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Online Supplement for “Minimizing Mortality in a Mass Casualty Event: Fluid Networks in Support 

of Modeling and Staffing” 

 

Proposition 1: The optimal solutions for Problem (P1) are the same as those for Problem (P2). 

Proof: By adding the two constraints of the type ( )  ( )   [0, )
i i

N t Q t t T    the following transformation 

( ( ) ( )) ( )
i i i

Q t N t N t   is made. Adding more resources than necessary (e.g. ( )  ( )
i i

N t Q t  for some 

t ) does not affect the departure rate from a station so the objective value is not affected and the optimal 

solutions of (P1) and (P2) are equivalent. 

 

Proposition 2: The formulation of (P2) is equivalent to the following formulation (P3). 

Proof: We start with (P2) and perform the following steps: change the summation index so that the 

objective includes the terms ( 1)
i

Q t   which are substituted by the flow constraints in the objective 

function to yield the following: 

1 2

1

1 1 1 1 1 2 2 2 12 1 1 2 2
( ), ( ) 0

   {( [(1 ) ( ) ( ) ( )]  [(1 ) ( ) ( )  ( )]}

                  

T

N N t

Q t t N t Q t p N t N tMin        


  

       

 

1 1 1 1 1

2 2 2 12 1 1 2 2

1 1

such that for 0,1,..., 1:

( 1) (1 ) ( ) ( ) ( )                        

( 1) (1 ) ( ) ( )  ( )           

( ) ( )                                                      

t T

Q t Q t t N t

Q t Q t p N t N t

N t Q t

  

  

 

    

     



2 2

1 2

1 2 1 2

               

( ) ( )                                                                    

( ) ( )                                                             

( ),  ( ),  ( ),  ( ) 0,  an

N t Q t

N t N t N

N t N t Q t Q t



 



1 2

d

(0) 0,   (0) 0.Q Q 
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Next we continue to substitute the flow constraints which lead to sums of geometrical progression 

equations, place the initial conditions 
1 2
(0) 0,   (0) 0Q Q   in the objective and omit constants from 

the objective to receive the following formulation:

1 2

1

1 1 1 12 2 2 2 2
( ), ( ) 1

   { ( ) [(1 ) 1  [(1 ) 1]]  ( ) [(1 ) 1]}
T

T t T t T t

N N t

N t p N tMin     


  

  

         

1

1 1 1

1 1 1 1 1 1 1

3 4 3 4

1 1 1 1 1 1 1 1 1

2

  

(1) = 0

(1) + (2)    (1)   

(1 ) (1) + (2)  + (3)   (1 ) (1)  + (2) 

(1 ) (1) + (1 ) (2)  + ( 1)  (1 ) (1)  + (1 ) (2) + + ( 1)  

(1) 

T T T T

subject to

N

N N

N N N

N N N T T

N

 

     

           



  

       

2 2 12 1 1 2

2 2 2 2 12 1 1 2 2 12 1 1 2

3 3 4 4

2 2 2 2 12 1 1 2 2 2 2 12 1 1

2 2 12 1 1

= 0

(1) -p (1)+ (2) 0   

(1 ) (1) -(1 )p (1)+ (2) - p (2)+ (3) 0 

(1 ) (1) + (1 ) p (1) (1 ) (2) - (1 ) p (2)

( 2) - p (

T T T T

N N N

N N N N N

N N N N

N T N T

 

     

       

 

   



  

     

 

 

 

2

1 2

1 2

2) + ( -1) 0               

                                                          

( ) ( )    0, 1                             

( ),  ( ) 0   0, 1  ,                                 

N T

N t N t N t T

N t N t t T

 

    

   
 

which is identical to (P3). 
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Proposition 3: An optimal policy for the greedy problem is to allocate to Station *
i  all needed1 surgeons 

from the N available, where 
*

1i   if  1 1 12 2 2 2
p        and 

*
2i   otherwise; if there are still 

available surgeons left then allocate them to the other station.  

Proof: A greedy solution solves an optimization problem for each time interval t, determining 

1 2
( ),  ( )N t N t to minimize the mortality in the next interval (t+1). The optimization problem is: 

 
1 2

1 1 2 2
( ), ( )

   ( 1) ( 1)            0, 1   
N N

Q t Q t t TMin  
 

      

1 1 1 1 1 1

2 2 12 1 1 2 2 2 2

1 1

2 2

1 2

1 2 1 2

1 2

 

( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( )  ( ) ( )

( ) ( )

( ) ( )      

( ) ( )

( ),   ( ),  ( ),   ( ) 0

(0) 0,    (0) 0.

subject to

Q t Q t t N t Q t

Q t Q t p N t N t Q t

N t Q t

N t Q t

N t N t N

N t N t Q t Q t

Q Q

  

  

     

      





 



 

 

Substituting the flow constraints in the objective function yields the following: 

 
1 2

1 1 1 1 1 2 2 2 12 1 1 2 2
( ), ( )

   [(1 ) ( ) ( ) ( )] [(1 ) ( ) ( )  ( )]           0, 1   
N N

Q t t N t Q t p N t N t t TMin        
 

          

1 1

2 2

1 2

1 2 1 2

1 2

 

( ) ( )

( ) ( )      

( ) ( )

( ),   ( ),  ( ), ( ) 0

(0) 0,    (0) 0.

subject to

N t Q t

N t Q t

N t N t N

N t N t Q t Q t

Q Q





 



 

 

After omitting constants (e.g., at any time t, 
1 2
( ), ( )Q t Q t and (t) are known) and formulating the 

problem as a maximization problem we get the following: 

 

 

                                                           
1 By "needed" we mean that at most 

1
( )Q t  (

2
( )Q t ) are needed at station 1 (2). 
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 
1 2

1 1 1 12 2 2 2 2
( ), ( )

    ( ) [  - ]  ( )          0, 1   
N N

N t p N t t TMax     
 

      
 

1 1

2 2

1 2

1 2 1 2

1 2

            

( ) ( )

( ) ( )

( ) ( )

( ),   ( ),  ( ),   ( ) 0

(0) 0,    (0) 0.

subject to

N t Q t

N t Q t

N t N t N

N t N t Q t Q t

Q Q





 



 

 

Note that this formulation is actually the continuous Knapsack problem (Kellerer et al., 2004, pp.17–

20) so the optimal solution is to allocate all needed resources to Station 1 if  1 1 12 2 2 2
p       

("needed" is enforced by the constraint 
1 1
( ) ( )N t Q t ( or else prioritize Station 2; if there are still 

available surgeons left then allocate them to the other station.  

 

Proposition 4: Assume that 
1 2

    . Then an optimal solution of Problem (P3) is given by any 

sequence of greedy solutions for Problem (P4).  

Proof: The proof, by induction, involves two steps: In the first we show that for any two minutes

( 2)n   and any initial conditions the greedy solution is optimal. Then in the second, we assume that 

the greedy solution is optimal for any n  when the mortality rates are equal, and prove it for 1n  .  

Step 1: 

The problem for the first minute is: 

1 2

1 12 1 2 2
(0), (0)

    (1 - ) (0)  (0)        
N N

p N NMax      

1 1

2 2

1 2

1 2

        

(0) (0)

(0) (0)

(0) (0)

(0),   (0) 0

subject to

N Q

N Q

N N N

N N





 



 

and its optimal solution is: 

  1 1 2 2 1 12 1 2
1 2

1 1 2 2 2 12 1 2

(0) min( (0), ),     (0) min( (0), (0))  when (1 )
(0), (0)

(0) min( (0), (0)),     (0) min( (0), ) when (1 )

N Q N N Q N N p
N N

N Q N N N Q N p

 

 

    
 

    
. 
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In a similar way we find the optimal solution for the second minute to be: 

  1 1 2 2 1 12 1 2
1 2

1 1 2 2 2 12 1 2

(1) min( (1), ),     (1) min( (1), (1))  when (1 )
(1), (1)

(1) min( (1), (1)),     (1) min( (1), ) when (1 )

N Q N N Q N N p
N N

N Q N N N Q N p

 

 

    
 

    
  

We explicitly write the problem for the two-minute time horizon as: 

1 2

1 2

12 1 1 2 2 12 1 1 2 2
(0), (0)
(1), (1)

   [1 ] (2- ) (0)  (2- ) (0) +   [1 ] (1)  (1)         
N N
N N

p N N p N NMax           

1 2

1 2

1 1 2 2

1 1 2 2

1 2

1 2

 

(0) (0)

(1) (1)

(0) (0),  (0) (0)

(1) (1),  (1) (1)

(0),   (0) 0

(1),   (1) 0

subject to

N N N

N N N

N Q N Q

N Q N Q

N N

N N

 

 

 

 





 

Our proof stands any initial conditions so we consider these 8 different combinations: 

12 1 2

1 1

1 1

1 1

1 1

2 2

12 1 2

2 2

2 2

   (1 ) :

1.  (0),    (1),  

2. (0),    (1),       

3. (0),    (1),   

4. (0),    (1),  

(0), (1)

   (1 ) :    

5.  (0),    (1),  

6. (0),    (1),     

If p

N Q N Q

N Q N Q

N Q N Q

N Q N Q

Q Q

If p

N Q N Q

N Q N Q

 

 

 

 

 

 

 



 

 

 

2 2

2 2

1 1

  

7. (0),    (1),   

8. (0),    (1),

(0), (1) 

N Q N Q

N Q N Q

Q Q

 

 



 

We show here the proof for the first combination and all the others were solved analogously: 

The solution for solving each minute separately is: 
1 2 1 2
(0) ,  (0) 0 ; (1) , (1) 0N N N N N N    . The 

objective function is: 
1 12

(1-p )(3- ).O N   

Let us assume that it is optimal not to assign all of the resources to the first station in the first minute, 

1 2 1 2
(0) ,  (0) min( (0), (0))N N N N N Q   . 

(PA) 
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Define: 
1
(0) 0N N X    so 

1
(0)N N X  . 

Substituting the above in the objective function of Problem (PA) we get:  

1 1 12 2 2 1 12

1 1 12 1 2 1 12

1 12 1 12 2 1 12

' (0)(2 ) (1 ) + (0)(2 ) + (1 ) 

       (0)(2 ) (1 ) +( - (0))(2 ) + (1 ) =

       (3 ) (1 ) - (2 )[ (1 ) ] (3 ) (1 ) .

O N p N N p

N p N N N p

N p X p N p O

    

    

      

     

   

        

 

Since we wish to maximize the objective function, we get a contradiction to our assumption. 

Let us focus on the second minute and assume that it is optimal not to assign all the resources to the 

first station in the second minute, 
1 2 1 2
(1) ,  (1) min( (1), (1))N N N N N Q    and define:  

1
(1) 0N N X    so 

1
(1)N N X  . 

As before, we place the above in the objective of Problem (PA) and get:  

1 12 1 1 12 2 2

1 12 1 1 12 2 1 2

1 12 1 12 2 2 1 12 2

1 12 1 12 2

' (2 ) (1 ) (1) (1 ) (1)  

        (2 ) (1 ) (1) (1 ) (1)

        (2 ) (1 ) (1 ) [ (1 ) ]

        (1 )(3 ) [ (1 ) ]  

O N p N p N

N p N p N N

N p N p N N X p

N p X p

   

    

      

   

      

      

         

     
1 12
(1 )(3 ) .N p O   

 

Again there is a contradiction of the assumption that it is best not to assign all resources to Station 1. 

Step 2: 

The induction assumption is that for n  minutes (or less) the greedy solution is the optimal one and we 

wish to prove it for 1n   minutes. Let us assume, by contradiction, that in the optimal solution of 1n   

minutes there exists a time interval: 1 2[ , ]t t , where 2 1 1t t  , and in which the priority is not given to 

station i. There are four possible options regarding the location of the time interval 1 2[ , ]t t : 

1. At the beginning of the MCE event 1 2( 0, 1)t t n   . 

2. At the middle of the event 1 2( 0, 1)t t n   . 

3. At the end of the event 1 2( 0, 1)t t n   . 

4. During the entire event 1 2( 0, 1)t t n   . 

In the following figures, Option A illustrates a switch in priorities and Option B illustrates the 

induction's assumption that we prove to be the optimal policy. 
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Option 1: 1 20, 1t t n    

 

 

We divide the n+1 minutes into two intervals [0, t] and [t, n+1] where 1 2t t t   and both are no longer 

than n minutes. In the first interval, according to the induction assumption, Option B is preferable since 

it gives priority to Station i. In the second interval the induction assumption also holds and therefore 

option B is preferable. If Option B is preferable in both intervals, it is also preferable for the entire 

interval.   

Option 2:  1 20, 1t t n    

 

We divide the n+1 minutes into two intervals [0, 1t ] and [ 1t ,n+1] both no longer than n minutes. In the 

first and last interval, the two options are identical. In the second interval, according to the induction 

assumption, Option B is preferable. It follows immediately that Option B is optimal for the entire 

interval.   

n+1 =0 

Station i gets priority  Station i  does not 

get priority  

0 n+1 

Station i  gets priority  

A 

B 

n+1 0  

t 

Station i  gets 

priority  

Station i  does not get priority  

0 n+1 

A 

B 

2t 

Station i  gets 

priority  

Station i  gets priority  
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Option 3:  1 20, 1t t n    

 

 

We divide the n+1 minutes into two intervals [0, 1t ] and [ 1t , n+1] both no longer than n minutes. In the 

first interval, the two options are the same. In the second interval, according to the induction 

assumptions, Option B is preferable and thus, it is also preferable for the entire interval.   

Option 4:  1 20, 1t t n    

 

We divide the n+1 minutes into two intervals [0,t] and [t, n+1] both no longer than n minutes. In both 

intervals, according to the induction assumption, Option B is preferable since it gives priority to Station 

i; thus it is optimal.  

 

 

t =n+1t 

0 n+1 

A 

B 

0 

n+1 0 

Station i  does not get priority  

0 n+1 

Priority to Station i  

A 

B 

Station i  gets priority  

Station i  gets priority  

Station i  does 

not get priority  
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Proposition 5: If Station i gets priority when i j  , then it will get priority when i j   (e.g., Cases 

4,5,7 and 9). 

Proof: By induction. The proof involves two steps. In the first we prove the proposition for any two 

minutes and for any initial conditions. Then the second step expands the proof beyond two minutes. 

Step 1: 

The problem for the first minute is: 

1 2

1 1 2 12 1 2 2 2
(0), (0)  

    [  - ] (0)  (0)        
N N

p N NMax       

1 1

2 2

1 2

1 2

        

(0) (0)

(0) (0)

(0) (0)

(0),   (0) 0

subject to

N Q

N Q

N N N

N N





 



 

and its optimal solution is: 

  1 1 2 2 1 1 2 12 1 2 2
1 2

1 1 2 2 2 1 2 12 1 2 2

(0) min( (0), ),     (0) min( (0), (0))  when ( )
(0), (0)

(0) min( (0), (0)),     (0) min( (0), ) when ( )

N Q N N Q N N p
N N

N Q N N N Q N p

    

    

    
 

    

 

Similarly, the optimal solution for the second minute is: 

  1 1 2 2 1 1 2 12 1 2 2
1 2

1 1 2 2 2 1 2 12 1 2 2

(1) min( (1), ),     (1) min( (1), (1))  when ( )
(1), (1)

(1) min( (1), (1)),     (1) min( (1), ) when ( )

N Q N N Q N N p
N N

N Q N N N Q N p

    

    

    
 

    
. 

Formulating the problem for the two-minute time horizon gives: 

1 2

1 2

1 1 2 12 2 1 1 2 2 2 2 1 2 12 1 1 2 2 2
(0), (0)
(1), (1)

   [ (2 ) (2- )] (0)  (2- ) (0) +  [ ] (1)  (1)         
N N
N N

p N N p N NMax                 

1 2

1 2

1 1 2 2

1 1 2 2

1 2

1 2

 

(0) (0)

(1) (1)

(0) (0),  (0) (0)

(1) (1),  (1) (1)

(0),   (0) 0

(1),   (1) 0.

subject to

N N N

N N N

N Q N Q

N Q N Q

N N

N N

 

 

 

 




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We check these 8 possible combinations of the initial conditions: 

12 1 2

1 1

1 1

1 1

1 1

2 2

12 1 2

2 2

2 2

   (1 ) :

1.  (0),    (1),  

2. (0),    (1),       

3. (0),    (1),   

4. (0),    (1),  

(0), (1)

   (1 ) :    

5.  (0),    (1),  

6. (0),    (1),     

If p

N Q N Q

N Q N Q

N Q N Q

N Q N Q

Q Q

If p

N Q N Q

N Q N Q

 

 

 

 

 

 

 



 

 

 

2 2

2 2

1 1

  

7. (0),    (1),   

8. (0),    (1),

(0), (1) 

N Q N Q

N Q N Q

Q Q

 

 



 

The proof is very long thus it is shown only for the first combination. All the others were solved 

analogously: 

The solution for solving each minute separately is: 
1 2 1 2
(0) ,  (0) 0 ; (1) , (1) 0N N N N N N    . The 

objective function is: 
1 1 1 2 12 2 1 1 12 2

[ (2- )- p (2- )] + ( p )   O N N         . 

Let us assume that it is optimal not to assign all of the resources to the first station at the first minute 

1 2 1 2
(0) ,  (0) min( (0), (0))N N N N N Q   .   

Define: 
1
(0) 0N N X    so 

1
(0)N N X  . 

Substituting the above in the objective function of the problem formulation for two minutes results in: 

1 1 1 1 2 12 2 2 2 2 2 1 1 2 12

1 1 1 1 2 12 2 2 2 2 1 2 2 2

1 1 2 12

1 1 1 1 2 12 2 2

' (0) [ (2- ) p (2- )] + (0)(2 ) + ( ) 

    = (0) [ (2- ) p (2- )] (2 ) (0)(2 )

       + ( )

   (0) {[ (2- ) p (2- )] (2

O N N N p

N N N

N p

N

          

          

  

     

    

     

 

   
2 2 2 2 2

1 1 2 12

1 1 1 2 12 2 2 2 2 2 2 2

1 1 2 12 1 1 2 12 2 2 2 2

1 1 1 2 12 2 1 1 2

) } (2 )

       + ( )

  { [ (2- ) p (2- )] (2 ) } (2 )

       + ( ) {[ (2- ) p (2- )] (2 ) }

  [ (2- ) p (2- )] (

N

N p

N N

N p X

N N

    

  

          

         

       

  

 

      

     

   
12

1 1 2 12 2 2 2 2

1 1 1 2 12 2 2 2 2

1 1 1 2 2 2 1 12

)

      {[ (2- ) p (2- )] (2 ) }  

   =  { [ (2- ) p (2- )] (2 ) }

   =  [ (2- ) (2- )( )]  .

p

X

O X

O X p O

      

       

      



    

    

   
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The coefficient of X is positive due to: 

1 2 1 12 1 12 2

1 1 2 2 1 2 1 2

2 2

1 1 2 2

2 2

1 2 1 2 1 2 1 2

1 2

1.    ( ) 0   since   (1 )  

2.   (2- ) (2- ) 0 when     ( + ) 2  since 

      2 - 2 - 

      2( - ) - ( - )( + )

         

      2 (

p p

and

when

    

       

   

       

 



    

   



 




1 2
+ ).

 

We note that 
1
 and 

2
 are much smaller than 1 according to the model's assumptions. 

Since we wish to maximize the objective function we get a contradiction to our assumption and so 

acting by the greedy algorithm is optimal. The proof is by the same procedure that is detailed in 

Proposition 4. 

 

Analysis of Cases 6 and 8: 

Since it is not possible to fully characterize the policy for Cases 6 and 8 (e.g., at what point in time 

should the priority be switched), and decisions have to be made on a case-by-case basis, we provide in 

the sequel insights into the conditions in which we expect a greedy allocation policy, that prioritizes a 

single station, to perform well. Obviously, the simpler static priority setting is attractive as its solution 

value (e.g., the number of dead) is close to the solution value of Problem (P3). Although we cannot 

develop bounds, we are able to find conditions under which the static priority achieves the best and 

worst results. So for a given scenario one can estimate how well the static priority rule will perform. 

These results are presented as Corollary 1. 
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Corollary 1: The largest difference between the greedy and optimal solutions of Cases 6 and 8 occur for 

the following 2

1




values: 

1) Case 6:  

2 1

1 1 2 12 2 2

1 2 1 12

2 1

1 1 2 12 2 2

1 2 1 12

6a: if ( )  then 

6b: if ( )  then 

p
p

p
p

 
     

  

 
     

  


    




    



  

 

2) Case 8:  

2 1

1 1 2 12 2 2

1 2 1 12

2 1

1 1 2 12 2 2

1 2 1 12

8a: if ( )  then 

8b: if ( )  then 

p
p

p
p

 
     

  

 
     

  


    




    



 

where  is positive and small enough. 

Proof: 

The optimal solution for Cases 6 and 8 differs from the greedy solution. Next we identify the cases 

when the greedy solution performs the worst; t represents the time when priorities switch under the 

optimal policy. 

Case 6: 

2

2 1

1

1

1 12 2

2 1 12

1

(1 ) 1p
p


 




 

 

  

   


 

Again there are two options for the greedy solution. 
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Option 1: The greedy solution gives priority to Station 1 

 

For this option the following condition must hold (derived from Proposition 3): 

1 1 2 12 2 2

2 1

1 2 1 12

2 1

1 2 1 12

( )

              

1

p

p

p

    

 

  

 

  

 






 


 

We expect the largest difference between the solutions when t is as close to T as possible. This will 

happen when the ratio is:  2 1

1 2 1 12
p

 


  
 


 . 

 

Option 2: The greedy solution gives priority to Station 2. 

 

 

 

t T 

Station 2 gets priority  Station 1 gets priority  

0 

0 

T 

Station 1 gets priority  

t T 

Station 2 gets priority  Station 1 gets priority  

0 

0 

T 

Station 2 gets priority  
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For this option the following condition must hold (derived from Proposition 3): 

1 1 2 12 2 2

1 2

2 1 12 1

1 2

2 1 12 1

( )

              

1

p

p

p

    

 

  

 

  

 






 


 

Until time t the two policies are identical so the largest difference between them is when t is as close to 

0 as possible. This will happen when: 2 1

1 2 1 12
p

 


  
 


. 

Case 8: 

2

2 1

1

1

1 12 2

2 1 12

1

(1 ) 1p
p


 




 

 

  

   


 

There are two options for the greedy solution: either Station 1 or Station 2 gets priority throughout the 

entire time interval. 

Option 1: The greedy solution gives priority to Station 2. 

 

 

 

 

 

t T 

Station 1 gets priority  Station 2 gets priority  

0 

0 

T 

Station 2 gets priority  
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For this option the following condition must hold (derived from Proposition 3): 

1 1 2 12 2 2

1 1 2 2 1 2 12

1 1 2 2 1 12

1 2

2 1 12 1

1 2

2 1 12 1

( )

( )

              

1 .

p

p

p

p

p

    

     

    

 

  

 

  

 

 

 






 


 

The largest difference between the optimal solution and the greedy solution will be when t, the time 

point in which the priority switches in the optimal solution, will be as close to T as possible. This will 

happen when: 2 1

1 2 1 12
p

 


  
 


 where   is positive and small enough. 

 

Option 2: The greedy solution gives priority to Station 1 

 

For this option the following condition must hold (derived from Proposition 3): 

1 1 2 12 2 2

1 2

2 1 12 1

2 1

1 2 1 12

( )

              

1

p

p

p

    

 

  

 

  

 






 


 

t T 

Station 1 gets priority  Station 2 gets priority  

0 

0 

T 

Station 1 gets priority  
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Until time t the two policies are identical so the largest difference between the optimal solution and 

the greedy solution will be when t, the time point in which the priority switches in the optimal 

solution, will be as close to 0 as possible. That will happen when the ratio  2 1

1 2 1 12
p

 


  
 


 . 

The following table presents results for different scenarios that represent the different cases and the 

difference in percentage (∆) between the optimal and greedy solutions.  

Scenario 1 is when 1

1 2 12

2 1 12

1/ 30,  1 /100,  p 0.25  1.818
p


 

 
    


 with N=10 and a 

quadratic arrival rate 5 2
( ) 1 10 0.0044 ,    0 440t t t t 

      . When the arrival rate was constant 

( ) 0.8,    0 200t t     we call the scenario, Scenario 2. Scenario 3 is for Case 6 and the parameter 

values are 1

1 2 12

2 1 12

1/ 30,  1 /100,  p 0.75  0.9523
p


 

 
    


 with N=10 and the same constant 

arrival rate. Scenario 4 is identical to Scenario 3 only with the quadratic arrival rate. 

No. Case Scenario 
2

1




 ∆ 

1 8, Option 1 1 3 4.55% 

2 8, Option 1 1 2.3 7.89% 

3 8, Option 1 1 1.90 10.17% 

4 8, Option 2 1 1.03 0.00% 

5 8, Option 2 1 1.70 0.04% 

6 8, Option 2 1 1.80 0.06% 

7 8, Option 2 2 1.03 0.00% 

8 8, Option 2 2 1.70 0.02% 

9 8, Option 2 2 1.80 0.04% 

10 6, Option 1 3 0.600 0.00% 

11 6, Option 1 3 0.938 1.15% 

12 6, Option 1 3 0.949 1.33% 

13 6, Option 1 3 0.95 1.34% 

14 6, Option 2 3 0.955 0.00% 

15 6, Option 2 3 0.984 0.00% 

16 6, Option 2 4 0.955 0.00% 
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No. Case Scenario 
2

1




 ∆ 

17 6, Option 2 4 0.984 0.00% 

 

Based on these experiments we expect that for Cases 6b and 8b, when the greedy solution prioritizes 

the same station that the optimal solution prioritizes first, the price of using the greedy policy to be very 

small even for the worst case. Specifically, our experiments indicated less than 0.1%. For Cases 6a and 

8a the price of using the greedy solution may be higher (e.g., 10%) for the worst case. Thus for these 

cases our advice is to solve Problem (P3).  

In order to understand the effect of the number of surgeons on the difference between the optimal and 

greedy policies we conducted a sensitivity analysis by solving the optimal and greedy problems for a 

varying number of resources, N. The figure below presents an example for Case 8a where we found the 

largest difference between the greedy and the optimal solutions. For small and large numbers of 

surgeons the differences between the optimal and greedy solutions were smaller when compared to the 

intermediate number of resources (e.g., 5 to 13). An intuitive interpretation is that when there is a severe 

shortage of resources (e.g., a national disaster), a reasonable policy would achieve reasonable results. 

When there are enough resources, then again the prioritization policy is not very important. When we 

draw away from these two extreme situations, the importance of using the optimal allocation policy 

increases. 
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N 
 

 

Figure: The difference (∆) between the greedy and optimal solutions for Case 8a with parameters 

1 2 12
1/ 30,  1 /100,  p 0.25   

 

and the quadratic arrival rate is 

5 2
( ) 1 10 0.0044 ,    0 440t t t t 

      . 
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Proposition 6: Problem (P5) is a linear formulation of the optimization problem that satisfies the 

minimal time window allocation constraint. 

Proof: We start with: 

1 2

1 1 2 2
( ), ( ) 0

   [ ( ) ( )]          
T

N N t

Q t Q tMin  
  

  

1 1 1 1 1 1 1

2 2 2 12 1 1 1 2 2 2

1 2

1 2 1

such that for 0,1,..., 1:

( 1) (1 ) ( ) ( ) ( ( ) ( ))     

( 1) (1 ) ( ) ( ( ) ( ))  ( ( ) ( ))       

( ) ( )                              

( ),   ( ),  ( ),  

t T

Q t Q t t Q t N t

Q t Q t p Q t N t Q t N t

N t N t N

N t N t Q t

  

  

 

     

      

 

2

1 2

 ( ) 0  

(0) 0,   (0) 0

and

( ) ( 1) ... ( 1)       1,2;  u 1, ,2 ...  
i i i

Q t

Q Q

T
N u N u N u S i S S S

S



 

 
         

 

 

Variables 
1
( )Z  and 

2
( )Z   are defined as: 

 

 

1 1 1

2 2 2

( ) ( ) ( )            0, 1   

( ) ( ) ( )           0, 1    ,

Z t Q t N t t T

Z t Q t N t t T

    

    
 

which are equivalent to these linear constraints: 

 

 

1 1 1 1

2 2 2 2

(t) ( ),  (t) ( )   0, 1   

(t) ( ),  (t) ( )    0, 1   

 

Z N t Z Q t t T

Z N t Z Q t t T

    

     . 

1
( )Z  and 

2
( )Z   should appear with a negative sign in the objective function to assure that the solution 

sets them at their maximum possible value. 
2
( )Z   always appears in the objective with a negative 

sign, but 
1
( )Z   appears with a negative sign only if the following condition holds:  

1 1 2 12 1 2 12 1
   0          p p          . 

This condition holds for all the cases where the mortality rate in Station 1 is higher than in Station 2 

and 
12

p  is smaller than 1. We expect this condition to be true for MCEs. 
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Substituting 
1
( )Z  and 

2
( )Z  into the problem results in: 

1 2

1 1 2 2
( ), ( ) 0

   [ ( ) ( )]          
T

N N t

Q t Q tMin  
  

  

1 1 1 1 1 1 1

2 2 12 1 1 2 2 2 2

1 2

such that for 0,1,..., 1:

( 1) ( ) ( ) ( ) ( )  

( 1) ( ) ( )  ( ) ( ) 

( ) ( )     

(t) ( ), (t) ( )                      1,2

(t) 0             

i i i i

i

t T

Q t Q t t Z t Q t

Q t Q t p Z t Z t Q t

N t N t N

Z N t Z Q t i

Z

  

  

 

     

       

 

  



1 2 1 2

1 2

                                       1,2

( ),   ( ),  ( ),   ( ) 0                

(0) (0) 0

and

( ) ( 1) ... ( 1)       1,2;  u 0, ,2 ...
i i i

i

N t N t Q t Q t

Q Q

T
N u N u N u S i S S S

S





 

 
         

 

 

We can also change the summation index so that the objective includes the terms ( 1)
i

Q t  : 

1 2

1

1 1 2 2
( ), ( ) 0

   [ ( 1) ( 1)].
T

N N t

Q t Q tMin  


  

    


