(Q (1) = ny,, Q(ty) 20y, Q(tyiy) = Niyyy)
= hmP(Q (1) = ng,0, 0(ty) 20y, Q(tyyy — 8, tysy) = Nyyy)
= hmP(Q (1) 2np,...,0(ty) > ny) - P(Q(tyyy — 8,ty11) > nyyy)

N
= l_[lp(ti)n’ ’ P(t1v+1)nNH
i=

N+1

= il:! P(ti)ni’

and this completes the proof. O
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9. Onset of critical loading.

LemMmA 9.1. Let A and p satisfy the hypotheses of Theorem 3.4. We then have for
our new tine scale T, and T (not necessarily. positive) with Ty < T,

liil(l)ek/(ZkJ'l)XE(tl + el/(2k+1)T0,t1 + el/(2k+1)T)
€

A9(e))

= (—k—m[T“l = T+ W2r(n)(T - Ty))  as.

Proor. We have in general
€’ Xe(t, + €Ty, t, + €°T)

t,+eT

Ler=t ("N = ()] dr + W(eZb‘lj; [A(r) + pu(r)] dr

t +eTy 1 +€T,

+ O(eb log e),

where a and b are positive constants that are to be determined. By our hypothesis,

_ t,+€°T /\(k)(t) a _
¢ 1-[tl+ ar. [A(r) = pu(r)] dr = G'F_ll)—![TkH _ Téc+l]6 (k+1)+b—1
1 TE€ Ly

+ 0(€a(k+1)+b—1)

and

1 [N + w(n)] dr = 2u(8) (T = T)e 271 4 o(em*2071).

t+eTy

Our goal is now to obtain Brownian motion with drift in the limit as e approaches
zero. The leading terms for the drift and the Brownian motion expressions will be
nonzero only when we employ the conditions

a(lk+1)+b=1 and a+2b=1.

These conditions yield a unique solution for a and b, namely

k

and b= 57—

which completes the proof. o

10. End of overloading.

Proor oF THEOREM 3.7. From Theorem 2.2, it follows that

lim Ve Q<(1) £ maxW(s,1).
€l0 sEP,
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Now let 7 be a nonnegative number. We will use 7 for positive T, and —r for
negative T.
For the case of T > 0, we have

Q‘(t+\/e—1') sup [Xf(t+\/6—1-)—X5(s)]

0<s<t

V. sup [Xf(t+ Ver) —X‘(s)]

I<S<t+yfer

[X<(t + Ver) = X<() + Q°(1)]

Vosup [Xe(t + Ver) — X<(t + Veo)].

0O<o<7

The theorem follows for this case from observing that
lin(l]\/g[Xf(t +yer) = X(1)] = (A1) — p(2))T +0(1) as.,
€l

and

Ve sup Xe(t + \/6—7') —Xe(t + \/Ea)

0<o<T
= max (A(1) = a(1))(r ~ ) +o(1) = o(1).

The last step follows since A(¢) < u(¢) by hypothesis.
For T <0, let T = —r. Since

Q(t — Ver) =X(t —Ver) = X<(£) + sup [X(1) — X(5)]

O<s<t—yer

and

li%\/e_[Xf(t —Ver) = X(1)] = —(A(t) — p(t))r as.,
we need only show that

limVe - sup  [X°() — X<(s)] £ maxW(s,t) v (A(t) — u(2))r.
€l0 O<s<t—er sED,

To show this, let Y<(s) = Ve[ X(¢) — X(s5)]. We then have

Ve - sup  [X9(¢) — X°(s)]

O<s<t—yfer

= sup Y(s)V sup  Ye(s) Vv sup Ye(s),

0<s<t;+8 1+o<s<t—§8 t—86<s<t—feT
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where ¢, = sup(®, — {¢}), and the constant & > 0 is sufficiently small. By Theorem
5.1, we have

Ye(s) & —‘/%-fst[)t(r) —w(r)] dr + W(s, 1) + o(D).

Combining this with Lemma 5.2, we get

lim sup Y<(s) L sup W(s,t)

€l00<s<t;+8 sed,—{t)

and

. d
lim sup Ye(s) = —o,
€l0y +5<s<t—8

so it remains to show that

(10.1) limlim  sup  Y<(s) £ (A(t) — u(t))r.
010€ll; gas<r—yer

Now, we can construct a process Y<(s), having the same distribution as Y*(s) such
that

lim sup  Y(s)
€l0t—8<s<t—fer

lim sup [—‘/%—fst[)\(r) — w(r)] dr + W(s, t)]

€l0t—8<s<t—er

< max W(s,t)+ lim  sup —l—j’[,\(r) — u(r)] dr
t—d<s<t €l0—8<s<t—fer Ve J

< max W(s,t)+ lim—l—ft [A(r) — (r)] dr
t—d<s<t el0 \/—E— t—Jer

< max W(s,t) + (A(¢) — u(t))r as.

t—d<s<t

On the other hand,
() = ()7 = tim = [ (A7) = ()] dr

= limY*(t —
51{% ( \/E»r)

N

lim sup Ye(s) a.s.
cl0t—8<s<t—er

This establishes (10.1), since 8 can be made arbitrarily small. o
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