Call Centers with Impatient Customers: Exact Analysis and Many-Server Asymptotics of the M/M/n+G Queue

Sergey Zeltyn

Faculty of Industrial Engineering and Management, Technion, Haifa, Israel

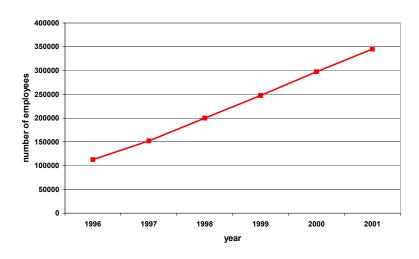
Based on:

- Zeltyn & Mandelbaum. Call Centers with Impatient Customers: Many-Server Asymptotics of the M/M/n+G Queue. Submitted to *QUESTA*.
- Mandelbaum & Zeltyn. The Impact of Customers' Patience on Delay and Abandonment: Some Empirically-Driven Experiments with the M/M/n+G Queue, OR Spectrum (2004) 26:377-411.
- Dimensioning Call Centers with Abandonment. Research in progress (with Borst, Mandelbaum & Reiman).

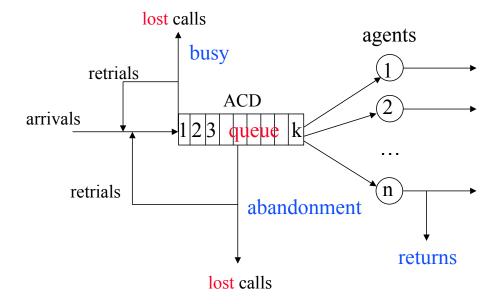
The World of Call Centers

U.S. 3% workforce (several millions); 1000's agents in a "single" call center. Growing extensively.

Germany: number of call center employees

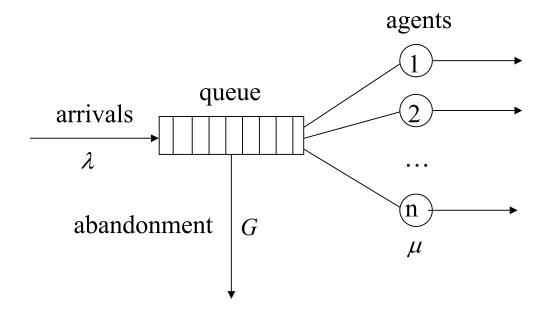


Schematic Representation of a Basic Telephone Call Center



How to model?

M/M/n+G Queue

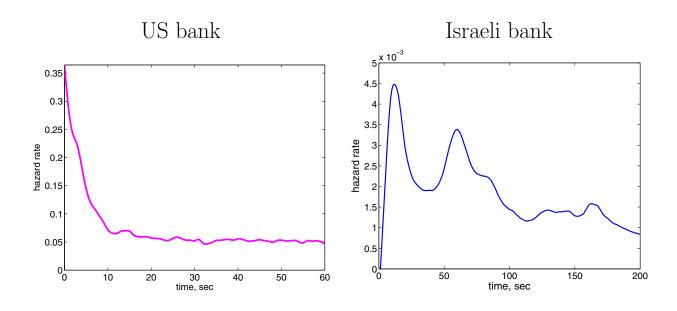


- λ Poisson arrival rate;
- μ Exponential service rate;
- *n* service agents;
- ullet G Patience distribution.

Modelling Abandonment

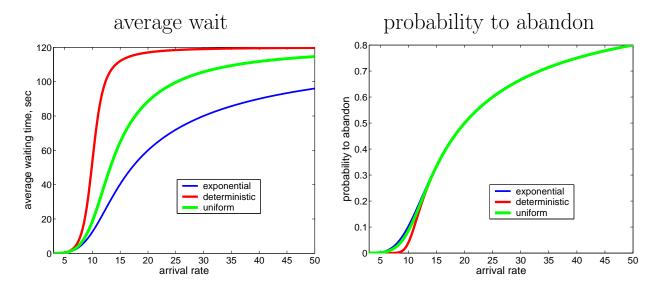
- Patience time $\tau \sim G$: time a customer is willing to wait for service;
- Offered wait V: waiting time of a customer with infinite patience;
- If $\tau \leq V$, customer abandons; otherwise, gets service;
- Actual wait $W = \min(\tau, V)$.

Customers' Patience: Examples of Hazard Rates



Impact of Patience Distribution on System Performance

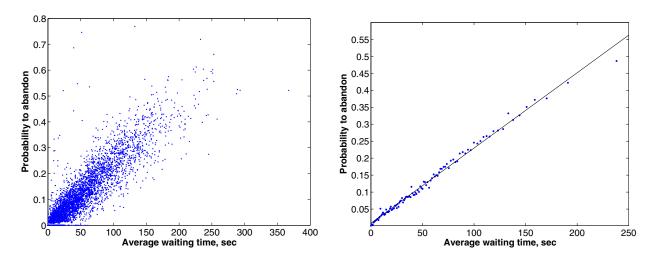
1 min average service time, 2 min average patience, 10 agents, arrival rate varies from 3 to 50 per minute



Conclusion: study models with general patience.

On the Relation between $P{Ab}$ and E[W]

Israeli Call Center data: linear pattern



The graphs are based on 4158 hour intervals.

If Patience is $\exp(\theta)$, then

$$P\{Ab\} = \theta \cdot E[W].$$

However, patience times are not exponential!

Research Goals

- Asymptotic analysis of moderate-to-large call centers;
- Impact of patience distribution on $P\{Ab\}/E[W]$ relation and performance measures;
- Quality/efficiency tradeoff.

M/M/n+G Queue: Exact Results

- Baccelli and Hebuterne (1981) probability to abandon, distribution of offered wait;
- Brandt and Brandt (1999, 2002) number-in-system and waiting time distributions;
- Mandelbaum, Zeltyn (2004) extensive list of performance measures.

Calculation of Performance Measures: Building blocks

$$H(x) \stackrel{\Delta}{=} \int_0^x \bar{G}(u) du$$

where $\bar{G}(\cdot)$ is survival function of patience time.

$$J \triangleq \int_0^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_1 \triangleq \int_0^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_H \triangleq \int_0^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J(t) \triangleq \int_t^\infty \exp\left\{\lambda H(x) - n\mu x\right\} dx .$$

$$J_1(t) \triangleq \int_t^\infty x \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx ,$$

$$J_H(t) \triangleq \int_t^\infty H(x) \cdot \exp\left\{\lambda H(x) - n\mu x\right\} dx .$$

Finally,

$$\mathcal{E} \triangleq \frac{\sum_{j=0}^{n-1} \frac{1}{j!} \left(\frac{\lambda}{\mu}\right)^j}{\frac{1}{(n-1)!} \left(\frac{\lambda}{\mu}\right)^{n-1}}.$$

Performance Measures

 $P{Ab}$ – probability to abandon, $P{Sr}$ – probability to be served, W – waiting time, V – offered wait, Q – queue length.

$$P\{V > 0\} = \frac{\lambda J}{\mathcal{E} + \lambda J},$$

$$P\{W > 0\} = \frac{\lambda J}{\mathcal{E} + \lambda J} \cdot \bar{G}(0),$$

$$P\{Ab\} = \frac{1 + (\lambda - n\mu)J}{\mathcal{E} + \lambda J},$$

$$P\{Sr\} = \frac{\mathcal{E} + n\mu J - 1}{\mathcal{E} + \lambda J},$$

$$E[V] = \frac{\lambda J_1}{\mathcal{E} + \lambda J},$$

$$E[W] = \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J},$$

$$E[Q] = \frac{\lambda^2 J_H}{\mathcal{E} + \lambda J},$$

$$E[W \mid Ab] = \frac{J + \lambda J_H - n\mu J_1}{(\lambda - n\mu)J + 1},$$

$$E[W \mid Sr] = \frac{n\mu J_1 - J}{\mathcal{E} + n\mu J - 1},$$

$$P\{W > t\} = \frac{\lambda \bar{G}(t)J(t)}{\mathcal{E} + \lambda J},$$

$$E[W \mid W > t] = \frac{J_H(t) - (H(t) - t\bar{G}(t)) \cdot J(t)}{\bar{G}(t)J(t)},$$

$$P\{Ab \mid W > t\} = \frac{\lambda - n\mu - G(t)}{\lambda \bar{G}(t)} + \frac{\exp{\{\lambda H(t) - n\mu t\}}}{\lambda \bar{G}(t)J(t)}.$$

Asymptotic Operational Regimes Health insurance company. ACD Report.

Time	Calls	Answered	Abandoned%	ASA	AHT	Occ%	# of agents
Total	20,577	19,860	3.5%	30	307	95.1%	
8:00	332	308	7.2%	27	302	87.1%	59.3
8:30	653	615	5.8%	58	293	96.1%	104.1
9:00	866	796	8.1%	63	308	97.1%	140.4
9:30	1,152	1,138	1.2%	28	303	90.8%	211.1
10:00	1,330	1,286	3.3%	22	307	98.4%	223.1
10:30	1,364	1,338	1.9%	33	296	99.0%	222.5
11:00	1,380	1,280	7.2%	34	306	98.2%	222.0
11:30	1,272	1,247	2.0%	44	298	94.6%	218.0
12:00	1,179	1,177	0.2%	1	306	91.6%	218.3
12:30	1,174	1,160	1.2%	10	302	95.5%	203.8
13:00	1,018	999	1.9%	9	314	95.4%	182.9
13:30	1,061	961	9.4%	67	306	100.0%	163.4
14:00	1,173	1,082	7.8%	78	313	99.5%	188.9
14:30	1,212	1,179	2.7%	23	304	96.6%	206.1
15:00	1,137	1,122	1.3%	15	320	96.9%	205.8
15:30	1,169	1,137	2.7%	17	311	97.1%	202.2
16:00	1,107	1,059	4.3%	46	315	99.2%	187.1
16:30	914	892	2.4%	22	307	95.2%	160.0
17:00	615	615	0.0%	2	328	83.0%	135.0
17:30	420	420	0.0%	0	328	73.8%	103.5
18:00	49	49	0.0%	14	180	84.2%	5.8

M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.

Density of patience time: $g = \{g(x), x \ge 0\}$, where $g(0) \triangleq g_0 > 0$. Fix service rate μ .

Let arrival rate $\lambda \to \infty$ and

$$n = \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + o(\sqrt{\lambda}), \quad -\infty < \beta < \infty.$$

Square-Root Staffing Rule: Described by Erlang in 1924! Formal analysis:

- Erlang-C: Halfin & Whitt (1981), $\beta > 0$;
- Erlang-B (M/M/n/n): Jagerman (1974);
- Erlang-A: Garnett, Mandelbaum, Reiman (2002);
- Mandelbaum & Zeltyn (2004).

Building Blocks

$$J = \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{\mu g_0}} \cdot \frac{1}{h(\hat{\beta})} + o\left(\frac{1}{\sqrt{n}}\right),$$

$$\mathcal{E} = \frac{\sqrt{n}}{h(-\beta)} + o(\sqrt{n}),$$

$$J_1 = \frac{1}{n\mu g_0} \left[1 - \frac{\hat{\beta}}{h(\hat{\beta})}\right] + o\left(\frac{1}{n}\right),$$

where

$$\hat{\beta} \triangleq \beta \sqrt{\frac{\mu}{g_0}},$$

 $h(\cdot)$ – hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace method for asymptotic calculation of integrals.

Main Case: Performance Measures

• Probability of wait converges to constant:

$$P\{W > 0\} \sim \left[1 + \sqrt{\frac{g_0}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1}.$$

• Probability to abandon decreases at rate $\frac{1}{\sqrt{n}}$:

$$P\{Ab|W>0\} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] + o\left(\frac{1}{\sqrt{n}}\right).$$

• Average wait decreases at rate $\frac{1}{\sqrt{n}}$:

$$\mathrm{E}[W|W>0] \ = \ \frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{g_0 \mu}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] + o\left(\frac{1}{\sqrt{n}}\right) \, .$$

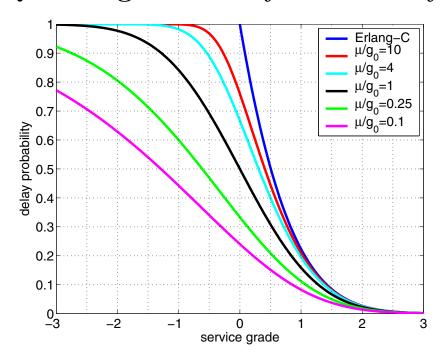
• Ratio between $P\{Ab\}$ and E[W] converges to patience density at the origin:

$$\frac{\mathrm{P}\{\mathrm{Ab}\}}{\mathrm{E}[W]} \sim g_0$$

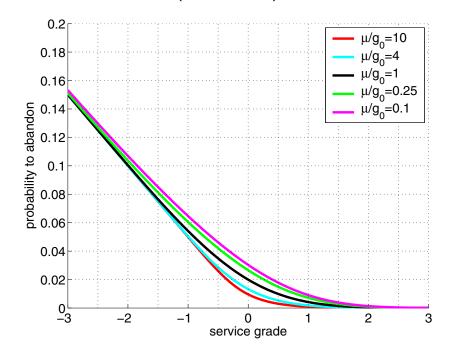
• Asymptotic distribution of wait:

$$P\left\{\frac{W}{\mathrm{E}[S]} > \frac{t}{\sqrt{n}} \middle| W > 0\right\} \sim \frac{\bar{\Phi}\left(\hat{\beta} + \sqrt{\frac{g_0}{\mu}} \cdot t\right)}{\bar{\Phi}(\hat{\beta})}, \qquad t \ge 0.$$

QED Regime: Delay Probability



QED Regime: Probability to Abandon (n=400)



Note convergence to $-\beta/\sqrt{n}$ for large negative β .

QED Operational Regime: Right Answer for Wrong Reasons

If $\beta = 0$, QED staffing level:

$$n = \frac{\lambda}{\mu} = R.$$

Equivalent to deterministic rule: assign number of agents equal to offered load. (Common in stochastic-ignorant operations.)

M/M/n (Erlang-C): queue "explodes".

 $\mathbf{M/M/n+G}$: assume $\mu = g_0$. Then $P\{W = 0\} \approx 50\%$.

If n = 100, $P{Ab} \approx 4\%$, and $E[W] \approx 0.04 \cdot E[S]$.

Overall, good service level.

QED Operational Regime: Special Cases

• Patience density vanishing near the origin.

(k-1) derivatives at the origin are zero, the k-th derivative is positive.

Examples: Erlang, Phase-type.

- If $\beta > 0$, wait similar to Erlang-C. P{Ab} decreases at $n^{-(k+1)/2}$ rate.
- If $\beta < 0$, almost all customers delayed, $E[W] \rightarrow 0$ slowly. $P\{Ab\} \approx -\beta/\sqrt{n}$.
- If $\beta = 0$, intermediate behavior.

• Delayed distribution of patience.

Customers do not abandon till c > 0.

Examples: Delayed exponential, deterministic.

Similar to the previous case. For $\beta < 0$, wait converges to c.

• Balking.

Customer, not served immediately, balks with probability $P\{Blk\}$. **Example.** M/M/n/n (Erlang-B).

- $P\{W > 0\}$ decreases at rate $1/\sqrt{n}$;
- $P{Ab|V > 0} \approx P{Blk};$
- P{Ab} $\approx h(-\beta)/\sqrt{n}$, asymptotic loss probability for Erlang-B.

QED Regime: Numerical Experiments-1

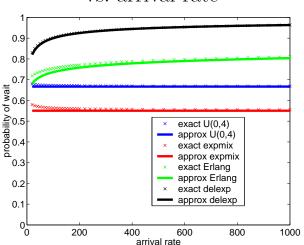
Patience distributions:

- *Uniform* on [0,4], $g_0 = 0.25$;
- Hyperexponential, 50-50% mixture of exp(mean=1) and exp(mean=1/3), $g_0 = 2/3$;
- Erlang, two exp(mean=1) phases, $g_0 = 0$;
- Delayed exponential, $1 + \exp(\text{mean}=1)$, $g_0 = 0$.

Service grade $\beta = 0$.

Probability to abandon given delay vs. arrival rate

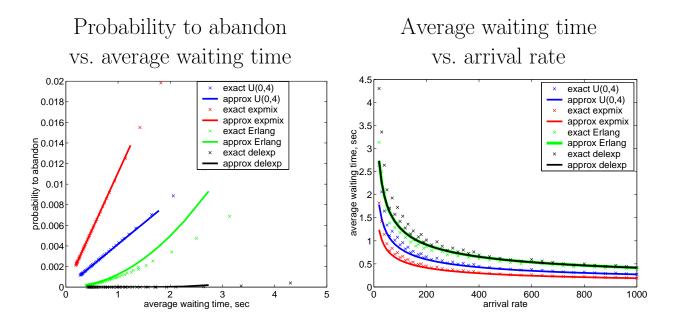
0.16 exact U(0,4) approx U(0,4) 0.14 exact expmix approx expmix 0.12 exact Erlang approx Erlang exact delexp 0.1 P(Ab|W>0) 80.0 90.0 approx delexp 0.04 0.02 200 800 1000 Probability of wait vs. arrival rate



P{Ab} convergence rates: $1/\sqrt{n}$, $1/\sqrt{n}$, $n^{-2/3}$, exp, respectively.

QED Regime: Numerical Experiments-2

Service grade $\beta = 1$.



Note linear patterns in the first plot.

M/M/n+G: QD Operational Regime.

Density of patience time at the origin $g_0 > 0$. Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 + \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance Measures

- $P\{W > 0\}$ decreases exponentially in n.
- Probability to abandon of delayed customers:

$$P\{Ab|W>0\} = \frac{1}{n} \cdot \frac{1+\gamma}{\gamma} \cdot \frac{g_0}{\mu} + o\left(\frac{1}{n}\right).$$

• Average wait of delayed customers:

$$\mathrm{E}[W\mid W>0] \; = \; \frac{1}{n}\cdot\frac{1+\gamma}{\gamma}\cdot\frac{1}{\mu} + o\left(\frac{1}{n}\right) \; .$$

• Linear relation between $P\{Ab\}$ and E[W].

$$\frac{\mathrm{P}\{\mathrm{Ab}\}}{\mathrm{E}[W]} \sim g_0$$

Numerical experiments: QED approximations are better, except very high-performance systems.

M/M/n+G: ED Operational Regime.

Assume $G(x) = \gamma$ has a unique solution x^* and $g(x^*) > 0$. Staffing level

$$n = \frac{\lambda}{\mu} \cdot (1 - \gamma) + o(\sqrt{\lambda}), \quad \gamma > 0.$$

Performance Measures

- $P\{W=0\}$ decreases exponentially in n.
- Probability to abandon converges to:

$$P{Ab} \sim \gamma \approx 1 - \frac{1}{\rho}.$$

• Offered wait converges to x^* :

$$E[V] \sim x^*, \qquad V \stackrel{p}{\to} x^*.$$

• Distribution G^* of $\min(x^*, \tau)$

$$G^*(x) = \begin{cases} G(x)/\gamma, & x \le x^* \\ 1, & x > x^* \end{cases}$$

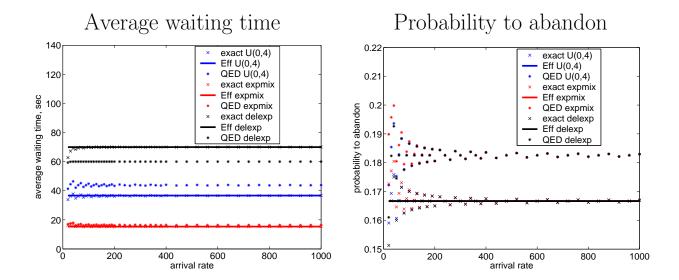
Asymptotic distribution of wait:

$$W \stackrel{w}{\to} G^*, \quad E[W] \to E[\min(x^*, \tau)].$$

ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed exponential. Compared with exact and QED.

Service grade
$$\gamma = 1/6$$
, $\rho = 1.2$.



For heavy-loaded systems, ED approximations for $P\{Ab\}$ and E[W] can be better than QED.

Current research on the ED regime: Whitt (2004), Bassamboo, Harrison and Zeevi (2004).

Impact of Customers' Patience: Theoretical Results

Lemma. Consider M/M/n+G; λ , μ , and n fixed. Assume that for two patience distributions G_1 and G_2 :

$$\int_0^x \bar{G}_1(\eta) d\eta \geq \int_0^x \bar{G}_2(\eta) d\eta, \qquad x > 0.$$

Then,

a.
$$P^{1}\{V > 0\} \ge P^{2}\{V > 0\}; P^{1}\{W > 0\} \ge P^{2}\{W > 0\}.$$

b.
$$P^{1}\{Ab\} \le P^{2}\{Ab\}; P^{1}\{Ab|V>0\} \le P^{2}\{Ab|V>0\}.$$

Proof. Follows from formulae for performance measures.

Theorem. In addition, fix average patience $\bar{\tau}$. Let G_d be the deterministic patience distribution. Then

- **a.** G_d maximizes the probabilities of wait $P\{W > 0\}$ and $P\{V > 0\}$.
- **b.** G_d minimizes the probabilities to abandon $P\{Ab\}$ and $P\{Ab|V>0\}$.
- **c.** G_d maximizes the average wait E[W].
- **d.** G_d maximizes the average queue length E[Q].

Proof. a+b. Follow from Lemma.

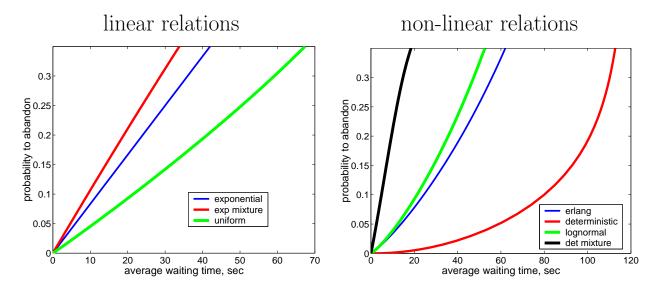
- c. Functional maximization. Variation calculus.
- d. Follows from Little's formula.

Impact of Customers' Patience: Numerical Results

Linear relations (empirically): Exp(mean=2), Uniform(0,4), Hyperexponential.

Non-linear relations: Deterministic(2), Erlang, Lognormal(2,2), mixture of two constants (0.2,3.8).

1 min average service time, 2 min average patience, 10 agents, arrival rate increases



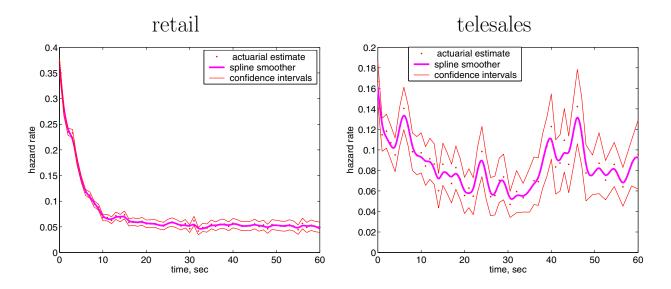
Some Applications to Call Centers

Large US bank.

Daily volume 70,000 calls; 900-1200 agents positions on weekdays. Two service types analyzed for 5 months.

	Calls	E[S]	$P\{W > 0\}$	P{Ab}	$\mathrm{E}[W]$
Retail	3,451,743	$224.6 \sec$	30.6%	1.16%	$6.33 \sec$
Telesales	349,371	$453.9 \; \text{sec}$	24.3%	1.76%	9.66 sec

Estimates of hazard rate



Problems/Challenges:

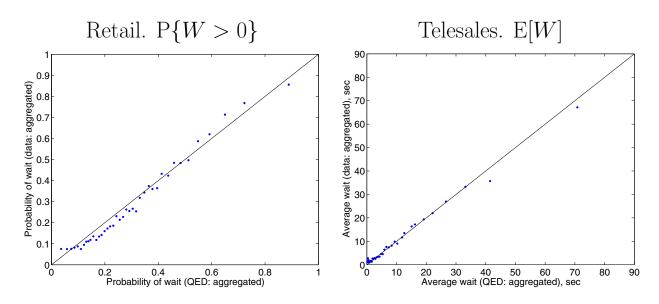
- \bullet Reliable data for number of agents n unavailable;
- Work-conservation does not always prevail;
- Significant variability of hazard/density near the origin.

Fitting QED Approximations

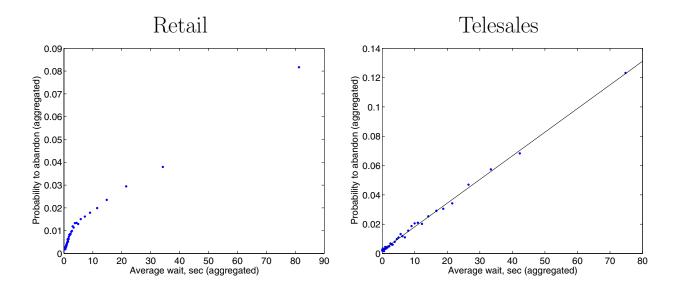
Estimate n via some performance measure (P{Ab}). Fit other performance measure(s).

Substitute $g_0 := \text{estimate of } h(0) \Rightarrow \text{unsatisfactory fit.}$

Solution: Substitute $g_0 := \text{overall P}\{Ab\}/E[W]$ to QED formulae.



$P{Ab}/E[W]$ Relation



For telesales, hazard variability near the origin much smaller. Hence, pattern much closer to straight line.

Dimensioning and QED Regime

Erlang-C: Borst, Mandelbaum & Reiman, 2004.

Erlang-A, M/M/n+G with Zeltyn, in progress.

$$Cost = c \cdot n + d \cdot \lambda E[W],$$

 $c - \cos t$ of staffing;

d – cost of delay (cost of abandonment can be considered too).

Erlang-C. Optimal staffing level:

$$n^* \approx R + y^*(r)\sqrt{R}, \qquad r = \text{delay cost/staffing cost}.$$

Erlang-A. Optimal staffing level (conjecture):

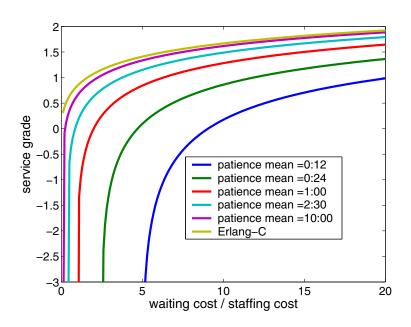
$$n^* \approx R + y^*(r;s)\sqrt{R}, \qquad s = \sqrt{\mu/\theta},$$

$$y^*(r;s) = \arg\min_{-\infty \le y < \infty} \{y + r \cdot P_w(y;s) \cdot s \cdot [h(ys) - ys]\},$$
 where

$$P_w(y;s) = \left[1 + \frac{h(ys)}{sh(-y)}\right]^{-1}.$$

Optimal Service Grade

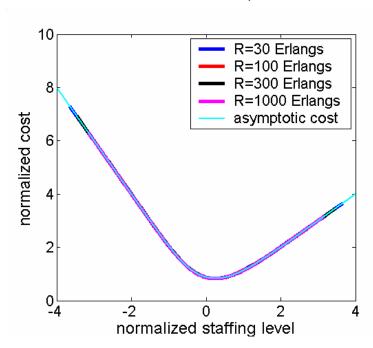
1 min average service time



- $r < \theta/\mu$ implies that "no service" is optimal.
- $r \le 20 \implies y^* < 2; \quad r \le 500 \implies y^* < 3!$
- Numerical tests exhibit **remarkable** accuracy.

Actual Cost vs. Asymptotic Cost

$$\mu = 1$$
, $\theta = 1/3$



Normalized staffing level = $(n - R)/\sqrt{R}$;

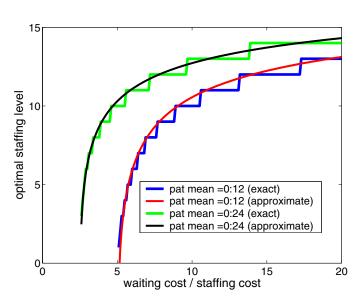
Normalized cost = $(\cos t - cR)/\sqrt{R}$;

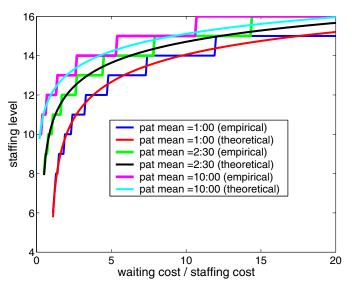
Asymptotic cost = $c \cdot y + d \cdot P_w(y; s) \cdot s \cdot [h(ys) - ys],$

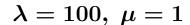
where y = QED service grade.

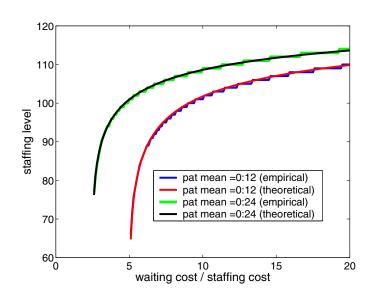
Erlang-A: Optimal Staffing

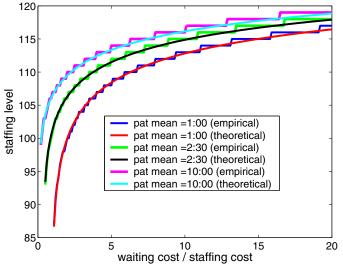
$$\lambda = 10, \; \mu = 1$$







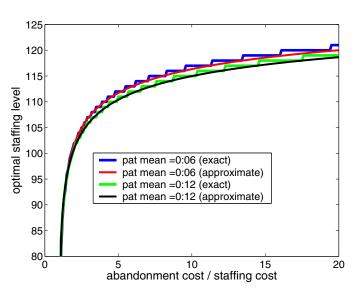


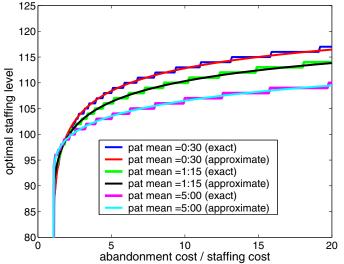


M/M/n+G: Optimal Staffing

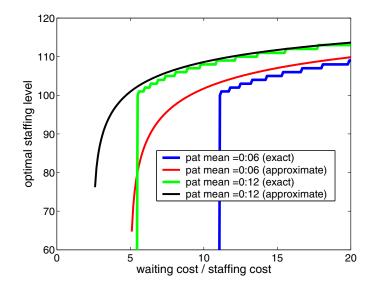
Uniformly Distributed Patience

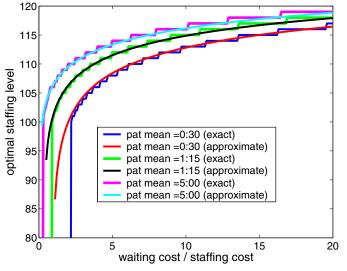
$$Cost = c \cdot n + a \cdot \lambda P\{Ab\}$$





$\mathrm{Cost} = c \cdot n + d \cdot \lambda \mathrm{E}[W]$





Conclusions

QED approximation: Careful balance of quality and efficiency. Optimal staffing for linear staffing/waiting costs.

Can be performed using any software that provides the standard normal distribution (e.g. Excel). Works well for

- Number of servers n from 10's to 1000's;
- Agents highly utilized but not overloaded (\sim 90-98%);
- Probability of delay 10-90%;
- Probability to abandon: 3-7% for small n, 1-4% for large n.

ED approximation: Useful for overloaded call centers.

Requires solving equation $G(x) = \gamma$, and integration (calculating $H(x^*)$). Works well for

- Number of servers $n \ge 100$.
- Agents very highly utilized (close to 100%);
- Probability of delay: more than 85%;
- Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance systems.

Additional Research Directions

- Queues with uncertainty about the arrival rate.
- Queues with time-inhomogeneous arrival rate (Feldman, Mandelbaum, Massey, Whitt).
- More data analysis (Israeli cellular-phone company).
- Generally distributed service times: M/G/n+G (recent papers of Whitt).