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In this paper we consider a multiserver queueing model where waiting customers may
abandon and subsequently retry� This model is of particular interest for analyzing perfor�
mance and setting sta�ng levels in call centers� All of the parameters �arrival rate� service
rate� etc�� are allowed to be time dependent� We propose a simple �uid approximation
for the queue length process arising in this model� The �uid approximation� which is
obtained as the solution of an intuitively appealing ordinary di�erential equation� is in
fact asymptotically exact as the size of the system �arrival rate and number of servers�
grows large� The �uid approximation is compared with simulations for several sets of
parameters and performs extremely well�

�� Introduction

Time�varying analytical models of telecommunication systems are notorious for being
intractable� This is an unfortunate state of a�airs as telecommunication systems typically
operate under time�varying conditions� The gap between this �demand� and �supply�
has been traditionally circumvented� in practice� in one of two ways� either approximating
time�varying behavior by piecewise�constant behavior� and then applying stationary anal�
ysis over intervals of �constancy�� or giving up analytical models altogether and carrying
out performance analysis based on simulation� The goal of our paper is to demonstrate
that time�variability is amenable to analysis� at least within speci�c regimes of operation�
We do this through a model of a single service station that� we believe� is already of con�
siderable practical importance� In fact� this model is a relatively simple special case of the
class of models considered in �
�� which includes complex service networks that are both
time� and state�dependent� The analysis we provide is based on a �uid approximation�
which is intuitively appealing� asymptotically exact �in a sense that we make precise��
and surprisingly accurate�
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Figure �� The abandonment queue with retrials�

Our model is a multi�server queue with time�varying parameters� in which customers
are impatient and hence abandon after �subjectively� excessive wait� Moreover� obtaining
service is important enough for some customers that they return and seek service after
experiencing a �time�out�� Formally� our model is depicted in Figure �� there is a single
�service� node with nt� t � �� servers� New customers arrive to the service node following
a Poisson process of rate �t� Customers arriving to �nd an idle server are taken into
service that has rate ��t � Customers that �nd all servers busy join a queue� from which
they are served in a FCFS manner� Each customer waiting in the queue abandons at
rate �t� An abandoning customer leaves the system with probability �t or joins a retrial
pool with probability ���t� Each customer in the retrial pool leaves to enter the service
node at rate ��t � Upon entry to the service node� these customers are treated the same as
new customers� Our focus is the two�dimensional� continuous time Markov chain Q�t� ��
Q��t�� Q��t�

�
where Q��t� equals the number of customers residing in the service node

�waiting or being served� and Q��t� equals the number of customers in the retrial pool�
Time variability manifests itself through time�dependent rates for arrivals� abandonments
and retrials� as well as a varying number of servers� �It is worth noting that� even if all
of these parameters are constant� the model in Figure � is analytically intractable��
We are motivated by the need to develop analytical tools that support performance

analysis of large telecommunication systems� For convenience� however� we shall speak in
terms of telephone call centers� These already constitute a multi�billion dollar industry
that enjoys a ��� annual growth rate� see Brigandi� Dargon� Sheehan� and Spencer ����
While abandonments and retrials arise naturally in call centers� they are also prevalent in
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many other telecommunication systems� as described for example in Boxma and de Waal
��� for abandonments� and Falin and Templeton ��� for retrials� Additional complementing
references� that include numerous further leads� are Wol� ����� Grier� Massey� McKoy� and
Whitt ���� Mandelbaum and Shimkin ����� and Garnet� Mandelbaum� and Reiman ����
Articles that speci�cally address call centers with abandonments and retrials are Brandt�
Brandt� Spahl� and Weber ���� Harris� Ho�man� and Saunders �	� and Sze �����
Call centers are constantly subject to time�varying conditions� and waiting customers in

phone queues are unable to observe the state of the system� It follows that time�dependent
modeling �as opposed to also state�dependent� is natural for call centers� In Figure ��
customers represent callers that seek service at the call center� servers are telephone agents
�operators� CSR�s � Customer Service Representatives�� The rate �t represents the time�
varying call arrival rate� �Our validation experiments� in Section �� focus on two forms
of behavior� continuously�changing load and sudden�peak�� Abandonment rates could
depend on time as a response to broadcasted IVR�information �IVR � Interactive Voice
Response�� For example� announcements on predictable long queues by providers of ��

�� services� could be designed to encourage abandonments in order to reduce waiting
costs� predictable long queues could arise� for example� as a consequence of a promotion
whose timing is known in advance� Finally� the number of agents varies in response to
time�variations of o�ered load �workforce management��
The size of call centers varies from small ���� agents� to the very large �thousands of

agents�� The latter require delicate performance analysis� and here we demonstrate that
asymptotic analysis su�ces to provide signi�cant insight� of both theoretical and practical
importance� Speci�cally� our asymptotic analysis is in a regime where we scale up the
number of servers in response to a similar scaling up of the arrival rate by customers�
The outcome is �rst a �uid approximation �Theorem ��� followed by di�usion re�nement
�Theorem ��� The usefulness of our approximations is already apparent from a visual
comparison with corresponding simulations �Section ��� see� for example� Figures ����

�� The Model and Limit Theorems

The multiserver queue with abandonment and retrials� as illustrated in Figure �� is
characterized by the following set of parameters�

�t � external arrival rate to the calling node at time t ��t � ���
�t � abandonment rate from the calling node at time t ��t � ���
��t � service rate for the calling node at time t ���t � ���
��t � service rate for the retry node at time t ���t � ���
�t � probability of no retrial at time t �� � �t � ���
nt � number of calling servers at time t �nt � �� �� �� � � ���

The above parameters suggest that Q����t� �
�
Q

���
� �t�� Q

���
� �t�

�
� the �uid approximation

for Q�t� �
�
Q��t�� Q��t�

�
� solves the non�linear di�erential equations

d
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and

d

dt
Q

���
� �t� � �t�� � �t�

�
Q

���
� �t�� nt

�� � ��tQ
���
� �t�� ���

Here x�y � min�x� y� and x� � max�x� �� for all real x and y� Given an initial condition
Q������ �

�
Q

���
� ���� Q

���
� ���

�
� then Q����t� is uniquely determined �
�� The correspondence

between Figure � and the �uid model ��� and ��� is clear� for example� the rate of change

in Q
���
� � namely ���� consists of the exogenous input rate �t plus the out�ow rate from

the retrial pool ��tQ
���
� �t�� from which one subtracts the departure rate from the network

��t
�
Q

���
� �t� � nt

�
� where Q���

� �t� � nt approximates the number of active servers at time t�

as well as the abandonment rate �t
�
Q

���
� �t�� nt

��
� where

�
Q

���
� �t�� nt

��
approximates

the the waiting customers that are vulnerable to abandon�
The sample paths of the queue length process Q�t� � �Q��t�� Q��t�� are also uniquely

determined by the relations
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where Aa� Ab� Ac� Ab
��� and A

c
�� are �ve given mutually independent� standard �mean rate

��� Poisson processes �
�� As described in the introduction� we are interested in scaling
up both the arrival rate and the number of servers� To this end we introduce a scaling
parameter �� � � �� and construct a scaled version Q��t� �

�
Q�

��t�� Q
�
��t�

�
of the process

Q� where
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Theorem ��� �Strong Law of Large Numbers� Using the scaling of ��� and ���� we
have

lim
���

�

�
Q��t� � Q����t�� for all t � �� a�s�� �	�

where this is a convergence of sample�paths� which converge uniformly on compact sets of
t � �� almost surely	
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We can re�ne this deterministic �uid approximation by deriving a stochastic di
usion
approximation Q���� to the queueing model as follows�

Q��t�
d
� �Q����t� �

p
�Q����t� � o�

p
��� �
�

where Q��� is formally de�ned through the following theorem�

Theorem ��� �Central Limit Theorem� Using the scaling of ��� and ��� and the �uid

approximation Q����t�� we obtain the di
usion approximation Q����t� �
�
Q

���
� �t�� Q

���
� �t�

�
by

lim
���

p
�

�
Q��t�

�
�Q����t�

�
d
� Q����t�� for all t � �� �
�

where this is convergence in distribution of the corresponding stochastic processes in an
appropriate functional space ��
	 Here Q����t� is the solution to the integral equations
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where Ba� Bb� Bc� Bb
��� and Bc

�� are mutually independent� standard �the mean is zero
and the variance at time t is t� Brownian motions	

The di�usion process Q��� provides us with con�dence bounds for the �uid approximation�
These are obtained by computing from a simple set of non�linear di�erential equations
for the mean and variance of this di�usion� given by the following proposition �
��

Proposition ��� Assume that the set of time points
n
t � � j Q���

� �t� � nt
o
has measure

zero	 The mean vector for the di
usion approximation then solves the set of di
erential
equations

d

dt
E
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Figure �� Numerical examples� Constant arrival rate cases�

Moreover� the covariance matrix for the di
usion approximation solves the di
erential
equations

d

dt
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Time�varying queues alternate among phases of underloading� critical�loading� and over�
loading �
�� The set

n
t j Q���

� �t� � nt
o
corresponds to the times of critical�loading for the

service node� The above di�erential equations must be modi�ed for critical�loading� which
is unnecessary here since the hypothesis of Proposition ��� applies to all the examples in
the following section�

�� Numerical Examples

Our numerical examples cover the case of time�varying behavior only for the external
arrival rate �t� We make �� � �� �� � ���� and Q���� � Q���� � � but let n� �� and �
range over a variety of di�erent constants�
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Figure �� Numerical examples� �t � ��� and ��
�

The �rst two examples� see Figure �� that we consider actually have the arrival rate �
equal to a constant ���� with n � ��� � � ���� and � � ��� and ��
� This is an overloaded
system� see �
�� i�e� Q���

� �t� 	 n for large enough t� and equations ��� and ��� indicate that

Q
���
� �t� � q� and Q

���
� �t� � q� as t � �� Setting d

dt
Q

���
� �t� �

d

dt
Q

���
� �t� � � as t � ��

then q� and q� solve the linear equations

�� ��q� � ��n� ��q�� n� � � ����

and

���� ���q� � n�� ��q� � �� ����

These equations can be easily solved to yield

q� � n�
�� ��n

��
and q� �

���� ��

��
� � ��n

��
� ����

Substituting in � � ��� and the other parameters indicated above yields q� � ����
q� � ����� This case corresponds to the graph of the left in Figure � and indicates
that this system is still far from equilibrium at time ��� With � � ��
 �so the probability
of retrials is equal to ���� we obtain q� � 
	�� and q� � 	�� This case corresponds to

the graph on the right in Figure �� Here it appears that Q���
� has essentially reached

equilibrium by the time t � ��� while Q
���
� has a bit more to go�

In general� the accuracy for the computation of the �uid approximation can be checked
by a simple test that only requires a visual inspection of the graphs� The test is the fact
that the time for a local maximum �or local minimum� of a continuously di�erentiable
function must be one where the derivative of the function is zero� Consider the right hand
plot in Figure �� where �t � �� �t � ���� nt � ��� and �t � �� � ��t � t�� The graph of
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Figure �� Numerical examples� �t � ���� and ����

Q
���
� appears to peak roughly at the value ��� at time t � ��� Since the derivative at a

local maximum is zero� then equation ��� becomes

�t � ��tQ
���
� �t� � ��t

�
Q

���
� �t� � nt

�
� �t

�
Q

���
� �t�� nt

��
����

when t � ��� as well as Q
���
� �t� � Q

���
� �t� � ���� The left hand side of ���� equals

��� � �� 	 ��� � ��� which is roughly the value of the right hand side of ����� which is
�� � 
� � ����
Similarly� the graph of Q���

� appears to peak roughly at the value ��� at time t � ����
which also implies Q

���
� �t� � ��� and equation ��� becomes

�t��� �t�
�
Q

���
� �t�� nt

�� � ��tQ
���
� �t�� ����

The left hand side of ���� is ��� 	 �� � �� and the right hand side of ���� is about the
same or ��� 	 ��� � ���
The reader should be convinced of the e�ectiveness of the �uid approximation after an

examination of Figures � through �� Here we compare the numerical solution �via forward
Euler� of the system of ordinary di�erential equations for Q����t� given in ��� and ��� to
a simulation of the real system� These quantities are denoted in the legends as Q��ode�
Q��ode� Q��sim� and Q��sim� Throughout� the term �variance envelopes� refers to

Q
���
i �t�


r
Var

h
Q

���
i �t�

i
��	�

for i � �� �� where Var

h
Q

���
� �t�

i
and Var

h
Q

���
� �t�

i
are the numerical solutions� again by

forward Euler� of the di�erential equations determining the covariance matrix of the dif�
fusion approximation Q��� �see Proposition ����� Setting Q���

� ��� � Q
���
� ��� � � yields by
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Figure �� Numerical examples� Spike at time interval �
� ��� and �t � ����� ��	��

equations ���� and ���� that E�Q���
� �t�� � E�Q���

� �t�� � � for all t � �� Otherwise two addi�
tional ordinary di�erential equations would be needed to compute the variance envelopes�
As all the numerical examples demonstrate� the �uid approximation tracks the simulation
well�
It should come as no surprise that the �uid approximation is a far more e�cient means

of computation than simulation� For the experiments pictured� the simulation was carried
out by the well known method of uniformization for the external arrival rate� That is�
let �max be the supremum of �t over the time interval ��� T � of interest� If after an event
occurs at time t the system is in state Q��t� � j and Q��t� � k� then a set of exponentially
distributed random variablies X��X�� X�� and X	 with means given by the inverses of
�max� ��j� ��k� ��k� n�� are generated� These correspond to a potential external arrival�
call completion� retrial completion� or abandonment respectively� Uniformization dictates
that an external arrival is considered possible� given that X� has value s� with probability
��t � s�
�max� Using the Markovian property of the model� the smallest value of these
random variables is taken as the time until the next event� In this way we step through
the time interval ��� T � to complete a single simulation� We used ���� replications in
all of our experiments� In each simulation we record the state of the system in time by
splitting the interval into T
� intervals of length �� These bins are then averaged over
the total number of simulations� For most of our examples a � of order ���� proved
su�cient for stabilization� That is� decreasing � further would produce no noticeable
e�ect in the simulation results� However for certain parameter regimes� namely high
retrial probabilities �the left graph in Figure �� it was neccessary to use ��s on order ���	�



��

The need for such small ��s greatly increases computation time� The simulations in Figure
� required as long as �� minutes of elapsed time on a MIPS ��������� processor running
at ��� MHz� while a naive forward Euler integration of the �uid system is essentially
instantaneous�

�� Conclusions

We have provided a simple intuitive approximation for a time varying queueing system
of practical interest� Our numerical results show that the �uid approximation is also quite
accurate�
The present paper is a necessary and signi�cant �rst step in a natural progression of fur�

ther experiments and research� The goal is the development of practical approximations
for time�dependent queueing systems� Speci�cally� we have in mind the analysis of waiting
times �in addition to the present queue�length�� sta�ng strategies �optimizing nt in re�
sponse to a varying �t�� analysis of complex periodic systems� di�usion re�nements during
critical loading� parameter estimation� for example abandonment rates �from ACD data�
and retrial rates �from ANI data� ANI � Automatic Number Identi�cation� all of which
culminates in a visualization�animation�based tool that supports performance analysis�
both theoretically and practically�
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