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Abstract. The interface between an Emergency Department (ED) and Internal Wards (IWs)
is often a hospital’s bottleneck. Motivated by this interaction in Anonymous Hospital, we
analyze queueing systems with heterogeneous server pools, where the pools represent the
wards and servers are beds. Our queueing system, with a single centralized queue and several
server pools, forms an inverted-V model. We introduce the Randomized Most-Idle (RMI)
routing policy and analyze it in the QED (Quality and Efficiency Driven) regime, which is
natural in our setting. The RMI policy results in the same server fairness (measured by
idleness ratios) as the Longest-Idle Server First (LISF) policy, which is commonly used in call
centers and considered fair. However, RMI utilizes only the information on the number of idle
servers in different pools while LISF requires information that is unavailable in hospitals on a
real-time basis.

1. Introduction

Operations research methodologies, and queueing theory in particular, have generated valu-
able insights into operational strategies and practices, thus leading to solutions of significant
problems in healthcare systems. In concert with this state of affairs, we analyze patient flow
in hospitals: specifically, we focus on the Emergency Department (ED) and its interface with
four Internal Wards (IWs) in a large Israeli hospital – we refer to it as Anonymous Hospital.
Two operational problems could arise in this process: patients’ waiting times in the ED for a
transfer to the IWs could be long; and patient routing to the wards need not be fair, as far as
workload allocation among the wards is concerned. In contrast to the majority of studies that
address the problem of long waiting times in EDs, we explore the process of patient allocation
to wards from the fairness perspective. In search of an allocation protocol that is fairness-
sensitive, we model the “ED-to-IW” process as a queueing system with heterogeneous server
pools: the pools represent the wards and servers are beds. Within this modeling framework,
we compare several routing strategies, thus identifying the one most appropriate for a hospital
setting.

1.1. Motivation. Two conclusions can be drawn from Anonymous Hospital data (see Table 1
in Section 2.3). First, the fastest and smallest ward (Ward B) is subject to the highest load:
it experiences the highest number of patients per bed per month, with bed occupancy that
is comparable to the other wards. The reasons behind the high turnover rate of Ward B
are superior managerial and staff practices, as well as (medically justified) varying policies
for patients release, which results in significantly shorter Average Length of Stay (ALOS).
Importantly, shorter ALOS does not come at the cost of inferior medical care. Indeed, the

Date: September 2, 2011.
Key words and phrases. Queueing systems; heterogeneous servers; healthcare; hospital routing policies; fair-

ness; Quality and Efficiency Driven (QED) regime; asymptotic analysis.
A. Mandelbaum’s research was supported in part by BSF (Binational Science Foundation) Grants

2005175/2008480, ISF (Israeli Science Foundation) Grant 1357/08, and by the Technion funds for the pro-
motion of research and sponsored research.
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level of return rates (within 3 months) is comparable across wards. Hence, one could argue
that the allocation process of patients from the ED to the IWs is not fair from the point of
view of medical staff, a problem that has been observed in other Israeli hospitals as well.

The second empirical conclusion is that some key operational characteristics of the ED-
to-IW process coincide with the features that characterize moderate-to-large-scale queueing
systems in the Quality and Efficiency Driven (QED) regime [18, 24, 19]. Such a regime achieves,
simultaneously, high levels of operational service quality (ED waiting times significantly shorter
than service durations, specifically ALOS) and resource efficiency (high bed occupancy).

1.2. Contributions. Our paper focuses on modeling the ED-to-IW process, which is a key
phase of patient flow in hospitals. More broadly, in 2005, the Joint Commission on the Ac-
creditation of Healthcare Organizations (JCAHO) set a standard (LD.3.15) for patient flow
leadership. The standard requires that healthcare leaders “develop and implement plans to
identify and mitigate impediments to efficient patient flow throughout the hospital”. It am-
plifies the need to identify the critical factors that impact patient flow, with the ultimate
goal of designing and implementing policies, processes and procedures that track, monitor and
improve patient flow throughout hospitals.

Although we concentrate on the impact of patient routing on staff fairness, our work should
be viewed within the broader context of improving staff efficiency by creating an appropriate
incentives structure. Operational policies that are not perceived to be fair could internalize
inefficiencies, i.e., create situations where good work leads to more work. On the other hand,
fair policies not only reward staff members with the best practices, but also promote the
adoption of such practices. Thus, while fair policies come at a certain cost in the short run, in
the long run they are likely to improve overall system efficiency.

Our contributions are as follows:

• Based on empirical data from Anonymous Hospital, we argue that an inverted-V queue-
ing model in the QED regime is appropriate for describing the ED-to-IW process, which
exhibits multi-scale behavior (e.g. IW lengths of stay being much longer than ED wait-
ing times).
• We quantify operational fairness towards medical staff by means of ratios that take into

account bed occupancy levels and bed turnover rates (the average number of admitted
patients per bed per unit of time) – two main metrics as far as workload of medical
staff is concerned. These metrics serve as operational proxies for fairness, which is an
intricate concept. (Operational proxies relate to operations, are easy to measure, and
they approximate notions that are hard to quantify.)
• Although routing algorithms that take into account fairness have been considered in the

literature, we propose a practical routing algorithm (Randomized Most-Idle = RMI)
which is suitable for hospitals where only limited and partial information is available
for patient routing. That is, we consider the role of information in the performance of
routing policies.
• The proposed algorithm, RMI, is analyzed and compared to known algorithms. Our

results demonstrate that RMI achieves (long-run) level of fairness toward medical staff,
that is the same as algorithms which require more information to operate. Moreover,
within our narrow notion of fairness, based on occupancy and turnover rates, an exten-
sion of our algorithm, weighted RMI, is flexible enough to achieve any desired fairness.
• Furthermore, our results yield important insights on differences between various routing

algorithms, differences that arise at the sub-diffusion (room-level) scale. In particular,
these insights reveal that instantaneous imbalance of workload across the IWs is limited
to just a few rooms of patients. Moreover, in the course of just a few days this imbalance
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(if present) disappears due to time averaging, i.e., empirical workload time-averages
converge to the desired long-run averages.

1.3. Brief literature review. There exists a vast amount of research on healthcare systems,
in numerous scientific fields including operations research. We mention here the most relevant
to the present work; additional related references can be found in [45, 7, 15, 27, 20, 16, 34],
as well as in each of the papers mentioned below. Readers are also referred to Green [21, 22],
who describes the general background and issues involved in hospital capacity planning.

Research papers (e.g. [32]) and popular articles (e.g. [43]) both recognize the importance of
ED proper functioning and the consequences of its overcrowding. Patient flow from the ED to
other medical units in the hospital (not just the IWs) has received special attention (becoming
even the subject of a novel [49]). In fact, it has been acknowledged as a major trigger of
ambulance diversion [32], which is of great concern. Ramakrishnan et al. [37] construct a two-
time-scale model for a hospital system, where the wards operate on a time scale of days and
are modeled by a discrete time Markov chain, and the ED operates on a much faster time scale
and is modeled by a continuous time Markov chain. With the help of this model, [37] estimates
expected occupancy of the wards and the probability of each ward reaching its capacity. The
setup in [37] corresponds to ours in that the ED-to-IW process also operates in several scales.
These scales arise naturally from our asymptotic analysis (QED regime). Specifically, length-
of-say in wards, which correspond to our service times, are naturally measures in days, while
waiting in the ED for transfer to the wards is naturally measured in hours, which corresponds
to our waiting times.

Relevant analyses of queueing systems with heterogeneous servers date back to the slow
server problem [39]. Initially, the focus was on finding the best operating policy in order
to minimize the steady-state mean sojourn time of the customers in the system, which is
equivalent to minimizing the long-run average number of customers in the system, due to
Little’s law. Under such criteria, it is preferable to use the faster servers more than the slower
servers. In fact, under some circumstances, it is even advantageous to remove the very slow
servers and thus reduce sojourn time. This slow server phenomenon is addressed, for the case
of two heterogeneous servers and a single queue, in [29, 31, 39, 40, 42]; and for the general
multi-servers case in Cabral [10] (under the Random Assignment (RA) policy, which routes a
customer to one of the idle servers at random). Later, Cabral proved in [11] that, for any two
servers, the fraction of time that the faster among them is busy is smaller than that of the
slower one, and the effective service rate of the faster server is higher than that of the slower
one. Except for [11], none of the studies mentioned above touches on the issue of fairness
towards servers.

In the context of large-scale systems, Armony [1] analyzed the Fastest Servers First (FSF)
routing policy that assigns customers to the fastest available pool. She shows that FSF is
asymptotically optimal (within the set of all non-preemptive, non-anticipating First-Come
First-Served (FCFS) policies), in the sense that it stochastically minimizes the stationary
queue length and waiting time, as the arrival rate and number of servers grow large; Armony
and Mandelbaum [2] extended this result to accommodate abandonments. Yet, under the FSF
policy, asymptotically only the slowest servers have any idle time. This is obviously unfair
towards the fast servers (which get “punished” for being fast by working more), and it gives
them an incentive to slow down – an undesirable result for the system as a whole. Thus, there
exists a trade-off between operational optimality for the system vs. fairness towards servers [3].

There is ample research aimed at achieving fairness to customers; see, for example, references
in [45]. However, to our best knowledge, only recently Atar [4] was the first to deal with the
operational fairness-towards-servers issue. He studied a single-server pools model in the QED
regime, where the number of servers and their service rates are i.i.d. random variables, under



4 AVISHAI MANDELBAUM, PETAR MOMČILOVIĆ, AND YULIA TSEYTLIN

a policy that routes an arriving customer to the server that has been idle for the longest
time among all idle servers (in a deterministic environment, this policy is called Longest-Idle
Server First (LISF) in [1]). Armony and Ward [3] extended LISF routing to Longest-Weighted-
Idle Server First (LWISF), and proposed a threshold policy that asymptotically (in the QED
regime) outperforms LWISF while achieving the same target idleness ratios. Atar, Shaki and
Shwartz [5] proposed the Longest-Idle Pool First (LIPF) policy, that routes a customer to the
pool with the longest cumulative idleness among the available pools; in the QED regime, this
policy is shown to balance cumulative idleness among the pools. Most of these papers examine
transient system behavior by establishing weak convergence process-level results. In contrast,
our work deals with steady-state behavior.

Fairness (or justice, or equity) is a well-researched area in the behavioral sciences [13]. We
shall mention some relevant work later in Section 2.2.

1.4. Organization. The paper is organized as follows. In the next section we describe the
process for routing patients from an ED to IWs, which reveals a fairness problem in this process.
Our queueing model, as well as the QED regime, are introduced in Section 3. Fair routing
algorithms are described in Section 4. Section 5 contains our theoretical results and a related
discussion, including managerial implications. Concluding remarks appear in Section 6. The
appendices contain a description of the routing algorithm currently implemented at Anonymous
Hospital, the state-of-affairs in five other hospitals, technical proofs, and finally a table of
notation and a list of acronyms.

2. Patient Routing

We study patient flow from the ED to the IWs in hospitals. Our research site is Anonymous
Hospital, which is a large Israeli hospital with about 1000 beds, 45 medical units, and about
75,000 patients hospitalized yearly. Among its variety of units, it has a large ED with an
average arrival rate of 200-300 patients daily, who occupy up to 50 beds; and five IWs, which
we denote from A to E. The ED is divided into two major subunits: Internal and Trauma
(the latter being surgical and orthopedic patients). An internal patient, whom the ED decides
to hospitalize, is directed to one of the five IWs according to a certain routing policy – this
routing process is the focus of our research.

Departments of Internal Medicine are responsible for catering to a wide range of internal
disorders, providing inpatient medical care to thousands of patients each year. Wards A-D are
more or less similar in their medical capabilities – each can treat multiple types of patients.
Ward E, on the other hand, treats only “walking” patients, and routing to it differs from that
to the other wards. In our study we thus concentrate on the routing process to Wards A-D
only. The existence of multiple wards with similar medical capabilities is common in Israeli
hospitals and can be attributed to various factors, for example: (i) there exist constraints in
terms of physical space, e.g., wards can be located on different floors of a building; (ii) the
existence of multiple wards implies the existence of multiple positions of ward managers –
these positions are used by the hospital management to attract top-performing doctors; and
(iii) informal research in Anonymous Hospital suggests that healthcare operations could exhibit
diseconomies of scale – this would, of course, discourage the formation of a single super-ward.

2.1. The Routing Process. The decision of routing a to-be-hospitalized patient to one of
Wards A-D is supported by a computer program, referred to as the “Justice Table” at the
hospital. As its name suggests, the algorithm’s goal is to make the patient allocation to the
wards fair, by balancing the load among the wards. Prior to routing, patients are classified
into three categories, according to the complexity of treatment: ventilated, special-care and
regular. The program accepts a patient’s category as an input parameter and returns a ward
for the patient (A-D) as an output. For each patient category, there is round-robin order
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among the wards, while accounting for the size of each ward by allocating fewer patients to a
smaller ward: for example, 2 patients to B per 3 patients to A, reflecting 30:45 bed ratio. The
Justice Table does not take into account the actual number of occupied beds and the patient
discharge rate. In Appendix A, we provide a brief history of the Justice Table and a more
detailed description of the ED-to-IW process.

We recognize a problem in the process of patient routing from the ID to the IWs: patient
allocation to the wards does not appear to be fair. In what follows, we first examine the notion
of fairness and then discuss the specifics present at Anonymous Hospital.

Remark. In addition to analyzing the ED-to-IW process in one specific hospital, we examined
how this process is managed in five other Israeli hospitals (see Appendix A.4). In particular,
we learned about the routing policies that are being used, and how successful they are in
terms of delays and fair allocation. To this end, we used a questionnaire that included both
qualitative (detailed description of the process, fairness considerations) and quantitative (op-
erational measures of the ED and IWs: capacity, ALOS, waiting times) questions. Our study
revealed that unbalanced loads on the wards due to heterogeneity of ALOS are common in all
our surveyed hospitals.

2.2. Fairness. One can analyze fairness towards patients (customers) and fairness towards
wards – the latter covering medical and nursing staff (servers). There is ample literature on
measuring fairness in queues from the customer point of view (e.g., see [6, 30, 36]). Various
aspects are investigated (for example, single queue vs. multi-queues, or FCFS vs. other queue-
ing disciplines), but all agree that the FCFS policy is typically essential for justice perception.
Consequently, customer satisfaction in a single queue is higher than in multi-queues [30]; and
waiting in a multi-queue system produces a sense of lack of justice even when no objective dis-
crimination exists [36]. The situation could be different in invisible queues (e.g. call centers)
and healthcare queues (e.g. EDs). In the latter, clinical priority naturally dominates FCFS
justice.

Remark. We note that patient “service” in a ward actually starts prior to the physical arrival
of the patient to the ward. Indeed, we observed that the ward, once informed about a to-be-
admitted patient, starts preparing for this specific patient: different patients, even if they fall
under the same classification, might require different preparations. This sometimes leads to
the following scenario. Suppose that a decision for hospitalization of patient X was made prior
to a decision of hospitalization of patient Y (assuming both of them are clinically similar):
say, patient X is directed to Ward A and patient Y to Ward B. Now, suppose that Ward B
becomes ready to physically admit the patient earlier than Ward A – hence patient Y joins
a ward before patient X, although Y “arrived” later [17]. In addition to this need for a ward
to prepare for the patient, the hospital staff refrains from modifying patient-ward assignments
also due to a psychological reason: a patient awaiting hospitalization (as well as accompanying
individuals) experiences high levels of stress as is – one thus does not wish to aggravate stress
by changing original ward assignments [17].

In our work, we focus on the process of patient assignment to wards, as opposed to the
physical process of patient transfer from the ED to the IWs. We refer to the former as the ED-
to-IW process. (In this process, deviations from FCFS do not raise fairness problems among
patients since the assignment queue is typically invisible to them.)

The literature on justice from the server point of view is concerned with Equity Theory [26],
according to which workers perceive their justice by comparing ratios of outputs from the job
to inputs to the job. Specifically, if the output/input ratio of an individual is perceived to
be unequal to others, then inequity exists. The larger the inequity the individuals perceive,
the more uncomfortable they feel and the harder they work to restore equity [26]. In [8], it is
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shown that in customer service centers, servers’ equity perception has a positive influence on
their performance and job satisfaction. References to additional studies on the importance of
perceived justice among employees can be found in [3].

Our anchor point is the survey reported in [17], in which the staff (nurses, doctors and
administration) were asked to grade the extent of fairness in different routing policies. When
discussing fairness with wards staff, the consensus was that each nurse/doctor should have
the same workload as others. Seemingly, this is the same as saying that each nurse/doctor
should take care, at any given time, over an equal number of patients (assuming homogeneous
customers, for simplicity). As the number of nurses and doctors is usually proportional to
standard capacity, this criterion is equivalent to keeping occupancy levels of beds equal among
the wards.

Note that, by Little’s law, ρ = γ × ALOS, where ρ is the average occupancy level and γ is
the bed turnover rate. Thus, if one maintains ward occupancies equal then wards with shorter
ALOS will have a higher turnover rate – admit more patients per bed – which gives rise to
additional fairness concerns. Indeed, the load on staff is not spread uniformly over a patient’s
stay, as treatment during the first days of hospitalization requires much more time and effort
from the staff than in the following days [17]; moreover, patient admissions and discharges
significantly consume doctors’ and nurses’ time and effort as well. Thus, even if occupancy
among wards is kept equal, the ward admitting more patients per bed ends up having a higher
load on its staff. For these reasons, a natural alternative fairness criterion is balancing the
turnover rate, or the flux – namely, the number of admitted patients per bed per unit of time
(for example, per month), among the wards.

One can also combine utilization and flux to produce a single workload measure; fair routing
would maintain this measure equal across wards. For example, load, experienced by medical
staff in a ward, can be roughly divided into two parts: load associated with treating hospitalized
patients (quantified by utilization) and load due to patient admissions/discharges (quantified
by flux). For example, a single (objective) workload measure for a nurse, based on a linear
combination of utilization and flux, was proposed in [45, Section 7.2]:

γiNiT
γ
i + ρiNiT

ρ
i

ni
, (1)

where γi is the flux, ρi is the occupancy level, Ni is the number of beds in the ward, T γi is the
average amount of time required from a nurse to complete one admission plus discharge, T ρi
is the average time of treatment required by a hospitalized patient per unit of time, and ni is
the number of nurses in the ward; all quantities refer to a given ward i.

2.3. The setting of Anonymous Hospital. Although Wards A-D in Anonymous Hospital
provide similar medical services, they do differ in their operational characteristics (see Table 1),
which we now elaborate on. First of all, each medical unit is characterized by its capacity.
Ward’s capacity is measured by its number of beds (standard static capacity) and number of
service providers – doctors, nurses, administrative staff and support staff (dynamic capacity).
The “maximal” static capacity stands for the standard static capacity plus extra beds, which
can be placed in corridors during overloaded periods. It is convenient to introduce notions of
a sub-ward and a patient room; these will play a role in a discussion of our results. Wards
consist of sub-wards, which, in turn, are made up of physically co-located rooms. There a few
(2-3) sub-wards in a ward, and a sub-ward consists of several (3-4) rooms.

In our hospital IWs, the dynamic capacity during a particular shift is determined pro-
portionally to the static capacity (see, however, discussions on the appropriateness of such
“proportional” staffing in [16, 22, 51]). In particular, an IW beds-to-nurses ratio in morning
shifts is 5:1 or 6:1 (depending on the number of “intensive care” beds in a ward); during night
shifts, the ratio is 8:1 or 9:1. Note that the number of nurses is determined by the number of
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beds in a ward rather than the number of occupied beds (patients). Hence a unit’s operational
capacity can be characterized by its number of beds only – denoted as its standard capacity.

Table 1. Internal Wards operational measures.

Ward A Ward B Ward C Ward D

Average Length of Stay (ALOS)* (days) 6.5 (± 0.19) 4.5 (± 0.15) 5.4 (± 0.22) 5.7 (± 0.18)
Mean occupancy level 97.8% 94.4% 86.8% 91.1%
Mean # patients per month 205.5 187.6 210.0 209.6
Standard (maximal) capacity (# beds) 45 (52) 30 (35) 44 (46) 42 (44)
Mean # patients per bed per month 4.58 6.38 4.89 4.86
Return rate (within 3 months) 16.4% 17.4% 19.2% 17.6%

Data refer to period May 1, 2006 - October 30, 2008 (excluding the months 1-3/2007, when Ward B
was in charge of an additional sub-ward). The data covers 16,947 admissions in total.
* The level of confidence for ALOS is 95%.

2.4. Fairness at Anonymous Hospital. Medical units are further characterized by various
performance measures: operational – average bed occupancy level, ALOS, waiting times for
various resources, number of patients admitted, or released, per bed per time unit (flux); and
quality – patients’ return rate, patients’ satisfaction, mortality rate, etc. Note that occupancy
levels and flux are calculated relatively to wards’ standard capacities. (Thus, occupancy can
exceed 100%.) Comparing the two basic measures, ward capacity and ALOS, we observe in
Table 1 that the wards differ in both. Indeed, Ward B is significantly the smallest and the
“fastest” (shortest ALOS) among Wards A-D. We observe that the mean occupancy rate in
this ward is high (comparable to that in Wards A and D; higher than in Ward C). In addition,
the number of patients hospitalized per month in this ward is about 90% of those hospitalized
per month in the other wards, although its size is merely about 2/3 of the others. As a
consequence, the flux in Ward B (6.38 patients per bed per month) is significantly the highest.
Since nursers and doctors in Anonymous Hospital are assigned to particular wards and are
salaried workers (as opposed to hourly workers), the load on the Ward B staff is hence the
highest. Due to the fact that the staff-to-beds ratio is fixed, if ALOS is kept constant, the
occupancy rate in a ward serves a measure of the load on the staff in that ward.

Short ALOS could be caused by multiple reasons. For example, it can result from a superior
efficient clinical treatment, or a liberal (vs. conservative) release policy; a clinically too-early
discharge of patients is clearly undesirable. One possible (and accessible) quality measure
of clinical care is patients’ return rate (proportion of patients who are re-hospitalized in the
IWs within a certain period of time – in our case, three months). In Table 1 we observe
that the return rate in Ward B does not differ significantly from the other wards. Also,
patients’ satisfaction level in surveys – another measure of care quality – does not differ in
Ward B [17]. Furthermore, the difference in ALOS across wards could be due to different
wards treating different types of patients and/or performing different types of procedures.
However, our data do not support this hypothesis. In fact, according to Table 2, Ward B
handles a disproportionate share of special-case and ventilated patients, patients that require
longer ALOS on average. Rather, a shorter ALOS in Ward B can be attributed to superior
staff practices. We conclude that the most efficient ward, instead of being rewarded, is exposed
to the highest load; hence, patient allocation appears unfair, as far as the wards are concerned.
Increasing fairness in the routing process is expected to increase staff satisfaction, as well as
provide incentives for improved care and cooperation.
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Table 2. Numbers of admitted patients to Wards A-D for each patient category

IW\Patient Type Regular Special-care Ventilated Total

Ward A 2,316 (50.3%) 2,206 (47.9%) 83 (1.8%) 4,605 (25.2%)
Ward B 1,676 (43.0%) 2,135 (54.7%) 90 (2.3%) 3,901 (21.4%)
Ward C 2,310 (49.9%) 2,232 (48.2%) 88 (1.9%) 4,630 (25.4%)
Ward D 2,737 (53.5%) 2,291 (44.8%) 89 (1.7%) 5,117 (28.0%)
Total 9,039 (49.5%) 8,864 (48.6%) 350 (1.9%) 18,253

Data refer to period May 1, 2006 - September 1, 2008 (excluding the months 1-3/07, when Ward B
was in charge of an additional sub-ward).

3. Model Formulation

We model the ED-to-IW process as a queueing system with heterogeneous pools of i.i.d.
(independent and identically distributed) servers. Arrivals to the system are patients to-be-
hospitalized in the IWs, pools represent the IWs, which indeed have different service rates
(1/ALOS), and the number of servers in each pool corresponds to the number of beds in
each ward. In order to create a tractable system, we assume that arrivals to the wards occur
according to a Poisson process, and LOS (Lengths of Stay) in wards are exponentially dis-
tributed. (Both assumptions are important for analytical tractability, but they are inaccurate
reality-wise – see [33] for empirical findings on arrivals and LOS). Although, as remarked in
Section 2.1, patients to-be-hospitalized in the IWs are classified into several categories, we
analyze here a single customer class model. This, as well as our distributional assumptions,
certainly could present a limitation for application of our theoretical results, but we are still
able to draw useful insights about fair routing in hospitals.

3.1. The Inverted-V Model. Consider the queueing system shown in Figure 1. This ∧-
model, or inverted-V model (in the terminology of [1]) consists of K server pools: pool i has
Ni i.i.d. servers, each with exponential service times of rate µi (namely service rates are equal
within each pool but vary among the pools). The total number of servers in the system is

N =
∑K

i=1Ni. Upon arrival, a customer is routed to one of the available pools (if it has one
or more idle servers), or joins a centralized queue of infinite capacity, if all the servers at all
pools are busy. Homogeneous customers arrive according to a Poisson process with rate λ > 0.
Each customer requires a service that can be provided by any of the servers, and each server
can serve only one customer at a time. The queueing discipline is FCFS, non-preemptive (the
service of a customer can not be interrupted once started), and work-conserving (there are
no idle servers whenever there are customers awaiting service in the queue). In addition, we
assume that all interarrival and service times are statistically independent.

Remark. Our model is centered around beds rather than personnel. In the setup of Anonymous
Hospital (see Sections 2.3 and 2.4), there exists a direct connection between the number of
patients (occupied beds) and staff workload in a ward, a key feature that is utilized in our
model. It is possible to conceive of an alternative, more complex, model that focuses on the
nursing staff directly; nevertheless, as explained in Section 6.2, our simpler model still captures
the essentials of fair routing, if looked at through the appropriate ”lenses”.

3.2. The QED Asymptotic Regime. In this section, we formally introduce the Quality and
Efficiency Driven (QED) regime, in the context of the inverted-V model. We provide some
justification for its applicability in modeling the ED-to-IW process as well.

The QED regime was first discovered by Erlang [18]; it was mathematically formalized by
Halfin and Whitt [24], hence it is often referred to as the Halfin-Whitt regime. The regime can
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Figure 1. Inverted-V system.
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be informally characterized in terms of any one of the following conditions: a (steady-state)
system with a large volume of arrivals (demand) and many servers (supply, or capacity) is
operating in the QED regime if (i) the delay probability is neither near 1 nor near 0, or (ii) its
waiting-time is one order of magnitude shorter than service-time (e.g. seconds vs. minutes in
call centers, hours vs. days in our case), or (iii) its total service capacity is equal to its demand
up to a safety capacity, which is of the same order of magnitude as the square root of the
demand. Characterizations (i) and (ii) relate to the quality aspect, and characterization (iii)
points at high server efficiencies – thus the QED regime achieves high levels of both service
quality and system efficiency, by carefully balancing between the two [1, 19]. The suitability
of the QED regime to the ED-to-IW process was studied in detail in [33]. Here we emphasize
the following relevant empirical facts:

• The number of servers (beds) in each pool (ward) is around 30-50 (Table 1) – the
system is large enough for QED approximations to apply [9, 54, 52].
• Servers’ utilization (bed occupancy) is above 85% (Table 1).
• Waiting times are indeed an order of magnitude shorter than service times: hours vs.

days. Observe that a waiting time in our inverted-V model corresponds to a patient
waiting in the ED due to only lack of available beds in IWs, i.e. bed allocation time
– the amount of time from the decision to hospitalize the patient until a bed becomes
available in one of the IWs. In particular, if a bed is available at the time of the hospi-
talization decision, the corresponding bed allocation time is zero. However, estimating
bed allocation times is difficult since they are not tracked by Anonymous Hospital’s in-
formation systems. Hence, we estimated the time between the hospitalization decision
and the time of the first procedure in the IW (see Appendix A.3). This time serves
as an upper bound on bed allocation time. Since the latter is a major component of
the total waiting time in the ED, we conclude that both quantities are in the order
of hours. A service time in the inverted-V model corresponds to the interval from the
time when a patient occupies a bed until the time the patient releases the bed (or,
more precisely, until the bed becomes available next).
• The probability of encountering an available bed in the designated ward, upon hos-

pitalization decision (relatively to the wards’ standard capacities), is estimated to be
43%, 48%, 76% and 55%, for Wards A-D respectively. The probability of encountering
an available bed in any of the wards is approximately 84%; this estimate is based on a
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long period of time, which includes lightly-loaded periods (the arrival process is non-
stationary). If one considers only highly-loaded winter months (November to April),
the probabilities of encountering an available bed in Wards A-D are 29%, 35%, 64%
and 45%, respectively; the probability of encountering an available bed in any of the
wards is 75% (this probability is the lowest in January – 59%).

Remark. The probability of being admitted to a ward immediately (or within a short time) after
the hospitalization decision is much smaller than the probability of encountering an available
bed (see Figure 7 in Appendix A.3). Indeed, during the period May 1, 2006 - October 30, 2008
(excluding the months 1-3/2007), only 2.7% of the patients were admitted to an IW within 15
minutes from their assignment to a ward. This fact is consistent with the Efficiency Driven
regime. We further note that, in evening shifts (when most patients are admitted [33]), there
usually are one or two doctors in each ward; hence, one expects that they operate under high
loads. In that case, the probability of encountering an available doctor, which is a prerequisite
for being admitted to a ward, should indeed be at ED levels (but we do not have any data
on staff availability). We thus have two parallel queueing systems: beds, which are QED, and
medical staff, who are ED. As already indicated, we focus on the former.

We use the following scaling, suitable for the inverted-V model. Consider a sequence of
systems, indexed by λ (to appear as a superscript), with increasing arrival rates λ→∞, and
increasing total number of servers Nλ, but with fixed service rates (µ1, . . . , µK). Then, the

service capacity of pool i is cλi = Nλ
i µi, the total service capacity is cλ =

∑K
i=1 c

λ
i , and the total

traffic intensity is ρλ = λ/cλ. Both λ and Nλ tend to infinity simultaneously, in a way that
two limiting relations are satisfied. First, for large λ, each pool has a non-negligible fraction
of the total capacity:

cλi /c
λ → ai, as λ→∞, (C1)

where ai > 0 (i = 1, 2, . . . ,K) and
∑K

i=1 ai = 1. The scalar ai is the limiting proportion of the
service capacity of pool i (i = 1, 2, . . . ,K), out of the total capacity. Second, it is convenient
to define a scaling parameter:

νλ := λ/µ̂,

where µ̂ is the arithmetic-mean service rate:

µ̂ :=

K∑
i=1

aiµi;

it is appropriate to think of νλ as an effective system size. Then, the following condition is
assumed to hold: √

νλ (1− ρλ)→ δ > 0, as λ→∞. (C2)

This limit implies ρλ → 1 (high utilization), as λ → ∞, and is (asymptotically) equivalent to

the classical square-root safety staffing rule: the total service capacity, cλ = λ+δ
√
λµ̂+o(

√
λ),

is equal to the arrival rate, λ, plus a square root safety capacity, δ
√
λµ̂, where δ is some

quality-of-service parameter (the larger the value of δ, the higher the service quality); here, δ
is a unitless quantity, while cλ, λ and

√
λµ̂ are measured in the same units (e.g. patients/week).

Note that fluctuations of the arrival process from its mean (λ) are proportional to
√
λ. With µ

being the harmonic-mean service-rate:

µ−1 :=
K∑
i=1

aiµ
−1
i ,



ON FAIR ROUTING 11

(C1) and (C2) then imply
λ

Nλ
=

λ∑K
i=1 c

λ
i /µi

→ µ,

as λ→∞. In view of this, (C2) can be rewritten as
√
Nλ(1− ρλ)→ β := δ

√
µ̂/µ,

as λ → ∞. Finally, we define qi to be the limiting fraction of pool i servers, out of the total
number of servers:

Nλ
i

Nλ
→ ai

µi
µ := qi, (2)

as λ→∞; the limit is due to (C1) and (C2). Since ai > 0, for all i, we also have that qi > 0,

for all i, i.e., the pools are of comparable sizes. Clearly,
∑K

i=1 qi = 1 and
∑K

i=1 qiµi = µ.
Therefore, one can interpret µ as the (limiting) average service rate of a server in the system,
whereas µ̂ is the (limiting) average service rate at which customers receive service. The two
quantities differ because faster servers serve more customers. (Note that µ ≤ µ̂, with equality
if and only if all µi’s are equal to each other, in which case β = δ and νλ = Nλ.)

4. Fair Routing

Before introducing formally two criteria of fairness, within the context of the inverted-V
model, we need some notation. Denote by Iλi the long-run (steady-state) number of idle servers
at pool i (i = 1, 2, . . . ,K); each Iλi is a random variable that attains values in {0, 1, . . . , Nλ

i }
(i = 1, 2, . . . ,K). Let ρλi := 1 − EIλi /Nλ

i be the mean long-run (steady-state) occupancy rate
in pool i. As the servers within each pool are symmetric, ρλi also stands for the utilization of
servers in pool i – the fraction of time that each server is busy in the long-run (steady-state).
Finally, by γλi we denote the average flux through pool i (average number of service completions
per pool i server per time unit): γλi = µiρ

λ
i , by Little’s law. Clearly, γi stands also for the

average effective service rate of a server in pool i.
When analyzing fairness towards servers, we consider the following two criteria: occupancy

balancing and flux balancing. Server’s utilization or, equivalently, pool’s occupancy rate, is
one of the prevalent measures of servers workload. As the occupancy rates at all pools tend
to one in the QED regime (see (C2)), we thus compare the ratio between the proportions of
idle servers in the pools (1− ρλi )/(1− ρλj ), referred to as the idleness ratios. The closer these
ratios are to unity, the more balanced the routing is, according to the occupancy-balancing
criterion. The second criterion takes into account the additional measure of workload – the
average “flux” through the pools – namely, the number of customers served by a server per
time unit. Hence, our second criterion is based on the flux ratios γi/γj . The closer this ratio is
to unity, the more balanced the routing is, according to the flux-balancing criterion. Note that,
in the QED regime, γi/γj → µi/µj , as λ → ∞, for any work-conserving routing algorithm.
That is, pools with higher service rates experience higher flux. Hence, based on the discussion
in Section 2.2, it is appropriate to have lower utilization for pools with higher service rates.
Equivalently, if the flux ratio for two pools is greater than one (due to the difference in the
service rates), then the idleness ratio should be greater than one as well. The algorithms we
discuss in the next subsection all achieve this goal.

4.1. Routing Algorithms. In this subsection, we describe three routing algorithms. All
three are work conserving, a choice that is dictated by our goal to reduce queue length (or,
equivalently, waiting time by Little’s law) rather than the number-in-system (sojourn time).
In the ED-to-IW setting, the objective is to minimize the “queue” for transfer to the wards,
thus reducing the overload on the ED. Work-conservation is discussed further in the remark
at the end of the present subsection.
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Next, we describe the three routing algorithms and their implications on server fairness. Let
Iλi (t) ∈ {0, . . . , Nλ

i } denote the number of idle servers in pool i (i = 1, 2, . . . ,K) at time t. When
there are no customers awaiting service at time t, the vector (Iλ1 (t), . . . , IλK(t)) specifies the state
of the system. However, when the waiting queue is not empty, an additional variable is needed
to specify the number of customers awaiting service; let Qλ(t) ∈ {0, 1, . . .} be the number of
customers awaiting service at time t. It is convenient to define Iλ(t) ∈ {. . . , Nλ − 1, Nλ} as
(jointly) the total number of idle servers awaiting customers/number of customers awaiting
servers, at time t:

Iλ(t) =
K∑
i=1

Iλi (t)−Qλ(t). (3)

Note that Iλ(t) can take negative values: {Iλ(t) = −i}, i ≥ 1, indicates that there are i

customers awaiting service at time t. Due to work-conservation, one has
∑K

i=1 I
λ
i (t) = (Iλ(t))+

and Qλ(t) = (Iλ(t))−, where x+ and x− denote the positive and negative part of x.

LISF routing. The Longest-Idle Server First (LISF) policy routes a customer to a server that
has been idle for the longest time, among all idle servers. This policy is commonly used in call
centers and considered to be fair [3]. It was first analyzed (in the QED regime) by Atar [4],
in the context of a single pool system in a random environment (service rates were taken to
be i.i.d. random variables). Armony and Ward [3] analyzed LISF routing in the inverted-V
model with two (K = 2) pools. Informally, they show that, for large λ > 0, LISF maintains
fixed ratios between the number of idle servers in different pools, whenever idle servers exists;
that is, if Iλ(t) > 0 at time t, then

Iλi (t)

Iλj (t)
≈ ai(I

λ(t))+

aj(Iλ(t))+
=
ai
aj
.

Hence, up to some technical conditions (see the discussion prior to Corollary 4.2 in [23]), under
LISF routing one expects

1− ρλi
1− ρλj

=
EIλi
Nλ
i

/ EIλj
Nλ
j

→ aiqj
ajqi

=
µi
µj
,

and γλi /γ
λ
j → µi/µj , as λ → ∞, i.e., both the idleness and flux ratios tend to the ratios of

server rates. The algorithm leads to a desirable outcome: fast servers work less (have lower
utilization) but “produce” more (have higher flux).

Note that even though LISF is a “blind” policy (a policy that requires, at the time of
routing decision, none or minimal information on the parameters of the system, or the system
state [5]), implementing the LISF policy in the hospital setting is not straightforward. Namely,
one must keep track not only on the number of idle servers (beds) in each pool (ward), but
also the relative ordering of idle servers in terms of their idle times. The latter information
is not currently available in hospitals. This fact motivates us to consider alternative routing
policies that achieve the same (asymptotic) fairness towards servers but utilize less information
for customer routing.

IR routing. The Idleness-Ratio (IR) routing policy is a way to achieve the same idleness ratio
as LISF, but without the information on idleness times. This policy is a special case of
Queues-and-Idleness-Ratio (QIR) policies, which were proposed and analyzed by Gurvich and
Whitt [23]. They consider a generalization of the inverted-V model, a parallel-server system
– a service system with multiple server pools and multiple customer classes. The problem
of dynamic control of such systems is often referred to as “Skill-Based Routing” (borrowing
the terminology from the world of call centers). Adopting the QIR policy to the inverted-V
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model, IR routes a customer to the server pool with the highest idleness imbalance. The basic
idea is to route each customer in such a way that the vector (Iλi (t), . . . , IλK(t)) is as close to

(w1(Iλ(t))+, . . . , wK(Iλ(t))+) as possible, where the set of positive constants {wi} is a priori

fixed, with
∑K

i=1wi = 1. For example, if K = 2 and w1 = w2 = 1/2, then the IR policy
routes a customer to the pool with the higher number of idle servers. Specifically, at time t, a
customer is routed to the pool with the index

arg max
i

{
Iλi (t−)− wi(Iλ(t−))+

}
.

Ties are broken in an arbitrary, but consistent fashion; the tie-breaking rule does not impact

the results at the diffusion (
√
νλ) scale. In [23] it was shown that (Q)IR controls drive the

idleness process to the predetermined proportions {wi}, in the QED regime. Following the
same argument as in the LISF case, one expects

1− ρλi
1− ρλj

=
EIλi
Nλ
i

/ EIλj
Nλ
j

→ wiqj
wjqi

,

and γλi /γ
λ
j → µi/µj , as λ → ∞. Therefore, with the IR algorithm, one can achieve the same

ratio of the number of idle server (and idleness ratios) as under the LISF algorithm, by simply
setting wi = ai, since (wiqj)/(wjqi) = µi/µj (see (2)). Given its weights, the IR policy is
a blind policy as only the information on the number of idle servers in each pool is needed.
However, determining the values of ai’s is far from straightforward in the hospital setting. In
particular, note that ai represents the limiting ratio between the pool i service capacity (cλi )
and the total service capacity (cλ). Therefore, since one must estimate the service rates in
order to evaluate the appropriate weights, the considered version of the policy is, effectively,
not blind. Recall from Section 2 that the capacity (number of beds) of each ward can vary
with time, e.g., during the first three months of 2007 Ward B was in charge of an additional
sub-ward. These facts serve as a motivation for considering yet a third routing algorithm,
based on further reduced information.

RMI routing. We now introduce the Randomized Most-Idle (RMI) routing policy. As our
results in the next section indicate, the RMI policy achieves the same ratios of idleness between
server pools as the LISF and IR (with wi = ai) policies on the diffusion scale, and yet it requires
information on neither idleness times nor on pool capacities. Under RMI, a customer is assigned
to one of the available pools, with probability that equals the fraction of idle servers in that pool
out of the overall number of idle servers in the system (hence, the name of the policy). That
is, a customer to be routed at time t is assigned to pool i with probability Iλi (t−)/(Iλ(t−))+.
In [45] it was observed that the RMI policy, in the inverted-V model, is equivalent to the
Random Assignment (RA) policy in the single server pool model with Nλ servers, where Nλ

i
servers have rate µi (i = 1, . . . ,K). To illustrate this, consider the following example. Assume
that a customer arrives to the system with two available pools: pool i has 2 available servers
and pool j has 3 available servers. Thus, the customer is routed to pool i with probability 2/5
and to pool j with probability 3/5. As in pool i there are two available i.i.d. servers, each one
of them will serve this customer with probability 1/5; similarly, each server in pool j will serve
the customer with probability 1/5. As a consequence, the customer is assigned to any one of
the five available servers with equal probabilities.

An analytically appealing feature of the RMI policy is that, when modeled as a Markov
chain in continuous time, the system is reversible [28] (in [45] it is conjectured that this is the
only routing policy under which the inverted-V system induces a reversible Markov chain).
Therefore, one is able to derive its steady state probabilities in a straightforward manner and
provide an exact analysis in steady state. (Due to their complexities, LISF and IR policies
were analyzed only asymptotically.) Finally, we note that, even though RMI is a randomized
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policy, it can be easily implemented in a hospital setting. For example, patient ID numbers
can be utilized as sources of randomness (as stated in Appendix A.4, at least one hospital in
our survey has implemented some randomized policy, based on patient ID numbers).

Remark (Why work-conserving?). The three considered algorithms are work-conserving. This
assumption is not restrictive from the point of view of both hospital and patients. The goal
is to reduce the waiting times in the ED so that the number of patients awaiting transfer
from the ED to the IWs is minimized. Therefore, implementing a work-conserving policy is
desirable since intentional server idling only increases the number of patients in the ED. In [45],
it was shown that, under the waiting time criterion and RMI routing, it is not beneficial to
discard slow servers, i.e., it is not desirable to intentionally idle servers. On the other hand,
when the objective is to minimize the sojourn time (waiting plus service times), cases arise
when it is beneficial to discard slow servers in a system with heterogeneous servers. Within
the context of the well-known slow-server problem, this was shown for two serves [39] and
many servers [10]. Namely, if some servers are slow enough, roughly speaking, it could turn
out preferable for a waiting customer to wait for a fast server to become available rather than
start service at a slow server. Thus, as far as sojourn time is concerned (but not waiting time),
a non work-conserving policy could turn out preferable.

5. Theoretical Results

The following theorem characterizes RMI performance, in the non-asymptotic regime (finite
arrival rate λ). The theorem states that, when comparing two pools, servers utilization in the
faster pool is lower than that in the slower pool, but the flux in the faster is higher than in the
slower. Due to the symmetry of servers within each pool, this implies that, when considering
any two servers, the faster between the two will work less time than the slower one but, at the
same time, the faster server will serve more customers than the slower. The result suggests,
first of all, some form of fairness: faster servers are “rewarded” by working less time. In
addition, operational preferences of the system are accommodated as well: more customers are
served by faster servers than by slower servers. We note that Cabral [11] proved this result,
for the single-server-pool system under the RA policy, independently.

Theorem 1. In the inverted-V model under the RMI policy, for any two pools i and j: if
µi > µj, then ρλi < ρλj and γλi > γλj .

Proof. See Appendix B.1. �

The theorem provides an upper and lower bound on the ratio of server utilizations (assuming
µi > µj): µj/µi < ρλi /ρ

λ
j < 1. This suggests that the difference in utilizations of any two

servers is more significant the more their service rates differ: for µj ≈ µi, one has ρλj ≈ ρλi ,
but as µj grows smaller than µi, the server-utilization ratio decreases. The bounds on the flux

ratios are as follows (assuming µi > µj): 1 < γλi /γ
λ
j < µi/µj , where the second inequality

follows from ρλi /ρ
λ
j < 1. The latter upper bound is important – although the fact that faster

servers serve more customers contributes to system performance, one should not forget that, in
certain cases, higher flux actually implies higher workload. In particular, this is the case in our
ED-to-IW process, because service admissions and releases impose workload that is plausibly
proportional to flux. For the RMI policy, the servers’ flux ratio γλi /γ

λ
j is bounded by the ratio

of their service rates: γλi /γ
λ
j = (ρλi µi)/(ρ

λ
j µj) < µi/µj when µi > µj ; thus, if server rates are

comparable, a faster server’s flux can not be much higher than that of a slower one.

Remark. The fact that utilization decreases the faster the server gets, provides an incentive
for servers to work faster, which is positive on one side but, on the other, might harm service
quality, if one starts serving customers too fast. For example, see Gans et al [19] who describe
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telephone agents that intentionally hang up on customers in order to maintain low average
service times. Another issue is that, if the slow server is not responsible for being slow (for
example, a new server vs. a veteran), “punishing” the server for being slow appears quite unfair.
However, as noted earlier, higher flux may be considered in certain cases a “punishment” as
well. Hence, in order to decide which servers perceive themselves as better off: the faster or
the slower; or alternatively, what are servers’ incentives (to increase or decrease his/her service
rate?), one must account for the servers utility functions (the ones they strive to optimize),
which combine both criteria (utilization and flux) – for an example of such a utility function
recall (1).

The next theorem characterizes the inverted-V model under RMI routing in the QED regime.
It can serve as a means for evaluating performance measures (probability of wait, expected
waiting time, etc.) of the inverted-V model in the QED regime. A summary of performance
measures, both for finite λ and in the limit, as λ → ∞, can be found in Appendix B.4.
Recalling (3), let Iλ be the stationary total number of idle servers/customers awaiting service
in the system with arrival rate λ; the random variable Iλ takes values in {. . . , Nλ− 1, Nλ}, by

definition (Iλ)+ =
∑K

i=1 I
λ
i , and {Iλ = i} for negative i indicates that there are |i| customers

awaiting service. As the system size increases (λ → ∞), the variability of demand increases
as well, implying that the magnitude of Iλ gets larger and larger. Hence, in order to gain
understanding of the behavior of Iλ, we consider its scaled version:

Îλ := Iλ/
√
νλ;

such a scaling is typical for the QED regime and is referred to as a diffusion scaling. Informally,
the theorem states that, in stationarity, there exists a dimensionality reduction in the sense
that the stationary number of idle servers is pool i satisfies Iλi ≈ ai(Iλ)+, for large λ, i.e., idle
servers are distributed across the pools proportionally, according to the relative pool capacities.
Moreover, the theorem turns out to provide an explicit estimate of how close Iλi is to ai(I

λ)+.

In particular, fluctuations of Iλi around ai(I
λ)+ grow with λ at a rate

4
√
νλ, and thus we

consider

Îλi :=
1√
Iλ

(
Iλi −

cλi
cλ
Iλ
)
, i = 1, . . . ,K.

We refer to the
4
√
νλ scale as a sub-diffusion scale since

4
√
νλ �

√
νλ, for large λ. Characteriza-

tion of RMI behavior on the sub-diffusion scale provides additional insights into the operation
of the algorithm – we discuss this further in the next subsection. Denote by ϕ(·) and Φ(·) the
standard normal density and distribution functions, respectively. Let ⇒ denote convergence
in distribution.

Theorem 2. Consider the inverted-V model in steady-state, under the RMI routing algorithm
in the QED regime (C1-C2). Then, as λ→∞,(

Îλ, (Îλ1 , . . . , Î
λ
K)1{Îλ>0}

)
⇒
(
Î , (Î1, . . . , ÎK)1{Î>0}

)
, (4)

where Î and (Î1, . . . , ÎK) are independent;

P[Î ≤ 0] =

(
1 + δ

Φ(δ)

ϕ(δ)

)−1

;

P[Î > x | Î > 0] = Φ(δ − x)/Φ(δ), x ≥ 0; P[Î ≤ x | Î ≤ 0] = eδx, x ≤ 0; and (Î1, . . . , ÎK) is

zero-mean multi-variate normal, with EÎiÎj = ai1{i=j} − aiaj.

Proof. See Appendix B.2. �



16 AVISHAI MANDELBAUM, PETAR MOMČILOVIĆ, AND YULIA TSEYTLIN

The contribution of the theorem to understanding system behavior under RMI is twofold.
First, RMI achieves the same server fairness as LISF and IR (with appropriate weights) in
the sense that idle servers are distributed across the pools according to the pools relative
capacities (ai’s). This is of significance since RMI requires less information for its operation
than LISF and, unlike IR, RMI does not utilize information on pool capacities. Second, the
“quality” of allocation of idle servers across the pools under RMI is revealed. Specifically,
the number of idle servers in a pool deviates from (cλi /c

λ)Iλ (a number determined by pools

relative capacities) by a random quantity (normally distributed) of the order
4
√
νλ. In view of

the fact that the number of idle servers in a pool is proportional to
√
νλ, fluctuations of order

4
√
νλ are negligible, when λ is not small.

Remark (Equal service rates). When the service rates are equal across the server pools, i.e.,
µ1 = µ2 = . . . = µK , then µ = µ̂ = µ1, δ = β, Nλ/νλ → 1, as λ → ∞, and one recovers the
well-known Erlang-C QED approximation [24].

Remark. Note that
∑K

i=1 Î
λ
i 1{Îλ>0} = 0 by definition. The limit (4) is consistent with this

condition: P[
∑K

i=1 Îi = 0] = 1, since E(
∑K

i=1 Îi)
2 = 0.

Remark. The dimensionality reduction (on the diffusion scale) can be deduced from hydrody-
namical equations in [14]. For example, consider the case when there are K = 2 pools. If the
fraction of idle servers that are in the first pool exceeds cλ1/c

λ, then a disproportionate number
of customers will be routed to the first pool, resulting in a lower number of idle servers in the
first pool. As similar situation occurs when the fraction of idle servers that are in the first pool
drops below cλ1/c

λ. Hence, the ratio of the number of idle servers in different pools should be
equal to the ratio of the pool capacities.

Example 1 (Probability of delay). Consider an inverted-V system with the following parame-
ters: K = 2, q2 = 2q1 = 2/3 and µ1 = 2µ2 = 2 (e.g. patients/week). The total number of
servers (e.g. beds) is taken to be

Nλ =

⌈
λ+ 0.5

√
λ

q1µ1 + q2µ2

⌉
,

while Nλ
1 = round(q1N

λ) and Nλ
2 = Nλ − Nλ

1 . We vary the arrival rate λ from 10 to 500 –
this corresponds to varying Nλ

1 and Nλ
2 from 3 to 128 and 6 to 256, respectively. In Figure 2,

we plot the exact probability of delay along its QED approximation. Note that, due to the
PASTA property, the probability of delay is equal to P[Iλ ≤ 0] and, hence, Theorem 2 renders

P[delay]→
(

1 + δ
Φ(δ)

ϕ(δ)

)−1

, (5)

as λ→∞. The preceding limit serves as the basis for calculating QED approximation for the
finite system. To this end, the required QED parameter δ changes slightly with λ due to the
fact that the number of servers in each pool is a natural number. Thus, when evaluating the
QED approximation, we compute δ for each value of λ:

δλ =

(
1− λ

Nλ
1 µ1 +Nλ

2 µ2

)√
λ/µ̂λ,

where

µ̂λ =
Nλ

1 µ
2
1 +Nλ

2 µ
2
2

Nλ
1 µ1 +Nλ

2 µ2
.

A QED approximation for the probability of delay is obtained by evaluating the right-hand side
of (5) with δ = δλ. As can be seen in Figure 2, the QED approximation has a reasonable (useful)
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Figure 2. Exact values and QED approximations of the probability of delay,
for the sequence of systems described in Example 1.
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accuracy when system sizes and service rates are similar to those in Anonymous Hospital (see
Section 2).

Example 2 (Dimensionality reduction). To illustrate the dimensionality reduction that arises
in Theorem 2, we simulated an inverted-V system under RMI, with parameters that adhere to
the QED scaling (C1) and (C2): K = 2, λ = 3950, µ1 = 15, µ2 = 7.5, N1 = 138, N2 = 276
(a1 = a2 = 1/2, µ̂ = 11.25, δ ≈ 0.86). In Figure 3, we plot typical realizations of the total
number of idle servers, {Iλ(t), t ≥ 0}, and the centered number of idle server in the first
pool, {Iλ1 (t) − a1(Iλ(t))+, t ≥ 0}. Initially, at time t = 0, there are no idle servers and no
customers await service, i.e., Iλ(0) = 0. By time t = 900, the system is close to its stationary
regime (there are more than 7 · 106 arrivals/departures in the time interval [0, 900]). One
can observe that the processes {Iλ(t), t ≥ 0} and {Iλ1 (t) − a1(Iλ(t))+, t ≥ 0} evolve on two

different counting scales – the first one on the
√
νλ-scale (

√
νλ ≈ 18.7) and the second one on

the
4
√
νλ-scale (

4
√
νλ ≈ 4.3).

From the following corollary, it is immediate that, under RMI, the idleness ratios satisfy
(1−ρλi )/(1−ρλj )→ µi/µj , as λ→∞. That is, RMI achieves the same idleness ratios as LISF.

Corollary 1. Consider the inverted-V model in steady-state, under the RMI routing algorithm
in the QED regime (C1-C2). Then, as λ → ∞, E(Îλ)− → E(Î)−, E(Îλ)+ → E(Î)+, and

EIλi /
√
νλ → aiE(Î)+, for i = 1, . . . ,K, where Î is as in Theorem 2.

Proof. See Appendix B.3. �

Remark (Loss of performance). As stated in the Introduction, Fastest Servers First (FSF)
routing is asymptotically optimal (within the set of all non-preemptive, non-anticipating FCFS
policies), in the sense that it stochastically minimizes the stationary queue length and waiting
time, as the arrival rate and number of servers grow large in the considered inverted-V model.
When analyzing the trade-off between fairness and performance (i..e., RMI vs. FSF), one must
consider the following two aspects.
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Figure 3. Illustration for Example 2.
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On one hand, within our mathematical model, fairness comes at the cost of a decrease in
system performance (e.g., an increase of the probability of delay). Theorem 2 (and Corol-
lary 1), together with results on FSF routing in [1], provide means for quantifying the loss
of performance under RMI (relative to FSF). In particular, results in [1] indicate that, under
FSF,

P[Î ≤ 0] =

(
1 + δ∗

Φ(δ∗)

ϕ(δ∗)

)−1

;

P[Î > x | Î > 0] = Φ(δ∗ − x
√
µ∧/µ̂)/Φ(δ∗), x ≥ 0; P[Î ≤ | Î ≤ 0] = eδx, x ≤ 0; µ∧ = minµi

and δ∗ = δ
√
µ̂/µ∧. Thus, the probability of delay under RMI is higher (since δ∗ ≥ δ) than the

probability of delay under FSF by a factor of

1 + δ∗Φ(δ∗)/ϕ(δ∗)

1 + δΦ(δ)/ϕ(δ)
, (6)

that depends on the spare capacity parameter δ and the ratio of the arithmetic-mean service
rate µ̂ to the minimum service rate µ∧; recall that in heavy traffic, only servers with the smallest
service rate are idled under FSF. The increase in the expected waiting time is given by the same
ratio. This follows from the fact that the conditional expected wait, given that it is positive,
is the same under the two routing policies. The decrease in performance should be carefully
reviewed in order to determine if increased delays are clinically acceptable. For example, in
Anonymous Hospital (see Table 1), µ̂ ≈ 1.18 patients/week, µ ≈ 1.08 patients/week and
δ ≈ 0.87, leading to the ratio in (6) being equal to 1.07, i.e., the probability of delay increases
by 7% when employing RMI instead of FSF.

On the other hand, as stated in Section 1, the issue of fairness needs to be examined beyond
the mathematical model with fixed service rates. In particular, ensuring fairness towards
medical staff should be viewed within the context of providing a right set of incentives for
staff. While the waiting time of customers (patients) is stochastically minimized under FSF,
medical staff working in wards with non-minimal service rates have no incentive to further
reduce LOS – any improvement would lead to a higher load. Thus, although FSF nominally
results in shorter waiting times, RMI can be more beneficial for customers in the long run
since the implementation of RMI can eventually lead to shorter LOS and, as a result, shorter
waiting times.



ON FAIR ROUTING 19

Weighted RMI. Finally, we note that the RMI algorithm can be generalized to a Weighted RMI
(WRMI) as follows. Given a set of weights wi > 0 (i = 1, . . . ,K) such that

∑K
i=1wi = 1, the

WRMI routes a customer to pool i, at time t, with probability Iw,λi (t−)/
∑K

j=1 I
w,λ
j (t−), where

Iw,λi (t) = wiI
λ
i (t). The weights can be used to adjust idleness ratios to a desired target (relative

to the ratio of service rates) in the QED regime. Unless all weights are equal, the resulting
system is not reversible, and thus our analysis of RMI can not be extended to WRMI. However,
insights gained from RMI can be used to heuristically analyze WRMI as follows. Consider a

time instance t such that Iλ(t)/
√
νλ > 0. Then, the departure rate of customers from pool i is

cλi − µiIλi (t) (where cλi � µiI
λ
i (t)); on the other hand, customers enter service at pool i with

rate λIw,λi (t)/
∑K

j=1 I
w,λ
j (t). Therefore, for large λ,

ai
aj
≈ cλi − µiIλi (t)

cλj − µjIλj (t)
≈
Iw,λi (t)

Iw,λj (t)
=
wiI

λ
i (t)

wjIλj (t)
.

In view of the preceding, one expects that the idleness ratios satisfy, as λ→∞,

1− ρλi
1− ρλj

→ wjµi
wiµj

.

5.1. Comments on the Sub-Diffusion Scale.

Relevance and Implications. Based on empirical data from our Anonymous Hospital, we es-
timated that λ ≈ 189.7 patients/week and µ̂ ≈ 1.18 patients/week (see Table 1); thus,
νλ = λ/µ̂ ≈ 160.8. These numbers and our theoretical analysis reveal that there exist 3
relevant counting scales (bed, room, sub-ward) and 3 corresponding time scales (hour, day,
week). In order to describe a stochastic process of interest (e.g. the number of available beds),
one needs to define not only an appropriate counting scale, but also appropriate time intervals
(scale) over which relevant changes in the process occur. On time intervals that are too short,
no changes in the value of the process can be observed on the counting scale; on the other
hand, on time intervals that are too long, the process covers the whole counting scale, and
time variability can not be studied.

The finest counting scale is at the level of an individual bed/patient (order-1 scale), while
the corresponding time scale is at the level of an hour (order-1/λ). Indeed, when considering
individual patient arrivals, the relevant time scale is based on hours since 1/λ ≈ 0.86 hours.

The coarsest counting scale (order-
√
νλ; diffusion scale) is used to describe the total number of

available beds and patients awaiting hospitalization. For a large hospital, this scale is defined

by a sub-ward, due to the fact that
√
νλ ≈ 12.7 (beds or patients) is roughly the size of 1/4

to 1/3 of a ward, and the number of available beds/patients waiting is proportional to
√
νλ

(see Theorem 2). The corresponding time scale is defined by a “typical” LOS – a week in our
case, since patients stay in a ward a bit less than a week on average (or 1/µ̂ ≈ 0.85 weeks, see
Table 1).

The preceding two pairs of scales are standard for systems operating in the QED regime.
The third pair of scales is intermediate and due to RMI. The counting scale (sub-diffusion

scale) is defined by a room (rooms in Anonymous Hospital have 4 beds) and is an order-
4
√
νλ

scale (
4
√
νλ ≈ 3.6 (beds or patients)). This scale is relevant in describing the number of patients

that need to be moved between wards in order to make the instantaneous (at a specific moment
of time) idleness ratios equal to the long-run (average) idleness ratios introduced earlier. The
latter ratios do not provide information on the system behavior at a specific moment of time.

For example, consider the following two scenarios, assuming two symmetric wards: (i) the
number of available beds in the two wards is the same at all times; and (ii) the number of
available beds in the first ward is higher than in the second one for a long period of time, and
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then the situation is reversed for the same amount of time. Under both scenarios, the idleness

ratio is unity. The room-level (
4
√
νλ) counting scale provides information on deviations of the

numbers of available beds (in steady-state) from the numbers that ensure that the actual ratios
of idle servers at a given moment of time are equal to the idleness ratios (average quantities).
In particular, our results imply that fluctuations of instantaneous idleness ratios around their

long-run averages are of the order 1/
4
√
νλ. The associated time scale is based on a day (order-

1/
√
λµ̂; 1/

√
λµ̂ ≈ 0.87 days) and describes relevant time intervals over which these relatively

minor fluctuations of idleness ratios average out. Recall the two scenarios mentioned above. In
the second one, several cycles are needed for idleness ratios to converge to unity. Indeed, if one
observes the system for a short period of time only, then the system appears unfair. Yet, over
long periods of time the system is fair. Finally, we note that the intermediate counting and
time scales are related, in the sense that the larger the fluctuations of the number of available
beds, the longer time intervals one requires for convergence of the idleness ratios.

Informally, our results indicate that, under RMI, fluctuations of the numbers of idle beds
in different wards, around values that ensure µi/µj instantaneous idleness ratios are of the

order
4
√
νλ ≈ 3.6 (beds or patients), i.e., the room-based counting scale is relevant. Indeed,

Theorem 2 implies

Iλi ≈
cλi
cλ
Iλ + Îλi

√
Iλ,

and, hence, the idleness rations obey

Iλi /N
λ
i

Iλj /N
λ
j

≈ µi
µj

(
1 +

1√
Iλ

(
Îλi /ai − Iλj /aj

))
.

Moreover, when available beds exist, even the minor differences (order-1/
√
Iλ or, equivalently,

order-1/
4
√
νλ) between instantaneous idleness ratios and the corresponding long-run idleness

ratios (µi/µj) are averaged out on time intervals of order 1/
√
λµ̂ (time intervals that contain√

νλ-order arrivals/departures are of interest here, since central limit theorem deviations are of

the order
4
√
νλ in that case; consequently, this corresponds to time intervals of length

√
νλ/λ =

1/
√
λµ̂). In Anonymous Hospital, this corresponds roughly to days (1/

√
λµ̂ ≈ 0.87 days), and

consequently one expects desired idleness ratios (with very high accuracy) on a weekly basis.
Interestingly, the same behavior of intermediate scales occurs when the system operates under
the LISF rule (see below).

Technical Discussion. Even though the three considered algorithms operate in different ways,
they result in the same behavior on the diffusion scale. However, differences arise on the sub-
diffusion scale. Informally, Theorem 2 states that, for large λ, RMI deviations of Iλi around

cλi /c
λ (Iλ)+ are on the order of

4
√
νλ; note that both Iλi and (Iλ)+ are

√
νλ-order random

variables. On the other hand, under IR policy, Iλi (t)− ai(Iλ)+ is an order-1 random variable,
as λ → ∞. Consequently, although implementing RMI in a hospital setting will not ensure
that an instantaneous idleness ratio is equal exactly to the desired value µi/µj at all times, the

number of available beds in a ward will only differ from the desired one by a
4
√
νλ-quantity,

which is negligible in comparison with the number of available beds in a ward.
Furthermore, it should be noted that, under both IR and RMI, there exists a separation

of time scales. Namely, the processes {Iλ(t)/
√
λ, t ≥ 0} and {Iλi (t)/

√
λ, t ≥ 0} evolve on

the order-1 time scale under both policies; this is typical in the QED regime – no time-
speedup is needed, in contrast to the case of conventional heavy-traffic. However, the processes

{Iλi (t)− ai (Iλ(t))+, t ≥ 0} and {(Iλi (t)− cλi /cλ (Iλ(t))+)/
4
√
νλ, t ≥ 0} evolve on the λ−1- and

(λµ̂)−1/2-time scales, as λ→∞, under IR and RMI routing, respectively. Hence, a separation
of time scales, since the latter processes evolve on much faster time scales (order-λ−1 and
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order-(λµ̂)−1/2) than the former processes (order-1 time scale). In Figure 4, we plot typical
sample paths of {Iλ1 − a1(Iλ(t))+, t ≥ 0} under RMI and IR routing, for the system described
in Example 2 – the difference in counting and time scales is evident. Therefore, in the context
of Anonymous Hospital, the desired idleness ratios are maintained not only in the long-run, but

also on shorter time intervals. In particular, provided that idle servers exist (Iλ(0)
√
νλ > ε for

some ε > 0), intervals of order λ−1 and (λµ̂)−1/2 are required under IR and RMI, respectively,
for convergence of the empirical idleness ratios to the long-run averages (1 − ρλi )/(1 − ρλj ), in

the sense that (for large λ)

√
νλ

 1
Nλ
i

∫ t/λ
0 Iλi (u) du

1
Nλ
j

∫ t/λ
0 Iλj (u) du

− 1− ρλi
1− ρλj

 and
4
√
νλ

 1
Nλ
i

∫ t/√λµ̂
0 Iλi (u) du

1
Nλ
j

∫ t/√λµ̂
0 Iλj (u) du

− 1− ρλi
1− ρλj


converge to 0, as t increases (t is an order-1 quantity here), for IR and RMI, respectively.

In certain cases, the time scale separation can be used to explicitly evaluate the sub-diffusion
behavior of the system under IR routing, in the QED regime. As seen in the following example,
the idea is to exploit the fact that the sub-diffusion process evolves on a faster time scale
than diffusion processes. Recall that the sub-diffusion behavior under RMI is characterized in
Theorem 2.

Figure 4. Typical sample paths of {Iλ1 (t)−a1(Iλ(t))+, t ≥ 0}, in an inverted-V
system, under the RMI (left) and IR (right) policies. Parameters of the system
are the same as in Example 2.
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Example 3 (Sub-diffusion scale under IR). Consider the inverted-V model in the QED regime,
under IR routing, with K = 2, w1 = w2 = a1 = a2 = 1/2, and note that (Iλ1 (t)−Iλ(t)/2, Iλ2 (t)−
Iλ(t)/2) = ((Iλ1 (t) − Iλ2 (t))/2, (Iλ2 (t) − Iλ1 (t))/2). The heavy traffic averaging principle [12]
states that, when considering the distribution of (Iλ1 (t) − Iλ2 (t)), as λ → ∞, one can act as
if the total number of (scaled) idle servers is fixed [48, p. 70]. In particular, on the event

{Iλ(t)/
√
νλ > ε}, ε > 0, the distribution of (Iλ1 (t) − Iλ2 (t)) converges, as λ → ∞, to the

stationary distribution of the birth-death continuous-time Markov chain, with transition rates
ri,i+1 = 1/2+1{i<0}+(1−χ)1{i=0} and ri,i−1 = 1/2+1{i>0}+χ1{i=0} (here we assume that, if
the two pools have the same number of idle servers, then a customer is routed to the first pool
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with probability χ ∈ [0, 1]). Indeed, if (Iλ1 (t)− Iλ2 (t)) is positive, then departures from pool 2
and new arrivals contribute to a decrease of this quantity; on the other hand, departures from
pool 1 increase (Iλ1 (t)− Iλ2 (t)). This leads, for any ε > 0, to

P[Iλ1 (t)− Iλ2 (t) = i | Iλ(t)/
√
νλ > ε]→

(
1 + 2(1− χ)1{i>0} + 2χ1{i<0}

)
3−|i|−1,

as λ→∞.

We conjecture that the sub-diffusion behavior of the system under the LISF algorithm is
the same as the one under RMI. The conjecture is based on the following heuristic reasoning.
A way to implement the LISF policy is to have servers completing service join a queue of idle
servers. This queue operates in a FCFS fashion. Whenever a customer needs to be assigned
to a server, it is routed to the server at the head of the queue. Observe that, under the
described scheme, the server that has been idle for the longest time is assigned a customer
before any other server. The state of the queue of idle servers at time t is an ordered list that
consists of pool labels (1, 2, . . . ,K). Now, consider an inverted-V model in the QED regime

(λ→∞), at a time instance t such that Iλ(t)/
√
νλ > 0. Then, all the servers in the idle queue

joined the queue within a time interval that is on the order of 1/
√
λµ̂, i.e., Iλ(t)/

√
νλ remains

approximately constant during this interval of time. The server pool labels in the idle queue
are approximately independent, with a label being equal to i with probability

cλi − µiIλi (t)

cλ −
∑K

i=1 µiI
λ
i (t)

≈ cλi − aiµiIλ(t)

cλ − µ̂Iλ(t)
= ai + Θ(1/

√
νλ),

for large λ; the standard asymptotic notation Θ(1/
√
νλ) indicates that the second term is of

the order 1/
√
νλ. The preceding equation is due to the fact that a given label is of type i if a

server in pool i completes service before any other server in the other pools. As a consequence,

the random variable (Iλ1 (t)− a1I
λ(t)) is of the order

4
√
νλ, due to the Central Limit Theorem

and the fact that the total number of labels in the queue is Iλ(t), a quantity proportional

to
√
νλ.

6. Concluding Remarks

We considered routing algorithms that are applicable to routing hospital patients, from the
Emergency Department to Internal Wards. Given the heterogeneity of the wards, the objective
is to achieve fairness from the point of view of hospital staff, while not hurting efficiency too
severely. Wards are modeled as server pools, and two types of quantities are used to quantify
fairness: idleness ratios and flux ratios. Under the LISF policy, which is considered to be
“fair” and is commonly used in call centers, both ratios tend to the ratios of service rates in
the respective server pools, when the system is in the QED regime; the appropriateness of
the QED regime in modeling the ED-to-IW process is supported by empirical data, collected
in Anonymous Hospital. In other words, LISF routing leads to a desirable outcome: faster
servers work less, yet they produce more (serve more customers). However, the applicability
of LISF in hospitals is limited since the algorithm requires information unavailable in hospitals
on a real-time basis. The same idleness and flux ratios can be achieved by IR routing; yet,
in that case, one must estimate (time-varying) ward (server pool) service capacities. We thus
propose a randomized routing policy, RMI, that attains the same desired performance ratios
as LISF, but requires only the number of idle servers in server pools for making decisions. The
policy can be implemented in a hospital by using, for example, patient ID numbers as sources
of randomness. A generalized version of RMI, WRMI, can be used to fine-tune the desired
outcome.

The three algorithms (LISF, IR and RMI) share one feature in common. Namely, these
algorithms achieve the desired idleness ratios (equal to service-rate ratios) by attempting to
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maintain the ratios of the numbers of idle servers in different pools equal to these idleness
ratios at all times. However, since idleness ratios represent an average performance measure,
one can vary the instantaneous ratios of idle servers depending on the total number of idle
servers and still achieve the target (average) idleness ratios. This approach has been proposed
in [3]. The advantage of such an algorithm is that it delivers a lower average waiting time
compared to LISF, while maintaining the same long-run idleness ratios as LISF. However, the
gain in performance does not come for free. In particular, one must determine the optimal
number of idle servers ratios as a function of the total number of servers and, therefore, the
parameters of the system must be known (arrival rate, pool service capacities), i.e., the policy
is effectively not blind.

6.1. Partial information routing – Simulation analysis. We mentioned above that avail-
ability of information is critical for determining an appropriate routing policy in hospitals. Our
proposed routing, RMI, requires the information on the number of available beds at each ward
at the moment of routing (information that is quite minimal, when compared to the other
routing policies considered in the paper). However, the occupancy status in the IWs is not
available on a real-time basis in Anonymous Hospital; instead, the ED relies on one bed census
update per day (in the morning). Thus, in order to implement RMI routing, it is necessary to
estimate the system state at decision times, based on the system state at the last update time
point.

An example of such partial-information routing can be found in [46], where the authors
created a computer simulation model of the ED-to-IW process in Anonymous Hospital. They
used it to examine various routing policies, according to some fairness and performance crite-
ria, while accounting for the scarcity of information in the system. Simulating the ED-to-IW
process helped achieve additional practical insights, by accommodating some analytically in-
tractable features (such as time-inhomogeneous Poisson arrivals), and allowed analysis of more
complex routing algorithms. The best-performing algorithm (in terms of both staff fairness and
operational performance) proposed by [46] was an algorithm which minimized at each decision
point a convex combination of the two conflicting demands: balanced occupancy rates and bal-
anced flux. The implementation under partial information resulted in almost no deterioration
of performance.

To conclude, we now explain briefly the way that the lacking information is predicted.
Denote by Mj the number of occupied beds (busy servers) in ward (pool) j. This counter is
updated at some time point T and is estimated at other decision time points according to the
patient routing and the ward service rate. Namely, we estimate the number of occupied beds
in ward j at time t > T to be equal to (Mj −Mjµj(t − T ))+, j = 1, 2, 3, 4. After a routing
decision is made, we update Mk = Mk + 1 (k denotes the ward chosen to admit the next
patient).

6.2. Routing at the Level of Individual Providers. Instead of examining fairness via our
bed-based model, one can study fairness be means of a more complex staff-based model. Such
a more detailed model could potentially be used to study fairness at the level of individual care
provides rather than wards. (It would thus be more relevant to the U.S. healthcare system,
where typically nurses do not have fixed ward assignments and are paid on an hourly basis.)
In that case, one still needs to keep track of the number of patients in wards. However, two
additional aspects must be modeled explicitly: (i) patient “service” requests, i.e., when certain
tasks need to be performed by nurses/doctors (for example, in Belgium, nurses work is broken
down into 23 representative tasks for planning purposes [47]); and (ii) the process of assigning
of these tasks to individual staff members. For example, a model can be constructed from the
following components:
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• Parallel-server systems with heterogeneous serves [4]: a system represents a ward, while
servers represent medical staff; tasks in a ward are assigned to individual doctors/nurses
according to a (ward) scheduling policy.
• Erlang-R (“R” for ReEntrant) model with a bounded number of customers [53]: the

reentrant aspect of the model captures the fact that customers (patients) require service
(tasks) multiple times during their sojourn times (LOS) in the system; the bounded
number of customers is due to the finite number of beds in a ward.
• A (hospital) routing policy that assigns customers (patients) to one of parallel Erlang-R

systems (wards) with heterogeneous servers.

Overall fairness can be achieved by enforcing fairness both at the inter- and intra-ward levels.
There exist multiple time scales in this model: a task scale (minutes/tens of minutes), a
“content” scale (tens of minutes/hours; time between tasks for a single patient), a shift scale
(hours), and finally a length of stay (a week) scale. These scales can potentially be used to
simplify the analysis of the system. Indeed, during a patient’s stay in the hospital, not only
many tasks are performed, but also many shifts are rotated. Hence, one expects that a patient
experiences an “equivalent” service (task) rate on the LOS scale. This equivalent rate is a
function of staff in the ward as well as the task assignment policy. As a consequence, when
considering routing at the hospital level, one can plausibly replace the heterogeneous Erlang-
R model with a parallel server system with an equivalent service rate, i.e., one obtains our
inverted-V model.

6.3. Future Research. We propose a number of research directions motivated by our work.
First, robustness of our insights against distributional assumptions on service times remains
to be investigated. Second, the inverted-V model takes into account primarily the number of
beds in each ward, while hospital staff (nurses and doctors) affect the model indirectly through
server service rates. The model can be improved by explicitly modeling staff as well. In that
case, two-scale (doctors and beds) models arise. Third, patients to be hospitalized in the
IWs are classified into several categories. When arriving to the ED, patients are classified as
“walking” or “lying”; in addition, prior to running the Justice Table, they are classified as
“regular”, “special care” or “ventilated”. The load, imposed on the hospital by patients, varies
significantly among different categories: in LOS, complexity of treatment, and waiting times.
Thus, it is of prime interest to extend our model to accommodate multiple customer classes.
Lastly, in the present work, service rates are taken to be exogenous quantities, i.e., there is
no attempt to capture possible dependency between the routing algorithm and service rates
of doctors and nurses. However, such dependency does exist since the hospital staff adapts to
routing policies by increasing/decreasing their service rates and/or quality of care. Tools from
Game Theory can be applicable in modeling such effects.
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A. Additional Information on Patient Routing

A.1. The “Justice Table” Algorithm. History: Prior to 1997, patient allocation was de-
cided according to a fixed “table of duty” of the wards (every day another ward was on duty
and had to accommodate all incoming patients), but allocation was subject to wards’ approval
– each ward had the authority to refuse admitting a patient. Consequently, waiting times in
the ED until transfer to the IWs were extremely long – 10.5 hours on average, with 12% of
the patients forced to wait more than 24 hours (!) [25]. This was unbearable to patients, and
caused a heavy overload on the ED that resulted in malfunctioning. In 1995, as part of a
hospital quality program, a dedicated team was charged with the task of improving processes
in the ED – its goal was, in particular, to reduce ED-to-IW delays. The team [25] proposed
a change in the existing routing policy: a patient’s placement would be determined by an
algorithm, entitled the “Justice Table”, and the authority for patient routing would be taken
away from the wards. Implementation of this change-of-authority was not easy, for political
reasons, but eventually prevailed.

Short description of the algorithm: The purpose of the “Justice Table” was to balance load
among the wards. It was decided to classify patients into three categories: ventilated – patients
that required artificial respiration, special care – patients whose rate on the Norton scale (a
table used to predict if a patient might develop a pressure ulceration) was below 14, and
regular – all other patients. The algorithm treated each category independently in order to
ensure a fair allocation, since Lengths of Stay (LOS) and complexities of treatment varied
significantly among these patient categories. For each category, there was a cyclical order
among the wards, i.e., each ward received one patient in its turn (round-robin). In addition to
a patient’s classification, the algorithm took into account the size of each ward, by allocating
fewer patients to smaller wards. However, the algorithm took into account neither the actual
number of occupied beds at the time the routing decision was made, nor the discharge rate at
the wards.

The current state: The results of implementing the Justice Table routing policy were very
impressive – the average waiting time from decision on hospitalization until moving the patient
to a ward was reduced to 66 minutes (from over ten hours) [25]. In addition, significant
improvements in other ED processes were measured as well (due to the overload reduction),
along with a higher ward efficiency (more admissions, shorter LOS). In 2004, the use of the
Justice Table was discontinued due to software changes in the hospital. In 2006, adapted
to the new software, the Justice Table was reinstated with minor changes, but its influence
grew smaller, as the medical staff had become used to making placement decisions without
it. Moreover, as reported in [17], a significant number of the patients transferred from the
ED to the IWs were, in fact, not routed via the Justice Table. Moreover, in 2007, the ED of
Anonymous Hospital moved to a temporary location, and only recently has it returned to a
renovated home. The present research is now helping the hospital in rejuvenating its Justice
Table, towards an efficient and fair ED-to-IW process.

A.2. Patient Routing. One can appreciate the complexity of the ED-to-IW process through
the Integrated (Activities - Resources) Flow Chart (Figure 5). We provide here a short de-
scription. A patient, whom a physician in charge of the ED decides to hospitalize in the IWs,
is assigned to one of the five wards in the following manner: if this is an “independent” walking
patient, usually s/he is assigned to Ward E – in this case usually s/he is transferred to the
ward almost without any delay. Otherwise, a receptionist of the ED runs the Justice Table.
S/he transfers the output (one of the Wards A-D) to the nurse in charge of the ED, who starts
a negotiation process with the chosen ward. If the ward refuses to admit the patient (usually
for reasons of overloading), the two sides appeal to a General Nurse, who is authorized to
approve a so-called “skipping” – allowing a ward to skip its turn. If skipping is granted, the
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receptionist runs the Justice Table again, and the process repeats itself until some ward agrees
(or is forced) to admit the patient. The next stage of the negotiations is agreeing upon the

Figure 5. Integrated (activities - resources) flow chart.
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time at which the patient will be transferred to her/his ward. Here interests are conflicting:
the ED seeks to discharge the patient as soon as possible, in order to be able to accept new
patients, and the IWs prefer to have the move carried out at a time convenient for them.
From conversations with nurses from both sides we learned that, when deciding on a patient’s
transfer time, the main issue taken into account (assuming there is an available bed in the
ward) is nurses’ and doctors’ availability (they might be unavailable because of treating other
patients, shifts changing or meals, various staff meetings or resuscitation). Another parameter
is the availability of necessary equipment and other logistic considerations. Patients to-be hos-
pitalized wait in the ED till a transfer to their ward is carried out – sometimes these waiting
times are extremely long. Through the Cause-and-Effect chart (fish-bone diagram) in Figure 6
one observes the various causes of these long delays. We emphasize that the delays are caused
not only by beds unavailability: patients usually wait even when there are available beds (see
the remark in Section 3.2).

A.3. Long Delays. Patients often wait long times in the ED until they are transferred to their
IWs – the reasons for these long delays are summarized in the Cause-and-Effect chart (fish-bone
diagram) in Figure 6. The main reasons are beds availability and staff availability (doctors
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Figure 6. ED-to-IW Delays: Cause-and-Effect Chart.
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and nurses might be unavailable because of treating other patients, shifts changing, meals,
various staff meetings or resuscitation). An additional reason is the unavailability of necessary
equipment and other logistic considerations: for example, preparation for a “complicated”
patient who requires special bed/equipment, or placement near a nursing station due to case
severity, takes a longer time. Exact data on those waiting times are not kept in the hospital
information systems. We thus estimated these delays by analyzing the time from a decision
to hospitalize at a certain ward until receiving the first treatment in that ward (these data
were acquired from the hospital database). The average delay in 2006-2008 was 3.1 hours (for
Wards A-D); for 23% of the patients this time was longer than 4 hours, and for 6.5% longer
than 8 hours. The waiting times histogram is shown in Figure 7.

Long waiting times cause an overload on the ED, as beds remain occupied while new pa-
tients continue to arrive. As mentioned, they cause ED blocking, which leads to ambulance
diversion. They cause significant discomfort to the waiting patients as well: in the ED they
suffer from noise, and lack of privacy and proper meals. In addition, patients do not enjoy
the best professional medical treatment and dedicated attention as in the wards; hence, the
longer patients wait in the ED, the lower their satisfaction and the higher the likelihood for
clinical deterioration. Improving the efficiency of patients flow from the ED to the IWs, while
shortening waiting times in the ED, will improve the service and care provided to patients.
Indeed, reducing the load on the ED will lead to a better response to arriving patients, which
has been shown to save lives [38, 35, 41, 44].

A.4. Other Hospitals. The hospitals we study differ in their functionality and geographical
location. From Table 3 it is evident that they differ in size (number of IWs and beds in them;
number of treated patients), in the load IWs are subjected to (average number of transfers to
IWs per bed; average occupancy rate – as reported by [50]), and by their efficiency (ALOS
in the ED and in the IWs). Despite these differences, we recognize the same problems in the
ED-to-IW process at all hospitals. First of all, none of the hospitals (except for Hospital 5)
measures waiting times of patients to-be hospitalized in the IWs – we were given just a rough
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Figure 7. Waiting times histogram.
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estimate. Those estimated waiting times are long (again, except for Hospital 5) – indeed, the
situation in Anonymous Hospital is not the worst.

The routing policies are intuitive and simple – “cyclical order” policies prevail. Although in
four out of the six hospitals the wards are heterogeneous (in terms of capacity and ALOS), this
plays no role in routing: no hospital accounts for differences in ALOS, and only Anonymous
Hospital accounts for ward capacities. In addition, none of the hospitals, besides our hospital
and Hospital 5, allocates patients of different categories separately. Surely this cannot be fair,
as load inflicted on the ward staff by patients of different categories varies significantly.

Hospital 2 has an original policy – routing is performed according to the one-before-last
digit of a patient’s identity number: if it is odd then the patient is assigned to Ward A, if even
– to Ward B. This is equivalent to random assignment: each ward is chosen with probability
1/2. However, ward capacities differ: the size of one ward is 2/3 of the other’s, hence this
method can not be fair. Hospital 4 has an even “simpler” policy: a patient is assigned to a
ward that has a vacant bed (we were told that the wards were always full). Indeed, the load
on the IWs in this hospital (average occupancy and flux) is very high. Due to such a policy,
the wards decide when to admit their patients, and they do not have any incentive to become
more efficient and discharge patients faster – waiting times, ALOS in the ED and in the IWs
are the longest in this hospital. Hospital 5 presents an exception – patients to be hospitalized
in the IWs are transferred from the ED almost without any delay, there are separate cycles
for different patient categories, and even the policy of cyclical routing appears to be fair as all
the wards are the same (in terms of capacities and LOS). However, from a conversation with
the ED receptionist during our visit to this hospital, we learned that the routing process was
managed by her manually, and that she received frequent complaints from the wards’ staff on
unfairness of the allocations.

Remark. The discussion presented here is necessarily superficial, as it is based solely on ques-
tionnaires and interviews (if there were such) – no observations or data collection were per-
formed at those hospitals. We are not familiar with any documentation on how the ED-to-IW
process is managed in hospitals outside of Israel.
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Table 3. Hospitals comparison.

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Anon. H.
Number of IWs 9 2 3 4 6 5

IW # beds 327 45 108 93 210 185

Average weekly
# of arrivals 1050 350 637 630 1050 1050
to Internal ED

Average weekly
# of transfers 525 49 266 168 469 231
from ED to IWs (50%) (14%) (42%) (26%) (45%) (22%)

Average weekly
# of transfers 1.606 1.089 2.463 1.806 2.233 1.249
per IW bed

IW Occupancy* 107.5% 118% 106.5% 116.4% 110% 93.8%

ED ALOS (hours) 2.2 6 2.83 6.8 2.5 4.2

IW ALOS (days) 3.9 3.9 3.5 6.1 3.5 5.2

Average waiting
time in ED ? 4 1 8 0.5 1.5-3
for IW (hours)

Wards differ**? yes yes no yes no yes

Routing cyclical last digit cyclical vacant cyclical cyclical
Policy order of id order bed order*** order***

* Based on internet article [50].

** Differ in their capacities and LOS.

*** Accounting for different patient types and ward capacities.

B. Technical Appendix

B.1. Proof of Theorem 1. The following lemma serves as a basis of our analysis. It provides
an explicit characterization of the stationary probabilities for the inverted-V model. This
characterization is used in Lemma 2 to obtain relative likelihoods that particular servers are
busy. Finally, the inequalities from Lemma 2 are used to prove the theorem.

Lemma 1 (Tseytlin [45]). Consider the inverted-V model with λ < cλ under the RMI policy.
The process {(Iλ(t), Iλ1 (t)), . . . , IλK(t)), t ≥ 0} is a reversible continuous-time Markov chain

with the stationary distribution πλ:

πλ(i, i1, . . . , iK) =

{
πλ(0) i!

∏K
j=1

(Nλ
j

ij

)
(µj/λ)ij , i =

∑K
j=1 ij ≥ 0, 0 ≤ ij ≤ Nλ

j ,

πλ(0) (ρλ)−i, i ≤ 0, i1 = . . . = iK = 0,

where

πλ(0) ≡ πλ(0, 0, . . . , 0) =

 ρλ

1− ρλ
+

Nλ
1∑

i1=0

· · ·
Nλ
K∑

iK=0

(i1 + · · ·+ iK)!

K∏
j=1

(
Nλ
j

ij

)(µj
λ

)ij−1

. (7)

For notational convenience, we prove the theorem for the single-server-pool model under
the Random Assignment policy (note that Cabral [11] proved this result independently); this
model is equivalent to the inverted-V model under the RMI policy by Theorem 4.3.1 in [45].
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Thus, for the rest of the proof, we consider the case K = Nλ and Nλ
1 = Nλ

2 = · · · = Nλ
K = 1.

For a set X ⊂ {1, . . . , Nλ}, let πλX := πλ(i, i1, . . . , iK), where i =
∑K

j=1 ij and ij = 1{j 6∈X},

i.e., πλX is the stationary probability that servers in X are busy while all other servers are idle;

when X = {1, . . . , Nλ}, we let πλX =
∑∞

j=0 π
λ(−j, 0, . . . , 0). Furthermore, define pim as the

stationary probability that exactly m ∈ {1, . . . , Nλ} servers (out of Nλ) are busy, including
the server with index i ∈ {1, . . . , Nλ}, e.g., pi1 = πλi , pi2 =

∑
j 6=i π

λ
{i,j}, etc. Note that pi

Nλ (for

all i) is the probability that all servers are busy (πλ{1,...,Nλ}).

Lemma 2. If µj > µk, then pjm < pkm and µjp
j
m > µkp

k
m, for any m ∈ {1, 2, . . . , N − 1}.

Proof. The definition of πλX and Lemma 1 yield

πλ∅ = πλ(Nλ, 1, 1, . . . , 1) = πλ(0)Nλ!
Nλ∏
j=1

µj
λ

and

πλX = πλ(Nλ − |X |, i1, i2, . . . , iNλ) = πλ(0) (Nλ − |X |)!
∏
j 6∈X

µj
λ

= πλ∅
(Nλ − |X |)!

Nλ!

λ|X |∏
j∈X µj

,

where X ⊂ {1, . . . , Nλ} and ij = 1{j 6∈X}. From the preceding equality we obtain that, for

every possible subset X of {1, 2, . . . , Nλ} \ {j, k}:

πλj∪X = πλ∅
(Nλ − (|X |+ 1))!

Nλ!

λ|X |+1

µj
∏
i∈X µi

< πλ∅
(Nλ − (|X |+ 1))!

Nλ!

λ|X |+1

µk
∏
i∈X µi

= πλk∪X , (8)

where the inequality follows from µj > µk. Next we note that:

pjm =
∑

X :|X |=m−1,
j,k 6∈X

πλj∪X +
∑

X :|X |=m−2,
j,k 6∈X

πλ{j,k}∪X , (9)

pkm =
∑

X :|X |=m−1,
j,k 6∈X

πλk∪X +
∑

X :|X |=m−2,
j,k 6∈X

πλ{j,k}∪X . (10)

The last sum is equal in both expressions, and (8) implies that the first sum in (9) is strictly

smaller than the corresponding sum in (10). Hence, the first statement of the lemma: pjm < pkm
for m ∈ {1, 2, . . . , Nλ − 1}.

Next, we consider the second statement of the lemma. Multiplying each side of (9) by µj
and each side of (10) by µk, yields, for X ⊂ {1, . . . , Nλ} \ {j, k}:

µj p
j
m =

∑
X :|X |=m−1

µj π
λ
j∪X +

∑
X :|X |=m−2

µj π
λ
{j,k}∪X , (11)

µk p
k
m =

∑
X :|X |=m−1

µk π
λ
k∪X +

∑
X :|X |=m−2

µk π
λ
{j,k}∪X , (12)

where

µj π
λ
j∪X = πλ∅

(N − (|X |+ 1))!

N !

λ|X |+1∏
i∈X µi

= µk π
λ
k∪X , (13)
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and

µj π
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Nλ!

λ|X |+2

µj
∏
i∈X µi

= µk π
λ
{j,k}∪X ,

(14)

where the inequality follows from µj > µk. Equations (11), (12), (13) and (14) imply µj p
j
m >

µk p
k
m for m ∈ {1, 2, . . . , N − 1}. �

Next, we complete the proof of Theorem 1.

Proof of Theorem 1. Consider two servers j and k such that µj > µk. Since server’s utilization

is equal to the steady-state probability that it is busy, ρλi =
∑Nλ

m=1 p
i
m (i = j, k); in the same

manner, γλi = µiρ
λ
i =

∑Nλ

m=1 µip
i
m (i = j, k). Then, Lemma 2 implies

ρλj =
N∑
m=1

pjm <
N∑
m=1

pkm = ρλk

and

γλj = µjρ
λ
j =

Nλ∑
m=1

µjp
j
m >

Nλ∑
m=1

µkp
k
m = µkρ

λ
k = γλk . �

B.2. Proof of Theorem 2. The proof of the theorem is based on the reversibility [28] of the
process {(Iλ(t), Iλ1 (t)), . . . , IλK(t)), t ≥ 0}. First we provide some preliminary results.

Lemma 3. Let D be a (K − 1)× (K − 1) matrix with elements Di,j = a−1
i 1{i=j}+ a−1

K , where

ai > 0 (i = 1, . . . ,K) and
∑K

i=1 ai = 1. Then, D−1 is a matrix with elements (D−1)i,j =
ai1{i=j} − aiaj and

det(D−1) = (det(D))−1 =

K∏
i=1

ai. (15)

Proof. First, it is straightforward to verify that DD−1 is an identity matrix:

(DD−1)i,j =
K−1∑
n=1

(a−1
i 1{i=n} + a−1

K )(an1{n=j} − anaj)

= 1{i=j} − aj + aja
−1
K − aja

−1
K (1− aK) = 1{i=j}.

Second, D−1 can be factorized: D−1 = CB, where Ci,j = ai1{i=j} and Bi,j = 1{i=j}− aj , and,
hence,

det(D−1) = det(B) det(C) = det(B)
K−1∏
i=1

ai. (16)

However, if A is a matrix obtained by subtracting the first row of B from all other rows, then
Ai,j = 1{i=j} − aj1{i=1} − 1{j=1, i 6=1} and

det(B) = det(A) = 1−
K−1∑
i=1

ai = aK . (17)

The statement (15) follows from (16) and (17). �

Given that the system is reversible (Lemma 1), there exists a straightforward relation be-
tween the stationary distributions of the delay model and the corresponding loss model. The
following key proposition provides a characterization of the loss system.
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Proposition 1. Consider the inverted-V loss model under the RMI policy in the QED regime.
Then (Îλ, (Îλ1 , . . . , Î

λ
K)1{Îλ>0}) ⇒ (Î , (Î1, . . . , ÎK)1{Î>0}), as λ → ∞, where Î and (Î1, . . . , ÎK)

are independent, P[Î > x] = Φ(δ−x)/Φ(δ), x ≥ 0, and (Î1, . . . , ÎK) is zero-mean multi-variate

normal, with EÎiÎj = ai1{i=j} − aiaj.

Proof. Let π̃λ(m) be the stationary probability of having mi idle servers in pool i = 1, . . . ,K in

the loss model. Here, m = (m1, . . . ,mK); denote mΣ =
∑K

i=1mi. The proof of the proposition
proceeds along the following lines. First, we define states of the system that have non-negligible
probabilities (see (19)) and establish the probabilities of those states relative to the probability
that all servers are busy (π̃λ(0), see (21)). Second, the limiting probability of having exactly

bψ
√
νλc idle servers is determined in terms of π̃λ(0) (see (22)). From this, the asymptotic

probability of having no idle servers can be derived (see (24)). Finally, once the limiting value
of π̃λ(0) is found, the rest of the proof follows.

Due to the fact that the system is time-reversible, the stationary distribution obeys (see
Lemma 1)

π̃λ(m) = mΣ! π̃λ(0)
K∏
i=1

(µi
λ

)mi (Nλ
i

mi

)
, (18)

where mi = 0, 1, . . . , Nλ
i , and π̃λ(0) is the probability that all servers are busy. Next, we

introduce a vector ṁ with elements

ṁi =
cλi
cλ

√
ψ2νλ + ξi

4
√
ψ2νλ, (19)

where ψ ≥ 0 and
∑K

i=1 ξi = 0; then ṁΣ =
∑K

i=1 ṁi = ψ
√
νλ and

cλi ṁΣ

cλ ṁi
=

√
νλ√

νλ + ξi
4
√
νλ cλ/(

√
ψ cλi )

. (20)

Assuming that π̃λ(m) denotes π̃λ(bm1c, . . . , bmKc) whenever elements of m are not integers,
(18) and Stirling’s approximation yield, as λ→∞,

(ψ2νλ)
K−1

4 π̃λ(ṁ)

π̃λ(0)
=

1 + o(1)
√

2π
K−1

√√√√(νλ)
K−1

2 ṁΣ∏K
i=1 ṁi

K∏
i=1

e−ṁi
(

Nλ
i

Nλ
i − ṁi

)Nλ
i + 1

2
(
cλ

λ

)ṁi [cλi ṁΣ

cλṁi

(
1− ṁi

Nλ
i

)]ṁi
.

Now, by using (19), (20) and the Taylor expansion of the logarithmic function, we obtain limits
(as λ→∞) for all terms on the right-hand side of the preceding equality:√√√√(ψ2νλ)

K−1
2 ṁΣ∏K

i=1 ṁi

→ 1√∏K
i=1 ai

,

K∏
i=1

e−ṁi
(

Nλ
i

Nλ
i − ṁi

)Nλ
i

→ eψ
2/2,

(
cλ/λ

)ṁΣ

→ eψδ,

K∏
i=1

[
cλi ṁΣ

cλ ṁi

(
1− ṁi

Nλ
i

)]ṁi
→ e−ψ

2− 1
2

∑K
i=1 ξ

2
i /ai .
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Therefore, we have, as λ→∞,

(ψ2νλ)
K−1

4 π̃λ(ṁ)

π̃λ(0)
→ 1√

(2π)K−1
∏K
i=1 ai

eψδ−
1
2
ψ2− 1

2

∑K
i=1 ξ

2
i /ai

=
1√

(2π)K−1 det(D)
e−

1
2

(ξK−1
1 )′D−1ξK−1

1 e−
1
2

(ψ−δ)2
e

1
2
δ2

= ϕD(ξK−1
1 )

ϕ(ψ − δ)
ϕ(δ)

, (21)

where ϕD is the (K−1)-dimensional zero-mean multi-variate normal density function, defined

by the covariance matrix D, ξK−1
1 = (ξ1, . . . , ξK−1)′, D−1 is a (K − 1)× (K − 1) matrix with

elements (D−1)i,j = a−1
i 1{i=j} + a−1

K (this stems from
∑K

i=1 ξi = 0, i.e., ξ2
K = (

∑K−1
i=1 ξi)

2);
also, due to Lemma 3, we have Di,j = ai1{i=j} − aiaj and

det(D) =

K∏
i=1

ai.

Next, for ψ > 0, (21) and the fact that the number of summands in the following sum is

polynomial in νλ (bounded from above by (ψ
√
νλ)K) result in, as λ→∞,

∑
m:mΣ=bψ

√
νλc

π̃λ(m)

π̃λ(0)
→ ϕ(ψ − δ)

ϕ(δ)

∞∫
· · ·
∫

−∞

ϕD(ξK−1
1 ) dξ1 · · · dξK−1

=
ϕ(ψ − δ)
ϕ(δ)

, (22)

since the integrand is a valid density function; note that the limit holds trivially for ψ = 0,
i.e., mΣ = 0. The preceding limit implies, as λ→∞,

Nλ
1∑

m1=0

. . .

Nλ
K∑

mK=0

π̃λ(m)√
νλπ̃λ(0)

=

Nλ∑
i=1

∑
m:mΣ=i

π̃λ(m)√
νλπ̃λ(0)

→ 1

ϕ(δ)

∫ ∞
0

ϕ(ψ − δ) dψ

=
Φ(δ)

ϕ(δ)
, (23)

and, hence, as λ→∞,

√
νλπ̃λ(0)→ ϕ(δ)

Φ(δ)
. (24)

Moreover, (22) and (23) result in, as λ→∞,

√
νλ

∑
m:mΣ=bψ

√
νλc

π̃λ(m)→ ϕ(ψ − δ)
Φ(δ)

,
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and, therefore,

P[Îλ ≤ x] =

bx
√
νλc∑

j=1

∑
m:mΣ=j

π̃λ(m)

=
1√
νλ

bx
√
νλc∑

j=1

√νλ ∑
m:mΣ=j

π̃λ(m)

→ 1

Φ(δ)

∫ x

0
ϕ(ψ − δ) dψ = P[Î ≤ x], (25)

as λ→∞, where x ≥ 0, i.e., Îλ ⇒ Î, as λ→∞. Finally, (21), (25) and Di,j = ai1{i=j} − aiaj
yield the statement of the proposition:

P
[
Îλ ≤ x, Îλi 1{Îλ>0} ≤ xi, i 6= K

]
= P

[
Iλ ≤ x

√
νλ, Iλi 1{Iλ>0} ≤ Iλcλi /cλ + xi

√
Iλ, i 6= K

]
=

bx
√
νλc∑

j=1

∑
m:mΣ=j

mi≤jcλi /cλ+xi
√
j, i6=K

π̃λ(m)

=
1√
νλ

bx
√
νλc∑

j=1

√
νλπ̃λ(0)

 1
√
j
K−1

∑
m:mΣ=j

mi≤jcλi /cλ+xi
√
j, i6=K

√
j
K−1

π̃λ(m)

π̃λ(0)


→
∫ x

0

∫ x1

−∞
. . .

∫ xK−1

−∞
ϕD(ξK−1

1 )
ϕ(ψ − δ)

Φ(δ)
dξK−1 . . . dξ1dψ

= P[Î ≤ x]P
[
Îi1{Î>0} ≤ xi, i 6= K

]
,

as λ→∞. This concludes the proof of the proposition. �

Next, we present the proof of Theorem 2.

Proof of Theorem 2. Lemma 1 yields

P[Iλ ≤ 0] = P[Îλ ≤ 0] =
√
λπλ(0)

√
λ

cλ − λ
=
√
νλπλ(0)

ρλ√
νλ(1− ρλ)

(26)

and (see (7))

√
νλπλ(0) =

(
ρλ√

νλ(1− ρλ)
+

P[Iλ ≤ 0]√
νλπλ(0)

)−1

. (27)

The relationship between the original system and the corresponding loss system implies that
the second ratio in the preceding equality is equal to the same ratio for the loss system, i.e.,
the left-hand side of (23) in the proof of Proposition 1. Equations (27) and (23), together with
the QED limit (C2) from Section 3.2, result, as λ→∞, in

√
νλπλ(0)→

(
1

δ
+

Φ(δ)

ϕ(δ)

)−1

,

and, hence, due to (26) and (C2), as λ→∞,

P[Îλ ≤ 0]→
(

1 + δ
Φ(δ)

ϕ(δ)

)−1

.
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Finally, from Proposition 1 we deduce P[Îλ > x | Îλ > 0]→ Φ(δ − x)/Φ(δ), x ≥ 0, as λ→∞,

the independence of Î and (Î1, . . . , ÎK), as well as the distribution of (Î1, . . . , ÎK). The limit

P[Îλ ≤ x | Îλ ≤ 0]→ eδx, x ≤ 0, as λ→∞, follows from Lemma 1 and (C2). �

B.3. Proof of Corollary 1. The limit E(Îλ)− → E(Î)−, as λ → ∞, is immediate from the

expression for E(Îλ)− (see Appendix B.4) and E(Î)− = −E[Î | Î ≤ 0]P[Î ≤ 0]. The remaining
two limits can be obtained by considering the loss system as in the proof of Theorem 2. By
using the same argument as in (23) and recalling (24), we obtain

E[Îλ | Îλ ≥ 0]→ 1

Φ(δ)

∫ ∞
0

ψ ϕ(ψ − δ) dψ = E[Î | Î ≥ 0]

and

E[Iλ/
√
νλ | Îλ ≥ 0]→ ai

Φ(δ)

∫ ∞
0

ψ ϕ(ψ − δ) dψ = aiE[Î | Î ≥ 0],

as λ→∞. �

B.4. RMI Performance Measures. Here we provide a summary of performance measure in
the inverted-V model under RMI routing. The results are based on Lemma 1 and Theorem 2.
Let W λ denote the stationary waiting time in the system with the arrival rate λ.

Finite-λ case:

P[W λ > 0] = P[Iλ ≤ 0] = πλ(0)
1

1− ρλ
,

P[(Iλ)− = i |W λ > 0] = (1− ρλ)(ρλ)i, i = 0, 1, . . . ,

P[(Iλ)− = i] = (1− ρλ)(ρλ)i P[W λ > 0], i = 0, 1, . . . ,

E(Iλ)− =
ρλ

1− ρλ
P[W λ > 0],

EW λ =
E(Iλ)−

λ
=

1

cλ(1− ρλ)
P[W λ > 0],

P[W λ > w] = P[W λ > 0] e−(cλ−λ)w, w ≥ 0,

where πλ(0) is given in Lemma 1.
QED regime, as λ→∞:

√
νλπλ(0)→

(
1

δ
+

Φ(δ)

ϕ(δ)

)−1

,

1√
νλ

E(Iλ)− →
(
δ + δ2 Φ(δ)

ϕ(δ)

)−1

,

√
νλµ̂EW λ →

(
δ + δ2 Φ(δ)

ϕ(δ)

)−1

,

P[
√
νλµ̂W λ > w |W λ > 0]→ e−δw, w ≥ 0.
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C. Table of Main Notation

λ arrival rate
K number of server pools
µi service rate of a server in pool i
Nλ
i number of servers in pool i

Nλ =
∑K

i=1N
λ
i total number of servers in the system

cλi = Nλ
i µi service capacity of pool i

cλ =
∑K

i=1 c
λ
i total service capacity

Iλi (t) number of idle servers in pool i at time t
Iλi stationary number of idle servers in pool i
Iλ(t) number of idle servers / customers awaiting service at time t
Iλ stationary number of idle servers / customers awaiting service
W λ stationary waiting time
ρλ = λ/cλ total traffic intensity
ρλi = 1− EIλi /Nλ

i mean stationary occupancy rate in pool i (servers’ utilization in pool i)
γi = µiρi flux through pool i (average number of arrivals per pool i server

per time unit)
ai (cλi /c

λ → ai) limiting service capacity proportion of pool i
qi (Nλ

i /N
λ → qi) limiting fraction of servers in pool i out of the total number of servers

µ = (
∑K

i=1 ai/µi)
−1 mean (harmonic) service rate

µ̂ =
∑K

i=1 aiµi mean (arithmetic) service rate
νλ = λ/µ̂ scaling parameter (system size)

δ (
√
νλ(1− ρλ)→ δ) square root safety capacity coefficient

β = δ
√
µ̂/µ Quality-of-Service (QoS) parameter

x+ = max{x, 0} positive part
x− = max{−x, 0} negative part
E expectation
P probability
Φ(·), ϕ(·) standard normal distribution and density functions
⇒ convergence in distribution
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D. List of Acronyms

ALOS Average Length of Stay
ED Emergency Department
FCFS First-Come First-Served
FSF Fastest Servers First
IR Idleness-Ratio
IW Internal Ward
LIPF Longest-Idle Pool First
LISF Longest-Idle Server First
LOS Length of Stay
LWISF Longest-Weighted-Idle Server First
PASTA Poisson Arrivals See Time Averages
RA Random Assignment
RMI Randomized Most-Idle
QED Quality and Efficiency Driven
QIR Queue-and-Idleness-Ratio
QoS Quality-of-Service
WRMI Weighted Randomized Most-Idle

Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technol-
ogy, Haifa 3200, Israel

E-mail address: avim@tx.technion.ac.il

Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL
32611, U.S.A.

E-mail address: petar@ise.ufl.edu

Faculty of Industrial Engineering and Management, Technion – Israel Institute of Technol-
ogy, Haifa 3200, Israel

E-mail address: yulia@tx.technion.ac.il


	1. Introduction
	1.1. Motivation.
	1.2. Contributions
	1.3. Brief literature review.
	1.4. Organization.

	2. Patient Routing
	2.1. The Routing Process
	2.2. Fairness
	2.3. The setting of Anonymous Hospital
	2.4. Fairness at Anonymous Hospital

	3. Model Formulation
	3.1. The Inverted-V Model
	3.2. The QED Asymptotic Regime

	4. Fair Routing
	4.1. Routing Algorithms

	5. Theoretical Results
	5.1. Comments on the Sub-Diffusion Scale

	6. Concluding Remarks
	6.1. Partial information routing – Simulation analysis
	6.2. Routing at the Level of Individual Providers
	6.3. Future Research

	References
	References
	A. Additional Information on Patient Routing
	A.1. The ``Justice Table" Algorithm
	A.2. Patient Routing
	A.3. Long Delays
	A.4. Other Hospitals

	B. Technical Appendix
	B.1. Proof of Theorem 1
	B.2. Proof of Theorem 2
	B.3. Proof of Corollary 1
	B.4. RMI Performance Measures

	C. Table of Main Notation
	D. List of Acronyms

