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Call Center Industry

Overall expenditure. More than $300 billion per year.

US. Several million employees (4% of workforce); 1000’s agents in a “single” call center.
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Call Center Industry

Overall expenditure. More than $300 billion per year.

US. Several million employees (4% of workforce); 1000’s agents in a “single” call center.

Quality/Efficiency Tradeoff.

• Personnel costs: 65-80% of expenditure on a call center;

• More than 90% of US consumers form company’s image via call center experience;

• More than 60% stop using company’s products based on negative call center experience.
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Modelling a Basic Call Center: M/M/n+G Queue
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Modelling a Basic Call Center: M/M/n+G Queue
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• λ – Poisson arrival rate; • µ – exponential service rate;

• n service agents; • G – patience distribution;

• Infinite queue; • First Come First Served.
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Modelling Abandonment

• Patience time τ ∼ G: time a customer is willing to wait for service;

• Offered wait V : time a customer must wait;

• If τ ≤ V , customer abandons; otherwise, gets service;

• Actual wait W = min(τ, V );

• Patience times are not observed directly (censoring).
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Modelling Abandonment

• Patience time τ ∼ G: time a customer is willing to wait for service;

• Offered wait V : time a customer must wait;

• If τ ≤ V , customer abandons; otherwise, gets service;

• Actual wait W = min(τ, V );

• Patience times are not observed directly (censoring).

M/M/n+M (Erlang-A) Queue

Patience time are exponential(θ).

Widely used in modern call centers.
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Operational Performance Measures

• P{Ab} – probability to abandon;

• E[W ] – average wait;

• P{W > 0} – delay probability;

• P{W > T} – probability to exceed deadline.
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Constraint satisfaction

Fix λ, µ, G.

n∗ = min {n : Pn{Ab} ≤ α} ,

n∗ = min {n : En[W ] ≤ T} ,

n∗ = min {n : Pn{W > T} ≤ α} ,

where α, T – constraint values.
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Constraint satisfaction

Fix λ, µ, G.

n∗ = min {n : Pn{Ab} ≤ α} ,

n∗ = min {n : En[W ] ≤ T} ,

n∗ = min {n : Pn{W > T} ≤ α} ,

where α, T – constraint values.

Cost Minimization

n∗ should minimize

Cs · n + (Ca · Pn{Ab} + Cw · En[W ]) · λ ,

where Cs, Ca and Cw are costs of staffing, abandonment and waiting.
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Exact Calculations in M/M/n+G

For example,

P{Ab} =
1 + (λ− nµ)J

E + λJ
,

where

J =
∫ ∞
0 exp

{
λ

∫ x
0 Ḡ(u)du− nµx

}
dx , E =

n−1∑
j=0

1

j!

λ

µ


j

1

(n− 1)!

λ

µ


n−1 .

No intuition and can be hard to compute.
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For example,
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E + λJ
,

where

J =
∫ ∞
0 exp

{
λ

∫ x
0 Ḡ(u)du− nµx

}
dx , E =

n−1∑
j=0

1

j!

λ

µ


j

1

(n− 1)!

λ

µ


n−1 .

No intuition and can be hard to compute.

Research Goals

Derive approximations for constraint satisfaction and cost minimization.

Compare with exact solution.
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Asymptotic Operational Regimes

Offered load: R = λ× E[S],

minutes of work (= service) that arrive per minute.
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minutes of work (= service) that arrive per minute.

Efficiency-Driven (ED):

n ≈ R− γR , γ > 0 .

Understaffing with respect to offered load.
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Asymptotic Operational Regimes

Offered load: R = λ× E[S],

minutes of work (= service) that arrive per minute.

Efficiency-Driven (ED):

n ≈ R− γR , γ > 0 .

Understaffing with respect to offered load.

Quality and Efficiency-Driven (QED):

n ≈ R + β
√

R , −∞ < β < ∞ .

Square-Root Staffing Rule: Described by Erlang in 1924!

Asymptotic formulae for λ, n →∞ are available for both regimes.
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Probability to Abandon: Approximations

ED: P{Ab} ≈ γ , QED: P{Ab} ≈
1√
λ

· Pa(β)Pw(β) ,

where

Pw(β) :=

1 +

√√√√√√g0

µ
· h(β̂)

h(−β)


−1

, Pa(β) :=
√

g0 · (h(β̂)− β̂) ,

g0 := patience density at the origin, β̂ := β

√√√√√√ µ

g0
,

h(x) =
φ(x)

1− Φ(x)
=

φ(x)

Φ̄(x)
: hazard rate of standard normal distribution.

Compute asymptotic optimal staffing level via approximations.
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Constraint Satisfaction: Probability to Abandon

Let µ = 1 (time-units are minutes) everywhere.

Optimal staffing n∗ n∗QED n∗ED

P{Ab} ≤ 4%, R = 50, τ ∼ exp(mean=30 sec) 53 53 48 (8.8%)
P{Ab} ≤ 40%, R = 1000, τ ∼ U(0, 1) 601 600 600
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Let µ = 1 (time-units are minutes) everywhere.
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Constraint Satisfaction: Average Wait

ED: E[W ] ≈
∫ G−1(γ)
0 Ḡ(u)du , QED: E[W ] ≈

1√
λ

·
1

g0

· Pa(β)Pw(β) .

Optimal staffing n∗ n∗QED n∗ED

E[W ] ≤ 4 sec , R = 50, τ ∼ U(0, 4) 54 54 50 (8.7 sec)
E[W ] ≤ 40 sec , R = 1000, τ ∼ U(0, 4) 817 834 817
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Constraint Satisfaction: Average Wait
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Constraint Satisfaction: P{W > T}

ED+QED: n ≈ R− γR + δ
√

R , γ > 0, −∞ < δ < ∞.

Optimal staffing n∗ n∗QED n∗ED+QED

P{W < 20 sec} ≥ 80% , R = 100, τ ∼ exp(mean=2) 90 90 90
P{W < 20 sec} ≥ 80% , R = 1000, τ ∼ exp(mean=2) 862 853 (68%) 862

13



Constraint Satisfaction: P{W > T}

ED+QED: n ≈ R− γR + δ
√

R , γ > 0, −∞ < δ < ∞.
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Constraint Satisfaction: Conclusions

Staffing around offered load (“tight” constraint) – QED should be used.

Significant understaffing (“loose” constraint, large offered load)

• Probability to abandon: both QED and ED are good.

• Average wait: use ED for non-exponential patience, QED for Erlang-A.

• P{W > T}: use ED+QED.
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Constraint Satisfaction: Global Constraint

Day of work consists of K time intervals.

Fractions of daily arrival rate ri, 1 ≤ i ≤ K.

Staffing costs ci, 1 ≤ i ≤ K.

Minimize
K∑

i=1
cini given constraint on daily performance.
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Constraint Satisfaction: Global Constraint

Day of work consists of K time intervals.

Fractions of daily arrival rate ri, 1 ≤ i ≤ K.

Staffing costs ci, 1 ≤ i ≤ K.

Minimize
K∑

i=1
cini given constraint on daily performance.

P{Ab} ≤ α: use QED staffing, dni = Ri + βi

√
Rie ,

where
K∑

i=1
βici

√
ri −→ min

given
K∑

i=1

√
riPw(βi)Pa(βi) = α

√
λ .

P{W > 0} ≤ α: either use QED staffing or “close gate” (ni = 0).
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Cost Minimization

Cost = Cs · n + (Ca · P{Ab} + Cw · E[W ]) · λ .

Use QED staffing, where β depends on Ca/Cs and Cw/Cs.
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Cost Minimization

Cost = Cs · n + (Ca · P{Ab} + Cw · E[W ]) · λ .

Use QED staffing, where β depends on Ca/Cs and Cw/Cs.

Cost = Cs · n + Cw · λ · E[W ] Cost = Cs · n + Ca · λ · P{Ab}
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Excellent fit, except some cases with waiting costs and non-exponential patience.
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Possible Future Research

• Cost minimization: theoretical validation;

• Random arrival rate;

• Time-inhomogeneous arrival rate;

• Generally distributed service times.
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