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Abstract

We consider a Markovian multiserver queueing model with time dependent parame�

ters where waiting customers may abandon and subsequently retry� We provide simple

�uid and di�usion approximations for both the queue length and virtual waiting time

processes arising in this model�

These approximations� which are justi�ed by limit theorems where the arrival rate

and number of servers grow large� are compared to simulations� and perform extremely

well�
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Figure �� The abandonment queue with retrials�

� Introduction

In this paper we continue our ongoing examination of a multiserver queue with time varying
parameters where waiting customers may abandon and subsequently retry� The model we
consider is a relatively simple special case of the class of models considered in ���� which were
termed �Markovian Service Networks��

Our model� depicted in Figure �� consists of two nodes� a �service� node with nt servers�
and a retrial pool with an unlimited number of servers� 	Customers e
ectively serve them�
selves at the retrial pool�� New customers arrive to the service node as a Poisson process
of rate �t� Customers arriving to 
nd an idle server are taken into service that has rate ��t �
Customers that 
nd all servers busy join a queue� from which they are served in a FCFS
manner� Each customer waiting in the queue abandons at rate �t� An abandoning customer
leaves the system with probability �t or joins the retrial pool with probability �� �t� Each
customer in the retrial pool leaves to enter the service node at rate ��t � Upon entry to the
service node� these customers are treated the same as new customers� Our focus is the two�
dimensional� continuous time Markov chain Q	t� �

�
Q�	t�� Q�	t�

�
where Q�	t� equals the

number of customers residing in the service node 	waiting or being served� and Q�	t� equals
the number of customers in the retrial pool� We also consider the virtual waiting time W	t��
where W	t� is the time that an in
nitely patient customer� arriving at time t� would have
to wait before entering service�

This model� even with all parameters constant� is analytically intractable� We thus con�
sider �uid and di
usion approximations for the queue length and virtual waiting time process�
These approximations are justi
ed by limit theorems where the arrival rate and number of
servers grow large� Both the model and asymptotic regime are motivated by large telecom�
munication systems such as call centers� where abandonment and retrial occur naturally�
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and where time variablity of parameters� speci
cally the arrival rate� cannot realistically be
ignored� More discussion of this motivation is contained in ����

Fluid and di
usion limits for the queue length process arising in this model were proved
in ���� In ��� we compared the �uid limit with simulation results� and found that it provides
an excellent approximation� Fluid and di
usion limits for the virtual waiting time are proved
in ���� 	These results are described in ���� where a single numerical example shows that the
�uid approximation for the virtual waiting time is also excellent�� In this paper we extend
the previous results in several directions� First� we provide additional numerical examples
for both the queue length and virtual waiting time� comparing the �uid approximations
to simulations� We next provide numerical results for the di
usion approximations� Using
equations originally obtained in ���� we calculate the covariance matrix of the queue length
di
usion� and compare it to simulations� Using a result from ��� that provides conditions
under which the queue length di
usion is a Gaussian process we also obtain an approximation
for the queue length distribution� We are similarly able to obtain an approximation for the
virtual waiting time distribution� These are also compared to simulations� In all of these
comparisons our approximations are exceptionally good�

The rest of this paper is organized as follows� In Section � we provide the equations
for the queue length and virtual waiting time processes� We also state the relevant limit
theorems in a form that provide the information we need for our approximations� Section �
contains numerical examples comparing our approximations with simulation results� Section
� is an appendix that provides some background on Markovian service networks�

� The Model and Limit Theorems

��� Basic Model and Queue Length Asymptotics

The sample paths of the queue length process Q	t� � 	Q�	t�� Q�	t�� are uniquely determined
by the relations

Q�	t� � Q�	�� ��c
��

�Z t

�
Q�	s��

�
sds

�
��b

��

�Z t

�

�
Q�	s�� ns

��
�s	�� �s�ds

�
	����

��a

�Z t

�
�sds

�
��b

�Z t

�

�
Q�	s�� ns

��
�s�sds

�
��c

�Z t

�

�
Q�	s� � ns

�
��sds

�

and

Q�	t� � Q�	�� ��b
��

�Z t

�

�
Q�	s�� ns

��
�s	� � �s�ds

�
��c

��

�Z t

�
Q�	s��

�
sds

�
� 	����

where �a� �b� �c� �b
��� and �c

�� are 
ve given mutually independent� standard 	mean rate
��� Poisson processes and �� �� ��� ��� �� n are locally integrable functions of time ���� Here
x � y � min	x� y� and x� � max	x� �� for all real x and y�

We are interested the asymptotic regime where we scale up the number of servers in
response to a similar scaling up of the arrival rate by customers� More precisely� the asymp�
totic regime is as follows� In a system with index �� the only scaled parameters are� the
initial conditions Q�

i 	�� � d�Q���
i 	�� �

p
�Q

���
i 	��e� o	

p
�� for constants Q

���
i 	�� and Q

���
i 	��

�



	i � �� ��� the external arrival rate 	i�e�� the intensity of the Poisson arrival process�� which is
now ��t� and the number of servers� which is now �nt� 	Actually� the latter should be the in�
teger part of �nt� but to avoid trivial complications and simplify notation� we assume it�s just
�nt�� The scaled queue length process Q�	t� � 	Q�

�	t�� Q
�
�	t�� is then uniquely determined

by the relations

Q�
�	t� � Q�

�	�� ��c
��

�Z t

�
Q�

�	s��
�
sds

�
��b

��

�Z t

�

�
Q�
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��
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�
	����
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�Z t
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��
�s�sds

�
��c

�Z t
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�
Q�
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�
��sds

�

and

Q�
�	t� � Q�

�	�� ��b
��

�Z t

�

�
Q�

�	s�� �ns
��
�s	� � �s�ds

�
��c

��

�Z t

�
Q�
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�
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	 	����

Now we state the strong law of large numbers limit theorem for the retrial model� We
make the following asymtotic assumptions for the initial conditions

lim
���

�

�
Q�	�� � Q���	�� a�s�� 	����

where Q���	�� is a constant�

Theorem ��� We have

lim
���

�

�
Q� � Q��� a�s� 	����

where the convergence is uniform on compact sets of t� Moreover� Q��� �
n
Q���	t�

��� t � �
o

is uniquely determined by Q���	�� and the autonomous di�erential equations

d

dt
Q

���
� 	t� � �t � ��tQ

���
� 	t�� ��t

�
Q

���
� 	t� � nt

�
� �t

�
Q

���
� 	t�� nt

��
	����

and
d

dt
Q

���
� 	t� � �t	� � �t�

�
Q

���
� 	t�� nt

�� � ��tQ
���
� 	t�	 	����

This theorem states rigorously that Q� � �Q��� and we call Q��� the �uid approximation for
Q��

If two random variables X and Y have the same distribution then we denote this by

X
d
� Y � If f Xn j n � � g converges in distribution to Y � we denote this by limn��Xn

d
� Y �

The �uid approximation can be re
ned using the following functional central limit theorem�
as proved in ���� We make the following assumptions for the initial conditions

lim
���

p
�	
�

�
Q�	�� �Q���	���

d
� Q���	��� 	����

where Q���	�� is a constant�
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Theorem ��� We have

lim
���

p
�

�
�

�
Q� �Q���

�
d
� Q���	 	�����

where Q��� �
n
Q���	t�

��� t � �
o
is a di�usion process and this is a convergence in distribution

of the stochastic processes in an appropriate functional space ����

Moreover� if the set of time points
n
t � � j Q���

� 	t� � nt
o
has measure zero for the retrial

model� then
n
Q���	t�

��� t � �
o
is Gaussian� The mean vector for Q��� then solves the set of

autonomous di�erential equations

d

dt
E

h
Q

���
� 	t�

i
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	�����
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d
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E

h
Q
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i
� ��tE

h
Q

���
� 	t�

i
	 	�����

Finally� the covariance matrix for Q��� solves the autonomous di�erential equations

d

dt
Var
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Var
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Q
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� 	t�

i
� ��tVar

h
Q
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� 	t�

i
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This theorem states rigorously that Q� � �Q��� �
p
�Q��� and we call Q��� the di�usion

approximation for Q��
Time�varying queues alternate among phases of underloading� critical�loading� and over�

loading ���� The set
n
t j Q���

� 	t� � nt
o
corresponds to the times of critical�loading for the

service node� The above di
erential equations must be modi
ed for critical�loading� which
is unnecessary here since the hypothesis of Theorem ��� applies to all the examples in the
following section�
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��� Virtual Waiting Time in Node �� Marginal Distribution at a

Given Time�

In this subsections we will consider asymptotics for the virtual waiting time process� To do
that we need a few additional assumptions which� as we will see� are not very restrictive as
far as applications of the results are concerned�

Assumption ��� In the interval ������

�� Function nt is continuously di�erentiable�

�� Function ��t is continuous�

�� Functions ��t and �t are bounded on bounded intervals�

Assumption ��� will be introduced below when the notations required are in place�
Suppose that we are interested in the waiting time of a virtual customer arriving at

station � at a 	xed time 
 � �� Since we have a system with abandonment� a convenient way
to approach this problem is to consider the system that is obtained from the original one by
the following modi
cation� Suppose� that after time 
 � there are no new exogenous arrivals
into the system� and any customer departing any station i leaves the system� In particular�
station � has no new arrivals after time 
 � It just serves the remaining customers that are
there at time 
 � Theorems ��� and ��� still apply to the modi
ed system� the only di
erence
is that certain terms in the equations� corresponding to the arrivals after time 
 � should be
�zeroed out�� Namely� the following results follow directly from those two theorems 	and
their proofs in �����

Denote the arrival and departure processes for station � by

A� � f A�	t� j t � � g and �� � f ��	t� j t � � g

respectively� Let� by convention� the arrival process includes the customers in node � at time
�� so A�	�� � Q�

�	��� �
�	�� � �� and A�	t����	t� � Q�

�	t�� t � ��
We then obtain the following �uid limit result�

Theorem ��� As a process we have

lim
���

�

�
	Q�� A����� � 	Q���� A��������� a�s� 	�����

and this convergence is uniform on compact sets of t� The �uid limit Q
���
� 	t� satis	es equation


���
 for t � 
 � For t � 
 � we have the following properties�

d

dt
Q

���
� 	t� � ���t

�
Q

���
� 	t� � nt

�
� �t

�
Q

���
� 	t�� nt

��
� 	�����

A���	t� � A���	
 � and ���� is a continuously di�erentiable non�decreasing function in ������

We also obtain the following di�usion limit�
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Theorem ��� The following convergence in distribution holds�

lim
���

p
�	
�

�
Q� �Q����

�

�
A� �A����

�

�
�� ������

d
� 	Q���� A���������	 	�����

Moreover� if the set of time points
n
t � � j Q���

� 	t� � nt
o
has measure zero�

n
Q

���
� 	t�

��� t � �
o

is Gaussian and for t � 
 � Var�Q
���
� 	t�� solves the di�erential equation

d

dt
Var

h
Q

���
� 	t�

i
� ��

�
�t�fQ���

� �t��ntg
� ��t�fQ���

� �t��ntg

�
Var

h
Q

���
� 	t�

i
	�����

��t
�
Q

���
� 	t�� nt

��
� ��t

�
Q

���
� 	t� � nt

�
	

It follows from the de
nitions and the above theorem that

Q
���
� 	t� � A���	t������	t� 	 	�����

Now� let us de
ne the potential service initiation process D� for node � by

D�	t� � ��	t� � �nt� t � � 	

Note that if Q�
�	t� � �nt� then A�	t� � D�	t�� so the potential service can be �ahead� of

arrivals� It follows that

lim
���

�

�
D�	�� � D���	�� a�s��

where the convergnece is uniform on compact sets of t and D���	t� � ����	t� � nt� t � ��
Since nt is continuously di
erentiable by assumption and we know that ����	t� is continu�
ously di
erentiable� D���	t� is also continuously di
erentiable and we denote its derivative by
d���	t�� Now we will make an important 	but not very restrictive in majority of applications�
additional assumption�

Assumption ���� The function D��� 	of t� is continuously di
erentiable with strictly
positive derivative� and

lim
t��

D���	t� � A���	
 � 	 	�����

	Note� that according to our de
nitions� both A�	�� and A���	�� are constant in the interval
�
�����

Also� it will be convenient to adopt a convention that all the processes we consider are
de
ned in the interval ��T���� with

T � n�
d
���	�� 	

We make this extension by assuming that nothing is happening in the interval ��T� �� 	no
arrivals or departures� except the number of servers is increasing linearly from � to �n� 	for
the unscaled process with index ���

We then can rewrite 	����� and 	����� as follows 	with all the functions being now de
ned
for t � �T ��

lim
���

�

�
	Q�� A��D�� � 	Q���� A����D���� 	�����

�



and

lim
���

p
�	
�

�
Q� �Q����

�

�
A� �A����

�

�
D� �D����

d
� 	Q���� A����D���� � 	�����

where
D��� � ���� 	 	�����

Note that processes A����D���� A����D��� are continuous and D���	�T � � D���	�T � � ��
Our conventions together with the Assumption ��� make the following processes well

de
ned and 
nite with probability � for all su�ciently large �� Let us de
ne� for all t � �T �
the 	rst attainment processes

S�	t� � inffs � �T � D�	s� � A�	t�g

and
S���	t� � inffs � �T � D���	s� � A���	t�g� 	�����

and the attainment waiting time processes

W �	t� � S�	t�� t

and
W ���	t� � S���	t�� t 	 	�����

Denote by �W �	
 � the virtual waiting time at 
 � i�e� the time a �test� customer 	in the
original non�modi
ed system� arriving in node � at time 
 would have to wait until its service
starts� assuming this customer does not abandon while waiting� Then the relation between
the virtual waiting time �W �	
 � and the attainment waiting time W �	
 � is simply

�W �	
 � � W �	
 �� 	 	�����

Indeed� note thatW �	
 � 	andW ���	
 �� may be negative� All this means is that Q�
�	
 � � �n� �

and therefore in this case �W �	
 � � �� If W �	
 � is non�negative� then its value is exactly
equal to the virtual waiting time�

It follows directly from Theorem and Corollary in ��� that 	������ 	������ and Assumption
���� imply the following convergences�

Theorem ��� We have

lim
���

	
�

�
Q��

�

�
A��

�

�
D��W �� � 	Q���� A����D����W ���� 	 	�����

lim
���

p
�	
�

�
Q��Q����

�

�
A��A����

�

�
D� �D����W ��W ����

d
� 	Q���� A����D����W ���� � 	�����

where

W ���	t� �
A���	t��D���	S���	t��

d���	S���	t��
and S���	t� � inffs � �T � D���	s� � A���	t�g	

�



Since the processes A����D���� Q����W ��� are continuous with probability �� we automati�
cally obtain the convergence of 
nite dimensional distributions�

In particular� consider the non�trivial case S���	
 � � 
 	which is equivalent to Q
���
� 	
 � �

n� �� Moreover� assume that in ��� 
 �� the set of points
n
t j Q���

� 	t� � nt
o
has measure zero�

Then we obtain
lim
���

W �	
 � � W ���	
 �

and

lim
���

p
�	W �	
 ��W ���	
 ��

d
� W ���	
 � �

Q
���
� 	S���	
 ��

d���	S���	
 ��
	

where Q
���
� 	S���	
 �� is Gaussian with mean and variance computed as follows� Solving equa�

tion 	����� for Q
���
� 	�� in the interval �
���� we obtain

d

dt
Q

���
� 	t� � ��tQ���

� 	t� � 	�t � ��t �nt � t � 
	

We can 
nd S���	
 � from

S���	
 � � minft � 
 j Q���
� 	t� � ntg 	

We then compute Var�Q���
� 	S���	
 ���� where

d

dt
Var�Q

���
� 	t�� � ���tVar�Q���

� 	t�� � �t	Q
���
� 	t�� nt� � ��tnt t � 
	 	�����

Finally� we have the closed formulas

Q
���
� 	t� � Q

���
� 	t� exp

�
�
Z t

�
�sds

�
�
Z t

�
	�s � ��s�ns exp

�
�
Z t

s
�rdr

�
ds 	�����

and

Var

h
Q

���
� 	S���	
 ��

i
� Var

h
Q

���
� 	
 �

i
exp

�
�
Z S������

�
��sds

�
	�����

�
Z S������

�

�
	Q

���
� 	s�� �s�ns � ��sns

�
exp

�
�
Z S������

s
��rdr

�
ds	

Remark� In this subsection we derived �uid and di
usion approximations of the marginal
distribution of the attainment waiting time� which uniquely determines those for the virtual
waiting time� in node � at a given time 
 � �� However� it is shown in ��� that similar
asymptotics hold for the attainment waiting time as a random process de
ned for 
 � ������
	See also ��� for the formal statement of the results��

� Numerical Examples

Our numerical examples cover the case of time�varying behavior only for the external arrival
rate �t� We set �� � �� �� � �	�� and Q�	�� � Q�	�� � � but let n� �� and � range over a
variety of di
erent constants�
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Figure �� Numerical example� Empirical covariance matrix of queueing process versus the
same from its di
usion approximation�
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Figure �� Numerical example� Empirical average of waiting time versus the same from its
�uid approximation for square wave case�
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Figure �� Numerical example� Empirical average of virtual waiting time versus the same
from its �uid approximation for sine wave case�
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Several examples indicating the accuracy of the �uid approximation for the queue length
process were considered in ���� The 
rst examples had constant arrival rate� and exhibited
the approach to equilibrium� The next examples had a quadratic arrival rate� and the 
nal
examples involved a �spike� in the arrival rate� In all cases the �uid approximation was
excellent� In ��� the accuracy of the �uid approximation for the virtual waiting time was
checked for one of the examples from ��� with quadratic arrival rate� Although not as accurate
as the �uid approximation for the queue length in the same example� the approximation for
the virtual waiting time was nonetheless excellent�

Here we examine the performance of the �uid approximation for both queue length and
virtual waiting time in some new examples� and also examine the performance of the di
usion
approximation for the queue length process�

Details of how the simulations are carried out are contained in ���� Here we merely point
out that we use ����� independent replications in each of our experiments�

We 
rst examine the performance of the �uid approximation for the queue length process
in two new examples that have square wave and sine wave arrival rates respectively� The
square wave� which is not periodic� has �t � �� for � � t � �� � � t � �� �� � t � ��� and
�� � t � �� with �t � �� otherwise� Figure � contains plots of the �uid approximation for
the queue lengths as well as the sample mean� for � � t � ��� The �uid approximation for
Q� is better than that of Q�� but both are quite good� The sine wave have period �� with
�t � �� � �� sin	�t
��� Figure � presents the results for this case� the results are similar to
those for the square wave�

We consider two quantities associated with the di
usion approximation for queue lengths�
variances and distributions� In Figure � we present plots of the queue length variances 	and
covariance� from the di
usion approximation and from the simulation in the square wave
example� The accuracy here is not so good as the �uid approximation� particularly for
the variance of Q�� As pointed out in Theorem ���� Q��� is a Gaussian process� Thus its
mean vector and covariance matrix are su�cient to calculate its distribution� Using the
distribution to obtain a di
usion approximation for the distribution of Q�	t�� we plot the
approximation and empirical distribution for Q�	t� at t � �� t � �� and t � � in Figure ��
This approximation is startlingly good�

We now examine the performance of the �uid approximation for the virtual waiting time
process in the square and sine wave examples considered above� In Figure � we compare the
�uid approximation to the simulation average for the square wave� while Figure � contains
the results for the sine wave� These results are excellent�

� Appendix

��� Markovian Service Networks

Our model is a special case of a Markovian service network 	see ����� Given a 
nite dimen�
sional vector space V that contains our state space� a 
nite index set I� transition vectors
vi� rate functions �t	�� i� that are Lipschitz functions of V and locally integrable functions
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of time� we can uniquely de
ne the Markov process f Q	t� j t � � g by the equation

Q	t� � Q	�� �
X
i�I

�i

�Z t

�
�s

�
Q	s�� i

�
ds
�
vi� 	����

where the �i are an i�i�d� family of standard Poisson processes� Given � � � we can now
de
ne Q� to be a scaled version of this process where

Q�	t� � Q�	�� �
X
i�I

�i

�Z t

�
��s

��
�
Q�	s�� i

�
ds

�
vi	 	����

In ���� we proved the following functional strong law of large numbers limit theorem

Theorem ��� If lim���
�
�
Q�	�� � Q���	�� holds a�s�� then

lim
���

�

�
Q� � Q��� a�s� 	����

where the convergence is uniform on compact sets of t� Q��� �
n
Q���	t�

��� t � �
o
is uniquely

determined by Q���	�� and the autonomous di�erential equation

d

dt
Q���	t� � �t

�
Q���	t�

�
	����

with
�t	x� 	

X
i�I

�t	x� i�vi	 	����

for all x � V�
For the di
usion limit� we 
rst need to de
ne the tensor product of vectors x and y in V

to be

x
 y �

�
				

x�y� x�y� � � � x�yn
x�y� x�y� � � � x�yn
���

��� � � � ���
xny� xny� � � � xnyn

�
����
 	����

where x � �x�� x�� 	 	 	 � xn� and y � �y�� y�� 	 	 	 � yn�� Vectors are rank one tensors and the
above array is a rank two tensor� The vector space of rank two tensors is the 
nite linear
sum of all products x
y� We can use the tensor product to de
ne the covariance matrix of
two random vectors X � �X��X�� 	 	 	 �Xn� and Y � �Y�� Y�� 	 	 	 � Yn� to be

Cov�X�Y� � E�X
Y�� E�X�
 E�Y�� 	����

where we de
ne Cov�X� � Cov�X�X��
If A and B are de
ned to be square matrices that map V into itself� then we de
ne A
B

to be the Kronecker product of A and B� The object A 
B is a linear transformation on
the family of rank two tensors into themselves where

x
 y �� 	xA�
 	yB� 	����
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which we will denote as 	x
 y� 
 	A 
B�� If we view x
 y as a matrix C� then in terms
of matrix multiplication we have

	x
 y� 
 	A
B� � 	xA�
 	yB� � ATCB� 	����

where AT is the matrix transpose of A�
Now we state the general functional central limit theorem�

Theorem ��� If lim���
p
�	 �

�
Q�	���Q���	��� � Q���	�� holds� where Q���	�� is a constant�

then

lim
���

p
�

�
�

�
Q� �Q���

�
d
� Q���	 	�����

where Q��� �
n
Q���	t�

��� t � �
o
is a di�usion process and this is a convergence in distribution

of the stochastic processes in an appropriate functional space ����
Moreover� if �t	�� is di�erentiable at Q���	t� for almost all t� then Q��� is a Gaussian

process and its mean vector and covariance matrix are the unique solutions to the autonomous
di�erential equations

d

dt
E

h
Q���	t�

i
� E

h
Q���	t�

i
D�t

�
Q���	t�

�
� 	�����

and

d

dt
Cov

h
Q���	t�

i
� Cov

h
Q���	t�

i


�
D�t

�
Q���	t�

�

 I� I
D�t

�
Q���	t�

��
��t

��
Q���	t�

��
	�����

where D�t

�
Q���	t�

�
is the Jacobian of �t	�� when di�erentiated at Q���	t� and

�t		x�� 	
X
i�I

�t	x� i�vi 
 vi	 	�����

for all x � V� Finally� for all s � t

d

dt
Cov

h
Q���	s��Q���	t�

i
� Cov

h
Q���	s��Q���	t�

i


�
I
D�t

�
Q���	t�

��
	 	�����

Proof of Theorem ���� The formulas follow from the general theorems for Markovian
service networks� Here we write out these general equations for the two�dimensional case�
Viewing Q��� as a two�dimensional row vector� we have

d

dt
E

h
Q���	t�

i
� E

h
Q���	t�

i
At 	�����

and
d

dt
Cov

h
Q���	t�

i
� Cov

h
Q���	t�

i
At �AT

t Cov

h
Q���	t�

i
�Bt� 	�����

where

Cov

h
Q���	t�

i
�

�

 Var

h
Q

���
� 	t�

i
Cov

h
Q

���
� 	t�� Q���

� 	t�
i

Cov

h
Q

���
� 	t�� Q

���
� 	t�

i
Var

h
Q

���
� 	t�

i
�

 � 	�����

��



At �

�
a��t a��t
a��t a��t

�
� Bt �

�
b��t b��t
b��t b��t

�
	 	�����

Note that At is not necessarily a symmetric matrix but Bt always is� Writing these di
er�
ential equations out explicitly gives us

d

dt
E

h
Q

���
� 	t�

i
� a��t E

h
Q

���
� 	t�

i
� a��t E

h
Q

���
� 	t�

i
	�����

d

dt
E

h
Q

���
� 	t�

i
� a��t E

h
Q

���
� 	t�

i
� a��t E

h
Q

���
� 	t�

i
	�����

and 
nally

d

dt
Var

h
Q

���
� 	t�

i
� �a��t Var

h
Q

���
� 	t�

i
� �a��t Cov

h
Q

���
� 	t�� Q���

� 	t�
i
� b��t 	�����

d

dt
Var

h
Q

���
� 	t�

i
� �a��t Var

h
Q

���
� 	t�

i
� �a��t Cov

h
Q

���
� 	t�� Q���

� 	t�
i
� b��t 	�����

d

dt
Cov

h
Q

���
� 	t�� Q���

� 	t�
i

� a��t Var

h
Q

���
� 	t�

i
� a��t Var

h
Q

���
� 	t�

i
�	a��t � a��t �Cov

h
Q

���
� 	t�� Q

���
� 	t�

i
� b��t 	 	�����

Finally� to tailor this central limit theorem to the retrial model� observe that functions like
f	x� � x � n and g	x� � 	x� n�� are di
erentiable everywhere� except when x � n�
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