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1 A model for a call center with an IVR

A call center (see Figure 1) typically consists of telephone trunk lines, a switching machine known
as the Automatic Call Distributor (ACD), an interactive voice response (IV R) unit, and agents to
handle the incoming calls.

We consider the following model of a call center, as depicted in Figure 2: The arrival process is a
Poisson process with rate A\. There are N trunk lines and S agents in the system (S < N). Arriving
customers enter the system only if there is an idle trunk line. If this is the case, the customer is
first served by an IVR processor. We assume that the IVR processing times are independent and
identically distributed exponential random variables with rate 6. After finishing the IVR process, a
call may leave the system with probability 1 — p or proceed to request service from an agent with
probability p.

We assume for now that there are no abandonment in our model. (Abandonment will be incor-
porated in Section 5). Agents’ service times are considered as independent identically distributed
exponential random variables with rate p, which are independent of the arrival times and IVR pro-
cessing times. If the call finds the system full, i.e. all N trunk lines are busy, it is lost.

We now view our model as a system with two multi-server queues connected in series (Figure 2).
The first one represents the IVR, processor. This processor can handle at most N jobs at a time, where
N is the total number of trunk lines available. The second queue represents the agents pool which can
handle at most S incoming calls at a time. The number of agents is naturally less than the number
of trunk lines available, i.e. S < N. Moreover, N is also an upper bound for the total number of
customers in the system: at the IVR plus waiting to be served plus being served by the agents.

Let Q(t) = (Q1(t), Q2(t)) represent the number of calls at the IVR processor and at the agents
pool at time ¢, respectively. Since there are only N trunk lines then Q1 (¢) + Q2(¢) < N, for all ¢ > 0.
Note that the stochastic process @ = {Q(t), t > 0} is a finite-state continuous-time Markov chain.
We shall denote its states by the pairs {(i,7) | i+ j < N, 4,75 > 0}.

As shown in [2], one can consider our model as 2 stations within a 3-station closed Jackson network,
by introducing a fictitious state-dependent queue. There are N entities circulating in the network.
Service times in the first, second, and third stations are exponential with rates 6, p and A respectively,
and the numbers of servers are N, S, and 1, respectively. This 3-station closed Jackson network has a
product form solution for its stationary distribution (see Figure 3).

By normalization, we deduce the stationary probabilities 7 (i, j) of having ¢ calls at the IVR and j
calls at the agents’ station, which can be written in a normalized product form as follows:



e N trunk lines - oo oo

Interactive Voice Automatic Call

' Response (IVR) Distributor (ACD) Pool of Agents !

(B |

=i , JOI="¢

| O
— | , Ol
Customers | ' Customers
entering ) leaving
the system ; ’ ! the system

| Ol

| N-S |

e e

Customers leaving the system

Figure 1: Schematic model of a call center corresponding to a call center with an IVR, S
agents and N trunk lines.
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Figure 2: Schematic model of a queueing system with an IVR, S agents and N trunk lines.
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Formally, for all states (i,7), we have

Define the waiting time W as the time spent by customers, who opt for service, from just after
they finish the IVR process until they start service by an agent. We say that the system is in state
(l%, j),0<j< k < N, when it contains exactly k calls, and j is the number of calls in the agents’
station (waiting or served); hence, k — j is the number of calls in the IVR. The distribution function
of the waiting time and the probability that a call starts its service immediately after leaving the IVR
were found by Srinivasan, Talim and Wang in [22]; these are given by:
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Here x(k,j), 0 < j < k < N, is the probability that the system is in state (k,;), given that a call
(among the k— Jj customers) is about to finish its IVR service:
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The expected waiting time E[W] (or, as it is called in practice, Average Speed of Answer (ASA))
can be derived from (3) via the tail’s formula, which yields

SZZX’H (J—S+1). (6)
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The fraction of the customers that wait in queue, which we refer to as the delay probability, is given

by
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Equation (7) gives the conditional probability that a calling customer does not immediately reach
an agent, given that the calling customer is not blocked, i.e., P(W > 0) is the delay probability for
served customers. This conditional probability can be reduced to an unconditional probability via
the “Arrival Theorem” [8]. Specifically, for the system with N trunk lines and S agents, the fraction
of customers that are required to wait after their IVR service, coincides with the probability that a
system with IV — 1 trunk lines and S agents has all its agents busy, namely

Pny(W > 0) = Pn_1(Q2(00) > 9). (8)

Another measure for the service level of a call center is the probability that an arriving call finds
all trunk lines busy. It was found in [22] and has the following form:
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In many cases, it is also interesting to know the expected queue length E[L,], which can be derived

via Little’s formula:
E[W]

P(W >0)

The operating costs in call centers are mainly driven by the costs of the agents. Therefore, the

E[Ly] = Aess EIW,] = pA(1 - P(block)) (10)

utilization of the agents is often used as an operational measure to approximate economic (efficiency)
performance. The expected utilization of the agents, say p.sy, is the ratio between the effective arrival
rate Acsy to the station of agents and the maximal service rate:

purr = Aeff _ Ap(1 — P(block))
eff S,u S,u :

(11)



2 Asymptotic analysis in the QED regime

The ultimate goal of this section is to derive rules of thumb for solving the staffing and trunking
problems for a call center with an IVR. This will be done analogously to Halfin and Whitt [10] and
Massey and Wallace [18].

2.1 Our asymptotic regime

All the following approximations will be derived when the arrival rate A tends to infinity. In order for
the system to not be overloaded, we assume that the number of agents S and the number of trunk
lines N tend to infinity as well.

To motivate our asymptotic regime, we consider the model of a call center with an IVR as an
extension of the M/M/S/N queue. This latter model was investigated by Massey and Wallace [18],
who derived approximations of the performance measures of the M/M/S/N queue, when A, S and N
tend to oo simultaneously and under the following assumptions:

(1) N—S:n\/i—i-o(\f)\), 0<n < oo;

(41) S:2+ﬁ\/5+0<\f/\>, 0< B < oc;

(In [18], B was assumed positive because of the use of the M/M/S queue in the analysis. We shall
dispose of this assumption momentarily). For our call center with an IVR, following Assumptions (12),
we need S + T]\/%—i— o (ﬁ) trunk lines for the queue in the agents’ station and % + 772\/5 +o0 (ﬁ)
trunk lines for the IVR service. We can thus formulate the following conditions for our system. We
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let A\, S and N tend to oo simultaneously so that:
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Note that we have three parameters 71,72 and 3, but one can reduce the number of parameters to
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two. Indeed, (13) is equivalent to
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where n = 771,/% + 2.



In fact, as A\, S and N tend to oo simultaneous conditions (13) or (14) have also the following
equivalent form

(1) lim ———% =1, —oco<n<ox;
A—00 A
Vr (15)
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Conditions (15) constitute a square-root safety-staffing principle, which recommends the number of
agents to be the offered load <;\—g> plus safety-staffing 34/ ;\—g against stochastic variability (see [5]
for details). Analogously, the number of lines, by rule (15), is the sum of the number of agents and

offered load in the IVR with an addition of ”safety” 7]\/% .

In order to avoid technical problems in calculation, it turns out convenient to distinguish two cases:

) B#0;

2) p=0.
To this end, it will be convenient to divide (15) into two separate conditions:
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(1) limNSAf’:n, —00 < N < 00;
QED : oo /3 (16)
(i) Jim VS(1-28) =5, —co<f<oo B£0,
and N
(1) lim N_S;§ =1, —oo<n<oo;
QED, : Aoo /3 (17)
(i) lim VS(1—22)=0, (8=0).
A—00 us

2.2 QED approximations (8 # 0)

First, assume that 5 # 0. In this case we prove the following theorem in Section 2.3.

Theorem 2.1. [QED] Let the variables A, S and N tend to co simultaneously and satisfy the QED
conditions (16), where p,p,0 are fived. Then the asymptotic behavior of our system, in Figure 2, is
captured by the following performance measures:

e the probability P(W > 0) that a customer will wait after the IVR process:
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e the expectation of waiting time:
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e the conditional density function of the waiting time, evaluated at t/\/§
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In the above, ¢ and ® are, respectively, the density and distribution functions of the standard normal
distribution, and
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2.3 Exact stationary performance

Our asymptotic analysis is based on representing the performance measures (3), (6), (7) and (9)
in terms of building blocks. The asymptotic behavior of these blocks then determines that of the
measures. Specifically, according to (3),! (6), (7), and (9), the operational characteristics for our
model in Figure 2 can be represented as follows:
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'"Equation (3) provides the density function of waiting time, but in order to derive its approximate formula we reduced
it to (22) by applying Laplace transform (see [13] for details)
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Theorem 2.1 is now a consequence of the following lemma:

Lemma 2.1. Let the variables A\, S and N tend to co simultaneously and satisfy the QED conditions
(16), where p, p, 0 are fized. Then
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where m =n —cfB and ¢ = | /z%’ as defined in (18)

The proof of Lemma 2.1 is given in Part A.1 of the Appendix. Substituting the Lemma into
equations (19)-(122) yields Theorem 2.1.



2.4 QED, approximations (5 = 0)

In the case when 8 = 0, and in analogy to Theorem 2.1, we develop approximations for performance
measures in the following theorem.

Theorem 2.2. [QEDy] Let the variables \, S and N tend to oo simultaneously and satisfy the QE Dy

conditions (17), where u,p,0 are fired. Then the asymptotic behavior of our system, in Figure 2, is
captured by the following performance measures:

e the probability P(W > 0) that a customer will wait after the IVR process:
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e the probability of blocking:
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e the conditional density function of the waiting time, evaluated at t/ VS:
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In the case when 5 = 0, the operational characteristics in steady state have the following form:
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and y(A), v1(A), v2(X) and 0(A) are the same as in (25), (26) and (27), respectively. The representations
in (37)-(40) differ from their analogues (19)-(22), in order to facilitate the analysis of the case = 0.

Analogously to the case when 3 # 0, for proving of Theorem 2.2 we rely on the following auxiliary

lemma.

Lemma 2.2. Let the variables A\, S and N tend to oo simultaneously and satisfy the QE Dgy conditions
(17), where p,p,0 are fixred. Then

Jim €)= 1/ 5=+ (2 () + o). (43)
Jim V560) = = (Lot +nlen). (44)

where ¢ = 1/%0, as in (18).

The proof of Lemma 2.2 is given in Part A.2 of the Appendix. Then combining equations (37)-(40)
and the results of Lemma 2.2 yields Theorem 2.2.

3 Special cases

In this section, some special cases of our model are presented. In all these cases our model, under
specific assumptions, becomes a well-analyzed model, such as Erlang-B, Erlang-C and others. The
goal is to chart the boundary of our model and to show that this model, and the results obtained for
it, coincide or extend well-known results for corresponding models.

3.1 The M/PH/S/S loss system

When the number of agents is equal to the number of trunk lines (N = S), the call center model can
be presented as a special M/G/S/S loss system. There is no waiting in this model. The service time
G has the Phase Type distribution in the following figure:
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Figure 4: Schematic model of the Phase Type distribution that corresponds to the service time in a
call center with an IVR, when the number of agents is equal to the number of trunk lines (N = S).

It is easy to see that when p = 0, i.e. no one wishes to be served by an agent, our system is the
well-known M/M/N/N queue (Erlang-B model).

Similarly, when the service time of the agents goes to 0 (1 goes to infinity), the system is equivalent
to the M/M/S/S loss system with exponential service time with rate . Only the IVR phase is taken
into account. We have precisely the same picture if the service time in the IVR goes to 0 (6 goes to
infinity). We still have the M/M/S/S loss system, but now the service time is exponential with the
rate pu. In each case, by letting u — oco, or 8 — 0o, the approximation for the loss probability agrees
with the well-known asymptotic for the Erlang-B formula (Wolff [27]).

3.2 The M/M/S/N queue

Massey and Wallace [18] found approximations for the following operational characteristics of the
M/M/S/N queue:

e the probability to find the system busy P(block);
e the probability to wait more than ¢ units of time P(W > t);

here A, S and N tend to oo simultaneously so that (12) prevails.

The condition > 0 in (12) is natural, because N —S is the maximal queue length, but the condition
B > 0 is not required. The reason of strict positivity of # in [18] is their using the M/M/S queue for
finding the operational characteristics for M/M/S/N. Thus, in this section, we find approximations for
the probability to wait and the probability to find the system busy for M/M/S/N, when —oco < 8 < o0.
We also find approximations for the expected waiting time and the density of the waiting time, and
show that, with some specific parameters, our system in Figure 2 can be represented as an M/M/S/N
queue.
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3.2.1 Operational characteristics for M/M/S/N

Theorem 3.1. Let the variables A\, S and N tend to oo simultaneously and satisfy the following

conditions: 2

N

0, A
m

S A

.. 1. §2

i), e
m

where p is fized. Then the asymptotic behavior of the M/M/S/N system is described in terms of the

following performance measures:

=7, 0<n<oo;

(45)
=pfB, —o00o<f <o

o the probability to wait:

<1+w(55‘1’<ﬁ> >_1, B0,

)1 =)
Jlim P(W > 0) = 1 (46)
\/77>_ o
<1 e =
e the probability to find the system full:
Bo(B)e " 0:
53) + e e P70
lim VSP(block) = (47)
A—00 1
N B=0;
e
e the expectation of waiting time:
( Sﬁl(f) [1 _; " —ne nb’}
; 0;
596) +pBL ) 7
lim VSE[W] = (48)
A—00 9
—— B=0
2p(n + \[2)

2Note that these conditions can be also rewritten in the following form:

(1) lim Lszn, 0<n < oo

(i) lim B =B, —o0<B< o0

A—00 A
m
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e the density function of waiting time:
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The proof of this Theorem is provided in Part A.3 of the Appendix.

3.2.2 M/M/S/N as a special case of a call center with an IVR

Suppose that the IVR processing time is negligible. We capture this by letting 8 /A — oo (in particular,
6 — oo since A — o0). We also need to assume that all the customers wish to be served by an
agent, i.e. p = 1. In this case the system with an IVR can be presented as an M/M/S/N queue. By
substitution of appropriative parameters into our approximation, it is easy to derive the corresponding
approximations for M/M/S/N.

3.3 The M/M/S queue (Erlang-C)

Note that the M/M/S queue is an extreme case of M/M/S/N, which is obtained when N — oo,
i.e. there are infinitely many places in the queue. Thus, to our previous assumption, that the IVR
processing time is negligible when compared to the talk time of the agents, i.e. 8 — oo, we add that
the number of trunk lines N tends to infinity, i.e. 7 — co. It is easy to show that when 8 > 0, that is

A A
S = +5\[+o(ﬁ), (50)
H M
the following holds:

e the approximation of the probability to wait has the form:

m 1 (14 2B8Y
nlgglo)\lggop(w >0) = <1—|— 2(B) > :

e the approximation of the conditional expectation of the waiting time is:
lim lim VSE[W|W > 0] = —.
n—00 A—00 756}

e the approximation of the conditional density function of the waiting time is easy to obtain from
(49), by letting n — oo:

t
. . _ —But
nli)moo /\lgnoo V'S Jwiwso <\/§> Bue .

These results coincide with the approximations of Halfin and Whitt [10] for M/M/S.
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3.4 The M/M/S/occ/N queue

The M/M/S/oo/N system was presented and analyzed by de Véricourt and Jennings in [24]. This
system is a particular case of our model, when A\ — oo more quickly then S (A = o(S)). The
M/M/S/o0/N system it one where there are exactly N customers in the system, which means that it
is impossible to leave the system after service in the IVR, i.e. p = 1, and a customer that leaves the
system after agent’s service is instantaneously replaced by a new customer (or, alternatively, returns
to the IVR).

This model in [24], which is actually the classical machine breakdown model, was used for describing
a hospital internal ward.

In order to reduce our model to M/M/S/o0/N, let us define the states of our system when there
are exactly IV customers in the system and no possibility to leave it after the IVR. The states will
take the following form: (N — j,j), where 0 < 7 < N — S. Thus, the stationary probabilities are the

following: _ '
1 (A)N‘J 1 (A)J g
0~ |\ 2 Sl =] S 05
(N = ) \e Njﬂ f } ’
w(N = 4,5) = LNy (51)
N =\ 51555 \ 725
0 otherwise,
where .
N N—i : S Nei .
L /A" 1 A\ 1 MY
(B0 S H0)
j:SN' 0 S187 1 j:O(N_])' 0 g\

We can also write the stationary probabilities in the equivalent form:

- N N\ 1\

SOV s
j ) \? Z

R G DR SORES

0 otherwise,

where .

(6 S DOR) -

j=S+1

The equations (53) and (54) have the same form as the stationary probabilities in [24], and thus all
the exact results for M /M/S/oo/N are contained in this particular case of our model.

Note, however, that our asymptotic analysis does not cover that in [24] since, in our case, A — 0o
together with the parameters S and N. In contrast, to obtain the limit in [24] from our results, one
must first take A\ — oo; this results in a closed system with N customers and S servers which is now
approximated by increasing N and S via QED scaling.
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Figure 5: Schematic model of a call center with an IVR, S agents, N trunk lines and
customers’ abandonment.

4 Adding abandonment

4.1 Model description

In this section, we add the feature of customers’ patience, which could lead to their abandonment
from the queue prior to service. The modelling assumptions are the same as those in Section 1 (see
figure 3), which are characterized by the parameters (A, N, 6, p, S, ). In addition, if a call waits in
the queue, it may leave the system after an exponentially distributed time with rate § (impatience),
or it answered by an agent, whatever happens first.

As in the case without abandonment, one can consider the model with abandonment as a closed
Jackson network, by introducing a fictitious state-dependent queue. The only difference is that the
M/M/S/N queue in Figure 3 is replaced by M/M/S/N+M, with impatience that is distributed exp(J),
as in Figure 6.
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Figure 6: Schematic model of a call center with an interactive voice response, S agents
and N trunk lines.

We can thus consider our model as a three node closed Jackson network, when the stationary
probabilities 7 (7, j) of having ¢ calls at the IVR and j calls at the agents station can be written in a
(normalized) product form as follows:

( i j
mox () 7 (2 , j<8, 0<i+j<N;
\0/) jl\p
.. 7 S ji—S
T = mi(A>ﬁ(M? ) j28, 0<i+j<N; (55)
BN Stk et (SH+ K6)
0 otherwise,
where
-1
N—-S N-—i i i i .
(EE 0 e S )
=0 j=S+1 it \0 5! p i:1<su+ kd) i+i<N,j<S it \ 0 .7' 12

4.2 A call center with abandonment and an IVR

As previously, our goal is to find approximations for the case when the arrival rate A tends to oc.
The asymptotic domain is the same as in the case without abandonment. Now, however, the case
B = 0 does not require a special treatment, because we do not have to divide by § as previously (see
Theorem 2.1). Therefore, we consider only one version of our asymptotic analysis domain, which we
refer to as the following QED condition:

_g_2
(1) )\limNSA":n, —00 < 1 < 00;
QED : 70 e (57)
(i6)  Jim VS(1—28) =B, —o0<f < o0
—00

Analogously to the calculations in Section 2.2, we now introduce the approximations for perfor-
mance measures with abandonments.

16



Theorem 4.1. Let the variables X\, S and N tend to oo simultaneously and satisfy the QED conditions
(57), where u,p,0 are fixred. Then the asymptotic behavior of the system is described in terms of the
following performance measures:

e the probability P(W > 0) that a customer will wait after the IVR process:

-1
. a v
lim P(W > 0) = <1 5 _§2> : (58)

e the probability of abandonment, given waiting:
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4.3 The M/M/S/N+M queue

We now present approximations for performance characteristics of the M/M/S/N+M queue. As in [20],
we apply the approximations under the following conditions:

(i) S=R+pBVR+0(VR), —00<f < o0;

(i5) N =S+n/S+o(S), n>0, (62)

QED : {

where R = 2. The results are formalized in the following theorem.

Theorem 4.2. Let the variables A\, S and N tend to oo simultaneously and satisfy the following
conditions:

(@) Jim V81— 75) =B, —00 < B <o

. . N-S _
(@)  lim 72 =mn, 720,

where 1 is fized. 3 Then the asymptotic behavior of the system is described in terms of the following
performance measures:

e the probability P(W > 0) that a customer will wait after the IVR process:

-1

Eo(8)p(8,/5)

lim P(W >0)= |1+ \[5 \ﬁ (63)
o 1 1

o(9) ‘P(n\ﬁ INCE @(5@)]

e the probability of abandonment, given waiting:
5\/> 5+5\/ﬁ)—‘1’(5\/ﬁ)
I 0 )

A—00

Jlim VSP(AD|W > 0) (64)
1 T
77\/; - ﬂ\/;) - a3,/
e the expectation of the waiting time, given waiting:
\[ INON \/E 5% —@(6\/5]
Jlim. VSE[W|W > ; (65)

\[M\[ (6\/?)

35When 7 = 0, the M/M/S/N-+M queue is equivalent to the M/M/S/S loss system. In this case P(Ab|W > 0) and
E[W] are equal to 0 and their approximations are not relevant.
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o the probability of blocking:

B\f fw\f |
wn\f o fw\f w@]

The proofs of Theorems 4.1 and 4.2 are analogous to those of Theorems 2.1 and 2.2, and are carried

lim v/SP(block) =
A—00

out by the using of formulae (3)-(7), where the stationary probabilities are defined by (55) and (56).

5 Accuracy of the approximations

We now compare the exact formulae with their approximations, via graphs that include both. First,
the real values were calculated by a program written in Visual Basic, and the approximations’ values
were calculated in Maple. Next, all this data was processed in Excel and the graphs were created.

5.1 Approximations of the model with an IVR and abandonment

In Khudyakov [13], Chapter 5, we demonstrated the accuracy of our approximations for a model
without abandonment. These approximations turn out extremely accurate, over a very wide range of
parameters (S already from 10 and above, N > 50). Here, we have chosen to present approximations
that accommodate abandonments. The numerical analysis is heavier due to the increased prevalence
of integral-approximations. For example, the approximation of P(W > 0) involves an integral in
both v and £ (as opposed to only « previously, in the model without abandonment). In addition, for
calculations of exact values we are restricted to smaller N’s (N < 80 here, as opposed to N < 170
before).

To test our approximations, we compare performance measures of a model with an IVR and
abandonment that corresponds to a mid-sized call center that has the arrival rate A of 30 customers
per minute. The number of agents S is in the domain where the traffic intensity p = % is about 1
(namely, the number of agents is between 20 and 40, i.e. S ~ 30+ 2-+/30). For simplicity, we let
p=pu=0=279=1 The number of trunk lines is 80.

For each value of the number of agent S, we calculate the parameters n and 5 by using (57).

Figures 7 and 8 depict the comparison of the exact calculated probability to wait and the condi-
tional probability to abandon with their approximations. The approximations are clearly close to the
exact values.

Note, that

1
EW|W > 0] = EP(Ab\W > 0).
Thus, it is natural that the approximation for E[W] will also be close to the exact calculated average
of the waiting time.

Figure 9 shows that the approximation of the probability to find the system busy is, relatively
speak not as accurate as previous measures. On the other hand, this figure has a very high resolution
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1.2 4 P(W>0) and its approximation
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Figure 7: Comparison of the exact calculated probability to wait and its approximation (58) for a
mid-sized call center with arrival rate 30 and 80 trunk lines.
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Figure 8: Comparison of the exact calculated probability of abandonment, given waiting, and its
approximation (59), for a mid-sized call center with arrival rate 30 and 80 trunk lines.

20



P(Block) and its approximation
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Figure 9: Comparison of the exact calculated probability to find all trunks busy and its approximation
(61), for a mid-sized call center with arrival rate 30 and 80 trunk lines.

and the differences between the exact and approximate probabilities are less than 0.002. One can thus
argue that our approximation for the probability to find all trunks busy also works well.

5.2 Problematic domain

It is important to note that sometime the approximations are not so accurate. As an example, let
us consider a mid-sized call center with the same parameters as previously, but let the number of
trunk lines be equals to 50 (instead of 80). Figure 10 shows that the deviations between the exact
and approximate probability can reach 0.4, or about 100% error. This happens in the area that
corresponds to heavy traffic (QED) regime, but with a small number of trunk lines. The reason for
such an inaccuracy in the approximations is the following: the approximations formulae consist of ®(-),
the standard normal distribution, and ¢(+), the standard normal density functions, which depend on
the parameters n and 5. In the considered area, these parameters are negative and large in value
(n < 0 and 8 < 0). Consequently, the functions ®(-) and ¢(-) give rise to very small values, which
influence numerical accuracy. In practice, however, modern technology allows one to operate as many
trunk lines as needed. Therefore, the considered ranges of S and N (10 < S < 40, N = 50) are not
natural for prevalent operations of a call center.

5.3 Approximations for the M/M/S/N+M queue

Examining the approximations for performance measures of the M/M/S/N+M queue, we model a
mid-sized call center, in which the arrival rate A is 100 customers per minute. The number of agents
S is in the domain where the traffic intensity p = ;‘—g is about 1 (namely, the number of agents is
between 80 and 120). As before, we let p = = 6 = § = 1. The number of trunk lines is mostly
150, but when we check the probability of blocking we take the number of trunk lines to be 120, this

in order to avoid very small values. (Note that here we are able to cover values of N and S that

21



P(W>0) and its approximation
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Figure 10: Comparison of the exact calculated probability to find all trunks busy and its approxima-
tion, for a mid-sized call center with arrival rate 30 and 50 trunk lines.

are larger than those considered in section 5.1. The formulae here are simpler and hence enable their
numerical analysis.)

As previously, for each value of the number of agent S, we calculate the parameters n and § from
the conditions in Theorem 4.2.

6 Rules of thumb

We derived approximations for performance measures in the QED regime (Quality and Efficiency
Driven), as characterized by conditions (16) or (17). The detailed comparison in [13], between exact
vs. approximated performance, shows that the approximations often work perfectly, even outside
the QED regime. In this section, we attempt to chart the boundary of this ”outside”, thriving to
summarize our findings through practical rules-of-thumb (expressed via the offered load R = %)
These rules of thumb were derived via extensive numerical analysis (using Maple) of our analytical

results; for an elaboration, readers are referred to [13].

6.1 Operational regimes.

As customary, one distinguishes three types of staffing regimes:

(ED) Efficiency-Driven, meaning under-staffing with respect to the offered load, to achieve high

resource utilization;

(QD) Quality-Driven, meaning over-staffing with respect to the offered load, to achieve high service

level;
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P(W>0) and its approximation
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Figure 11: Comparison of the exact calculated probability to wait and its approximation, for a mid-
sized call center with arrival rate 100 and 150 trunk lines.
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Figure 12: Comparison of the exact calculated probability of abandonment, given waiting, and its
approximation, for a mid-sized call center with arrival rate 100 and 150 trunk lines.

23



0.05 4 P(Block) and its approximation
0.04
R I e S = =
0.02 -
0.01 —e—approx -
—m—exact
0 ‘ ‘ ‘ \ \ \ \

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

S, agents

Figure 13: Comparison of the exact calculated probability to find the system busy and its approxima-
tion, for a mid-sized call center with arrival rate 100 and 120 trunk lines.

ED QED QD
Staffing S~R-)R S~R+pgJR S~R+JR
% Delayed ~100% constant over time (25%-75%) ~ 0%
% Abandoned 10% - 25% 1% - 5% ~0
Average Wait >10% - AST <10%- AST ~0

Table 1: Rules-of thumb for operational regimes.

(QED) Quality-and Efficiency-Driven, meaning rationalized staffing that carefully balances high lev-
els of resource efficiency and service quality.

We shall use the characterization of the operational regimes, as formulated in [17] and presented in
Table 1, in order to specify numerical ranges for the parameters 5 and 7, in the M/M/S/N queue and
in the model with an IVR with and without abandonment. Specifying 5 corresponds to determining
a staffing level, and specifying 1 to determining the number of trunk lines.

In Table 1, AST stands for Average Service Time.

6.2 System parameters

The performance measures of a call center with an IVR, without abandonment, depends on 3, 7, %

and S; in particular, large values of % and S improve performance (See [13] for an elaboration). When
one is adding abandonment to the system, one adds a parameter § describing customers’ patience.
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S~R+ VR M/M/S/N M/M/S/N+M
N ~S+n/S
05<7n$<15 ~15<p<05 -1.6<4<04
-B/Ns,  p<o, <-p/Ns.  p<o,
P(block) L 0.02, £>0; {< 0.05, B =0
15<7<3 ~05<4<0.8 -0.8< <06
- B/S, £ <0, <0.02, B<0
P(block) L 0.01 £>0; {z 0, £20;
n>3 £>0 ~05<8<0.8
P(block) ~0 =0

Table 2: Rules-of thumb for the QED regime in M/M/S/N and M/M/S/N + M.

Large values of 4, corresponding to highly impatient customers, decrease the probability to wait and
the probability of blocking, but increase the probability of abandonment. Small values of & have the
opposite influence.

One must thus take into account 5 system’s parameters. In order to reduce the dimension of this
problem, we fix some parameter, at values that correspond to a realistic call center, based on our
experience (see [23]):

IVR service time equals, on average, 1 minute;

Agents’ service time equals, on average, 3 minutes;

Customers’ patience, on average, takes values between 3 and 10 minutes;

Fraction of customers requesting agents’ service, in addition to the IVR, equals 30%;
Offered load equals 200 Erlangs (200 minutes per minute).

Our goal is to identify the parameter values for n (determines the number of trunk-lines) and
B (determines the number of agents) that ensure QED performance as described in Table 1, while
simultaneously estimating the value of the probability of blocking in each case (which does not appear
in Table 1).

6.3 QED regime in the M/M/S/N and M/M/S/N+M queues

From the definition of the QED regime for the M/M/S/N queue, n must be strictly positive (n > 0),
because otherwise there would be hardly any queue and, thus, no reason to be concerned with the
probability to wait or to abandon the system. Table 2 shows that, when n > 3, the M/M/S/N queue
behaves as the M /M /S queue (negligible blocking).

The values presented in Table 2, for the M/M/S/N + M queue, and in Table 3 for the system
with an IVR, were calculated under the assumption that average customer patience equals 3 minutes
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S~R+AJR
IVR IVR
N ~S +i+,7\/2 without with
4 0 abandonment abandonment

0<p<1 ~12<p<02 ~16<f<0
-B/Ns,  p<o,

P(block) <004 B>0: <0.08

1<n<2 ~0.7<f<05 _12< <04
-B/Ns,  p<o,

P(block) <003 B>0: <0.04

2<np<3 ~03< <07 ~08<4<06
-BNs,  B<o,

P(block) <002 520, <001

n>3 B>0 -06</4<0.8

P(block) ~0 ~0

Table 3: Rules-of thumb for the QED regime in a call center with an IVR with and without abandon-
ment.

(same as the average service time). As already noted, in practice this value can get much larger, but
performance is rather insensitive to average patience until values of about 15 minutes. For average
patience above 15 minutes, performance gets similar to the corresponding model without abandonment.

6.4 QED regime for a call center with an IVR with and without abandonment

In the case of the system with an IVR, there are no mathematical restrictions for 7 to be non-negative,
but we propose 1 > 0 because otherwise (n < 0), the probability of blocking is higher then 0.1. We
believe that a call center can not afford that 10% of its customers encounter a busy signal. Going
the other way, a call center can extend the number of trunk lines to avoid the busy-line phenomenon
altogether: as noted in Table 2, n > 3 suffices.

Table 3 shows that, sometimes, one can reduce the number of trunk lines in order to improve
service level. For instance, starting with n > 3 and the number of agents corresponding to § = —0.8
(ED performance), we can achieve QED performance by reducing the number of trunk lines via n = 2;
in that way, we loose on waiting time and abandonment while the probability of blocking is still
less than 0.01. Moreover, modern technology enables a message that replaces a busy-signal, with a
suggestion to leave one’s telephone number, in order to be called back latter; alternatively, a blocked
call can be routed to an outsorsing alternative. Thus, we are not necessary loosing these ”blocked”
customers. See [14] and [25] for an analysis where the asymptotically optimal number of trunk-lines
is determined.

According to Table 3, when 1 > 3, the system with an IVR behaves as one with an infinite number
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of trunk lines.

6.5 QD and ED regimes

For the QD and ED regimes (see Table 1), the number of agents can be specified via 0.1 <y < 0.25.
In the case of QD, the number of agents is over-staffing; limiting the number of trunk lines will cause
unreasonable levels of agents’ idleness, hence 1 > 3 makes sense. In the case of ED, the number of
agents is under-staffing, and we are interested in reducing the system’s offered load. Therefore, we
propose to take 7 = 2. This choice yields a probability of blocking to be approximately /2 (based on
numerical experience).

6.6 Conclusions

Our rules of thumb demonstrate that for providing services in the QED regimes (in both cases: with
and without an IVR) one requires the number of agents to be close to the system’s offered load; the
probability of blocking in the system with an IVR is always less than in the system without an IVR.
One also observes that the existence of the abandonment phenomena considerably helps provide the
same level of service as without abandonment, but with less agents. Moreover, as discussed in Section
6.4, it is possible to maintain operational service quality while reducing the number of agents by
reducing access to the system. The cost is increased busy signal. Hence, such a solution must result
from a tradeoff between the probability of blocking and the probability to abandon.

7 Model validation with real data

The approximations that have been developed can be of use in the operations management of a call
center, for example when trying to maintain a pre-determined level of service quality. We analyze
approximations of a real call center by models with and without an IVR, starting with the model
without (M/M/S/N+M) in order to later evaluate the value of adding an IVR. This evaluation is the
goal of our empirical study, which is based on analyzing real data from a large call center. (The size
of our call center, around 600-700 agents, forces one to use our approximations, as opposed to exact
calculations which are numerically prohibitive.)

7.1 Data description

The data for the current analysis come from a call center of a large U.S. bank - it will be referred
to as the US Bank Call Center in the sequel. The full database archives all the calls handled by the
call center over the period of 30 months from March 2001 until September 2003*. The call center
consists of four different contact centers (nodes), which are connected using high technology switches
so that, in effect, they can be considered as a single system. The call path can be described as follows.
Customers, who make a call to the company, are first of all served in the IVR. After that, they either
complete the call or choose to be served by an agent. In the latter case, customers typically listen to

4The data is available at http://seeserver.iem.technion.ac.il/see-terminal/.
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Schematic Diagram of a Call

Abandonment

End of call

A

Back to IVR

Service

IVR/VRU

Busy signal

Figure 14: Schematic diagram of the call of a “Retail” customer in our US Bank call center.

a message, after which they are routed as will be now described, to one of the four call centers and
join the agents queue.

The choice of routing is usually performed according to the customer’s class, which is determined
in the IVR. If all the agents are busy, the customer waits in the queue; otherwise, he or she is served
immediately. Customers may abandon the queue before receiving service. If they wait in the queue
of a specific node (one of the four connected) for more than 10 seconds, the call is transferred to a
common queue - so-called “inter queue”. This means that now the customer will be answered by an
agent with an appropriate skill from any of the four nodes. After service by an agent, customers may
either leave the system or return to the IVR, from which point a new sub-call ensues. The call center
is relatively large with about 600 agents per shift, and it is staffed 7 days a week, 24 hours a day.

A schematic model of our US Bank Call Center is presented in Figure 14:

7.2 Fitting the theoretical model to a real system

Figure 14 describes the flow of a call through our call center. It differs somewhat from the models
described in Sections 1 and 4. The main difference is that it is possible for the customer to return
to the IVR after being served by an agent. This is less common for so-called Retail customers who,
almost as a rule, complete the call either after receiving service in the IVR or immediately after being
served by an agent. We therefore neglect those few calls that return to the IVR. The possibility that
queued customers abandon (hang up) without being answered is not acknowledge in our model from
Section 1. We thus compare only the models from section 4 with the real system, namely the model
of a call center with an IVR and abandonment and the M/M/S/N+M model.

Our theoretical model assumes exponentially distributed service times, in the IVR as well as for
the agents. However, for the real data, neither of these service times have the exponential distribution.
Figures 15 and 16, produced using the SEEStat program [23], display the distribution of service time
in the IVR and agents’ service time, respectively.

Figure 15 exhibits three peaks in the histogram of the IVR service time. The first peak can be
attributed to calls of customers who are well familiar with the IVR menu and move fast to Agents

service; the second can be attributed to calls that, after an IVR announcement, opt for Agents service;
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Figure 15: Histogram of the IVR service time for “Retail” customers

and the third peak can be related to the most common service in the IVR.

The distribution of the IVR service time is thus not exponential (see also [9]). A similar conclusion
applies to agents’ service time, as presented in Figure 16. Indeed, service time turns out to be log-
normal (up to a probability mass near the origin) for about to 93% of calls; the other 7% calls
enjoy fast service for various reasons, for instance: mistaken calls, calls transferred to another service,
unidentified calls sometimes transferred to an IVR, etc. (There are, incidentally, adverse reasons for
short service times, for example agents "abandoning” their customers; see [3]).

Similarly to non-Markovian (non-exponentially distributed) service times, the assumption that the
arrival process is a homogeneous Poisson is also over simplistic. A more natural model for arrivals
is an inhomogeneous Poisson process, as shown by Brown et al [3], in fact modified to account for
overdispersion (see [16]). However, and as done commonly in practice, if one divides the day into
half-hour intervals, we get that within each interval the arrival rate is more or less constant and thus,
within such intervals, we treat the arrivals as conforming to a Poisson process.

Even though most of the model assumptions do not prevail in practice, notably Markovian as-
sumptions, experience has shown that Markovian models still provide very useful descriptions of non-
Markovian systems (for example, the Erlang-A model in [3]). We thus proceed to validate our models
against the US Bank Call Center, and our results will indeed demonstrate that this is a worthwhile
insightful undertaking.

7.3 Comparison of real and approximated performance measures

For our calculations, the following parameters must be estimated:
e )\ - average arrival rate;
e () - average rate of service in the IVR;
e 1, - average rate of service by an agent;
e p - probability that a customer requests service by an agent;
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Figure 16: Histogram of Agents service time for “Retail” customers

e § - average rate of customers’ (im)patience;
e S - number of agents;
e N - number of trunk lines.

We consider the Retail service time distribution for April 12, 2001, which is an example of an
ordinary week day. The analysis was carried out for data from calls arriving between 07:00 and
18:00. This choice was made since we were interested in investigating the system during periods of a
meaningful load. As stated above, time intervals of 30 minutes were considered. Since approximately
8000 calls are made during such intervals, we may expect that approximations for large A would be
appropriate. Moreover, system parameters seem to be reasonably constant over these intervals.

The first four parameters were calculated for each 30 minute interval as follows:

X = number of calls arriving to the system (30 min)

G_ 30 x 60
~ average IVR service time (sec)
o 30 x 60
h= average agent service time (sec)
_. number of calls seeking agent service
p= =

A
It should be noted that, strictly speaking, we are not calculating the actual average arrival rate
because we see only the calls which did not find all trunks busy; practically, the fraction of customers
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Figure 17: Relationship between the average waiting time given waiting, E[W|W > 0], and the
proportion of abandoning calls given waiting, P(Ab|W > 0), for 30 minutes intervals over 20 days.

that found all trunks busy is very small and hence the difference between the real and approximated
(calculated by our way) arrival rate is not significant.
The average rate of customers’ patience was calculated via the relation

_ P(Ab|W > 0)

§=_ 7 7
EW|W > 0]’

(67)
which applies for the M/M/S/N+M queue (see [19] for details). Note that (67) assumes a linear
relation between P(Ab|/W > 0) and E[W|W > 0]. The following Figure 17 demonstrates that this
assumption is not unreasonable for our call center.

The estimation of the average rate of the customers’ patience is thus the following:

5o proportion of abandoned calls

the average of the waiting time (sec) x 30 x 60, (68)
where both numerator and denominator are calculated for customers with positive queueing time.
Calculation of the estimation of the average rate of the customers’ patience for our data gave varying
behavior of this parameter, for example at 14:30 its value is 5, at 15:00 it equals to 1, and at 15:30
it equals to 4. It is not unreasonable that customers’ patience does not vary dramatically over each
30-minute period, hence, we smoothed the 30-minute values by using the R-function ”smooth”.

In order to use our approximations, we must assign an appropriate value for N, the number of
trunk lines. We could consider the simplifying assumption that the number of trunk lines is unlimited.
Certainly, call centers are typically designed so that the probability of finding the system busy is very
small, but nevertheless it is positive. One approach is to assume that, because the system is heavily
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Figure 18: Comparison of approximated and real probabilities to wait.

loaded, there must be calls that are blocked since there are no explosions. In such circumstances, a
naive way of underestimating N for each 30-minute period is as follows®:

o total duration of all calls that arrived to the system
30 - 60 ’

The calculation of the number of agents is also problematic, because the agents who serve retail
customers may also serve other types of customers, and vice versa: if all Retail agents are busy, the
other agent types may serve Retail customers (see [15] for details). Thus, it is practically impossible
to determine their exact number and that is why we use an averaged value, as follows:

g total agent service time
B 30 - 60

The figure below shows the comparison of the approximate value for the probability to wait, calculated

with the help of the above estimated parameters, against the exact proportion of waiting customers,
as estimated from real data.

In Figure 18 there are three curves. The blue one (line with diamonds) shows the proportion of
customers that are waiting in the queue before agent service. This proportion is calculated for each
half-hour period. The lilac one (squares) shows the approximation from the model with an IVR to
the probability of waiting, which is calculated for each half-hour period. The last one (triangles)
corresponds to the approximation of the probability to wait from the M/M/S/N+M queue model.

®Note that for the system with an IVR, N depends on the total duration of calls in the IVR, agents queue and service.
For the system without IVR, it depends only on the total duration of calls in the agents queue and service.
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Figure 19: Comparison of the approximate and real conditional probability to abandon P(ab|W > 0).

Considering the accuracy of the approximations, one observes that it is satisfactory, especially for
the model with an IVR. The approximated values for this model, in many intervals, are very close to
the exact proportion. In some intervals the difference is about 10%, which can be attributed to the
non-perfect correspondence between the model and the real call center. An additional explanation is
in the estimation of the parameters, such as N and S, which we estimate in a very crude way. The
approximation from the M/M/S/N+M queue works less well and sometimes it does not even reflect
the trends seen for the real values: namely, where the real values decrease the approximation increases
and vice versa. The reasons for these discrepancies can be the same as previously stated, as well as
due to ignoring the IVR influence.

In the figures below, we compare the real and approximate conditional probability for customer to
abandon the system and the conditional average waiting time, given waiting:

Figures 19 and 20 show almost the same behavior as in Figure 18. Sometimes we see a larger
deviation and a possible explanation is the sensitivity of our measures under heavy traffic, i.e. a little
change of parameter values can dramatically change the performance measures.

In summary, both models considered above provide useful approximations to reality. Visual in-
spection reveals that the model with an IVR does it much better than the M/M/S/N+M queue.

8 Adding functionality to the IVR as a way to reduce operating
costs

In this section, we use our approximations to analyze the tradeoff between cost and service level.
As noted in [21], staffing costs (salary, training, etc.) account for over 65% of the operating costs
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Figure 20: Comparison of the approximate and real conditional average waiting time E(W|W > 0),
in seconds.

of a typical call center. Hence, the main way to attempt cost reduction is to reduce the number of
agents. A common way to attempt cost reduction without sacrificing service level is to extend IVR’s
capabilities. Adding functionality to the IVR will decrease the probability p to be served by an agent.
Indeed, operations which previously only an agent could perform are nowadays carried out routinely
by the “self-service” customer (via the IVR). Therefore, the number of customers wishing to be served
by agents will decrease and, as a result, the number of agents .S could decrease as well.

As an example, consider a call center with the following parameters:

(i) average arrival rate A = 1000,
(ii) average service rate in the IVR 6 equals 1,
(iii) average agent’s service rate u equals 1.

The above parametrization corresponds to the following state of affairs:

(1) the distributions of the IVR and agents service time are close to each other. (Our model could
accommodate any other relation as well).

(2) time is measured in units of average service time (IVR time).

Suppose that there are performance constraints as follows:

P(W >0) < 0.4, P(block) < 0.02. (69)
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Figure 21: The feasible domain of pairs (S, N) that satisfy (69), with the ”optimal” solution of this
problem.

We search for the optimal pair (S, N), where N is the number of trunk lines and S is the number
of agents, 0 < S < N. Optimality is in the sense that this pair (S, N) minimizes costs, subject the
desired level of service.

The area of admissible values of S and N for problem (69) is the shaded area in Figure 21. The
number of solutions is infinite and we do not have an explicit cost function, but taking into account
the fact that the hourly cost of agents is the main component (about 63% of total costs [21]), we safely
assume that staffing cost is dominating trunk costs. This suggests that the optimal point is when S
is the least one feasible, as indicated in the figure.

The algorithm for solving problem (69) was described in [13]. In that algorithm we used the
exact formulae of performance measures. This was easy, because we considered a relatively small
call center (with an arrival rate A = 20). In the current example, and in all other examples in the
present section, we consider large call centers (the arrival rate A equals 1000). The calculation of
exact performance measures in such a large call center, at the least, takes a long time and requires a
complicated programming process; sometimes, the exact calculation is, in fact, numerically impossible.
Thus, we use our approximations for the performance measures in finding the optimal solution.

Let us vary p - the probability to be served by an agent, over the range from 0 to 1, and for each
value of p find the optimal solution (S, N).

The domain of (S, N) values is determined by (16) and (17). From these conditions the relationship
between S and p is S = % + B4/ %. The values of 8 are small and hence, the influence of 5 %
is negligible, relative to %. Using this fact, we can perform a rough approximation of the optimal
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Figure 22: The optimal pairs (S, N) for a call center with an IVR, when the arrival rate equals 1000,

the agent’s and the IVR’s service rates equals 1 and p varies from 0 to 1 .
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number of agents. For example, if p = 0.5 we can predict that the optimal number of agents .S will
be equal to 500 = 1000 - 0.5/1. We can see in Figure 22 that this is almost true, but because of the
small resolution one cannot infer the exact value. Note that such linear approximation is too rough
and the optimal number of agents can be actually equal to 550, i.e. the error is 10%.

The relationship between N and p is similar to that between S and p, plus a term that does not

A Ap A A
N~22ip p++n\[.
I w0 0

Because of this extra term, the line for N is parallel to that for S, and the difference is equal to

depend on p:

% + 77\/% . Moreover, we can roughly say that the difference is equal to %, i.e. 1000 in our example,

because 77\/5 is negligible compared with %. The exception is only in the case when 6 also depends
on p. In this case, the changes of N are not linear.

Experiment 1: Varying the IVR service duration. We now consider what happens when
we change the parameter 6. Figure 22 shows how the optimal pair changes when the average service
rate in the IVR is equal to 0.2, 1 and 5, i.e. the average service time in the IVR varies from 0.2 to
5 times more than what it was before. When 6 = 0.2, the optimal number of agents is exactly the
same as when 6 = 1, and only the number of trunk lines N changes. Actually, this is not surprising,
because we saw in Figure 22 that the optimal value of S does not depend on §. When 6 = 0.2, the
values of N are about 5000 trunk lines more than when 6 = 1, and this happens because now the
difference between N and S is about % = % = 5000. When 6 = 5, the average service time in the
IVR is 5 times less than in the case with § = 1. We can hypothesize that the optimal number of
agents will be as follows: Nop(6 = 5) & +(Nopt(0 = 1) — Sopt(0 = 1)) + Sope (0 = 5). Our intuition is
that the optimal number of agents will not change and therefore the optimal number of trunk lines
will be about 300 = (1100 — 100)/5 + 100. Figure 22 supports this intuition.

Experiment 2: More opting for agents implies shorter IVR services. It is reasonable to
assume that, along with changing the probability to be served by an agent, the service time in the IVR
is changing as well. Unfortunately, we do not know how those changes occur. Figure 22 also presents
what happens when the service rate in the IVR is a function of p. Intuitively this function must be an
increasing function, because when the number of customers wishing to be served by an agent increases
the time that these customers spend in the IVR is decreasing, therefore the service rate in the IVR
is increasing. For simplicity, suppose that this function is linear such that when nobody wishes to be
served by an agent (p = 0), the average service rate in the IVR equals 1, and when everyone wishes to
be served by an agent (p = 1), the average service rate equals 5. Thus, this function has the following
form:

O(p) =4-p+ 1. (70)

According to the previous analysis, one would guess that changes in the service time in the IVR
will not influence the optimal agent’s number. Now let us look at the optimal solution (S, N) to the
problem (69), but in the case when 6 is given by (70). Figure 22 shows that our intuition was correct.
The optimal number of agents did not change. This fact is very important, because we can see once
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Figure 23: A comparison of the optimal number of agents and trunk lines for a call center with an
IVR, when the arrival rate equals 1000, the IVR’s service rate depends on p, p changes from 0 to 1,
and the agent’s service rate p in scenario (I) equals 1 + 2p(1 — p) and in scenario (II) 1 — 2p(1 — p).

again that adding functions to an IVR is a good way to reduce costs of a call center. The optimal
N values are not linear anymore it is a line similar to N = % + %. This is a rough approximation,

because we do not take into account the terms 77\/% and §4/ %, since these values are negligible and
do not influence the form of the line N.

Experiment 3: More IVR functionality implies shorter or longer services by agents.
Another property that can be manipulated with the addition of functions to the IVR is the service
time at the agents’ station. Indeed, if the IVR has more functionality, then the agents need not do
some of these functions. This will decrease the average agent’s service time and, as a result, will
lead to a decrease in the optimal number of agents. But agent’s service time might also increase as a
result of additional functions to an IVR. Customers might have questions about the IVR usage, since
it is more complicated now. Moreover, the customers who will be served by an agent, after adding
more functions to the IVR, are expected to have more complicated requests which take longer to be
satisfied. Thus, the relationship between the probability p to be served by an agent and the rate u of
an agent’s service is not easy to predict. We thus consider two scenarios of changing the rate of the
agent’s service:

(1) p=1+2-p-(1-p) (71)
and
(11) p=1-2-p-(1-p). (72)

Let us now compare the optimal number of agents and trunk lines in these the two scenarios.
Figure 23 shows that, in the first scenario, the optimal number of agents as well as trunk lines first
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decrease with the growth of p (the probability to continue service). When p = 0.5 these values start
to increase with the growth of p but they are always less than they would have been if the growth was
linear. In contrast, in the second scenario, the optimal values are always larger than if the growth was
linear.

Thus, we see that adding functions to an IVR can provide an attractive solution for cost reduction.
However, this may sometimes bring undesirable changes, for example in the second scenario. Indeed,
before adding functions to the IVR, i.e. when p was equal to 1, the optimal agent’s number was 503.
After the addition of some functions to the IVR, for example, when p = 0.7, the optimal number of
agents in the second scenario increased to 605. This is almost a 20% increase. As noted in [21], trunk
costs constitute 5% of the staffing costs - the latter being 65% of a call center’s operational costs. If
we assume that these proportions are not changing with adding or reducing agents or trunk lines, then
after adding functions to the IVR, the call center’s costs increase by about 14%. Such a scenario can
happen as a result of an unsuccessful design of the IVR, which underscores the importance in its proper
deployment. As indicated in Section 1.1, when implementing an IVR, one must take into consideration
not only the call center’s interests, but also the wishes, needs and capabilities of customers in order
to make the IVR friendly and effective.

A Appendix: Proofs

A.1 Proof of Lemma 2.1
Proof. In view of Stirling’s formula, S! ~ v/2S7S%e™, one obtains for & (\):

S Ap SVSNET L /Y _
w0 () 7 % ()

The last sum can be rewritten as P (X < N — S — 1) where X 4 Pois(%) is a random variable with
the Poisson distribution with parameter %, thus F[X,] = %, Var[X,] = %. If A = oo, then % — 00
(0-fixed). Note that

>

+o(1) (73)

XA—§<N—S—1—§

P(Xa<N-S-1)=P < (74)
A A
0 0
Thus, when A — oo, by the Central Limit Theorem (Normal approximation to Poisson) we have
X, — 2
A9 - N(0,1) (75)
A
9
and due to assumption (i) in (16) we get
NETTT /A s
Z < <9> e 9 — P(N(0,1) <n) =®(n), when A — oo, (76)
i!

1=0
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where N(0,1) is a standard normal random variable with distribution function ®. It follows from
(73)-(76) that

eS(1=p) s eS((1=p)+lnp)
§1(N) = eI, p@(n) +o(1) = W(ﬂn) +o(1), (77)

where p = S—p Making use of the Taylor expansion

mp=I(l-(1-p)=-(1=-p) = F—+ol=p)* (p=1), (78)
one obtains from (78) and (16) (i7) that
oS((1=p)—(1-p)— 1522 o
&1(A) = NS, ®(n) +o(1) = mﬁq’(n) +o(1). (79)

This proves equation (30).
By applying the Stirling’s formula and using that p = p — 1,as A = oo and S — o0, one obtains,

S—A220=p) N-S5-1 i
e’ Tut o S 1/ A
A= ——oepV — | e o +o(1 80
o =T S 5 (5) B e (50
The last sum can be rewritten as P (Y, < N — S — 1) where Y), g Pois(%), and E[Y,] = ep, Var[Yy] =
9—2. Note that
Xo—g, N-S-1-4
PY,<N-S-1)=P - P < - L (81)
0p bp

It follows from (16) (i) that

N — S——
Jim 7—77 \f 8. (82)

Taking into account equations (80), (82) and the Central Limit Theorem we have that

N-5-1

1 L
E a1 <9)\p> e P(N(0,1) <m)=®(m1), when X\ — oo. (83)
i=0

It follows from the assumption (16) and (78) that when p — 1

5- 22 M Nlup =S —p) + 25{1-p) = N1 p) = 5 (1= +ol(1 - p))
~ (3= - \Fu—pwo«l—p)?)
=50+ )+ 50—\ [ 150 o1

Therefore,

—5 (P +B%)+ 503 Jr2 L B2) 1.
‘W(p(m) = WWWI‘I’(M), (84)

lim =
A—00 €2
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and this proves equation (31).
Approximating y(\): For this purpose, consider a partition {5 }é-:() of the interval [0, S].

S] =S _.767 j = 07 17 717 Sl+1 = 07 (85>

where 6 = [g4/ %], € is an arbitrary non-negative real and [ is a positive integer.

If A and S tend to infinity and satisfy the assumption (ii), then [ is less then % for A large enough
and all the S; belong to [0,5], 7 =0,1,...,[.
We emphasize that the length 6 of every interval [S;_1,.S;] depends on .

i A

N-1 >

v

0 S' Sk+1 Sk S N-1 ]

Figure 24: Area of the summation of the variable ;.

The variable (\) is given by formula (25), where the summation is taken over the trapezoid.
Consider the lower estimate for (), given by the following sum, where the summation is over the
shaded area in Figure 4.1:

I Sip—1 /\pN Sk 1 4 \
£ E ) E L)
l k=0 j= Sk+1 ! =0 (86)
= P(Sks1 < Zx < Sp)P(Xy < N — Sp),
k=0
where
Zy = Pois (p) . Elz)\]= &v Var[Z,] = &'
7 7 7
A A A (87)
Xy = Pois <0> , E[X,] = rh Var[X,] = rE



Analogously to Lemmas 2.1 and 2.2, applying the Central Limit Theorem and making use of the

relations
Sy, — 22
lim B —B—ke, k=0,1,..1,
A—00 Ap
17

N—Sp—3 0
lim —* 0 — ke [P0 k=01,
A—00 A M

0

one obtains
)\lim P(Sk+1 <Zy<Sg) = ‘ID(B —ke) —®(8 — (k‘ + 1)6), k=0,1,...0—1,
—00

lim P(O <Z)< Sl) = ‘I’(ﬁ — lE),

A—00

lim P(Xy < N — 8)) = ®(n + key /If), k=0,1,..1

A—00

It follows from (86) and (90), (91), (92) that
-1

liminf y(X) > > ®(n + key/p0/p)[@(8 — ke) — ®(8 — (k + 1)e)]

A—00
k=0

+ O(8 —le)P(n + ler/pb/ 11).

It is easy to see that (93) is the lower Riemann-Stieltjes sum for the integral

o 3
/<I><77+S\/f) d®(8 — )=/¢<n+(ﬁt)ﬁ> p(t)dt,

0 (%)

corresponding to the partition {5 — ks}szo of the semi axis (—o0, 3).
Similarly, let us take the upper estimate for « as the following sum

Si—1 _&N—Sk+11 AN\ s
==X () 25 ()
k=0 j=Sj41 i=0

l
= P(Skr1 < Zy < Sp)P(X5 < N = Spia).
k=0

(88)

(89)

(90)

(91)

(94)

(95)

The above calculations, applied to the sum (95), give the following asymptotic estimate for ~:

-1
lim sup y(A Z ) (77 + (k+1)e ﬁ) [D(8 —ke) — ®(B— (k+ 1)e)] + ®(B — le), (96)

A—00 k=0

which is the upper Riemann-Stieltjes sum for the integral (94).

42



When & — 0, the estimates (93), (95) lead to the following equality

8
Jim y(A) = / o (n + (8- t)ﬁ) p(t)dt. (97)

—00

This proves equation (32).
Now, consider 0(A):

k
N-S-1 | \(} + Lt) \
o= 5 2 e |t iy <),
k=0 ’
where ’ 1 ’ 1 ’
p p p
X = Pois(A -— EX)\] =A==+ —%= Var[ Xy = A —).
A OZS( (0 + \/§))7 [ )\] (6 + \/§)7 CLT[ /\] (0 + \/§)
By the Central Limits Theorem one obtains
/\lim P(X\ <N —S5)=®(n— /pubt). (98)
— 00
O
A.2 Proof of Lemma 2.2
Proof. Using Stirling’s approximation and assumptions (17) we have
S § N—S—1 i N—S—i—1 j
_xlipy € Ap 1 /A Ap
- e () E ) () e
£ s Gs) Xoals) X (s) e
57& N*S*l 75 A i N—S—Z
se * ¢ i (g) 1-p
= - +o(1), 99
= ; A =5 (1) (99)
where p = Z£. Under condition (17)(i1) = 0, and this happens when p =1 or p — 1. When p — 1,
p # 1 we use the well known approximations
1-— pk
= 1—p). 1
= kto(l=p) (100)

This implies that in this case

—S—
Z e (N—=S—1i)+o0(1),

When p = 1, the sum ZN S==1 5 in (99) is equal to N — S —i and this leads to the same expression
for &.
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Simple calculations show that

N—S—1 _2 avi N=S—1. A (x\i
€ - ;S( ) (vog)- W.,(a)>+o<1>
T ; i! ; i!
=0 =0
N-5-1 Ayi AM\N-S
1 A () (5)
= N-5-2 6 6 1
%5<( o)) 2 T T Ty —s—y) Tl
Due to (76), the first term in (99) can be rewritten as follows
N-S-1 i
A 1 /A _A A
(V=52 ,(9> e =m/ 20, (= 00) + o))

It follows from Stirling’s formula, (78) and conditions (17) that in (101)

(A)N—Se—g N_§g =9 — A + In A ]
N-s-1 ~ Voo ¢ N=5) 0N =) 1 oq1)
— — . ™

=\ aetn +o)

Using (17)(iz), (101) and (102) we obtain

Jim €(A) = Jim m\f ")
= m\/;(n@(n) +o(n))-

This proves Lemma 2.2.

A.3 Proof of Theorem 3.1

Proof. Recall that the M/M/S/N queue has the following stationary distribution:

1 /A
i\ '
7['7/ = 1 )\ ¢ . .
WOS!Si_S (M) ) SSlSNv
0, otherwise.

where

S—1 ) N )
1 /A 1 A
v (23 0) e ()

(101)

(102)

(103)

(104)

(105)

As in the previous analysis, we denote the waiting time by W. Using PASTA, we now find the

probability to wait:

(106)



and the probability to find the system busy:
P(block) = . (107)

The expectation of waiting time is obtained from Little’s formula:

N

> (- 8)m

L ueue i=S+1
EW]==2 = .
W=, = A - Pblock))

(108)

The conditional density function of the waiting time for the M/M/S/N queue has the following form:

( AL
pS(1— 2o )e 8- s N_s_1 oM (A
/LS o ( ) p7£1.
)\ k! Y Y
B A k=0
fwwso (t) = 1 N<SM§> (109)
oL k
uS e (A _
g kZ AR p=L
\ =0

In the case > 0, this formula was found in [18] by Massey and Wallace. When § < 0, it can be
obtained with the help of Laplace transform in a way similar to that in Section 6.1. Define

0= e;ﬁ () 2r

=0 K

Z Si5s ()Z (111)

e_% AN\ Y
5(A)=7S,SN,S L) (112)

Z (i 9) (2) (113)

z S+1
Thus, we can rewrite the operational characteristics of the M/M/S/N queue as follows:

£

PW>0)=—>20 114
=0 =50 e -
5(A)
P(block) = ———————; 115
(o) = 300+ e )
¢

EW]| = NONENIENE 116
UERETOVER<PY o)
Note that y(A) can be rewritten as P(X) < S), where X, —Pozs( ), and E[X)] = £, A Var[X,) = 2

Then by the Central Limit Theorem and condition (¢i) of the Theorem 3.1, one obtams

X, -2 _ A

1(A) =P 2 (B). (117)

f f
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We now derive the approximation for £(A). In view of Stirling’s formula and Taylor expansion,

one obtains

_B82 N-S-
2

i 600 = 75

Due to the conditions (i) and (éi) of theorem and (7 ), the expression pV =% can be rewritten in the
equivalent form

(118)

pN=5 — ((N=5

Therefore, when [ # 0,

Mnp=e™"(p-1)40(1) = e +0(1). (119)

lim £(\) = ‘pf/f)u ) (120)

A—00

Now, let 8 =0, i.e. p=1or p— 1. In this case

Using the conditions (i) and (i¢) of the Theorem, one obtains

n
Jim £(A) = Norh (121)

Now, consider §(\). By Stirling’s formula and relation (119), one gets
lim VS8(A) = p(B)e . (122)
A—00

In order to find an approximation for , let us use the the formula

M+1

M
1— M
— p—1 (1-—

" p)

conditions (i) and (éi) of the theorem and relation (119). Thus, one deduces that

N—S5+1 _ ,N-58 -nB —e B
p 1—p Ae VS N1 —e )
NS +-—F =y )2 n +o(1). 123
o1 NI ”\/; B B . 12
Taking into account equation (123), we have
1—¢e B8
Jim V8= ;EB) [ ; - ne‘ﬂ ’ 12y

when S # 0. The case 8 = 0 means that p =1 or p — 1. If p =1 it is easy to see that
N-S

kpk =
k=1

I(N-S)(N-S+1) »n*
A 2 oo

(125)

> =

If p — 1, by using Taylor’s expansion one gets (125) (see [13] p.69 for details). Thus, when 5 = 0, the
approximation for v/S¢ has the form

Jim ViS¢ = (126)

2,u\/27r'
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Now, consider the conditional density function of the waiting time for the M/M/S/N queue. When
B # 0, using condition (i) of the theorem and equation (119), one gets

+o(1).

1 t > ~ pS(1— p)e HS=p)t NS eVt (\/)\,ut)k

ﬁfW|W>O <\/§ NS 2 ol

The last sum can be rewritten as P(X) < N — 5), where X, 4 Pois(y/Aut). From the strong law of
large numbers for the Poisson process we have

X
lim P| —&= = = 1. 12
S e 120
m
Thus,
X 1, pt <mn,
lim P(Xy < N—8)= lim P| 22 <y = e (128)
A—ro0 A—ro0 \ﬁ 0, ut=>mn;
o
and approximation of the density function when 5 # 0 has the following form:
ppe ot .
1 t — t<m, B #0;
)\lim ﬁfw|w>o (\/§> = (1 —€ 7]5) : K 7& (129)
o 0, pt>n,  B#O.
When 3 = 0 using conditions (i) and (i) of the theorem and equation (128), one obtains
K -0
. 1 t mn» ,U/t < m, B - 07
lim — fyiw <> =7 (130)
A=oe /5O S 0, ut>n,  B=0.
Combining (117), (120), (121), (122), (124), (126), (129) and (130), we have thus proved Theorem
3.1. 0

B Frequently used notation

A arrival rate

6 IVR service rate

|4 agent service rate

S number of agents

N number of trunk lines

p offered load per agent in the system for Call Center with IVR  (p = Ap/(Sp))

R offered load (often R = \/u in Markovian queues)
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Q1(t) the number of calls at the IVR
Q2(t) the number of calls at the agents station (getting service and in queue)
m(i,j) the stationary probabilities of having i calls at the IVR and j calls at the agents station

X(k,7) the probability that the system is in state (k,7), (0 < j < k < N), when a call (among the
k — j customers) is about to finish its IVR service. Here, k is the total number of calls in the
system, and j is the number of calls in the agents’ station (waiting or served); hence, k — j is
the number of calls at the IVR

®(-) the standard normal distribution function

©(+) the standard normal density function

E expectation

P probability measure

W waiting time after the IVR service, for a customer seeking service
W (t) distribution function of the waiting time: W (t) = P(W <)
fw(t) density function of the waiting time

an ~ by, if ap /by, — 1, a8 n — 00

2 distributed as ( for example, X iPois()\) mean that X is a random variable that is Poisson
distributed with parameter \)

an = o(by) if a, /b, — 0, as n — o0

Lw(x)  Laplace transform of fy (t)

Ly (t)  inverse Laplace transform for the function Ly (z)
QED  Conditions (16)

QEDy Conditions (17)
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