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In this paper we consider a multiserver queueing model where waiting customers may
abandon and subsequently retry. This model is of particular interest for analyzing perfor-
mance and setting staffing levels in call centers. All of the parameters (arrival rate, service
rate, etc.) are allowed to be time dependent. We propose a simple fluid approximation
for the queue length process arising in this model. The fluid approximation, which is
obtained as the solution of an intuitively appealing ordinary differential equation, is in
fact asymptotically exact as the size of the system (arrival rate and number of servers)
grows large. The fluid approximation is compared with simulations for several sets of
parameters and performs extremely well.

1. Introduction

Time-varying analytical models of telecommunication systems are notorious for being
intractable. This is an unfortunate state of affairs as telecommunication systems typically
operate under time-varying conditions. The gap between this “demand” and “supply”
has been traditionally circumvented, in practice, in one of two ways: either approximating
time-varying behavior by piecewise-constant behavior, and then applying stationary anal-
ysis over intervals of “constancy”; or giving up analytical models altogether and carrying
out performance analysis based on simulation. The goal of our paper is to demonstrate
that time-variability is amenable to analysis, at least within specific regimes of operation.
We do this through a model of a single service station that, we believe, is already of con-
siderable practical importance. In fact, this model is a relatively simple special case of the
class of models considered in [9], which includes complex service networks that are both
time- and state-dependent. The analysis we provide is based on a fluid approximation,
which is intuitively appealing, asymptotically exact (in a sense that we make precise),
and surprisingly accurate.
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Figure 1. The abandonment queue with retrials.

Our model is a multi-server queue with time-varying parameters, in which customers
are impatient and hence abandon after (subjectively) excessive wait. Moreover, obtaining
service 1s important enough for some customers that they return and seek service after
experiencing a “time-out”. Formally, our model is depicted in Figure 1: there is a single
“service” node with ny, t > 0, servers. New customers arrive to the service node following
a Poisson process of rate \;. Customers arriving to find an idle server are taken into
service that has rate u;. Customers that find all servers busy join a queue, from which
they are served in a FCFS manner. Each customer waiting in the queue abandons at
rate ;. An abandoning customer leaves the system with probability ; or joins a retrial
pool with probability 1 — ;. Each customer in the retrial pool leaves to enter the service
node at rate pu?. Upon entry to the service node, these customers are treated the same as
new customers. Our focus is the two-dimensional, continuous time Markov chain Q(t) =
(Ql(t), Qz(t)) where ()1(t) equals the number of customers residing in the service node
(waiting or being served) and @)2(?) equals the number of customers in the retrial pool.
Time variability manifests itself through time-dependent rates for arrivals, abandonments
and retrials, as well as a varying number of servers. (It is worth noting that, even if all
of these parameters are constant, the model in Figure 1 is analytically intractable.)

We are motivated by the need to develop analytical tools that support performance
analysis of large telecommunication systems. For convenience, however, we shall speak in
terms of telephone call centers. These already constitute a multi-billion dollar industry
that enjoys a 20% annual growth rate, see Brigandi, Dargon, Sheehan, and Spencer [1].
While abandonments and retrials arise naturally in call centers, they are also prevalent in



many other telecommunication systems, as described for example in Boxma and de Waal
[3] for abandonments, and Falin and Templeton [4] for retrials. Additional complementing
references, that include numerous further leads, are Wolff [12], Grier, Massey, McKoy, and
Whitt [6], Mandelbaum and Shimkin [10], and Garnet, Mandelbaum, and Reiman [5].
Articles that specifically address call centers with abandonments and retrials are Brandt,
Brandt, Spahl, and Weber [2], Harris, Hoffman, and Saunders [7] and Sze [11].

Call centers are constantly subject to time-varying conditions, and waiting customers in
phone queues are unable to observe the state of the system. It follows that time-dependent
modeling (as opposed to also state-dependent) is natural for call centers. In Figure 1,
customers represent callers that seek service at the call center; servers are telephone agents
(operators, CSR’s = Customer Service Representatives). The rate A; represents the time-
varying call arrival rate. (Our validation experiments, in Section 3, focus on two forms
of behavior: continuously-changing load and sudden-peak.) Abandonment rates could
depend on time as a response to broadcasted IVR-information (IVR = Interactive Voice
Response). For example, announcements on predictable long queues by providers of 1-
800 services, could be designed to encourage abandonments in order to reduce waiting
costs; predictable long queues could arise, for example, as a consequence of a promotion
whose timing is known in advance. Finally, the number of agents varies in response to
time-variations of offered load (workforce management.)

The size of call centers varies from small (1-2 agents) to the very large (thousands of
agents). The latter require delicate performance analysis, and here we demonstrate that
asymptotic analysis suffices to provide significant insight, of both theoretical and practical
importance. Specifically, our asymptotic analysis is in a regime where we scale up the
number of servers in response to a similar scaling up of the arrival rate by customers.
The outcome is first a fluid approximation (Theorem 1), followed by diffusion refinement
(Theorem 2). The usefulness of our approximations is already apparent from a visual
comparison with corresponding simulations (Section 3); see, for example, Figures 2-5.

2. The Model and Limit Theorems

The multiserver queue with abandonment and retrials, as illustrated in Figure 1, is
characterized by the following set of parameters:

A+ = external arrival rate to the calling node at time ¢ (A; > 0),
f; = abandonment rate from the calling node at time ¢ (3; > 0),

pi = service rate for the calling node at time ¢ (u; > 0),

p? = service rate for the retry node at time ¢ (u7 > 0),

Yy = probability of no retrial at time ¢ (0 <, < 1),

ny = number of calling servers at time ¢ (n, =0,1,2,...).

The above parameters suggest that Q©(1) = (ng)(t), ng)(t)), the fluid approximation
for Q(t) = (Ql(t), Qz(t)), solves the non-linear differential equations

d 0 2 0 1 0 0
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Here 2 Ay = min(x,y) and % = max(z,0) for all real  and y. Given an initial condition
Q(0) = (ng)(()), Q(QO)(O)), then Q(©)(¢) is uniquely determined [9]. The correspondence
between Figure 1 and the fluid model (1) and (2) is clear: for example, the rate of change
in ng), namely (1), consists of the exogenous input rate A; plus the outflow rate from
the retrial pool ,qu(QO)(t), from which one subtracts the departure rate from the network

I (ng)(t) A nt), where ng)(t) A n; approximates the number of active servers at time ¢,

as well as the abandonment rate ﬂt(ng)(t) — nt)+, where (ng)(t) — nt)+ approximates
the the waiting customers that are vulnerable to abandon.

The sample paths of the queue length process Q(t) = (Q1(t), Q2(t)) are also uniquely
determined by the relations

Q) = @O+ ([ uopias) — b, ([ (@i =) a0 - was) @

A" (/Ot )\Sds) L (/;(Ql(s) - n5)+ﬂs¢sds) yt (/;(Ql(s) A ns),uids)

and
Qu(t) = Qu0) + A% ([ (@) = m) 81— wsds) — a5, ([ (@u)uds), ()

where A%, AY) A Ab, and AS, are five given mutually independent, standard (mean rate
1), Poisson processes [9]. As described in the introduction, we are interested in scaling
up both the arrival rate and the number of servers. To this end we introduce a scaling
parameter n, n T oo, and construct a scaled version Q"(t) = (Q?(t), Q;(t)) of the process
Q, where

Qi) = s ([ @aonas) = b ([ (@i —um) 0.0 - vds) )

AT ( [nds) =t ([ (@) = ama) “Butds) 4 ([ (@) At

and
Q41 = @3(0) + Aty ([ (@19 =) 1 = yas) = g, ([ (@u)as). (6)

Theorem 2.1 (Strong Law of Large Numbers) Using the scaling of (5) and (6), we
have

1
lim —Q"(t) = Q(O)(t), for all t > 0, a.s., (7)
n— 00 n
where this is a convergence of sample-paths, which converge uniformly on compact sets of
t >0, almost surely.



We can refine this deterministic fluid approximation by deriving a stochastic diffusion
approzimation QW to the queueing model as follows:

Q"(1) £ Q1) + vIQU (1) + o(v/n), (8)
where Q) is formally defined through the following theorem.

Theorem 2.2 (Central Limit Theorem) Using the scaling of (5) and (6) and the fluid

approzimation QO (1), we obtain the diffusion approximation QMW (t) = (le)(t), Q(Ql)(t))
by

lim \/_( ") Q(O)(t)) 2 Q(l)(t), for all t > 0, 9)

n—00

where this is convergence in distribution of the corresponding stochastic processes in an
appropriate functional space [9]. Here QU(1) is the solution to the integral equations

QU0 = QM) — B ([ (@0 —n) m0 i) + B [ (@) utas )

B /t)\ ds +/t (u11 48,1 )QM(s)™
0’ o L\ 0 (5)<ny T P00 (550 ) W
1 1
B (”11{Q§°><s><m} T 551{@5(”(5)2%})@5 ()" )(5)] ds

B ([ (@) =) sonds) — B ([ (@) A n) )

and
Q) = Qi)
- / QU Loy = Q) Loy ) Bl = ) = 12Q8 ()] s

8L ([(@s) = n) a1 = wpds) + B3, ([ (@) utds)

where B, B*, B¢, BY,, and BS, are mutually independent, standard (the mean is zero
and the variance at time t is t) Brownian motions.

The diffusion process Q") provides us with confidence bounds for the fluid approximation.
These are obtained by computing from a simple set of non-linear differential equations
for the mean and variance of this diffusion, given by the following proposition [9].

Proposition 2.3 Assume that the set of time points { t>0] ng)(t) = nt} has measure
zero. The mean vector for the diffusion approrimation then solves the set of differential
equations

TE[00] = (41 gy + Bl g JE [@1(0)] + 12E [110) (10)

and

%E[@ (0] = 811 = B [ (] 1 g0 y5.y — #IE [@57 ()] (11)
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Figure 2. Numerical examples: Constant arrival rate cases.

Moreover, the covariance matrixz for the diffusion approximation solves the differential
equations

d

Svar[Q)] =

1 (1)
7 -2 (ﬂtl{ng)(t)>nt} + My 1{Q(10)(t)§nt}) Var [Ql (t)]

x4 B (V) — )4 (@) Ane) + Q0 (1),

—2pa3Var [Q(1)] + 81 — ) (@) = i) " + 2O (1)
+28,(1 = ) Cov [Q1(1), Q57(1)] L0150y

and

d

—Cov [@1V(1). QY (1)] =

al B (ﬂtl{ng)(tbm} 1 g <y T ”3) Cov [le)(t)v le)(t)]

+2Var [QP(1)] + (1 = ) (@) = n) "+ Q).

Time-varying queues alternate among phases of underloading, critical-loading, and over-
loading [8]. The set { t] ng)(t) = nti corresponds to the times of critical-loading for the
service node. The above differential equations must be modified for critical-loading, which
is unnecessary here since the hypothesis of Proposition 2.3 applies to all the examples in
the following section.

3. Numerical Examples

Our numerical examples cover the case of time-varying behavior only for the external
arrival rate ;. We make ' = 1, p* = 0.2, and Q1(0) = @2(0) = 0 but let n, 3, and

range over a variety of different constants.
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Figure 3. Numerical examples: ¢, = 0.0 and 0.8.

The first two examples, see Figure 2, that we consider actually have the arrival rate A
equal to a constant 110, with n = 50, 3 = 2.0, and ¢» = 0.2 and 0.8. This is an overloaded
system, see [8], i.e. ng)(t) > n for large enough ¢, and equations (1) and (2) indicate that
ng)(t) — ¢ and ng)(t) — @2 as t — oo. Setting %ng)(t) = %ng)(t) =0ast— oo,
then ¢; and ¢, solve the linear equations

Aty = pin = Bl —n) =0 (12)
and
Bl =)@ —n) — p?q = 0. (13)
These equations can be easily solved to yield

A—put L —) A —pl

sy p? sy

Substituting in ¥ = 0.2 and the other parameters indicated above yields ¢ = 200,
g2 = 1200. This case corresponds to the graph of the left in Figure 2 and indicates
that this system is still far from equilibrium at time 20. With ¢> = 0.8 (so the probability
of retrials is equal to 0.2) we obtain ¢; = 87.5 and ¢

75. This case corresponds to
the graph on the right in Figure 2. Here it appears that ng) has essentially reached
equilibrium by the time ¢ = 20, while Q(QO) has a bit more to go.

In general, the accuracy for the computation of the fluid approximation can be checked
by a simple test that only requires a visual inspection of the graphs. The test is the fact
that the time for a local maximum (or local minimum) of a continuously differentiable
function must be one where the derivative of the function is zero. Consider the right hand

plot in Figure 4, where 8; = 1, ¢y = 0.5, ny = 50, and A\; = 10 + 20t — 2. The graph of

20
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Figure 4. Numerical examples: 3; = 0.25 and 1.0.

ng) appears to peak roughly at the value 130 at time ¢ & 12. Since the derivative at a
local maximum is zero, then equation (1) becomes

A Q) ~ ut (QV() Ane) + 5 (@) = i) (15)

when ¢ ~ 12, as well as ng)(t) ~ Q(QO)(t) ~ 130. The left hand side of (15) equals
106 4 .2 - 130 = 132 which is roughly the value of the right hand side of (15), which is
50 + 80 = 130.

Similarly, the graph of Q(QO) appears to peak roughly at the value 155 at time ¢t &~ 16.5
which also implies ng)(t) ~ 110 and equation (2) becomes

i1 — ) (@ (1) =)~ 2P (). (16)

The left hand side of (16) is 0.5 - 60 = 30 and the right hand side of (16) is about the
same or 0.2 - 155 = 31.

The reader should be convinced of the effectiveness of the fluid approximation after an
examination of Figures 2 through 5. Here we compare the numerical solution (via forward
Euler) of the system of ordinary differential equations for Q(®)(¢) given in (1) and (2) to
a simulation of the real system. These quantities are denoted in the legends as (J1-ode,
()2-ode, Q1-sim, and ()2-sim. Throughout, the term “variance envelopes” refers to

Q1) = Var [@1"(1)] (17)
for 7 = 1,2, where Var [le)(t)] and Var [Q(Ql)(t)] are the numerical solutions, again by

forward Euler, of the differential equations determining the covariance matrix of the dif-
fusion approximation Q") (see Proposition 2.3). Setting le)(()) = le)(()) = 0 yields by

20
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Figure 5. Numerical examples: Spike at time interval (9,11) and ¢, = 0.25,0.75.

equations (10) and (11) that E[le)(t)] = E[le)(t)] = 0 for all £ > 0. Otherwise two addi-
tional ordinary differential equations would be needed to compute the variance envelopes.
As all the numerical examples demonstrate, the fluid approximation tracks the simulation
well.

It should come as no surprise that the fluid approximation is a far more efficient means
of computation than simulation. For the experiments pictured, the simulation was carried
out by the well known method of uniformization for the external arrival rate. That is,
let Ajuar be the supremum of A; over the time interval [0, 7] of interest. If after an event
occurs at time ¢ the system is in state Q1(¢) = j and @Q2(t) = k, then a set of exponentially
distributed random variablies X7,X,, X3, and X; with means given by the inverses of
Amazs 1], ok, B(k —n)t are generated. These correspond to a potential external arrival,
call completion, retrial completion, or abandonment respectively. Uniformization dictates
that an external arrival is considered possible, given that X; has value s, with probability
At + 8)/Amaz. Using the Markovian property of the model, the smallest value of these
random variables is taken as the time until the next event. In this way we step through
the time interval [0,7] to complete a single simulation. We used 5000 replications in
all of our experiments. In each simulation we record the state of the system in time by
splitting the interval into 1'/6 intervals of length 6. These bins are then averaged over
the total number of simulations. For most of our examples a & of order 1072 proved
sufficient for stabilization. That is, decreasing ¢ further would produce no noticeable
effect in the simulation results. However for certain parameter regimes, namely high
retrial probabilities (the left graph in Figure 3) it was neccessary to use §’s on order 107*.
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The need for such small ¢’s greatly increases computation time. The simulations in Figure
3 required as long as 20 minutes of elapsed time on a MIPS 4400/4000 processor running
at 150 MHz, while a naive forward Euler integration of the fluid system is essentially
instantaneous.

4. Conclusions

We have provided a simple intuitive approximation for a time varying queueing system
of practical interest. Our numerical results show that the fluid approximation is also quite
accurate.

The present paper is a necessary and significant first step in a natural progression of fur-
ther experiments and research. The goal is the development of practical approximations
for time-dependent queueing systems. Specifically, we have in mind the analysis of waiting
times (in addition to the present queue-length); staffing strategies (optimizing n; in re-
sponse to a varying \;); analysis of complex periodic systems; diffusion refinements during
critical loading; parameter estimation, for example abandonment rates (from ACD data)
and retrial rates (from ANI data; ANI = Automatic Number Identification) all of which
culminates in a visualization-animation-based tool that supports performance analysis,
both theoretically and practically.
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