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26:377-411.

e Dimensioning Call Centers with Abandonment. Research in
progress (with Borst, Mandelbaum & Reiman).



The World of Call Centers

U.S. 3% workforce (several millions);
1000’s agents in a “single” call center.
Growing extensively.

Germany: number of call center employees
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Schematic Representation of a Basic
Telephone Call Center
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M/M/n+G Queue
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e )\ — Poisson arrival rate;
e /. — Exponential service rate;
® 1, service agents;

e (7 — Patience distribution.



Modelling Abandonment

e Patience time 7 ~ G-
time a customer is willing to wait for service;

e Offered wait V:
waiting time of a customer with infinite patience;

o [f 7 <V, customer abandons; otherwise, gets service;

e Actual wait W = min(7, V).

Customers’ Patience: Examples of Hazard Rates

US bank I[sraeli bank
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Impact of Patience Distribution on
System Performance

1 min average service time, 2 min average patience, 10 agents,
arrival rate varies from 3 to 50 per minute
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Conclusion: study models with general patience.



On the Relation between P{Ab} and E[W]

Israeli Call Center data: linear pattern
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The graphs are based on 4158 hour intervals.

If Patience is exp(f), then

P{Ab} = 6. E[W].

However, patience times are not exponentiall
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Research Goals

e Asymptotic analysis of moderate-to-large call centers;

e Impact of patience distribution on P{Ab}/E[W] relation and
performance measures;

e Quality /efficiency tradeoff.

M/M/n+G Queue: Exact Results

e Baccelli and Hebuterne (1981) — probability to abandon,
distribution of offered wait;

e Brandt and Brandt (1999, 2002) — number-in-system and
waiting time distributions;

e Mandelbaum, Zeltyn (2004) — extensive list of performance
meastures.



Calculation of Performance Measures:
Building blocks

H(z) £ [ G(u)du,

where G(+) is survival function of patience time.

J & /OOO exp {\H (x) — nux}dx,
Jp & /Ooo x-exp{\H(z) — npzx}dx,
Jy & /OOO H(x)-exp{\H(z) — nux} dz,
J(t) & /too exp{\H (z) — nux}dx.
Ji(t) 2 /too x-exp{\H(z) — npzx}dx,
Ju(t) £ /too H(x) - exp{\H(x) — nux} dz.

Finally,

i)
A j=ogt\p




Performance Measures

P{Ab} — probability to abandon, P{Sr} — probability to be served,
W — waiting time, V' — offered wait,

() — queue length.

P{W >0} = giJAJ'G(O)v
P{Ab} 1+é)‘+_;}ﬂ)«] |
o -
-
IV =
Q) = 20
B = T
BV | 81 = e
P{W > t} W
W | W > JH(t)_(Ié(g);(i)G(t)) J()
A—npu—G(t)  exp{AH(t) —nut}

P{Ab | W >t} =

NG()T(2)



Asymptotic Operational Regimes

Health insurance company. ACD Report.

Time | Calls | Answered | Abandoned% | ASA | AHT | Occ% | # of agents
Total | 20,577 | 19,860 3.5% 30 | 307 | 95.1%

8:00 332 308 7.2% 27 | 302 | 87.1% 59.3
8:30 653 615 5.8% 58 | 293 | 96.1% 104.1
9:00 866 796 8.1% 63 | 308 | 97.1% 140.4
9:30 | 1,152 1,138 1.2% 28 | 303 | 90.8% 211.1
10:00 | 1.330 | 1,286 3.3% 22 | 307 | 984% | 2231
10:30 | 1,364 1,338 1.9% 33 | 296 | 99.0% 222.5
11:00 | 1,380 1,280 7.2% 34 | 306 | 98.2% 222.0
1130 | 1272 | 1247 2.0% 14| 298 | 946% | 2180
12:00 | 1,179 1,177 0.2% 1 306 | 91.6% 218.3
12:30 | 1,174 1,160 1.2% 10 | 302 | 95.5% 203.8
13:00 | 1,018 999 1.9% 9 314 | 95.4% 182.9
13:30 | 1,061 961 9.4% 67 | 306 | 100.0% 163.4
14:00 | 1,173 1,082 7.8% 78 | 313 | 99.5% 188.9
14:30 | 1,212 | 1,179 2.7% | 23 | 304 | 96.6% | 206.1
15:00 | 1,137 1,122 1.3% 15 | 320 | 96.9% 205.8
1530 | 1.169 | 1.137 2.7% 17 [ 311 | 971% | 2022
16:00 | 1107 | 1,059 1.3% 16 | 315 | 992% | 1871
16:30 | 914 892 2.4% 22 | 307 | 95.2% 160.0
17:00| 615 615 0.0% 2 | 328 | 83.0% 135.0
17:30 | 420 420 0.0% 0 328 | 73.8% 103.5
18:00 49 49 0.0% 14 | 180 | 84.2% 5.8
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M/M/n+G: QED Operational Regime.

Main case: positive density of patience at the origin.
Density of patience time: ¢ = {g(z),z > 0}, where ¢(0) £ gy > 0.
Fix service rate p.

Let arrival rate A — oo and

n—A+6F+0(\/X), —00 < 3 < o0.
po o\

Square-Root Staffing Rule: Described by Erlang in 1924!
Formal analysis:

e Frlang-C: Halfin & Whitt (1981), 3 > 0;

e Erlang-B (M/M/n/n): Jagerman (1974);

e Erlang-A: Garnett, Mandelbaum, Reiman (2002);
e Mandelbaum & Zeltyn (2004).
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Building Blocks

J = ! . ! . 1 —I—O(l)
-V vV 190 h(@) Vvn)
== \/ﬁ 0] n

8 - h(—ﬁ) + (\/A7)7
I PR B

h= nyLgo : h(3) i (n) ’

where

peat
g0

h(-) — hazard rate of standard normal distribution.

Proofs: Combine M/M/n+G formulae above and the Laplace
method for asymptotic calculation of integrals.
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Main Case: Performance Measures

e Probability of wait converges to constant:

g0 h(ﬁ) B
L (B MO

e Probability to abandon decreases at rate ——:

Jn
P{AbIW >0} = —. W{h(@)-ﬁ}m().

P{W >0} ~

e Average wait decreases at rate ——:

NG
b i -1 ).

e Ratio between P{Ab} and E[W] converges to patience density

EWW > 0] =

at the origin:

P{Ab}
~Y gO
E[W]
e Asymptotic distribution of wait:
d (B+ 70 t)
P{W>t W>O}~ __1 t>0
EIS] vn () | -
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QED Regime: Delay Probablllty
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QED Operational Regime:
Right Answer for Wrong Reasons

If =0, QED staffing level:
A
n=—=R~R.
L4

Equivalent to deterministic rule: assign number of agents equal to
offered load. (Common in stochastic-ignorant operations.)

M/M/n (Erlang-C): queue “explodes”.

M /M /n+G: assume p = go. Then P{W = 0} ~ 50%.
If n =100, P{Ab} ~ 4%, and E[W]|~ 0.04 - E[S].

Overall, good service level.
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QED Operational Regime: Special Cases

e Patience density vanishing near the origin.
(k-1) derivatives at the origin are zero, the k-th derivative is
positive.
Examples: Erlang, Phase-type.

—If B > 0, wait similar to Erlang-C. P{Ab} decreases at

k+1)/2

n_( rate.

— If B < 0, almost all customers delayed, E[W] — 0 slowly.
P{Ab} =~ —(3/+/n.
— If B =0, intermediate behavior.
e Delayed distribution of patience.
Customers do not abandon till ¢ > 0.

Examples: Delayed exponential, deterministic.
Similar to the previous case. For 8 < 0, wait converges to c.

e Balking.
Customer, not served immediately, balks with probability P{Blk}.
Example. M/M/n/n (Erlang-B).
— P{W > 0} decreases at rate 1/+/n;
— P{ADb|V > 0} ~ P{Blk};
— P{Ab} ~ Rh(—p)/+/n, asymptotic loss probability for
Erlang-B.

17



QED Regime: Numerical Experiments—1

Patience distributions:
e Uniform on [04], go = 0.25;

e Hyperexponential, 50-50% mixture of exp(mean=1)
and exp(mean=1/3), gy = 2/3;

e Frlang, two exp(mean=1) phases, gy = 0;

e Delayed exponential, 1 4+ exp(mean=1), gy = 0.

Service grade 38 = 0.

Probability to abandon given delay Probability of wait
vs. arrival rate vs. arrival rate
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P{Ab} convergence rates: 1/y/n, 1/y/n, n=2/3, exp,

respectively.
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QED Regime: Numerical Experiments—2

Service grade 3 = 1.

Probability to abandon Average waiting time
vs. average waiting time vs. arrival rate
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Note linear patterns in the first plot.
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M/M/n+G: QD Operational Regime.

Density of patience time at the origin gy > 0.
Staffing level

n=2-(1+7)+0(\5\), v>0.

Performance Measures

e P{IWW > 0} decreases exponentially in n.

e Probability to abandon of delayed customers:

1 1 1
P{AB|W >0} = .'%7-90+w9().
n vy [ n
e Average wait of delayed customers:
1 1 1 1
Em/HV>o]:.+7.+o().
n ol 1] n
e Linear relation between P{Ab} and E[W].

P{Ab}
E[W] ~ 40

Numerical experiments: QED approximations are better, ex-
cept very high-performance systems.

20



M/M/n+G: ED Operational Regime.

Assume G(x) =~ has a unique solution z* and g(z*) > 0.

Staffing level

(1= +0o(VX), ~v>0.

N
|
= | >

Performance Measures
e P{WW = 0} decreases exponentially in n.

e Probability to abandon converges to:

1
P{Ab} ~ v =~ 1—~.
p

e Offered wait converges to x*:
EV] ~ 2", V & 2
e Distribution G* of min(z*, 7)

G(xz)/y, <zt
1, x>z

6o - |
Asymptotic distribution of wait:
W = G, E[W] — Emin(z*,7)].
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average waiting time, sec

ED Regime: Numerical Experiments

Patience distributions: Uniform, hyperexponential, delayed
exponential. Compared with exact and QED.

Service grade v = 1/6, p = 1.2.

Average waiting time Probability to abandon
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For heavy-loaded systems, ED approximations for P{Ab} and
E[W] can be better than QED.

Current research on the ED regime: Whitt (2004), Bas-
samboo, Harrison and Zeevi (2004).
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Impact of Customers’ Patience:
Theoretical Results

Lemma. Consider M/M/n+G; A, p, and n fixed.
Assume that for two patience distributions G and G:

[ Gimdn > [ Golmdy, x>0
Then,

b. P'{Ab} < P?{Ab}; PYAb|V >0} < P?*{Ab|V > 0}.

Proof. Follows from formulae for performance measures.

Theorem. In addition, fix average patience T.
Let G4 be the deterministic patience distribution. Then

a. (G; maximizes the probabilities of wait P{WW > 0} and
P{V > 0}.

b. G4 minimizes the probabilities to abandon P{Ab} and
P{Ab|V > 0}.

c. (G4 maximizes the average wait E[W].

d. G4 maximizes the average queue length E[Q)].

Proof. a+b. Follow from Lemma.
c. Functional maximization. Variation calculus.
d. Follows from Little’s formula.
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Impact of Customers’ Patience:
Numerical Results

Linear relations (empirically): Exp(mean=2), Uniform(0,4),
Hyperexponential.

Non-linear relations: Deterministic(2), Erlang, Lognormal(2,2),
mixture of two constants (0.2,3.8).

1 min average service time, 2 min average patience,
10 agents, arrival rate increases

linear relations non-linear relations
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Some Applications to Call Centers

Large US bank.
Daily volume 70,000 calls; 900-1200 agents positions on weekdays.
Two service types analyzed for 5 months.

Calls E[S] | P{W >0} | P{Ab}| E[W]
Retail |3,451,743|1224.6 sec| 30.6% 1.16% |6.33 sec
Telesales | 349,371 |453.9 sec| 24.3% 1.76% | 9.66 sec

Estimates of hazard rate

retail telesales

0.4

- actuarial estimate
—— spline smoother
—— confidence intervals

: :
+  actuarial estimate

—— spline smoother I 0.18f
—— confidence intervals

0.35

0.3

025\
\

hazard rate
o
N
hazard rate
o o
o © 4
[e5] — N

=]
- N
o

T

0 10 20 30 40 50 60 0 10 20 30 40 50 60
time, sec time, sec

Problems/Challenges:
e Reliable data for number of agents n unavailable;
e Work-conservation does not always prevail;

e Significant variability of hazard /density near the origin.
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Fitting QED Approximations

Estimate n via some performance measure (P{Ab}). Fit other

performance measure(s).

Substitute gg := estimate of h(0) = unsatisfactory fit.

Solution: Substitute gy := overall P{Ab}/E[W]

to QED formulae.

Retail. P{WW > 0}

-

Probability of wait (data: aggregated)
o o o o o o o o
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Telesales. E[W]
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Probability to abandon (aggregated)

0.09

P{Ab}/E[W] Relation

Retail
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For telesales, hazard variability near the origin much smaller.

Hence, pattern much closer to straight line.
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Dimensioning and QED Regime
Erlang-C: Borst, Mandelbaum & Reiman, 2004.
Erlang-A, M /M /n+G with Zeltyn, in progress.

Cost =c-n+d- AE[W],

¢ — cost of staffing;
d — cost of delay (cost of abandonment can be considered too).

Erlang-C. Optimal staffing level:

n* ~ R+y*(r)VR, r = delay cost/staffing cost .

Erlang-A. Optimal staffing level (conjecture):
n* =~ R+y*(r;s)VR, s=u/b,
y'(ris) = arg_min {y+7- Puly;s) - s- [Alys) —ysl}

where

Py(y;s) = {1 +

28



Optimal Service Grade

1 min average service time

— patience mean =0:12
patience mean =0:24
patience mean =1:00

service grade
S
)]

-1.5 patience mean =2:30
patience mean =10:00
-2 Erlang-C
-25
-3 I | |
0 5 10 15 20

waiting cost / staffing cost

e r < #/p implies that “no service” is optimal.
o r <20 =y*<2, r<5ll = y* <3

e Numerical tests exhibit remarkable accuracy.
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Actual Cost vs. Asymptotic Cost
p=16=1/3

10

== R=30 Erlangs
= R=100 Erlangs
8l = R=300 Erlangs ||
= R=1000 Erlangs
k7 asymptotic cost
3 6l
o]
O
N
£ 4f
o
-
2_
% 2 0 2 4

normalized staffing level

Normalized staffing level = (n — R)/vV/R;

Normalized cost = (cost — cR)/V/R;

Asymptotic cost = ¢ -y +d - Pyly;s) - s [h(ys) — ys],
where y = QED service grade.
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optimal staffing level

staffing level

Erlang-A: Optimal Staffing
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optimal staffing level

optimal staffing level
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M /M /n+G: Optimal Staffing

Uniformly Distributed Patience
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optimal staffing level

125

120

115

110

105

100

95

90

85

80

120

115

110

105

100

95

90

85

80

= pat mean =0:30 (exact)
— pat mean =0:30 (approximate)
pat mean =1:15 (exact)
- pat mean =1:15 (approximate)
=== pat mean =5:00 (exact)
pat mean =5:00 (approximate)

5 10 15
abandonment cost / staffing cost

20

= pat mean =0:30
= pat mean =0:30
pat mean =1:15
= pat mean =1:15
=== pat mean =5:00
pat mean =5:00

exact)
approximate)
exact)
approximate)
exact)
approximate)

o~~~ o~ —~ —~

5 10 15
waiting cost / staffing cost

20



Conclusions

QED approximation: Careful balance of quality and efficiency.
Optimal staffing for linear staffing/waiting costs.

Can be performed using any software that provides the standard
normal distribution (e.g. Excel). Works well for

e Number of servers n from 10’s to 1000’s;

e Agents highly utilized but not overloaded (~90-98%);

e Probability of delay 10-90%:;

e Probability to abandon: 3-7% for small n, 1-4% for large n.

ED approximation: Useful for overloaded call centers.

Requires solving equation G(x) = -, and integration (calculating

H(x*)). Works well for

e Number of servers n > 100.

e Agents very highly utilized (close to 100%);
e Probability of delay: more than 85%:

e Probability to abandon: more than 5%.

QD approximation: preferable only for very high-performance
systems.
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Additional Research Directions

e Queues with uncertainty about the arrival rate.

e Queues with time-inhomogeneous arrival rate
(Feldman, Mandelbaum, Massey, Whitt).

e More data analysis (Israeli cellular-phone company).

e Generally distributed service times: M/G/n+G
(recent papers of Whitt).
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