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Service systems are often stochastic and pre-planned by appointments, yet implementations of their appoint-

ment systems are prevalently deterministic. At the planning stage of healthcare services, for example, cus-

tomer punctuality and service durations are often assumed equal their means—and this gap, between planned

and reality, motivated our research. Specifically, we consider appointment scheduling and sequencing under

a time-varying number of servers, in a data-rich environment where service durations and punctuality are

uncertain. Our data-driven approach, based on infinite-server queues, yields tractable and scalable solutions

that accommodate hundreds of jobs and servers. We successfully test our approach against near-optimal

algorithms (which exist for merely single-servers). This entails the development of a data-driven robust

optimization approach with novel uncertainty sets. To test for practical performance, we leverage a unique

dataset from a cancer center, that combines real-time locations, electronic health records and appointments

log. Focusing on one of the center’s infusion units (∼90 daily appointments, 25+ infusion chairs), we reduce

cost (waiting+overtime) in the order of 15%-40% consistently, under a wide range of experimental setups.

Key words : Appointment scheduling; appointment book; data-driven decision making; scheduling under

uncertainty

1. Introduction

Appointment scheduling is a ubiquitous operational process in service systems. In Healthcare Deliv-

ery Systems (HDS), for example, the majority of services operate under scheduled appointments,

ranging from primary care exams to surgeries. Being essentially the process of matching supply and

demand, appointment scheduling is typically a key performance driver: surplus of supply, i.e., too

“few” appointments over a period of time, leads to low server utilization; surplus of demand, i.e.,

too “many” appointments, leads to customer delays. Such mismatches can have profound negative
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consequences in settings where server idling and customer waiting are both costly—for example,

in HDS, where servers could correspond to specialized physicians or equipment, and customers to

patients. From a methodological standpoint, scheduling (a given number of) appointments, the

service durations of which are stochastic, is a notoriously difficult problem. The main reason is

that its analysis requires tracking transient performance measures, which renders standard queue-

ing theory inapplicable (Kong et al. 2013). Consequently, solution approaches have so far been

developed only for specialized cases; notably for settings where service durations and punctuality

are deterministic (Pinedo 2009, Santibáñez et al. 2012), or for settings where service durations are

uncertain, but where only a single server is in operation (Denton and Gupta 2003).

The majority of HDS, however, follow modes of operation that lie beyond the specialized cases

amenable to the existing scheduling algorithms. First, they tend to operate by sharing multiple

servers. In particular, for cost-cutting and efficiency purposes, there is a recent consolidation trend

in the healthcare industry, with large-scale HDS increasingly pooling or sharing their resources,

instead of operating specialized and dedicated centers (Dafny et al. 2012, Bravo et al. 2017). For

example, in oncology outpatient care, Massachusetts General Hospital (MGH) recently opened a

new adult cancer center operating a sixty bed/chair infusion unit; similarly, Dana-Farber Cancer

Institute (DFCI) built a new cutting-edge clinical and research facility (the Yawkey Center), where

infusion chairs are shared among different disease centers. Second, state-of-the-art clinical treatment

processes are highly variable and subject to inherent uncertainty, owing to myriads of physiological

factors and/or emergence of complex and personalized clinical pathways. For instance, infusion

appointments in oncology are contingent on the patient’s evolving health status, resulting in their

durations being variable and unpredictable (Barysauskas et al. 2016). (We elaborate on this in

Section 3.)

In reality, there exists a significant discrepancy between the planned and actual operations, even

at HDS that employ sophisticated scheduling systems and state-of-the-art practices (e.g., DFCI). As

a consequence, patients face lengthy waiting times, with their experience often being very different

from what was scheduled. This mismatch can be traced back to the aforementioned assumptions of

deterministic service times and punctuality—assumptions routinely made in appointment schedul-

ing implementations, which are capable of handling large-scale operations that involve hundreds of

servers and hundreds of customers. To this end, consider DFCI’s infusion appointment operations:

Figure 1 depicts histograms of appointment punctuality and actual duration of appointments; the

latter were scheduled for two hours, but their actualization illustrates significant variability.

Figure 1 offers yet another perspective: it was compiled using high-resolution data from a Real-

Time Locating System (RTLS) deployed at DFCI. Our RTLS tracks both patients (∼850 per

day) and providers (∼300 per day) across DFCI’s Ambulatory Cancer Center, in a continuous
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Figure 1 Histograms of punctuality of infusion treatments (left) and of actual durations of infusion treatments

scheduled for two hours (right). The graphs are based on data for all DFCI business days between November

2013 and May 2015.

-90 -60 -30 0 30 60 90 120

Time (minutes)

0

1

2

3

4

5

6

7

8

9

10

F
re

q
u

e
n

c
y

Infusion punctuality

N=116,097

0 60 120 180 240 300 360

Time (minutes)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y
 %

Actual durations of 2-hour appointments

N=21,269

and fully-automated fashion. Figure 2 illustrates a snapshot of such patient location data col-

lected at the infusion unit of the ninth floor, at 11:17 on XX-YYY-2014—we do not report the

exact date due to privacy considerations. An animation of the entire day’s data is accessible at

youtu.be/e1qHeYg7hfw. RTLS enables a unique data-gathering process of large-scale operational

data that are considerably less susceptible to observational bias. For more details on our RTLS

data, see the discussion in Section 3. DFCI’s RTLS implementation is aligned with the general

trend of HDS increasingly collecting data at a massive scale. All these data can be harnessed to

improve operational processes, and our work is one initial step in this direction.

In this paper, we deal with the so-called offline appointment sequencing problem, where one

must decide on the appointment times for a given set, or number of jobs—which have random

durations—so as to minimize a combination of the expected wait time of jobs and the overtime

of servers. Equivalently, one needs to decide on the sequence in which jobs will be scheduled and

the time allowances between successive jobs. Problems in which the sequence of jobs is given and

the decision only revolves around the time allowances between successive jobs are referred to as

appointment scheduling problems. From a practical standpoint, the problem we study here arises,

for example, at service systems that manage appointment requests in two steps: in the first step

that occurs several weeks or days before service, each incoming appointment request is booked for

a particular day/time-window in the future; in the second step, only a few days before service, an

exact time is set for all appointments that were booked for a particular day in the first step. This

two-step approach is well accepted both in practice (Mak et al. 2015) and in the literature, where

the second step precisely corresponds to the (offline) appointment sequencing problem.

https://youtu.be/e1qHeYg7hfw
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Figure 2 Snapshot of our RTLS data, namely patient location at DFCI’s Yawkey Center ninth floor infusion

unit at 11:17 on XX-YYY-2014. An animation of the entire day is available at youtu.be/e1qHeYg7hfw. Nodes

represent specific locations, e.g., infusion chairs and hallways. Patients represented by dots traversing edges are

obtaining service at the originating node and reach the destination node upon completion—for example, the

patient traversing the edge emanating from Infusion Chair 25 in Room 11 is currently undergoing infusion

treatment in that chair.
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In the present work, we focus on the offline appointment sequencing problem for relatively

large service systems. Our systems consist of a (potentially time-varying) large number of servers,

who cater to a large number of customers; and the systems are stochastic in the sense that both

service-durations and (customer) punctuality are subject to significant uncertainty. Our motivating

example is infusion services at DFCI, where a disease center consists of 10’s of chairs (servers) that

accommodate over 50 patients (customers) per day. Methodologically, as we argued already, the

appointment sequencing problem is notoriously difficult (Kong et al. 2013). It becomes even more

challenging in multi-server settings in which jobs are served by shared servers, as opposed to, for

example, being pre-assigned to one particular server; this is because, in general, sharing of servers

leads to complex queueing dynamics that cannot be expressed in closed form (e.g., à la Lindley

recursion for a single server).

Contributions

We develop a novel, data-driven approach to solve the appointment sequencing problem; we accom-

modate a time-varying number of shared servers, in a tractable and scalable fashion, for problem

https://youtu.be/e1qHeYg7hfw
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Table 1 Applicability of existing approaches in the literature (SO (Denton and Gupta 2003) and DR
(Kong et al. 2013, Mak et al. 2015)), our DDR approach and our IS approach in terms of number of servers,

and the ability to capture sequencing or punctuality.

Number of shared servers Allows for
single few

(e.g. 2− 15)
many

(e.g. ≥ 15) Sequencing Punctuality
Existing approaches: SO, DR ✓ ✗ ✗ ✓ ✗

DDR ✓ ✓ ✓ ✗ ✗

IS ✗ ✗ ✓ ✓ ✓

instances with hundreds of jobs and hundreds of servers. Our approach relies on an infinite-server

relaxation, which accounts for uncertainty in service times and punctuality while usefully (e.g.,

Figures 4 and 6) modeling the complex queueing dynamics of shared-server environment; we refer

to it as an Infinite-Server (IS) sequencing approach (Section 5), and to its underlying model as

the IS-model or simply IS (Section 5.1). Furthermore, we utilize a CLT approximation for compu-

tational purposes. These relaxations render our approach applicable to problems involving a large

enough number of servers.

We perform an extensive benchmarking of our IS approach in three steps, and find that it yields

very strong performance with significant reductions in average wait time and overtime cost. These

reductions could be as large as 40%-60% in large-scale HDS such as DFCI, when compared against

appointment sequencing implementations usually deployed in such systems. We elaborate on the

three steps next.

First, in Section 6 we benchmark IS against certain near-optimal solution approaches estab-

lished in the literature, specifically Stochastic Optimization (SO) (Denton and Gupta 2003) and

Distributionally Robust (DR) approaches (Kong et al. 2013, Mak et al. 2015). As it happens, these

state-of-the-art approaches are applicable only to single-server environments: Table 1 provides a

schematic illustration of their scope and limitations. To enable a comparison, nevertheless, we

develop another solution approach, dubbed Data-Driven Robust (DDR) that, loosely speaking, lies

“in-between”: DDR leverages the tractability of robust optimization and enables one to explicitly

model the queueing dynamics for multiple, shared servers (see Table 1), while also leveraging the

wealth of operational data by relying on novel uncertainty sets. In our numerical studies, we then

compare DDR with near-optimal solution approaches in a single-server setting and find that it

performs equally well (if not better). This supports comparison of IS with DDR in a multi-server

environment, which reveals that IS performs equally well as (if not better than) DDR.

Second, in Section 7.1 we benchmark IS against appointment sequencing algorithms that treat

service times and punctuality as deterministic (e.g., equal to their mean values), which is the

modus operandi of virtually all implementations in practice (Berg and Denton 2012); we refer to

such algorithms as means-based sequencing. We conduct our analysis using DFCI data: as already
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mentioned, this is a unique real-world data set, of unprecedented resolution, which draws data

from both RTLS and EHR systems. To the best of our knowledge, ours is the first work to use

RTLS log data (at such scale) to extract operational data. Using DFCI data allows one to evaluate

the benefits that our work could yield for offline appointment sequencing in a realistic setting.

Compared to means-based sequencing, we find that IS provides considerable wait time and overtime

cost reductions, in the order of 30% consistently, under a wide range of experimental setups.

Our approach is entirely data-driven, with data playing a central role in every step: calibration,

validation, testing, and benchmarking.

Third, in Section 7.2 we benchmark IS with means-based sequencing in the context of optimizing

DFCI’s infusion appointment process, which deviates from but closely resembles offline sequencing.

In particular, at DFCI, templates determine the times-of-day that appointments are scheduled

for, based on patient’s type, namely disease and infusion type. Templates are computed offline

based on the anticipated number of requests and patient types—the actual request patterns usually

differ, although not by too much. We use our IS and a means-based approach, which mimics DFCI

practice, to produce templates. Then, we use our unique data to simulate 34 real historical days,

in which stochastic appointment requests arrive sequentially in a random order and are scheduled

based on the IS- or the means-based-computed template. In comparison with means-based, the IS-

computed template yields a cost reduction of approximately 55%. This significant improvement of

IS over means-based sequencing, in our realistic experiments, illustrates IS robustness, its potential

to be used in practice, and that it could also serve as a useful building block in the design of online

appointment algorithms.

Managerial Insights

Does variability “average out” in multi-server appointment systems? In particular, one might

hypothesize that in such systems, where a large number of jobs are processed simultaneously by

shared servers, delays from jobs that run over their expected service time would be offset by jobs

that finish earlier, to the extent that stochasticity would cancel out. Such a hypothesis could

rationalize the use of means-based scheduling and sequencing algorithms in practice. Our work,

however, refutes this hypothesis, informing HDS managers of the significant gains—overtime plus

waiting time reductions in the order of 30%—that appointment processes, which do account for

uncertainty, can bear over means-based algorithms in multi-server environments.

RTLS implementations have been very recent and it is not yet well understood how to make the

best of such systems and their data (neither in an offline nor an online fashion). RTLS systems

avert many observational biases that plague other data-gathering processes (see Section 3). Hence

another insight that our work affords is that it showcases a way to utilize RTLS data to improve

operational procedures, such as appointment scheduling and sequencing.
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More broadly, RTLS could better the efficient use of fixed resources (e.g., exam room space),

which is essential to enable clinical growth within existing facilities. Indeed, adding or expanding

a facility requires significant financial resources and time, likely years, to implement. RTLS could

support methods that optimize schedules, reduce patient wait time, and distribute clinical volume

to avoid unsustainable volume peaks. This would lead to a more efficient use of fixed resources

and extend the time horizon before demand consistently exceeds available capacity and thus new

facilities are required.

2. Brief Literature Review

The literature on appointment scheduling and sequencing is vast and has dealt with multiple facets

of the problem. Excellent surveys are provided by Cayirli and Veral (2003), Gupta and Denton

(2008), Cardoen et al. (2010) and Ahmadi-Javid et al. (2017). Outpatient Procedure Center

sequencing is reviewed in Berg and Denton (2012), where it was remarked that, in practice, sched-

ules are commonly based on mean procedure times. Trading of customer waiting vs. server idle-

ness, in the context of appointment systems, is a classical problem that can be traced back to

Bailey (1952), Jackson (1964), White and Pike (1964). Recent works on appointment sequenc-

ing (e.g., see Zacharias and Pinedo (2014), Zacharias and Armony (2017), Zacharias and Pinedo

(2017), including Santibáñez et al. (2012), Gocgun and Puterman (2014), Dunn et al. (2017) that

focus on cancer care) consider models with various features (e.g., deadlines) that capture uncer-

tainty of future appointment requests (stochastic arrivals, urgent/elective procedures, cancella-

tions). However, these studies do not address uncertainty in punctuality and treatment durations,

i.e., deterministic service times and perfect punctuality is assumed. Below, we only discuss work

that is directly related to ours.

Work on appointment sequencing and scheduling under uncertainty has almost exclusively dealt

with the case where a single server processes all jobs. Another prevalent assumption is that jobs

arrive precisely at their scheduled times (perfect punctuality). For the single-server scheduling prob-

lem, Denton and Gupta (2003) employ a stochastic linear programming formulation and develop

a variant of the standard L-shaped algorithm (e.g., Chapter 5 in Birge and Louveaux (1997)) to

obtain optimal solutions. Kaandorp and Koole (2007) show that, under independent and expo-

nentially distributed job durations, the objective is L# convex. Using this property, they develop

a local search algorithm guaranteed to converge to the optimal schedule. Begen and Queyranne

(2011) are the first to show that, under a general joint discrete probability distribution, the single-

server scheduling problem is solvable in polynomial time, although their results are of a theoretical

nature and no numerical solutions are presented.

The single-server sequencing problem appears to be intractable (Mak et al. 2015). Several com-

plexity results have been derived (e.g., Mancilla and Storer (2012)), including recent work by
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Kong et al. (2016), which proves the sequencing problem to be NP-hard even under fixed time

allowances. Not surprisingly hence, no exact solution methods are known. A popular heuristic is

to sequence jobs in increasing order of variance (OV), which was also found to produce “good”

sequences numerically. Optimality of OV has only been shown for two jobs by Weiss (1990) and

Denton et al. (2007), assuming independent job durations. The recent work by Kong et al. (2016),

however, argues that OV is very unlikely to be optimal for a general number of jobs.

Due to lack of data, required to fit credible service time probability distributions, a recent stream

of papers proposes the use of robust optimization (e.g., see Ben-Tal et al. (2009)) to minimize the

worst-case waiting and overtime costs. Kong et al. (2013) deal with the scheduling problem and

show that, under a service time uncertainty model that uses the complete covariance matrix, it can

be solved to optimality as a convex optimization problem. Using a different model of uncertainty

that relies on knowledge of only marginal moments, instead of the complete covariance matrix,

Mak et al. (2015) provide tractable conic programs for the robust appointment sequencing problem.

We re-emphasize that all the above pertains to single-server models.

To our knowledge, when jobs are served by shared multiple servers, and are subject to random

durations and punctuality, no optimal solution methods exist. In particular, by relying on Lindley’s

recursion to express wait times of jobs, none of the aforementioned approaches extend to the case

where jobs are served by shared servers. In addition, a direct application of stochastic programming

techniques does not scale to practical problem sizes (Castaing et al. 2016).

A handful of recent papers deal with multi-server settings and study how to pre-assign each job

to a particular server, which subsequently operates separately and serves only its pre-assigned jobs.

In these settings, a job cannot be served by an arbitrary available server, i.e., there is no resource

pooling. To deal with this job-to-server pre-assignment problem, chance-constrained optimization

(Deng and Shen 2016, Deng et al. 2017) or load-balancing heuristics are employed (Mak et al.

2014). Our work differs by considering shared-server operations. We are not aware of any work that

provides a tractable (approximate) solution approach for the multi-server scheduling or sequencing

problems, in which a (potentially time-varying) number of servers are being shared to serve jobs

with uncertain punctualities and service times.

Finally, we mention a line of data-driven research (Kim et al. 2015, 2017) where the data origi-

nates from an appointment-driven system. Their approach is descriptive in that they leverage data

for developing models of system characteristics (patients arrivals), while their appointment sys-

tem is fixed. Our approach, on the other hand, is prescriptive in that our models seek to improve

the driving appointments-system itself. To be specific, Kim et al. (2015, 2017) use data from an

appointment system in a Korean outpatient endocrinology clinic, in order to model patients arrivals.

Their models capture variability relative to the underlying appointments which, for example, is
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due to changes by patients, doctors or inherent in the system itself. To put our research in this per-

spective, we propose a data-driven model for the occupancy process arising from an appointment

scheduling/sequencing system, and our model supports improvements of the latter; to recapture

the contributions, our data-source is very large, models are analytically-tractable and likely to be

robust, prescriptions are well-validated and they yield significant reductions in patients delay and

doctors overtime.

3. DFCI Infusion Operations and Data

In this section, we briefly describe the operational practices at DFCI, which are very similar to

those employed in peer leading cancer centers, for example, Massachusetts General Hospital (Rieb

2015). Inevitably, due to space limitations, we omit many details, since processes at large-scale

cancer centers are complex. Rather, we focus on the infusion operations and the unique operational

RTLS+EHR data gathering processes at DFCI.

DFCI cares for approximately 1,000 cancer outpatients on a daily basis. Their majority receive

care at the Yawkey Center, a state-of-art 14-story building with more than 100 exam rooms and

150 infusion spaces, which are spread over eight of the floors. The center is organized into multiple

“disease centers” that specialize in specific cancer types. Depending on their size, several disease

centers can be co-located on a single floor and share exam rooms and infusions spaces.

The focus of our work is on DFCI’s infusion operations. Patient flow is schematically shown in

Figure 3. Infusion patients visit the center according to an appointment schedule, either by having

a same day exam scheduled prior to their infusion (linked appointments), or not (unlinked appoint-

ments). We elaborate on DFCI’s appointment system in Section 7.2. Currently, for appointment

setting, infusion durations are determined by historical averages, for patients who followed the

same treatment protocol in the past. Actual appointment durations, however, differ from scheduled

ones significantly—see, for example, Figure 1. This is because, for most patients, infusion proto-

cols are adjusted according to their updated clinical conditions, which are determined by their

blood draw results and physician exam. These same-day changes in treatment plans, e.g., addition,

change, or removal of procedures, make actual infusion durations highly uncertain and variable.

Other sources of variability include the heterogeneity of patients’ clinical condition and clinical

trials, with the latter typically requiring non-standardized treatments. Consequently, the infusion

process is usually the bottleneck in DFCI’s operations.

Real-time Locating System: A Data Goldmine

A key feature of the Yawkey Center is that it has an RTLS system installed. This system consists

of a network of more than 900 sensors on the ceilings of eight clinical floors, two non-clinical floors

and the parking garage. The sensors use infrared to track badges worn by patients, providers and
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Figure 3 Scheme of the main process at DFCI.
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administrators. Badge locations are recorded every three seconds. On average, approximately 850

daily patient visits are recorded by the RTLS system. RTLS compliance in the infusion units is

excellent, facilitated by nurses confirming that patients are properly badged prior to treatment.

A unique feature of the RTLS data-gathering process is that it is fully automated and requires

no effort by users to record activities. This automation alleviates an important deficiency of clas-

sical solely-EHR-based implementations, which typically require some manual user input. Indeed,

manual data collection often suffers from observational bias because, during busy periods, manual

tasks, including data logging, are frequently overlooked or not performed on-time.

As a part of our work, RTLS data from the eight clinical floors were “synchronized” with appoint-

ment book data, as well as data from the in-house pharmacy. Having access to all these logs,

enables us to accurately determine not only locations of patients, but also the activities in which

they are engaged. An animation of patients, undergoing infusion activities on XX-YYY-2014 at

DFCI, is accessible at youtu.be/e1qHeYg7hfw (see also Figure 2). The resulting data set provides

a representation of infusion operations at DFCI that is of unprecedented fidelity and accuracy, and

this motivates our data-driven approach.

4. Appointment Scheduling and Sequencing Problems

There are n customers to be scheduled for service during a time interval [0, T̄ ]. For exposition

purposes, we consider time to be continuous; our solution approach can be readily employed both

for continuous and discrete time. The service facility has ct available servers at time t ∈ [0, T̄ ].

Regular business hours of the facility are [0, T ], T ≤ T̄ ; any work during the time interval (T, T̄ ]

counts as overtime, which incurs cost of γ per server per unit of time.

The planner needs to choose appointment times ai, for each customer i= 1, . . . , n. The quantities

a1, . . . , an are deterministic. Appointments must be scheduled during regular business hours, that is

ai ≤ T . (Appointment times can also be subject to some extra constraints, e.g., ai ≤ Ti, where Ti is a

deadline for customer i. Such simple linear constraint can readily be embedded in our algorithms.)

The service time (duration) and punctuality of the ith customer are Di ≥ 0 and Pi, respectively.

Customer i arrives to the system at time t = ai + Pi; Pi > 0 implies that the customer is late,

https://youtu.be/e1qHeYg7hfw
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and conversely for Pi < 0. The random variables Di and Pi are described by distribution functions

Fi and Gi, respectively; these distributions are known to the planner. Distribution Fi quantifies

the cancellation probability for customer i via its mass at the origin—cancelled appointments (no-

shows) can be thought of as appointments with zero service requirements. It is assumed that Di

and Pi are mutually independent (this assumption is not crucial and can be relaxed), as well as

independent across customers. In general, the distributions Fi and Gi can vary with ai. That is,

appointment time-of-day can impact punctuality, service duration or no-shows. Let Si be the service

start time of customer i. The corresponding server is busy during the service interval [Si, Si+Di).

Customers are served by any available idle server in the order of their arrival. Customer i enters

service at Si only if this does not lead to a capacity violation during the service interval. That is,

a customer that enters service stays in service until service is completed—a decrease in capacity

never forces a customer out of service.∗

Customer i experiences waiting Wi = Si − ai − Pi if showing up for the appointment, with

probability 1−Fi(0), andWi = 0 otherwise. Similarly, there is overtime work Oi = (Di−(T−Si)
+)+

if customer i shows up for the appointment, and Oi = 0 otherwise. Note that Oi is the amount

of work for ith customer that occurs beyond the end of business hours T ; the sum of all Oi’s is

thus the total overtime, the amount of work required beyond time T . The appointment sequencing

problem is to select the appointment times a1, . . . , an, so as to minimize the expected cost

E

[

n
∑

i=1

(Wi+ γOi)

]

. (1)

Given a permutation π of (1, . . . , n), the appointment scheduling problem is to select appointment

times a1, . . . , an, in order to minimize (1) subject to aπ1
≤ aπ2

≤ · · · ≤ aπn . That is, the scheduling

problem is easier than the sequencing problem, since the relative order of appointments in the

former is fixed, and the planner needs to choose only the spacing between them.

Modeling Choices We conclude the presentation of the scheduling and sequencing problems by

discussing some of the modeling choices. First, as we remarked in Section 2, a penalty term for server

idleness is often included in the objective of appointment problems like ours. Some papers omit it,

however, noticing that problems including such a penalty can be reduced, under mild conditions,

to problems minimizing objectives as in (1), with parameter γ appropriately adjusted (Kong et al.

2013). Herein, we omit the cost-term for server idleness to better align our study (a) with DFCI

infusion service practices wherein servers correspond to nurse-staffed chairs for which costs have

∗ Such an assumption is common in analyses of time-varying queueing systems, e.g., see Liu and Whitt (2011).
Moreover, it implies that service times are realized upon arrival. At DFCI infusion units, this occurs when patient’s
clinical condition is assessed upon arrival, and the corresponding treatment plan is adjusted accordingly.
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already been sunk, and (b) with the papers by Kong et al. (2013) and Mak et al. (2015) that

serve as important benchmarks in our numerical experiments. Nevertheless, it is straightforward

to extend our model to include a server idleness penalty term; we remark on this extension in

Section 5.3.

Second, waiting time is calculated from the customer’s arrival to the system. Alternatively,

it could be calculated from the customer’s scheduled appointment time. Both these definitions

have been well studied in the literature; see Klassen and Yoogalingam (2014) for references and

a thorough discussion of the relative merits of each approach. In short, the former (latter) is

more relevant for systems wherein congestion in the waiting area has some negative (no) impact.

Accordingly, DFCI measures waiting time from patient’s arrival, and this is the definition we adopt.

Finally, service for each customer beyond T contributes to the calculation of overtime in the

expected cost to be minimized. Alternatively, overtime could be calculated as the amount of time

that makespan exceeds T by, i.e., as (maxi{Si +Di}−T )+. If the per hour overtime cost is fixed

and independent of the number of customers being served beyond regular hours, then the latter

definition would be a better fit. If the per hour overtime cost is variable and scales with the number

of customers, the definition we use in our model would be a better fit. There are certainly service

systems that would fit better under one case, and service systems that would fit better under the

other. For cancer centers, because of strict staff-to-patient ratios, overtime costs tend to be variable

and the higher the number of patients being served, the higher these costs usually are.

5. Our Infinite-Server (IS) Approach

We now present our approach to solve the appointment scheduling and sequencing problems. As

remarked above, even the scheduling version is a very hard problem. For “single-server” (ct =1 for

all t) scheduling, although no efficient, general-purpose solution methods exist, there is a plethora

of well-performing heuristics (surveyed in Section 2). Unfortunately, none of these approaches

extend to multiple-server scheduling and sequencing problems where uncertainty is fully taken into

account. Motivated by the challenges facing DFCI, our goal is to propose a solution approach that

accommodates multiple-server environments, while utilizing the available wealth of operational

data. As already noted, the multiple-server version of the problem is challenging due to the absence

of closed-form, tractable expressions for its underlying queueing dynamics. Consequently, even the

mapping of a given schedule to actual occupancy, or delays for that matter, remains intractable

due to uncertainty of service requirements and punctuality.

We first introduce a model that approximates occupancy in a multiple-server system, given a

fixed appointment schedule. Next we perform extensive validation — using real data from DFCI —

that demonstrate the credibility of our model’s approximations for practical situations. Then, we
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Table 2 A sample of the infusion-unit appointment book at DFCI; we report neither precise date nor patient id
due to privacy considerations.

date time patient id duration (min) link flag floor id disease center
AA-BBB-2014 15:00 xxxxx021 60 unlinked 9 breast oncology
AA-BBB-2014 12:30 xxxxx247 120 unlinked 9 breast oncology
AA-BBB-2014 10:30 xxxxx083 180 linked 9 genitourinary oncology
AA-BBB-2014 12:30 xxxxx602 60 linked 9 breast oncology
AA-BBB-2014 12:00 xxxxx740 120 linked 9 genitourinary oncology
AA-BBB-2014 07:00 xxxxx741 60 unlinked 9 breast oncology

...
...

...
...

...
...

...

embed this model in an optimization routine that allows us to produce well-performing schedules.

We detail these steps in the following sections.

5.1. Infinite-Server Model

In this subsection, we introduce a model for approximating occupancy given a particular schedule.

To provide some motivation first, consider Table 2: it depicts a snapshot of the appointment book

for the ninth floor infusion unit at DFCI, at the beginning of the day AA-BBB-2014. How “good”

is this schedule? To answer this question, at the very least one must usefully predict the resulting

occupancy (given distributional information on punctualities and service durations).

In Figure 4, the black “brick-shaped” line illustrates the occupancy as planned in the appoint-

ment book on AA-BB-2014, plus two other days. This deterministic description of planned occu-

pancy is based on nominal service durations and perfect punctuality (as in Table 2). On the other

hand, because of uncertainty in treatment durations and punctuality, actual occupancy can be

viewed as a stochastic process, for which only a single realization is observable for a particular day

(schedule). The blue lines illustrate the actual, realized occupancy we recovered using RTLS data

from these days. Clearly the (deterministic) planned occupancy does not describe the correspond-

ing actual process adequately. We hence develop a model for approximating occupancy based on an

Infinite-Server (IS) model. Using this model, we obtain an occupancy approximation that is itself a

stochastic process much like actual occupancy: the red lines illustrate its mean (solid) plus/minus

a standard deviation (dashed). A key observation is that the IS model provides a very close fit to

observed occupancies, well within confidence intervals. We perform an extensive model validation

in Section 5.2 after we formally present the IS model next.

Given a set of n customers and their appointment times a1, . . . , an, our approximation is obtained

by eliminating the constraint on the number of available servers. In particular, customer i arrives

at time t= ai +Pi and leaves the infinite-server system just before t= ai+Pi+Di. For notational

convenience, we define F̃i(x) := 1{x≥0}(1−Fi(x)). Let Zi := {Zi(t), t∈R}, where

Zi(t) := 1{ai+Pi≤t<ai+Pi+Di}
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Figure 4 Examples of actual (solid blue) and planned (dotted black) infusion bed/chair occupancy for three

days at DFCI. For the corresponding models, the means (solid red) and plus/minus one standard deviation from

the mean (dashed red) are shown.
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is the indicator of customer i being present in the system at time t. Then, it follows that

EZi(t) =EF̃i(t− ai−Pi) =: Ωi(t) and Var(Zi(t)) = Ωi(t)−Ω2
i (t).

We use Z := {Z(t), t≥ 0} to denote the total number of customers in the infinite-server system:

Z(t) =
n
∑

i=1

Zi(t).

Assuming independence of customers, it follows that

Var(Z(t)) =: σ2(t) =
n

∑

i=1

Ωi(t) (1−Ωi(t)) . (2)

Let X := {X(t), t∈R} be the occupancy process under a fixed capacity profile (ct) and a given

schedule ({ai, i=1, . . . , n}). The corresponding infinite-server process Z is expected to approximate

the actual occupancy X well for situations where capacity violations do not occur frequently.

In general, however, Z serves as a lower bound only: X(t) ≥ Z(t), for all t. Nonetheless, as we

shall discover, using the infinite-server process proves overall useful for scheduling and sequencing

purposes.

Before using real DFCI data to validate our IS model approximations, we present an illustrative

example with synthetic data. This example is our first demonstration that the IS model provides

a credible approximation of the actual occupancy process for our purposes.

Example 1 (Homogeneous customers). Consider a system serving n = 100 homogeneous

customers. In particular, for all customers i= 1, . . . , n, the service distribution is exponential with

rate β = 1, F̃i(x) = 1{x≥0}e
−βx, and the punctuality distribution Gi is Laplace, defined by the

density λe−λ|x|/2, with λ= 10. Capacity ct is constant throughout (equal to 20, 22, 25, or ∞).
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We consider two possible service schedules, A and B illustrated in the upper right portion of

Figure 5. Schedule A can be thought of as the result of a “means-based” scheduling process, akin

to the deterministic planning we alluded to in the beginning of this section: service durations and

punctuality are assumed to equal their expected values (unit and zero, respectively). Specifically,

Schedule A entails five customer batches. Each batch has 20 customers and arrives every one unit

of time (as long as service is expected to last). Schedule B has an initial batch of 25 customers

arriving at t=0.05, after which the 75 customer scheduled times are uniformly spread out between

t=0.3 and t=4.

Using our IS model, one has

Ωi(t+ ai) =

{

λ
2(λ+β)

eλt, t < 0,
λ

2(λ+β)
e−βt+ λ

2(λ−β)
(e−βt− e−λt), t≥ 0.

In the left column of Figure 5, F̃i and Gi are plotted on the upper plot. The lower plot depicts Ωi

(blue line) and (Ωi−Ω2
i )

1/2 (dashed line), i.e., the standard deviation of Zi, for ai = 0. On the lower

plot, the corresponding Ωi under perfect punctuality (Pi = 0) and deterministic service (EDi = 1)

is plotted as well (black line).

In the center column, for Schedule A (shown on the top), we plot EX(·) under three different

capacity levels (ct is constant equal to 20, 22 and 24) and EZ(·) (ct =∞); the corresponding

standard deviations are shown with dashed lines. The lower plot also depicts the IS process under

the assumption of unit deterministic service times and perfect punctuality (black line), whereby

no capacity violation occurs for the considered capacity levels. In the right column, we depict the

associated quantities for Schedule B.

The example above provides some intuition behind the first managerial insight we outlined in the

Introduction. Specifically, it illustrates that the “shape” of the demand curve affects performance

significantly. Because the resulting shape depends on full distributional information regardless of

the number of jobs/servers, variability remains a key consideration and does not “average out” in

multi-server systems.

Furthermore, the example also suggests that the higher the capacity level, the better the IS

model approximates the finite-capacity system (as seen in Figure 5). Interestingly, even for ct =20,

the IS process still provides a viable approximation of the occupancy process under both schedules.

In particular, the IS model readily reveals that Schedule A would lead to a less efficient demand-

capacity match, as compared to Schedule B. Most important, the IS approximation accurately

reflects a “shape” of the demand curve that matches capacity more closely under Schedule B rather

than under Schedule A, as seen in Figure 5. As we shall see in our numerical experimants, even

if the approximation of the exact occupancy level is off, approximating the demand shape would

prove to be sufficient for scheduling/sequencing purposes.
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Figure 5 Illustration for Example 1.
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5.2. Model Validation

Before using our infinite-server model to develop a sequencing algorithm, we validate it within the

DFCI operating environment. This is done with real data, and the analysis yields our first impor-

tant insight: despite the complexity of DFCI operations, our basic IS model provides a very good

approximation of the intricate underlying dynamics. In particular, actual occupancy at DFCI infu-

sion units (blue lines in Figure 4) is driven by myriad factors and is the outcome of interdependent

processes that are intractable to analyze. Yet, we find that the IS model provides approximation

bands that accurately characterize occupancy: as discussed above, Figure 4 depicts these bands

(red) for a particular DFCI floor (infusion unit) on three specific days, with actual occupancy

(blue) falling well within them. Furthermore, we find the high fidelity of the IS proximation to

be consistent. Specifically, Figure 6 depicts the actual and IS-model occupancies averaged across

multiple days, alongside the corresponding standardized errors; we observe a very close fit. We

detail our studies in the rest of the present subsection.

Model focus and granularity We apply our model to a single floor (infusion unit) at DFCI

separately, rather than to all floors simultaneously, since (i) operation of different floors is semi-

autonomous, (ii) a disease center is located on a single floor, and (iii) statistical properties of

disease centers (patients undergoing treatment, operations) can differ significantly. Moreover, we

consider different days of the week separately, as provider schedules differ from one day of the

week to another, resulting in different daily patient loads and populations (e.g., Fridays are not

as “busy” as other days of the week). Given a floor and a day of the week, we estimate bed/chair

time distributions and punctuality distributions. In particular, we estimate “service” distributions
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Figure 6 The average number of occupied infusion beds/chairs at DFCI for the training (left) and the testing

(center) sets based on RTLS data (“actual,” solid blue) and appointment book data (“planned”, dotted black);

the average of model means (“model,” solid red) is shown as well. A histogram of normalized errors is shown

along with the corresponding normal density (right).
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conditional on (i) the disease center, (ii) the scheduled infusion duration, (iii) the type of the

appointment (linked/unlinked), and (iv) the time of the day (morning vs. afternoon); these param-

eters are extracted from the appointment books of DFCI. As far as punctualities are concerned, we

estimate conditional punctuality distributions based on (i) the disease center, (ii) the time of the

day (scheduled infusion start times), since average delays change during a day, and (iii) the type

of the appointments (linked/unlinked). Hence, the function Ωi for the ith patient depends on (i)

the scheduled treatment (infusion) start time (via the ai and the punctuality/service distribution

that corresponds to ai), (ii) the scheduled treatment duration (via the corresponding distribution

that corresponds to the treatment duration), and (iii) the type of the appointment. Given these

estimated distribution functions, an infinite-server model is constructed for a given day (schedule).

The model mean and variance can be computed from Ωi’s based on the previous subsection.

“Modeling” Wednesdays on the ninth floor We illustrate the described procedure by an

analysis of Wednesdays on the ninth floor. A time period containing 37 Wednesdays in 2014 was

considered (from February 19 to October 29). During this time period, the infusion unit was

shared between two disease centers (breast oncology and genitourinary oncology). Three days were

excluded from our analysis (March 12, June 11 and August 20) due to RTLS system interruptions

on those particular days. The remaining 34 days were divided into the training (20 Wednesdays,

from February 19 to July 16) and testing (14 Wednesdays, from July 23 to October 29) sets. All

schedules for the considered days are different. The number of patients varies from 62 to 101 a

day (the average is 83.3, while the standard deviation is 7.7). The number of scheduled (actual)

infusion hours ranges from 122.0 (153.4) to 188.5 (223.8) a day (the average is 153.6 (190.3), while

the standard deviation is 17.2 (17.8)).
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The training set was used to estimate conditional punctuality and service distributions. All

analysis was conducted on a five-minute scale, i.e., the unit of time is five minutes. Punctuality

distributions were estimated based on values of appointment times. In particular, based on a

statistical analysis, eight time intervals were considered: [00:00-09:00), [09:00-10:00), [10:00-11:00),

[11:00-12:00), [11:00-12:00), [12:00-14:00), [14:00-15:00), [15:00-16:00), and [16:00-24:00). Similarly,

service distributions were estimated based on scheduled appointment durations being in one of eight

intervals (in minutes): [5,25), [25,45), [45,75), [75,105), [150,210), [210,270), [270,330), [330,420),

[420,540), [540,660), and [660,1000). For service distributions, dependence on appointment times

was not found to be significant, unlike for punctuality distributions, and was therefore not modeled.

The estimated distributions were used to construct infinite-server models for all considered days.

Validation results In Figure 6, we plot the number of occupied infusion beds/chairs averaged

across the training (left) and the testing (center) sets. In both graphs, the “actual” and “planned”

curves are plotted based on RTLS data and data derived from the appointment book, respectively.

We note that an infinite-server model for a given day (conditional on its schedule, i.e., appointment

book) is a random object. Thus, in Figure 6, the red lines corresponding to the model represent

the average (across days) of model means. In Figure 4, we illustrate the relationship between

the actual/planned number of occupied infusion beds/chairs and the model for three particular

days. For the model, we show the means (the solid red lines) as well as the levels corresponding

to plus/minus one standard deviation from the means (dashed red lines). The actual number of

occupied beds/chairs can be viewed as a single realization of a random process conditional on the

schedule. Given a day in a testing set and a time of the day, we define a normalized error as a

difference between the actual number of occupied beds/chairs and the model mean, scaled by the

standard deviation of the model. A histogram of normalized errors for the testing set and specific

times of the day (10:00, 11:00, 12:00, 13:00, 14:00, 15:00, and 16:00) is shown in Figure 6 (right); a

corresponding standard normal density is plotted as well. Note that the distribution of normalized

errors would be standard normal if the occupancy process were indeed an infinite-server process

with a large traffic intensity. In this case, the sample average and standard deviation would be

equal to 0.06 and 0.98, respectively. These numbers demonstrate the very strong fit the IS model

provides, as we discussed at the beginning of this section.

5.3. Infinite-Server Sequencing Heuristics

We now use the infinite-server model to propose a heuristic for the appointment scheduling and

sequencing problems. For a function r :R→ [0,∞), we define a cost of a sample path of Z as

Q(Z) :=

∫ ∞

−∞

r(Z(t)− ct) dt+ γ̃

∫ ∞

T

min{Z(t), ct}dt,
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for some γ̃ > 0; the two terms approximate costs of waiting time and overtime. (As a side note,

penalizing server idleness would similarly involve here adding the term
∫ T

0
(ct−Z(t))+ dt to the

sample path cost.)

Define Z̃ = {Z̃(t), t∈R} as a CLT-based approximation of Z:

Z̃(t) :=EZ(t)+ ξ(t)σ(t), (3)

where ξ(t) is a standard normal random variable and σ(t) is given by (2). Consequently, Q(Z̃) is

an approximation of Q(Z), which gives rise to the following problem:

min
{ai∈[0,T ]}i

EQ(Z̃). (4)

For example, if r(x) = x+, one can readily obtain that

EQ(Z̃) =

∫ T

−∞

Ψ(t) dt+(1− γ̃)
∫ ∞

T

Ψ(t) dt+ γ̃

∫ ∞

T

EZ̃(t) dt, (5)

where

Ψ(t) := σ(t) (ϕ(ψ(t))+ψ(t)Φ(ψ(t))) and ψ(t) :=
EZ(t)− ct

σ(t)
;

here we use the common notation for the standard normal density and distribution function (ϕ

and Φ, respectively). In the case when Gi does not vary with ai, (5) can be used to obtain explicit

expressions for partial derivatives of EQ(Z̃) with respect to appointment times ai.

The advantage of using approximation (3) is that Z̃(t) is fully characterized by its mean and

standard deviation only. It is expected that the approximation is relevant whenever the central limit

theorem is applicable. In general, solving (4) to optimality is hard, since the objective function is

not necessarily convex. However, one can efficiently obtain local optimal solutions for large problem

sizes. Candidate starting points can be obtained using the OV heuristic, or efficient means-based

sequencing algorithms that ignore uncertainty, or random sampling. By approximately solving the

problem for various values of γ̃, one can obtain schedules close to the efficient frontier of wait time

versus overtime costs, and eventually select the one that trades off γ units of wait time with one

unit of overtime.

The non-convexity of the IS heuristic objective (4) is a limitation of the IS approach, since

one must resort to local-search algorithms. One can overcome this limitation by formulating a

well-behaved objective that leads to a simpler (or standard) optimization framework. However,

such an alternative comes at the expense of neglecting key (stochastic) features of the underlying

system. Our design choice is to incorporate essential stochastic aspects of the system (along with

the corresponding distributional data) in the model by sacrificing convexity.
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6. Performance Evaluation: Comparison with Existing Approaches

We benchmark our IS solution approach, which accommodates multiple servers, against the state-

of-the-art solution approaches in the literature that deal with single-server instances. To this end,

we develop a novel Data-Driven Robust (DDR) solution approach that “bridges” the two: it deals

with any capacity vector ct, albeit for the appointment scheduling problem where customers’ order

is fixed (see Table 1). Existing approaches in the literature assume perfect punctuality, that is,

Pi = 0, for all i; we henceforth also make this assumption in the present section.

Numerical studies on the scheduling problem reveal that the performance of our IS approach

is at least as good as (if not superior to) the DDR approach for the multiple-server problem,

while the performance of the latter is at least as good as (if not superior to) the state-of-the-art

heuristics in the literature for the single-server problem. To provide further evidence on the quality

of DDR as a benchmark, we compare DDR with existing means-based scheduling approaches for

the multiple-server problem as well, and find that it provides a cost reduction of around 10%.

6.1. Data-Driven Robust (DDR) Scheduling

We develop a robust optimization approach to solve the appointment scheduling problem under

perfect punctuality. It is applicable to any capacity specification ct and considers discrete time; for

the single-server case, it can also be readily adapted to continuous time. Our approach differs from

classical approaches in robust optimization by being grounded in data—a point elaborated upon

in the uncertainty set description below.

At a high-level, the robust optimization approach employs two stages. In the first one, we select

a schedule a1 ≤ a2 ≤ · · · ≤ an; it minimizes the cost incurred in the second stage, in which an

adversary draws the service durations from an uncertainty set so as to maximize the incurred cost.

Uncertainty set of service durations Uncertainty sets in classical robust optimization rely

on limited information about the uncertain variables, which in our case are the service times.

In particular, they are usually calibrated using only the support of the uncertain variables, for

example, or their means, or some of their higher-order moments, etc. Consequently, they tend to

perform well in settings where there is a scarcity of data.

In our setting, on the other hand, a wealth of data is available. Thus, instead of extracting only

partial support and/or moment related information, we propose a novel construction of uncertainty

sets that leverage all the available data explicitly, specifically by “sampling” from the available

empirical distributions. (Hence, we refer to our approach as data-driven.) In particular, consider n

independent uniformly distributed random variables, Ui, i= 1, . . . , n. Samples from these random

variables can be readily used to obtain samples of the service time durations of the n customer

appointments:

Di = F←i (Ui), i= 1, . . . , n;
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here, F←i is the (left continuous) inverse of Fi: F
←
i (x) = inf{s : Fi(s) ≥ x}. Since the Ui’s are

independent and identically distributed, we propose to use CLT-style constraints to form the uncer-

tainty sets that they lie in. Such constraints were introduced and found to perform well in recent

papers in the robust optimization literature; see, e.g., Bandi and Bertsimas (2012).

To formalize the construction of our proposed uncertainty set, we need to “discretize” our random

variables. In particular, consider J point values of the ith service duration’s inverse distribution

function:

δij := F←i

(

j

J +1

)

, i=1, . . . , n, j =1, . . . , J.

Let the associated uniform random variable Ui take the corresponding discrete values j/(J + 1),

j =1, . . . , J . We can then express the service durations as

di =
J
∑

j=1

δijuij, i= 1, . . . , n, (6)

where uij is the indicator variable

uij =

{

1 if Ui =
j

J+1
,

0 otherwise.

Viewed from a different angle, the variables u can be interpreted as assignment variables. That is,

the service durations have a range of possible values δ that they can take. The variables u assign

to the service durations one of their possible values.

The indicator variables lie in the uncertainty set

U :=

{

u∈ {0,1}n×J :
J
∑

j=1

uij = 1, ∀i∈ {1, . . . , n},
∣

∣

∣

∣

∣

∑n

i=1

∑J

j=1
j

J+1
uij − n

2
√

n
12

∣

∣

∣

∣

∣

≤ Γ

}

,

where Γ is a conservatism parameter. The first constraint in the definition of U is an assignment

constraint: precisely one of the uij ’s is equal to one for each i. The second constraint ensures that

the normalized sum of the i.i.d. variables Ui is not larger than Γ or smaller than −Γ. For example,

if Γ = 1, the sum is within one standard deviation from its mean. Higher values of Γ mean that

the sum of service durations can deviate even more from its mean, allowing nature a larger set of

possible durations to pick from so as to maximize costs. The resulting uncertainty set that service

durations lie in is then

D :=

{

d∈Rn : di =
J
∑

j=1

δijuij , ∀i∈ {1, . . . , n}, u∈ U
}

.
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Data-driven robust appointment scheduling We can now formulate the DDR problem as

the following two-stage optimization problem:

minimize max{w(a, d) : d∈D} (7a)

subject to a1 ≤ a2 ≤ · · · ≤ an ≤ T (7b)

a∈Zn, (7c)

where w(a, d) is the incurred cost under schedule a and service durations d. In Appendix A we pro-

vide a tractable reformulation of (7) and develop a Benders decomposition approach that provably

solves the DDR problem to optimality.

6.2. Comparison of DDR with Existing Approaches

We conduct numerical experiments to assess the performance of our data-driven robust approach.

We find that DDR performs at least as good as the state-of-the-art solution approaches in the

literature for the single-server problem. Furthermore, we find that it significantly outperforms

means-based scheduling approaches for the multiple-server problem.

Single-server scheduling First, we compare DDR with existing appointment scheduling algo-

rithms that deal with single-server instances under uncertainty. We use an experimental setup

akin to Kong et al. (2013). In particular, we consider different cases, where in each case we vary

the number of customers, service distributions, utilization and overtime cost rate. For concrete

parameter choices, the reader is referred to Appendix B.1.

We compare our DDR approach with Stochastic Optimization (SO) and a Distributionally-

Robust (DR) approach. SO minimizes expected cost having access to full distributional information.

It is used as a benchmark, since it is known to produce near optimal solutions for the small problem

sizes we consider here (Denton and Gupta 2003). Table 3 provides an overview of our results. Not

surprisingly, SO produces lower costs than our approach; however, our approach yielded costs that

were only 2% higher on average across all cases, and at the most 3.7%. We provide a more detailed

comparison in Appendix B.1.

The DR approach we use follows Kong et al. (2013) and Mak et al. (2015), by minimizing worst-

case cost, over all distributions that have the same mean and variance as the true service distribu-

tions. That is, the DR approach leverages only partial information about service times. It is used as

a benchmark, since it has been shown to perform very well for realistic problem sizes that include

more than 40 customers (still only with a single server). In comparison, our DDR approach yielded

costs that were 2.5% lower on average across all cases, occasionally 4.6% lower. Note that our
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Table 3 Summary of mean percentage
differences (in %) between DDR and SO/DR
solutions for the single-server problem, and
between DDR and MB solutions for the

multiple-server problem. The summary is across
service distributions (lognormal/gamma) and

utilization levels (0.85/1.00/1.15).

single-server multi-server
SO DR MB

Min. gap +0.8 −0.1 −2.6
Avg. gap +2.0 −2.5 −10.6
Max. gap +3.7 −4.6 −20.4

approach yields superior performance by utilizing more distributional information (as we remarked

above).† For additional comparison details, see Appendix B.1.

Multiple-server scheduling Second, we compare DDR with standard Means-Based (MB)

scheduling for multiple-server problems. The experimental setup we use is akin to the one we

used previously for the single-server problem. In particular, we consider the problem of scheduling

n = 40 customers to 15 servers (ct = 15, t = 1, . . . , T̄ , where T̄ = 90). The per-unit overtime cost

is γ = 2, and overtime contributes to the overall cost after T = 50. All customers have perfect

punctuality and the same distribution type for their service requirements: lognormal or gamma (as

in Kong et al. (2013)). However, the mean and the coefficient of variation for each customer are

sampled from a uniform distribution. Specifically, the mean service requirement di of customer i

is uniform on [2d̄/3, 4d̄/3], where d̄ is determined by a desired mean utilization nd̄/
∑T

t=1 ct; the

coefficients of variation are uniform on [2/3, 4/3]. For each distribution type (lognormal or gamma)

and three utilization levels (0.85, 1.00 and 1.15; this corresponds to d̄≈ 0.32T , 0.38T and 0.43T ),

we generate (sample means and coefficients of variation) 20 cases: these are solved by the two

proposed algorithms, MB and DDR (the DDR’s parameter Γ was calibrated for each group of 20

cases). The two solutions (for each case) are then fed into a simulator to obtain estimates of the

mean of the total cost (based on 106 samples).

Table 3 provides an overview of our results. Because it leverages full distributional information of

customer requirements, as opposed to simply means, DDR provides a significant cost reduction over

MB scheduling that is as high as 20.4%, and averages at 10.6% across our experiments. We provide

a more detailed comparison in Appendix B.2, along with details about the specific implementation

of MB scheduling we used.

† Note, however, that this advantage comes at the cost of having to solve integer optimization problems (as opposed to
second-order cone problems in the DR approach). On the positive side, our approach can also deal with multiple-server
problems.
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6.3. Comparison of IS with DDR

Having established that the DDR approach exhibits near-optimal performance for single-server

scheduling problems and that it significantly outperforms means-based scheduling for multiple-

server problems, we now benchmark our IS approach against it for multiple-server scheduling

problems. We use the same experimental setup as we used previously in the comparison of DDR

with MB scheduling. For the IS approach, we use r(x) = x+, a choice we retain for all subsequent

experiments, and calibrate the parameter γ̃ for each group of 20 cases. In a similar fashion as

before, the IS and DDR solutions (for each case) are fed into a simulator to obtain estimates of

the mean of their total cost.

In order to assess robustness, we also simulate the performance of the IS and DDR models in

situations where the distributions are mis-specified, that is the “actual” distributions do not match

the ones assumed by the models. In particular, for each of the 120 cases we consider, if both models

assumed the lognormal (gamma) distribution to produce schedules, we simulate the costs of the

produced schedules under a gamma (lognormal) distribution, with the same first two moments for

each customer as the models assumed.

Our numerical results are summarized in Figure 7 and Table 4. Note that the IS approach delivers

a uniformly superior performance to DDR across all our experimental setups. When the underlying

distributions are accurately specified, i.e., the simulator uses the same distribution as the models

assumed, the cost reduction that IS achieves over DDR is 3.6%, on average. Interestingly, IS holds

on to its advantage, even under distributional mis-specifications, i.e., when the models assume some

distribution type but the “actual” one that the simulator uses is different, lowering cost by 2.8%, on

average. In summary, our experiments suggest that the IS approach is uniformly slightly superior to

the DDR approach, with the latter found to be near-optimal for the single-server problem setting.

From a computation standpoint, we measured the required computation time of both approaches

in our experiments and found IS to be one to two orders of magnitude faster. Specifically, DDR

required approximately two hours, on average, to solve each instance, whereas IS required approx-

imately two minutes. For larger problem sizes (e.g., n= 50 or higher), we found DDR unable to

solve them within four hours—Kong et al. (2013) report that their approach can solve instances

up to around similar sizes. In comparison, we found IS able to solve scheduling problem instances

with n= 100 in less than thirty minutes, on average. These experiments illustrate the ability of IS

to handle practice-relevant problem sizes. For details, see Appendix B.2.2.

Furthermore, recall that, unlike DDR, the IS approach is also capable of handling sequencing and

uncertainty in punctualities. In particular, we considered generalizations of DDR that allowed for

punctuality and sequencing, but found them unable (due to computational burden) to solve for the

experiments we considered in this section. In contrast, IS was able to solve them, when accounting



Mandelbaum et al.: Data-driven appointment-scheduling under uncertainty

Management Science 00(0), pp. 000–000, c© 0000 INFORMS 25

Figure 7 Mean costs of DDR (dash-dot blue) and IS (solid red) appointment scheduling solutions for different

distribution (actual/assumed) pairs and mean utilization levels (0.85, 1.00 and 1.15). The number of servers and

customers are 15 and 40, respectively.
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Table 4 Mean percentage differences (in %) between IS and DDR
solutions (MB solutions) for means and percentiles. The pair of distributions
refers to actual/assumed distributions, where the L and G stand for lognormal

and gamma, respectively.

Distributions
Mean
utilization

Performance
measure

G/G L/G L/L G/L

0.85 Mean −3.0 −6.8 −5.6 +0.7
75% percentile −1.7 −5.3 −4.5 +1.5
85% percentile +2.1 −2.5 −1.5 +4.9
95% percentile +7.4 +1.9 +2.8 +10.0

1.00 Mean −4.1 −4.1 −4.3 −3.2
75% percentile −3.4 −3.3 −3.4 −2.5
85% percentile −2.7 −2.9 −2.9 −1.9
95% percentile −1.8 −2.6 −2.5 −0.9

1.15 Mean −2.2 −2.1 −2.1 −1.5
75% percentile −2.8 −2.8 −2.8 −2.2
85% percentile −3.0 −2.9 −2.9 −2.3
95% percentile −2.7 −2.8 −2.8 −2.2

for punctuality, in less than three minutes on average. When allowing for sequencing, IS required

approximately 30 minutes, on average, to solve. For details, we refer the reader to Appendix B.2.2.

Next, we explore using IS for practice-relevant problems at DFCI that are larger-sized and involve

both punctuality and sequencing.
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7. Performance Evaluation: Appointment Sequencing at DFCI

In this section, we compare our IS appointment sequencing approach with means-based sequencing

(detailed below) in the context of DFCI infusion operations. The latter approach is prevalent in

outpatient settings (Berg and Denton 2012). In particular, we use our high-resolution RTLS data

to generate multiple experimental scenarios, whereby daily infusion appointment sequencing tasks,

as faced by DFCI, are carried out by the two approaches. Typical scenarios for a DFCI infusion

unit involve approximately n=90 daily appointments that are served by 25+ infusion beds/chairs

during business hours.

The comparison of the two approaches yields the second important insight of this work: our

approach, which accounts for variability in a real-world multiple-server system, significantly out-

performs the means-based approach. In particular, the analysis here suggests that deployment of

our IS appointment sequencing approach at DFCI could provide total cost (costs of waiting plus

overtime) reduction in the order of 15%–60%.

We consider two experimental setups. The first one involves the classical offline appointment

sequencing problem we have dealt with thus far, which is already a very good proxy of how

infusion operations are run at DFCI. Dealing with offline sequencing, and abstracting away from

particularities of the DFCI infusion appointment process, enables us to illustrate the value of using

IS in a general-purpose well-understood setting when calibrated using real data.

In the second setup, we model additional features of the DFCI appointment processes that are

specific to DFCI, yet also prevalent in other practices. So doing enables us to illustrate that the IS

approach continues to be practically useful and to perform very well even in realistic appointment

systems that deviate from classical offline sequencing.

7.1. Offline Appointment Sequencing at DFCI

Consider a specific historical day at DFCI for which one can observe the original appointments that

were scheduled, including their “type:” the latter is defined by day/time of the week, appointment’s

duration, associated disease center and whether it followed a linked exam. Lacking access to the

true statistical properties of the appointments’ durations/punctuality for that day (we only observe

a single sample path), we use a bootstrapping procedure to “reconstruct” these properties from

the data by using observed punctuality/service samples of same-type appointments on other days.

In particular, we obtain empirical values for punctuality (duration) by sampling from a set of

punctuality (duration) of appointments that occurred on the same day of the week and interval

of the day (morning vs. afternoon), were scheduled for the same nominal duration, were from the

same disease center, and had the same (or lacked) exam linkage. To this end, we use the data

recorded over the 34 Wednesdays, as detailed in Section 5.2.
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The availability of infusion chairs is specified so that it mimics DFCI nurse-staffing policies. In

particular, there is no available capacity before 7:00. Capacity then increases linearly between 7:00

and 10:00 (in intervals of 30 minutes), remains at a constant number (maximum) between 10:00

and 17:00, before decreasing linearly between 17:00 and 19:00 (in intervals of 30 minutes) to reach

five available chairs at 19:00 until the day ends. Overtime starts at 19:00. Thus, the capacity profile

is parametrized by a single value: maximum capacity (between 10:00 and 17:00). This value is set

based on a desired utilization, computed over business hours (7:00-19:00): we compute the average

day-demand in infusion hours (based on the original schedule), and then reduce the maximum

capacity until a desired value of utilization is reached. As in Section 5.2, the unit of time is chosen

to be five minutes. Appointments can be made between 7:00 and 17:00.

Experiments and Results Within this experimental setup, we sought to tackle the offline

sequencing problem and produce schedules using our IS sequencing approach and a standardmeans-

based sequencing approach. The latter is an approach where all random quantities are treated

as deterministic and equal to their mean values; then state-of-the-art mixed-integer programming

techniques are employed to optimize the schedule. In Appendix C.1, we elaborate on the exact

means-based sequencing algorithm we used. Computed schedules were simulated and averages are

obtained based on 106 samples. Numerical results are presented in Figure 8. In particular, on the

left plot, we provide an overtime-waiting tradeoff for XX-YYY-2014 (which is the Wednesday in

Figure 2), on the ninth floor of DFCI. On that day, 87 patients had infusion appointments and

received treatment. The overtime-waiting tradeoff for the IS approach (blue line) is obtained by

varying the parameter γ̃ (see Section 5.3); and for the means-based approach (black line), it is

obtained by scaling capacity (see Appendix C.1 for details).

In addition, we performed the same analysis for ZZ-WWW-2014 (another anonymous Wednes-

day, not identified due to privacy considerations) for the eighth floor (72 scheduled patients) using

the same time period. Since the two floors are occupied by different disease centers, their statistical

properties are not identical. In particular, in the considered data set, the average (across patients)

mean duration and cancellation probabilities are similar (141 minutes vs. 136 minutes and 1.9%

vs. 1.3% for floors eight and nine, respectively), but the average coefficient of variation is higher

for the eighth floor (0.77 vs. 0.62).

Table 5 reports the percentage cost decrease that our approach achieves, compared with the

means-based approach for different overtime rates γ. We observe that it delivers uniformly a signif-

icant improvement, ranging between 18% and 42% across both infusion units and different ratios

of overtime to waiting time costs.
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Figure 8 Overtime-waiting tradeoffs for two days on two different DFCI floors. The higher curves correspond to

the higher utilization level.
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Table 5 Percentage decrease (in %) for total mean cost, between
offline IS and means-based solutions at DFCI.

Per-unit overtime cost γ

Utilization 1/3 1/2 1 2 3

Floor 9
> 0.85 −40.9 −39.2 −38.0 −37.7 −39.1
> 0.95 −37.5 −31.9 −18.6 −18.8 −23.2

Floor 8
> 0.85 −25.9 −23.1 −28.2 −33.5 −38.2
> 0.95 −41.9 −34.4 −17.6 −18.8 −20.5

Robustness Checks To assess the robustness of the IS approach, we perform the following

checks. We consider: (i) the situation where limited data is available; (ii) a workday at DFCI

on which demand patterns might differ from the Wednesday’s that we have considered so far;

(iii) penalizing server idle time; (iv) measuring wait time from appointment time (vs. arrival time).

Finally, we also provide a comparison with DDR for a scaled-down, simplified experimental setup

using DFCI data. For consistency and to have some common benchmark, we conduct all our

robustness checks for Wednesdays and for the ninth floor, to the extent possible.

• Limited data To assess the robustness of the IS approach when limited data is available,

we repeat the experiments we conducted for ∼ 85% utilization, by making available to IS only a

subset of the available data. The benchmark remains the means-based approach that has access

to all data.‡ When 50% of data was available, the IS cost reduction ranged between 24–33%,

approximately, depending on the wait time/overtime tradeoff parameter. As more data was made

available, IS had access to more accurate probabilistic distributions and achieved a higher cost

‡ Instead of making available to the means-based approach the same subset of the data as well, we opted for having
a fixed benchmark so as to focus on the robustness of the IS approach.
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reduction, eventually ranging between 37–41%. These findings indeed illustrate that IS could fare

favorably even with somewhat noisy estimates of service durations/punctuality, while benefiting

further from additional data. Additional details appear in Appendix C.2.

• Different day of the week We repeat our experiments using data that was collected on

Fridays and processed in the exact same way as was the data in our experiments for Wednesdays.

Of note, patient arrival punctuality on Fridays was less variable (standard deviation of punctuality

was roughly 15% higher on Wednesdays). Across different utilization levels and overtime cost

parameters we considered, the IS cost reduction was in the order of 20%, ranging between 10–30%,

approximately. These findings illustrate that IS maintains significant cost reductions over means-

based sequencing under alternative demand patterns, albeit somewhat lower when the underlying

variability is lower. Additional details appear in Appendix C.3.

• Different cost definition We repeat our experiments as before, but we now compare the

simulated performance of the IS and means-based approaches under a cost function that also penal-

izes server idle time (besides patient wait time and overtime; see our modeling choice discussion

in Section 4). At a high level, the IS cost reduction was found to be of similar order as before,

ranging between 15–40%, approximately, across our considered different utilization levels, overtime

cost and idle cost parameters. Specifically, server idle time was recorded under the schedules of

both approaches, and was inevitably larger under the lower utilization scenarios. The overall costs

then increased in absolute terms for all the schedules by an amount that scaled with the idle cost

parameter. Consequently, the IS relative cost reduction was found to decrease as the idle cost

parameter increased, more so under the lower utilization scenarios that involved larger idle times.

Additional details appear in Appendix C.4.

• Different wait time definition We now measure wait time for a patient in the simulation only

if that waiting occurred after the patient’s scheduled arrival time (see our modeling choice discussion

in Section 4). Note that waiting times under this alternative definition are always smaller than

under our original definition. The IS cost reduction ranged between 10–40%, approximately, across

different utilization levels and overtime cost parameters. In particular, performance was similar

to the one before, except for lower utilization scenarios and lower overtime cost parameters, for

which the IS cost advantage decreased. Among the reasons for this decrease was that under lower

utilization and the alternative definition, wait times for patients were notably smaller; furthermore,

because lower overtime cost parameters discounted overtime, overall costs were smaller and, in

turn, there was less room for improvement. Additional details appear in Appendix C.5.

• Comparison with DDR We investigate whether the difference in performance between IS

and DDR, elicited in the previous section using synthetic data, remains the same when using

DFCI data. In particular, because of DDR’s inability to deal with punctuality, sequencing and
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instances that involve more than 40 patients, we assume that all patients are punctual, we fix

the order of scheduling to the one observed in practice, and we only consider 40 patients. Under

this scaled-down and simplified version of our experiments, we solve the scheduling problem using

the DDR and IS approaches. The IS cost reduction over DDR was found to be similar as in our

previous experiments, averaging 6% approximately, across different utilization levels and overtime

cost parameters. Additional details appear in Appendix C.6.

7.2. Appointment Template Optimization at DFCI

The infusion appointment process at DFCI is based on templates, which are used to determine the

times of the day that different patient types could be scheduled at. In particular, for any given

day of the week, a template comprises, for each patient type, a set of appointment times. (Patient

types are defined in the same way appointment types are defined in Section 7.1; that is, a patient

type is defined by the distributions of treatment duration and punctuality, the corresponding

disease center, and a flag whether a linked or unlinked visit is required.) A patient requesting an

appointment for that day is presented with appointment times in the template that match that

patient’s type, if any are available. In this case, the patient books one of these times, which then

becomes unavailable. If no time matching the patient’s type is available, the patient is assigned

to a time of a “similar” type, i.e., one with similar expected duration. In the rare occasion that

no times are available, the patient is “overbooked,” i.e., assigned to an already booked time of a

matching or similar type patient. For each floor, DFCI usually maintains five templates, each of

which is used weekly on each workday of the week. Patients request appointments asynchronously,

typically anytime between few weeks or few days in advance, depending on their type. Therefore,

the resulting schedule for each day is random.

Template appointment times must be carefully chosen, because they heavily influence resulting

schedules. If requests received for a given day match that day’s template patient types, for exam-

ple, the resulting schedule will precisely follow the template. DFCI faces some but by no means

significant variability in patient types requesting appointments for each day of the week, to the

extent that roughly 70% of the requests are booked at time slots of matching type. Therefore, to

a large degree, optimizing templates at DFCI resembles offline appointment sequencing, whereby

one needs to decide on the appropriate template appointment times for the expected patient type

requests. Strictly speaking, to arrive at an optimal template, one would need to account for poten-

tial mismatches due to variability in patient type requests. To be sure, tackling this precise problem

is beyond the scope of the present paper. For our purposes, we ignore variability in patient type

requests and we utilize the IS and means-based sequencing approaches to produce templates for the

expected patient type requests. Using real data, we then evaluate their performance by simulating,
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first, asynchronous and variable patient type requests, whereby mismatches with the template could

occur; and, second, the delays and overtime for the resulting schedules. This important experiment

will enable us to assess the robustness of IS in case the appointment process deviates in practice

from what the model assumed.

Experimental Setup We sought to optimize DFCI’s Wednesday template for the ninth floor.

Using historical data from the 34 Wednesdays (see Section 5.2), we chose the total number of

template appointment times to be roughly the median of total daily appointments, which was equal

to 82. These 82 times were proportionally allocated to the different patient types. Punctuality and

service distributions for each type were estimated as in the preceding section. The capacity profile

was also set as before so that utilization was approximately 85% for the template. The overtime

cost was set to γ = 2 as in Section 6.

The precise template appointment times were determined by solving the resulting offline sequenc-

ing problem instance either using IS or means-based algorithms, arriving at what we henceforth

call an IS and a means-based template, respectively.

We backtested the performance of the two templates as follows. Each template was used to

schedule patients on all 34 Wednesdays in our data. In particular, for each Wednesday, we retrieved

the patient types that were actually scheduled on that day.§ We then randomly permuted these

types to produce 1,000 arrival orders. For each such arrival order, we simulated the appointment

process in the way described above. In case a patient could be assigned to multiple times, we chose

one of them randomly. Once the resulting schedule was determined, we simulated punctuality and

service durations to estimate wait time and overtime costs as before. For each simulated arrival

order, we considered 1,000 simulation runs of its resulting schedule. This process enabled us to

calculate and compare, for each of the 34 Wednesdays, the average wait time and overtime costs

when the IS template or the means-based template were used.

Results Compared with the means-based template, the IS template resulted in a relative cost

reduction of 58% on average, ranging roughly between 20% to 80%. Table 6 reports for each day the

percentage cost reduction of IS relative to the means-based template, alongside the day’s utilization

and the average mismatch between patient types and their assigned appointment time types.

The results illustrate that IS maintains its edge over means-based algorithms. For utilization

levels above 85%, relative cost reduction is close to 40%, which is consistent with the results we

obtained for the offline sequencing experiments in the preceding section (cf. Table 5, floor 9, > 85%

utilization, γ = 2). For lower utilization levels, IS produced higher cost reduction. The performance

of IS in these realistic experiments illustrates its robustness, its potential to be used in practice, and

that it could also serve as a useful building block in the design of online appointment algorithms.

§ The prevalence of appointment being booked and subsequently cancelled is typically very low for oncology services.
Therefore, we ignored such occurrences.



Mandelbaum et al.: Data-driven appointment-scheduling under uncertainty

32 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 6 Mean percentage differences (in %) between IS and MB
solutions for means for 34 Wednesdays using a template with 82

appointments. The average mismatch column provides a mean fraction of
patients that were given an appointment that corresponds to a different

patient class.

Day index Utilization Relative cost, % Avg. mismatch

8 0.62 −77.92 0.21
3 0.67 −77.39 0.32
28 0.67 −73.67 0.24
5 0.70 −70.75 0.32
24 0.71 −74.00 0.33
11 0.71 −62.96 0.33
31 0.73 −74.37 0.25
10 0.75 −61.11 0.33
33 0.77 −70.75 0.40
22 0.78 −69.52 0.37
4 0.78 −60.15 0.43
34 0.78 −67.11 0.40
12 0.79 −70.07 0.32
7 0.79 −65.96 0.39
27 0.80 −65.94 0.36
18 0.80 −59.27 0.37
14 0.81 −64.06 0.35
6 0.81 −64.33 0.34
16 0.82 −58.84 0.37
25 0.83 −57.40 0.31
30 0.83 −55.94 0.36
32 0.84 −55.52 0.37
23 0.85 −49.74 0.32
21 0.85 −49.23 0.35
26 0.86 −51.88 0.33
29 0.86 −47.78 0.37
19 0.86 −43.25 0.32
2 0.88 −42.82 0.32
1 0.88 −45.37 0.40
17 0.88 −43.05 0.34
20 0.88 −42.95 0.33
9 0.90 −35.13 0.29
13 0.92 −29.46 0.29
15 0.95 −20.19 0.37

Mean 0.80 −57.58 0.34
Std 0.08 14.13 0.05
Min 0.62 −77.92 0.21
Max 0.95 −20.19 0.43

8. Concluding Remarks and Further Research

In this paper, we considered appointment scheduling and sequencing under a time-varying number

of servers, in a data-rich environment where service durations and punctuality are uncertain. Based

on infinite-server queues and a CLT-type approximation, we proposed a data-driven approach that

can accommodate hundreds of jobs and servers. To test for practical performance, we conducted
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extensive numerical studies, using both synthetic and real data. In particular, we leveraged a unique

dataset from the Dana-Farber Cancer Institute, that combines real-time locations, electronic health

records and appointments log. Focusing on one of the center’s infusion units, we found our approach

able to reduce expected waiting and overtime cost in the order of 15%-40% consistently, under

a wide range of experimental setups. Due to the underlying CLT approximation and based on

our numerical experiments, we expect our approach to work particularly well when the average

number of busy servers (the product of utilization with number of servers) is no less than a dozen,

approximately.

We remark that, in this paper, we focused on the offline appointment sequencing problem: the

list of patients that are to be scheduled for a given day is known in advance. As future work, it is of

theoretical and practical interest to consider an online version of the problem, where patients make

appointments asynchronously. In Figure 8, we also plot the overtime-waiting tradeoff (red curve)

for the myopic (online) version of the infinite-server heuristic. That is, patients are scheduled in a

greedy manner one by one, without any ability to modify appointment times of already scheduled

patients. The presented averages are based on 4000 samples, where for each sample patients arrive

in random order. The gap between the offline and myopic versions of the algorithm is due to

the non-anticipatory nature of the myopic algorithm. (The average relative increase in total cost,

compared to the offline version, is approximately 32%.) This gap can be hopefully reduced by

employing an online algorithm that anticipates future appointment demand—we leave this topic

for a natural and worthy followup research. Additionally, one could also evaluate the impact of

patient preferences on the overall performance of appointment-based systems. Such preferences

were elicited from patients in Liu et al. (2017), in order to model their willingness to wait for their

preferred doctor, as opposed to an earlier appointment by an alternative doctor.

Another interesting line of research would be to derive an analytical characterization of the

difference between the actual occupancy process and the IS approximation. This might shed further

light on technical conditions under which our method would work well.

Finally, we aspire to deploy IS and to run a field experiment at DFCI, given the promising results

that our research yielded. To this end, we plan to collect new infusion operations data at DFCI

in order to establish a non-intervention benchmark and also to calibrate our IS models using the

most up-to-date data. The results from such an implementation would provide further evidence for

the value of our work.
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Appendix A: Data-Driven Robust Scheduling

We provide a tractable reformulation of the DDR problem (7) and develop a Benders decomposition approach

that provably solves it to optimality. To ease exposition, we assume first that δij > 0 for all i = 1, . . . , n

and j = 1, . . . , J , and then relax this assumption to accommodate no shows. We begin by considering the

adversary’s problem.

Adversary’s problem: Worst-case durations Given an appointment schedule a, the adversary’s prob-

lem is to pick the service durations that maximize the incurred cost. To derive a strong formulation for this

problem, we map each schedule time variable ai to T̄ binary variables αit, t=1, . . . , T̄ , that indicate whether

service i has been scheduled by time t or not. Viewed differently, variable αit indicates whether customer i

is available for service at time t. Clearly, there is a one-to-one mapping between the a and α variables:

αit = 1{ai≤t}, ai =

T̄
∑

τ=1

τ · (αiτ −αi,τ−1), i=1, . . . , n, t= 1, . . . , T̄ , (8)

where αi0 := 0 for all i.

The main decision variables for the adversary are the service duration assignment variables u; the actual

durations can be retrieved using (6). Let bit and eit be auxiliary decision variables that indicate whether

service for the ith customer has begun and ended, respectively, by time t, in a similar fashion as the availability

variables α. The adversary’s problem can then be formulated as an integer optimization problem:

W (α) :=maximize

n
∑

i=1

T̄
∑

t=1

(αit− bit)+ γ

n
∑

i=1

T̄
∑

t=T+1

(bit− eit) (9a)

subject to b≤ α (9b)

e≤ b (9c)

bit≤ bi,t+1, i=1, . . . , n, t= 1, . . . , T̄ − 1 (9d)

eit≤ ei,t+1, i=1, . . . , n, t= 1, . . . , T̄ − 1 (9e)

bit≤ bi−1,t, i= 2, . . . , n, t= 1, . . . , T̄ (9f)
n
∑

i=1

(bit− eit)≤ ct, t=1, . . . , T̄ (9g)

n
∑

i=1

(bit− eit)≥ ftct, t= 1, . . . , T̄ (9h)

n
∑

i=1

(αit− bit)≤ nft, t=1, . . . , T̄ (9i)

T̄
∑

t=1

(bit− eit) =
J
∑

j=1

δijuij , i= 1, . . . , n (9j)

u∈ U (9k)

b, e, f binary, (9l)

with aforementioned variables u∈ {0,1}n×J , b∈ {0,1}n×T̄ , e∈ {0,1}n×T̄ , and variables f ∈ {0,1}T̄ that indi-

cate whether all ct servers are busy at time t. Constraints (9b-9c) ensure that service begins after customers

are available and ends after it has started, respectively. Constraints (9d-9e) enforce time connectivity: if
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service for customer i has begun (ended) by time t, then bit (eit) has a value of one for all later time periods.

Constraint (9f) enforces first-come first-served policy. Constraint (9g) is a capacity constraint. In conjunction

with it, constraint (9h) ensures that ft = 1, if ct servers are busy at time t. Constraint (9i) allows waiting

only if ft = 1. Finally, constraint (9j) sets the duration of each service to be as assigned by variables u.

Note that W (α) is the optimal value of (9). That is, if the appointment schedule is α, W (α) is the

worst-case waiting plus overtime cost incurred.

Data-driven Robust appointment scheduling We equivalently use the availability variables α as the

decision variables to reformulate DDR problem (7); schedule times a can then be retrieved using (8).

minimize W (α) (10a)

subject to αit ≤ αi,t+1, i=1, . . . , n, t= 1, . . . , T̄ − 1 (10b)

αit ≤ αi−1,t, i= 2, . . . , n, t= 1, . . . , T̄ (10c)

αit = 1, i=1, . . . , n, t= T, . . . , T̄ (10d)

α binary. (10e)

Constraint (10b) enforces time connectivity, (10c) enforces the scheduling sequence, and (10d) ensures that

all appointments are scheduled during regular business hours.

Next, we illustrate how to solve Problem (10) to optimality using Benders decomposition. To ease notation,

let A be the set of feasible solutions for (10), that is,

A= {α : α satisfy constraints (10b− 10e)}.

Our Benders decomposition procedure works as follows. Given a solution ᾱ to (10), let d(ᾱ) be worst-case

durations that are optimal for nature’s problem (9). We apply a Benders cut z ≥ βᾱ(α), where

βᾱ(α) := minimize

n
∑

i=1

T̄
∑

t=1

(αit− bit)+ γ

n
∑

i=1

T̄
∑

t=T∧di(ᾱ)+1

(bit− bi,t−di(ᾱ)) (11a)

subject to b≤α (11b)

bit ≤ bi,t+1, i= 1, . . . , n, t= 1, . . . , T̄ − 1 (11c)

bit ≤ bi−1,t, i= 2, . . . , n, t=1, . . . , T̄ (11d)
n
∑

i=1

(bit− bi,t−di(ᾱ))≤ ct, t= 1, . . . , T̄ (11e)

b binary, (11f)

where bit := 0, for all i= 1, . . . , n, and t≤ 0. Below we provide a detailed outline of the procedure we use,

together with a proof of its convergence.

Proposition 1. Procedure 1 terminates after a finite number of steps.

Proof. We first show that

W (α)≥ βᾱ(α), ∀α, ᾱ ∈A.
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Procedure 1 Benders decomposition approach to solve (10)

Input: initial α0 ∈A
Output: optimal solution α⋆ to (10)

z̄←−∞, k← 0

while W (αk)> z̄ do

solve

minimize z (12a)

subject to z ≥ βαj(α), j = 0, . . . , k (12b)

α ∈A (12c)

k← k+1

let α̃, z̃ be an optimal solution to (12)

ak← ã

z̄← z̃

end while

α⋆← αk

To this end, fix some α, ᾱ ∈A, and let b be an optimal solution to (11). We now construct a feasible solution

to (9) that achieves an objective value equal to βᾱ(α). In particular, let

eit =

{

bi,t−di(ᾱ), t= di(ᾱ)+ 1, . . . , T̄

0, otherwise,
and uij = 1{δij=di(ᾱ)}, j = 1, . . . , J,

for all i= 1, . . . , n. We argue that there exists an f ∈ {0,1}T̄ such that (u, b, e, f) is feasible for (9). Feasibility

of b for (11) implies (9b, 9d, 9f). By the definition of e, we also get that (9c, 9e, 9g) hold trivially. To show that

there exists an f ∈ {0,1}T̄ such that (u, b, e, f) is feasible for (9), we need to argue that, for all t= 1, . . . , T̄ ,

n
∑

i=1

(αit− bit)> 0 implies

n
∑

i=1

(bit− eit) = ct.

For the sake of reaching a contradiction, assume that this condition fails for some time k. Then,
n
∑

i=1

(bik− eik)< ck,

and there exists a service index I such that

αIk = 1 and bIk = 0.

If multiple such indices exist, let I be the smallest among them. In other words, the Ith customer is available

at time k, but he starts getting serviced only at some later time τ > k. That is,

τ =min{t : bIt =1}.
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Consider now b̃ such that customer I starts getting serviced at τ − 1 instead, that is

b̃I,τ−1 =1 and b̃it = bit, i 6= I, t 6= τ − 1.

Note that b̃ is feasible for (11). Its first constraint is satisfied since αI,τ−1 ≥ αIk =1, which follows from α∈A
and τ > k. The second constraint follows from the feasibility of the original solution b. The third is relevant

only if I > 1 and follows from bI−1,τ−1≥ bI−1,k =1, which is true since I was picked as the smallest index for

which bik = 0. Finally, the capacity constraint is satisfied since there is slack capacity at k, . . . , τ − 1, given

that no new service starts at these periods. Given that b̃ achieves a strictly lower objective value for (11),

this contradicts the optimality of b.

We now show that

W (α) = βα(α), α∈A.

To this end, let W (α, d̄) be the optimal value of (9), where d̄ is a service duration vector that corresponds to

some assignment vector ū ∈ U , when u is constrained to equal ū. Similarly, let β(α, d̄) be the optimal value

of (11), when d(ᾱ) is equal to d̄. As a first step, note that W (α, d̄) = β(α, d̄). To see this, recall we argued

above that, for any α ∈ A, if b is feasible for (11) then there exists a feasible solution to (9) that achieves

the same objective, with the same service duration vector. Thus, W (α, d̄)≥ β(α, d̄). Conversely, if (ū, b, e, f)
is feasible for (9), then we have that eit = bi,t+d̄i

by (9j). Thus, b is feasible for (11), with the same durations

vector, achieving the same objective value. Consequently,W (α, d̄)≤ β(α, d̄). To complete our argument, note

that

W (α) =W (α,d(α)) = β(α,d(α)) = βα(α).

The statement of the proposition follows from Theorem 2 in Hooker and Ottosson (2003). �

Relaxing the assumption δij > 0 involves only some straightforward modifications of problems (9) and (11).

In particular, one possible way it to introduce auxiliary variables wi, i= 1, . . . , n, to capture wait times of

patients. Then, the first term of the objective in both problems would be replaced by
∑n

i=1wi. To ensure

that variables w correspond to the underlying wait times, constraints

wi ≤
T̄
∑

t=1

(αit− bit), wi ≤ T̄
J
∑

j=1

δijuij

would need to added to (9), for all i= 1, . . . , n. Similarly, if auxiliary variables s ∈ {0,1}n indicate whether

patients showed up, constraints

wi ≥ 0, wi ≥
T̄
∑

t=1

(αit− bit)− T̄ (1− si), T̄ si ≥ di(ᾱ)

would need to added to (11), for all i= 1, . . . , n. Under these modifications, the validity of the formulations

and of Proposition 1 can be readily checked.
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Appendix B: Benchmarking using DDR

B.1. Single-Server Problem

We employ an experimental setup similar to Kong et al. (2013). In particular, we consider scheduling n=7,

12 or 15 customers to be served by a single server. Punctuality is perfect, i.e., Pi = 0 with probability one.

Service durations are random and follow either a lognormal or gamma distribution. The mean duration of the

ith customer, di, is uniformly drawn over [2/3, 4/3]. Conditional on its mean di, the standard deviation of

each duration is uniformly drawn over
[

2di/(3
√
3), 4di/(3

√
3)
]

, so that the coefficient of variation is uniform

on [2/3, 4/3] (as in Kong et al. (2013)). Business hours are taken to be T =
∑n

i=1 di/ρ, where ρ is a utilization

parameter taking values ρ=0.85, 1.00 or 1.15. Overtime cost rate is γ =2 and γ = 3. The DDR parameters

are Γ= 0.5 and J =7.

For each possible combination of distribution, number of customers n, utilization parameter ρ, and overtime

cost rate γ, we generate 20 instances and produce schedules according to the DDR, SO and DR approaches.

Various statistics for resulting costs of each approach were obtained by simulating 106 paths. Table 7 displays

a relative comparison of DDR’s mean, 75-, 85- and 95-percentile costs with SO’s and DR’s, only for the case

of γ = 2; results for γ = 3 are very similar. As remarked in Section 6.2, our experiments suggest that the

performance of DDR is near-optimal for single-server problems, in comparison with DR and SO.

B.2. Multiple-Server Problem

B.2.1. Comparison with Means-based Scheduling We first outline the MB scheduling approach

we used in the experimental setup described in Section 6.2 for multiple-server problems. Assume given

mean service durations for each customer, denoted by d1, . . . , dn. Our MB approach borrows from the DDR

approach we outlined in Appendix A:

minimize

n
∑

i=1

T̄
∑

t=1

(αit− bit)+ γ

n
∑

i=1

T̄
∑

t=T+1

(bit− eit)

subject to (9b)− (9g)

T̄
∑

t=1

(bit− eit) = di, i= 1, . . . , n

α ∈A, b, e binary,

with variables α ∈ {0,1}n×T̄ , b∈ {0,1}n×T̄ , e∈ {0,1}n×T̄ . An optimal schedule a is retrieved using (8).

Table 8 displays a relative comparison of DDR’s mean, 75-, 85- and 95-percentile costs with MB’s for the

experimental setup described in Section 6.2 for multiple-server problems. As remarked in Section 6.2, our

experiments suggest that DDR provides substantial cost reductions in comparison with MB scheduling.

B.2.2. Comparison with IS We implemented IS using MATLAB R2016a, and DDR using Gurobi

6.5.2. The CPU used to measure computation time was Intel Xeon CPU X5660.

Table 9 reports the computation times of DDR and IS employed in the experimental setup in Section 6.3.

As we remarked, the required computation time of IS is smaller by one to two orders of magnitude. Further-

more, we considered two extensions: in the first we allowed for punctuality, and in the second we increased



Mandelbaum et al.: Data-driven appointment-scheduling under uncertainty

42 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 7 Mean percentage differences (in %) between DDR and SO solutions (DR solutions) for means and
percentiles.

Number of jobs
Mean
utilization

Performance
measure

Distribution 7 12 15

0.85 Mean Lognormal +1.8 (−0.1) +3.3 (−4.6) +3.7 (−3.9)
Gamma +1.9 (−0.2) +3.0 (−4.3) +2.6 (−3.7)

75% percentile Lognormal +2.3 (+1.5) +3.9 (+0.0) +2.8 (−1.1)
Gamma +2.1 (+2.0) +2.6 (−0.6) +1.8 (−1.0)

85% percentile Lognormal +2.0 (+3.8) +5.9 (+8.2) +5.2 (+6.4)
Gamma +3.6 (+4.8) +4.3 (+6.1) +2.7 (+4.0)

95% percentile Lognormal +1.4 (+2.7) +6.8 (+14.0) +7.1 (+13.7)
Gamma +3.4 (+3.3) +6.1 (+12.5) +4.0 (+9.5)

1.00 Mean Lognormal +1.4 (−3.6) +2.2 (−3.4) +2.3 (−3.2)
Gamma +1.6 (−1.4) +2.0 (−2.6) +2.8 (−1.7)

75% percentile Lognormal +1.4 (+5.4) +2.5 (+1.6) +2.7 (+2.0)
Gamma +0.6 (+4.5) +1.9 (+1.5) +1.8 (+1.4)

85% percentile Lognormal +1.3 (+9.7) +2.4 (+6.3) +3.3 (+7.4)
Gamma +0.3 (+6.8) +2.1 (+5.3) +1.9 (+4.6)

95% percentile Lognormal +0.8 (+8.3) +2.0 (+7.0) +3.1 (+9.1)
Gamma −0.0 (+5.3) +1.8 (+5.9) +1.4 (+5.2)

1.15 Mean Lognormal +0.8 (−1.4) +1.5 (−2.9) +1.4 (−2.6)
Gamma +1.0 (−0.9) +1.4 (−2.0) +1.5 (−2.0)

75% percentile Lognormal +0.6 (+1.8) +1.6 (+1.7) +1.1 (+2.0)
Gamma +0.4 (+1.2) +0.9 (+1.5) +0.1 (+0.7)

85% percentile Lognormal +0.4 (+3.2) +1.8 (+4.9) +1.1 (+4.8)
Gamma +0.1 (+1.7) +0.6 (+3.5) −0.7 (+2.1)

95% percentile Lognormal +0.0 (+2.7) +1.4 (+4.7) +0.9 (+4.6)
Gamma −0.2 (+1.0) +0.5 (+3.1) −0.9 (+1.6)

Table 8 Mean percentage differences (in %) between DDR and MB
solutions for means and percentiles.

Distributions
Mean
utilization

Performance
measure

Gamma Lognormal

0.85 Mean −11.7 −9.0
75% percentile −11.0 −8.3
85% percentile −11.4 −8.5
95% percentile −10.8 −7.9

1.00 Mean −11.7 −9.7
75% percentile −10.5 −8.9
85% percentile −9.0 −7.7
95% percentile −6.2 −5.3

1.15 Mean −10.4 −11.0
75% percentile −8.2 −8.4
85% percentile −6.2 −6.2
95% percentile −3.3 −3.1
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Table 9 Mean computation times (standard deviation) in
minutes of DDR and IS for the experimental setup in

Section 6.3.

Mean
utilization

Distribution DDR IS

0.85 Lognormal 170 (70) 2.4 (0.2)
Gamma 145 (14) 2.4 (0.1)

1.00 Lognormal 165 (64) 2.1 (0.2)
Gamma 139 (45) 2.1 (0.1)

1.15 Lognormal 32 (16) 2.2 (0.2)
Gamma 47 (27) 2.2 (0.3)

Table 10 Mean computation times (standard deviation) in minutes
of IS for the extensions of the experimental setup in Section 6.3.

Mean
utilization

Distribution Punctuality n=100

0.85 Lognormal 3.3 (0.2) 26.5 (2.2)
Gamma 3.4 (0.2) 25.2 (2.1)

1.00 Lognormal 2.6 (0.1) 28.4 (2)
Gamma 2.6 (0.1) 29.3 (2.7)

1.15 Lognormal 2.7 (0.1) 33.2 (2)
Gamma 2.6 (0.1) 31.4 (2.6)

the number of customers to n = 100. DDR failed to compute within four hours for both extensions. The

computation times for IS are reported in Table 10.

As a closing remark, please note that DDR was solved using a commercial-grade software implementation

(Gurobi), and therefore speed ups, if possible, would require further research in identifying sharper formu-

lations. In contrast, we expect a commercial-grade software implementation of IS to significantly reduce the

reported computation times.

Appendix C: Implementation at DFCI

C.1. Means-based Sequencing Approach

Assume given mean service durations for each customer, denoted by d1, . . . , dn, and a capacity vector ct,

t= 1, . . . , T̄ . At a high level, our means-based approach decides on schedule times a1, . . . , an, so as to minimize

makespan, namely the time it takes to serve all customers. Such a schedule would be tailored towards

minimizing overtime costs. To obtain solutions that would trade off overtime with waiting costs, we scale

down by a constant factor the available capacity during business hours ct, t = 1, . . . , T , and re-solve. In

so doing, the re-optimized schedule allows for slack capacity to mitigate waiting at the expense of larger

makespan (i.e., possible overtime).

Our means-based sequencing formulation models queueing dynamics in a similar fashion to our DDR:

maximize

T̄
∑

t=1

xt

subject to αit ≤ αi,t+1, i=1, . . . , n, t= 1, . . . , T̄ − 1

αit = 1, i=1, . . . , n, t= T, . . . , T̄
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n
∑

i=1

(αit−αi,t−di
)≤ ct, t= 1, . . . , T̄

xt ≤ xt+1, t= 1, . . . , T̄ − 1

xt ≤
1

n

n
∑

i=1

αi,t−di
, t=1, . . . , T̄

α, x binary;

here αit := 0, for all i= 1, . . . , n, and t≤ 0. Variables α ∈ {0,1}n×T̄ have the same interpretation as before.

Variables x ∈ {0,1}T̄ indicate whether all customers have been served by time t.

C.2. Robustness Check: Limited Data

We repeat the experiments conducted for the ninth floor and ∼ 85% utilization, as outlined in Section 7.1,

by making available to IS only a subset of the available data. In particular, we make 50%, 75% or 100% of

the data gathered over the 34 Wednesdays available to IS. The means-based approach has access to all data.

Figure 9 depicts the wait time/overtime cost tradeoff curves that the two approaches achieve—the three

curves for IS approach correspond to the three different cases outlined above. Table 11 reports the percentage

cost reductions that IS achieves for different overtime cost parameters and the three different cases we

consider.

Figure 9 Overtime-waiting tradeoffs for one day on the 9th floor at DFCI. The higher curves for IS correspond

to less data being available.
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Table 11 Percentage decrease (in %) for total mean cost, between
different IS solutions, which were produced using different fractions of the

available training set data, and the means-based solution, which was
produced using all data.

Per-unit overtime cost γ

Training set fraction 1/3 1/2 1 2 3

0.50 −33.0 −31.5 −28.1 −23.8 −23.8
0.75 −37.8 −35.8 −33.7 −33.6 −35.2
1.00 −40.9 −39.2 −38.0 −37.7 −39.1

C.3. Robustness Check: Different Day of the Week

We repeat the experiments conducted for the ninth floor as outlined in Section 7.1, but using data that was

collected on Fridays and processed in the exact same way as was the data in our experiments for Wednesdays.

In particular, a time period containing 34 Fridays in 2014 was considered (from February 14 to October 24).

Two days were excluded from our analysis (March 7 and June 13) due to RTLS system interruptions on

those particular days. The number of patients varied from 44 to 86 a day (the average is 63.4, while the

standard deviation is 8.9). Of note, patient arrival punctuality on Fridays was less variable compared with

Wednesdays (standard deviation of punctuality was roughly 15% higher on Wednesdays).

Figure 10 provides an overtime-waiting tradeoff curve for QQ-RRR-2014 (which was a Friday), on the

ninth floor of DFCI. On that day, 67 patients had infusion appointments and received treatment. Table 12

reports the percentage cost decrease that the IS approach achieves, compared with the means-based approach

for different overtime rates γ.

Figure 10 Overtime-waiting tradeoffs for a Friday on DFCI Floor 9. The higher curves correspond to the higher

utilization level.
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Table 12 Percentage decrease (in %) for total mean cost,
between IS and means-based solutions for a Friday on DFCI

Floor 9.

Per-unit overtime cost γ

Utilization 1/3 1/2 1 2 3

> 0.85 −15.2 −14.3 −10.1 −12.8 −17.7
> 0.95 −24.5 −26.4 −22.3 −14.3 −19.8

C.4. Robustness Check: Different Cost Definition

We compare the simulated performance of the appointment schedules that the IS and means-based

approaches produced for Wednesday, XX-YYY-2014, on the ninth floor (as outlined in Section 7.1) under a

cost function that now also penalizes server idle time, besides patient wait time and overtime. In particular,

we add to the expected cost in (1) an extra term equal to β I, where β is the per-unit idle cost parameter,

and I is the average idle time per server per patient. Table 13 reports the percentage cost decrease that the

IS schedules achieve, compared with the means-based schedules for different overtime rates γ and idle cost

parameters β.

Table 13 Percentage decrease (in %) for total mean cost, between IS and
means-based solutions for DFCI Floor 9 in experiments in Section 7.1, when server idle

time is included in the cost.

Per-unit overtime cost γ

Utilization Per-unit idle cost β 1/3 1/2 1 2 3

> 0.85

0 −40.3 −38.6 −37.3 −37.3 −38.4
1/3 −37.6 −36.3 −35.5 −35.9 −37.2
1/2 −36.5 −35.2 −34.6 −35.2 −36.7
1 −33.3 −32.3 −32.3 −33.4 −35.2
2 −28.5 −27.9 −28.6 −30.3 −32.5
3 −24.9 −24.5 −25.7 −27.7 −30.3

> 0.95

0 −31.4 −27.6 −18.7 −18.4 −22.9
1/3 −30.9 −27.2 −18.4 −18.4 −22.9
1/2 −30.6 −27.0 −18.2 −18.4 −22.9
1 −29.9 −26.3 −17.8 −18.4 −22.9
2 −28.5 −25.1 −17.0 −18.5 −23.0
3 −27.2 −24.0 −16.2 −18.5 −23.1

C.5. Robustness Check: Different Wait Time Definition

We compare the simulated performance of the appointment schedules that the IS and means-based

approaches produced for Wednesday, XX-YYY-2014, on the ninth floor (as outlined in Section 7.1), but

we now measure wait time for a patient in the simulation only if that waiting occurred after the patient’s

scheduled arrival time. In particular, wait time for the ith patient is now measured as (Si − ai − (Pi)
+)+.

Table 14 reports the percentage cost decrease that the IS schedules achieve, compared with the means-based

schedules for different overtime rates γ under this alternative wait time definition.
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Table 14 Percentage decrease (in %) for total mean cost,
between IS and means-based solutions for DFCI Floor 9 in

experiments in Section 7.1, when wait time is measured only
if it occurred after the scheduled arrival time.

Per-unit overtime cost γ

Utilization 1/3 1/2 1 2 3

> 0.85 −9.8 −13.3 −19.8 −32.3 −38.6
> 0.95 −31.8 −27.2 −20.6 −27.3 −31.3

C.6. Robustness Check: Comparison with DDR

We consider a scaled-down and simplified version of the experiment we conducted in Section 7.1 for DFCI’s

ninth floor on Wednesday, XX-YYY-2014, so as to compare our IS and DDR approaches. In particular, we

assume that all patients are punctual, we fix the order of scheduling to the one observed on that day, and we

only consider 40 patients. Capacity for that day is adjusted accordingly so that resulting utilization levels

are approximately 85% and 95%. We then solve the scheduling problem using the DDR and IS approaches.

The DDR approach is calibrated in the same way as in all the experiments in Section 6. Figure 11 provides

an overtime-waiting tradeoff curve for the two approaches and different utilization levels. Table 15 reports

the percentage cost decrease that the IS schedules achieve, compared with the DDR schedules, for different

overtime rates γ.

Figure 11 Overtime-waiting tradeoffs for scheduling on a scaled-down day on DFCI Floor 9. The higher curves

correspond to the higher utilization level.

0 2 4 6 8 10 12 14 16 18 20

Mean overtime per patient (minutes)

0

2

4

6

8

10

12

14

16

18

20

M
e

a
n

 w
a

it
in

g
 t

im
e

 p
e

r 
p

a
ti
e

n
t 

(m
in

u
te

s
)

Scaled-down Floor 9: Overtime-waiting tradeoff (>85% and >95% utilization levels)

offline infinite-server

DDRO



Mandelbaum et al.: Data-driven appointment-scheduling under uncertainty

48 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Table 15 Percentage decrease (in %) for total mean
cost, between IS and DDR solutions for scheduling on a

scaled-down Wednesday at DFCI Floor 9.

Per-unit overtime cost γ

Utilization 1/3 1/2 1 2 3

> 0.85 −10.5 −6.4 −5.3 −2.8 −4.8
> 0.95 −17.1 −9.1 −0.8 −1.1 −1.9
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