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Abstract

We study queues in healthcare. We start by developing and analyzing a queueing model,

which we call Erlang-R, where the “R” stands for ReEntrant customers. The Erlang-R model

accommodates customers who return to service several times during their sojourn within the sys-

tem. It is most significant in time-varying environments. Indeed, it was motivated by healthcare

systems, in which workloads are time-inhomogeneous and patients often go through a discon-

tinuous service process. For example, in Emergency Wards, physicians are revisited by patients

whose service process consists of cycles: examination by a physician, lab tests, treatment by a

physician and so forth.

This thesis consists of three parts: open Erlang-R, semi-open Erlang-R, and Empirical anal-

ysis. In the first part, the main question we address is: how many servers (doctors/nurses) are

required (staffing) in order to achieve predetermined service levels stably over time. Based on our

theory, we propose a staffing policy that attains pre-specified service levels in the Halfin-Whitt

(QED) regime. This policy applies the Modified Offered Load (MOL) approximation. We vali-

date our policy, via simulation, both for large and small systems, and we use an EW simulator to

validate its usefulness in realistic scenarios. We thus show how to stabilize, via proper staffing,

both service levels and servers’ utilizations, in time-varying healthcare environments.

In the second part, we concentrate on analyzing semi-open queuing networks with ReEntrant

customers. These networks are used to model a Medical Unit with s nurses that cater to n beds,

which are partly/fully occupied by patients. Here the questions we addressed here are: How

many servers (nurses) are required (staffing), and how many fixed resources (beds) are needed

(allocation) in order to minimize costs while sustaining a certain service level? We answer this

by developing QED regime policies that are asymptotically optimal at the limit, as the number

of patients entering the system (λ), the number of beds (n) and the number of servers (s) grows

jointly. Our steady-state approximations turn out accurate for parameter values that are realistic

in a hospital setting. We then use these approximations to develop MOL approximation to the

closed-version of the Erlang-R model in a time-varying environment.

Our research was done in collaboration with one of the largest hospitals in Israel. This

partnership provided us with the opportunity to analyze real data of patient-flow throughout the

hospital, and validate our research in realistic situations. The last part of the research consists

of this data analysis, concentrating mainly on hospitalization data in internal wards.
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List of Abbreviations and Notation

Abbreviations

QED Quality- and Efficiency-Driven

EW Emergency Ward

MOL Modified Offered Load

LOS Length of Stay

MU Medical Unit

IT Information Technology

IW Internal Ward

FTE Full Time Equivalent

RN Registered Nurse

AHA American Hospital Association

M/M/s (Erlang-C) a birth-death queueing model with infinite-capacity queue,

Poisson arrivals, Exponential service times, and s servers

M/M/s/s (Erlang-B) a birth-death queueing model with no queue, Poisson arrivals,

Exponential service times, and s servers

M/M/s+M (Erlang-A) a birth-death queueing model with infinite-capacity queue,

Poisson arrivals, Exponential service times, s servers, and Exponential patience

FCFS First Come First Served

i.i.d. independent and identically distributed

OL Offered Load

SIPP Stationary Independent Period by Period

ISA Infinite Server Approximation

QoS Quality of Service

PSA Piecewise Stationary Analysis

RCCP Rough Cut Capacity Planning

ODE Ordinary Differential Equation

QD Quality Driven

ED Efficiency Driven

LWBS Left Without Being Seen

NRP Nurse Rostering Problem

NSP Nurse Scheduling Problem
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IVR Interactive Voice Response

ALOS Average Length of Stay

WIP Number of Patients in Ward

V Ventilated

ICU Intensive Care Unit

DOW Day Of Week

FSLLN Functional Strong Law of Large Numbers

FCLT Functional Central Limit Theorem

DE Differential Equation

CLT Central Limit Theorem

u.o.c. uniformly on compact

a.s. almost surely

BM Brownian Motion

HRM Human Resources Management

Notation

Part I - Notation

s(t) Number of doctors at time t

λ(t) Arrival rate at time t

p Probability of staying in the medical unit after service

G1 General distribution function of Needy state (station 1)

µ Service rate (in Needy state (1))

G2 General distribution function of Content state (station 2)

δ Content/delay rate

Si Service/delay time in station i

Ri(t) Offered Load in station i at time t

S∗ji Sum of j independent random variables Si

β QED quality of service parameter

Qi(t) Number of patients in station i at time t

E Expectation

P Probability measure
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Pij Stationary probability that there are i patients in station 1 and j patients in station 2

Ri Steady-state offered load of station i

ρ Offered load per server; ρ = R1
s = λ

(1−p)sµ

P (W > 0) = α Probability of waiting

P (W > t) Probability of waiting more than t

E[W ] Expected waiting

φ(·) The standard normal density function

Φ(·) The standard normal distribution function

Si,e Excess service time at station i

λ+
i (t) Aggregated arrival rate function to node i at time t

V AR Variation

λ̄ Average arrival rate

κ Relative amplitude of Sinusoidal arrival rate function

f Period of Sinusoidal arrival rate function

ω Frequency of Sinusoidal arrival rate function

Amp(·) Amplitude of periodic function ·

Phase(·) Phase shift of periodic function · with respect to the entrance arrival rate

RC(t) Offered Load of Mt/M/st (time-varying Erlang-C) model at time t

Q
(0)
i (t) Fluid solution of the number of patients in station i process, at time t

Part II - Notation

s Number of nurses

n Number of beds

λ Arrival rate

µ Service rate

δ Dormant/activation rate

γ Cleaning rate

p Probability of staying in the medical unit after service

β First QED quality of service parameter

η Second QED quality of service parameter

r Jennings and de Vericourt parameters ratio

N(t) The number of needy patients at time t
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D(t) The number of dormant patients at time t

C(t) The number of beds in cleaning at time t

π(i, j, k) The stationary probability of having i needy patients, j dormant patient

and k beds in cleaning (sometimes denoted πn(i, j, k) or πn,s(i, j, k))

Pl The probability that there are l beds occupied in the system

πA(x− ei) The probability that the system is in state x− ei at the arrival epoch of a customer

to node i

P (W = 0) Probability to get immediate service

P (W > 0) Probability of waiting/delay

P (blocked) Probability of blocking of the medical unit (P (blocked) = Pn)

E[W ] Expected waiting

W Steady-state in-queue waiting time, for a hypothetical newly needy patient

pn(s, t) Tail of the steady state distribution of W

OC(n, s) Average occupancy level

ρ Offered load per server; ρ = λ
(1−p)sµ

RN The solution of the balance equations for the needy state; RN = λ
(1−p)µ

RD The solution of the balance equations for the dormant state; RD = pλ
(1−p)δ

RC The solution of the balance equations for the cleaning state; RC = λ
γ

A Sum of non-service stations offered load; A = RC +RD

B Offered load ratio; in IW model :B = RN
RC+RD

, in semi-open Erlang-R model : B = R1
R2

≈ an ≈ bn if an/bn → 1, as n→∞

φ(·) The standard normal density function

Φ(·) The standard normal distribution function

N(0, 1) A standard normal random variable with distribution function Φ

E Expectation

P Probability measure

Cn Annual bed costs

Cs Annual nurse costs

s(t) Number of nurses at time t

Ri(t) Offered Load in station i at time t
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Part II - Notation

Ti Average time that the system is in state i

Pi,j Probability to transfer from state i to state j, given that one is presently in state i

ht Probability to leave the medical ward in day t given that LOS is at least t
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1 Introduction

1.1 The Structure of Modern Hospitals

A Hospital or Medical Center is an institution for health care, which is able to provide long-term

patient stays. One distinguishes between two types of patients: inpatients and outpatients. Some

patients in a hospital come only for a diagnosis and/or therapy and then leave (’outpatients’), while

others are ’admitted’ and stay overnight or for several weeks or months (’inpatients’). Hospitals

usually differ from other types of medical facilities by their ability to admit and care for inpatients.

Within hospitals, the two types of patients are usually treated in separate systems, and thus can be

analyzed separately. We will concentrate on the inpatient system.

In the modern age, a hospital constitutes a combination of several Medical Units (MU) specializ-

ing in different areas of medicine such as internal medicine, surgery, plastic surgery, and childbirth.

In addition to these medical units, the hospital includes some service units such as laboratories,

imaging facilities, and IT (Information Technology), that provide service to the medical units. Typ-

ically, inpatients arrive to the hospital, randomly, via an Emergency Ward (EW), which deals with

immediate threats to health and has the capacity to exercise emergency medical services. For oper-

ational purposes, therefore, the flow of patients in a hospital can be viewed as in Figure 1: a patient

enters the EW, is treated, and then discharged after treatment or admitted to stay; the latter if the

doctors decided to hospitalize the patient and there is an available bed at an appropriate MU, in

which case the patient is transferred to that MU. At some point in time (i.e., when the patient is

cured or transfered to other medical centers, or unfortunately dies) the patient leaves the hospital

system.

Focusing on the operational point of view, the hospital includes doctors, nurses and administra-

tive staff. Each MU is managed autonomously, with its own medical staff. Each MU has a limited

capacity which is a function of the physical space (static capacity) and the staffing levels (dynamic

capacity). The physical space is usually measured by the number of beds allocated to that MU,

and the staffing levels by the number of service providers: doctors, nurses, and general workers

(sanitation staff, etc.). Naturally, capacity restrictions can lead to a situation of system blocking.

Thus the EW and MUs can be blocked, and a situation where ambulances are turned away [25], or

a patient is waiting in the EW for assignment is not a rare event. In large medical centers there

are several MUs of the same type. This division is due to a combination of location constraints and

the inability to manage large wards efficiently. Nevertheless, blocking does also occur in such large

medical centers.
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Figure 1: The basic operational model of a hospital system

All of the above leads to the conclusion that one can model the hospital as a complex stochastic

network, where each node represents some process. We can then examine the flow of patients in

that network, as shown in the case-study of de Bruin et al. [19] and Hall [41]. If that flow is not

smooth then patients are delayed at various points in the system, waiting for medical care or waiting

in queues for other reasons. The most notorious queues for medical care are those for surgery, organ

transplants, very expensive diagnostic tests such as C.T. and MRI, and specialists. For some of the

above, the wait can be as long as several months [15]. Less noticed, though much more common,

are queues for hospital beds, doctors, nurses, lab tests and dispensing medication. These queues

cause delays during treatment, when the response time can be critical for patient safety and quality

of care (see Sobelov et al. [69]).

Healthcare queueing research has the capability to deal with various aspects of the healthcare

system. For example:

1. Scheduling - for example, the optimal scheduling of surgery rooms, in order to minimize wait

while considering diverse patients’ needs and system constraints; or managing out-patient

appointments [41].

2. Routing - for example, the routing of patients from the EW to the MUs [71].

3. Staffing - for example, how many nurses to assign to an MU [45], first at the planing stage

and then dynamically.

4. Design - for example, capacity planning [32] and what is the optimal bed allocation [31].
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5. Costing - for example, the optimal sharing of surgical costs in the presence of queues [29].

Some of these issues have been noticed and approached in the past, usually not as a health-

care problem but rather from a more general perspective. Many aspects, however, have not been

treated, and some of them are crucial for healthcare systems, such as adaptivity of large-system-

approximations to small systems, and the combination of medical and psychological aspects. The

most common method for modeling healthcare systems is simulation (see for example [58]). The

reasons for the popularity of simulation in healthcare seem to the same as that of call centers:

there is a widening gap between the complexity of the modern healthcare system and the analytical

models available to accommodate this complexity. Moreover, simulation techniques are relatively

simple user-friendly tools [28]. We aim to narrow this gap by developing simple queueing models

that capture the ReEntrant effect of patients, and show how these relatively simple models can

actually capture enough of the system dynamics, and therefore can be used to model complex EW

and MUs environments. There are other researchers who use various methods of mathematics for

modeling and analysis of healthcare systems (see Halls’ book [41] for works on the subject). Only a

minority of them have tried to deal with the stochastic characteristics of the system, using queueing

theory, similarly to outpatient analysis and in other fields such as call centers [28]. Nevertheless,

even this small body of work suggests that stochastic-models insights could significantly advance

our understanding of inpatient healthcare systems.

Healthcare systems are highly regulated, both in service and operational issues. Each country

provides the regulator with different means to control healthcare systems: for example, Israel has

a national health law. The Ministry of Health controls all beds allocation and staffing capacity in

hospitals. In Europe, some countries regulate maximum queues waits for surgeries, and in 2004

in the US, the California Department of Health Services (CDHS) published a law that specifies

nurse-to-patient ratios that determine the minimal staffing levels allowed [63]. Some of these laws

are poorly designed, as Jennings and de Véricourt [45] showed concerning the California regulations.

Queueing models can be used to better design staffing regulation, as shown by Green et al. [37]. We

believe that our work will provide the regulator tools to better understand the impact of capacity-

related decision on service level in hospitals. This will help change the current practice of determining

staffing and allocation based on utilization and budget constrains, to a more balanced approach that

accounts for service aspects as well. There are still some research questions to be answered before

one is able to actually establish staffing guidelines that are based on our research; for example,

healthcare systems are time-varying and it is unclear over what period (year, week, or day) one
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should base such guidelines.

1.2 Research Objectives and Contributions

We concentrate on capacity management problems in hospitals for several reasons: First, the main

resource used in healthcare systems, as in many other service industries, is the human resource.

Doctors, nurses, therapists, laboratory technicians, and so forth are the main resources of that

system and their salaries constitute 70% of hospital expenditure [62]. The second reason is that

these personnel have very long training periods, and healthcare systems suffer from a chronical

shortage of medical personnel, which has a detrimental impact on the system. For example, in

the US alone, in 2005 there were 1.1 million FTE (Full Time Equivalent) Registered Nurse (RN)

jobs [1], but there is still a chronic shortage of nurses; the American Hospital Association (AHA)

reported that US hospitals had an estimated 116,000 RN vacancies as of December 2006 [2], and that

the personnel shortage causes some very serious problems in the majority of hospitals: decreased

staff satisfaction (in 49% of the hospitals), EW overcrowding (36%), diverted EW patients (35%),

reduced number of staffed beds (17%), increased waiting times to surgery (13%), and more.

Hence, we seek to support capacity management policies for healthcare systems, using stochastic

processes. We develop strategies for doctor-staffing in the time-varying environment of Emergency

Wards (see Part I), and a joint nurse-staffing and bed-allocation strategy for Medical Wards (see

Part II). Our service-level objectives reflect both blocking phenomena and the response time of

the medical staff. We develop QED (Quality and Efficiency Driven) staffing policies that balance

between these service-level objectives and the efficiency of the system. We validate our models

using simulation in a realistic setting. We also include, in Part III of this work, empirical analysis

of patients flow data. This analysis describes some of the statistical characteristics of the flow of

inpatients through the MUs, such as the arrival rates, LOS, blocking etc.

The models we describe in this work have limitations, which call for natural extensions. Ex-

amples of such extensions include multi-classes of patients (to distinguish service phases or medical

priorities), abandonments (customers who leave without being seen), and random parameters. We

elaborate on some of these extensions in Part IV.

The main contribution of this work is the addition of a new central feature to the queueing

literature, which incorporates returning customers to service. We called our model Erlang-R, were

“R” stands for Returning or ReEntrant. Within the Erlang-R framework (open, semi-open), we

identified the circumstances where returns must be modeled explicitly, as opposed to being “ab-

sorbed” in the corresponding simpler setups (M/M/s, M/M/s/n). Regarding the above-mentioned
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circumstances, we have contributions along three main directions:

1. The QED regime: Generalizing the QED limits, and exact calculations of Khudyakov et al.

[50] to semi-open service system.

2. Coping with time-varying environments:

• Developing MOL (Modified Offered Load) approximations, and analyzing insightful special-

cases.

• Stabilizing performance using the MOL/ISA approach of Feldman et al. [26]:

– Developing generalization of the MOL-QED staffing procedure for open and semi-

open queueing networks.

– Validating the usefulness of this procedure in small scale systems.

– Using simple models to stabilizing complex (real) systems.

• Fluid and Diffusion approximations:

– Developing time-varying fluid and diffusion approximations within the framework of

Mandelbaum et al. [53] .

– Develop corrections to those processes under MOL-QED staffing.

3. Open vs. Semi-open networks:

• Identifying the significance and understanding the joint combining impact of time-varying

arrivals parameters (amplitude and phase), and service-rate on open-system performance

measures.

• Identifying the significance and understanding the impact of the offered-load ratio, on

semi-open system performance measures.
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Part I

The Open Erlang-R Model

2 Introduction: The Erlang-R Model

It is natural to use queueing models to support workforce management in service systems. Most

common are the Erlang-C (M/M/s), Erlang-B (M/M/s/s) and Erlang-A (M/M/s + M) models,

all used in call centers. But when considering healthcare environments, we find that these models

lack a central prevalent feature, namely, that customers might return to service several times during

their sojourn within the system. Therefore, the service offered has a discontinuous nature and is

not provided at one time. This has motivated our queueing model, Erlang-R (“R” for ReEntrant

customers) which accommodates the return-to-service phenomena.

More explicitly, we consider a model where customers seek service from servers. After service

is completed, with probability 1 − p they exit the system and with probability p they return for

further service after a random delay time. We refer to the service phase as a Needy state, and to

the delay phase as a Content state (following Jennings et al. [46]). Thus, during their stay in the

system, customers start in a Needy state and then alternate between Needy and Content states. We

assume that there are s servers in the system. When customers become Needy and an idle server

is available, they are immediately treated by a server. Otherwise, customers wait in queue for an

available server. The queueing policy is FCFS (First Come First Served).

We assume that the Needy service times are independent and identically distributed (i.i.d.),

with general distribution G1 and mean 1
µ , and that the Content times are also i.i.d. with general

distribution G2 and mean 1
δ . We also assume that the Needy and Content times are independent

of each other and of the arrival process. The arrival process is taken to be a time-inhomogeneous

Poisson process with rate λt, t ≥ 0. Some of our results require that the Needy and Content times

are exponentially distributed. We shall state specifically when this is the case.

Figure 2 displays our system graphically:

Note that our returning customers are different from the redialing customers of a call center.

The latter leave the system before service in response to a busy line or due to abandonment. See

Aksin et al. [3] and Artalejo et al. [6] for further details of such models.
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Erlang-R: 
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Figure 2: The Erlang-R model

2.1 Examples in Healthcare

We now describe a few examples where the Erlang-R model is applicable in hospitals. The first

example presents the process of doctor service (or nurse service) in an EW. Patients enter the EW,

and are referred to a doctor. The doctor examines them, and decides whether to send them home or

to admit them to the hospital. In most cases, the decision is made after the patient goes through a

series of medical tests. Thus, the process that a patient goes through, from the doctor’s perspective,

fits our model. A patient visiting the doctor is in a Needy state. Between each visit, the patient

is considered to be in a Content state, which represents the delay caused undergoing medical tests

such as X-rays, blood tests, and examinations by specialist. After each visit to the doctor, a decision

is made to release the patient from the EW (either to his/her home or to the hospital), or to direct

the patient to additional tests.

A second example is the Radiology reviewing process [51]. After a mammography test, the radi-

ologist interprets the results. This includes several stages: examining referral requisition, reviewing

clinical background information, analyzing images, and dictating results. In some cases, part of the

information on the patient is lacking: the radiologist does examine the case but it must be put on

hold, waiting for this additional information to arrive; after arrival, the reviewing process starts

again. With radiologists being the servers, this can be modeled using our Needy-Content cycle.

The final example is the process of bed management in an Oncology Ward. In such a medical

ward, patients return for hospitalization and treatment, much more frequently than in regular wards.

Here servers are the beds, the Needy state models the times when a patient is in the hospital, and

the Content state models the times when the patient is at home. A patient leaves the system when

cured or unfortunately passes away.
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We would like to understand the significance of customers’ service cycles. The fact that service is

not given in one time but, rather, separated into several visits to the server, could affect operational

decisions: we seek to understand in which cases it does, and what are the implications regarding

staffing procedures.

2.2 Main Results

In this part we first show that, in steady-state, our model behaves like an Erlang-C (M/M/s) model.

This applies from the quality-of-service perspectives in the Needy state, since the marginal distri-

bution of the number of customers in the Needy state is the same as in steady-state Erlang-C.

Nevertheless, the Erlang-R model is useful beyond Erlang-C for two reasons: first, it provides more

information than Erlang-C since we model the Content state as well. But more importantly, we

found that while steady-state performance is identical, there is a significant difference between the

two models as far as transient behavior is concerned; in particular, in transient times, the Content

state plays an important role in determining appropriate staffing levels. This finding is important

since the systems in our healthcare examples, as well as in many other systems, are typically in a

transient state due to the nature of the arrival process, the rate of which varies significantly in time.

Staffing systems that are in a transient state differ from those in steady state. Instead of setting

the service-quality measures in the long run, one must consider them at every moment in time. Our

goal is to identify staffing procedures that stabilize performance over time. Specifically, no matter

what time of day customers enter the system, they will always wait on average for the same amount

of time, and their probability of waiting remains constant. Thus, the staffing algorithm is to attain

pre-specified service levels but, at the same time, servers’ utilization must be high. This means that

we seek to create QED (QED = Quality and Efficiency Driven) balance, at all times of a transient

system.

We use the MOL (Modified Offered Load) approach [44] in which one first calculates the time-

varying offered load. In our case, the offered load for Station 1 (Needy) and Station 2 (Content) are

given (Section 5) by

R1(t) = E

 ∞∑
j=0

pjλ(t− S∗j1 − S
∗j
2 − S1,e)

E[S1],

R2(t) = E

 ∞∑
j=1

pjλ(t− S∗j1 − S
∗j−1
2 − S2,e)

E[S2].
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Here S∗ji is the sum of j independent random variables Si, where S1 is the Needy service time and S2

is the Content time; their joint distribution is given by the convolution of their separate distributions.

These formulae are hard to calculate. We hence develop ways to approximate and estimate R1(t)

and R2(t) and calculate them numerically (for example by using Taylor-series approximation) - see

Section 5. In some cases, a closed form solution is available. This enables one to treat some cases

analytically, which gives rise to managerial insights on our system.

In the MOL QED approach [26], staffing is determined by substituting the time-varying offered

load formula into the square-root staffing formula:

s(t) = R1(t) + β
√
R1(t), t ≥ 0.

We demonstrate that this approach works very well. We find that, in most cases, performance

measures such as the probability of timely service, expected waiting, and servers’ utilization are

all remarkably stable over time. The reason for success is that time-varying square-root staffing

controls the system, at all times, in a state that is very close to a naturally-corresponding steady

state system. This also explains why the constant β is calculated using steady-state formulae, and

it does not vary in time. We show that, although our staffing algorithm is based on large-scale

approximations, it also stabilizes small systems such as those in hospitals, where the number of

‘servers‘ (e.g. doctors) varies between 1 and 10.

We demonstrate the importance of using staffing based on the time-varying Erlang-R model

(Section 6). In one stylized example, the arrival rate function is given by

λt = 30 + 30 ∗ 0.2 ∗ sin
(

2π
24
t

)
, t ≥ 0,

with the parameters p = 2/3, µ = 1, δ = 0.5. Introducing the following service goal: P (Wt > 0) =

0.5, Figure 3 presents the probability of waiting when one uses the Erlang-R, Erlang-C and PSA

algorithms for staffing. It clearly shows that, while using Erlang-R stabilizes system’s performance

around the pre-specified target, using Erlang-C or PSA does not. Other realistic healthcare examples

can be found in Sections 6.2 and 7.

Investigating the differences between Erlang-C and Erlang-R revealed the environments in which

Erlang-R is essential. We have already mentioned the main characteristic that is time-varying

arrivals. More explicitly, we show that the difference manifests itself both in amplitude and phase

of the offered load which, in turn, is the driver of the system’s dynamics. For example, when the

arrival rate is periodic, and the service times are exponentially distributed, the amplitude of an

Erlang-R Offered Load (OL) is always smaller than the amplitude of a corresponding Erlang-C OL.
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Figure 3: P (W > 0), as a function of time, when staffing according to Erlang-R, Erlang-C, and PSA

On the other hand, the phase of Erlang-R OL sometimes leads and sometimes lags behind the phase

of Erlang-C OL. In fact, these differences between the two models are especially pronounced when

arrivals vary during the sojourn time of a customer, which is exactly the case in emergency wards.

The implication of miscalculating the offered load is that Erlang-C will lead to over- or under-

staffing at most times. One must thus take into account the discontinuous nature of service, in order

to avoid excessive staffing costs or undesirable service levels. Using Taylor-series approximations,

we can quantify the differences between the two models also for general arrival-rates functions and

general service-time distributions.

Lastly, based on diffusion approximations, we developed new MOL approximations for the num-

ber of Needy customers and the expected waiting time in the QED regime, which are also highly

accurate.

The subsequent sections are organized as follows: first we review some of the related literature;

then, in Section 4, we describe the steady-state of the Erlang-R model, in particular, showing that

its Needy part behaves exactly as Erlang-C (M/M/s). In Section 5 we introduce the time-varying

offered-load, which will be used later in time-varying staffing procedures for our model. In that

section, we present a numerical method for calculating the offered load when service times are

exponentially distributed, as well as approximations using Taylor expansions, for general service
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time distributions. In addition, we analyze the offered load for periodic arrival rates (sinusoidal),

and compare the Erlang-R and Erlang-C models in order to determine the circumstances in which

Erlang-R is mostly needed. In Section 6 we validate our time-varying staffing procedure, using

simulation, and show that it achieves pre-specified service-level requirements. In Section 7 we

present an application of Erlang-R in an EW environment. Lastly, in Section 8 we develop MOL

approximations for the number of customers in each state, and the average waiting time process in

the QED regime.
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3 Literature Review

3.1 Staffing Problems in Hospitals

The workforce of a hospital consists of nurses, doctors, laboratory workers and others. Most of

these human resources require long and costly training, and jointly contribute as much as 70% to

a hospital’s operational budget [62]. Nurses’ salaries make up the largest single element in hospital

costs [67]. Thus, careful management of work-force capacity is naturally called for.

Queueing models help determine personnel levels that should be available to serve patients over

a given time slot. These staffing levels must vary during a day as they track predictable variations

in the arrival rates of patients. The prevailing schemes, however, are inflexible; for example, the

application of beds-to-personnel ratios is common when considering nurses staffing [63]. There do

exist queueing models for staffing personnel, but most account neither for time-varying environments

nor recurrent services. The first to consider the effect of returning patients in healthcare were

Jennings and de Véricourt [45]. They used a closed queueing model to develop new recommendations

for nurse-to-patient ratios which are a scale-dependent, being developed in the QED regime. Yom-

Tov and Mandelbaum [73] then expanded [45] to accommodate bed allocations. But both [73] and

[45] impose a restriction on the number of patients (which is not the case here), and they analyzed

the system in steady-state. To the best of our knowledge, the only exceptions to consider explicitly

time-varying queues in hospitals are those of Green et al. [34, 35], Bekker and de Bruin [10], and

Zeltyn et al. [74]. Green et al. apply the Erlang-C model, and the Lag-SIPP (Stationary Independent

Period by Period) approach for staffing doctors in the EW, with the arrival rate varying during the

day. Our goal is to demonstrate that Erlang-R is more appropriate for modeling the time-varying

EW environment, which is due to the discontinuous nature of service during patients’ stay. Bekker

and de Bruin use loss systems for analyzing time-varying weekly patterns on beds’ allocation. Zeltyn

et al. apply the ISA (Infinite Server Approximation) method of [26] (see below), plus heuristics, to

determine physicians’ staffing. Finally, we refer the reader to Green et al. [34] comprehensive survey

of time-varying queues and their applications in workforce management.

3.2 The QED (Quality- and Efficiency-Driven) Regime

We shall focus on QED queues in order to balance patients clinical needs for timely service with the

economical preferences to operate at high efficiency. This operating regime is characterized by high

levels of resource-utilization jointly with high service-quality. The latter is characterized by short

queueing delays, being one order of magnitude shorter than service durations or, equivalently, by a
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significant fraction of customers (e.g. 30 – 70%) who get served immediately upon arrival.

QED models have become popular for research as they capture the operational environment of

call centers [28]. However, as first noticed by Jennings and de Véricourt [45] QED approximations

are already useful for the much smaller scale healthcare environment, a fact that was recently

substantiated formally in [43].

QED queues adhere to some version of the so-called square-root staffing rule. For example, QED

staffing in an Erlang-C (M/M/s) model corresponds to the number of servers s being s ≈ R+β
√
R;

here R is the offered load, given by R = λ · E[S] (λ is the arrival rate and E[S] is the mean

service time), and β is a QoS (Quality-of-Service) parameter that is set to accommodate service-

level constraints. The square-root staffing rule was described by Erlang [23], as early as 1924.

However, its formal analysis awaited the seminal paper by Halfin and Whitt [39], in 1981.

3.3 Staffing Time-Varying Queues

When the arrival rate varies with time, the above QED approach requires modifications. As men-

tioned already, we aim the staffing algorithm to attain a pre-specified service level stably over time,

while maintaining a high level of servers’ utilization, as is typically the case in the QED regime.

This goal has been addressed via two approaches. The first tries to find the right staffing level

using steady-state approximations, such as in PSA (Piecewise Stationary Analysis), RCCP (Rough

Cut Capacity Planning) [74], SIPP, or lag-SIPP [44, 33, 35]. In PSA, for example, we divide the

time-horizon into small planning intervals and calculate the average arrival rate for each interval.

Then, assuming that the system gets fast to steady state, and using that average arrival rate, we

calculate the steady-state offered-load for each interval (i.e., R(t) ≈ λ̄(t)E[S]), then staff according

to steady-state recommendations using square-root staffing.

The second approach includes algorithms such as MOL (Modified Offered Load) [44] or ISA

(Infinite Server Approximation) [26]. Here, one tries to calculate the time-varying offered load,

using a corresponding system with ample servers. For example, in the time-varying Erlang-C model

(Mt/M/st), when using the MOL approach, we calculate the time-varying offered load [22] via

R(t) = E [λ(t− Se)]E[S] = E

[∫ t

t−S
λ(u)du

]
=
∫ t

−∞
λ(u)P (S > t− u)du.

(This is the number of customers in a corresponding Mt/G/∞ queue.) Then we use an adaptation

of the square-root formula: s(t) = R(t) + β
√
R(t). This approach works very well, as shown in

Jennings et al. [44] and Feldman et al. [26], and we are following it here with our Erlang-R model.

Research is still needed to provide theoretical justification for why the MOL approach actually
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works. The only available theoretical support is Feldman et al. [26] who proved convergence of the

diffusion process under MOL staffing, for the Erlang-A model with patience rate equals to service

rate. An analysis of the time-varying offered load in the Erlang-C environment was carried out by

Eick et al. [21, 22]. They also developed Taylor-series approximations for cases in which the offered

load cannot be calculated explicitly. We use their work in Section 5.3, to compare Erlang-C with

Erlang-R.
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4 Steady-State Performance Measures

We start with a steady-state analysis of the Erlang-R model. This entails simple calculations for a

two-state Jackson network, which provide the backbone for later analysis. In particular, it comes

out that, in steady state, the probability of waiting depends exclusively on the offered load of the

Needy station. In addition, this probability has exactly the same structure as in a standard Erlang-C

(M/M/s) model. We provide formulae for all the standard quality measures. In addition, our model

provides more information about the system than does Erlang-C, since it accounts for the delayed

customers in the Content state as well. One can use this information to approximate the number

of customers in the system, as we will discuss later.

In this section, we assume that the service times are exponentially distributed with parameters

µ and δ, and that the arrival rate is constant λ(t) ≡ λ. Let Q = {Q(t), t ≥ 0} be a two-dimensional

stochastic queueing process, where Q(t) = (Q1(t), Q2(t)): Q1(t) represents the number of Needy

patients in the system, and Q2(t) the number of Content patients at time t. Under our assumptions,

the system is an open (product-form) Jackson network with the following steady state distribution:

Pij := P (Q1(∞) = i, Q2(∞) = j) =
(R1)i

ν(i)
π01

(R2)j

j!
π02,

where

π02 =

 ∞∑
j=0

(R2)j

j!

−1

= e−R2 , π01 =
[

(R1)s

s!(1−R1/s)
+
∑s−1

i=0
(R1)i

i!

]−1
,

ν(i) is defined as

ν(i) :=

 i! , i ≤ s,

s!si−s , i ≥ s,

and

R1 =
λ

(1− p)µ
, R2 = pλ

(1−p)δ .

We call R1 and R2 the steady-state offered load of Station 1 and 2, respectively.

Theorem 1. When the Needy service times are exponentially distributed (µ), and the arrival rate

is constant (λ), then:

α := P (W > 0) =
[

(R1)s

s!(1−R1/s)

]
π01,

P (W > t) = αe−sµ(1−R1/s)t,

E[W ] =
α

µs (1−R1/s)
.tkubho
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Proof: see Appendix A.1 on page 148.

Note that the above measures depend exclusively on the offered load of the Needy station. Also

note that these quantities have exactly the same structure of the Erlang-C (M/M/s) model. The

difference is between the offered load measure. Here R1 := λ
(1−p)µ , while in Erlang-C, R = λ

µ .

Recall that 1
1−p is the expected number of visits in the Needy station. Therefore, in steady state,

Erlang-R behaves exactly as Erlang-C with service rate (1−p)µ, i.e. as if services were concatenated

to one another, with no delay between them; consequently, it will have exactly the same QED

approximations. Thus, we can conclude that, in steady-state, the appropriate QED staffing policy

for our model is to set s such that

s =
λ

(1− p)µ
+ β

√
λ

(1− p)µ
, β > 0,

where β is given by the Halfin-Whitt formula [39]; it is related to the desired α by α =
[
1 + β Φ(β)

φ(−β)

]−1
,

where φ(·), and Φ(·) are the standard Normal density and distribution functions, respectively.

However, not all the performance measures depend exclusively on the Needy state. Some in-

corporate information both of the Needy and Content states. For such measures Erlang-R and

Erlang-C yield different results. For example, one might wish to evaluate the probability of over-

crowding events in the EW. To do that, one might assess the probability that the number of patients

in the EW will exceed the number of beds. This includes Needy patient as well as Content ones. In

more general terms, we are interested in the probability that there will be more than n customers

in the system, when n ≥ s. This could be calculated by the following formula:

P (Q1(∞) +Q2(∞) ≥ n) =
∞∑
i=0

∞∑
j=n−i

Pij =
∞∑
i=0

(R1)i

s!si−s
π01

∞∑
j=n−i

(R2)j

j!
e−R2 .
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5 The Offered Load

As mentioned earlier, research has shown that appropriate staffing levels in non-stationary systems

can be based on the offered load (Feldman et al. [26]). Adopting this approach, we now introduce

the offered load of our time-varying Erlang-R, R = {R(t), t ≥ 0}. We set R(t) = (R1(t), R2(t))

where Ri(t) corresponds to node i in the network. We define R using a related system, with the

same structure, in which the number of servers in node 1 is infinite, which results in an (Mt/G/∞)2

network. The offered load in our system equals the mean number of busy servers (equivalently, the

number of served customers) in each node of this network. Massey and Whitt [59] showed that, in

such networks, the average number of customers at node i is given by:

Ri(t) ≡ E[Q∞i (t)] = E

[∫ t

t−Si
λ+
i (u)du

]
= E[λ+

i (t− Si,e)]E[Si] (5.1)

where λ+
i is the aggregated-arrival-rate function to node i, and Si,e is a random variable representing

the excess service time at node i. Note that (5.1) is valid for general service time distributions, and

that if Si is exponentially distributed, then Si,e = Si.

In our two-node network, λ+
i is defined by the minimal non-negative solution to the system

traffic equations

λ+
1 (t) = λ(t) + E[λ+

2 (t− S2)],

λ+
2 (t) = pE[λ+

1 (t− S1)].

These equations constitute a variation of Fredholm’s integral equation [64], which one can solve

recursively (using the fact that S1 and S2 are independent) as follows:

λ+
1 (t) = λ(t) + pE[E[λ+

1 (t− S2 − S1)]] = ... =
∞∑
j=0

pjE[λ(t− S∗j1 − S
∗j
2 )],

λ+
2 (t) = pE[λ(t− S1) + E[λ+

2 (t− S1 − S2)]] = ... =
∞∑
j=1

pjE[λ(t− S∗j1 − S
∗j−1
2 )].

Here S∗ji is the sum of j i.i.d random variables Si, hence its distribution is the j-convolution of

Si. The above representation of λ+(t) = (λ+
1 (t), λ+

2 (t)) reveals that it is an infinite sum of delayed

arrival rates.

Substituting λ+(t) into R(t) yields

R1(t) = E[λ+
1 (t− S1,e)]E[S1] = E

 ∞∑
j=0

pjλ(t− S∗j1 − S
∗j
2 − S1,e)

E[S1],

R2(t) = E[λ+
2 (t− S2,e)]E[S2] = E

 ∞∑
j=1

pjλ(t− S∗j1 − S
∗j−1
2 − S2,e)

E[S2],

(5.2)
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Note that the time-lag that exists between the arrival rate function and the offered load function is

influenced both by service time and delay time. We shall see later (5.3) that, in some special cases,

these offered load expressions have an explicit solution. Nevertheless, in most cases, numerical or

approximated solutions are called for. In Section 5.1 we provide a numerical method for calculating

R(t), which is applicable when service times are exponentially distributed. When this is not the

case we describe two methods for approximating the offered load expression: (a) using Taylor series

(5.2) and, (b) in case of periodic arrival rates, using time-series methods (5.3).

5.1 Numerical Approximation of the Offered-Load Measure for General Arrival-

Rate Functions with Exponential Service-Time Distribution

In this section, we calculate R(t) as a fluid solution of an infinite-server system, in cases where Si

are exponentially distributed. The Erlang-R model is then a time- and state-dependent Markovian

open queueing network. We rely on the mathematical framework of Mandelbaum et al. [53], which

provides us with a general solution that is suitable for time-varying arrivals, and time-varying

staffing policies. Note that with general time-varying arrival rates, the ODE (Ordinary Differential

Equation) system that we develop here is unlikely to be tractable analytically. Nevertheless, we can

solve it numerically.

Theorem 2. If Si are exponentially distributed then (5.2) is given by the unique solution of the

following ODE:

d

dt
R1(t) = λt + δR2(t)− µR1(t),

d

dt
R2(t) = pµR1(t)− δR2(t).

(5.3)

The initial condition is: R(−∞) = (0, 0).

Proof: see Appendix A.2 on page 149.

This form of the offered load function can be easily solved numerically, using a simple spreadsheet

or a mathematical program. We have used this method for calculating R(t) for the experiments in

Sections 6 and 7.

5.2 Offered-Load Approximation for General Arrival-Rate Functions with Gen-

eral Service-Time Distribution

In this section, we develop approximate solutions for general arrival rate functions with general

service-time distributions. This provides a practical method for calculating the offered load, as well
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as insights on the effect of re-entering customers on system’s performance. The term E[λ+
i (t−Si,e)]

in the offered load function (5.1) is difficult to compute because we have a stochastic time-lag

within the arrival rate function. Eick et al. [22] solved this problem by approximating the arrival

rate using smoothing methods. Approximating λ(t) as a polynomial function enables one to express

this expectation in terms of moments of Si,e. We use the same method here.

5.2.1 Linear Arrival Rate Functions and First-Order Taylor-Series Approximations.

In some environments, λ(t) is not constant but has a trend. This can be approximated by a linear

function of the following form:

λ(t) = a+ bt, t ≥ 0. (5.4)

Proposition 1. For λ linear, as in (5.4),

R1(t) = λ(t− E [S1,e])
E[S1]
1− p

− b p

(1− p)2
E[S1] (E [S1] + E [S2]) .

=
E[S1]
1− p

λ

(
t− E [S1,e]−

p

1− p
(E [S1] + E [S2])

)
.

Proof: see Appendix A.2 on page 150.

Note that λ(t − E [S1,e])
E[S1]
1−p is exactly the first-order Erlang-C approximation for R(t), when

the arrival rate is multiplied by 1
(1−p) , which is the average number of visits in a Needy state. When

b is positive, the offered load of the Erlang-C model will exceed that of the Erlang-R model, and vice

versa. The second representation emphasizes the time-lag between the offered load and the arrival

rate. The time-lag is the sum of expected Needy and Content time durations. However, the linear

case is not rich enough to separate the amplitude and phase effects. To do this, we later use the

sinusoidal case. Nevertheless, these observations already justify the following conclusion:

Conclusion 1. When the arrival rate is a non-constant linear function, with b 6= 0, using Erlang-

C model, when customers re-enter the system, will over- or under-estimate the number of servers

required, as compared with the corresponding Erlang-R model.

This conclusion is also based on the connection between the offered load measure and staffing

levels, as explained in the introduction.

The linear function results could be generalized to a wider sets of arrival rates using a first-order

Taylor-series approximation. This approximation takes the form:

λ(t− u) = λ(t)− λ(1)(t)u for u ≥ 0, (5.5)
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where λ(1)(t) is the derivative of λ(t) evaluated at time t. Using this expression, one develops the

first-order approximation of Ri(t) as follows:

Corollary 1. For linear approximations of λ(t), as in (5.5),

R1(t) =
E[S1]
1− p

λ(t− E [S1,e])− λ(1)(t)
p

(1− p)2
E[S1] (E [S1] + E [S2])

=
E[S1]
1− p

λ

(
t− E [S1,e]−

p

1− p
(E [S1] + E [S2,e])

)
.

(5.6)

5.2.2 Quadratic Arrival Rate Functions and Second-Order Taylor-Series Approxima-

tions.

We now consider a second-order Taylor-series approximation for the arrival-rate function λ(t):

λ(t− u) = λ(t)− λ(1)(t)u+ λ(2)(t)
u2

2
for u ≥ 0, (5.7)

where λ(k)(t) is the kth derivative of λ(t) evaluated at time t. Then, from (5.7) and (5.2) we get the

following approximation for R1(t):

Theorem 3. For a quadratic approximations of λ(t), as in (5.7),

R1(t) =
E[S1]
1− p

[
λ

(
t− E [S1,e]−

p

1− p
(E [S1] + E [S2])

)
+

1
2
λ(2)(t)

(
V AR[S1,e] +

p

1− p
(V AR[S1] + V AR[S2]) +

p

(1− p)2
(E[S1] + E[S2])2

)] (5.8)

Proof: see Appendix A.2 on page 151.

This expression differs from the second-order Taylor-series approximation of Erlang-C, both in

time-lag and amplitude. Erlang-C’s second-order approximation, as given in Whitt [72], is:

R(t) = E[S]
[
λ(t− E [Se]) +

1
2
λ(2)(t)V AR[Se]

]
.

Whitt interpreted the first moment of Se as the deterministic time-lag between R(t) and λ(t), and

the second moment as a deterministic magnitude shift.

In Erlang-R, the situation becomes more complex, which will be easier to interpret using the

following notation: Let us define M as the number of returns to service; M ∼ Geom≥0(1−p). Then

we can rewrite R1(t) as follows:

R1(t) =
E[S1]
1− p

[
λ (t− E [S1,e]− E[M ] (E [S1] + E [S2]))

+
1
2
λ(2)(t)

(
V AR[S1,e] + E[M ](V AR[S1] + V AR[S2]) + V AR[M ] (E[S1] + E[S2])2

)]
=
E[S1]
1− p

[
λ (t− E [S1,e]− E[M ]E [S1 + S2])

+
1
2
λ(2)(t)

(
V AR[S1,e] + E[M ]V AR[S1 + S2] + V AR[M ] (E[S1 + S2])2

)]
.
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The last equality is due to the independence of S1 and S2. This representation emphasizes that the

deterministic time-lag is not solely a function of S1,e, but an average of the total cycles time plus one

last residual service. By Wald’s identity, the average of total cycles time is E[M ] (E [S1] + E [S2]),

and its variance is E[M ]V AR[S1 + S2] + V AR[M ] (E[S1 + S2])2. Therefore, the deterministic mag-

nitude shift is also not only a function of the variance of S1,e, but the second moment of the total

average cycles length plus the last residual service.

We will demonstrate the effect of these differences in further detail in Sections 6.1 and 5.3.2.

5.3 Analysis of Special Cases and Managerial Insights: The Offered-Load for

Sinusoidal Arrival Rate

In this section, we analyze the offered-load expression for the special case of sinusoidal arrival rate.

There are two reasons for using the sine function: First, any periodic time-varying arrival rate

could be expressed by a combination of sine functions, via time-series methods. Second, using a

sine function enables us to compute a closed-form solution to the offered-load function in some

special cases which, in turn, reveals mathematically the behavior of the offered load. Therefore, this

example will give us a more precise understanding of the role of frequency, service, and delay times

in our system.

Define

λ(t) = λ̄+ λ̄κ sin (2πt/f) = λ̄+ λ̄κ sin (ωt), t ≥ 0,

where λ̄ is the average arrival rate, κ is the relative amplitude, f is the period, and ω is the frequency.

Incorporating this arrival rate into (5.2) yields

R1(t) =
∞∑
j=0

pjE[S1]E
[
λ̄+ λ̄κ sin (ω(t− S1,e − S∗j1 − S

∗j
2 ))

]
=
∞∑
j=0

pjE[S1]λ̄+
∞∑
j=0

pjE[S1]E
[
λ̄κ sin (ω(t− S1,e − S∗j1 − S

∗j
2 ))

]
=

λ̄

1− p
E[S1] + E[S1]λ̄κ

∞∑
j=0

pjE
[
sin
(
ω
(
t− S1,e − S∗j1 − S

∗j
2

))]
.

(5.9)

From (5.9) it is obvious that the amplitude of R1(t) is determined by the infinite sum expression.

Using the sine formula sin(x− y) = sinx cos y − sin y cosx, we get

R1(t) =
λ̄

1− p
E[S1] + E[S1]λ̄κ

∞∑
j=0

pjE
[
sin (ω(t)) cos (ω(S1,e + S∗j1 + S∗j2 ))

− sin (ω(S1,e + S∗j1 + S∗j2 )) cos (ω(t))
]
. (5.10)
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The same analysis could be performed by examining λ+(t) over time.

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjE
[
sin
(
ω
(
t− S∗j1 − S

∗j
2

))]
=

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjE
[
sin (ω(t)) cos (ω(S∗j1 + S∗j2 ))− sin (ω(S∗j1 + S∗j2 )) cos (ω(t))

]
.

(5.11)

Substituting λ+(t) into (5.1) will form the same R(t) expressions. Using λ+(t), we see that the

amplitude of the total arrival rate is determined by the expression
∑

j p
jE[E[sin(ω(t− S∗j1 − S

∗j
2 ))]].

5.3.1 Exponential Service Times

We will now analyze (5.10) for the case of exponential service times. We assume that S1 ∼ exp(µ)

and S2 ∼ exp(δ).

Theorem 4. Assuming Si is exponentially distributed, (5.10) has the following form:

R1(t) =
E[S1]λ̄
1− p

+ λ̄κ

√
(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (δ + iω)

(µ+ iω)(δ + iω)− pµδ
cos (ωt+ π + tan−1(θ))

where

θ = i ·
(δ−iω)

(µ−iω)(δ−iω)−pµδ + (δ+iω)
(µ+iω)(δ+iω)−pµδ

(δ−iω)
(µ−iω)(δ−iω)−pµδ −

(δ+iω)
(µ+iω)(δ+iω)−pµδ

=
−µ(−δ2 + pδ2 − ω2)
ω(δ2 + ω2 + pµδ)

.

Proof: see Appendix A.3 on page 152.

Therefore, the amplitude of R1(t) is given by

Amp(R1(t)) = λ̄κ

√
(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (δ + iω)

(µ+ iω)(δ + iω)− pµδ

and the phase shift of R1(t) with respect to the entrance arrival rate is given by

Phase(R1(t)) =
1

2π
cot−1

(
µ(δ2 − pδ2 + ω2)
ω(δ2 + ω2 + pµδ)

)
The same expansion could be performed for λ+

1 (t):

Theorem 5. Assuming that Si is exponentially distributed, (5.11) has the following form:

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

√
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ
cos (ωt+ π + tan−1(θ))

where

θ = i ·
(µ−iω)(δ−iω)

(µ−iω)(δ−iω)−pµδ + (µ+iω)(δ+iω)
(µ+iω)(δ+iω)−pµδ

(µ−iω)(δ−iω)
(µ−iω)(δ−iω)−pµδ −

(µ+iω)(δ+iω)
(µ+iω)(δ+iω)−pµδ

=
ω2δ2 + ω4 + ω2pµδ + µ2δ2 − µ2pδ2 + µ2ω2

µωpδ(µ+ δ)
.
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Proof: see Appendix A.3 on page 154.

Therefore, the amplitude of λ+
1 (t) is given by

Amp(λ+
1 (t)) = λ̄κ

√
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ
,

and the phase shift of λ+
1 (t) with respect to the entrance arrival rate is given by

Phase(λ+
1 (t)) =

1
2π
cot−1

(
ω2δ2 + ω4 + ω2pµδ + µ2δ2 − µ2pδ2 + µ2ω2

µωpδ(µ+ δ)

)
Note that there is a simple relation between the amplitudes of R(t) and λ+

1 (t).

Amp(R1(t)) = Amp(λ+
1 (t))

√
µ2 + ω2.

This relation separates two influences on the offered-load amplitude: Amp(λ+
1 (t)) represents the

influence of returning customers, and
√
µ2 + ω2 the influence of the last service.

To further investigate the relative amplitude of the offered load (R1(t)) and the aggregate arrival

rate (λ+
1 (t)), we state the following proposition that highlights some of the limits of R1(t) and λ+

1 (t)

with respect to ω and δ:

Proposition 2. In the case of sinusoidal arrival rates and exponential service times, if µ and δ are

fixed, it follows that:

lim
ω→0

R1(t) = lim
ω→0

E[S1]λ̄
1− p

+ E[S1]
λ̄

µ(1− p)
κ sin (ωt),

lim
ω→∞

R1(t) =
E[S1]λ̄
1− p

,

lim
ω→0

λ+
1 (t) = lim

ω→0

λ̄

1− p
+

λ̄

1− p
κ sin (ωt),

lim
ω→∞

λ+
1 (t) = lim

ω→∞

λ̄

1− p
+ λ̄κ sin (ωt),

and if µ and ω are fixed,

lim
δ→0

R1(t) =
E[S1]λ̄
1− p

+
λ̄κ

µ2 + ω2
(µ sin (ωt)− ω cos (ωt)) ,

lim
δ→∞

R1(t) =
E[S1]λ̄
1− p

+
λ̄κ

(1− p)2µ2 + ω2
((1− p)µ sin (ωt)− ω cos (ωt)) .

Proof: see Appendix A.3 on page 155.

We will use a numerical example to demonstrate the relative amplitude behavior. Figure 4 shows

the amplitude of R1(t) and λ+
1 (t) with respect to the amplitude of λ(t) (which is λ̄κ), as a function

of ω (i.e., when µ and δ are fixed). We observe that, in the range (0,∞) the relative amplitude of
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Figure 4: Plot of relative amplitude of R1(t) and λ+
1 (t) with respect to ω

R1(t) is a decreasing function of ω, starting from the value 1
µ(1−p) , and decreasing to 0 as ω → ∞.

On the other hand, λ+
1 (t) starts from the value 1

1−p , and tends to 1 as ω →∞. Figure 5 shows the

amplitude of R1(t) with respect to the amplitude of λ(t), as a function of ω and δ (when µ = 0.5).

We observe that, in the range (0,∞), the relative amplitude of R1(t) is an increasing function of δ,

starting from the value 1√
µ2+ω2

, and increasing to E[S1]λ̄
1−p + λ̄κ√

(1−p)2µ2+ω2
as δ → ∞. When δ → 0

the extreme values of R1(t) are maxt(R1(t)) = E[S1]λ̄
1−p + λ̄κ√

µ2+ω2
. When δ → ∞ the extreme values

of R1(t) are maxt(R1(t)) = E[S1]λ̄
1−p + λ̄κ√

(1−p)2µ2+ω2
.

Figure 6 shows the phase shift of R1(t) from λ(t) as a function of ω. This phase shift is the sum

of two phases: the phase between R1(t) and λ+
1 (t), and the phase between λ+

1 (t) and λ(t). One is

due to returning customers, and the other is due to the last service.

5.3.2 Comparison to Erlang-C

In this section, we compare the amplitude and phase shift of the offered-loads for Erlang-C with

those of the Erlang-R model.

The amplitude of the offered-load in Erlang-C is given by: Amp(Rc(t)) = λ̄κ√
µ2+ω2

, and its phase

shift is θc = 1
2π cot

−1 (µ/ω) (See [21]). We compare the Erlang-R model to an Erlang-C model with

concatenated services (i.e. service rate equals (1 − p)µ), and an arrival rate of λ(t). We call this
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Figure 5: Plot of relative amplitude of R1(t) with respect to δ and ω
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Figure 6: The relative phase between R1(t) and λ(t) as a function of ω
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Erlang-C model a multi-service Erlang-C. The ratio between the amplitudes is given by

AmpRatio =
Amp(R1(t))
Amp(Rc(t))

=
λ̄κ
√

(δ−iω)
(µ−iω)(δ−iω)−pµδ ·

(δ+iω)
(µ+iω)(δ+iω)−pµδ

λ̄κ√
((1−p)µ)2+ω2

=

√
δ2 + ω2

((µ− iω)(δ − iω)− pµδ)((µ+ iω)(δ + iω)− pµδ)
/

1√
((1− p)µ)2 + ω2

and the ratio between the phase shifts is given by

Phase(R1(t))
Phase(Rc(t))

=
cot−1

(
−µ(−δ2+pδ2−ω2)
ω(δ2+ω2+pµδ)

)
cot−1

(
(1−p)µ
ω

) =

(
π + 2tan−1

(
µ(−δ2+pδ2−ω2)
ω(δ2+ω2+pµδ)

))
(
π − 2tan−1

(
(1−p)µ
ω

)) .

Theorem 6. When the arrival rate is sinusoidal and the service times are exponentially distributed:

1. The amplitude of the offered-load under Erlang-R model is smaller than the amplitude of the

offered-load under multi-service Erlang-C model, for every set of parameters.

2. The amplitude ratio gets its minimal value when ω =
√
δµ(1− p).

Proof: see Appendix A.4 on page 157.

The first part of the theorem states that the amplitude ratio is smaller than one, and implies that

returning customers have a stabilizing effect on the system. An example of the difference between

the amplitudes is given in the left diagram of Figure 7. Having a smaller amplitude means that for

some part of the cycle, R1(t) is higher, and in the other part Rc(t) will be higher, as shown in Figure

8. The implication will be that Erlang-C will over- or under- staff. To understand the impact of

this analysis on service level, refer to Section 6. The second part of the theorem identifies the cases

in which the difference between the amplitudes is higher. Note that the EW environment is one in

which the parameters of p, µ, δ and ω are such that the ratio is close to its minimal value.

The phase ratio as a function of ω (see the right diagram of Figure 7) is larger than one up to

ω =
√

2δ2+pδµ−p2δµ
p , and from that point onward it is smaller than one. Therefore, for certain values

of ω, the Erlang-C offered load leads the Erlang-R offered load and for other values it lags behind,

as shown in Figure 9.

From Theorems 2 and 6 we can gain an understanding when the influence of the returning

customers is most significant and thus requires the use of the Erlang-R model.

Corollary 2. When the arrival rate is sinusoidal and the service times are exponentially distributed,

if ω ↘ 0, ω ↗ ∞, or δ ↗ ∞ the difference between the offered-load of Erlang-R and Erlang-C

becomes negligible.
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An intuitive explanation for this finding is that when ω tends to infinity, the arrival rate changes

so slowly that the system reaches a steady-state. In this case, the offered-load becomes constant;

this is true for both the Erlang-C and Erlang-R models. When ω tends to zero, the arrival rate

changes so rapidly that its changes are assimilated in the variance of the arrival process. As δ tends

to infinity, customers immediately return to the Needy state; thus the system behaves as if the

services were concatenated.
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6 Validation of MOL Staffing

We now propose a staffing procedure for the Erlang-R model. In Section 4 we showed that the

steady-state marginal distribution of the Needy state is identical both in Erlang-C and Erlang-R

models. Therefore, if the arrival rate is constant, and the system is in a steady state, the staffing

recommendations will also be equal. There is thus no need to use the more complex Erlang-R model

to determine staffing in this case. More precisely, if we want the system to operate in the QED

regime, we should use the square-root formula s = R + β
√
R, where R is the offered load given

by R = λ
1−pE[S1] and β is chosen according to the Halfin-Whitt formula [39]. On the other hand,

if the arrival rate is time varying, there is a difference between the two models. For time varying

environments, we propose the use of the MOL approximation (e.g. Massey and Whitt [60]). We

will compare it to two other approaches: time-varying Erlang-C model and the PSA (Piecewise

Stationary Analysis) approximation.

The MOL Algorithm for Erlang-R runs as follows:

1. Calculate the time-varying offered load R(t); in the case of exponential service times simply

solve the differential equations (5.3).

2. Staff according to the square-root formula: s(t) = R(t)+β
√
R(t), where β is chosen according

to the steady-state Halfin-Whitt formula.

The second stage takes place because both the Erlang-R and Erlang-C have the same steady-state

marginal distribution for the Needy state.

We use simulation to validate this approach. In the first case study we consider sinusoidal arrival

rates in a large system and, in the second, a small system with an arrival-rate shape that is typical

of hospitals. We now describe each of the case studies.

6.1 Case Study 1 - Large System; Sinusoidal Arrival Rates; Exponential Service

Times

In this case study, we validate our assumption (based on Feldman et al. [26]) that the MOL algo-

rithm stabilizes system’s performance over time. The main performance measure we consider is the

probability of waiting (P (W > 0)), but other performance measures are also considered. We will

use a stylized arrival rate with a sinusoidal shape. To this end, define the following arrival rate

function:

λt = λ̄+ λ̄κsin(2πt/ψ) = λ̄+ λ̄κsin(ωt),
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where λ̄ is the average arrival rate, κ is the relative amplitude, and ψ is the period length (ω is the

frequency).

We use relatively large λ̄ since we start our validation process in a large system, where the asymptotic

approximations are expected to work well.

The parameters of this experiment are: λ̄ = 30 customers per hour, p = 2/3, κ = 0.2, ψ = 24

hours, µ = 1, δ = 0.5, and β ∈ 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.0, 1.5. Figure 10 shows the behavior

of the fluid solution (5.3) over time. It presents the arrival rate (λ(t)), the aggregated arrival rate

(λ+
1 (t)), the numerical solution of the offered load in Needy state (R1(t)), and the recommended

staffing when β = 0.2. Note that p = 2/3 means that the average number of cycles for each customer

is three. Therefore, we can see clearly that λ+
1 (t) varies around 90, as expected by the expression

(5.11). We also observe the time-lag that exists between the arrival rate and the offered load.
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Figure 10: Case study 1 - Arrival rate, offered-load, and staffing

We have calculated s(t) according to the square-root formula: s(t) = R(t) + β
√
R(t), and

rounded the results. We used one hundred replications for each β value. The left diagram in Figure

11 shows the performance measure P (W > 0) over time for various values of β. We see that

the performance measure is stable, which indicates that the MOL algorithm works well. The left

diagram in Figure 12 shows the changes in servers’ utilization over time for each value of β. This

performance measure is also stable. Thus our staffing procedure not only stabilizes the service level

36



but also server utilization. In the right diagram of Figure 12, we compare the average utilization

over time with the theoretical values. The latter were calculated using the steady-state solution of

our model, when given average values of λ and s. We see that the two are almost identical. The

right diagram in Figure 11 shows the performance measure E[W] over time for various values of

β. We note that, as β grows, this measure becomes more stable. We also see that each value of β

results in a different average value of E[W], and that the relative order between these values matches

the order of β values.

Figure 13 shows the conditional distribution of the waiting time given delay (W |W > 0), for

three values of β (0.1,0.5, and 1.4). We compare them to the steady-state theoretical distribution,

which is exponential with rate nµ(1 − ρ) (as stated in Theorem 1). The simulation results depict

the distribution of waiting times from all replication, over the entire time horizon. We observe a

very good fit for β = 0.5 (QED) and β = 1.4 (QD (Quality Driven)), but when β is small (0.1-

ED (Efficiency Driven)), the theoretical distribution does not match well the simulation results.

This is in line with our observations for E[W], where small values of beta give rise to performance

that varies in time and thus does not correspond to steady-state. Figure 14 shows the performance

measure P (W > T ) (the probability to wait more than T units of time) over time, for various values

of β. We used a value of T = 5 minutes. We note that again the performance measure is stable.
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Figure 11: Case study 1 - Simulation results for various β values in large systems

As mentioned before, we expect the relation between P (W > 0) and β to fit the Halfin-Whitt

formula. We have validated this by calculating the average waiting probability over time for each

value of β, and compared it to the Halfin-Whitt formula [39]. In Figure 15, the two are very similar

to each other.

We conclude this case study with the following
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Conclusion 2. For a large enough system in the QED regime (β > 0.3), the MOL approach stabilizes

all performance measures. Consequently, any pre-specified QED service level can be achieved stably

over time.

In many applications, researchers use the Erlang-C to model systems in which customers return

multiple times for service. For example, Green [33, 34] used the Lag-SIPP approach based on M/M/s

(Erlang-C) for staffing doctors at an EW. We would like to compare the outcome of using Erlang-R

staffing against that of using Erlang-C staffing, the latter based on one of two methods: MOL and

PSA. (We are using MOL since it is known to work very well for Erlang-C [26].) The performance

measure we focus on is the delay probability, setting its target level to 0.5 (hence β = 0.5). The left

diagram of Figure 16 shows that using Erlang-R stabilizes the probability of waiting, but the use

of Erlang-C does not. As one can anticipate, using a simpler method such as PSA is even worse,

resulting in a less stable system. This is because PSA uses the following approximation for the

offered load: R(t) = λ̄(t)E[S]
1−p . PSA staffing does not take into account either the time-lag or the

reentrant effects.

The differences in performance have a very simple explanation, when one considers the offered-

load function R(t), calculated for each method (see the right diagram of Figure 16). We observe that

for one half of the cycle, Erlang-C will over- estimate R(t), resulting in over staffing which, in turn,

results in a better performance than specified. However, in the other half cycle, the opposite occurs,

causing the performance to be worse than specified. Erlang-R, in contrast, stabilize performance
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over the whole horizon.
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Figure 16: Case study 1 - Comparison between Erlang-R, Erlang-C, and PSA

6.2 Case Study 2 - Small System; Hospitals’ Arrival Rates

In the second case study, we investigate the use of the MOL algorithm in small systems, specifically

in setting staffing levels for EW physicians. We also take a more complex arrival rate, namely the

actual arrival rate function of the Emergency Ward from Figure 17. Values for p, µ, and δ were also

inferred from that EW data, as will be articulated in the sequel. Our goal, as before, is to verify

whether staffing according to the MOL algorithm stabilizes performance over time.

There are obvious problems in applying our MOL approach in small systems. First, our ap-

proximations are expected to be less accurate, being limits as systems grow indefinitely. (In our

simulation, the number of servers changes between one and eight.) Second, rounding a ”theoretical”

need of 1.5 servers up to two servers means adding 30% excess capacity to the required capacity,

which suggests difficulties in stablizing performance around pre-specified values. Relate to this is the

fact that the set of feasibly performance measures is manifestly discrte for small systmes: changing

staffing level of a small system by a single server could significantly change its performance. Finally,

one can not have an EW operate with no doctors, and for small servers this lower bound of 1 plays

a binding role. It is therefore unclear whether, under these circumstances, we shall still be able to

stabilize the systems’ performance around a predetermined value. We do show, nevertheless, that

it is possible to stablize even such small systems, given specific (though not all, which is expected)

target performance levels.

The parameters of this experiment are: λ̄ = 9 customers per hour, p = 0.69697, µ = 10.9,
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β range s P (W > 0)

[0, 0.474] 3 82.4%

(0.474, 1.055] 4 34.0%

(1.055, 1.658] 5 11.4%

(1.658, 2.261] 6 3.0%

1.658 and up 7 0%

Table 1: An example of discrete P (W > 0) as a function of β in small systems

δ = 2.3, and β ∈ {0.1, 0.5, 1.0, 1.5}. The reason to select only four values of β is that, as stated

before, in such a small system one cannot achieve all values of P (W > 0). For example, if λ = 9 and

is constant over time, the offered load is R = λ
(1−p)µ = 9

(1−0.697)10.9 = 2.75. The values P (W > 0)

can then have are shown in Table 1. No pure staffing strategy can obtain values between the values

shown in the table. A randomized staffing policy can reach other values, but it is not a valid option

from a practical point of view, and does not agree with our primary goal that all customers enjoy

the same service level at all times.

As before, we calculated s(t) according to the square-root formula, rounded the results to the

nearest integer, and used one hundred replication for each β value. The left diagram in Figure 18

shows the performance measure P (W > 0) over time, for various values of β. We see that, the

performance measure is relatively stable, and that the four scenarios are separable. Therefore, we

conclude that the MOL algorithm works well even in very small systems. The right diagram in

Figure 18 shows the performance measure E[W] over time for various values of β. We see that, for

very small βs, such as 0.1, E[W] is not stable; but for larger values it is. In addition, we observe

that the four scenarios are again separable.
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Figure 18: Case study 2 - Simulation results for various β values in small systems

As before, we seek to verify whether the relation between P (W > 0) and β fits the Halfin-Whitt

formula. The left diagram in Figure 19 shows the relation between these functions when we consider

the target β values used in the square-root formula. We see that, in most cases, the empirical

function is shifted downwards, and that the gap between the two is reduced as β grows. This is

mainly due to the rounding procedure. When β is very small (0.1), the difference between the target

β and the one actually used is very large. For example, the average β used, in the 0.1 case, is 0.435;

it is four times greater than the value we planned. In this case, therefore, we get much better service

performance than the planned performance. In order to eliminate this effect, we look at the relation

between these functions when we consider the effective β values actually used, after the rounding

process. This is shown in the right diagram in Figure 19. We see that the two functions have the

same shape but that the empirical function is shifted upwards. The gap between them appears to

be constant. This seems to be the effect of using asymptotic approximations in such a small system.

The practical guideline that can be derived from these graphs is that when one targets a specific

P (W > 0) value, s/he should use a smaller value of β. One can use the left diagram to derive the

exact value. More research is needed in order to find the Halfin-Whitt function for small systems

while also considering the rounding effect. As a first step, one can develop such graphs using a

steady-state simulation of an Erlang-C model. We can conclude as follows:

Conclusion 3. The MOL approach stabilizes most performance measures of small systems. In

order to achieve a pre-specified service level, one should use a smaller value of β, smaller than that

specified by the Halfin-Whitt formula.

As before, we again compare the performance of Erlang-C against Erlang-R. Figure 20 shows that
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Figure 19: Case study 2 - Comparison of the Halfin-Whitt formula to simulation results

there is a clear difference between the performance of Erlang-R and Erlang-C staffing procedures.

Erlang-R performances are significantly more stable, even in small systems.
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Figure 20: Case study 2 - Plot of P (W > 0) when using Erlang-R and Erlang-C in small system
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7 Using Erlang-R for Staffing EW Physicians: Fitting a Simple

Model to a Complex Reality

In the following case study, we check the possibility of using an Erlang-R model in planning a real

system. We will show that one can use the Erlang-R model for doctors’ staffing in an EW, although

the real system is much more complicated than our model. Specifically, it is obvious that some

of our main assumptions do not hold in this environment. For example, service times are need

not be exponentially distributed, and could depend on the load in the EW, as follows from [5, 20];

in particular, service rates need not be constant over the day. In this experiment we used a very

accurate and detailed EW simulation model which was developed by Marmor and Sinreich [58]. The

simulation is flexible in that it is easily adapted to a given EW. We fit the simulator to the EW of

a partner Israeli hospital, and then used the simulator as an accurate portrait of the complex EW

reality.

In our EW simulation, there are seven types of patients that enter the EW, and each one goes

through a different routing process during their stay. The doctors are divided into four groups,

according to their expertise. There is an explicit connection between patients’ type and doctors’

group. We simplify this complex system into Erlang-R by setting, for each doctor and patient type

separately, the parameter values as follows:

• Arrival rate (λ) is the average arrival rate for each hour of the day, as shown in Figure 17.

• Needy times (µ = 1
E[S1]): E[S1] is estimated by averaging all services given by a specific doctor

group to a specific patient’s type.

• Content times (δ = 1
E[S2]): E[S2] is the average time between successive visits of each patient

to the doctor.

• Probability of returning to the doctor for an additional service (p): This parameter is calculated

from the average number of visits of each patient to their doctor which we take to be 1
1−p .

We calculated the offered load using the differential equations (5.3), and checked the staffing

recommendation in that simulation. Note that in this simulation, the doctors’ work is divided

between direct and indirect work. The indirect work is work not performed in front of the patient,

and has lower priority. We calculated the offered load of the total work. We assumed that changes in

staffing could be implemented in a one-hour resolution. For each interval we calculated the average
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number of doctors needed and rounded up to the nearest integer. We used one replication of one

hundred weeks; the first week was used as setup time, and was not considered in the results.

Figure 21 shows the number of doctors during the day, for each type of doctor, when β equals

0.5. We see that in this small system, the number of doctors varies between one and four. In

hospitals, of course, the minimal number of doctors is one (and not zero) since the EW should not

have a time without a doctor present. We also observe that the staffing function lags behind the

arrival rate function, with an approximate time-lag of two hours.

This system is a very small one. The result is the phenomenon shown in the left diagram of

Figure 22, which depicts the probability of waiting for four values of beta: 0.1, 0.5, 1.0, and 1.5. We

see that the four cases are not always clearly separable. This is typical of small systems, as we saw

in Section 6.2. For example, one can see in Figure 23 that the dips in P (W > 0) when β = 0.1 are

due to times in which the constraint of having at least one doctor of each type present is enforced.

In these times, the service levels are not those we aimed for, but the worst possible case. The right

diagram of Figure 22 shows the changes in E[W] over time for each β. We see that, as we saw in

Case Study 2, E[W ] is not stable for β = 0.1, but is stable for β ≥ 0.5.

We conclude that despite the simplicity of the Erlang-R model, it captures the important aspects

of patients’ visits in the EW. Using an Erlang-R model, hospital managers can calculate the recom-

mended staffing for doctors. This is not always simple to implement since the next stage requires

taking shifts into consideration [61]. Note that the same structure could also be used when consid-

ering nurses’ work in the EW. It is worthwhile noting that staffing physicians is more challenging

than staffing nurses: the latter gives rise to a larger number of servers, hence MOL is expected to

be more accurate.
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8 Approximating the Number of Needy Customers and Waiting

Times in the QED Regime

In this section, we derive approximations for the actual number of customers in the system and the

virtual waiting time process. Usually, one uses fluid and diffusion approximations for this purpose.

In appendix B we develop the fluid and diffusion approximations for our system, based on the math-

ematical framework of Mandelbaum et al. [53] on time-varying queues, and show their usefulness

for analyzing mass-casualty events. Note that while it is clear that fluid approximations are very

useful in analyzing time-varying systems, these approximations are also useful in understanding the

transient behavior of systems with time-constant parameters [54]. For example, we might need to

evaluate the probability that the number of customers (patients) in the system will exceed a certain

threshold during a certain time horizon. This is useful when setting control rules for the EW, for

example starting special procedures such as ambulance diversion and calling for additional staffing.

The answer to such questions requires diffusion approximations, such as the ones we develop in

Appendix B.

These fluid and diffusion approximations are known to work well under the zero-measure as-

sumption (i.e. under the assumption that the time the system spends in critically-loaded values

is negligible; see for example Mandelbaum et al. [55]). In our case, when the system operates in

the QED regime, the system is critical at all times, and furthermore, the accuracy of QED ap-

proximation was not examined. The problem when using these approximations in the QED regime

is twofold: first, we have numerical difficulties in calculating the diffusion process itself since the

diffusion approximation is none-autonomous. Second, the fluid process itself has a different inter-

pretation under the QED regime: no longer does it represent the average behavior of its originating

stochastic system.

To understand the interpretation problem, we use the following example from Case Study 1.

The left diagram in Figure 25 shows the fluid solution of the process Q(0)
1 (t) (the number of Needy

customers), as well as the following simulation results: the average number of customers in the

Needy state, and the average number of customers in service. We see that, although the fluid model

is supposed to represent the number of Needy customers in the QED regime, it fits perfectly the

number of customers in service and ignores the number of customers waiting in queue (for service).

This is because our MOL staffing procedure keeps the staffing level always slightly above the average

number of customers. Thus, the fluid approximation sees the system as if it had an infinite number

of servers, and actually calculates the number of busy servers, without the queue.
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In order to fill the gap and to estimate correctly the number of Needy customers (in queue and

in service), we will use the insight we obtained previously, namely, that under MOL staffing, the

system behaves as if the Needy state were a stationary M/M/s model (Erlang-C). Therefore, we

can use the stationary approximation of the Erlang-C model to estimate the number of customers

in the queue. Halfin and Whitt [39] approximated E[Q(∞)] by the following formula: E[Q1(∞)] =
λ
µ + α λ

sµ

(
1− λ

sµ

)−1
where α = P (W > 0) =

[
1 + βΦ(β)

φ(β)

]−1
. We propose an MOL correction, to

adjust this formula to time-varying environments in the following way:

E[Q1(t)] = R(t) + α
R(t)
s(t)

(
1− R(t)

s(t)

)−1

.

The right diagram in Figure 25 compares the corrected approximation to simulation results for

various β values. We see that the simulation and approximation are remarkably close.
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We can also provide a correction to the E[W] function in the QED regime, using the following

expression:

E[W (t)] =
α

µs(t)

(
1− R(t)

s(t)

)−1

.

Experiments show that this correction works well for β > 0.3, as can be seen in Figure 26.
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9 Erlang-R: Conclusions and Future Research

In this first part, we developed a model that incorporates discontinuous services in time-varying

environments. We proposed an appropriate staffing procedure that balances the system in the QED

regime in a way that stabilizes both service-level performance measures and utility over time. We

validated our approach using simulation, and showed that it works well both in large and small

systems. We also showed that it works well in realistic cases, using an Emergency Ward simulation.

The Erlang-R model is general enough to capture various EW setting such as fast-track, triage

etc. In fact, we also incorporated natural operational constraints, such as minimal staffing levels

and maximal frequency of staffing changes. The problem of incorporating additional constraints,

for example those that result from regulations, is left for future research. This will require the

identification of constraints that can be accommodated by MOL-based methods, and then applying

some method of optimization via simulation [27, 7].

We demonstrated, both analytically and by examples, that using a simpler model (Erlang-C)

in Erlang-R situations could be detrimental. We also identified the circumstances in which the

differences are more significant. Lastly, we developed Taylor-series approximations to the offered-

load measure, for cases where it cannot be calculated explicitly.

In the future, we plan to simulate additional case studies, which will validate our model in more

complex situations, such as deterministic service times and log-normal service times.

We are also interested in the effect of priority schemes on staffing since, in some cases, one may

wish to give priority to patients that are on their first visit, or, alternatively, to patients who have

been in the system for a long time. Other priority schemes could (or rather must) take into account

clinical information, for example, the severity of the medical condition. More investigation is also

needed to find exact formulae for the relation between β and P (W > 0) for small systems.

An important extension could be made to accommodate abandonment of customers into our

model. This is a much more complex situation than in the simple Erlang-C model, since aban-

donment can take different patterns. In some cases, the customer will abandon only in the first

waiting; this is known as the Left Without Being Seen (LWBS) effect. In the hospital with which

we worked, we observed a different abandonment phenomenon: Some patients abandon the EW

somewhere between services. No one knows exactly in what stage, since these patients took their

medical records with them, and no one knows exactly why: was it due to the lengthy waiting period,

dissatisfaction with the medical staff, or financial reasons. We cannot simply assume, therefore, that

patients decide to abandon only due to waiting, and that abandonment rates are equal for the first
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and the returning visits. Lastly, we are also planning to analytically investigate the convergence of

the diffusion process under our staffing procedure. This may shed some light on the reasons why

our time-varying staffing rule works so well.

In subsequent parts, we extend the Erlang-R model by setting an upper limit on the number

of customers within the system. This situation is more complex and we model it via a semi-open

queueing network.
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Part II

The Semi-Open Erlang-R Model

10 Introduction

10.1 QED Queues in Internal Ward Application

In this part of the thesis, we examine a different network with ReEntrant customers. It was build

to model Internal Wards (IW), in which the number of patients in the system is bounded. One

can consider this model also as an extension of the Nurse-To-Patient model of Jennings and de

Véricourt [45]. This extension accommodates jointly bed allocation and nurse staffing, in the QED

regime. Bed allocation determines blocking probabilities of the MUs; nurse staffing determines the

delay probabilities of patients waiting for medical care inside the MUs. The combination of these

two issues will allow us to determine the appropriate capacity planning while gaining a deeper

understanding of the relationship between bed allocation and nurse staffing, which are usually

considered separately.

More explicitly, we consider the following medical unit: the maximal number of beds available

is n and the number of nurses serving patients in the unit is s. Typically, the number of nurses

is fewer than the number of beds, i.e. s ≤ n, which is assumed here as well. Patients in the unit

require the assistance of a nurse from time to time. When such assistance is required we refer to

the patient’s state as Needy. Otherwise, we call the patient’s state Content. When patients arrive,

they start in a needy state and then alternate between needy and content states. When patients

are discharged from the hospital, they leave from the needy state. The last treatment can thus

reflect the discharge process. After a patient leaves that medical unit, his bed needs to be made

available for a new patient. This is usually done by a cleaning crew and not by the nurses of the

unit. We will refer to that state of a bed as Cleaning. When patients become needy and an idle

nurse is available, they are immediately treated by a nurse. Otherwise, patients wait for an available

nurse. The queueing policy is FCFS. After completing treatment, a patient is discharged from the

hospital with probability 1 − p or goes back to a content state with probability p until additional

care procedures are required. We assume that the treatment times, are independent and identically

distributed (i.i.d.) as an exponential random variable with rate µ and that the content times are

also i.i.d. exponential with rate δ. As noted above, after the discharge process the bedding must be

changed. We assume that cleaning times are i.i.d. exponential with rate σ. We also assume that
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the needy, content, and cleaning times are independent of each other and of the arrival process.

The arrival process is assumed to be a Poisson process at rate λ, constant over time. Another

major assumption concerning the arrivals is that if patients arrive at the MU in order to be hospi-

talized but the unit is full, they are diverted elsewhere, for example back to the Emergency Ward

(EW) or to other units of the hospital. Thus, one can view this as blocking of the unit; in this

situation we say that the MU is blocked and the request is lost (In a call center such a situation

corresponds to customers encountering a busy signal).

From the point of view of the beds and patients: 
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Figure 27: The IW model as a semi-open queueing network

Remark: We would like to point out that the parameter n need not represent a constraint

on the physical capacity of an MU. Rather, it could also stand for an operational constraint on

the number of patients that can reside simultaneously within the system (in analogy to CONWIP

[70, 4]). Specifically, such a constraint would be reasonable in out of the EW, heavily-loaded EW’s,

where walking-patients can be delayed, if there is no risk for their deterioration. We model the MU

as a semi-open queuing system (see Figure 27) in Section 11 we reduce it to a closed Jackson network,

as will be shown later (see Figure 31), which yields a product-form steady-state. In Chapter 12 we

define some system measures to this network. These system measures are designed to enable us to

answer the following questions:

1. How many nurses should be planned for the unit? One can ask this in the context of either

providing reasonable service levels, or from the viewpoint of cost / profit optimization. An

answer to this question can be based, for example, on the following measures:

(a) What is the probability of waiting for a nurse?
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(b) What is the probability to wait more than T units of time?

2. How many beds should be planned for in the unit? This question could also be answered from

the viewpoint of service quality, i.e., providing reasonable availability, or from the viewpoint

of cost optimization. Again some measures should be calculated such as:

(a) What is the probability of blocking? i.e., the fraction of time that the system is in full

capacity, which translates into the percentage of patients not admitted upon arrival.

One should notice that the blocked patients are getting stuck in the EW which, in turn, can

result in reducing the available capacity of the EW itself, as well as hurting patients’ safety

and well-being.

Naturally, one would like the answers for Questions 1 and 2 to be synchronized.

Next, in Chapter 13, we define QED scaling for the system in Figure 27 in the following way:

s =
λ

(1− p)µ
+ β

√
λ

(1− p)µ
+ o(
√
λ), −∞ < β <∞ (i)

n− s =
pλ

(1− p)δ
+
λ

γ
+ η

√
pλ

(1− p)δ
+
λ

γ
+ o(
√
λ) −∞ < η <∞ (ii)

where p,µ,δ, and γ are fixed model parameters. Term (ii) corresponds to requests queueing for

a nurse, and Term (i) corresponds to the effective capacity in the non-queue states. Now, the

QED limits of our performance measures can be calculated. For example, as λ, s and n increase

indefinitely and simultaneously, according to the above QED scalings, and β 6= 0, then

lim
λ→∞

P (W > 0) =

1 +

∫ β
−∞Φ

(
η + (β − t)

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t)

φ(β)Φ(η)
β − φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)

−1

,

where W denotes waiting for nurse-service, η1 = η−β
√

µ(pγ+(1−p)δ)
δγ ; φ(·) and Φ(·) are the standard

normal density and distribution functions, respectively. This limit, together with several other

QED limits, are proven in Section 14. The result supports our definition of the QED regime (non-

degenerate delay probability). These limits enables us to better understand the dynamics of the

system and derive managerial insights of the behavior of the system in the QED regime.

Our model is closely related to the one in Khudyakov [49], where it was developed for a call center

with an Interactive Voice Response (IVR) system. In fact, all our heavy-traffic approximations have

the same structure as those in [49]. With this observation as a starting point, we introduce in Section

17 a generalization that covers both systems, as well as some additional modeling possibilities of
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our MU system. Note that Khudyakov’s model is general, in the sense that it covers various other

models such as the M/M/S/N loss system, M/M/N/N (Erlang-B), and M/M/S (Erlang-C). Our

generalization covers any semi-open network, with n spaces, with one service station with s servers,

and any finite number of delay procedures. We use it to develop steady-state approximations of the

time-varying semi-open Erlang-R model.

10.2 The Time-Varying Semi-Open Erlang-R Model

The IW model and the Erlang-R model are closely related. We can consider the IW model as a

generalization of the Erlang-R model with an additional upper bound on the number of customers

in the system (without the cleaning state). Therefore, we call it semi-open Erlang-R. Figure 28

depicts a graphical representation of this system. This model can also be used to represent EW in

which there is a restriction on the number of beds. In that case, the number of customer (patients)

is bounded by the number of spaces (beds) in the EW, which is n. Customers that are blocked are

thought of as being transfered to another system, for example using ambulance diversion procedures.

We wish to understand the significance of Reentrant customers in semi-open systems, as we did

for the open system. In this case, the natural comparison is not to the Erlang-C (M/M/s) model,

but to a corresponding loss system (M/M/s/n). Using our generalization from Section 17, we show

in Section 19 that the steady-state distribution of the semi-open Erlang-R system (Needy state)

and a loss system are different. The two systems become similar as the offered load ratio
(
B = δ

pµ

)
increases. We then develop MOL staffing rule for the time-varying semi-open Erlang-R model. It

is based on the offered load of the open Erlang-R model and the steady-state QED approximations

of the semi-open Erlang-R model. Using simulation we demonstrate that this approach works very

well in the QED regime, and stabilize both P (W > 0) and P(block) over time.
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10.3 Literature Review

10.3.1 Background on System Design

Due to the complexity of the Health-Care system, capacity management decisions are carried out

hierarchically. We will now shortly describe the whole process: forecasting demand, setting bed

capacity at the hospital level, setting the allocation of beds inside each individual hospital, setting

staffing levels, shifts scheduling and rescheduling. It is common practice to distinguish between

static- and dynamic-capacity decisions; usually these decisions are the charter of different manage-

ment teams. While static-capacity is hard to change and planning is made for long-term periods,

dynamic-capacity is flexible: namely, it can be adapted to changes in circumstances within a short

period of time. In the literature overview on capacity planning in health care, presented by Smith-

Daniels et al. [68], the following classification is proposed: facility resources planning (for example:

bed allocation) is separated from work-force resource planning (such as nurses and doctors staffing

and scheduling). In our literature review we use the same classification.

10.3.2 Managing Bed Capacity

Long-term capacity planning is based on forecasting the demand for inpatient services. The forecast

is based on mathematical models (such as time series) that predict the changes in inpatient demand

over long periods (i.e. months and years). For example, one can use the forecasting models of Jones

et al. [47], or Kao and Tung [48]. Based on this prediction policy makers can deduce the required

bed capacity of the hospital.

As in other service systems, in most Health-Care systems, the arrival rate of patients entering

the system varies over time. Over short periods of time, minute-by-minute for example, there is

significant stochastic variability in the number of arriving patients. Over longer periods of time,

the course of the day, the days of the week, the months of the year – there can also be predictable

variability, such as the seasonal patterns that arriving patients follow. Example of patterns in

admission of cardiac inpatients into EW, during an average day, can be found in de Bruin et al.

[19]. Harper and Shahani [42] have shown another example of changes in mean bed occupancy

through the months of the year of adult medical (as opposed to surgical) population, in a major UK

NHS Trust; this pattern could reflect the pattern of admissions, assuming that the bed capacity was

fixed during that period.

Because the service capacity cannot be inventoried, one should vary the number of available beds

and medical staff in the short-term, to track the predictable variations in the arrival rate of patients.
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If we do that, we are able to meet demand for service at a low cost, yet with acceptable delay times

and acceptable blocking rates. But despite of these patterns, it was common practice in the US, for

many years, to determine hospital bed capacity by using the mean bed occupancy measure. This

was done both by policy-makers and various levels of hospital management. Green [31] showed by

simple M/M/S queueing model that this method was wrong; in Europe, Harper and Shahani [42]

claiming the same, developed a simulation tool for fitting acceptable bed occupancy to the monthly

and daily arrival-rate patterns; the tool is based on the Length-of-Stay (LOS) statistics, and the

refusal rates. In Israel, bed capacities are determined by turnover rates per bed, and the forecasting

of future mean LOS.

The applications of Queueing model to solve beds’ allocation problems in not new. Green [31]

suggested the use of a simple M/M/S model while de Bruin et al. [18] proposed to solve the beds

allocation problem via a loss system (Erlang-B M/M/n/n). The latter is due to the fact that the

number of beds in the ward is limited, and if there is no space for a patient in the ward, the patient

is transformed to an alternative location for hospitalization.

As explained, the long- and short-term analysis of beds requirements are helping to determine

the appropriate bed allocation. Hospitals distinguish between maximal bed capacity and nominal

bed capacity. The former is the true physical constraint of the system, while the system is designed

to operate with the latter. Naturally, the maximal bed capacity itself is mostly fixed (in scale of

months). Therefore, the available capacity of the MU is practically determined by more flexible

elements such as the number of doctors and nurses.

10.3.3 Managing Work-Force Capacity

The work-force of a hospital includes nurses, doctors, laboratory workers and others. Most of these

human resources need very long and expensive training, and together contribute as much as 70%

of the hospital expenses. Nursing salaries make up the largest single element in hospital costs [67].

Thus, much attention is needed in managing the work-force capacity.

At the top of the work-force planning hierarchy, a long-term staffing problem is solved to ensure

that monthly staffing requirements are met. The problem is usually considered at the management

level, considering costs and the annual rate of personnel turnover, which reflects dissatisfaction,

differences in workload between wards, and seasonal variation in admission rates. Hospital staffing

involves determining the number of personnel of the required skills in order to meet predicted

requirements. It is sometimes referred to as nurse budgeting, or workforce scheduling in other

personnel planning environments. Burke et al. [13] reviewed some of the work on this subject.
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One can determine, using queueing models, the number of nurses which should be available to

serve patients over a given time slot. The staffing levels can vary between shifts or months, and track

the predictable variations in the arrival rates of patients. But so far, much more robust structures

are used; in 2004 in the US, the California Department of Health Services (CDHS) published a law

that specifies a nurse-to-patient ratios that determine the minimal staffing levels allowed [63]. In

other countries, such as Israel, staffing levels are determined by labor agreements. We will specify

only the last development in the field of Health-Care staffing models; in 2006, Jennings and de

Véricourt [45] used a queueing model, to develop new nurse-to-patient ratios, that are a function

of the MU size. These ratios were developed in the QED regime in order to balance the work-force

efficiency and the quality of care.

The next stage is to determine each nurse’s shifts using scheduling models. This planning stage

is often referred to in the literature as the Nurse Rostering Problem (NRP) or the Nurse Scheduling

Problem (NSP). Cheang et al. [16] defined the NRP as a procedure which involves producing a

periodic (weekly, fortnightly, or monthly) duty roster for nursing staff. The schedules are often

restricted by legal regulations, personnel policies, nurses’ preferences and many other requirements

that may be hospital-specific. These can be quite complex. Naturally, one of these constraints is

the minimal staffing level needed to satisfy the service standards, calculated in the previous stage.

There are several reviews of the different methods for NRP, the most recent being those of Cheang

et al. [16] and Burke et al. [13]. There are also some general survey papers in the area of personnel

rostering such as that of Ernst et al. [24].

After the scheduling phase comes the third step, which represents the lowest level of the hier-

archy: the reallocation of nurses. This phase is a fine-tuning of staffing and scheduling. It involves

determining how float nurses are assigned to units based on nonforecastable changes or absenteeism.

See, for example, Bard and Purnomo [8].

10.4 QED Queues in Internal Wards

As opposed to the hierarchy noted above, we suggest a unified method that will determine the bed

allocation and nurse staffing levels simultaneously, in the QED regime. We shall focus on QED

queues in order to balance patients clinical needs for timely service with the economical preferences

of the system to operate at maximal efficiency. We have shortly described the QED regime, and its

relevance to our environment, in Section 1.

The only work that viewed hospital queues in the QED regime is that of Jennings and de

Véricourt [45]. They analyzed the prevalent staffing practice of an a priori-fixed patient-to-nurse
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ratio (for example, 6-children-per-nurse in a pediatric ward). They showed that such a practice

results in either over- or under-staffing in large or small MUs respectively, which can be remedied

by square-root staffing. Their mathematical framework [46] is a special Jackson closed-network

(machine-repairmen) model of the MU, where the circulating customers are patients’ requests for

nursing assistance. (Randhawa and Kumar [66] is a related model, where losses replace the delays

in [45, 46].)

Jennings and de Véricourt [45, 46] considered the MU model as depicted in Figure 29. It is,

in fact, a M/M/s/∞/n queueing model. Specifically, there are n beds, all occupied by patients.

From time to time, these patients require the assistance of one of s nurses, in which case we refer

to the patients’ state as needy. Otherwise, their state is content. The state of patients alternate

between needy and content states. When patients become needy and an idle nurse is available, they

are immediately treated by a nurse. Otherwise, patients wait for an available nurse. The queueing

policy is FCFS. It is assumed that treatment times, i.e. needy-state times, are i.i.d. exponential with

rate µ; content times are also i.i.d. exponential with rate λ. It is also assumed that the needy and

content times are independent of each other.

The medical Center: 
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patients 

Patient 
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Patient 
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Services 

Emergency 
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Needy 
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Dormant 
exp(λ ) 

 
 
 
 
 

Figure 29: Jennings and de Véricourt’s model [45, 46]

Jennings and de Véricourt define the operation regimes for that system as follows: Let us define

sn as the number of nurses in the n-th system, s̄ = limn→∞
sn
n , and r = λ

λ+µ then

• If s̄ < r, the system operates in an Efficiency Driven (ED) staffing regime (T > 0)

• If s̄ = r, the system operates in a QED staffing regime (T ≥ 0 and small)

• If s̄ > r, the system operates in a Quality Driven (QD) staffing regime (T = 0)

where T is a fixed parameter, representing the required time for service. Then the appropriate
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QED staffing rule is: sn = drn+ β
√
ne. Naturally, the QED limit of the probability of delay was

calculated, and a central result of their article [46] is their

Proposition 3. The approximate probability of delay has a nondegenerate limit α ∈

(0, 1) if and only if βn =
(
sn
n − r

)√
n→ β, as n→∞, for some β ∈ (−∞,∞), with

α =

1 + e
−β2

r2
√
r

Φ
(

β√
rr̄

)
Φ
(
−β
r
√
r̄

)
−1

.

Here r̄ := 1− r.

Significantly, the QED regime is many-server asymptotic, as the number of servers increases indefi-

nitely. Yet it is also relevant for application in small systems, including nurse staffing, being able to

accommodate a small number of nurses (single-digit and above). This relevance is a consequence of

the surprising accuracy of square-root staffing, a fact discovered in [11] and also recently supported

by the results of Jennings and de Véricourt [45].

As mentioned before, the QED regime arises naturally as the mathematical framework for

patient-flows from the EW to the MUs. Indeed, consider the queueing times at the EW (resulting in

MU hospitalization) vs. the consequent Length-of-Stay (LOS) at the MUs: hours vs. days is typical.

Also, the number of beds (servers) in MUs of moderate-to-large hospitals is in the 10’s (35-50 beds

in each of 5 MUs, at the Technion affiliated hospital) - which is well within the accuracy limits of

QED asymptotics.

10.5 Research Objectives

The remainder of this part is organized as follows: the Internal Ward model we developed is intro-

duced in Section 11. System measures are defined in Section 12. The QED regime of the system

is described in Section 13. The development of heavy traffic limits, in the QED regime, of our

system-measures are detailed in Section 14. In Section 15 we compare the approximations with the

exact calculations, trying to define the ranges where the approximation is most accurate. In Section

16 we compare our model with other queueing models investigated in the past. A generalization of

our model and the appropriate QED asymptotics are presented in Section 17. A method for defining

Optimal Design is shown in Section 18. We then investigate in Section 19 the semi-open Erlang-R

model in time-varying environments, and compare it to a loss system. Section 20 conclude the

analysis with some managerial insights of the behavior of the system in the QED regime. Finally,

conclusions and suggestions for further research are discussed in Section 21.
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11 An Extended Nurse-to-Patient Model

11.1 The Medical Unit: Internal Ward (IW)

We consider the following medical unit: the maximal number of beds available is n and the number

of nurses serving patients in the unit is s. Typically, the number of nurses is fewer than the number

of beds, i.e. s ≤ n, which is assumed here as well. Patients in the unit require the assistance of a

nurse from time to time. When such assistance is required we refer to the patient’s state as needy.

Otherwise, we call the patient’s state dormant. When patients arrive, they start in a needy state and

then alternate between needy and dormant states. When patients are discharged from the hospital,

they leave from the needy state. The last treatment can thus reflect the discharge process. After

a patient leaves that medical unit, his bed needs to be made available for a new patient. This is

usually done by a cleaning crew and not by the nurses of the unit. We will refer to that state of a

bed as cleaning. When patients become needy and an idle nurse is available, they are immediately

treated by a nurse. Otherwise, patients wait for an available nurse. The queueing policy is FCFS.

After completing treatment, a patient is discharged from the hospital with probability 1 − p or

goes back to a dormant state with probability p until additional care procedures are required. We

assume that the treatment times, are i.i.d. as an exponential random variable with rate µ and that

the dormant times are also i.i.d. exponential with rate δ. As noted above, after the discharge process

the bedding must be changed. We assume that cleaning times are i.i.d. exponential with rate σ. We

also assume that the needy, dormant, and cleaning times are independent of each other and of the

arrival process.

The arrival process is assumed to be a Poisson process at rate λ. Another major assumption

concerning the arrivals is that if patients arrive at the MU in order to be hospitalized but the unit

is full, they are diverted elsewhere, for example back to the EW or to other units of the hospital.

Thus, one can view this as blocking of the unit; in this situation we say that the MU is blocked and

the request is lost. (In a call center such a situation corresponds to customers encountering a busy

signal).

To this end, the MU is modeled as the semi-open queueing network. For reading convenience,

we reconstruct the IW model form Figure 27, here as well.
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From the point of view of the beds and patients: 
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Figure 30: The IW model as a semi-open queueing network

11.2 The Model

The analysis of the above semi-open network can be reduced to that of a closed Jackson network1,

which yields a product-form steady-state. A scheme of our model in this form appears in Figure 31.

This is done by representing our model of the medical unit as a system with four nodes. Node 1

represents beds with patients in a needy state. Node 2 represents beds with patients in a dormant

state. For convenience, we sometimes refer to a bed with a patient as simply a patient. Node 3

represents beds in preparation, i.e. in a cleaning state. Node 4 represents prepared beds, awaiting

a patient. Nodes 1 to 3 are all multi-server queues. The first node can handle, at most, s patients

at one time. The second and third nodes can “handle” or contain at most n patients at a time.

Node 4, which is a single-server queue, represents the external arrival process into the unit as will

be explained later.

Let Q(t) = (N(t), D(t), C(t)) represent the number of beds in the needy, dormant or cleaning

states respectively. Since n is the maximum number of patients/beds in the system, i.e. needy,
1A Jackson network consists of several interconnected queues; it contains an arbitrary but finite number N of

service centers, each has an infinite queue. Let i and j denote service stations in that network. The service discipline

is FCFS, where the service time in station i is drawn independently from the distribution exp(µi); (we could have

state dependent service rates µi(ni)). Customers travel through the network according to transition probabilities.

Thus, a customer departing from station i chooses the queue in station j next with probability Pij . All the customers

are identical; they all follow the same rules of behavior. If the network is open then the arrivals from outside to the

network (source) arrive as a Poisson stream with rate λ, and from each node there is at least one path to exit, i.e.

the probability that a customer entering the network will ultimately depart from the network is 1. If the network is

closed, there are no arrivals or departures hence, there is a constant population of customers in the network.
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Our Model: 
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Figure 31: The IW model as a closed Jackson network

dormant or in cleaning, then N(t) + D(t) + C(t) ≤ n, for all t ≥ 0. The process Q is a finite-state

continuous-time Markov chain. The states of the chain will be denoted by the triplets {(i, j, k)|i+

j+ k ≤ n, i, j, k ≥ 0}. A state (i, j, k) represents a situation where i needy patients are being served

or wait for service, j dormant patients are in the unit but need no service at the time, and k beds

are being prepared for future patients. i+ j + k ≤ n.

Our medical unit model can be viewed as part of a closed Jackson network. The first node

(needy) can be modeled as s servers with a queue in front of them, with an exponential service time

at a rate of µ. The second node (dormant) is an infinite-server node, with an exponential service

time at a rate of δ. The third node (cleaning) is also an infinite-server node, with an exponential

service time at rate of γ. A new patient can enter the unit only if N(t) + D(t) + C(t) < n. Thus,

the process of admitting new patients into the unit has the intensity:

λ(i, j, k) =

 λ if i+ j + k < n,

0 otherwise.

In order to formulate this situation a fourth node has been added in which we have a single

exponential server of rate λ.

Generally, this type of a closed Jackson network has the following product form solution for its

stationary distribution [30]:

π0(i, j, k, l) =


π1(i)π2(j)π3(k)π4(l)∑

a+b+c+d=n π
1(a)π2(b)π3(c)π4(d)

, i+ j + k + l = n,

0 , otherwise.

Here πm(i) is the steady state probability for node m, m = 1, 2, 3, 4 (M/M/s, M/M/∞, M/M/∞,

M/M/1 respectively). The stationary probability π(i, j, k) of having i needy patients, j dormant
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patients and k beds in cleaning can thus be written in a product form as follows:

π(i, j, k) =

 π0
1
ν(i)

(
λ

(1−p)µ

)i
1
j!

(
pλ

(1−p)δ

)j
1
k!

(
λ
γ

)k
, 0 ≤ i+ j + k ≤ n,

0 , otherwise.

Here ν(i) is defined as

ν(i) :=

 i! , i ≤ s,

s!si−s , i ≥ s,

where π0 is given by (see Appendix C.1)

π−1
0 =

∑
0≤i+j+k≤n

1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

γ

)k
=

n∑
l=0

1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l

+
n∑

l=s+1

l∑
m=s+1

m∑
i=s+1

(
1

s!si−s
− 1
i!

)
1

(m− i)!(l −m)!

(
λ

(1− p)µ

)i
·

(
pλ

(1− p)δ

)m−i(λ
γ

)l−m
. (11.1)

Note that π is also a function of n and s. In order to emphasize this dependence, we shall sometimes

use πn(·), πn,s(·), etc.

In this work we would like to focus on some managerial questions such as:

1. How many nurses should be planned for the unit? One can ask this in the context of providing

reasonable service levels, or from the viewpoint of cost / profit optimization. An answer to

this question can be based, for example, on the following measures:

(a) What is the probability of waiting for a nurse?

(b) What is the probability of waiting more than T units of time?

2. How many beds should be planned for in the unit? This question could also be answered from

the viewpoint of service quality, i.e., providing reasonable availability, or from the aspect of

cost optimization. Again some measures should be calculated such as:

(a) What is the probability of blocking? i.e., the amount of time when the system is in full

capacity (i + j + k = n), which translates into the percentage of patients not admitted

into the MU.

Naturally, one would like the answers for Questions 1 and 2 to be synchronized.
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11.3 Alternative Models

In the following chapters we will conduct a stationary analysis of the above stated model. Nev-

ertheless, we also suggest alternative ways to model the system, which we will use later for our

non-stationary analysis. In this chapter we defined several additional possibilities to model the

system. These models are illustrated by figures that show only the dormant and needy states (i.e.

without cleaning). In the following subsections, Qi will always represent the number of patients at

node i.

11.3.1 Proposal 1

In this first proposal, we assume that the arrival rate into the IW is linearly related to the occupancy

level of the ward; if the occupancy increases, the arrival rate decreases. This assumption capture

various effects: First, when total load is normal, if the hospital operates in a parallel setting, (i.e.

there are a few identical IWs in the hospital), there is usually someone that balances the system

by transferring patients among wards. Second, when the total load is high, there are balancing

effects that reduce arrival rates, such as diversions to other hospitals, and doctors that refrain from

referring additional patient during over-loaded periods.

The system is presented in Figure 32 in two alternative versions. We regard the situation as a

closed network, with a state-dependent arrival rate, in which λ(Q) = λ · (n − Q1 − Q2), where Q1

is the number of patients in the needy state, Q2 is the number of dormant patients, and n is the

number of beds in the ward.

11.3.2 Proposal 2

In this possibility, the arrival rate is fixed as long as there is a bed available in the system. This

is equivalent to the model presented in section 11.2, but without the cleaning state. The system is

presented in Figure 33.

11.3.3 Proposal 3

We propose another model that is presented in Figure 34. Here we relax the constraint on n and

ask the following question: What should s and n be so that the probability of waiting is less than

α and the probability of exceeding n is less than β, where the interpretation of having more than

n beds is that patients are attended to in the hospital corridors, for example. This is a realistic

scenario, since in spite of the fact that bed-allocation is considered as static-capacity, there is some
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Alternative models: 
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Figure 32: Alternative model - Proposal 1
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Figure 33: Alternative model - Proposal 2
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flexibility in managing this resource; in time of need, one can add beds in rooms and corridors. In

addition, this alternative might be easier to solve. In this way µ is state dependent but λ is not,

and the system is purely open.
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Figure 34: Alternative model - Proposal 3

11.3.4 Proposal 4

In this model, which is presented in Figure 35, we separated the LOS of patients from the service

inside the medical department. The LOS is assumed to be exponential with mean 1/ν and the size

of the population is restricted to n. When the patient is in the system he alternates between the

dormant and the needy states.
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12 Performance Measures

We now return to the first model, as stated in Chapter 11.2, and our further analysis is aimed

exclusively at this.

12.1 Probability of Blocking

From the stationary probability, we will now deduce the probability Pl that there are l beds occupied

in the system (0 ≤ l ≤ n). The beds could be occupied by patients in needy or dormant states or in

the cleaning state. We will use the following relation

Pl :=
∑
i,j,k≥0
i+j+k=l

π(i, j, k) =
l∑

i=0

l−i∑
j=0

π(i, j, l − i− j).

We distinguish two cases:

1. l ≤ s:

Pl = π0

l∑
i=0

l−i∑
j=0

1
i!

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(l − i− j)!

(
λ

γ

)l−i−j
= π0

1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l
2. l > s:

Pl = π0
∑l

i=0

∑l−i
j=0

1
ν(i)

(
λ

(1−p)µ

)i
1
j!

(
pλ

(1−p)δ

)j
1

(l−i−j)!

(
λ
γ

)l−i−j
= π0

(∑s
i=0

∑l−i
j=0

1
i!

(
λ

(1−p)µ

)i
1
j!

(
pλ

(1−p)δ

)j
1

(l−i−j)!

(
λ
γ

)l−i−j
+

∑l
i=s+1

∑l−i
j=0

1
s!si−s

(
λ

(1−p)µ

)i
1
j!

(
pλ

(1−p)δ

)j
1

(l−i−j)!

(
λ
γ

)l−i−j)
= π0

(
1
l!

(
λ

(1−p)µ + pλ
(1−p)δ + λ

γ

)l
+

∑l
i=s+1

∑l−i
j=0

(
1

s!si−s
− 1

i!

) (
λ

(1−p)µ

)i
1
j!

(
pλ

(1−p)δ

)j
1

(l−i−j)!

(
λ
γ

)l−i−j)
Thus,

Pl = π0

(
1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l

+ I{l>s}

l∑
i=s+1

l−i∑
j=0

(
1

s!si−s
− 1
i!

)(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(l − i− j)!

(
λ

γ

)l−i−j ,

(12.1)

where I{l>s} is the indicator function.

One can derive from that expression the quantity Pn, which is the probability of blocking of the

medical unit. Pn will also be indicated as P (blocked).
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12.2 Probability of Waiting More Than t Units of Time and the Expected Wait-

ing Time

One of the important parameters of the level of service, is the time spent in-queue. This is the

time that a patient may have to wait to be treated. If a patient becomes needy when there are

already i other needy patients in the unit, he will need to wait an in-queue random waiting time

that follows an Erlang distribution with (i − s + 1)+ stages, each with rate sµ. The probability

that this Erlang-distributed random variable is greater than t is e−sµt
∑i−s

j=0(sµt)j/(j!). Clearly, the

patient only waits if i ≥ s.

Let W denote the steady state, in-queue waiting time for a hypothetical patient, who just

become needy, and denote pn,s(t) as the tail of the steady state distribution of W , given n beds

and s nurses. Formally, pn,s(t) = P (W > t). As a consequence of dealing with a closed system,

the total activation rate, i.e. the rate at which the collective stable patient population produces

needy patients, is modulated by the state of the system, i.e., by the number of needy, dormant and

cleaning beds. In addition, in order to calculate the tail of the steady state distribution of W , we

need to use the Arrival Theorem for closed networks, quoted here from Chen and Yao [17].

The Arrival Theorem. In a closed Jackson network, the arrival at (or the departure

from) any node observes time averages, with the job itself excluded. In particular, the

probability that the network is in state2 x − ei immediately before an arrival (or imme-

diately after a departure) epoch at node i is equal to the ergodic distribution, of a closed

network with one fewer job, in state x− ei.

Let πA(x − ei), denote the probability that the system is in state x − ei at the arrival epoch

of a customer to node i. Thus, immediately after the arrival of a customer to node i, the state is

x. Then the arriving customer sees before him the state x − ei, which corresponds to a network

with one fewer job. Then by the arrival theorem, we conclude that πA(x − ei) = πn−1(x − ei). In

particular for the needy state (node 1), πA(x− e1) = πn−1(x− e1) = πn−1(i− 1, j, k).

The probability that a patient will get service immediately as he become needy is the sum of

probabilities that the customer arriving at the needy state will see fewer than s needy patients; by

the former notations it is equal to:

P (W = 0) =
n−1∑
l=0

l∑
m=0

min{m,s−1}∑
i=0

πA(i,m− i, l −m). (12.2)

2[17] refers to state x, rather than x− ei as we do; we believe [17] has a typo.
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The distribution function of the waiting time is:

P (W ≤ t) = P (W = 0) +
n−1∑
i=s

P (there are (i− s+ 1) patients who ended

their service on time ≤ t|Arrival at the needy state found i needy patients)·

· πA(i,m− i, l −m) =

= P (W = 0) +
n−1∑
l=s

l∑
m=s

m∑
i=s

πA(i,m− i, l −m)
∫ t

0

µs(µsx)i−s

(i− s)!
e−µsxdx

= P (W = 0) +
n−1∑
l=s

l∑
m=s

m∑
i=s

πA(i,m− i, l −m)(1−
i−s∑
h=0

(µst)h

h!
e−µst)

=
n−1∑
l=0

l∑
m=0

min{m,s−1}∑
i=0

πA(i,m− i, l −m) +
n−1∑
l=s

l∑
m=s

m∑
i=s

πA(i,m− i, l −m)

−
n−1∑
l=s

l∑
m=s

m∑
i=s

πA(i,m− i, l −m)
i−s∑
h=0

(µst)h

h!
e−µst

= 1−
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)
i−s∑
h=0

(µst)h

h!
e−µst.

(12.3)

Therefore, the tail steady state distribution of W is

P (W > t) =
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)
i−s∑
h=0

(µst)h

h!
e−µst (12.4)

and the expected waiting time E[W] can be derived via this tail formula, i.e.,

E[W ] =
∫ ∞

0
P (W > t)dt =

∫ ∞
0

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)
i−s∑
h=0

(µst)h

h!
e−µstdt

=
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)
i−s∑
h=0

∫ ∞
0

(µst)h

h!
e−µstdt

=
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)
i−s∑
h=0

1
µs

=
1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)(i− s+ 1).

(12.5)

This formula is exactly the same as the one found in Gross and Harris [38] pg. 193: In a closed

Jackson network with M/M/cj nodes, the mean waiting time at node j for a network containing

n customers is E(Wj(n)) = 1
µjcj

∑n−1
i=cj

(i − ci + 1)pj(i, n − 1) where pj(i, n − 1) is the marginal
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probability of i in an (n− 1)-customer system at node j. Therefore, for our system

E(W ) =
1
µs

n−1∑
i=s

(i− s+ 1)p1(i, n− 1)

=
1
µs

n−1∑
i=s

(i− s+ 1)
n−1∑
l=i

l∑
m=i

πn−1(i,m− i, l −m)

=
1
µs

n−1∑
l=i

l∑
m=i

m∑
i=s

(i− s+ 1)πn−1(i,m− i, l −m).

(12.6)

12.3 Probability of Delay

The probability of delay in terms of previous definitions is P (W > 0). In order to find it we will again

use the Arrival Theorem for closed networks, cited earlier on Page 71. Accordingly, we can derive

performance measures of a medical unit with n beds and s nurses, by the steady-state distribution

of the same system with n−1 beds and s nurses. The probability that a patient who becomes needy

has to wait, is the probability that a patient will find more than s needy patients in a system with

n beds, and this is exactly the steady-state probability of having more than s needy patients in a

system with n − 1 beds. By the notions of the arrival theorem, a patient entering node 1 (as he

arrives) sees the system in state x − ei with probability πn−1(x − ei) (no matter where he cames

from). After his entrance the system state will be x. Therefore, if we want to know what is the

probability that the patient will see the station full, we need to add up the probabilities that in the

vector x− e1 the first element x1− 1 will exceed s patients, i.e., we need to add together the arrival

probabilities of all x such that x1 − 1 ≥ s and |x| =
∑

i xi ≤ n . Thus,

P (W > 0) =
∑

x||x|≤n;x1−1≥s

πA(x− e1) =
∑

i,j,k|i+j+k≤n−1,i≥s

πA(i, j, k)

=
∑
i≥s

πn−1(i, j, k) =
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m).

(12.7)

Thus, for the system with n beds and s nurses, the percentage of patients which are required to wait

before being served, coincides with the probability that in a system with n − 1 beds and s nurses,

all the nurses are busy. Formally, P (W > 0) = Pn−1(N(∞) ≥ s).

12.4 Average Occupancy Level

The average occupancy level can be found by OC(n, s) =
∑n

l=0

∑l
m=0

∑m
i=0mπn(i,m− i, l −m).
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13 The QED Regime

Consider a sequence of s-server queues, indexed by n. Let the arrival-rates λn → ∞, as n → ∞,

and fixed µ the service-rate. Define the offered load by Rn = λeffn
µ . The QED regime is achieved

by choosing λn and sn so that
√
sn(1 − ρn) → β, as n → ∞, for some finite β. Here ρn = Rn

sn
.

When patients have infinite patience, ρn may be interpreted as the long-run servers’ utilization and

then one must have 0 < β < ∞. Otherwise, ρn is the offered load per server and −∞ < β < ∞ is

allowed. Equivalently, the staffing level is approximately given by

sn ≈ Rn + β
√
Rn, −∞ < β <∞.

In our system λeffn = λn
1−p , Rn = λn

(1−p)µ , and ρn = λn
(1−p)sµ .

Let λ, s and n tend to ∞ simultaneously so that:

s =
λ

(1− p)µ
+ β

√
λ

(1− p)µ
+ o(
√
λ), −∞ < β <∞, (i)

n− s = η1

√
λ

(1− p)µ
+

pλ

(1− p)δ
+ η2

√
pλ

(1− p)δ
+
λ

γ
+ η3

√
λ

γ
+ o(
√
λ), (ii)

−∞ < η1, η2, η3 <∞.

First we reduce the number of parameters.

Theorem 7. Let λ, s and n tend to ∞ simultaneously. Then the conditions

s =
λ

(1− p)µ
+ β

√
λ

(1− p)µ
+ o(
√
λ), −∞ < β <∞, (i)

n− s = η1

√
λ

(1− p)µ
+

pλ

(1− p)δ
+ η2

√
pλ

(1− p)δ
+
λ

γ
+ η3

√
λ

γ
+ o(
√
λ), (ii)

−∞ < η1, η2, η3 <∞

are equivalent to the conditions

(i) s =
λ

(1− p)µ
+ β

√
λ

(1− p)µ
+ o(
√
λ), −∞ < β <∞

(ii) n− s =
pλ

(1− p)δ
+
λ

γ
+ η

√
pλ

(1− p)δ
+
λ

γ
+ o(
√
λ), −∞ < η <∞

(13.1)

where η = η1

√
δγ

µ(γp+(1−p)δ) + η2

√
γp

γp+(1−p)δ + η3

√
(1−p)δ

γp+(1−p)δ .
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Proof. Clearly, one can rewrite the second condition in the form

n− s =

(
η1

√
δγ

µ(γp+ (1− p)δ)
+ η2

√
γp

γp+ (1− p)δ
+ η3

√
(1− p)δ

γp+ (1− p)δ

)
√

pλ

(1− p)δ
+
λ

γ
+

pλ

(1− p)δ
+
λ

γ
+ o(
√
λ), −∞ < η1, η2, η3 <∞.

Setting η = η1

√
δγ

µ(γp+(1−p)δ) + η2

√
γp

γp+(1−p)δ + η3

√
(1−p)δ

γp+(1−p)δ one obtains (13.1). The first condition

is the same. This proves the statement.

We can rewrite the QED condition (13.1) in the following form

lim
λ→∞

n− s− pλ
(1−p)δ −

λ
γ√

pλ
(1−p)δ + λ

γ

= η, −∞ < η <∞ (i)

lim
λ→∞

√
s

(
1− λ

(1− p)sµ

)
= β, −∞ < β <∞ (ii)

where the second term defines the situation on the servers (i.e. the effective space in the service

station) and the first term defines the effective space remaining in the “non-queue” stations.

For convenience we denote

RN =
λ

(1− p)µ
, RD =

pλ

(1− p)δ
, RC =

λ

γ
,

and

ρ =
λ

(1− p)sµ
.

For some technical reasons we must distinguish between two cases: β = 0 and β 6= 0. This separation

results in two separate QED conditions:

QED =

 limλ→∞
n−s−RD−RC√

RD+RC
= η, −∞ < η <∞, (i)

limλ→∞
√
s
(

1− RN
s

)
= β, −∞ < β <∞, β 6= 0, (ii)

(13.2)

and

QED0 =

 limλ→∞
n−s−RD−RC√

RD+RC
= η, −∞ < η <∞, (i)

limλ→∞
√
s
(

1− RN
s

)
= β, β = 0, (ii)

where µ,p,δ and γ are fixed parameters.
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14 Heavy Traffic Limits and Asymptotic Analysis in the QED

Regime

In this chapter we develop heavy-traffic approximations of the system-measures introduced in Chap-

ter 12. As a first stage we present four lemmas; their proofs are in Appendix C.2.

Lemma 1. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED conditions.

Define ζ1 as the expression

ζ1 =
e−RN

s!
(RN )s

1
1− ρ

n−s−1∑
l=0

1
l!

(RD +RC)l e−(RD+RC).

Then

lim
λ→∞

ζ1 =
φ(β)Φ(η)

β
.

Lemma 2. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED conditions.

Define ζ2 as the expression

ζ2 =
e−(RN+RD+RC)

s!
(RN )s

ρn−s

1− ρ

n−s−1∑
l=0

1
l!

(
RD
ρ

+
RC
ρ

)l
.

Then

lim
λ→∞

ζ2 =
φ(
√
η2 + β2)
β

e
1
2
η2

1Φ(η1).

Lemma 3. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED or QED0

conditions. Define ξ as the expression

ξ =
∑

i,j,k|i≤s,
i+j+k≤n−1

1
i!j!k!

(RN )i (RD)j (RC)k e−(RN+RD+RC).

Then

lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t).

Lemma 4. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 conditions.

Define ζ as the expression

ζ = e−(RN+RD+RC) 1
s!
RN

s
n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

RD
jRC

k
n−s−j−k−1∑

i=0

ρi.

Then

lim
λ→∞

ζ =

√
µ(pγ + (1− p)δ)

δγ

1√
2π

(ηΦ(η) + φ(η)) .
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14.1 Approximation of the Probability of Delay

The first approximation will be for the measure: the probability of waiting or the probability of

delay. It was defined in Section 12.3, by Formula (12.7).

Theorem 8. Let the variables λ, s and n tend to∞ simultaneously and satisfy the QED conditions.

Then

lim
λ→∞

P (W > 0) =

1 +

∫ β
−∞Φ

(
η + (β − t)

√
B
)
dΦ(t)

φ(β)Φ(η)
β − φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)

−1

where B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , η1 = η − β

√
B−1.

Proof.

Pn(W > 0) = Pn−1(Q1(∞) ≥ s) =
n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)

= πn−1
0

n−1∑
l=s

l∑
m=s

m∑
i=s

1
s!si−s(m− i)!(l −m)!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)m−i(λ
γ

)l−m
,

where

πn−1
0 =

(
n−1∑
l=0

1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l

+
n−1∑
l=s

l∑
m=s

m∑
i=s

(
1

s!si−s
− 1
i!

)
1

(m− i)!(l −m)!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)m−i(λ
γ

)l−m)−1

.

Thus,

Pn(W > 0) =
(

1 +
A

B

)−1

,

where

A =
n−1∑
l=0

1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l

−
n−1∑
l=s

l∑
m=s

m∑
i=s

1
i!(m− i)!(l −m)!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)m−i(λ
γ

)l−m
=

∑
i,j,k|i≤s,

i+j+k≤n−1

1
i!j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k
,

(14.1)
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B =
n−1∑
l=s

l∑
m=s

m∑
i=s

1
s!si−s

1
(m− i)!(l −m)!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)m−i(λ
γ

)l−m

=
n−s−1∑
k=0

n−s−k−1∑
j=0

n−j−k−1∑
i=s

1
s!si−s

1
j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k

=
n−s−1∑
k=0

n−s−k−1∑
j=0

n−s−j−k−1∑
i=0

1
s!si

1
j!k!

(
λ

(1− p)µ

)i+s( pλ

(1− p)δ

)j (λ
γ

)k

=
1
s!

(
λ

(1− p)µ

)s n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
pλ

(1− p)δ

)j (λ
γ

)k n−s−j−k−1∑
i=0

(
λ

(1− p)sµ

)i
.

(14.2)

Define ρ = λ
(1−p)sµ , then under the QED (part (ii)) assumption that

√
s(1− ρ) → β, −∞ < β <

∞, β 6= 0 (of Theorem 8) as λ→∞, we can rewrite the right-hand side in the following way:

B =
1
s!

(
λ

(1− p)µ

)s n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
pλ

(1− p)δ

)j (λ
γ

)k 1− ρn−s−j−k

1− ρ

=
1
s!

(
λ

(1− p)µ

)s 1
1− ρ

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
pλ

(1− p)δ

)j (λ
γ

)k

− 1
s!

(
λ

(1− p)µ

)s ρn−s
1− ρ

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
pλ

(1− p)δρ

)j ( λ

γρ

)k
.

Applying the multinomial theorem yields:

B =
1
s!

(
λ

(1− p)µ

)s 1
1− ρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l

− 1
s!

(
λ

(1− p)µ

)s ρn−s
1− ρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l
= B1 −B2.

Multiplying A, B1 and B2 by e−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
we have

P (W > 0) =
(

1 +
ξ

ζ1 − ζ2

)−1

,

where ξ, ζ1 and ζ2 where defined in lemmas 1-3, and we repeat them for convenience,

ξ =
∑

i,j,k|i≤s,
i+j+k≤n−1

1
i!j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
, (14.3)

ζ1 =
1
s!

(
λ

(1− p)µ

)s 1
1− ρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
, (14.4)

ζ2 =
1
s!

(
λ

(1− p)µ

)s ρn−s
1− ρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
. (14.5)
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By Lemmas 1,2, and 3 if β 6= 0:

lim
λ→∞

ζ1 =
φ(β)Φ(η)

β
, (14.6)

lim
λ→∞

ζ2 =
φ(
√
η2 + β2)
β

e
1
2
η2

1Φ(η1), (14.7)

and

lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t), (14.8)

where η1 = η − β
√

µ(pγ+(1−p)δ)
δγ . Thus,

lim
λ→∞

P (W > 0) =

1 +

∫ β
−∞Φ

(
η + (β − t)

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t)

φ(β)Φ(η)
β − φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)

−1

.

This proves Theorem 8.

Theorem 9. Let the variables λ, s and n tend to∞ simultaneously and satisfy the QED0 conditions.

Then

lim
λ→∞

P (W > 0) =

1 +

∫ 0
−∞Φ

(
η − t

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t)√

µ(pγ+(1−p)δ)
δγ

1√
2π

(ηΦ(η) + φ(η))

−1

where η1 = η − β
√

µ(pγ+(1−p)δ)
δγ .

Proof. As before,

Pn(W > 0) =
(

1 +
A

B

)−1

where,

A =
∑

i,j,k|i≤s,
i+j+k≤n−1

1
i!j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k

B =
1
s!

(
λ

(1− p)µ

)s n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
pλ

(1− p)δ

)j (λ
γ

)k n−s−j−k−1∑
i=0

(
λ

(1− p)sµ

)i
.

We can multiply each phrase in e−(RN+RD+RC) where RN = λ
(1−p)µ , RD = pλ

(1−p)δ , RC = λ
γ , then

Pn(W > 0) =
(

1 +
ξ

ζ

)−1
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where, ξ = A · e−(RN+RD+RC), and ζ = B · e−(RN+RD+RC). By Lemma 3, when β = 0:

lim
λ→∞

ξ =
∫ 0

−∞
Φ

(
η − t

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t), (14.9)

and, due to Lemma 4:

lim
λ→∞

ζ =

√
(1− p)µ

γ
+
pµ

δ

1√
2π

(ηΦ(η) + φ(η)) . (14.10)

Assigning Equations (14.9) and (14.10), we proved Theorem 9.

Checking: Is limβ→0 P{β 6=0}(W > 0) = P{β=0}(W > 0)?

We need to check that:

lim
β→0

φ(β)Φ(η)− φ(
√
η2 + β2)e

1
2
η2

1Φ(η1)
β

=

√
(1− p)µ

γ
+
pµ

δ

1√
2π

(ηΦ(η) + φ(η)) .

Define: η1 = η − β
√

µ(pγ+(1−p)δ)
δγ = η − β

√
C. By L’Hôpital’s rule:

lim
β→0

φ(β)Φ(η)− φ(
√
η2 + β2)e

1
2
η2

1Φ(η1)
β

= lim
β→0

d

dβ

(
φ(β)Φ(η)− φ(

√
η2 + β2)e

1
2
η2

1Φ(η1)
)

= lim
β→0

Φ(η)
dφ(β)
dβ

− dφ(
√
η2 + β2)
dβ

e
1
2
η2

1Φ(η1)− φ(
√
η2 + β2)

d(e
1
2
η2

1Φ(η1))
dβ

= lim
β→0

Φ(η)
dφ(β)
dβ

− dφ(
√
η2 + β2)
dβ

e
1
2
η2

1Φ(η1)− φ(
√
η2 + β2)

(
de

1
2
η2

1

dβ
Φ(η1) +

dΦ(η1)
dβ

e
1
2
η2

1

)

= lim
β→0

Φ(η)
−β√

2π
e−

β2

2 − −β√
2π
e−

η2+β2

2 e
1
2
η2

1Φ(η1)

− φ(
√
η2 + β2)

(
d
(

1
2η

2
1

)
dβ

e
1
2
η2

1Φ(η1) +
dη1

dβ
φ(η1)e

1
2
η2

1

)

= lim
β→0

Φ(η)
−β√

2π
e−

β2

2 − −β√
2π
e−

η2+β2

2 e
1
2
η2

1Φ(η1)

− φ(
√
η2 + β2)

(
(−η1

√
C)e

1
2
η2

1Φ(η1) + (−
√
C)φ(η1)e

1
2
η2

1

)
= φ(η)

√
Ce

1
2
η2

(ηΦ(η) + φ(η)) =
√
C√
2π

(ηΦ(η) + φ(η)) .

14.2 Approximation of the Expected Waiting Time

The second approximation will be for the measure: the expected waiting time. It was defined in

Section 12.2, by Formula (12.5). We state the Theorems here, the proofs are in Appendix C.3.
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The first theorem gives the approximation for the case where β 6= 0.

Theorem 10. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED condi-

tions. Then

lim
λ→∞

√
sE[W ] =

1
µ

φ(β)Φ(η)
β

1
β + φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)
(
β
B −

η√
B
− 1

β

)
∫ β
−∞Φ

(
η + (β − t)

√
B
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)

where B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , η1 = η − β

√
B−1.

The second theorem gives the approximation for the case where β = 0.

Theorem 11. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 condi-

tions. Then

lim
λ→∞

√
sE[W ] =

1
2µ

B−1
(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0
−∞Φ

(
η − t

√
B
)
dΦ(t) +

√
B−1 (ηΦ(η) + φ(η))

where B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , η1 = η − β

√
B−1.

14.3 Approximation of the Blocking Probability

The third approximation will be for the probability of blocking. This measure was defined in Section

12.1, by Formula (12.1). We only state here the approximation theorems, as conjectures supported

by our previous experience. We intend to prove these measures in the near future.

Theorem 12. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED condi-

tions. Define B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + φ(
√
η2 + β2)e

η2
1
2 Φ(η1)∫ β

−∞Φ
(
η + (β − t)

√
B
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)
(14.11)

where η1 = η − β√
B

, ν = 1√
1+B−1

, ν1 = η
√
B−1+β√
1+B−1

, ν2 = β
√
B−1−η√

1+B−1
.

Theorem 13. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 condi-

tions. Define and B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + 1√
2π

Φ(η)∫ 0
−∞Φ

(
η − t

√
B
)
dΦ(t) + 1√

B
1√
2π

(ηΦ(η) + φ(η))
(14.12)

where ν = 1√
1+B−1

, ν1 = η√
1+B

, ν2 = η√
1+B−1

.
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15 Comparison of Approximations and Exact Calculations

In this section, using some examples, we illustrate the quality of our approximations, when compared

against the exact calculations. We answer the question of what are the parameter settings (e.g. what

β) for which we can use the approximations. The exact calculations and the approximations were

calculated using MATLAB. We could compare only systems where n is less than 160. Larger systems

are beyond MATLAB capabilities and the exact formulas cannot be calculated. Nevertheless, since

our asymptotes become more accurate as n and s grows to infinity together, this limitation only

strengthens our analysis.

In order to simplify this experimental phase, we will assume that γ =∞, which means that we

neglect the Cleaning phase and actually consider the semi-open Erlang-R system (see Figure 28).

We considered various combinations of the data that cover small, moderate and large systems,

and a range of values of the offered-load ratio. The parameters of each case is specified in Table 2.

For each set of parameters we calculated s and n when β ∈ [−3, 3] and η ∈ [−3, 3]. The following

graphs compare visually the exact and the approximate calculations.

Figure n s λ δ µ p B

36 77-162 71-131 10 5 1 0.9 0.55

37 60-150 25-66 15 0.5 1 0.667 0.75

38 51-133 29-72 30 0.5 1 0.4 1.25

39 6-35 1-15 10 1 3 0.5 0.66

40 1-30 2-15 5 0.25 1 0.5 1

Table 2: Parameters for a large system

The first illustration, shown in Figure 36, is of a large system where the number of “beds” is

up to 162, and the number of servers is up to 131. We observe an excellent matching between

the exact calculation and the approximation for the P (W > 0) measure. We also observe a very

good match for the P(block) measure when β > −0.5. As β decreases, the approximations becomes

less accurate. This is expected since, as β decreases, we exit the QED regime. For example, when

β = −2,
√
s ∗ P (block) ≈ 2. In this case, if s ≈ 100 then P (block) ≈ 20%. But the QED regime

prevails when P(block) is less then 10%, and P (W > 0) is in [25%, 75%].

The next illustrations, shown in Figure 37 and 38, are of medium size systems, where the number

of servers is between 20 to 70. Here too, we observe a very good matching for the probability of

waiting. In the P(block) graph, the pattern is more complex. We observe a very good match when
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Approximation vs. Exact calculation 
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Figure 36: Comparison of approximation and exact calculation - Large system

β > −0.5 and η > −1. As η and β get smaller, the approximations become less accurate. We also

see that as η get smaller, the value of β from which the approximations are accurate is larger.
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Figure 37: Comparison of approximation and exact calculation - Medium system

The next two illustrations, shown in Figure 39 and 40, are of small size systems where the number

of servers is up to 15, and the number of beds is less than 35. We observe the same phenomena

here as in medium systems, but we also see that there are additional inaccuracies in the P (W > 0)

approximation for η < 0.

From this experiment, we conclude that, while in the QED regime the approximations are

remarkably accurate, when exiting this operating regime, the P (W > 0) approximation remains

stable, but the P(block) approximation does not.
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Figure 38: Comparison of approximation and exact calculation - Medium system
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Figure 39: Comparison of approximation and exact calculation - Small system
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Figure 40: Comparison of approximation and exact calculation - Small system
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The next three experiment-parameters are based on data taken from surveys carried out in Israeli

Hospitals by Marmor [57]. The data we have are partial, not altogether consistent with the data we

need. We know that in each of these MUs, there are 30 beds, and the average LOS is three days;

patients’ average arrival rate is five patients per day. Since we do not have accurate data on service

times, we show three options using various assumptions. In all of them, we assume that average

cleaning times are one hour. The parameters are specified in Table 3 and their related Figure is

41. In all the Figures (41 a-c), we observe a good matching between the exact calculation and the

Figure n λ δ µ γ p

41-a 30 5/24 4/23 4 1 12/13

41-b 30 5/24 4/21 4 1 36/37

41-c 30 5/24 2/19 2 1 30/31

Table 3: Parameters based on data from Israeli hospital

approximation in the range of interest (i.e. when P (W > 0) ∈ [0.3− 0.7]).

(a) (b) (c)

Figure 41: Comparison of approximation and exact calculation - Israeli Hospital

The last experiment uses parameters taken from the work of Jennings and de Véricourt, so that

their model can be compared to ours. They used the following ratio: r = λJ
λJ+µ = δ

δ+µ = 0.25. The

illustration is shown in Figure 42; the parameters are specified in Table 4. As in previous cases, we

Figure n λ δ µ γ p

42 40 10 1 3 1 0.5

Table 4: Parameters based on Jennings and de Véricourt’s article

observe a very good matching between the exact calculation and the approximation.
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Figure 42: Comparison of approximation and exact calculation - r = 0.25

86



16 Comparison with Other Models

In this chapter we will present some special cases of our model. We will show that the probability

distribution of these models can be represented by our model probability functions, or some other

connection between the models.

16.1 The M/M/s/infinity/n System

When λ → ∞, and δ = γ our model will be equivalent to Jennings and de Véricourt’s model [46].

This is an M/M/S/∞/n system, with exactly n customer in the system, i.e. i+ j+k = n. Jennings

and de Véricourt used the definition of r = λJ
λJ+µ which is equivalent to: r = pδ+(1−p)γ

pδ+(1−p)γ+µ = δ
δ+µ in

our model.

As seen before, for each (i, j, k) such that 0 ≤ i+ j + k ≤ n,

π(i, j, k) = π0
1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

δ

)k
since λ = ∞ (goes to infinity faster than n and s) the probability of patients being in node 4 is 0,

thus, i+ j + k = n and π(i, j, k) = π(i, j, n− i− j). We define the marginal distribution π(i, n− i)

as j + k = n− i:

π(i, n− i) =
∑

j,k|j+k=n−i

π(i, j, k)

=
∑

j,k|j+k=n−i

π0
1
ν(i)

(
λ

(1− p)µ

)i 1
j!k!

(
pλ

(1− p)δ

)j (λ
δ

)k

= π0(λ)n
1
ν(i)

(
1

(1− p)µ

)i 1
(n− i)!

(
1

(1− p)δ

)n−i
= π0

(
λ

1− p

)n 1
ν(i)

(
1
µ

)i 1
(n− i)!

(
1
δ

)n−i
= π0

(
λ

(1− p)δ

)n 1
ν(i)

1
(n− i)!

(
δ

µ

)i
.

Here ν(i) is defined as

ν(i) :=

 i! , i ≤ s,

s!si−s , i ≥ s.
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and π0 is given by

π−1
0 =

∑
i+j+k=n

1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

γ

)k
= λn

n∑
i=0

∑
j,k|j+k=n−i

1
ν(i)

(
1

(1− p)µ

)i 1
j!k!

(
p

(1− p)δ

)j (1
δ

)k

= λn
n∑
i=0

1
ν(i)

(
1

(1− p)µ

)i 1
(n− i)!

(
1

(1− p)δ

)n−i
=
(

λ

1− p

)n( s∑
i=0

1
i!

(
1
µ

)i 1
(n− i)!

(
1
δ

)n−i
+

n∑
i=s+1

1
s!si−s

(
1
µ

)i 1
(n− i)!

(
1
δ

)n−i)

=
(

λ

1− p

)n(( 1
µ

+
1
δ

)n
+

n∑
i=s+1

(
1

s!si−s
− 1
i!

)
n!

(n− i)!

(
1
µ

)i(1
δ

)n−i)
.

Or in an equivalent form,

π(i, n− i) =



π̃0
1
i!

(
1
µ

)i 1
(n− i)!

(
1
δ

)n−i
, i ≤ s,

π̃0
1

s!si−s

(
1
µ

)i 1
(n− i)!

(
1
δ

)n−i
, i > s,

0, otherwise,

where π̃0 is given by

π̃−1
0 =

(
1
µ

+
1
δ

)n
+

n∑
i=s+1

(
1

s!si−s
− 1
i!

)
n!

(n− i)!

(
1
µ

)i(1
δ

)n−i
.

Or in an equivalent form,

π(i, n− i) =



π̄0

(
n

i

)(
δ

µ

)i
, i ≤ s,

π̄0

(
n

i

)
i!

s!si−s

(
δ

µ

)i
, i > s,

0, otherwise,

where π̄0 is given by

π̄−1
0 = n!δn

((
1
µ

+
1
δ

)n
+

n∑
i=s+1

(
1

s!si−s
− 1
i!

)
n!

(n− i)!

(
1
µ

)i(1
δ

)n−i)

= n!

((
µ+ δ

µ

)n
+

n∑
i=s+1

(
1

s!si−s
− 1
i!

)
n!

(n− i)!

(
δ

µ

)i)
.

This last version of steady-state probabilities were investigated by Jennings and de Véricourt [46].

In [46] there are no exogenous arrivals (closed system i.e. no λ in our notation), which corresponds

to taking λ to infinity at a faster rate than n and s.
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16.2 Call Center with IVR (Interactive Voice Response)

In certain settings, our model will be equivalent to Khudyakov’s model [49]. As seen before, for each

(i, j, k) such that 0 ≤ i+ j + k ≤ n:

π(i, j, k) = π0
1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

γ

)k
.

We would like to define the marginal distribution π(i, l) as j + k = l. For each (i, l) such as

0 ≤ i+ l ≤ n:

π(i, l) =
∑

j,k|j+k=l

π(i, j, k)

=
∑

j,k|j+k=l

π0
1
ν(i)

(
λ

(1− p)µ

)i 1
j!k!

(
pλ

(1− p)δ

)j (λ
γ

)k

= π0
1
ν(i)

(
λ

(1− p)µ

)i 1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
.

Here ν(i) is defined as

ν(i) :=

 i! , i ≤ s,

s!si−s , i ≥ s,

where π0 is given by

π−1
0 =

∑
0≤i+j+k≤n

1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

γ

)k
=

n∑
i=0

∑
0≤j+k≤n−i

1
ν(i)

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
k!

(
λ

γ

)k

=
n∑
i=0

n−i∑
l=0

1
ν(i)

(
λ

(1− p)µ

)i 1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
=

∑
i≤s,i+l≤n

1
i!

(
λ

(1− p)µ

)i 1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
+

∑
i>s,i+l≤n

1
s!si−s

(
λ

(1− p)µ

)i 1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
.

These are exactly the steady-state probabilities investigated by Khudyakov [49], in the case:
1
θK

=
(

p
(1−p)δ + 1

γ

)
and pK

µK
= 1

(1−p)µ . For example: if in our model p = 0, our model is comparable

to Khudyakov’s model with pK = 1.
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17 Generalizations

In previous chapters we decided, arbitrarily, that patients will start and end their stay at the MU,

in service from nurses. One can use other assumptions, which will slightly change the shape of the

network. In this chapter, we would like to generalize our findings, and to formulate heavy-traffic

approximations that will cover any specific design of flow in the network. In fact, this generalization

will also unite our model with the IVR model [49]. The generalization was developed from our

experience in developing the approximations in Chapter 14. We have not yet proved them, and

we might do so if we find it useful for the later stages of our research. This generalization covers

any semi-open network, with one service station with s servers, and any finite number of delay

procedures.

Consider any closed Jackson network that has one M/M/S node (denote as node a), any K finite

number of nodes of the type M/M/∞ (denote as node j , j ∈ J = {1, 2, ...,K}) and one node of the

type M/M/1. Denote the solution of the balance equations of the steady-state flows of the network

as ρa and ρj , ∀j ∈ J , and define A =
∑

j∈J ρj , B = ρa
A . (Explanation: Let λ be the service rate of

the M/M/1 node, and P be the transition probability matrix of the network. Define λj as the rate

of flow into node j and µj as the rate of flow out of node j, then ρj = λj
µj

. The rate λj can be found

by solving the traffic equations, and should be expressed in terms of λ, and P ). The steady-state

probabilities of such networks are:

π(i0, i1, ..., iK) =


π0

1
ν(i0)

(ρa)
i0

K∏
j=1

1
ij !

(ρj)
ij , 0 ≤ i+

K∑
j=1

ij ≤ n,

0 otherwise.

Here ν(i) is defined as

ν(i0) :=

 i0! , i0 ≤ s,

s!si0−s , i0 ≥ s,

and π0 is the normalization factor, given by

π−1
0 =

∑
0≤i0+i1+...+iK≤n

 1
ν(i0)

(ρa)
i0
∏
j∈J

1
ij !

(ρj)
ij


=

n∑
i=0

n−i∑
l=0

(
1
ν(i)

(ρa)
i 1
l!

(A)l
)
.

We claim that for some service-level objectives the steady-state probabilities have the same structure

as those investigated by Khudyakov [49] and in this work. For example, one can develop the marginal

distribution, the probability of delay and blocking, and E[W ].
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17.1 The Marginal Distribution

We will calculate the marginal distribution π(i, l) as l =
∑K

j=1 ij . For each (i, l) such as 0 ≤ i+l ≤ n:

π(i, l) =
∑

i1,...,iK |i1+...+iK=l

π(i, i1, .., iK)

=
∑

i1,...,iK |i1+...+iK=l

π0
1
ν(i)

(ρa)
i
∏
j∈J

1
ij !

(ρj)
ij


= π0

1
ν(i)

(ρa)
i 1
l!

(A)l .

17.2 The Probability of Delay

The second example we show is for the calculation of the probability of delay:

Pn(W > 0) = Pn−1(Q1(∞) ≥ s) =
∑

s≤i+i1+...+iK≤n−1|i≥s

πn−1(i, i1, ..., iK)

= π0

∑
s≤i+i1+...+iK≤n−1|i≥s

1
s!si−s

(ρa)
i
∏
j∈J

1
ij !

(ρj)
ij

(17.1)

where,

π−1
0 =

∑
0≤i0+i1+...+iK≤n−1

 1
ν(i0)

(ρa)
i0
∏
j∈J

1
ij !

(ρj)
ij


=

n−1∑
i=0

n−i−1∑
l=0

(
1
ν(i)

(ρa)
i 1
l!

(A)l
)
.

These probabilities have the same structure as that which was investigated in Chapter 14. Therefore,

we can conclude with the following general theorems:

Theorem 14. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞, (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, −∞ < β <∞, β 6= 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

P (W > 0) =

1 +

∫ β
−∞Φ

(
η + (β − t)

√
B
)
dΦ(t)

φ(β)Φ(η)
β − φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)

−1

(17.2)

where η1 = η − β√
B

.
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Theorem 15. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, β = 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

P (W > 0) =

1 +

∫ 0
−∞Φ

(
η − t

√
B
)
dΦ(t)

1√
B

1√
2π

(ηΦ(η) + φ(η))

−1

(17.3)

where η1 = η − β√
B

.

17.3 The Probability of Blocking

We can also calculate the probability of blocking. From the stationary probability, we will deduce

the probability Pl that there are l customers in the system (0 ≤ l ≤ n). We will use the following

relation:

Pl :=
∑

i,i1...,iK≥0
i+i1...+iK=l

π(i, i1, ...iK) =
l∑

i=0

∑
i1+...+iK=l−i

π(i, i1, ..., iK)

=
l∑

i=0

∑
i1+...+iK=l−i

π0
1
ν(i)

(ρa)
i
K∏
j=1

1
ij !

(ρj)
ij

=
l∑

i=0

π0
1
ν(i)

(ρa)
i 1

(l − i)!
(A)l−i

= π0

(
s∑
i=0

1
i!

(ρa)
i 1

(l − i)!
(A)l−i +

n∑
i=s+1

1
s!si−s

(ρa)
i 1

(l − i)!
(A)l−i

)
This phrase is exactly the same phrase that was investigated in Chapter 14. Thus, we can state the

following theorem:

Theorem 16. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, −∞ < β <∞, β 6= 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + φ(
√
η2 + β2)e

η2
1
2 Φ(η1)∫ β

−∞Φ
(
η + (β − t)

√
B
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)
(17.4)
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where η1 = η − β√
B

,ν1 = η
√
B−1+β√
1+B−1

,ν2 = β
√
B−1−η√

1+B−1
,ν = 1√

1+B−1
.

Theorem 17. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, β = 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + 1√
2π

Φ(η)∫ 0
−∞Φ

(
η − t

√
B
)
dΦ(t) + 1√

B
1√
2π

(ηΦ(η) + φ(η))
(17.5)

where ν1 = η√
1+B

, ν2 = η√
1+B−1

,ν = 1√
1+B−1

.

17.4 Expected Waiting Time

The last example stated here is for the approximation of E[W].

Theorem 18. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, −∞ < β <∞, β 6= 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

√
sE[W ] =

φ(β)Φ(η) + φ(
√
η2 + β2)e

1
2
η2

1Φ(η1)
(
B−1β2 − ηβ

√
B−1 − 1

)
µβ2

(∫ β
−∞Φ

(
η + (β − t)

√
B
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)
)

where η1 = η − β√
B

.

Theorem 19. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s
(

1− ρa
s

)
= β, β = 0 (ii)

where all other parameters are fixed. Then

lim
λ→∞

√
sE[W ] =

1
2µ

B−1
(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0
−∞Φ

(
η − t

√
B
)
dΦ(t) +

√
B−1 (ηΦ(η) + φ(η))

where η1 = η − β√
B

.
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18 Defining Optimal Design

The goal of this chapter is to outline, very roughly, some methods for optimizing the system, using

the approximations calculated in previous chapters. This optimization could be done in various

ways. For example, from an economic point of view, one can find the optimal number of beds and

nurses, so that the total cost is minimized while, at the same time, maintaining a predefined service

level. Service level constraints could be on the delay probability P (W > 0) < a, the probability of

waiting more than t units of time P (W > t) < b, or the probability of blocking P (block) < c. Any

combination of these measures could be used as well.

Define Cn to be the annual bed costs due to space and maintenance, and Cs the annual nurse

(servers) costs. Then our optimization problem can be:

minn,s C(n, s) = Cnn+ Css

s.t P (W > t) ≤ b

P (block) ≤ c

0 ≤ s ≤ n.

Another possibility could be to look at the situation as a revenue maximization problem. The

hospital charges the insurance companies for each patient being hospitalized (under supervision on

the necessity of the procedure). A patient that is being blocked is lost revenues to the system, as

well as a threat to the hospital’s reputation.

DefineR to be the annual revenue due to bed occupancy, andOC(n, s) the average bed occupancy

level in a system with n beds and s nurses. This type of optimization problem can be formalized as:

maxn,s R(n, s) = R ·OC(n, s)− Cnn− Css

s.t P (W > t) ≤ b

P (block) ≤ c

0 ≤ s ≤ n.

One can also solve process-based optimization (control) problems, in support of real-time man-

agement, and we plan to pursue that in the future.
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19 The Semi-Open Erlang-R Model

In this section, we examine the time-varying semi-open Erlang-R model. As explained in the Intro-

duction, it could be viewed as an Erlang-R model with an additional upper bound on the number

of customers in the system. Figure 43 depicts a graphical representation of our system. The num-

ber of customer (patients) is bounded by the number of spaces (beds) in the system, which is n.

Customers that are blocked are thought of as being transfered to another system. In this case, the

natural comparison is not to the Erlang-C (M/M/s) model, but to a loss system (M/M/s/ñ), where

ñ is properly chosen; specifically, ñ = n−R2, where R2 is the average number of content customers.

We show that the steady-state distribution of the semi-open Erlang-R (more specifically, its Needy

part) is different from that of a loss system. We use our results, from Section 17, to present the

QED steady-state approximation of this model. We then show simulation results that demonstrate

that, in the QED regime, the MOL approach works very well also in this case.

M/M/s/N with cycles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Service No-service 

1-p 

p 

s 

∞ Blocked 

( )
( )

Poiss
Q

λ
λ λ=

 

1exp( ), ( ) ( )Q s Qμ μ μ= ∧  

2exp( ), ( )Q Qδ δ δ=  

n 

Figure 43: Semi-open Erlang-R model

We compare our model to a loss system in which the service time of a customer is the total

work brought by that customer to the system, i.e., we sum up all the anticipated service times: a

geometric sum of i.i.d. exponentials (which is thus exponential itself). See Figure 44 for a depiction

of this loss model. Note that the average number of visits per customer (a) is more than 1.

Our comparison will start with a comparison of the steady-state probabilities of each model.
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M/M/s with multi-service 
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Figure 44: The loss model corresponding to a semi-open Erlang-R model

19.1 Steady State Comparison

19.1.1 Loss System (M/M/s/n) in Steady State

The steady-state distribution of a loss system is

πk =


(Sρ)i

i! π0 , 0 ≤ i < S,

SSρi

S! π0 , S ≤ i ≤ N,

where

π0 =

[
S−1∑
i=0

(Sρ)i

i!
+

N∑
i=S

SSρi

S!

]−1

,

and ρ = λ
Sµ . By the Arrival theorem [17], the probability of waiting (α) is

α =
N∑
i=S

πN−1
i =

∑N−1
i=S

SSρi

S!∑s−1
i=0

(Sρ)i

i! +
∑N−1

i=S
SSρi

S!

.

The probability of blocking is

P (block) = πN =
SSρN

S!
π0 =

SSρN

S!

[
S−1∑
i=0

(Sρ)i

i!
+

N∑
i=S

SSρi

S!

]−1

.

QED Approximations of Performance Measures

The following theorem provides QED approximations of this loss system [49].

Theorem 20. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s√
λ
µ

= η, 0 < η <∞, (i)

lim
λ→∞

s− λ
µ√
λ
µ

= β, −∞ < β <∞, (ii)
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where all other parameters are fixed. Then,

lim
λ→∞

P (W > 0) =


(

1 + βΦ(β)
φ(β)(1−e−ηβ)

.
)−1

, β 6= 0,(
1 +

√
π

η
√

2

)−1
, β = 0,

lim
λ→∞

√
sP (block) =


βφ(β)e−ηβ

βΦ(β)+φ(β)(1−e−ηβ)
, β 6= 0,

1√
π
2

+η
, β = 0,

and,

lim
λ→∞

√
sE[W ] =


φ(β)
µ

[
1−e−ηβ

β
−ηe−ηβ

]
βΦ(β)+φ(β)(1−e−ηβ)

, β 6= 0,
1

2µ
η2

η+
√

π
2

, β = 0.

Note that in our Multi-service loss system, µ is divided by a (the average number of returns to

service, per customer).

19.1.2 Semi-Open Erlang-R in Steady State

Now we describe the steady-state distribution of the semi-open Erlang-R queue. Let us define

R1 =
λ

(1− p)µ
, R2 =

pλ

(1− p)δ
, and B =

R1

R2
=

λ
(1−p)µ
pλ

(1−p)δ
=

δ

pµ
.

Then, the steady state distribution of this system is given by

π(i, j) =

 π0
1
ν(i) (R1)i 1

j! (R2)j , 0 ≤ i+ j ≤ n,

0 , otherwise.

Here ν(i) is defined as

ν(i) :=

 i! , i ≤ S,

S!Si−S , i ≥ S,

where π0 is given by

π−1
0 =

∑
0≤i+j≤n

1
ν(i)

(R1)i
1
j!

(R2)j

=
N∑
l=0

1
l!

(R1 +R2)l +
n∑

l=S+1

l∑
i=S+1

(
1

S!Si−S
− 1
i!

)
1

(l − i)!
(R1)i (R2)l−i .

The probability of waiting is given by

PN (W > 0) = πn−1
0

∑
s≤i+j≤n−1|i≥s

1
s!si−s

(R1)i
1
j!

(R2)j ,
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where

πn−1
0 =

 ∑
0≤i+j≤n−1

(
1
ν(i)

(R1)i
1
j!

(R2)j
)−1

=

[
n−1∑
i=0

n−i−1∑
l=0

(
1
ν(i)

(R1)i
1
l!

(R2)l
)]−1

.

The probability of blocking is given by

PN = π0

(
1
N !

(R1 +R2)N +
N∑

i=S+1

(
1

S!Si−S
− 1
i!

)
(R1)i

1
N − i!

(R2)N−i
)
.

QED Approximations of Performance Measures

The following theorem states the QED approximations of our semi-open Erlang-R system.

Theorem 21. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the following

conditions:

lim
λ→∞

n− s−R2√
R2

= η, −∞ < η <∞, (i)

lim
λ→∞

√
s

(
1− R1

s

)
= β, −∞ < β <∞, (ii)

where all other parameters are fixed. Then,

lim
λ→∞

P (W > 0) =


(

1 +
∫ β
−∞ Φ(η+(β−t)

√
B)dΦ(t)

φ(β)Φ(η)
β

−φ(
√
η2+β2)
β

e
1
2 η

2
1 Φ(η1)

)−1

, β 6= 0,(
1 +

∫ 0
−∞ Φ(η−t

√
B)dΦ(t)

1√
B

1√
2π

(ηΦ(η)+φ(η))

)−1

, β = 0,

(19.1)

lim
λ→∞

√
sP (block) =


νφ(ν1)Φ(ν2)+φ(

√
η2+β2)e

η2
1
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√
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2π

Φ(η)∫ 0
−∞ Φ(η−t

√
B)dΦ(t)+ 1√

B

1√
2π

(ηΦ(η)+φ(η))
, β = 0,

(19.2)

and,

lim
λ→∞

√
sE[W ] =


φ(β)Φ(η)+φ(

√
η2+β2)e

1
2 η

2
1 Φ(η1)(B−1β2−ηβ

√
B−1−1)

µβ2

(∫ β
−∞ Φ(η+(β−t)

√
B)dΦ(t)+

φ(β)Φ(η)
β

−φ(
√
η2+β2)
β

e
1
2 η

2
1 Φ(η1)

) , β 6= 0,

1
2µ

B−1((η2+1)Φ(η)+ηφ(η))√
2π
∫ 0
−∞ Φ(η−t

√
B)dΦ(t)+

√
B−1(ηΦ(η)+φ(η))

, β = 0.

Here B = R1
R2

= δ
pµ , η1 = η − β√

B
, ν = 1√

1+B−1
, ν1 = η

√
B−1+β√
1+B−1

, ν2 = β
√
B−1−η√

1+B−1
.
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19.1.3 Comparing Steady-State Measures

When comparing exact system measures, we observe that the steady-state measures of the loss

system are not equal to the ones of the semi-open Erlang-R model. Indeed, there is no simple

relation between them, since the meaning of n in each model is different. In the semi-open Erlang-

R model n is the number of Needy and Content customers together, while in the loss system it

represents only the number of Needy customers. As a result, the definition and meaning of η in

each system is different. Therefore, we expect that when setting the same number of servers s and

customers n in both systems, the loss system will always underestimate P (block) and overestimate

P (W > 0).

To understand the differences between the models, we compared the steady-state service mea-

sures of a semi-open Erlang-R and a corresponding loss system. For a correct comparison, we

compare models with the same number of servers s (or β), while adjusting the number of beds n.

The parameter n in the semi-open Erlang-R model is larger than that of the loss model - denote by

latter by ñ. The difference n− ñ is taken to be the average number of Content customers R2.

The performance measures of both models are a function of the decision variables s and n, and

the offered loads. In fact, performance of the semi-open Erlang-R, and similarly to the open one,

depends on the ratio between the stations’ offered load: B = R1
R2

, as in Theorem 21. We refer to B

as the offered load ratio.
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Figure 45: Difference between service measures as a function of Offered Load Ratio and s

Figure 45 shows the difference between the service measures of the two models as a function of

B and β. We observe that the difference in P (W > 0) is largest when β ∈ [−1, 1], which is the QED

regime. The difference in P (block) seems to grow as β and B decrease. The difference in P (W > 0)
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Figure 46: Mean difference between service measures as a function of Offered Load Ratio

and
√
s ∗ P (block) can be up to 20%. In order to understand more precisely the influence of the

offered load ratio, we also calculated the mean absolute difference between the service measures of

the two models. Figure 46 shows this mean difference as a function of B. We observe that the

difference in P (W > 0) and P (block) is decreasing when B grows. We conclude that one must take

into account reentering customers especially when the difference is significant i.e. for B smaller than

1.

We calculated the offered-load ratio of four medical units: an Internal Ward, Emergency Ward,

ICU, and Oncology Ward. The corresponding offered-load ratios are 0.1, 0.4, 2, 0.2. Thus, in all

cases but the ICU, when using a loss model for planning, without considering the Re-entering effect,

the measures P (W > 0) and P (block) are both underestimated, and the planner will therefore

under-staff doctors (or nurses) and beds in the system. These under-estimations prevail uniformly

over most values of β. Such under-staffing relative to the number of beds results in long waits for

service and personnel burnout due to high workload.

19.2 Staffing Semi-Open Erlang-R with Time-Varying Arrivals

In this section, we verify the usefulness of the MOL approximation for our semi-open queueing

network. We use the following staffing rule: Set s (the number of servers) by

s(t) = R1(t) + β
√
R1(t),

and then set n (the number of beds) via

n(t) = s(t) +R2(t) + η
√
R2(t).
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Here R1(t) and R2(t) are determined by the fluid ODE of the regular Erlang-R system (5.2), and β

and η according to the steady-state QED approximations (19.1) and (19.2), respectively.

To analyze our approach, we use a simulation with the parameters of Case Study 1. Figure 47

presents steady-state QED approximations for the probability of waiting and the blocking probabil-

ity. Figure 48 presents simulation results of the system when staffing according to the square-root

formula with η = 1, and various values of β. Figure 49 shows a comparison between the theoretical

steady-state QED approximations and our simulations results.

Figure 47: Steady state P (W > 0) and P(block) as a function of β and η, for semi-open Erlang-R

We observe that the probability of waiting is stable and its average fits steady-state values. When

considering the probability of blocking, we note good results only for β values that exceeds 0. This

result is consistent with the observations showed in Section 15, that the P (W > 0) approximation

is stable over all operational regimes, but the P (block) approximation is stable only in the QED

regime.
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20 Managerial Insights

In this section, we analyze the behavior of some system measures in the QED operational regime.

We start with describing each measure separately.

20.1 Behavior of the Probability of Waiting

Theorems 8 and 9 are the indication that the policy described in Equation (13.1) is in fact a QED

policy; indeed, the probability of waiting converges to a limit that is strictly between 0 and 1.

Notice that the waiting probability is a function of only three parameters: β and η, which are

decision variables, and the offered load ratio B, which captures the physics of the system. The

offered load ratio is the ratio between the offered load of service station and the total offered load

of the non-service stations.

20.2 Behavior of the Probability of Blocking

Theorems 12 and 13 demonstrate that the probability of blocking is in the order of 1√
s
. For example,

assume that the offered load ratio is 0.5 and the system in large (100 servers). Using figure 50, we

observe that, by choosing the pair η = 1 and β = 0.2, we actually aim at a probability of getting

served immediately to be 50%. At the same time, the probability of getting immediately a bed is

95%. Thus, our QED policy gives more importance to blocking than to waiting.

20.3 Behavior of the Expected Waiting Time for a Nurse

Theorems 10 and 11 show that the expected waiting time is in the order of 1√
s
. Note that the

expected waiting time divided by the expected service time is also of that same order, which means

that for large systems the wait time is one order of magnitude less then the service time.

20.4 Influence of β and η

Since the physics of the QED system is driven by only three parameters, one can describe their

influence in a very simple way. For example, if the offered load ratio is 0.5, the two graphs in Figure

50 tell us all we need to know about the probability of waiting and blocking, and illustrate the

influence of the decision variable β and η on these systems’ performance measures. In fact, the right

graph shows the probability of blocking multiplied by
√
s, and thus, those graphs fit any unit size,

30 or 300 alike.
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Figure 50: Demonstration of the influence of β and η on P (W > 0) and P(block)

One can observe that, as β grows, which means that the number of nurses grows, both the

probability of waiting and the blocking probability tend to zero. When there are fewer nurses (β

decreases), the probability of waiting approaches 1, and the blocking probability, multiplied by
√
s,

approaches β. One also observes the sensitivity of the system measures to β and η, and that one need

not consider the range (−∞,∞), but a much smaller range such as β ∈ (−3, 3) suffices. If we fix the

number of nurses (β), we see that, as the number of beds (η) increases, the probability of waiting

approaches 1, since there are more patients in the system, and the blocking probability approaches

0. Again, there is almost no difference between η = 2 and η = 3, so there is an effective limit to the

beds needed, and the range of η’s that must be considered is relatively small (also between -3 and

3). In addition, we saw in Section 15 that the QED regime is achieved in even narrower range of

parameters (η > −1 and β > −0.5). Hence, we conclude that the relevant parameter ranges for the

QED regime are β ∈ (−0.5, 3) and η ∈ (−1, 3).

Formally, our observation is that P (W > 0) is a decreasing function with respect to β and η,

while
√
SP (block) is a decreasing function with respect to β and an increasing function with respect

to η.

20.5 Influence of the Offered Load Ratio

The graphs in Figure 51 demonstrate the influence of the offered load ratio (B) on the probability

of waiting. Recall that the offered load ratio is the ratio between the offered load in the service

station and the total offered load of the non-service stations. Our observation is that P (W > 0) is

a decreasing function with respect to B. As the offered load ratio decreases, the probability to wait
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increases since the ratio between the number of nurses and the number of beds decreases. Thus,

there are more patients per nurse.

(a) (b) (c)

Figure 51: Comparison between different ratios - The influence on P (W > 0)

Note that the offered load ratio can be interpreted as a measure of the service intensity required

during hospitalization; it is a natural measure to differentiate between patient types. More specifi-

cally, the fact that wards differ in patients’ clinical conditions can be translated to a difference in the

patients’ cycle time of needy-dormant states which, in turn, can be analyzed by considering different

offered load ratios (B). As B grows, patients require more nursing in each cycle. For example, in

IWs the offered load ratio is around 0.1 (see Section 20.6 for en explanation), while in ICUs, where

patients require more intensive care over longer periods, the offered load ratio is around 2.3

20.6 Demonstrating Three Operational Decisions

To illustrate staffing and allocation decisions, we use data originated from two articles: Lundgren

and Segesten [52] and Green and Yankovic [36]. Green and Yankovic describe a medical unit that

has 42 beds, with average occupancy level of 78%, and Average Length of Stay (ALOS) of 4.3 days.

Lundgren and Segesten studied nurses’ service times in a medical-surgical ward. They found that

the average service time in their unit was 15.3 minutes per service, and that the average demand

rate for each patient is 0.38 requests per hour. Therfore, we take an average service time of 15

minutes and assume that there are 0.4 requests per hour from each patient. Fitting this data to our

model results in the following parameters values: λ = 0.32, µ = 4, δ = 0.4, γ = 4, p = 0.975 and the
3ICU’s offered load ratio (B) was calculated based on the following data: ALOS is 9.5 days, average service time

is 10 minutes and patients require 4 treatments per hour. Thus, µ = γ = 6, δ = 12 and p = 0.99887 which results in

B = δγ
µ(pγ+(1−p)δ) = 2.
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offered load ratio is then approximatly 0.1.

P(W>0)
√
sP(block)

Figure 52: P (W > 0) and P(block) for ratio 0.1

Figure 52 shows the appropriate graphs for that offered load ratio, and an illustration of three

available policies. The first pair (black) with β = 0.5 and η = 0.5, is QED balanced. It has

38 beds with 4 nurses. This policy combines low probability of blocking - 0.09 and a reasonable

probability of waiting - 0.45. The second pair (blue) is more of a QD policy; we chose β = 0.5 and

η = −0.05, which amounts to 37 beds and 6 nurses. In this setting, both waiting and blocking are

low; P (W > 0) = 0.09 and P (block) = 0.08. The third example (red) is more of a ED, we chose

negative β = −0.1 and η = −0.05 (which means a system with 34 beds and only 3 nurses). In this

policy, the waiting and the blocking are relatively high; P (block) = 0.19 and P (W > 0) = 0.72.

20.7 Time Varying Environments

In section 19, we compared our semi-open Reentrant model to a loss model that does not explicitly

account for Reentring customers. We saw that, even in steady state, there is importance for using

our semi-open Erlang-R model, and preferring it over the simpler models. We saw how simple models

under- or over- estimate system performance. Note that in medical systems, such as Emergency

Wards, the offered-load ratio is small (around 0.4), and thus when using a loss model for planning,

without considering the Re-entering effect, the measure of P (W > 0) is underestimated, and the

planner will therefore under-staff doctors (or nurses) in the system, and at the same time the measure

of P (block) is overestimated, which will cause the planner to recommend too many beds. This will

result in long waits for service and personnel burnout, due to high work-load. These under- and

over-estimation prevail uniformly over all values of β.

106



In addition, we saw that, in time varying environments, for a large enough system in the QED

regime (β >> −0.5), the MOL approach stabilizes both P (W > 0) and P(block). Consequently,

any pre-specified QED service level can be achieved stably over time. We also observe that there is a

small distortion in the P(block) results, demonstrating that the probability of blocking will actually

be less then predicted.
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21 Conclusions and Future Research

In this part, we have developed a model for medical units that incorporates two decision levels

into one. We are able to use this model to set both staffing levels inside the Medical Unit, as well

as design the size of the unit itself. We proposed an appropriate staffing procedure that carefully

balances the system in the QED regime, in a way that stabilizes over time both utilization levels and

service-level performance measures, such as the probability of waiting to a nurse and the probability

of being blocked when seeking an available bed in the ward. We developed QED approximations

that provide the expected service level under this procedure. We validated our approximations in

various settings of system size and parameters, and showed that it works well both in large and

small systems, as well as in realistic cases of an Internal Ward. We used QED approximations to

better understand the dynamic of our system, and the influence of the various parameters.

We then developed a generalization of our QED approximations, to a wider set of networks,

and used it for the analysis of the semi-open Erlang-R model. We showed that, in time-varying

environments, one can stabilize both P (W > 0) and P(block) over time, using a variation of the

MOL staffing procedure. When comparing the semi-open Erlang-R to the non-reentrant system

(M/M/s/n), we demonstrated analytically that using the simpler model in Re-entrant situations is

detrimental, both in steady-state and in time varying environments.

Our models have natural extensions, such as multi-classes of patients or nurses, additional phases

of clinical treatment, adding doctors (most likely working in the ED regime, in parallel to nurses in

the QED regime), and random parameters. We have given thought to some possible such extensions,

and we describe some of them in greater detail in Part IV.
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Part III

Empirical Analysis of Patients-Flow Data

22 Introduction

In this part of the research, we provide details of an extensive empirical analysis that we conducted on

patient-flow data at one of the largest hospitals in Israel. This hospital has approximately 1000 beds

and 45 medical units. It provides service to about 75,000 patients annually. The hospital provided us

with four years of data pertaining to all of their patients’ transfers throughout the medical wards. We

cleaned this data and used it to better understand the implication of various operational decisions.

The empirical analysis we provide here is mainly concerned with the Hospitalization Wards, and

focuses mostly on IWs. Additional analysis of this data can be found in Marmor [56] and Tseytlin

[71].

We start, in Section 23, with empirical analysis of arrivals to IWs. We show how the arrival rate

changes over scales of hours, days and months, and during special times such as the 2006 Israel-

Lebanon War. We compare the IWs’ arrival rate patterns to the ED’s arrival rate, demonstrating a

time-delay between the two, which are due to the LOS in the EW. Then, in Section 26, we analyze

the LOS distribution in the IWs over two time-scales: days and hours. We provide operational

explanations for the unique shape of the daily LOS histogram. We compare the four IWs, and show

that all their LOS distributions have the same shape, although the parameters of these distributions

are different. For example, the expectation of the LOS varies among wards. We verified the opera-

tional reasons for those differences by interviewing the medical staff and management of the wards.

We also consider how one can simulate such special LOS distributions. In addition, a more detailed

analysis was performed to investigate the dependence between LOS and the load in the Ward.

In Section 25.1, we demonstrate how arrival, departure and LOS become integrated in the WIP

measure, and show how the number of patients in the ward (WIP) changes over time. We then

discuss its influence on the workload of nurses.

In Section 24, we investigate the frequency of blocking at the IWs. We show that the blocking

of the IWs experienced significant growth over the years. We show that this is to be expected when

considering trends in the arrival rate and the reduction of available beds. We also provide other

operational explanations that were deduced from the interviews.

Lastly, in Section 27, we compare other medical wards (e.g. Oncology) to the IW. We find several
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differences, such as in the probability to return within three month, and the LOS distribution. We

discuss medical and operational reasons for those differences.

22.1 Data Description

This documentation describes patient-level data at the Hospital. The data was recorded over the

following periods: 1/1/2004 - 1/12/2008. There is a record (line in the file) for each patient’s transfer

in the hospital. The following are the fields for each record:

• Key - a unique number which identifies the ID of each patient.

• AdmissionNo - Patients during a particular visit in the hospital are identified by a serial

number. Thus, the Key remains constant across visits, while the AdmissionNo changes by

visit.

• FALAR (ED-Ward) - A code of the location type. (“3 (ED)” - Emergency Department, “1

(Ward)” - A medical ward).

• BEWTY (MoveType) - A code of the transfer transaction type. (“1 (Enter)” - enter the

hospital, “2 (Exit)” - exit the hospital, “3 (Move)” - transfer inside the hospital between

wards, “6 (Exit V)” - patient exits the hospital for a “vacation”, “7 (Return V)” - patient

returns to the hospital from “vacation”).

• D-BWIDT - Patient’s arrival date to the ward.

• D-BWEDT - Patient’s exit date from the ward.

• BWIZT - Patient’s arrival time to the ward.

• BWEZT - Patient’s exit time from the ward.

• ORGPF - Nursing ward code (the physical ward where the patient is hospitalized).

• ORGFA - Medical ward code (the ward that is actually in charge of the patient, which could

differ from the ward where the patient physically resides).
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23 Arrivals to the Internal Wards

In this section, we describe the trends and patterns of arrival rates to the Internal Wards, in various

resolutions. The analysis provided here is only of the average arrival rate, and does not describe the

stochastic variability of the arrival process. The analysis is carried out in three time resolutions:

yearly, weekly, and daily. Each time-scale serves different hierarchy level in the hospitals’ work-force

planning process, as described in Section 10.3.3.

Figure 53 describes the arrival rates per month from March 2004 to October 2008. Arrivals

vary between 900 and 1,150 patients per month. There is general increasing trend in the number

of patients of 1.7% per year. We also observe a special period between July and August 2006, in

which the arrival rate is much smaller, around 850-900 patients per month. This is the effect of the

2006 war in the north of Israel.

In order to identify monthly patterns, we calculated the average monthly arrival rates. This

data is presented in Figure 54, with minimum and maximum values for each month (the data from

7-8/2006 were excluded). We see that January is the month with the highest arrival rate during the

year, with an average arrival rate of 1,150 patients per month. This fact is in agreements with the

common winter overcrowding of IWs. From January to April, the rate deceases, until it reaches a

minimum rate of 950 patients per month. Then the rate slightly increases and stabilizes on 1,050

patients per month. Total Arrivals by Month and Year, all Internal Wards
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Figure 53: Arrival by year and month

When considering weekly patterns of arrival rates, we identify the following pattern (see Figure
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Trends in Monthly Arrival rates to IWs (2004-2008)
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Figure 54: Arrival by month

55): The rate is highest at the beginning of the week (Sunday-Tuesday) and lowest during the

weekend (Friday-Saturday). This pattern is valid for regular patients but not for Ventilated (V)

and ICU (Intensive Care Unit) patients as can be seen in Figure 56. The arrival rate of the severe

patients is constant over the days of week.Average Arrival Rate per Hour by Day of Weak, all Internal Wards, 2008
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Figure 55: Arrival by day of week

When considering daily patterns, the arrivals to IWs are determined by the arrival process to

the EW. We know that patients arrive at the hospital according to a time-dependent arrival rate

[56]. Most patients arrive to the ED during the day and move to the IWs in the late afternoon.
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Average Arrival Rate per Hour by Patient Type, Ward A, 2008
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Figure 56: Arrival by day of week and patient type (Regular, V, ICU)

Figure 57 shows these daily patterns together. The process of admissions to the wards (transferals

from the ED or other wards) has a pattern similar to the general arrivals but it is shifted in time.

The time-lag between them is due to the LOS in the EW. Figures 58 and 59 show the weakly and

daily arrival rate patterns of all IWs. We observe that most patients arrive to the IW between 12:00

- 02:00; late night and morning hours arrival rates are much lower. We also observe that weekends

behavior is close in shape to weekdays behavior, though the overall volume during weekends is lower.Average Arrival Rate per Hour, 2004-2008
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Figure 57: Arrival to EW and IW by day of week and hour
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Average Arrival Rate per Hour, Ward A, 2004-2008
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Figure 58: Arrival rate by day of week and hour

Average Arrival Rate per Hour, Ward A, 2004-2008
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Figure 59: Arrival rate by hour
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24 Blocking at the Internal Wards

The number of beds in each ward is limited. Hence, there are cases in which a patient is referred to

a specific ward but there are no available beds for hospitalization in that ward. In such cases, the

patients are blocked in the ED and transfered for hospitalization in other wards. The doctors of the

originally-assigned ward will be in charge of the medical needs of the patient, but nursing treatment

will be the responsibility of the actual hospital ward where the patient is located. Therefore, there

is a distinction in the data between the Nursing-ward code, which is the code for the physical ward

where the patient is hospitalized, vs. the Medical-ward code, which is the code for the ward that is

actually in charge of the patient. Using this difference, one can estimate and analyze the frequency

of blocking. There is also a less significant phenomena where, under these circumstances, another

patient is actually transferred (or released) from the referred-to ward in order to vacate a bed. We

do not estimate these incidents.

The number of beds in the IWs changed over the years. Figure 60 shows the number of beds

available in all the IWs during the period 2004-2008. We observe that, in general, there is a reduction

in the number of beds. At the beginning of 2007, there was a period during which a new “half-ward”

with 20 beds was opened on a temporary basis. We also observed in Section 23 that the arrival rate

increased over the years. Hence, we anticipate that blocking incidents will increase.Number of Beds in IWs, 2004-2008
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Figure 60: Number of beds in IWs by year and month (2004-2008)

Figure 61 describe blocking incidents that happened during the studied period. In general,

the blocking percentage is around 3% (average of 30 incidents per month, when the arrival rate is
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around 1000 patients per month). Figure 61 shows that, until 2007, blocking occurred mainly in

January which is the month with the highest arrival rate. But from year 2007, blocking became

a routine event. From 2007, almost 20% of the patients in IW E were blocked every day (see

Figure 62). Some of the change is explained by the incease in arrivals and decrease in hospital

beds (64). When examined in more details, we find that this is not the whole story since peaks in

blocking do not match peaks in arrivals during that period. We have investigated the change we saw

by intervieiwing hospital managment, and discovered that, at the beginning of 2007, the hospital

started renovating IW D, and decreased the number of hospital beds in this ward. Therefore, the

hospital decided to dedicate some of the beds in Ophthalmology Wards to IW patients; in fact, the

Ophthalmology Ward became a branch of IW E. From that point on, patients were transferred to the

Ophthalmology Wards on a regular basis, not only when blocked. Hence, in this graph, we see two

seperate phenomena that represent two blocking policies: until 2007, blocking only when necessary,

during overcrowding periods; and after 2007, load balancing between IWs and a new “buffer” ward.

Figure 63 illustrates the blocking phenomena on Day Of Week (DOW) basis, along with the

number of patients in the ward, during the period 2007-10/2008. This is an interesting graph since

it shows that blocking is stable during the week although arrival rates and the number of patients

during the weekend are much smaller. This might be also a consequence of routinely sending patients

to the buffer ward, balancing that continue also during weekends, as there are fewer personnel in

the wards during weekends.
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Blocking Percentage per Day of Week,Ward E, 2007-2008
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Figure 62: Percent of patients blocked by day in Ward E (2007-10/2008)
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% Blocked, Arrivals per quarter, Beds; 2004-2008
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25 Departures from the Internal Wards

In this section, we describe departure rate patterns. These are different from the arrival rate

patterns both in weekly and daily resolutions. Figure 65 shows weekly patterns. We observe that

the departure rate during weekdays is higher than during weekends. There are very few departures

on Saturdays. During weekdays, there are more departures on Sunday, Wednesday, and Thursday

than on Monday and Tuesday. There is a tendency to release patients before the weekend, which

is very clear in the data. This has two reasons: First, the hospital has fewer staff during weekends,

who can therefore treat fewer patients; Second, there is the need to release beds for patients who are

admitted at the beginning of the week. Figures 66 and 67 describe patterns at a daily resolution.

We find that patients leave between 12:00 to 21:00, most of them between 15:00 to 16:00. The

departures’ daily pattern is very different from that of arrivals. This is due to the release procedure.

Specifically, during morning hours, doctors check all patients and decide which ones to release.

Then, between 11:00 to 12:00, they write release letters that they pass on to the nurses. The nurses

continue the release process by guiding the patient and family through the release bureaucracy, and

providing instructions for further treatment. If needed, the nurse coordinates the patients’ transfer

to another location (e.g. an elderly citizens’ home or a rehabilitation center). This process takes

several hours, and thus most patients are released in the early afternoon. The difference between

the arrival rate and departure rate patterns determines the changes in the number of patients over

the day and the unique LOS distribution that will be described below.Total Departures by Day, all Internal Wards, 2008
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Figure 65: Departures by day in all Internal wards (2008)
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Average Departute Rate per Hour, Ward A, 2008
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Figure 66: Departures by hour in weekdays at IW A (2008)

Average Departute Rate per Hour by Day Intervals, Ward A, 2008
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Figure 67: Departures by day and hour in IW A (2008)
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25.1 Number of Patients (WIP) in the Internal Wards

In this section, we examine the behavior of in the number of patients (WIP) at different resolutions.

Figure 68 illustrates the average number of patients in each IW, at a yearly resolution. We also

indicated the number of beds on the same graph. This graph exhibits a very similar picture to the

one we saw when examining the arrival rate. We observe the following interesting phenomena:

• During 7-8/2006, all the wards had a low number of patients. This was due to the war during

that time. The low count is consistent with the decrease in arrival rates exhibited during this

period, as seen in Figure 53.

• The number of patients in IW D decreased starting from April 2007. As we see in Figure 68,

this is consistent with the reduction of the number of beds in this ward, starting at that time.

• Between 1-3/2007, the number of patients in IW B is very large. This is due to a unique

organizational change that was implemented during that period, in which this ward was added

a branch of 20 more beds, located in a different location.

• The number of patients in IW E was slightly reduced starting in 4/2008. This is again due to a

reduction in the number of beds, which occurred because the ward was moved to a temporary

location, with a smaller space, for renovation.

• In some cases, the number of patients is larger than the number of beds. In these situations

patients are hospitalized in corridors.
Average Number of Patients and Wards' beds capacity
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Figure 68: Average number of patients in each IW by month
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When looking at a weekly resolution, for example in Figure 70, we note that the decrease in arrival

rate and increase in departure rate, during Wednesdays and Thursdays, reduces dramatically the

average number of patients towards the weekend. The fact that, during the weekend itself, patients

are not released causes an increase in the number of patients that starts on Friday evening. When we

study a daily resolution, we observe that the number of patients in the ward, during the afternoon

hours, is significantly lower than the average number of patients during the whole day. Figure 69

illustrates this pattern in Ward A, by week days, and Figure 71 illustrates the same pattern in Ward

A during the hours of the days on Sundays.Arival,Depart,WIP byDay A chart
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Figure 69: Arrivals, departures, and number of patients in Ward A by DOW

It is obvious that daily changes in WIP (patients count) imply daily changes in workload. As

discussed in earlier parts of this thesis, it is customary to define personnel workload on the basis of

number of patients in the ward. The fact that this is changing in time suggests that some adjustments

in personnel levels should be performed during the day. The only problem with this idea is that

workload is not evenly distributed over a patient’s LOS. In reality, when patients are arriving to

the ward and when leaving it, there is much more work for the nurse. If the arrival and departure

rate were constant, this would not influence the workload. But when they do change overtime, they

could have a dramatic impact on personnel workload. To understand this impact, we estimate the

workload that each patient brings to the ward, using our Erlang-R model. Each patient alternates,

during his stay, between “needy” and “content” states. When a patient is needy he requires service
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Arival,Depart,WIP byWeek A char
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Figure 70: Arrivals, departures, and number of patients in Ward A by DOW and hour
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Figure 71: Arrivals, departures, and number of patients in Ward A by hour
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from a nurse. A patient starts and ends his stay in a needy states. The average time of the first

and last services (when admitted or discharged from the ward) could be different from the average

service time of regular services (we do not have data on such times, but it is reasonable to make

this assumption, and it is supported nurses). Thus, in order to define the average workload over the

week, we shall count the number of patients that arrive, depart and are hospitalized during every

hour, and multiply them by the service time they require. Figure 72 shows the changes in workload

during one customer’s stay. We see that the times when the WIP is lowest are those when the

workload is highest. Thus, if one tries to calculate workload solely on the basis of the number of

patients in the ward, one would significantly underestimate workload at the busiest time of the day.
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Figure 72: Number of patients and workload during the LOS of a random patient

One way to avoid this problem is to consider the number of patient at a specific time of day, and

calculate personnel staffing at a weekly resolution. Figure 73 shows the distribution of the number

of patients at midnight. We choose that time as the changes in the number of patients during night

hours is low, and hospitals use it as a proxy for the load level in the medical ward. The distribution

seems almost normal, which implies that classical queueing models might be useful for predicting

the number of patients on a weekly resolution. One of the most important parameters for such
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models is the LOS distribution, which we form to next.
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26 Length Of Stay (LOS) in the Internal Wards

In this section, we investigate the distribution of LOS, and the changes in ALOS during the years.

As before, we first study yearly resolution to identify trends. Figures 74 and 75 depict the ALOS in

all the IWs, at a resolution of years and month, respectively. We see that the ALOS has changed

during the years and months, and is different among wards. It seems that IW E and B have much

shorter ALOS. We found several explanations for that phenomena. IW E treats the easiest patients

of all IWs, thus its patients are expected to stay a shorter time at the hospital. However, this is not

the case for IW B. In order to understand this fact, we interviewed the management of IW B. In

IW B, one of the doctors is assigned the task of reducing delays for exams and for specialist-services

from other departments at the hospital. This is crucial at the beginning of a patient’s stay, when

the treatment plan is outlined. Sometimes ward B sends more patients per day to exams than is

set by hospital regulations. These regulations were made to guarantee equal access to medical care

by all wards, thus this practice might not work if all wards exercise it. When examining Figure 74

more closely, we also see that, during 1-2/2007, the ALOS of ward B was significantly increased.

This was the time when IW B had the branch of 20 additional beds. This raises the conjecture that

there is also an effect of the size of the ward, namely diseconomies-of-scale in our case: larger wards

are harder to manage, which has a negative effect on the ALOS of patients. This conjecture is also

supported by the reduction in the LOS in IW D from mid-2007, when ward size decreased. More

research is needed, though it is clear that ALOS can be reduced. The fact that the LOS is not stable

during the months and between wards raises the hypothesis that there are other parameters that

influence ALOS. In the next section, we study one such hypothesis and investigate the connection

between LOS and the workload in the ward.

We also examined the LOS distribution. Figure 76 shows the LOS cumulative distribution for

the last two years. When looking at a resolution of days and hours we find two interesting patterns

in the LOS distribution: We see that there is a clear stochastic order between wards A, C, D, and

B. Figure 77 shows the LOS distribution in one of the Internal Wards. It can be seen that, when

considering daily resolutions, the gamma and log-normal distributions fit the data well. The second

and third graphs are at hourly resolution and illustrate the impact of the discharge policy: the

decision on discharging patients is done once a day, hence the LOS distribution has peaks in spaces

of 24 hours. This distribution looks like a mixture of several normal distributions. Figure 78 shows

the LOS distribution for the other internal wards in a resolution of days.

126



LOS By Arrival Year, all IWs, 1/2004-8/2008
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Figure 74: Average LOS in all Internal wards by year

LOS By Arrival Month, all IWs, 1/2004-8/2008
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Figure 75: Average LOS in all Internal wards by month
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Length of Stay (LOS), all Internal Ward
Hospital Data, 2007-8/2008
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Figure 76: LOS cumulative distribution function of all Internal wards 2007-8

26.1 Length of Stay in Internal Wards as a Function of Workload

In this section, we investigate the impact of workload on the LOS in IWs. There could be two

approaches to investigate this dependency. The first is using econometric tools as in [20], the second

using queueing theory as in [56]. We follow the latter as it provides a more complete picture of

the relation between the two measures. There are several ways to define workload. We consider

the patients load, i.e. load due to the number of patients present in the ward. If LOS depends

on the workload, we expect to find that, in highly loaded times, the release rate from the ward is

higher then in lightly loaded times. This higher rate could be a positive effect that represents the

ability of the system to increase its efficiency when needed, or a negative sign of overcrowding that

enforces doctors to send patients home too early. One can distinguish between the two, for example

by examining the fraction of returns as a function of workload.

In order to find whether release rate depends on the number of patients in the ward (denoted by

l), we consider the medical ward as a black-box and fit a birth and death process to its number of

patients. We then examine the fit of several queueing models to the data. The models we consider

are M/M/∞, M/M/s, and M/M/s/n. In these models, it is implicitly assumed that there is no

dependency between the release rate and the state of the system. Hence, in all of them there is an

increasing linear relation between the death rate and the number of customers in the system (at

least over some range of l). Figure 79 demonstrates this relation.

In order to fit a birth and death process to the number of patients in a ward, we use the following

notation: Define Tl to be the average time that the system is in state l (the ward has l patients)
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Length of Stay (LOS), Internal Ward A
Hospital Data, 2004-8/2008
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Figure 77: LOS distribution of IW A in several time scales
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Length of Stay (LOS), Internal Ward B
Hospital Data, 2004-8/2008
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Figure 78: LOS distribution of IW B-E

until it moves to either state l + 1 or l − 1 (i.e. a patient enters or exits the ward). In addition,

define Pl,l+1 as the probability to transfer from state l to state l + 1, given that it was in state l,

and Pl,l−1 as the probability to transfer from state l to state l − 1, given that it was in state l. We

estimate these probabilities by calculating the proportion of times the system moved between these

states, given that it was in state l. Then, Pl,l+1

Tl
and Pl,l−1

Tl
are the birth and death rates from state

l, respectively. We then examine the death rate as a function of l, in order to support or refute our

hypothesis, i.e. does one of the classical queueing models fit the data?.

Figure 80 depict the death rate as a function of l, for all wards during the period 8/2007-7/2008.

We chose that period since there were no changes in the size of wards, and we are unaware of any

policy changes during that period. The range of states varies among wards because each Internal

ward has different bed capacity. We note that death rate is constant for most system states. In

some of the wards, (e.g. IW B and E) the death rate seems do decrease in the first lowest states,

and in other wards (e.g. IW C and E) we note an increase of the death rate in the highest states.

As can be seen in Figure 81, this almost constant death rate means that the release rate from the

ward decreases as the number of patients in the ward increases, which is different from previously

mentioned queueing models. The increase at the end means that if the ward is overcrowded than

patients are actually sent home, in order to clear beds in those wards.
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Figure 79: Theoretical Relation between death rate and system’s state
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Figure 80: Death rate as a function of number of patients in ward
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Service rate as a function of Load
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Figure 81: Release rate as a function of number of patients in ward

26.2 Simulating Internal Wards Length of Stay

In Section 26, we described the LOS distribution in two time scale: days and hours. The latter

distinct shape can be created in the following ways:

• Method 1: Create hourly LOS as a mixture of normal distributions.

• Method 2: Sample the number of days from Log-normal distribution and the actual departure

time from a normal distribution around 15:00.

Using the second method is not simple: When creating an IW simulation, this two-steps procedure

of sampling LOS must be combined with the dynamics of the IW itself, and thus one would like to

create a mechanism in the simulation in a way that eventually results in this kind of LOS.

We propose the following mechanism: After arrival, sample a departure time for the following

day around 15:00. This time is normally distributed. Then determine departure by drawing from

the following distribution: given a patient is on her t-day of hospitalization, release the patient with

probability ht and stay for another day with probability of 1−ht; Here the values of ht are drawn from

the hazard-rate function of the LOS distribution in a time scale of days (ht = P (LOS = t|LOS ≥ t).

Figure 82 shows this hazard-rate function for IW A. It seems that ht is increasing at the beginning,

then decreasing, and finally stabilizing. Figure 83 shows the LOS created by this method verses

actual LOS data in IW A.
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Figure 82: Hazard rate of LOS in IW A
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Figure 83: Simulated LOS vs. real data
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27 Returning to Hospitalization - Internal Wards vs. Oncology

Wards

Up to now, we concentrated on IWs, but a hospital is rich with other medical wards that have

different characteristics. We now study the phenomenon of returning to hospitalization, as a classi-

fying characteristic among wards, and discuss its significance for determining beds allocation. We

distinguish between two types of wards: First are wards where a patient is admitted for a one-time

treatment, such as an IW. In such wards, if a patient returns shortly after a previous visit, the

return is considered negatively, possibly due to a lack of treatment received (though this is certainly

not always the case). The second type of wards, such as an Oncology ward, is one in which patients

return for treatment every several weeks. In this case, patients are expected to return, and each

patient visits the hospital many times until cured. Table 5 compares the average number of returns

per patient, in the studied period, and the probability of return within three months. We see that

the two types of wards are indeed very different.

Ward Average returns Average time between successive Probability of return ALOS

per patient returns of a patient (days) within 3 month (days)

Internal 1.76 208 22% 4.8

Oncology 5.46 22 75% 3.4

Table 5: Returns to hospital

Figure 84 shows a histogram of the number of visits per patient in Oncology wards. Figure 85

shows the distribution of times between successive returns of patients in the Oncology wards.

This analysis improves our understanding of the connection between the number of beds needed

and the corresponding offered load: the latter requires a separation between hospitalized patients

and those who are currently on “vacation” (i.e. at home). While in an IW, one can generally assume

that each visit of a patient is independent of previous visits, this need not be the case in wards

such as Oncology: the latter must reserve space for patients that are in the middle of a series

of treatments. In fact, these patients must have a higher priority over new patients, who can be

transfered to another facility if needed. Hence, Oncology planning is closer to the planning of a

medical clinic (see Green et al. [37]).

We propose to use the Erlang-R model to solve the bed allocation problem of such wards. In this

case, “Needy” patients are those who are currently hospitalized in the ward, “Content” patients are

the ones who are under the responsibility of the clinic but currently at home. The model enables
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one to separate the two streams of customers: new and returning, and set each one its own service

goals. Here s will be the number of beds allocated to the ward, while n can set the maximum

number of patients treated by the ward. Returning patients should not wait long for a bed. On the

other hand, treatment is very expensive, which suggests that in this case P (W > 0) should be lower

then P(block).

The offered load ratio, in Oncology wards, is B = 1/22
0.817·1/3.42 = 0.19. Using our analysis in

Section 19.1.3, we deduce that with such offered load ratios, considering the influence of returning

customers is very important. Therefore, the semi-open Erlang-R model is more suitable than the

Erlang-B model (as suggested by de Bruin et al. [10]). There is also another difference between the

approach of de Bruin et al. and ours, as they have not made the distinction between the number

of beds (s) and the maximum number of treated patients (n), and assumed them to be equal (i.e.

s = n).

Figure 86 shows the arrival rate per month to Oncology wards during 2006-2008. Note that there

is an increasing trend in the arrival process. We observe an increase of 11% per year in the number

of visits to the Oncology wards. This fact suggests that it might even needed to use a time-varying

model. Arrival Rate and Trend, Oncology Ward, 2006-2008
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Figure 86: Arrival rate to Oncology wards, 2006-2008
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28 In What Regime Do the Internal Wards Operate?

In the field of service engineering, it has become customary to distinguish between three operational

regimes: The efficiency-driven regime (ED-regime), the Quality-driven regime (QD-regime), and the

Quality- and efficiency-driven regime (QED-regime). The ED-regime emphasizes the efficiency of

the system: servers are highly utilized (close to 100%), and hence customers typically suffer through

a long wait for service. In the QD-regime, the emphasis is on the quality of service provided to

served customers: servers are available for service for a significant part of the time, and customers

hardly wait for service. The QED-regime is somewhere in between: the emphasis is both on service

quality and on servers’ utilization. In large systems that operate in this regime, we find that servers’

utilization is around 90% and customers wait about half of the times. We would like to determine

in which of these regimes the IWs operates. We discuss this in relation to beds and doctors.

We argue that beds’ capacity of the IWs is managed in the QED-regime. To support this

statement, and in view of the fact that we have no data on the nurses operation (service time and

staffing levels), we propose to fit a loss model (Erlang-B, as in de Bruin et al. [18]) to calculate a

theoretical value for the probability of blocking. The probability of blocking is the probability that

a patient does not find an available bed in the unit he needs.

In the QED-regime (n ≈ R + β
√
R), P (block) ≈ γ√

n
= 1√

n
φ(β)
Φ(β) , and the occupancy level ρ ≈

1 − β+γ√
n

, both are O(1/
√
n). Taking the data of year 2008, we find that the average LOS in all

IWs is 5.12 days, there were 186 beds in all the IWs, and the total arrival rate is 34.4 patients

per day. Thus β = n−R√
R

= 186−34.4∗5.12√
34.4∗5.12

= 0.4 and, P (block) ≈ 2.9%. We checked, in our data,

the fraction of patients that were physically hospitalized in other wards, but were still under the

medical responsibility of IW doctors. We found that it is 3.54% of the patients, which is quite

close to the the theoretical value of 2.9%. In addition, the approximation for the occupancy level is

ρ ≈ 91.7%, which is again very close to the actual value of 93.1%. Therefore, the facts that support

our conclusion are:

1. The blocking probability is 3.54%.

2. Average beds’ utilization is 93.1%.

Note that fitting a semi-open Erlang-R (assuming one had the data on nurses) would have retained

the above conclusion, due to the orders of magnitude of blocking and utilization: both are of QED

order.

When considering doctors, we argue that doctors operate in the ED-regime. This claim is based
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on the following procedure: from 16:00 in the afternoon to 8:00 in the following morning, there is

only one doctor on duty in each IWs. This doctor admits most of the new patients of the day.

Therefore, if a patient is admitted to an IW (i.e., only if there is an available bed) he must wait

until both a nurse and the doctor on call are available. The average reception time by the doctors is

30 minutes. Thus, the appropriate model for considering the waiting of a patient in the Emergency

ward until transfered to one of the IWs is an Mt/G/1 model. We hypothesize that doctors operate

in the ED-regime, since the service time is 30 minutes, while the waiting time of a patient in the

Emergency ward has an average of 2.5 hours (see Tseytlin [71]). This is a common characteristic of

the ED-regime, where the waiting is much longer than service time.
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29 Part III - Conclusion and Future Research

In this part of the thesis, we have observed interesting phenomena obtained through extensive

empirical analysis of patients flow data. We showed how arrival and departure rates change in

time, and created distinct LOS distribution. We showed how arrivals and departures combine to

create changes in the number of patients, and the implication of that observation on staffing and

bed allocation. We discussed several interesting problems that arise from the data, such as the

dependency between load and LOS.

Our data is very rich, and much more analysis is called for. As an example, we plan such empir-

ical analysis for two Maternity wards, operated in parallel, where one distinguishes between three

types of patients: normal birth, pre-birth (pregnancy) complications, and during-birth complica-

tions (typically due to a Caesarean section). We would like to investigate whether this distinction

has an impact on LOS distribution and how it effects load balancing problems between the two

wards.
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Part IV

Future Research

In this last part, we propose several possibilities for future research.

30 Combining Managerial / Psychological / Informational Disec-

onomies of Scale Effects

In their article Boudreau et al. [12] discussed the importance of combining Operation Management

and Human Resource Management (HRM) models. The integration between the two fields is very

challenging. This integration requires some collaboration with researchers from the field of HRM,

which is not common practice. We consider it important to try and carry out such integration in

nurse staffing for one main reason; when discussing our models with doctors from an Israeli Medial

Center, there was major concern that the model might recommend “too large” departments. The

claim was that there is a managerial / psychological / informational limit to the number of patients

one MU can actually treat, and if that limit is surpassed, the quality-of-care deteriorates. The claim

was that a large MU is inferior to several small MUs, even though in a smaller MU one has fewer

medical personnel. We found that claim interesting, and suggest a few explanations for the source

of this diseconomies-of-scale effect.

1. Managerial causes. The MU manager is the one most responsible for the medical decisions.

The doctors work as a team, consulting one another about the patients before taking a medical

decision. Adding more doctors thus increases the level of knowledge of the MU but, due to the

form of responsibility distribution, it might not always lead to a similar rise in capacity. The

framework of team vs. individual responsibility has been investigated in the field of HRM. In

our context, one can find the two ways of setting, i.e. (a) team vs. (b) individual. (a) A team

of doctors was mentioned above. One can say that nurses also work as a team if all of them

are jointly responsible for all the patients in the ward. (b) In the individual setting, there is

one nurse for one or more specific patient(s) as in the case of Intensive Care Units. From the

operational point of view, the two settings are different.

2. Psychological causes. Are there unique learning and forgetting effects? It seems that there is

a difference in learning schemes between various service environments, such as the machine-

repairman problem, call center and nursing staffing problems. We know that in call centers,
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each customer is different, though his/her problems are alike (and can be classified into certain

types). One can see a learning curve in which as a new service person starts to work she begins

to learn the different types of services; as she deals with more customers she becomes more

professional which, in turn, is reflected in the rise in the quality and the efficiency of the

given services. This learning effect is known also in Industrial Engineering. This means that,

in reality, the service rate µ is not a constant parameter but is actually a function of time,

i.e. µ(t). Usually we ignore this effect by looking at steady state, assuming that all nurses

have sufficient experience. In repair-man and nurse-staffing problems we see the same effect:

as one service person deals with more customers (i.e. machines or patients) she learns more,

becoming an expert. An expert will deal with problems more efficiently; she is capable of

treating more customers better and faster. But there is one difference: in nursing and machine-

repair problems each customer “calls” the server several times during his stay/use, but the

server needs to treat each customer as an individual and to remember his problems. This is

customer learning effect. Thus, as the number of patients per nurse increases we might find a

dis-economic-of-scale effect, where the reset-time of starting the treatment of a patient might

grow with the number of customers. One could say that µ is actually a function of the system,

for example: µ(s, n). One might be able to make some assumptions on the shape of that

function (e.g. convex or constant). Combining the two learning effects, the customer learning

and the job learning, one may define a service function µ(s, n, t). But as mentioned before, we

may prefer to look at steady state, and assume that all nurses have sufficient experience, and

ignore the time effect. The shape of the function µ(s, n) is not clear; it might increase due to

overload effects (see below) or decrease as usually happens in learning curves.

3. Informational causes. How does the medical personnel react to the information overload caused

by a large number of patient? Hall and Walton [40] reviewed some literature on Information

overload in Health-Care systems, which raises some possible effects of overload. This raises

the following question: Does the number of errors rise as a function of the nurse-to-patient

ratio or as a function of the unit size?

These possible explanations could be investigated; with the combination of the Mental- and

Physical-capacity into a single model is being important and challenging. Technically speaking,

if we could define some Quality-of-Service (QoS) function in one of the following ways: (a) As a

function of the workload (b) As a function of the number of patients in the system, i.e. f(n), or

(c) As a function of the number of servers and patients in the system, i.e. f(s, n), then we could
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combine this QoS function into our optimization model. The following ways are possible:

Define E(QoS) - the average Quality of Service in the MU with n beds and s nurses, or define

P (QoS < α) - the probability that the service quality in the MU will be less than α. Then,

minn,s C(n, s) = Cnn+ Css;

s.t P (W > t) < a;

P (block) < b;

P (QoS < α) < c; or E(QoS) < c

0 ≤ s ≤ n;

The calculation of the QoS measure will be based on the system product-form solution, or its

approximations.

31 Phases of Treatment or Heterogeneous Patients

31.1 Combining the Phases of Treatment During the Hospitalization Period

When discussing this research with some medical crew, we became aware of an interesting phe-

nomenon; at the beginning of the hospitalization period (approximately the first twenty-four hours),

the patient requires intensive care while, as days pass, the care becomes less and less intensive. One

can model this fact as a frequency reduction or as a service-duration reduction over time (i.e. the

service-time function will decrease as a function of the LOS). We can divide the stay into a finite

number of sequences, and categorize them. I will demonstrate this with the two following classes:

(A) Intensive Care and (B) Regular Care. The following Figures, 87 and 88, illustrate two possible

models of the system. The first assumes that a patient can move from class A to B and the reverse.

The second model assumes that a patient starts in class A and, at some point in time, he moves

to class B and later leaves the system from class B. In both models the differentiation between

the stages was modeled through frequency reduction. This was achieved by using the following

assumption: δ > γ.

The first system is a Jackson network, with the same structure as described in Chapter 17.

Thus, it can be solved and approximated using the same methods. (open questions: is there an

assumption on the relationship between the sorting probabilities? how can we calculate them?)

The second suggestion is a closed BCMP network4 (which has a product-form solution defined by
4BCMP network contains an arbitrary but finite number N of service centers, and an arbitrary but finite number

R of different classes of customers. Customers travel through the network and change class according to transition
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Figure 87: Phases of hospitalization - Model 1
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Baskett et al. [9]), assuming FCFS discipline with identical and exponential service rates. This

model describes the situation more precisely, but it might need to be solved separately.

Note: This is one of the differences between the call center or repairman problem and nurse

staffing. Is it similar to a learning effect in some sense? (the learning of specific customer instead

of the learning of the server)

31.2 The Influence of Time Delays Before and After Medical Analysis or Surgery

In addition to the description of classes of patients in the previous subsection, one can add classes

regarding the treatment stages, i.e. before and after medical analysis or surgery. The model shown

in Figure 88 also fits this situation. This modeling allows us to give priority in medical care to each

class of patients, by setting different waiting threshold for each class. The questions that arise here

are about priority schemes, and staffing levels.

One might also want to look at a more delicate issue, and check with doctors the possible influence

of time delays on the patient situation. Is there a change in the rate of patient’s state during the

waiting time, as a function of the patient’s class? Our assumption throughout this work was that

this rate is constant, i.e. there is a linear connection between the waiting and the patient’s state. But

if it is not, for example, if it is an increasing function, then the model might give an underestimation

for the required staffing levels. (Remark: in the case of the machine-repairman problem it could be

either way, depending on the mechanical aspects of the machine; there are “delicate” machines that

need repairing immediately, while other machines can stay for weeks without changing their state).

This function could also change over stages, which means that when a patient’s state is critical, the

rate might be increasing, but when the medical state of the patient is stabilized (i.e. not critical) the

rate might be constant. (For a model that combines the changing influences of waiting and service

(in the psychological aspects) see Carmon et al. [14]).

probabilities. Thus, a customer of class r who completes service at service center i will next require service at center j

in class s with a certain probability denoted Pi,r,j,s. There are four types of BCMP networks, that differ according to

several condition it satisfies concerning the service discipline and service-time distribution. We will consider here only

Type 1. The conditions are: The service discipline is FCFS; all customers have the same service time distribution at

this service center, and the service time distribution is a negative exponential. The service rate can be state-dependent

where µ(j) will denote the service rate with j customers at the center.
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31.3 Classes of Patients (Heterogeneous Patients)

There are situations where the MU treats a few types of patient, who could be divided into several

groups (or classes) that are independent of each other. There are situations where the classes of

patients are dependent in various ways; we dealt with such models in the sections above. When the

classes are independent, the model is simpler. An example of a two-class model, can be viewed in

Figure 89. The network is a simple BCMP network, where patients from one class cannot transfer

to another class but stay in the same class for their complete stay in the system.
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Figure 89: New model for two classes of patients

32 Nurses in the QED Regime, and Doctors in the ED Regime

There is a difference between the cost of doctors and of nurses. This difference suggests that a

different regime must be considered when setting staffing levels for each type. The more expensive

resource should be ED-staffed, gaining very high utilization levels, while the less expensive resource

should be QED-staffed, with a balance between utilization and service level. We can model this

situation in the following way: we assume that nurses and doctors are separately required, therefore,

the communication and synchronization between nurses and doctors are made at separate times, i.e.

not in front of the patient. The model contains two stations of the M/M/S type with sN and sD

servers (denote as node N for Nurses, and node D for Doctors), and one M/M/∞ node, as seen in

Figure 90. In this way it is a closed network, with a fixed population of n patients. The situation

could have been modeled also as a semi-open network that contains one entrance node of the type

M/M/1, as done with the model we analyzed previously (in Chapter 11). In this case we believe,
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based on our previous experience and knowledge of the ED and QED regimes, that the appropriate

QED+ED conditions might be:

lim
λ→∞

n− sN − sD − ρ1√
ρ1

= η, −∞ < η <∞; (i)

lim
λ→∞

√
sN

(
1− RN

s1

)
= β1, −∞ < β1 <∞; (ii)

lim
λ→∞

sD

(
1− RD

s2

)
= β2, −∞ < β2 <∞. (iii)
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Figure 90: ED (doctors) and QED (nurses) model

Another option is to assume that, in some cases, nurses and doctors need to provide service

together. This assumption might lead to a different model.

33 The Combination of Patient-Call Treatments and Nurse-Initiated

Treatments

In reality, patients that do not “call” a nurse need to be checked and treated every fixed period of

time. This means that if the patient has not called the nurse for T units of time, he will join the

queue anyway, since the nurse will initiate the treatment. The consequence is that the time between

inter-arrivals is not exponential but truncated-exponential, and the nurse station is of type G/M/s.

There are other modeling possibilities, such as using a multi-class chain in which one can divide the

flow out of the nurse node into two classes, each with different exponential dormant parameters, as

was done in the case of heterogeneous patients above (see Section 31).
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34 Two Service Stations

Suppose one has two stations of the M/M/S type with s1 and s2 servers (denoted nodes 1 and 2

respectively), one entrance node of the type M/M/1, and all other nodes are M/M/∞ nodes. We

believe that the appropriate QED conditions will be:

lim
λ→∞

n− s1 − s2 −A√
A

= η, −∞ < η <∞; (i)

lim
λ→∞

√
s1

(
1− ρ1

s1

)
= β1, −∞ < β1 <∞; (ii)

lim
λ→∞

√
s2

(
1− ρ2

s2

)
= β2, −∞ < β2 <∞. (iii)

But there are also other possibilities, such as working with one node in the QED regime, and the

other node in the ED regime (see Section 32).
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Appendices

A Appendices of Part I

A.1 Steady State Measures: Proof

Proof of Theorem 1 in Section 4.

Proof. Proof of the probability of waiting (α) is based on the Arrival Theorem for open Jackson

networks [17]. Thus, based on the steady-state distribution, using striate forward calculation we

obtain:

α = P (Q1(∞) ≥ s) =
∞∑
j=0

∞∑
i=s

Pij =
∞∑
j=0

∞∑
i=s

(R1)i

ν(i)
π01

(R2)j

j!
π02 =

[
(R1)s

s!(1−R1/s)

]
π01.

Defining the marginal distribution Pi as the probability to have i customers in node 1, it follows

that:

Pi =
∑
j

Pij =
(R1)i

ν(i)
π01.

If Lq is defined as the number of customers in queue for service, and ρ = R1
s , then:

P (Lq = i) = Pi+s =
(R1)i+s

s!si
π01 = α

(
1− R1

s

)(
R1

s

)i
= α (1− ρ) (ρ)i .

If a customer becomes Needy when there are already i other Needy customers in the system,

he will need to wait an in-queue random waiting time that follows an Erlang distribution with

(i− s+ 1)+ stages, each with rate sµ. The probability that this Erlang-distributed random variable

is greater than t is
∫∞
t

sµ(sµx)i−s

(i−s)! . Clearly, the patient only waits if i > s. Defining Ek as a random

variable with the following Erlang distribution: Ek ∼ Erlang(k, sµ), it follows that P (W > t) can

be found in the following way:

P (W > t) =
∞∑
j=0

∞∑
i=s

PijP (Ei−s+1 > t) =
∞∑
i=s

Pi

∫ ∞
t

µs(µsx)i−s

(i− s)!
e−µsxdx

=
∞∑
i=0

Pi+s

∫ ∞
t

µs(µsx)i

i!
e−µsxdx =

∞∑
i=0

α (1− ρ) ρi
∫ ∞
t

µs(µsx)i

i!
e−µsxdx

= αµs (1− ρ)
∫ ∞
t

e−µsx
∞∑
i=0

(µR1x)i

i!
dx = αµs (1− ρ)

∫ ∞
t

e−µsxeµR1xdx

= αµs (1− ρ)
∫ ∞
t

e−µs(1−ρ)xdx = αe−sµ(1−ρ)t.

(A.1)
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Using P (W > t) we can define the expected waiting of customer E[W ] as

E[W ] =
∫ ∞

0
P (W > t) dt =

∫ ∞
0

αe−sµ(1−ρ)tdt =
α

µs(1− ρ)
.

A.2 The Offered Load Measure: Proofs

Proof of Theorem 2 in Section 5.1.

Proof. If Si are exponentially distributed, the Erlang-R model is actually a 2-node state-dependent

stochastic network, denoted as (Mt/M/Skt )K where Skt ∈ {1, 2, ...,∞}, k ∈ 1, 2 and K = 2. We

examine a corresponding queueing network (Mt/M/∞)2 with the same structure, service rates, and

arrival rate. The only difference is that the number of servers is infinite in every node.

Let Q∞ = {Q∞(t), t ≥ 0} be a 2-dimensional stochastic queueing process, where Q∞(t) =

(Q∞1 (t), Q∞2 (t)): Q∞1 (t) representing the number of Needy patients in the system, and Q∞2 (t) the

number of Content patients in the system, at time t.

The process Q∞(t) satisfies the following equations:

Q∞1 (t) = Q∞1 (0) +Aa1

(∫ t

0
λudu

)
−Ad2

(∫ t

0
pµQ∞1 (u)du

)
−A12

(∫ t

0
(1− p)µQ∞1 (u)du

)
+A21

(∫ t

0
δQ2(u)du

)
Q∞2 (t) = Q∞2 (0) +A12

(∫ t

0
pµQ∞1 (u)du

)
−A21

(∫ t

0
δQ∞2 (u)du

)
,

where Aa1, A
d
2, A12 and A21 are four mutually independent, standard (mean rate 1), Poisson processes.

We now introduce a family of scaled queues, indexed by η > 0, so that both the arrival rate and

the number of nurses grow together to infinity, i.e. scaled up by η, but leave the Needy and Content

rates unscaled:

Qη,∞1 (t) = Qη,∞1 (0) +Aa1

(∫ t

0
ηλudu

)
−Ad2

(∫ t

0
pµQη,∞1 (u)du

)
−A12

(∫ t

0
(1− p)µQη,∞1 (u)du

)
+A21

(∫ t

0
δQη,∞2 (u)du

)
= Qη,∞1 (0) +Aa1

(∫ t

0
ηλudu

)
−Ad2

(∫ t

0
ηpµ

1
η
Qη,∞1 (u)du

)
−A12

(∫ t

0
η(1− p)µ1

η
Qη,∞1 (u)du

)
+A21

(∫ t

0
ηδ

(
1
η
Qη,∞2 (u)

)
du

)
,

Qη,∞2 (t) = Qη,∞2 (0) +A12

(∫ t

0
pµQη,∞1 (u)du

)
−A21

(∫ t

0
δQη,∞2 (u)du

)
= Qη,∞2 (0) +A12

(∫ t

0
ηpµ

1
η
Qη,∞1 (u)du

)
−A21

(∫ t

0
ηδ

(
1
η
Qη,∞2 (u)

)
du

)
.
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By Theorem 2.2 (FSLLN) in [53],

lim
η→∞

Qη,∞(t)
η

= Q(0)(t) a.s.,

where Q(0)(t) is called the fluid approximation and is the solution of the following ODE:

Q
(0),∞
1 (t) = Q

(0),∞
1 (0) +

∫ t

0

(
λu − µQ(0),∞

1 (u) + δQ
(0),∞
2 (u)

)
du

Q
(0),∞
2 (t) = Q

(0),∞
2 (0) +

∫ t

0

(
pµQ

(0),∞
1 (u)− δQ(0),∞

2 (u)
)
du.

Note that R(t) = Q(0),∞(t) by definition. Therefore, (5.2) is actually the solution for the following

ODE:

d

dt
R1(t) = λt + δR2(t)− µR1(t),

d

dt
R2(t) = pµR1(t)− δR2(t).

Proof of Proposition 1 in Section 5.2.

Proof. The proof of Proposition 1 can be derived from straightforward calculations:

R1(t) =
∞∑
j=0

pjE[S1]E
[
λ(t− S1,e − S∗j1 − S

∗j
2 )
]

=
∞∑
j=0

pjE[S1]E
[
a+ b(t− S1,e − S∗j1 − S

∗j
2 )
]

=
a+ bt

1− p
E[S1]−

∞∑
j=0

pjE[S1]E
[
b(S1,e + S∗j1 + S∗j2 )

]
=
a+ bt

1− p
E[S1]− E[S1]b

∞∑
j=0

pjE [S1,e]− E[S1]b
∞∑
j=0

pjE
[
S∗j1

]
− E[S1]b

∞∑
j=0

pjE
[
S∗j2

]
=
a+ bt

1− p
E[S1]− E[S1]bE [S1,e]

∞∑
j=0

pj − E[S1]bE [S1]
∞∑
j=0

jpj − E[S1]bE [S2]
∞∑
j=0

jpj

=
a+ bt

1− p
E[S1]− E[S1]bE [S1,e]

1
1− p

− E[S1]bE [S1]
p

(1− p)2
− E[S1]bE [S2]

p

(1− p)2

= λ(t− E [S1,e])
E[S1]
1− p

− b p

(1− p)2
E[S1] (E [S1] + E [S2]) .
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Proof of Theorem 3 in Section 5.2.

Proof. The proof of Theorem 3 can be derived from straightforward calculations:

R1(t) =
∞∑
j=0

pjE[S1]E
[
λ(t− S1,e − S∗j1 − S

∗j
2 )
]

=
∞∑
j=0

pjE[S1]E
[
λ(t)− λ(1)(t)

(
S1,e + S∗j1 + S∗j2

)
+

1
2
λ(2)(t)

(
S1,e + S∗j1 + S∗j2

)2
]

=
∞∑
j=0

pjE[S1]E
[
λ(t)− λ(1)(t)

(
S1,e + S∗j1 + S∗j2

)]
+

1
2
λ(2)(t)E[S1]

∞∑
j=0

pjE

[(
S1,e + S∗j1 + S∗j2

)2
]

=
E[S1]
1− p

[
λ(t)− λ(1)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)]
+

1
2
λ(2)(t)E[S1]

∞∑
j=0

pjE
[
S2

1,e + (S∗j1 )2 + (S∗j2 )2 + 2S1,eS
∗j
2 + 2S∗j1 S

∗j
2 + 2S1,eS

∗j
1

]
=
E[S1]
1− p

[
λ(t)− λ(1)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)]
+

1
2
λ(2)(t)E[S1]

∞∑
j=0

pj
(
E[S2

1,e]

+jV AR[S1] + j2E[S1]2 + jV AR[S2] + j2E[S2]2 + 2jE[S1,e]E[S2] + 2j2E[S1]E[S2] + 2jE[S1,e]E[S1]
)

=
E[S1]
1− p

[
λ(t)− λ(1)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)]
+

1
2
λ(2)(t)E[S1]

(
1

1− p
V AR[S1,e]

+
1

1− p
E[S1,e]2 +

p

(1− p)2
(V AR[S1] + V AR[S2] + 2E[S1,e]E[S2] + 2E[S1,e]E[S1])

+
p(1 + p)
(1− p)3

(
E[S1]2 + E[S2]2 + 2E[S1]E[S2]

))
=
E[S1]
1− p

[
λ(t)− λ(1)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)
+

1
2
λ(2)(t)

(
E[S1,e]2 + 2

p

1− p
E[S1,e] (E[S1] + E[S2]) +

p2

(1− p)2
(E[S1] + E[S2])2

)
+

1
2
λ(2)(t)

(
V AR[S1,e] +

p

1− p
(V AR[S1] + V AR[S2]) +

p

(1− p)2
(E[S1] + E[S2])2

)]
=
E[S1]
1− p

[
λ(t)− λ(1)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)
+

1
2
λ(2)(t)

(
E [S1,e] +

p

1− p
(E [S1] + E [S2])

)2

+
1
2
λ(2)(t)

(
V AR[S1,e] +

p

1− p
(V AR[S1] + V AR[S2]) +

p

(1− p)2
(E[S1] + E[S2])2

)]
=
E[S1]
1− p

[
λ

(
t− E [S1,e]−

p

1− p
(E [S1] + E [S2])

)
+

1
2
λ(2)(t)

(
V AR[S1,e] +

p

1− p
(V AR[S1] + V AR[S2]) +

p

(1− p)2
(E[S1] + E[S2])2

)]
.
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A.3 The Offered-Load for Sinusoidal Arrival Rate: Proofs

Proof of Theorem 4 in Section 5.3.1.

Proof. Assuming Si is exponentially distributed, Si,e = Si, knowing that a sum of j identical ex-

ponential variables, with rate µ, has an Erlang distribution with parameters µ and j, we can find

explicit expressions for E[cos (ω(S∗j11 + S∗j22 ))], and E[sin (ω(S∗j11 + S∗j22 ))]. Defining x ≡ S∗j11 ∼

Erlang(µ, j1), and y ≡ S∗j22 ∼ Erlang(δ, j2):

E[cos (ω(S∗j11 + S∗j22 ))] = E[cos (ω(x+ y))]

=
∫ ∞

0

∫ ∞
0

1
2

(
eiω(x+y) + e−iω(x+y)

) µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy =

=
1
2

∫ ∞
0

∫ ∞
0

eiωxeiωy
µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy

+
1
2

∫ ∞
0

∫ ∞
0

e−iωxe−iωy
µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy

(A.2)

=
1
2

∫ ∞
0

eiωx
µj1xj1−1e−µx

(j1 − 1)!
dx

∫ ∞
0

eiωy
δj2yj2−1e−δy

(j2 − 1)!
dy

+
1
2

∫ ∞
0

e−iωx
µj1xj1−1e−µx

(j1 − 1)!
dx

∫ ∞
0

e−iωy
δj2yj2−1e−δy

(j2 − 1)!
dy

=
1
2

∫ ∞
0

µj1xj1−1e−(µ−iω)x

(j1 − 1)!
dx

∫ ∞
0

δj2yj2−1e−(δ−iω)y

(j2 − 1)!
dy

+
1
2

∫ ∞
0

µj1xj1−1e−(µ+iω)x

(j1 − 1)!
dx

∫ ∞
0

δj2yj2−1e−(δ+iω)y

(j2 − 1)!
dy

=
1
2

µj1

(µ− iω)j1

∫ ∞
0

(µ− iω)j1xj1−1e−(µ−iω)x

(j1 − 1)!
dx

δj2

(δ − iω)j2

∫ ∞
0

(δ − iω)j2yj2−1e−(δ−iω)y

(j2 − 1)!
dy

+
1
2

µj1

(µ+ iω)j1

∫ ∞
0

(µ+ iω)j1xj1−1e−(µ+iω)x

(j1 − 1)!
dx

δj2

(δ + iω)j2

∫ ∞
0

(δ + iω)j2yj2−1e−(δ+iω)y

(j2 − 1)!
dy

=
1
2

µj1

(µ− iω)j1
δj2

(δ − iω)j2
+

1
2

µj1

(µ+ iω)j1
δj2

(δ + iω)j2

=
1
2
µj1δj2

(
1

(µ− iω)j1(δ − iω)j2
+

1
(µ+ iω)j1(δ + iω)j2

)
and

E[sin (ω(S∗j11 + S∗j22 ))] = E[sin (ω(x+ y))]

=
∫ ∞

0

∫ ∞
0

1
2i

(
eiω(x+y) − e−iω(x+y)

) µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy

(A.3)
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=
1
2i

∫ ∞
0

∫ ∞
0

eiωxeiωy
µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy

− 1
2i

∫ ∞
0

∫ ∞
0

e−iωxe−iωy
µj1xj1−1e−µx

(j1 − 1)!
δj2yj2−1e−δy

(j2 − 1)!
dxdy

=
1
2i

∫ ∞
0

eiωx
µj1xj1−1e−µx

(j1 − 1)!
dx

∫ ∞
0

eiωy
δj2yj2−1e−δy

(j2 − 1)!
dy

− 1
2i

∫ ∞
0

e−iωx
µj1xj1−1e−µx

(j1 − 1)!
dx

∫ ∞
0

e−iωy
δj2yj2−1e−δy

(j2 − 1)!
dy

=
1
2i

∫ ∞
0

µj1xj1−1e−(µ−iω)x

(j1 − 1)!
dx

∫ ∞
0

δj2yj2−1e−(δ−iω)y

(j2 − 1)!
dy

− 1
2i

∫ ∞
0

µj1xj1−1e−(µ+iω)x

(j1 − 1)!
dx

∫ ∞
0

δj2yj2−1e−(δ+iω)y

(j2 − 1)!
dy

=
1
2i

µj1

(µ− iω)j1

∫ ∞
0

(µ− iω)j1xj1−1e−(µ−iω)x

(j1 − 1)!
dx

δj2

(δ − iω)j2

∫ ∞
0

(δ − iω)j2yj2−1e−(δ−iω)y

(j2 − 1)!
dy

− 1
2i

µj1

(µ+ iω)j1

∫ ∞
0

(µ+ iω)j1xj1−1e−(µ+iω)x

(j1 − 1)!
dx

δj2

(δ + iω)j2

∫ ∞
0

(δ + iω)j2yj2−1e−(δ+iω)y

(j2 − 1)!
dy

=
1
2i

µj1

(µ− iω)j1
δj2

(δ − iω)j2
− 1

2i
µj1

(µ+ iω)j1
δj2

(δ + iω)j2

=
1
2i
µj1δj2

(
1

(µ− iω)j1(δ − iω)j2
− 1

(µ+ iω)j1(δ + iω)j2

)
.

Incorporating (A.2) and (A.3) into (5.10) yields:

R1(t) =
E[S1]λ̄
1− p

+ E[S1]λ̄κ
∞∑
j=0

pjE
[
sin (ωt) cos (ω(S∗j+1

1 + S∗j2 ))− sin (ω(S∗j+1
1 + S∗j2 )) cos (ωt)

]
=

=
E[S1]λ̄
1− p

+ E[S1]λ̄κ
∞∑
j=0

pj
[
sin (ωt)

1
2
µ(j+1)δj

(
1

(µ− iω)(j+1)(δ − iω)j
+

1
(µ+ iω)(j+1)(δ + iω)j

)

− cos (ωt)
1
2i
µ(j+1)δj

(
1

(µ− iω)(j+1)(δ − iω)j
− 1

(µ+ iω)(j+1)(δ + iω)j

)]
=
E[S1]λ̄
1− p

+ E[S1]λ̄κ
1
2

∞∑
j=0

(pµδ)jµ
[
sin (ωt)

(
1

(µ− iω)j+1(δ − iω)j
+

1
(µ+ iω)j+1(δ + iω)j

)

− cos (ωt)
1
i

(
1

(µ− iω)j+1(δ − iω)j
− 1

(µ+ iω)j+1(δ + iω)j

)]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

∞∑
j=0

(pµδ)j
1

(µ− iω)j+1(δ − iω)j
+

1
2
λ̄κ sin (ωt)

∞∑
j=0

(pµδ)j
1

(µ+ iω)j+1(δ + iω)j

− 1
2
λ̄κ cos (ωt)

1
i

∞∑
j=0

(pµδ)j
1

(µ− iω)j+1(δ − iω)j
+

1
2
λ̄κ cos (ωt)

1
i

∞∑
j=0

(pµδ)j
1

(µ+ iω)j+1(δ + iω)j
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=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

1
(µ− iω)

∞∑
j=0

(
pµδ

(µ− iω)(δ − iω)

)j
+

1
2
λ̄κ sin (ωt)

1
(µ+ iω)

∞∑
j=0

(
pµδ

(µ+ iω)(δ + iω)

)j
− 1

2
λ̄κ cos (ωt)

1
i(µ− iω)

∞∑
j=0

(
pµδ

(µ− iω)(δ − iω)

)j
+

1
2
λ̄κ cos (ωt)

1
i(µ+ iω)

∞∑
j=0

(
pµδ

(µ+ iω)(δ + iω)

)j
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

1
(µ− iω)

(µ− iω)(δ − iω)
(µ− iω)(δ − iω)− pµδ

+
1
2
λ̄κ sin (ωt)

1
(µ+ iω)

(µ+ iω)(δ + iω)
(µ+ iω)(δ + iω)− pµδ

− 1
2
λ̄κ cos (ωt)

1
i(µ− iω)

(µ− iω)(δ − iω)
(µ− iω)(δ − iω)− pµδ

+
1
2
λ̄κ cos (ωt)

1
i(µ+ iω)

(µ+ iω)(δ + iω)
(µ+ iω)(δ + iω)− pµδ

=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
+

(δ + iω)
(µ+ iω)(δ + iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
=
E[S1]λ̄
1− p

+ λ̄κ

√
(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (δ + iω)

(µ+ iω)(δ + iω)− pµδ
cos (ωt+ π + tan−1(θ)),

where

θ = i ·
(δ−iω)

(µ−iω)(δ−iω)−pµδ + (δ+iω)
(µ+iω)(δ+iω)−pµδ

(δ−iω)
(µ−iω)(δ−iω)−pµδ −

(δ+iω)
(µ+iω)(δ+iω)−pµδ

=
−µ(−δ2 + pδ2 − ω2)
ω(δ2 + ω2 + pµδ)

.

Proof of Theorem 5 in Section 5.3.1.

Proof. Incorporating (A.2) and (A.3) into (5.11) yields:

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjE
[
sin (ωt) cos (ω(S∗j1 + S∗j2 ))− sin (ω(S∗j1 + S∗j2 )) cos (ωt)

]
=

=
λ̄

1− p
+ λ̄κ

∞∑
j=0

pj
[
sin (ωt)

1
2
µjδj

(
1

(µ− iω)j(δ − iω)j
+

1
(µ+ iω)j(δ + iω)j

)

− cos (ωt)
1
2i
µjδj

(
1

(µ− iω)j(δ − iω)j
− 1

(µ+ iω)j(δ + iω)j

)]
=

λ̄

1− p
+ λ̄κ

1
2

∞∑
j=0

(pµδ)j
[
sin (ωt)

(
1

(µ− iω)j(δ − iω)j
+

1
(µ+ iω)j(δ + iω)j

)

− cos (ωt)
1
i

(
1

(µ− iω)j(δ − iω)j
− 1

(µ+ iω)j(δ + iω)j

)]

=
λ̄

1− p
+ λ̄κ

1
2

sin (ωt)

 ∞∑
j=0

(
pµδ

(µ− iω)(δ − iω)

)j
+
∞∑
j=0

(
pµδ

(µ+ iω)(δ + iω)

)j
− λ̄κ 1

2i
cos (ωt)

 ∞∑
j=0

(
pµδ

(µ− iω)(δ − iω)

)j
−
∞∑
j=0

(
pµδ

(µ+ iω)(δ + iω)

)j
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=
λ̄

1− p
+ λ̄κ

1
2

sin (ωt)
[

(µ− iω)(δ − iω)
(µ− iω)(δ − iω)− pµδ

+
(µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
− λ̄κ 1

2i
cos (ωt)

[
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
=

λ̄

1− p
+ λ̄κ

√
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
· (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ
cos (ωt+ π + tan−1(θ))

where

θ = i ·
(µ−iω)(δ−iω)

(µ−iω)(δ−iω)−pµδ + (µ+iω)(δ+iω)
(µ+iω)(δ+iω)−pµδ

(µ−iω)(δ−iω)
(µ−iω)(δ−iω)−pµδ −

(µ+iω)(δ+iω)
(µ+iω)(δ+iω)−pµδ

=
ω2δ2 + ω4 + ω2pµδ + µ2δ2 − µ2pδ2 + µ2ω2

µωpδ(µ+ δ)

Proof of Proposition 2 in Section 5.3.1.

Proof. The limits are obtained from Proposition 4 by straightforward calculations. Starting with

limits as a function of ω:

lim
ω→0

R1(t) =
E[S1]λ̄
1− p

+ lim
ω→0

1
2
λ̄κ sin (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
+

(δ + iω)
(µ+ iω)(δ + iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ lim

ω→0
sin (ωt)

[
δ

µδ − pµδ
+

δ

µδ − pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
δ

µδ − pµδ
− δ

µδ − pµδ

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ lim

ω→0
sin (ωt)

[
2δ

µδ(1− p)

]
− 0

= lim
ω→0

E[S1]λ̄
1− p

+ E[S1]
λ̄

µ(1− p)
κ sin (ωt)

lim
ω→∞

R1(t) = lim
ω→∞

E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
+

(δ + iω)
(µ+ iω)(δ + iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
= lim

ω→∞

E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt) [0 + 0]− 1

2i
λ̄κ cos (ωt) [0− 0] =

E[S1]λ̄
1− p

and

lim
ω→0

λ+
1 (t) = lim

ω→0

λ̄

1− p
+ λ̄κ

1
2

sin (ωt)
[

(µ− iω)(δ − iω)
(µ− iω)(δ − iω)− pµδ

+
(µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
− λ̄κ 1

2i
cos (ωt)

[
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
= lim

ω→0

λ̄

1− p
+

1
2
λ̄κ sin (ωt)

[
2δµ

δµ(1− p)

]
− 0

= lim
ω→0

λ̄

1− p
+

λ̄

1− p
κ sin (ωt)
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lim
ω→∞

λ+
1 (t) = lim

ω→∞

λ̄

1− p
+ λ̄κ

1
2

sin (ωt)
[

(µ− iω)(δ − iω)
(µ− iω)(δ − iω)− pµδ

+
(µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
− λ̄κ 1

2i
cos (ωt)

[
(µ− iω)(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (µ+ iω)(δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
= lim

ω→∞

λ̄

1− p
+ λ̄κ

1
2

sin (ωt) [1 + 1]− λ̄κ 1
2i

cos (ωt) [1− 1]

= lim
ω→∞

λ̄

1− p
+ λ̄κ sin (ωt)

The limits as a function of δ are proven as follows:

lim
δ→0

R1(t) =
E[S1]λ̄
1− p

+ lim
δ→0

1
2
λ̄κ sin (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
+

(δ + iω)
(µ+ iω)(δ + iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
−iω

(µ− iω)(−iω)
+

iω

(µ+ iω)(iω)

]
− 1

2i
λ̄κ cos (ωt)

[
−iω

(µ− iω)(−iω)
− iω

(µ+ iω)(iω)

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
1

µ− iω
+

1
µ+ iω

]
− 1

2i
λ̄κ cos (ωt)

[
1

µ− iω
− 1
µ+ iω

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
2µ

(µ− iω)(µ+ iω)

]
− 1

2i
λ̄κ cos (ωt)

[
2iω

(µ− iω)(µ+ iω)

]
=
E[S1]λ̄
1− p

+
λ̄κ

µ2 + ω2
(µ sin (ωt)− ω cos (ωt))

The extreme values of R1(t) in this case are maxt(R1(t)) = E[S1]λ̄
1−p + λ̄κ√

µ2+ω2
. Thus, the relative

amplitude is 1√
µ2+ω2

. As δ →∞ we obtain:

lim
δ→∞

R1(t) =
E[S1]λ̄
1− p

+ lim
δ→∞

1
2
λ̄κ sin (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
+

(δ + iω)
(µ+ iω)(δ + iω)− pµδ

]
− 1

2i
λ̄κ cos (ωt)

[
(δ − iω)

(µ− iω)(δ − iω)− pµδ
− (δ + iω)

(µ+ iω)(δ + iω)− pµδ

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
1

(1− p)µ− iω
+

1
(1− p)µ+ iω

]
− 1

2i
λ̄κ cos (ωt)

[
1

(1− p)µ− iω
− 1

(1− p)µ+ iω

]
=
E[S1]λ̄
1− p

+
1
2
λ̄κ sin (ωt)

[
2(1− p)µ

((1− p)µ− iω)((1− p)µ+ iω)

]
− 1

2i
λ̄κ cos (ωt)

[
2iω

((1− p)µ− iω)((1− p)µ+ iω)

]
=
E[S1]λ̄
1− p

+
λ̄κ

(1− p)2µ2 + ω2
((1− p)µ sin (ωt)− ω cos (ωt))

The extreme values of R1(t) in this case are maxt(R1(t)) = E[S1]λ̄
1−p + λ̄κ√

(1−p)2µ2+ω2
. Thus, the relative

amplitude is 1√
(1−p)2µ2+ω2

.
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A.4 Comparison to Erlang-C: Proof

Proof of Theorem 6 in Section 5.3.2.

Proof. We need to prove that AmpRatio < 1. AmpRatio is given by:

AmpRatio =

√
δ2 + ω2

((µ− iω)(δ − iω)− pµδ)((µ+ iω)(δ + iω)− pµδ)
/

1√
((1− p)µ)2 + ω2

Thus we need to prove that:

(δ2 + ω2)((1− p)2µ2 + ω2)
[(µ− iω)(δ − iω)− pµδ][(µ+ iω)(δ + iω)− pµδ]

?
< 1

δ2(1− p)2µ2 + ω2(1− p)2µ2 + δ2ω2 + ω4

(µ− iω)(δ − iω)(µ+ iω)(δ + iω)− pµδ[(µ+ iω)(δ + iω) + (µ− iω)(δ − iω)] + p2µ2δ2

?
< 1

δ2(1− p)2µ2 + ω2(1− p)2µ2 + δ2ω2 + ω4

(µ2 + ω2)(δ2 + ω2)− pµδ(2µδ − 2ω2) + p2µ2δ2

?
< 1

δ2(1− p)2µ2 + ω2(1− p)2µ2 + δ2ω2 + ω4 ?
< µ2δ2 + ω2δ2 + µ2ω2 + ω4 + 2pµδ(ω2 − µδ) + p2µ2δ2

δ2(1− p)2µ2 + ω2(1− p)2µ2 ?
< µ2ω2 + µ2δ2(1− p)2 + 2pµδω2

ω2(1− p)2µ2 ?
< µ2ω2 + 2pµδω2

Which is true for every µ, δ, p, and ω, since 0 ≤ p ≤ 1.

In the second part of the theorem, we need to prove that AmpRatio reaches its minimum when

ω =
√
δµ(1− p). The derivative of AmpRatio by ω is:

dAmpRatio

dω
=

2pωµ(2δ + (2− p)µ)(ω2 + (1− p)µδ)(ω2 − (1− p)µδ)
(ω4 + (p− 1)2δ2µ2 + ω2(δ2 + 2pδµ+ µ2))2

This derivative equals zero when ω = 0 or ω =
√
δµ(1− p). When ω = 0 the AmpRatio reaches its

maximum which is 1, and when ω =
√
δµ(1− p) it reaches its minimum value.

A.5 Analysis of the Cases: Sinusoidal Arrival Rates and Deterministic Service

Times

We will now analyze R1(t) (5.10), and λ+
1 (t) (5.11) for the case of deterministic service times. In

this case it is simpler to develop an expression for λ+
1 (t), and on its basis the expression of R1(t).

Theorem 22. If Si are deterministic then,

λ+
1 (t) =

λ̄

1− p
+ λ̄κRe

{
ei(ωt−

π
2

)

1− pe−iω(S1+S2)

}
and

R1(t) = S1
λ̄

1− p
+ λ̄κ

[
Re

{
1
−iω (ei(ω(t−S1)−π

2
) − ei(ωt−

π
2

))

1− pe−iω(S1+S2)

}]
.
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Proof. We will begin with λ+
1 (t). In the deterministic case the following holds: E[S∗ji ] = jSi.

Consequently,

λ+
1 (t) =

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjE[sin (ω(t− S∗j1 + S∗j2 ))] =
λ̄

1− p
+ λ̄κ

∞∑
j=0

pj sin (ω(t− jS1 + jS2))

=
λ̄

1− p
+ λ̄κ

∞∑
j=0

pj cos
(
ω(t− j(S1 + S2))− π

2

)
=

λ̄

1− p
+ λ̄κ

∞∑
j=0

pjRe
{
ei(ω(t−j(S1+S2))−π

2
)
}

=
λ̄

1− p
+ λ̄κRe


∞∑
j=0

pjei(ωt−
π
2

)e−ijω(S1+S2)

 =
λ̄

1− p
+ λ̄κRe

ei(ωt−π2 )
∞∑
j=0

pje−ijω(S1+S2)


=

λ̄

1− p
+ λ̄κRe

{
ei(ωt−

π
2

)

1− pe−iω(S1+S2)

}
In order to find an expression for R1(t), we use the fact that when Si ∼ D, Si,e is Uniformly

distributed [0, D]. Therefore:

R1(t) = E[S1]E[λ+(t− S1,e)] = S1
λ̄

1− p
+ S1λ̄κE

[
Re

{
ei(ω(t−S1,e)−π2 )

1− pe−iω(S1+S2)

}]

= S1
λ̄

1− p
+ λ̄κ

∫ S1

0

[
Re

{
ei(ω(t−x)−π

2
)

1− pe−iω(S1+S2)

}]
dx = S1

λ̄

1− p
+ λ̄κ

[
Re

{∫ S1

0 ei(ω(t−x)−π
2

)dx

1− pe−iω(S1+S2)

}]

= S1
λ̄

1− p
+ λ̄κ

[
Re

{
1
−iω (ei(ω(t−S1)−π

2
) − ei(ωt−

π
2

))

1− pe−iω(S1+S2)

}]

The amplitude of λ+
1 (t) is given by:

∣∣∣λ̄κ ei(ωt−
π
2 )

1−pe−iω(S1+S2)

∣∣∣. The shape of this function with respect to

ω(S1 +S2) is shown in Figure 91. Since the sine function is bounded between [−1, 1], the maximum

amplitude of λ+
1 (t) will be achieved when ωj(S1+S2) = 2π for all j, since j is an integer. This means

that ω(S1 +S2) = 2π. In this case the returning streams from node 2 are fully synchronized with the

external input stream (λ(t)), and the infinite sum will converge to 1
1−p sinωt. Therefore, in this case

the relative amplitude (i.e. the relation between the amplitude of λ+
1 (t) to λ(t)) is 1

1−p , as seen in

Figure 91. On the other end, the minimal amplitude of λ+
1 (t) will be achieved when ω(S1 +S2) = π.

In this case the returning streams from node 2 will be balancing the external input stream (λ(t)),

and the relative amplitude will be 1
1+p . Other interesting points are when ω(S1 + S2) = π/2 and

ω(S1 + S2) = 3/2π. In these cases, the amplitude is 1
1+p2 sinωt, i.e. the relative amplitude is 1

1+p2 .

In general when 0 < ω(S1 + S2) < π the amplitude is decreasing with respect to the sum S1 + S2,

and when π < ω(S1 + S2) < 2π the amplitude is increasing.

Note that due to the shape of the amplitude function, special care is required when optimizing

the system. If one seeks to shorten the length of stay of customers in the system, he can usually
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Figure 91: Plot of relative amplitude of λ+
1 (t) with respect to ω

Figure 92: Plot of relative phase of λ+
1 (t) with respect to ω

159



influence the Needy and Content times (S1 and S2 respectively). However, if the system operates

in the decreasing region, shortening S1 or S2 will increase the amplitude of λ+
1 (t), and therefore

the amplitude of R1(t) will also increase. Staffing in a system in which the amplitude is large and

staffing demands are changing rapidly over time, is much more difficult to operate than a system

with a small amplitude in which the staffing is more stable over time. This is especially true in

small systems.

The phase shift of λ+
1 (t) is given by: Angle

(
ei(ωt−

π
2 )

1−pe−iω(S1+S2)

)
. The shape of this function with

respect to ω is shown in Figure 92. The phase of the aggregated arrivals is determined by a

combination of arrival rates of returning customers with different phases. We will analyze it (denote

as ts), with respect to ω(S1 +S2). If the arrival streams are fully synchronized, i.e. ω(S1 +S2) = 2π

or ω(S1 + S2) = π, then ts = 0. The maximum phase shift depends on p, and its value is 0.7297.

A.6 Validation of MOL Staffing: More Examples in Case Study 2

Since the rounding has a very large impact in small systems, we also tried to round the staffing levels

in a different way: If s(t) is less than 1, round up to 1; if s(t) is greater than 1, round down values

that are less than +0.2, otherwise round up. In this rounding procedure the actual β was closer to

the predefined one (when compared to the round up procedure), though the main difference was in

small values of β. Figure 93 shows the performance measure P (W > 0) over time for various values

of β. We see that the performance measure is relatively stable, and that the four scenarios are

separable. We can compare the two using the MSE (Mean Square Error) measure. Table 6 shows

the MSE rates for each β, for the measures P (W > 0) and E[W ]. While for the P (W > 0) measure

no significant difference is observed between the two, for E[W ] simple roundup works much better.

Measure Beta Round Special RoundUP

P (W > 0) 0.1 0.98 1.27

0.5 1.22 1.39

1 0.59 0.41

1.5 0.28 0.16

E[W] 0.1 13105.24 2899.99

0.5 754.05 100.70

1 45.69 13.63

1.5 9.52 4.29

Table 6: MSE measure for two rounding procedures
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Figure 93: Case study 2: Simulation results of P (W > 0) for various β values in small systems
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B Approximating the Number of Needy Customers and Waiting

Times Using Fluid and Diffusion Limits

In this section, we develop Fluid and Diffusion limits for Erlang-R. We then use these approximations

to analyze mass-casualty events in which the arrival rate changes rapidly during a short time.

While it is clear that fluid approximations are very useful in analyzing time-varying systems, these

approximations are also useful in understanding the transient behavior of a system in steady-state.

For example, we might need to evaluate the probability that the number of customers (patients) in

the system will exceed a certain threshold during a certain time horizon. This is useful when setting

control rules for the EW, for example starting special procedures such as ambulance diversion and

calling for additional staffing. The answer to such questions requires diffusion approximations, such

as the ones we develop here.

The Erlang-R model is a state-dependent open queueing network. We follow the mathematical

framework of Mandelbaum et al. [53] on time-varying queues. This framework give us a general

solution, suitable for time-varying arrivals, and time-varying staffing policies. Note that with general

time-varying arrival rates (λ(t), t ≥ 0), the ODE system we develop here is unlikely to be tractable

analytically. Nevertheless, we can solve it numerically.

The Erlang-R model is, in fact, a 2-node state-dependent stochastic network denoted as (Mt/M/Skt )K

where Skt ∈ {1, 2, ...,∞}, k ∈ 1, 2 and K = 2. Let Q = {Q(t), t ≥ 0} be a 2-dimensional stochastic

queueing process, where Q(t) = (Q1(t), Q2(t)): Q1(t) representing the number of Needy patients in

the system (i.e., those either waiting for service or being served), and Q2(t) the number of Content

patients in the system, at time t. The process Q(t) satisfies the following equations:

Q1(t) = Q1(0) +Aa1

(∫ t

0
λudu

)
−Ad2

(∫ t

0
pµ (Q1(u) ∧ su) du

)
−A12

(∫ t

0
(1− p)µ (Q1(u) ∧ su) du

)
+A21

(∫ t

0
δQ2(u)du

)
Q2(t) = Q2(0) +A12

(∫ t

0
pµ (Q1(u) ∧ su) du

)
−A21

(∫ t

0
δQ2(u)du

)
,

where Aa1, A
d
2, A12 and A21 are four mutually independent, standard (mean rate 1), Poisson processes.

We now introduce a family of scaled queues, indexed by η > 0, so that both the arrival rate and

the number of nurses grow together to infinity, i.e. scaled up by η, but leave the Needy and Content
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rates unscaled:

Qη1(t) = Qη1(0) +Aa1

(∫ t

0
ηλudu

)
−Ad2

(∫ t

0
pµ (Qη1(u) ∧ ηsu) du

)
−A12

(∫ t

0
(1− p)µ (Qη1(u) ∧ ηsu) du

)
+A21

(∫ t

0
δQη2(u)du

)
= Qη1(0) +Aa1

(∫ t

0
ηλudu

)
−Ad2

(∫ t

0
ηpµ

(
1
η
Qη1(u) ∧ su

)
du

)
−A12

(∫ t

0
η(1− p)µ

(
1
η
Qη1(u) ∧ su

)
du

)
+A21

(∫ t

0
ηδ

(
1
η
Qη2(u)

)
du

)
,

Qη2(t) = Qη2(0) +A12

(∫ t

0
pµ (Qη1(u) ∧ ηsu) du

)
−A21

(∫ t

0
δQη2(u)du

)
= Qη2(0) +A12

(∫ t

0
ηpµ

(
1
η
Qη1(u) ∧ su

)
du

)
−A21

(∫ t

0
ηδ

(
1
η
Qη2(u)

)
du

)
.

(B.1)

Theorem 23. (FSLLN) Using the scaling of (B.1), we have

lim
η→∞

Qη(t)
η

= Q(0)(t) a.s.,

where Q(0)(t) is called the fluid approximation and is the solution of the following ODE:

Q
(0)
1 (t) = Q

(0)
1 (0) +

∫ t

0

(
λu − µ

(
Q

(0)
1 (u) ∧ su

)
+ δQ

(0)
2 (u)

)
du

Q
(0)
2 (t) = Q

(0)
2 (0) +

∫ t

0

(
pµ
(
Q

(0)
1 (u) ∧ su

)
− δQ(0)

2 (u)
)
du.

(B.2)

This is based on Theorem 2.2 in [53]. Equation (B.2) is equivalent to the following representation


dQ

(0)
1
dt (t) = λt + δQ

(0)
2 (t)− µ(st ∧Q(0)

1 (t))
dQ

(0)
2
dt (t) = −δQ(0)

2 (t) + pµ(st ∧Q(0)
1 (t))

(B.3)

We continue by developing the diffusion limits of the Erlang-R model. These diffusion limits will

be used to develop variance and covariance phrases that enable us to develop statistical boundaries

for the number of patients in the system. The fluid and diffusion processes can be used in order to

analyze mass-casualty events as well as other time-varying scenarios, as demonstrated in Section 8.

Theorem 24. (FCLT) Using the scaling of (B.1), and the fluid limits (B.3) we have

lim
η→∞

√
η

[
Qη(t)
η
−Q(0)(t)

]
d= Q(1)(t), (B.4)

where Q(1)(t) is called the diffusion approximation and is the solution of the following SDE (Stochas-
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tic Differential Equation):

Q
(1)
1 (t) = Q

(1)
1 (0) +

∫ t

0

(
µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)− − µ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+ + δQ

(1)
2 (u)

)
du

+Ba
1

(∫ t

0
λudu

)
−Bd

2

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
−B12

(∫ t

0
(1− p)µ

(
Q

(0)
1 (u) ∧ su

)
du

)
+B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

Q
(1)
2 (t) = Q

(1)
2 (0) +

∫ t

0

(
pµ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+ − pµ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)− − δQ(1)

2 (u)
)
du

+B12

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
−B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

(B.5)

where Ba
1 , B

d
2 , B12 and B21 are four mutually independent, standard (mean is 0 and the variance at

time t is t) Brownian motions; x+ ≡ max(x, 0), and x− ≡ max(−x, 0) = −min(x, 0).

This is based on Theorem 2.3 in [53].

The following theorem presents the mean vector and the covariance matrix for the diffusion limit.

Theorem 25. Using the scaling of (B.1), the mean vector for the diffusion limit (B.5) solves the

following DE:

d

dt
E
[
Q

(1)
1 (t)

]
= µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− µ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
+ δE

[
Q

(1)
2 (t)

]
,

d

dt
E
[
Q

(1)
2 (t)

]
= pµ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
− pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− δE

[
Q

(1)
2 (t)

]
.

(B.6)

and the covariance matrix for the diffusion limit solves the following DE:

d

dt
Var

[
Q

(1)
1 (t)

]
= 2µ1{

Q
(0)
1 (t)≤st

}Cov
[
Q

(1)
1 (t), Q(1)

1 (t)−
]
− 2µ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
1 (t), Q(1)

1 (t)+
]

+ 2δCov
[
Q

(1)
1 (t), Q(1)

2 (t)
]

+ λt + µ
(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t),

d

dt
Var

[
Q

(1)
2 (t)

]
= 2pµ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
2 (t), Q(1)

1 (t)+
]

− 2pµ1{
Q

(0)
1 (t)≤st

}Cov
[
Q

(1)
2 (t), Q(1)

1 (t)−
]
− 2δVar

[
Q

(1)
2 (t)

]
+ pµ

(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t),

d

dt
Cov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

= µ1{
Q

(0)
1 (t)≤st

}Cov
[
Q

(1)
2 (t), Q(1)

1 (t)−
]
− µ1{

Q
(0)
1 (t)<st

}Cov
[
Q

(1)
2 (t), Q(1)

1 (t)+
]

+ δ
(

Var
[
Q

(1)
2 (t)

]
− Cov

[
Q

(1)
1 (t), Q(1)

2 (t)
])

+ pµ1{
Q

(0)
1 (t)<st

}Cov
[
Q

(1)
1 (t), Q(1)

1 (t)+
]

− pµ1{
Q

(0)
1 (t)≤st

}Cov
[
Q

(1)
1 (t), Q(1)

1 (t)−
]
− δQ(0)

2 (t)− pµ
(
Q

(0)
1 (t) ∧ st

)
.
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(B.7)

B.1 Essentially Negligible Critical Regime and Applications to the Analysis of

Mass-Casualty Events

The differential equations (B.6) - (B.7) are not easy to solve. Therefore, we will also assume that

the time the system spends in critically-loaded values is negligible. Formally, define S as the set

of times when the system is critically loaded, i.e., the times when the number of nurses equals the

number of customers in the Needy state:

S = {t > 0|Q(0)
1 (t) = st}.

We assume that the set S has measure zero, which practically means that the process Q(1)
1 (t) passes

through the state with equal numbers of nurses and patients in Needy state very quickly. This

assumption is reasonable, as for a normally distributed process the measure of a single point is zero.

In this case:

µ1{
Q

(0)
1 (u)<su

}Q(1)
1 (u)+ − µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)− = µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)

Proposition 4. Assume that the set of time points S has measure zero. Then (B.5) becomes:

Q
(1)
1 (t) = Q

(1)
1 (0) +

∫ t

0

(
−µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u) + δQ

(1)
2 (u)

)
du+Ba

1

(∫ t

0
λudu

)
−Bd

2

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
−B12

(∫ t

0
(1− p)µ

(
Q

(0)
1 (u) ∧ su

)
du

)
+B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

Q
(1)
2 (t) = Q

(1)
2 (0) +

∫ t

0

(
pµ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)− δQ(1)

2 (u)
)
du

+B12

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
−B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

(B.8)

The mean vector for the diffusion approximation (B.6) is then:

d

dt
E
[
Q

(1)
1 (t)

]
= −µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)

]
+ δE

[
Q

(1)
2 (t)

]
,

d

dt
E
[
Q

(1)
2 (t)

]
= pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)

]
− δE

[
Q

(1)
2 (t)

]
,
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and the variance matrix (B.7) is:

d

dt
Var

[
Q

(1)
1 (t)

]
= −2µ1{

Q
(0)
1 (t)≤st

}Var
[
Q

(1)
1 (t)

]
+ 2δCov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

+ λt + µ
(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t),

d

dt
Var

[
Q

(1)
2 (t)

]
= −2δVar

[
Q

(1)
2 (t)

]
+ 2pµCov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

+ pµ
(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t),

d

dt
Cov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

= −
(
µ1{

Q
(0)
1 (t)≤st

} + δ

)
Cov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

+ δVar
[
Q

(1)
2 (t)

]
+ pµ1{

Q
(0)
1 (t)≤st

}Var
[
Q

(1)
1 (t)

]
− pµ

(
Q

(0)
1 (t) ∧ st

)
− δQ(0)

2 (t).

(B.9)

B.1.1 A Numerical Example

We preformed a simulation of mass-casualty events. When such an event is in progress, the EW

must, over a short time period, take care of the regular patients, release the ones who can be released,

and give emergency care to the new patients. We can examine the effect of such an event on the

EW, and the time it takes to overcome such an emergency situation, using the models developed in

the previous section.

We demonstrate a simulation vs. fluid and diffusion approximation. We calculate upper and

lower envelopes using the following expression: Q(0)
i (t)±

√
Var

[
Q

(1)
i (t)

]
, for i = 1, 2, where Q(0)

i (t)

is the numerical solution of the ODE (B.2), and Var
[
Q

(1)
i (t)

]
is the numerical solution of the ODE

(B.9).

In this example, we set the parameters as follows:

λt =

 50 if 9 ≤ t ≤ 11,

10 otherwise,

δ = 0.2, µ = 1, p = 0.25, and st = 50.

The left diagram of Figure 94 shows the number of customers in the system over time. It shows

the fluid solution and the simulation results. Q1 is the number of Needy customers, and Q2 is the

number of content customers. The right diagram of Figure 94 shows the changes in the average

number of Needy customers (Q(0)
1 ) and upper and lower envelops of this process. We see that both

fluid and diffusion approximations are remarkably accurate in this case. This is a case of essentially

negligible critical regime, in which the strong approximations work well. This event illustrates a

situation in which, during a very short period of two hours (9-11), the arrival rate is multiplied

fivefold. As a consequence, the number of patients in the medical unit is also multiplied by five,
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although the peak of the load is reached only towards the end of the peak period at 11. From that

point, the number of patients gradually decreases to normal levels. It takes several more hours for

the system to stabilize again.
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Figure 94: Numerical example 1: Mass arrival at interval (9,11)

B.2 The Virtual Waiting Time Process

In this section we develop an approximation to the process of virtual waiting time. The virtual

waiting time is the in-queue waiting time for a hypothetical patient, who just became Needy. We

rely on 24, 23 and the corollary of Puhalskii [65] to prove the following:

Theorem 26. Using the scaling of (B.1), the virtual waiting time process is given by:

√
η(W η(t)) d→

Q(1)
1 (0) + V1(t)− U1(Z(t))

µ
(
Q

(0)
1 (Z(t)) ∧ sZ(t)

)
+

.

B.2.1 Numerical Examples

In order to examine our approximation for the process W (t), the virtual waiting time, we used the

following examples, taken from Mandelbaum et al. [55]. These use a periodic arrival rate with two

values: low and hight. The first example data is:

λt =

 20 if t ∈ {[0, 4), [6, 9), [11, 14), [16, 24]},

100 otherwise,

δ = 0.2, µ = 1, p = 0.25, and st = 70.

Figure 95 shows changes in the number of customers in each node. It compares the simulation

results compared to the fluid and diffusion approximation. As before, we see remarkable matching
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between the two. Figure 96 shows the changes in E[W ] over time. Again, we compare fluid ap-

proximations to the simulated approximations. We observe that there is a good match between the

two. Differences are observed in underloaded times, when the fluid approximates no waiting while

simulation observe positive waiting.
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Figure 95: Numerical example 3: Fluid approximation vs. simulation results of Q(t)
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Figure 96: Numerical example 3: Fluid approximation vs. simulation results of E[W(t)]

The second example data is:

λt =

 40 if t ∈ {[0, 4), [6, 9), [11, 14), [16, 24]},

80 otherwise,

δ = 0.2, µ = 1, p = 0.25, and st = 70. The left diagram of Figure 97 shows changes in the

number of customers in each node. It compares the simulation results to the fluid and diffusion
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approximation. We see that in this example Q2(t) simulation matches the fluid, but Q1(t) has lower

match. The right diagram of Figure 97 shows the changes in E[W ] over time. Again, we compare

fluid approximations to the simulated ones. We observe that there is a difference between the two,

although the shape of the two is similar.
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Figure 97: Numerical example 4: Fluid approximation vs. simulation results

B.3 Fluid and Diffusion Limits for the Number of Needy Customers: Proof

Proof of Theorem 25 in Section B.

Proof. The mean vector is based on Theorem 2.4 in [53]. We now prove (B.7). The variance and

covariance processes are given by:

Var
[
Q

(1)
1 (t)

]
= E

[
(Q(1)

1 (t))2
]
−
(

E
[
Q

(1)
1 (t)

])2
,

Var
[
Q

(1)
2 (t)

]
= E

[
(Q(1)

2 (t))2
]
−
(

E
[
Q

(1)
2 (t)

])2
,

Cov
[
Q

(1)
1 (t), Q(1)

2 (t)
]

= E
[
Q

(1)
1 (t)Q(1)

2 (t)
]
− E

[
Q

(1)
1 (t)

]
E
[
Q

(1)
2 (t)

]
.

We must determine the derivative of the expressions d
dtE [XtYt] and d

dtE [Xt] E [Yt], where (Xt)t∈R+
0

and (Yt)t∈R+
0

are time-dependent stochastic processes. By the chain rule:

d

dt
(E [Xt] E [Yt]) =

d

dt
E [Xt] · E [Yt] + E [Xt] ·

d

dt
E [Yt]

and by the chain rule of stochastic calculus (Ito formula):

d (E [XtYt]) = E [dXt · Yt] + E [Xt · dYt] + E [dXt · dYt] .
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Note that by the assumption of Brownian Motion (BM): dBi(t)dBj(t) = δij(t)dt, dt · dt =

dt · dB(t) = dB(t) · dt = 0, where Bi(t) and Bj(t) are mutually independent standard BMs and δij

denote the Kronecker-Delta, i.e.

δij =

 1 if i = j,

0 otherwise.

We now show the values of d
dtE

[
(Q(1)

1 (t))2
]
, d
dtE

[
(Q(1)

2 (t))2
]
,and d

dtE
[
Q

(1)
1 (t)Q(1)

2 (t)
]
.

Using (B.5) we obtain:

dQ
(1)
1 (t) =

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)
dt

+
√
λtdB

a
1 (t)−

√
pµ
(
Q

(0)
1 (t) ∧ st

)
dBd

2 (t)−
√

(1− p)µ
(
Q

(0)
1 (t) ∧ st

)
dB12 (t)

+
√
δQ

(0)
2 (t)dB21 (t) ,

dQ
(1)
2 (t) =

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)
dt

+
√

(1− p)µ
(
Q

(0)
1 (t) ∧ st

)
dB12 (t)−

√
δQ

(0)
2 (t)dB21 (t) .

d
(
Q

(1)
1 (t)

)2
= 2 · dQ(1)

1 (t) ·Q(1)
1 (t) + dQ

(1)
1 (t) · dQ(1)

1 (t)

= 2Q(1)
1 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)
dt

+ 2Q(1)
1 (t)

√
λtdB

a
1 (t)− 2Q(1)

1 (t)
√
pµ
(
Q

(0)
1 (t) ∧ st

)
dBd

2 (t)

− 2Q(1)
1 (t)

√
(1− p)µ

(
Q

(0)
1 (t) ∧ st

)
dB12 (t) + 2Q(1)

1 (t)
√
δQ

(0)
2 (t)dB21 (t)

+ λtdt+ pµ
(
Q

(0)
1 (t) ∧ st

)
dt+ (1− p)µ

(
Q

(0)
1 (t) ∧ st

)
dt+ δQ

(0)
2 (t)dt,

d
(
Q

(1)
2 (t)

)2
= 2Q(1)

2 (t)
(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)
dt

+ 2Q(1)
2 (t)

√
pµ
(
Q

(0)
1 (t) ∧ st

)
dB12 (t)− 2Q(1)

2 (t)
√
δQ

(0)
2 (t)dB21 (t)

+ pµ
(
Q

(0)
1 (t) ∧ st

)
dt+ δQ

(0)
2 (t)dt,
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d
(
Q

(1)
1 (t)Q(1)

2 (t)
)

= dQ
(1)
1 (t) ·Q(1)

2 (t) + dQ
(1)
2 (t) ·Q(1)

1 (t) + dQ
(1)
1 (t) · dQ(1)

2 (t)

= Q
(1)
2 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)
dt

+Q
(1)
2 (t)

√
λtdB

a
1 (t)−Q(1)

2 (t)
√
pµ
(
Q

(0)
1 (t) ∧ st

)
dBd

2 (t)

−Q(1)
2 (t)

√
(1− p)µ

(
Q

(0)
1 (t) ∧ st

)
dB12 (t) +Q

(1)
2 (t)

√
δQ

(0)
2 (t)dB21 (t)

+Q
(1)
1 (t)

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)
dt

+Q
(1)
1 (t)

√
(1− p)µ

(
Q

(0)
1 (t) ∧ st

)
dB12 (t)−Q(1)

1 (t)
√
δQ

(0)
2 (t)dB21 (t)

− pµ
(
Q

(0)
1 (t) ∧ st

)
dt− δQ(0)

2 (t)dt.

Taking the expectation of these causes all the terms containing the BM to disappear, thus:

d

dt
E
[(
Q

(1)
1 (t)

)2
]

= 2E
[
Q

(1)
1 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)]
+ λt + pµ

(
Q

(0)
1 (t) ∧ st

)
+ (1− p)µ

(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t)

d

dt
E
[(
Q

(1)
2 (t)

)2
]

= 2E
[
Q

(1)
2 (t)

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)]

+ pµ
(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t)

d

dt
E
[
Q

(1)
1 (t), Q(1)

2 (t)
]

= E
[
Q

(1)
2 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)]
+ E

[
Q

(1)
1 (t)

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)]

− pµ
(
Q

(0)
1 (t) ∧ st

)
− δQ(0)

2 (t)

d

dt
Var

[
Q

(1)
1 (t)

]
=

d

dt
E
[(
Q

(1)
1 (t)

)2
]
− 2E

[
Q

(1)
1 (t)

] d
dt

E
[
Q

(1)
1 (t)

]
= 2E

[
Q

(1)
1 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)]
+ λt + pµ

(
Q

(0)
1 (t) ∧ st

)
+ (1− p)µ

(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t)

− 2E
[
Q

(1)
1 (t)

](
µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− µ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
+ δE

[
Q

(1)
2 (t)

])
,

d

dt
Var

[
Q

(1)
2 (t)

]
= 2E

[
Q

(1)
2 (t)

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)]

+ pµ
(
Q

(0)
1 (t) ∧ st

)
+ δQ

(0)
2 (t)

− 2E
[
Q

(1)
2 (t)

](
pµ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
− pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− δE

[
Q

(1)
2 (t)

])
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d

dt
Cov

[
Q

(1)
1 (t), Q(1)

2 (t)
]

=
d

dt
E
[
Q

(1)
1 (t)Q(1)

2 (t)
]
− d

dt
E
[
Q

(1)
1 (t)

]
· E
[
Q

(1)
2 (t)

]
− E

[
Q

(1)
1 (t)

]
· d
dt

E
[
Q

(1)
2 (t)

]
= E

[
Q

(1)
2 (t)

(
µ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − µ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ + δQ

(1)
2 (t)

)]
+ E

[
Q

(1)
1 (t)

(
pµ1{

Q
(0)
1 (t)<st

}Q(1)
1 (t)+ − pµ1{

Q
(0)
1 (t)≤st

}Q(1)
1 (t)− − δQ(1)

2 (t)
)]

− pµ
(
Q

(0)
1 (t) ∧ st

)
− δQ(0)

2 (t)

− E
[
Q

(1)
2 (t)

] [
µ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− µ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
+ δE

[
Q

(1)
2 (t)

]]
− E

[
Q

(1)
1 (t)

] [
pµ1{

Q
(0)
1 (t)<st

}E
[
Q

(1)
1 (t)+

]
− pµ1{

Q
(0)
1 (t)≤st

}E
[
Q

(1)
1 (t)−

]
− δE

[
Q

(1)
2 (t)

]]
.

Rearranging some of the terms yields expression (B.7).

B.4 The Virtual Waiting Time Process: Proofs

Proof of Theorem 26 in Section B.2.

Proof. Introduce the processes Aηi and Dη
i which represent the arrival and departure processes of

station i ∈ {1, 2}, respectively.

Aη1(t) = Aa1

(∫ t

0
ηλudu

)
+A21

(∫ t

0
δQη2(u)du

)
,

Aη2(t) = A12

(∫ t

0
pµ (Qη1(u) ∧ ηsu) du

)
,

Dη
1(t) = Ad2

(∫ t

0
pµ (Qη1(u) ∧ ηsu) du

)
+A12

(∫ t

0
(1− p)µ (Qη1(u) ∧ ηsu) du

)
,

Dη
2(t) = A21

(∫ t

0
δQη2(u)du

)
.

(B.10)

Naturally, this is based on the following relation:

Qη(t) = Qη(0) +Aη(t)−Dη(t), t ≥ 0.

Let Zη(t) be the process:

Zη(t) = inf{u ≥ 0 : Dη
1(u) ≥ Qη1(0) +Aη1(t)− (ηst − 1)}.

and let W η(t) be the virtual waiting time at t, i.e., W η(t) = [Zη(t)− t]+. Let for t ≥ 0,

Xη
i (t) =

1
η
Dη
i , Y η

i (t) =
1
η
Aηi , i = 1, 2.

Consequently,

Zη(t) = inf{u ≥ 0 : Xη
1 (u) ≥ Y η

1 (t)− 1
η

(ηst − 1) +
1
η
Qη1(0)}.
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Since (B.4) holds in fact the following holds(
√
η

(
Qη(t)
η
−Q(0)(t)

)
,
√
η
(
Xη(t)−X(0)(t)

)
,
√
η
(
Y η(t)− Y (0)(t)

))
d→
(
Q(1)(t), U(t), V (t)

)
where

Q(0)(t) = Q(0)(0) + Y (0)(t)−X(0)(t),

X
(0)
1 (t) =

∫ t

0
µ
(
Q

(0)
1 (u) ∧ su

)
du,

X
(0)
2 (t) =

∫ t

0
δQ

(0)
2 (u)du,

Y
(0)

1 (t) =
∫ t

0

(
λu + δQ

(0)
2 (u)

)
du,

Y
(0)

2 (t) =
∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du,

U1(t) =
∫ t

0

(
µ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+ − µ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)−

)
du

+Bd
2

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
+B12

(∫ t

0
(1− p)µ

(
Q

(0)
1 (u) ∧ su

)
du

)
,

U2(t) =
∫ t

0

(
δQ

(1)
2 (u)

)
du+B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

V1(t) =
∫ t

0

(
δQ

(1)
2 (u)

)
du+Ba

1

(∫ t

0
λudu

)
+B21

(∫ t

0
δQ

(0)
2 (u)du

)
,

V2(t) =
∫ t

0

(
pµ1{

Q
(0)
1 (u)<su

}Q(1)
1 (u)+ − pµ1{

Q
(0)
1 (u)≤su

}Q(1)
1 (u)−

)
du

+B12

(∫ t

0
pµ
(
Q

(0)
1 (u) ∧ su

)
du

)
.

As a consequence,

Q(1)(t) = Q(1)(0) + V (t)− U(t), t ≥ 0.

Defining a first passage time:

Z(t) = inf{u ≥ 0 : X(0)
1 (u) ≥ Y (0)

1 (t)− st +Q
(0)
1 (0)}

then by the corollary of Puhalskii [65] we obtain:(
√
η

(
Qη(t)
η
−Q(0)(t)

)
,
√
η (Zη(t)− Z(t))

)
d→
(
Q(1)(t), Z(1)(t)

)
where:

Z(1)(t) =
Q

(1)
1 (0) + V1(t)− U1(Z(t))

X
′
1(Z(t))

=
Q

(1)
1 (0) + V1(t)− U1(Z(t))

µ
(
Q

(0)
1 (Z(t)) ∧ sZ(t)

) .
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and by continuance mapping:

√
η(W η(t)) =

√
η([Zη(t)− t]+) d→

Q(1)
1 (0) + V1(t)− U1(Z(t))

µ
(
Q

(0)
1 (Z(t)) ∧ sZ(t)

)
+

.

Note that when we use MOL staffing, the fluid solution is the same as that of the Infinite Server

system. In such a system, Z(t) = t for all t. In this case, approximating E[W ] by the fluid solution

will be wrong, since W (0)(t) = 0, while in reality it is not. That is because under the QED regime,

average waiting is on the order of
√

(s), and thus not captured by the fluid processes. However, the

diffusion process is very interesting in this case.

√
η(W η(t)) d→

 Q
(1)
1 (t)

µ
(
Q

(0)
1 (t) ∧ st

)
+

.

Note that we also need to adjust Q(1)(t) to the QED environment. This will be done in future

research.
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C Appendices of Part II

C.1 Steady State Calculations of MU Model

We will rewrite Expression 11.1 of π0 . Let l be the number of occupied beds (with patients or in

cleaning) and m be the number of patients, where i of them are in the needy state (0 ≤ i ≤ m ≤

l ≤ n). Thus, l = i+ j + k and m = i+ j. Then:

π−1
0 =

∑n
l=0

∑l
m=0

∑m
i=0

1
ν(i)

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
=

∑s
l=0

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1 (

∑s
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑l
m=s+1

(∑s
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑m
i=s+1

1
s!si−s

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m))
=

∑s
l=0

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1

(∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
−

∑l
m=s+1

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑l
m=s+1

(∑s
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑m
i=s+1

1
s!si−s

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m))
=

∑s
l=0

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1

(∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
−

∑l
m=s+1

∑m
i=s+1

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑l
m=s+1

∑m
i=s+1

1
s!si−s

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m)
=

∑s
l=0

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1

∑l
m=s+1

∑m
i=s+1

(
1

s!si−s
− 1

i!

) (
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
=

∑n
l=0

∑l
m=0

∑m
i=0

1
i!

(
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
+

∑n
l=s+1

∑l
m=s+1

∑m
i=s+1

(
1

s!si−s
− 1

i!

) (
λ

(1−p)µ

)i
1

(m−i)!

(
pλ

(1−p)δ

)m−i
1

(l−m)!

(
λ
γ

)l−m
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By using the multinomial theorem for the first sum yields:

π−1
0 =

n∑
l=0

1
l!

(
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)l

+
n∑

l=s+1

l∑
m=s+1

m∑
i=s+1

(
1

s!si−s
− 1
i!

)
1

(m− i)!(l −m)!

(
λ

(1− p)µ

)i
·

·
(

pλ

(1− p)δ

)m−i(λ
γ

)l−m
C.2 Four Auxiliary Lemmas

In this section we will prove four lemmas that will help us in the proofs of our approximations.

C.2.1 Proof of Lemma 1

Lemma 1. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED conditions.

Define ζ1 as the expression

ζ1 =
e−RN

s!
(RN )s

1
1− ρ

n−s−1∑
l=0

1
l!

(RD +RC)l e−(RD+RC).

Then

lim
λ→∞

ζ1 =
φ(β)Φ(η)

β
.

Proof. By using Stirling’s formula
(
s! ≈

√
2πs

(
s
e

)s), and assumption QED (ii), one obtains for ζ1:

ζ1 ≈
e
s− λ

(1−p)µ
√

2πs

(
λ

(1− p)sµ

)s √s
β

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
e
−
(

pλ
(1−p)δ+λ

γ

)

=
e
s− λ

(1−p)µ
√

2πβ

(
λ

(1− p)sµ

)s n−s−1∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
e
−
(

pλ
(1−p)δ+λ

γ

)

=
es(1−ρ)

√
2πβ

ρsP (Xλ ≤ n− s− 1)

where ρ = λ
(1−p)sµ , and Xλ is a random variable with the Poisson distribution with parameter

RD + RC (where RD = pλ
(1−p)δ , RC = λ

γ ). When λ → ∞, RD + RC → ∞ too, since p,δ, and γ are

fixed. Note that

P (Xλ ≤ n− s− 1) = P

(
Xλ −RD −RC√

RD +RC
≤ n− s− 1−RD −RC√

RD +RC

)
Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we have(

Xλ −RD −RC√
RD +RC

)
⇒ N(0, 1)
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and due to assumption QED (i) of the lemma we get 5

P (Xλ ≤ n− s− 1)→ P (N(0, 1) ≤ η) = Φ(η), asλ→∞ (C.1)

where N(0, 1) is a standard normal random variable with distribution function Φ(·). It follows thus

that

ζ1 ≈
es(1−ρ)

√
2πβ

ρsΦ(η) =
es(1−ρ+ln ρ)

√
2πβ

Φ(η).

Making use of the expansion

ln ρ = ln(1− (1− ρ)) = −(1− ρ)− (1− ρ)2

2
+ o(1− ρ)2, (ρ→ 1)

one obtains

ζ1 ≈
es(1−ρ−(1−ρ)− (1−ρ)2

2
)

√
2πβ

Φ(η) =
e−

s(1−ρ)2
2

√
2πβ

Φ(η)

by assumption QED (ii) s(1− ρ)2 → β2, when λ→∞. This implies

lim
λ→∞

ζ1 =
φ(β)Φ(η)

β

where φ(·) is the standard normal density function, and Φ(·) is the standard normal distribution

function. This proves Lemma 1.

C.2.2 Proof of Lemma 2

Lemma 2. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED conditions.

Define ζ2 as the expression

ζ2 =
e−(RN+RD+RC)

s!
(RN )s

ρn−s

1− ρ

n−s−1∑
l=0

1
l!

(
RD
ρ

+
RC
ρ

)l
. (C.2)

Then

lim
λ→∞

ζ2 =
φ(
√
η2 + β2)
β

e
1
2
η2

1Φ(η1).

5Here we use the following theorem (from [7]):

Theorem 27. Let ςn ⇒ ς and Fς - the distribution function of ς is everywhere continuous. Let also

xn → x∞ as n→∞, where {xn} is a sequence of scalars. Here x∞ ∈ [−∞,∞]. Then Fςn(xn)→ Fς(x∞).
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Proof. Again according to Stirling’s formula, and assumption QED (ii), one obtains for ζ2:

ζ2 ≈
e
s− λ

(1−p)µ−
pλ

(1−p)δ−
λ
γ

√
2πs

(
λ

(1− p)sµ

)s ρn−s
1− ρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l

=
e
s(1−ρ)− pλ

(1−p)δ−
λ
γ

√
2πs

√
sρn

β
e

pλ
(1−p)δρ+ λ

γρ

n−s−1∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l
e
−
(

pλ
(1−p)δρ+ λ

γρ

)

=
e
s(1−ρ)+

(
pλ

(1−p)δ+λ
γ

)(
1−ρ
ρ

)
√

2πβ
ρnP (Yλ ≤ n− s− 1)

where ρ = λ
(1−p)sµ , and Yλ is a random variable with the Poisson distribution with parameter RD+RC

ρ

(where RD = pλ
(1−p)δ , RC = λ

γ ). Note that

P (Yλ ≤ n− s− 1) = P

Yλ − RD+RC
ρ√

RD+RC
ρ

≤
n− s− 1− RD+RC

ρ√
RD+RC

ρ


Now we need to find the limit for the following fraction

n− s− RD+RC
ρ√

RD+RC
ρ

as λ→∞ using assumption QED (i).

lim
λ→∞

n− s− RD+RC
ρ√

RD+RC
ρ

= lim
λ→∞

η
√
RD +RC +RD +RC − RD+RC

ρ√
RD+RC

ρ

= lim
λ→∞

η
√
ρ+
√
RD +RC(ρ− 1)

√
ρ

= η − lim
λ→∞

√
sµ(pγ + (1− p)δ)

δγ
(1− ρ)

= η −

√
µ(pγ + (1− p)δ)

δγ
β.

(C.3)

Denote

η1 = η − β

√
µ(pγ + (1− p)δ)

δγ

Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we haveYλ − RD−RC
ρ√

RD+RC
ρ

⇒ N(0, 1)

and

P (Yλ ≤ n− s− 1)→ P (N(0, 1) ≤ η1) = Φ(η1), as λ→∞
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where N(0, 1) is a standard normal random variable with distribution function Φ. It follows thus

that

ζ2 ≈
e
s(1−ρ)+

(
pλ

(1−p)δ+λ
γ

)(
1−ρ
ρ

)
√

2πβ
ρnΦ(η1) =

e
s(1−ρ)+

(
pλ

(1−p)δ+λ
γ

)(
1−ρ
ρ

)
+n ln ρ

√
2πβ

Φ(η1).

Making use of the expansion

ln ρ = ln(1− (1− ρ)) = −(1− ρ)− (1− ρ)2

2
+ o(1− ρ)2, (ρ→ 1)

and using our assumptions that as λ→∞: ρ→ 1, s ≈ λ
(1−p)µ+β

√
λ

(1−p)µ , and n−s ≈ η
√
RD +RC+

RD +RC , one obtains

s(1− ρ) +
(

pλ

(1− p)δ
+
λ

γ

)(
1− ρ
ρ

)
+ n ln ρ

= s(1− ρ) +
(

pλ

(1− p)δ
+
λ

γ

)(
1− ρ
ρ

)
− n

(
1− ρ+

(1− ρ)2

2

)
= −

(
n− s− pλ

(1− p)δρ
− λ

γρ

)
(1− ρ)− n(1− ρ)2

2

≈ −
(
η
√
RD +RC +RD +RC −

RD +RC
ρ

)
(1− ρ)− n(1− ρ)2

2

=
(
RD +RC

ρ
− n

2

)
(1− ρ)2 − η

√
RD +RC(1− ρ)

≈

RD +RC
ρ

−
η
√
RD +RC +RD +RC + λ

(1−p)µ + β
√

λ
(1−p)µ

2

 (1− ρ)2 − η
√
RD +RC(1− ρ)

=

(
RD +RC

ρ
−
RD +RC + λ

(1−p)µ

2

)
(1− ρ)2 − 1

2
β

√
λ

(1− p)µ
(1− ρ)2

− η
√
RD +RC

2
(1− ρ)2 − η

√
RD +RC(1− ρ)

=

(
RD +RC

ρ
−
RD +RC + λ

(1−p)µ

2

)
β2(1− p)µ

λ
− 1

2
β

√
λ

(1− p)µ
β2(1− p)µ

λ

− η
√
RD +RC

2
β2(1− p)µ

λ
− η
√
RD +RCβ

√
(1− p)µ

λ

≈

( p
(1−p)δ + 1

γ

ρ
−

p
(1−p)δ + 1

γ + 1
(1−p)µ

2

)
(β2(1− p)µ)− η

√
p

(1− p)δ
+

1
γ
β
√

(1− p)µ

≈ 1
2
β2

((
p

(1− p)δ
+

1
γ

)
(1− p)µ− 1

)
− ηβ

√
p

(1− p)δ
+

1
γ

√
(1− p)µ

179



= −1
2

(η2 + β2) +
1
2

(
η2 − 2

(
ηβ

√
p

(1− p)δ
+

1
γ

√
(1− p)µ

)

+

(
β

√
p

(1− p)δ
+

1
γ

√
(1− p)µ

)2


= −1
2

(η2 + β2) +
1
2

(
η − β

√
p

(1− p)δ
+

1
γ

√
(1− p)µ

)2

= −1
2

(η2 + β2) +
1
2
η2

1.

Therefore,

lim
λ→∞

ζ2 ≈
e
s(1−ρ)+

(
pλ

(1−p)δ+λ
γ

)(
1−ρ
ρ

)
+n ln ρ

√
2πβ

Φ(η1) ≈ e−
1
2

(η2+β2)+ 1
2
η2

1

√
2πβ

Φ(η1)

=
φ(
√
η2 + β2)
β

e
1
2
η2

1Φ(η1).

This proves Lemma 2.

C.2.3 Proof of Lemma 3

Lemma 3. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED or QED0

conditions. Define ξ as the expression

ξ =
∑

i,j,k|i≤s,
i+j+k≤n−1

1
i!j!k!

(RN )i (RD)j (RC)k e−(RN+RD+RC).

Then

lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t).

Proof. We will find the asymptotic behavior of ξ by finding its lower and upper bounds. Let us

consider a partition {sh}lh=0 of the interval [0, s].

sh = s− hτ, h = 0, 1, ..., `; s`+1 = 0

where τ =
[
ε
√

λ
(1−p)µ

]
, ε is an arbitrary non-negative real and ` is a positive integer.

If λ and s tend to infinity and satisfy the QED assumption (13.2) part (ii), then ` < s
τ for λ

big enough and all the sh belong to [0, s]; h = 0, 1, ..., `. Emphasize that the length τ of every

interval [sh−1, sh] depends on λ. The variable ξ is given by the formula (14.3). Let us consider a
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lower estimate for ξ given by the following sum:

ξ ≥ ξ1 =
∑̀
h=0

sh∑
i=sh+1

1
i!

(
λ

(1− p)µ

)i
e
− λ

(1−p)µ ·

·
n−sh−1∑
j=0

1
j!

(
pλ

(1− p)δ

)j
e
− pλ

(1−p)δ

n−sh−j−1∑
k=0

1
k!

(
λ

γ

)k
e
−λ
γ

=
∑̀
h=0

sh∑
i=sh+1

1
i!

(
λ

(1− p)µ

)i
e
− λ

(1−p)µP (Yn ≤ n− sh − 1)

=
∑̀
h=0

P (sh+1 ≤ Xn ≤ sh)P (Yn ≤ n− sh − 1)

(C.4)

where Xn and Yn are independent Poisson random variables with parameters λ
(1−p)µ and pλ

(1−p)δ + λ
γ ,

respectively.

If λ→∞ then λ
(1−p)µ →∞, since p and µ are fixed. Note that

P (sh+1 ≤ Xn ≤ sh) = P

sh+1 − λ
(1−p)µ√
λ

(1−p)µ

≤
Xn − λ

(1−p)µ√
λ

(1−p)µ

≤
sh − λ

(1−p)µ√
λ

(1−p)µ

 .

Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we have

Xn − λ
(1−p)µ√
λ

(1−p)µ

⇒ N(0, 1).

Since

lim
λ→∞

sh − λ
(1−p)µ√
λ

(1−p)µ

= lim
λ→∞

s− hε
√

λ
(1−p)µ −

λ
(1−p)µ√

λ
(1−p)µ

= lim
λ→∞

λ
(1−p)µ − β

√
λ

(1−p)µ − hε
√

λ
(1−p)µ −

λ
(1−p)µ√

λ
(1−p)µ

= β − hε

we obtain:

P (sh+1 ≤ Xn ≤ sh) = Φ(β − hε)− Φ(β − (h+ 1)ε), h = 0, .., `− 1

P (0 ≤ Xn ≤ s`) = Φ(β − `ε).
(C.5)

Similarly, if λ→∞ then pλ
(1−p)δ + λ

γ →∞, since p,δ and γ are fixed. Note that

P (Yn ≤ n− sh) = P

Yn −
(

pλ
(1−p)δ + λ

γ

)
√

pλ
(1−p)δ + λ

γ

≤
n− sh −

(
pλ

(1−p)δ + λ
γ

)
√

pλ
(1−p)δ + λ

γ

 .
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Thus, when λ→∞, by the Central Limit Theorem (Normal approximation to Poisson) we have

Yn −
(

pλ
(1−p)δ + λ

γ

)
√

pλ
(1−p)δ + λ

γ

⇒ N(0, 1).

Since

lim
λ→∞

n− sh −
(

pλ
(1−p)δ + λ

γ

)
√

pλ
(1−p)δ + λ

γ

= lim
λ→∞

n− s− hε
√

λ
(1−p)µ −

(
pλ

(1−p)δ + λ
γ

)
√

pλ
(1−p)δ + λ

γ

= lim
λ→∞

pλ
(1−p)δ + λ

γ + η
√

pλ
(1−p)δ + λ

γ − hε
√

λ
(1−p)µ −

(
pλ

(1−p)δ + λ
γ

)
√

pλ
(1−p)δ + λ

γ

= η − hε

√
1

(1−p)µ√
p

(1−p)δ + 1
γ

= η − hε

√
δγ

µ(pγ + (1− p)δ)
,

we obtain:

P (Yn ≤ n− sh) = Φ

(
η − hε

√
δγ

µ(pγ + (1− p)δ)

)
, h = 0, .., ` (C.6)

It follows from (C.4), (C.5), and (C.6) that

lim
λ→∞

ξ ≥
`−1∑
h=0

(Φ(β − hε)− Φ(β − (h+ 1)ε))Φ

(
η − hε

√
δγ

µ(pγ + (1− p)δ)

)

+ Φ(β − `ε)Φ

(
η − `ε

√
δγ

µ(pγ + (1− p)δ)

)
(C.7)

which is the lower Riemann-Stieltjes sum of the integral

−
∫ ∞

0
Φ

(
η + x

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(β − x)

=
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t) (C.8)

corresponding to the partition {β − hε}`h=0 of the semi axis (−∞, β).

Similarly, let us take the upper estimate for ξ as the following sum:

ξ ≤ ξ2 =
∑̀
h=0

sh∑
i=sh+1

1
i!

(
λ

(1− p)µ

)i
e
− λ

(1−p)µ ·

n−sh+1−1∑
j=0

1
j!

(
pλ

(1− p)δ

)j
e
− pλ

(1−p)δ

n−sh+1−j−1∑
k=0

1
k!

(
λ

γ

)k
e
−λ
γ

=
∑̀
h=0

sh∑
i=sh+1

1
i!

(
λ

(1− p)µ

)i
e
− λ

(1−p)µP (Yn ≤ n− sh+1 − 1)

=
∑̀
h=0

P (sh+1 ≤ Xn ≤ sh)P (Yn ≤ n− sh+1 − 1)

(C.9)
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where Xn and Yn are the same random variable as before. Using the same calculation that were

computed for the upper boundary we obtain

lim
λ→∞

ξ ≤
`−1∑
h=0

(Φ(β − hε)− Φ(β − (h+ 1)ε)) Φ

(
η − (h+ 1)ε

√
δγ

µ(pγ + (1− p)δ)

)

+ Φ(β − `ε)

(C.10)

which is the upper Riemann-Stieltjes sum for the integral (C.8). When ε→ 0 the boundaries (C.7)

and (C.10) lead to the following equality

lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t)

This proves Lemma 3.

C.2.4 Proof of Lemma 4

Lemma 4. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 conditions.

Define ζ as the expression

ζ = e−(RN+RD+RC) 1
s!
RN

s
n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

RD
jRC

k
n−s−j−k−1∑

i=0

ρi. (C.11)

Then

lim
λ→∞

ζ =

√
µ(pγ + (1− p)δ)

δγ

1√
2π

(ηΦ(η) + φ(η)) .

Proof. First, we will rewrite Equation (C.11):

ζ = e−(RN+RD+RC) 1
s!
RN

s
n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

RD
jRC

k
n−s−j−k−1∑

i=0

ρi

= e−(RN+RD+RC) 1
s!
RN

s
n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

RD
jRC

k 1− ρn−s−j−k

1− ρ
.

When β = 0 by assumption QED0 (ii) ρ = 1 therefore,

n−s−j−k−1∑
i=0

ρi = n− s− j − k.

When β → 0, ρ→ 1 but still ρ 6= 1, the expression 1−ρn−s−j−k
1−ρ can be approximated by

1− ρi

1− ρ
≈ i
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thus

lim
ρ→1

n−s−j−k−1∑
i=0

ρi = n− s− j − k,

which is the same phrase as when ρ = 1. Thus,

ζ = e−(RN+RD+RC) 1
s!
RN

s
n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

RD
jRC

k(n− s− j − k)

= e−(RN+RD+RC) 1
s!
RN

s

(n− s)
n−s−1∑
k=0

n−s−k−1∑
j=0

1
k!j!

RC
kRD

j−

−
n−s−1∑
k=0

k

k!
RC

k
n−s−k−1∑

j=0

1
j!
RD

j −
n−s−1∑
k=0

1
k!
RC

k
n−s−k−1∑

j=0

j

j!
RD

j


= e−(RN+RD+RC) 1

s!
RN

s

(
(n− s)

n−s−1∑
l=0

1
l!

(RC +RD)l−

− RC

n−s−2∑
k=0

1
k!
RC

k
n−s−k−2∑

j=0

1
j!
RD

j −RD
n−s−2∑
k=0

1
k!
RC

k
n−s−k−2∑

j=0

1
j!
RD

j


= e−(RN+RD+RC) 1

s!
RN

s

(
(n− s)

n−s−1∑
l=0

1
l!

(RC +RD)l−

− RC

n−s−2∑
l=0

1
l!

(RC +RD)l −RD
n−s−2∑
l=0

1
l!

(RC +RD)l

= e−(RN+RD+RC) 1
s!
RN

s

(
(n− s−RC −RD)

n−s−1∑
l=0

1
l!

(RC +RD)l +
(RC +RD)n−s

(n− s− 1)!

)

≈ es−RN 1√
2πs

ρs

(
(n− s−RC −RD)

n−s−1∑
l=0

1
l!

(RC +RD)le−(RD+RC)

+
(RC +RD)n−se−(RD+RC)

(n− s− 1)!

)

=
1√
2πs

(
(n− s−RC −RD)

n−s−1∑
l=0

1
l!

(RC +RD)le−(RD+RC) +
(RC +RD)n−se−(RD+RC)

(n− s− 1)!

)
.

As seen in Equation (C.1)

(n− s−RC −RD)
n−s−1∑
l=0

1
l!

(RC +RD)le−(RD+RC) ≈ η
√
RC +RDΦ(η). (C.12)
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By using Stirling’s formula:

(RC +RD)n−se−(RD+RC)

(n− s− 1)!
=

(n− s)(RC +RD)n−se−(RD+RC)

(n− s)!

≈ (n− s)en−s−(RD+RC)√
2π(n− s)

(
RC +RD
n− s

)n−s
=

(n− s)en−s−(RD+RC)+(n−s) ln
(
RC+RD
n−s

)
√

2π(n− s)

=

√
n− s

2π
e

(n−s)
(

1−RD+RC
n−s +ln

(
RC+RD
n−s

))
.

By assuming QED0 (i) when λ→∞

(n− s)
(

1− RD +RC
n− s

+ ln
(
RC +RD
n− s

))
= (n− s)

(
1− RD +RC

n− s
−
(

1− RC +RD
n− s

)
− 1

2

(
1− RC +RD

n− s

)2
)

= −n− s
2

(
1− RC +RD

n− s

)2

= −1
2

(n− s−RC −RD)2

n− s

≈ −1
2

(
η
√
RC +RD

)2
η
√
RC +RD +RC +RD

≈ −1
2

(
η
√
RC +RD

)2
η
√
RC +RD +RC +RD

≈ −η
2

2
.

(C.13)

Therefore, by assumption QED0 (i)√
n− s

2π
e

(n−s)
(

1−RD+RC
n−s +ln

(
RC+RD
n−s

))
≈
√
η
√
RC +RD +RC +RD

2π
e−

η2

2

=
√
η
√
RC +RD +RC +RDφ(η) ≈

√
RC +RDφ(η).

Combining the above approximations and the assumption that β = 0 and therefore s = RN = λ
(1−p)µ

yields

ζ ≈ 1√
2πs

(
(n− s−RC −RD)

n−s−1∑
l=0

1
l!

(RC +RD)le−(RD+RC) +
(RC +RD)n−se−(RD+RC)

(n− s− 1)!

)

≈ 1√
2πs

(
η
√
RC +RDΦ(η) +

√
RC +RDφ(η)

)
=
√
RC +RD√

2πs
(ηΦ(η) + φ(η)) =

√
RC +RD√

2πRN
(ηΦ(η) + φ(η))

=
√
RC +RD
RN

1√
2π

(ηΦ(η) + φ(η)) =

√
(1− p)µ

γ
+
pµ

δ

1√
2π

(ηΦ(η) + φ(η)) .

This proves Lemma 4.
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C.3 Proof of Approximation of the Expected Waiting Time

In this appendix we will prove the approximation for the expected waiting time, stated in Section

14.2. The accurate measure was defined in Section 12.2, by Formula (12.5).

Theorem 10. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED6=0

conditions. Then

lim
λ→∞

√
sE[W ] =

φ(β)Φ(η)
β

1
β + φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)
(
µ(pγ+(1−p)δ)

δγ β − η
√

µ(pγ+(1−p)δ)
δγ − 1

β

)
µ

(∫ β
−∞Φ

(
η + (β − t)

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)
)

where η1 = η − β
√

µ(pγ+(1−p)δ)
δγ .

Proof. It follows from (12.5) that the expectation of the waiting time is given by

E[W ] =
∫ ∞

0
pn(s; t)dt =

1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)(i− s+ 1)

=
1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)(i− s) +
1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)

=
1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)(i− s) +
1
µs
P (W > 0)

= C +D

(C.14)

where D is given by

D =
1
µs
P (W > 0) =

1
µs

B

A+B

(A and B where defined in Equation (14.1) and (14.2) respectively) and C is given by,

C =
1
µs

n−1∑
l=s

l∑
m=s

m∑
i=s

πn−1(i,m− i, l −m)(i− s)

=
1
µs
π0

n−1∑
l=s

l∑
m=s

m∑
i=s

1
s!si−s

(RN )i
1

(m− i)!(l −m)!
(RD)m−i (RC)l−m (i− s)

=
1
µs

G

A+B
.
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We will rewrite G in the following way:

G =
n−1∑
l=s

l∑
m=s

m∑
i=s

1
s!si−s

(RN )i
1

(m− i)!(l −m)!
(RD)m−i (RC)l−m (i− s)

=
n−s−1∑
k=0

n−s−k−1∑
j=0

n−j−k−1∑
i=s

1
s!si−s

(RN )i
1
j!k!

(RD)j (RC)k (i− s)

=
n−s−1∑
k=0

n−s−k−1∑
j=0

n−s−j−k−1∑
i=0

i

s!si
(RN )i+s

1
j!k!

(RD)j (RC)k

=
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
n−s−j−k−1∑

i=0

i (ρ)i .

Using the formula

M∑
l=0

lρl = ρ

(
M∑
l=0

ρl

)′
= ρ

(
1− ρM+1

1− ρ

)′
= ρ

(−(M + 1)ρM )(1− ρ)− (1− ρM+1)(−1)
(1− ρ)2

=

= (M + 1)
ρM+1

ρ− 1
+

1− ρM+1

(1− ρ)2
ρ = ... = M

ρM+1

ρ− 1
+

1− ρM

(1− ρ)2
ρ

(C.15)

one can rewrite G as a sum: G = G1 +G2; where

G1 =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

(n− s− j − k − 1)
ρn−s−j−k

ρ− 1

)
and

G2 =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

1− ρn−s−j−k−1

(1− ρ)2
ρ

)
.

Therefore,

G1 =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

(n− s− j − k − 1)
ρn−s−j−k

ρ− 1

)

=
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

(n− s− 1)
ρn−s−j−k

ρ− 1

)

− (RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

(j + k)
ρn−s−j−k

ρ− 1

)

=
(RN )s (n− s− 1)

s!
ρn−s

ρ− 1

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
RD
ρ

)j (RC
ρ

)k

− (RN )s

s!
ρn−s

ρ− 1

n−s−1∑
k=0

n−s−k−1∑
j=0

j + k

j!k!

(
RD
ρ

)j (RC
ρ

)k
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=
(RN )s (n− s− 1)

s!
ρn−s

ρ− 1

n−s−1∑
l=0

1
l!

(
RD
ρ

+
RC
ρ

)l

− (RN )s

s!
ρn−s

ρ− 1

n−s−1∑
l=0

l

l!

(
RD
ρ

+
RC
ρ

)l

=
(RN )s (n− s− 1)

s!
ρn−s

ρ− 1

n−s−1∑
l=0

1
l!

(
RD
ρ

+
RC
ρ

)l

− (RN )s

s!
ρn−s

ρ− 1

(
RD
ρ

+
RC
ρ

) n−s−2∑
l=0

l

l!

(
RD
ρ

+
RC
ρ

)l
= −(n− s− 1)e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ2 +

(
RD
ρ

+
RC
ρ

)
e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ2

+
(RN )s

s!
ρn−s

ρ− 1
1

(n− s− 1)!

(
RD
ρ

+
RC
ρ

)n−s
= −(n− s− 1)e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ2 +

(
RD
ρ

+
RC
ρ

)
e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ2

+
(RN )s

s!
1

ρ− 1
n− s

(n− s)!
(RD +RC)n−s

where ζ2 was defined in (14.5); and

G2 =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(

1− ρn−s−j−k−1

(1− ρ)2
ρ

)

=
ρ

(1− ρ)2

(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k

− ρn−s

(1− ρ)2

(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(
RD
ρ

)j (RC
ρ

)k

=
ρ

(1− ρ)2

(RN )s

s!

n−s−1∑
l=0

1
l!

(RD +RC)l

− ρn−s

(1− ρ)2

(RN )s

s!

n−s−1∑
l=0

1
l!

(
RD
ρ

+
RC
ρ

)l
=

ρ

(1− ρ)
e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ1 −

1
(1− ρ)

e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
ζ2

=
1

(1− ρ)
e

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
(ρζ1 − ζ2)
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where ζ1 was defined in (14.4). Multiplying G by e−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
we get

Ge
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
=

1
(1− ρ)

(ρζ1 − ζ2)− (n− s− 1)ζ2 +
(
RD
ρ

+
RC
ρ

)
ζ2

+
(RN )s

s!
1

ρ− 1
n− s

(n− s)!
(RD +RC)n−s e−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)

≈
√
s

β

((
1− β√

s

)
ζ1 − ζ2

)
−
(
η
√
RC +RD +RC +RD − 1

)
ζ2 +

(
RD
ρ

+
RC
ρ

)
ζ2

+
(RN )s

s!
1

ρ− 1
n− s

(n− s)!
(RD +RC)n−s e−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)

= ζ1

(√
s

β
− 1
)

+ ζ2

(
−
√
s

β
− η
√
RC +RD +

(
1− ρ
ρ

)
(RC +RD)− 1

)
+
n− s
ρ− 1

(RN )s

s!
e−RN

(RD +RC)n−s

(n− s)!
e−(RD+RC)

≈
√
s

(
ζ1

1
β

+ ζ2

(
RC +RD
RN

β − η
√
RC +RD
RN

− 1
β

))
.

(C.16)

Due to the following approximation, we can neglect the second term:

(RN )s

s!
1

ρ− 1
n− s

(n− s)!
(RD +RC)n−s e−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)

≈ (RN )s

s!
1

ρ− 1
n− s√

2π(n− s)e−(n−s)(n− s)n−s
(RD +RC)n−s e−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)

=
(RN )s

s!
1

ρ− 1

√
n− s

2π

(
RD

(n− s)
+

RC
(n− s)

)n−s
e
n−s−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)

=
(RN )s

s!
1

ρ− 1

√
n− s

2π
e
n−s−

(
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

)
+(n−s) ln

(
RD

(n−s) +
RC

(n−s)

)

=
(RN )s

s!
1

ρ− 1

√
n− s

2π
e

(n−s)
(

1−
(

λ
(n−s)(1−p)µ+ pλ

(n−s)(1−p)δ+ λ
(n−s)γ

)
+ln

(
RD

(n−s) +
RC

(n−s)

))

≈ (RN )s

s!
1

ρ− 1

√
n− s

2π
e−RN−

η2

2 =
√
n− s
ρ− 1

(RN )s

s!
e−RN

1√
2π
e−

η2

2

≈
√
RC +RD
ρ− 1

1
RN

φ(RN + β
√
RN )φ (η) λ→∞→ 0

Where,

(n− s)
(

1−
(

RN
(n− s)

+
RC

(n− s)
+

RD
(n− s)

)
+ ln

(
RD

(n− s)
+

RC
(n− s)

))
≈ (n− s)

(
1−

(
RN

(n− s)
+

RC
(n− s)

+
RD

(n− s)

)
−
(

1−
(

RD
(n− s)

+
RC

(n− s)

))
−1

2

(
1−

(
RD

(n− s)
+

RC
(n− s)

))2
)

= −RN −
(n− s)

2

(
1−

(
RD

(n− s)
+

RC
(n− s)

))2

≈ −RN −
η2

2

189



(remark: for the last approximation see details in C.13)

Combining the expressions for C and D we get

E[W ] = C +D =
1
µs

G

A+B
+

1
µs

B

A+B
=

1
µs

G+B

A+B
=

1
µs

Ge−(RN+RD+RC) + ζ

ξ + ζ

where ζ = ζ1 − ζ2. Thus, using the above approximation of Ge−(RN+RD+RC) (C.16), we get

√
sE[W ] =

1
µ
√
s

√
s
(
ζ1

1
β + ζ2

(
RC+RD
RN

β − η
√

RC+RD
RN

− 1
β

))
+ ζ1 − ζ2

ξ + ζ1 − ζ2

=
ζ1

1
β + ζ2

(
RC+RD
RN

β − η
√

RC+RD
RN

− 1
β

)
µ(ξ + ζ1 − ζ2)

+
(ζ1 − ζ2)√

sµ(ξ + ζ1 − ζ2)

s→∞→
φ(β)Φ(η)

β
1
β + φ(

√
η2+β2)
β e

1
2
η2

1Φ(η1)
(
RC+RD
RN

β − η
√

RC+RD
RN

− 1
β

)
µ

(∫ β
−∞Φ

(
η + (β − t)

√
RN

RC+RD

)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)
) .

The approximations to ζ1,ζ2 and ξ are stated in (14.6), (14.7) and (14.8), respectively.

The next theorem gives the approximation for the case where β = 0.

Theorem 11. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 condi-

tions. Then

lim
λ→∞

√
sE[W ] =

1
2µ

µ(pγ+(1−p)δ)
δγ

(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0
−∞Φ

(
η − t

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t) +

√
µ(pγ+(1−p)δ)

δγ (ηΦ(η) + φ(η))

where η1 = η − β
√

µ(pγ+(1−p)δ)
δγ .

Proof. As before,

E[W ] =
1
µs

G+B

A+B

We need to approximate G when β = 0.

G =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
n−s−j−k−1∑

i=0

i (ρ)i .

Using the formula

M∑
l=0

lρl =
(M + 1)(M)

2
(C.17)

one can show that when β → 0, ρ → 1 but still ρ 6= 1, the sum used in formula (C.15) is approxi-

mately equal to the one stated in (C.17).
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Thus, using the fact that s = RN , we get

G =
(RN )s

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
n−s−j−k−1∑

i=0

i (ρ)i

=
1

s−ss!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(n− s− j − k)(n− s− j − k − 1)

2

using Stirling’s formula, and Lemma 4 leading to

Ge−(RN+RC+RD) =

= e−(RN+RC+RD)R
s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k
(n− s− j − k)(n− s− j − k − 1)

2

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

(j + k)
j!k!

(RD)j (RC)k (n− s− j − k)

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
l=0

l∑
j=0

l

j!(l − j)!
(RD)j (RC)l−j (n− s− l)

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
l=0

l

l!
(n− s− l)

l∑
j=0

l!
j!(l − j)!

(RD)j (RC)l−j

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
l=0

l

l!
(n− s− l) (RD +RC)l

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!
(RD +RC)

n−s−2∑
l=0

1
l!

(n− s− l − 1) (RD +RC)l
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=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!
(RD +RC)

n−s−1∑
l=0

1
l!

(n− s− l − 1) (RD +RC)l

=
(n− s− 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

− 1
2
e−(RN+RC+RD)R

s
N

s!
(RD +RC)

n−s−1∑
l=0

1
l!

(n− s− l) (RD +RC)l

+
1
2
e−(RN+RC+RD)R

s
N

s!
(RD +RC)

n−s−1∑
l=0

1
l!

(RD +RC)l

=
(n− s−RD −RC − 1)

2
e−(RN+RC+RD)R

s
N

s!

n−s−1∑
k=0

n−s−k−1∑
j=0

1
j!k!

(RD)j (RC)k (n− s− j − k)

+
1
2
e−(RN+RC+RD)R

s
N

s!
(RD +RC)

n−s−1∑
l=0

1
l!

(RD +RC)l

=
(n− s−RD −RC − 1)

2
ζ +

1
2
e−RN

RsN
s!

(RD +RC)
n−s−1∑
l=0

1
l!

(RD +RC)l e−(RC+RD)

≈ η
√
RD +RC

2
ζ +

RD +RC
2

es−RN (ρ)s
1√
2πs

Φ(η)

≈ η
√
RD +RC

2

√
RC +RD
RN

1√
2π

(ηΦ(η) + φ(η)) +
RD +RC

2
√
RN

(ρ)s
1√
2π

Φ(η)

≈ 1√
2π

RD +RC

2
√
RN

(
η2Φ(η) + ηφ(η)

)
+

1√
2π

RD +RC

2
√
RN

(ρ)s Φ(η)

≈ 1√
2π

RD +RC

2
√
RN

(
(η2 + 1)Φ(η) + ηφ(η)

)
=
√
s

2
√

2π
RD +RC
RN

(
(η2 + 1)Φ(η) + ηφ(η)

)
.

Therefore, using Lemmas 3 and 4 we get

√
sE[W ] =

1
µ
√
s

G+B

A+B
=

1
µ
√
s

√
s

2
√

2π

RD+RC
RN

(
(η2 + 1)Φ(η) + ηφ(η)

)
+ ζ

ξ + ζ

s→∞→ 1
2
√

2π

RD+RC
RN

(
(η2 + 1)Φ(η) + ηφ(η)

)
µ
(∫ 0
−∞Φ

(
η − t

√
RN

RC+RD

)
dΦ(t) +

√
RC+RD
RN

1√
2π

(ηΦ(η) + φ(η))
)

=
1

2µ

RD+RC
RN

(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0
−∞Φ

(
η − t

√
RN

RC+RD

)
dΦ(t) +

√
RC+RD
RN

(ηΦ(η) + φ(η))

=
1

2µ

µ(pγ+(1−p)δ)
δγ

(
(η2 + 1)Φ(η) + ηφ(η)

)
√

2π
∫ 0
−∞Φ

(
η − t

√
δγ

µ(pγ+(1−p)δ)

)
dΦ(t) +

√
µ(pγ+(1−p)δ)

δγ (ηΦ(η) + φ(η))
.
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C.4 Proof of Approximation of the Probability of Blocking

In this appendix we will prove the approximation for the probability of blocking, stated in Section

14.3. The accurate measure was defined in Section 12.1, by Formula (12.1).

Theorem 12. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED condi-

tions. Define B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + φ(
√
η2 + β2)e

η2
1
2 Φ(η1)∫ β

−∞Φ
(
η + (β − t)

√
B
)
dΦ(t) + φ(β)Φ(η)

β − φ(
√
η2+β2)
β e

1
2
η2

1Φ(η1)

where η1 = η − β√
B

, ν = 1√
1+B−1

, ν1 = η
√
B−1+β√
1+B−1

, ν2 = β
√
B−1−η√

1+B−1
.

Proof. It follows from (12.1) that the probability of blocking is given by

Pn = π0

 s∑
i=0

n−i∑
j=0

1
i!

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j

+
n∑

i=s+1

n−i∑
j=0

1
s!si−s

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j
=

C̃1 + C̃2

Ã+ B̃1 − B̃2

· e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

) =
δ1 + δ2

ξ̃ + ζ̃1 − ζ̃2

,

where

C̃1 =
s∑
i=0

n−i∑
j=0

1
i!

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j

C̃2 =
n∑

i=s+1

n−i∑
j=0

1
s!si−s

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j
Ã =

∑
i,j,k|i≤s,
i+j+k≤n

1
i!j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k

B̃1 =
1
s!

(
λ

(1− p)µ

)s 1
1− ρ

n−s∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
B̃2 =

1
s!

(
λ

(1− p)µ

)s ρn−s+1

1− ρ

n−s∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l
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and

δ̃1 =
s∑
i=0

n−i∑
j=0

1
i!

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)

δ̃2 =
n∑

i=s+1

n−i∑
j=0

1
s!si−s

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)

ξ̃ =
∑

i,j,k|i≤s,
i+j+k≤n

1
i!j!k!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)k
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)

ζ̃1 =
1
s!

(
λ

(1− p)µ

)s 1
1− ρ

n−s∑
l=0

1
l!

(
pλ

(1− p)δ
+
λ

γ

)l
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)

ζ̃2 =
1
s!

(
λ

(1− p)µ

)s ρn−s+1

1− ρ

n−s∑
l=0

1
l!

(
pλ

(1− p)δρ
+

λ

γρ

)l
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
.

Note that by Lemmas 1,2 and 3

lim
λ→∞

ζ̃1 = lim
λ→∞

ζ1 =
φ(β)Φ(η)

β
,

lim
λ→∞

ζ̃2 = lim
λ→∞

ζ2 =
φ(
√
η2 + β2)
β

e
1
2
η2

1Φ(η1),

lim
λ→∞

ξ̃ = lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t),

δ̃1 =
s∑
i=0

n−i∑
j=0

1
i!

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
(n− i− j)!

(
λ

γ

)n−i−j
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)

=
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
n!

s∑
i=0

n−i∑
j=0

n!
i!j!(n− i− j)!

(
λ

(1− p)µ

)i( pλ

(1− p)δ

)j (λ
γ

)n−i−j

=
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

) (
λ

(1−p)µ + pλ
(1−p)δ + λ

γ

)n
n!

·

s∑
i=0

n−i∑
j=0

n!
i!j!(n− i− j)!

(
λ

(1−p)µ
λ

(1−p)µ + pλ
(1−p)δ + λ

γ

)i( pλ
(1−p)δ

λ
(1−p)µ + pλ

(1−p)δ + λ
γ

)j ( λ
γ

λ
(1−p)µ + pλ

(1−p)δ + λ
γ

)n−i−j

=
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

) (
λ

(1−p)µ + pλ
(1−p)δ + λ

γ

)n
n!

s∑
i=0

n−i∑
j=0

P (Xλ = (i, j, n− i− j))

= P (Yλ = n)
s∑
i=0

n−i∑
j=0

P (Xλ = (i, j, n− i− j))

= P (Yλ = n)P (X1
λ ≤ s)

where Xλ is a random variable with Multinomial distribution with parameters (n, pi, pj , pk), pi =
λ

(1−p)µ
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

, pj =
pλ

(1−p)δ
λ

(1−p)µ+ pλ
(1−p)δ+λ

γ

, pk =
λ
γ

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

, Yλ is a random variable with Pois-
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son distribution with parameter λ
(1−p)µ + pλ

(1−p)δ + λ
γ , and X1

λ is a random variable with Binomial

distribution with parameters (n, pi). By the CLT and the use of C.3

P (X1
λ ≤ s) = Φ

(
s− npi√
npi(1− pi)

)
= Φ

 s− n RN
RN+RC+RD√

n RN
RN+RC+RD

(1− RN
RN+RC+RD

)


= Φ

 s− n RN
RN+RC+RD√

n RN
RN+RC+RD

( RC+RD
RN+RC+RD

)

 = Φ

(
s(RN +RC +RD)− nRN√

nRN (RC +RD)

)

= Φ

(√
RN

RC +RD

sRN+RC+RD
RN

− n
√
n

)
= Φ

(√
RN

RC +RD

s(1 + RC+RD
RN

)− n
√
n

)

= Φ

(√
RN

RC +RD

s+ RC+RD
ρ − n
√
n

)
= Φ

−√ RN
RC +RD

√
RC +RD

nρ
·
n− s− RC+RD

ρ√
RC+RD

ρ


= Φ

−√ s

n
·
n− s− RC+RD

ρ√
RC+RD

ρ

 ≈ Φ

(
−
√

RN
RN +RC +RD

·
(
η − βRC +RD

RN

))

= Φ

 βRC+RD
RN

− η√
1 + RC+RD

RN

 = Φ

β
√

µ(pγ+(1−p)δ)
δγ − η√

1 + µ(pγ+(1−p)δ)
δγ

 .

(C.18)

By the normal approximation of the Poisson distribution:

P (Yλ = n) ≈ 1√
λ

(1−p)µ + pλ
(1−p)δ + λ

γ

φ

n−
(

λ
(1−p)µ + pλ

(1−p)δ + λ
γ

)
√

λ
(1−p)µ + pλ

(1−p)δ + λ
γ


≈ 1
√
s
√

1 + µ(pγ+(1−p)δ)
δγ

φ

η
√

µ(pγ+(1−p)δ)
δγ + β√

1 + µ(pγ+(1−p)δ)
δγ

 .

(C.19)
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We based on the following equivalences (as λ tends to ∞) to develop Equations C.18 and C.19:

RN +RC +RD =
λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ
≈ s+ (1− p)sµ

(
p

(1− p)δ
+

1
γ

)
= s

(
1 +

µ (pγ + (1− p)δ)
δγ

)
= s

(
1 +

RC +RD
RN

)
;

n−
(

λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)
≈ s+

pλ

(1− p)δ
+
λ

γ
+ η

√
pλ

(1− p)δ
+
λ

γ
−
(

λ

(1− p)µ
+

pλ

(1− p)δ
+
λ

γ

)

= s+ η

√
pλ

(1− p)δ
+
λ

γ
− λ

(1− p)µ
≈ s+ η

√
pλ

(1− p)δ
+
λ

γ
− s+ β

√
s

≈ η

√
sµ (pγ + (1− p)δ)

δγ
+ β
√
s;

n−
(

λ
(1−p)µ + pλ

(1−p)δ + λ
γ

)
√

λ
(1−p)µ + pλ

(1−p)δ + λ
γ

≈
η
√

µ(pγ+(1−p)δ)
δγ + β√

1 + µ(pγ+(1−p)δ)
δγ

.

Following Equations C.18 and C.19 we get

δ̃1 = P (Yλ = n)P (X1
λ ≤ s) ≈

1
√
s
√

1 + µ(pγ+(1−p)δ)
δγ

φ

η
√

µ(pγ+(1−p)δ)
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δγ

Φ

β
√

µ(pγ+(1−p)δ)
δγ − η√

1 + µ(pγ+(1−p)δ)
δγ

 .

(C.20)

Now lets find an approximation for δ̃2.

δ̃2 =
n∑

i=s+1

n−i∑
j=0

1
s!si−s

(
λ

(1− p)µ

)i 1
j!

(
pλ

(1− p)δ

)j 1
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(
λ

γ
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e
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γ

)
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e
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λ
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γ
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e
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(
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γ
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(
λ
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)i 1
(n− i)!

(
pλ

(1− p)δ
+
λ

γ

)n−i

=
e
−
(

λ
(1−p)µ+ pλ

(1−p)δ+λ
γ

)
s!s−s

(
pλ

(1− p)δ
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1
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( pλ
(1−p)δ + λ

γ

λ
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.

When comparing δ̃2 to ζ2 form Equation C.2, we observe that

δ̃2 = (1− ρ)ζ2 ≈
β√
s
ζ2.

Therefore, based on the approximation of ζ2 from Lemma 2 we get

limλ→∞δ̃2 =
φ(
√
η2 + β2)√
s

e
1
2
η2

1Φ(η1).
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This proves Theorem 12.

The next theorem gives the approximation for the case where β = 0.

Theorem 13. Let the variables λ, s and n tend to ∞ simultaneously and satisfy the QED0 condi-

tions. Define and B = RN
RC+RD

= δγ
µ(pγ+(1−p)δ) , then

lim
λ→∞

√
sP (block) =

νφ(ν1)Φ(ν2) + 1√
2π

Φ(η)∫ 0
−∞Φ
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η − t

√
B
)
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B
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2π

(ηΦ(η) + φ(η))

where ν = 1√
1+B−1

, ν1 = η√
1+B

, ν2 = −η√
1+B−1

.

Proof. It follows from (12.1) that the probability of blocking is given by

Pn =
C̃1 + C̃2
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· e
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γ
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γ

) =
δ̃1 + δ̃2

ξ̃ + ζ̃
,

where
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γ
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Note that by Lemmas 3 and 4

lim
λ→∞

ξ̃ = lim
λ→∞

ξ =
∫ β

−∞
Φ

(
η + (β − t)

√
δγ

µ(pγ + (1− p)δ)

)
dΦ(t)

lim
λ→∞

ζ̃ = lim
λ→∞

ζ =

√
µ(pγ + (1− p)δ)

δγ

1√
2π

(ηΦ(η) + φ(η)) ,

In addition, the approximations for δ1 and δ2 are the same as the proof of Theorem 12.

lim
β→0

lim
λ→∞

√
sδ2 =

1√
2π

Φ(η)

lim
β→0

lim
λ→∞

√
sδ2 =

1√
1 + µ(pγ+(1−p)δ)

δγ

φ

 η√
1 + δγ
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Φ

− η√
1 + µ(pγ+(1−p)δ)

δγ

 ,

This proves Theorem 13.
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