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Abstract

We consider a Markovian multiserver queueing model with time dependent parame-
ters where waiting customers may abandon and subsequently retry. We provide simple
fluid and diffusion approximations for both the queue length and virtual waiting time
processes arising in this model.

These approximations, which are justified by limit theorems where the arrival rate
and number of servers grow large, are compared to simulations, and perform extremely
well.
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Figure 1: The abandonment queue with retrials.

1 Introduction

In this paper we continue our ongoing examination of a multiserver queue with time varying
parameters where waiting customers may abandon and subsequently retry. The model we
consider is a relatively simple special case of the class of models considered in [3], which were
termed "Markovian Service Networks.’

Our model, depicted in Figure 1, consists of two nodes: a ’service’ node with n; servers,
and a retrial pool with an unlimited number of servers. (Customers effectively serve them-
selves at the retrial pool.) New customers arrive to the service node as a Poisson process
of rate \;. Customers arriving to find an idle server are taken into service that has rate p!.
Customers that find all servers busy join a queue, from which they are served in a FCFS
manner. Fach customer waiting in the queue abandons at rate §;. An abandoning customer
leaves the system with probability v, or joins the retrial pool with probability 1 — ;. Each
customer in the retrial pool leaves to enter the service node at rate u?. Upon entry to the
service node, these customers are treated the same as new customers. Our focus is the two-
dimensional, continuous time Markov chain Q(t) = (Ql(t), Qz(t)) where Q1(¢) equals the
number of customers residing in the service node (waiting or being served) and ()5(%) equals
the number of customers in the retrial pool. We also consider the virtual waiting time W(t),
where W(t) is the time that an infinitely patient customer, arriving at time t, would have
to wait before entering service.

This model, even with all parameters constant, is analytically intractable. We thus con-
sider fluid and diffusion approximations for the queue length and virtual waiting time process.
These approximations are justified by limit theorems where the arrival rate and number of
servers grow large. Both the model and asymptotic regime are motivated by large telecom-
munication systems such as call centers, where abandonment and retrial occur naturally,



and where time variablity of parameters, specifically the arrival rate, cannot realistically be
ignored. More discussion of this motivation is contained in [4].

Fluid and diffusion limits for the queue length process arising in this model were proved
in [3]. In [4] we compared the fluid limit with simulation results, and found that it provides
an excellent approximation. Fluid and diffusion limits for the virtual waiting time are proved
in [6]. (These results are described in [5], where a single numerical example shows that the
fluid approximation for the virtual waiting time is also excellent.) In this paper we extend
the previous results in several directions. First, we provide additional numerical examples
for both the queue length and virtual waiting time, comparing the fluid approximations
to simulations. We next provide numerical results for the diffusion approximations. Using
equations originally obtained in [3], we calculate the covariance matrix of the queue length
diffusion, and compare it to simulations. Using a result from [6] that provides conditions
under which the queue length diffusion is a Gaussian process we also obtain an approximation
for the queue length distribution. We are similarly able to obtain an approximation for the
virtual waiting time distribution. These are also compared to simulations. In all of these
comparisons our approximations are exceptionally good.

The rest of this paper is organized as follows. In Section 2 we provide the equations
for the queue length and virtual waiting time processes. We also state the relevant limit
theorems in a form that provide the information we need for our approximations. Section 3
contains numerical examples comparing our approximations with simulation results. Section
4 is an appendix that provides some background on Markovian service networks.

2 The Model and Limit Theorems

2.1 Basic Model and Queue Length Asymptotics

The sample paths of the queue length process Q(t) = (Q1(1), Q2(?)) are uniquely determined
by the relations

@) = Qu)+ 115 ([ @utpzas) — 1y ([ (Qu(o) =) a1 = vpis)  (2)
+ 17 (/Ot )\Sds) — 17 (/Ot(Ql(s) — n5)+ﬁ5¢5d5) —[I° (/Ot(Ql(s) A ns),uids)

and
Qu(t) = Qu(0)+ 113, ([ (Qu(9) ) "1 = wyas) — 115, ([ Qatsputas). (22)

where 1%, IT°, IT¢, II},, and II§, are five given mutually independent, standard (mean rate
1), Poisson processes and A, 3, u*, p?, 1, n are locally integrable functions of time [3]. Here
x Ay =min(z,y) and zt = max(z,0) for all real x and y.

We are interested the asymptotic regime where we scale up the number of servers in
response to a similar scaling up of the arrival rate by customers. More precisely, the asymp-
totic regime is as follows. In a system with index 5, the only scaled parameters are: the

initial conditions Q7(0) = [3Q{”(0) + AFQI"(0)] 4 o(y/7) for constants QL (0) and Q{"(0)



(1 = 1,2), the external arrival rate (i.e., the intensity of the Poisson arrival process), which is
now 1A, and the number of servers, which is now nn;. (Actually, the latter should be the in-
teger part of nn;, but to avoid trivial complications and simplify notation, we assume it’s just
nn:.) The scaled queue length process Q"(t) = (Q7(t), Q3(t)) is then uniquely determined
by the relations

@) = Q1)+ 185 ([ Qusputas) — ity ([(@10) = nn) B0 - v)ds)  23)
i ([onds) =1t ([ (Q1s) = ) B ) — 117 ([ (Q1t) 1 Gy s

and

Q1) = QU0) + 112, ([ Q1) =) B0 — s ) — 115, ([ Qusiuas) . 2

Now we state the strong law of large numbers limit theorem for the retrial model. We
make the following asymtotic assumptions for the initial conditions

lim ~Q7(0) = Q(0) a.s., (2.5)
— 00 n
where Q(®(0) is a constant.
Theorem 2.1 We have .
77lim ~Q"=QY as. (2.6)
— 00 7’]

where the convergence is uniform on compact sets of t. Moreover, Q¥ = { Q1) ‘ t> 0}

is uniquely determined by Q©(0) and the autonomous differential equations

_|_

%Q@(t) = A+ 2R (1) — p (QF (1) Amy) — B (QF (1) — me) (2.7)

and

TV = 5.1 — e (@00 — n)* — Q1) (2.8)

This theorem states rigorously that Q7 ~ 7nQ(® and we call Q¥ the fluid approzimation for
Q.

If two random variables X and Y have the same distribution then we denote this by
XLy, 1f { X, | n >0} converges in distribution to Y, we denote this by lim,,_., X, Ly,
The fluid approximation can be refined using the following functional central limit theorem,
as proved in [3]. We make the following assumptions for the initial conditions

lim /7 < "(0) — Q(0)) = QM(0), (2.9)

n—00

where Q(V(0) is a constant.



Theorem 2.2 We have

lim \/_( <0>) 4 qu. (2.10)

n—00

where Q) = { Q1) ‘ t > 0} is a diffusion process and this is a convergence in distribution
of the stochastic processes in an appropriate functional space [3].
Moreover, if the set of time points { t>0] ng)( 1) = ny } has measure zero for the retrial

model, then { QM(1) ‘ t> 0} is Gaussian. The mean vector for QW) then solves the set of
autonomous differential equations

ZtE (@V0)] = = (11 g g + B @5y B @VO] + B [QV0] (211)
and
Q0] = A1 = 01 g E Q0] — s2E [0 (2.12)

Finally, the covariance matriz for QW) solves the autonomous differential equations

%Var (V1) =-2 (@1{@@ 5mey T 1100 (< }) Var [Q{V(1)] + 27Cov [Q1" (1), Q4" (1)]
X+ B(Q0) —n) T+ i (@) Ane) + 20 1), (2.13)
%Var V(@] = —2uVar [QF (0] + 281 — )L 005, Cov [Q17(0). Q4 (1)]
01— ) Q) — )"+ 2P, (2.14)
and
d

—Cov [Q1(1),Q(1)] = Bull = i)l o5,y Var [ (O] +piVar [Q ()] (215)
(ﬂt Q(O) (t)>ns} + 1{@(0)( t)<ni} + :ut) Cov [Q( )(t)v le)(t)]
—515 1—1/% ( —nt) _Nth (t)

This theorem states rigorously that Q7 ~ nQ© + \/ﬁQ(l) and we call Q) the diffusion
approximation for Q.

Time-varying queues alternate among phases of underloading, critical-loading, and over-
loading [2]. The set { t] Q° ( )= nt} corresponds to the times of critical-loading for the
service node. The above differential equations must be modified for critical-loading, which
is unnecessary here since the hypothesis of Theorem 2.2 applies to all the examples in the
following section.



2.2  Virtual Waiting Time in Node 1: Marginal Distribution at a
Given Time.

In this subsections we will consider asymptotics for the virtual waiting time process. To do
that we need a few additional assumptions which, as we will see, are not very restrictive as
far as applications of the results are concerned.

Assumption 2.1 In the interval [0, c0):

1. Function n; is continuously differentiable;
2. Function g} is continuous;
3. Functions p? and f3; are bounded on bounded intervals.

Assumption 2.2 will be introduced below when the notations required are in place.

Suppose that we are interested in the waiting time of a wvirtual customer arriving at
station 1 at a fized time 7 > 0. Since we have a system with abandonment, a convenient way
to approach this problem is to consider the system that is obtained from the original one by
the following modification. Suppose, that after time 7, there are no new exogenous arrivals
into the system, and any customer departing any station 1 leaves the system. In particular,
station 1 has no new arrivals after time 7. It just serves the remaining customers that are
there at time 7. Theorems 2.1 and 2.2 still apply to the modified system; the only difference
is that certain terms in the equations, corresponding to the arrivals after time 7, should be
“zeroed out”. Namely, the following results follow directly from those two theorems (and
their proofs in [3]).

Denote the arrival and departure processes for station 1 by

AT={AM)| >0} and AT ={A"t)] t>0}

respectively. Let, by convention, the arrival process includes the customers in node 1 at time

0, 50 A7(0) = Q1(0), A"(0) = 0, and A1) — A"(1) = Q}(1), ¢ > 0.
We then obtain the followmg fluid limit result.

Theorem 2.3 As a process we have

1
lim —(Q", A", A7) = (Q®, AQ Ay 4. (2.16)

n—00 7’]

and this convergence is uniform on compact sets of t. The fluid limit ng)(t) satisfies equation
(2.7) fort < 71. Fort > 1, we have the following properties:

_|_

%ng)(t) = —1 (Q( (1) A nt) @(Ql (1) — nt) , (2.17)

AO (1) = AO(7) and A is a continuously differentiable non-decreasing function in [0, 00).

We also obtain the following diffusion limit.



Theorem 2.4 The following convergence in distribution holds:

1 1 1
lim /7(=Q" — Q©, =A™ — A© — A7 — A 4 (QW, A1 A, (2.18)
U] U]

n—00 7’]

Moreover, if the set of time points { t>0] ng)(t) =ny } has measure zero, { le)(t) ‘ t> 0}
is Gaussian and for t > 7, Var[le)(t)] solves the differential equation

d
Vel = -2 (ﬁtl{m”(nm} + ”2}1{Q§°><t>snt}) Var [Q"(1)] (2.19)

+@(Q§O)(t) - nt)+ + 4 (ng)(t) A nt)-
It follows from the definitions and the above theorem that
Q1 (1) = AD(1) — AD() . (2.20)
Now, let us define the potential service initiation process D" for node 1 by
D"(t)=A"t)+nny, t>0.

Note that if Q7(t) < nns, then A"(t) < D7(t); so the potential service can be “ahead” of
arrivals. It follows that

lim LD7(-) = DO} as,

e
where the convergnece is uniform on compact sets of ¢ and D@ (t) = AO(#) + ny, 1t > 0.
Since n; is continuously differentiable by assumption and we know that A(®)(#) is continu-
ously differentiable, D®)(¢) is also continuously differentiable and we denote its derivative by
d©(1). Now we will make an important (but not very restrictive in majority of applications)
additional assumption.

Assumption 2.2. The function D© (of #) is continuously differentiable with strictly

positive derivative, and

lim DO(t) > A7) . (2.21)

(Note, that according to our definitions, both A7(-) and A®)(-) are constant in the interval
7. 00).)

Also, it will be convenient to adopt a convention that all the processes we consider are
defined in the interval [T, o0), with

T = 10/d®(0) .

We make this extension by assuming that nothing is happening in the interval [—T,0) (no
arrivals or departures) except the number of servers is increasing linearly from 0 to nng (for
the unscaled process with index 7).
We then can rewrite (2.16) and (2.18) as follows (with all the functions being now defined
fort > —T):
lim l(Q”,A”,D”) = (Q®, A©® DO (2.22)

n—00 7’]



and

1 1 1
lim /7(-Q" — Q©, —A" — A©) —p7 — D)) 4 (QW, AW, pMy | (2.23)
el U U U
where
DV = AW (2.24)

Note that processes A®, DO AN D) are continuous and DO (=T) = DU (=T) = 0.

Our conventions together with the Assumption 2.2 make the following processes well
defined and finite with probability 1 for all sufficiently large . Let us define, for all ¢ > =T,
the first attainment processes

Sty =1inf{s > =T : D"(s) > A"(1)}
and
SOty = inf{s > =T : DO (s) > A1)}, (2.25)

and the attainment waiting time processes
Wo(t) = S7(t) —t

and

WO ) = SO@) —¢ . (2.26)

Denote by W”(T) the virtual waiting time at 7, i.e. the time a “test” customer (in the
original non-modified system) arriving in node 1 at time 7 would have to wait until its service
starts, assuming this customer does not abandon while waiting. Then the relation between
the virtual waiting time W7(7) and the attainment waiting time W7(7) is simply

Wi(ry=wr(r)t . (2.27)

Indeed, note that W7(7) (and W (7)) may be negative. All this means is that Q7(7) < nn.,
and therefore in this case W”(T) = 0. If W7(7) is non-negative, then its value is exactly
equal to the virtual waiting time.

It follows directly from Theorem and Corollary in [7] that (2.22), (2.23), and Assumption
2.2, imply the following convergences.

Theorem 2.5 We have
1 1 1

Jlim (-Q7, — A7, =D, W) = (Q©, A® pl W)y (2.28)
i A

1 1 1
lim \/ﬁ(;Q" — QW) ;A” — A, ;D” — DO W — W) 4 (QW, AW pW w)y (2.2

n—00

where




Since the processes AN, DM QW W) are continuous with probability 1, we automati-

cally obtain the convergence of finite dimensional distributions.

In particular, consider the non-trivial case S(©(7) > 7 (which is equivalent to ng)(T) >

n;). Moreover, assume that in [0, 7], the set of points { t] ng)(t) = nt} has measure zero.

Then we obtain
nli_{& Wi(r) = W(O)(T)
and

(1) (0)( 7
Jim (7)== QR

where le)(s@(r)) is Gaussian with mean and variance computed as follows. Solving equa-

tion (2.17) for ng)(-) in the interval [, 00), we obtain

%ng(t) = —@ng)(t) + (B — pne , > 7
We can find S©(r) from
SO(7) = min{t > 7 | Qﬁo)(t) — ).
We then compute Var[le)(S(o)(r))], where

d (
di

Finally, we have the closed formulas

Q00 = QP ey (- [ t guds) + [ (B, — by exp (-/ t 3edr) ds

and

S(O)(T)

Var [QU(5O(r))] = Var [@{" ()] exp (—/ Zﬂsds)

“Var[Q\ ()] = —28Var[@WV ()] + B(Q\V (1) — ny) + plng t> 7

(2.30)

(2.31)

(2.32)

SO(r) SO)(7)
+f (<Q§0><s>—ﬁs>ns—ﬂzns)exp(—/ mdr) s.

Remark. In this subsection we derived fluid and diffusion approximations of the marginal

distribution of the attainment waiting time, which uniquely determines those for the virtual

waiting time, in node 1 at a given time T > 0. However, it is shown in [6] that similar

asymptotics hold for the attainment waiting time as a random process defined for 7 € [0, o).

(See also [5] for the formal statement of the results.)

3 Numerical Examples

Our numerical examples cover the case of time-varying behavior only for the external arrival

rate \;. Weset p' =1, p* = 0.2, and @Q(0) = Q2(0) = 0 but let n, 3, and ¢ range over a

variety of different constants.
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Figure 2: Numerical example: Empirical averages of Q1(f) and (s(t) versus their fluid

approximations for square wave case.
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Figure 3: Numerical example: Empirical averages of Q1(f) and (s(t) versus their fluid
approximations for sine wave case.
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Figure 4: Numerical example: Empirical covariance matrix of queueing process versus the
same from its diffusion approximation.
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Figure 5: Numerical example: Empirical distribution of ()1 versus the same from its diffusion
approximation.
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Figure 6: Numerical example: Empirical average of waiting time versus the same from its

fluid approximation for square wave case.
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Figure 7: Numerical example: Empirical average of virtual waiting time versus the same
from its fluid approximation for sine wave case.
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Several examples indicating the accuracy of the fluid approximation for the queue length
process were considered in [4]. The first examples had constant arrival rate, and exhibited
the approach to equilibrium. The next examples had a quadratic arrival rate, and the final
examples involved a “spike” in the arrival rate. In all cases the fluid approximation was
excellent. In [5] the accuracy of the fluid approximation for the virtual waiting time was
checked for one of the examples from [4] with quadratic arrival rate. Although not as accurate
as the fluid approximation for the queue length in the same example, the approximation for
the virtual waiting time was nonetheless excellent.

Here we examine the performance of the fluid approximation for both queue length and
virtual waiting time in some new examples, and also examine the performance of the diffusion
approximation for the queue length process.

Details of how the simulations are carried out are contained in [4]. Here we merely point
out that we use 5,000 independent replications in each of our experiments.

We first examine the performance of the fluid approximation for the queue length process
in two new examples that have square wave and sine wave arrival rates respectively. The
square wave, which is not periodic, has \; = 40 for 0 < ¢ <4, 6 <¢ < 9,11 <¢ < 14, and
16 <t <20 with A\, = 80 otherwise. Figure 2 contains plots of the fluid approximation for
the queue lengths as well as the sample mean, for 0 < ¢ < 20. The fluid approximation for
()1 is better than that of ()2, but both are quite good. The sine wave have period 6, with
At = 60 4 40sin(7t/3). Figure 3 presents the results for this case; the results are similar to
those for the square wave.

We consider two quantities associated with the diffusion approximation for queue lengths:
variances and distributions. In Figure 4 we present plots of the queue length variances (and
covariance) from the diffusion approximation and from the simulation in the square wave
example. The accuracy here is not so good as the fluid approximation, particularly for
the variance of Q1. As pointed out in Theorem 2.3, QW) is a Gaussian process. Thus its
mean vector and covariance matrix are sufficient to calculate its distribution. Using the
distribution to obtain a diffusion approximation for the distribution of (1(t), we plot the
approximation and empirical distribution for Q1(¢) at t = 3, t = 6, and ¢t = 9 in Figure 5.
This approximation is startlingly good.

We now examine the performance of the fluid approximation for the virtual waiting time
process in the square and sine wave examples considered above. In Figure 6 we compare the
fluid approximation to the simulation average for the square wave, while Figure 7 contains
the results for the sine wave. These results are excellent.

4 Appendix

4.1 Markovian Service Networks

Our model is a special case of a Markovian service network (see [3]). Given a finite dimen-
sional vector space V that contains our state space, a finite index set [, transition vectors
v;, rate functions ay(-;¢) that are Lipschitz functions of V and locally integrable functions

16



of time, we can uniquely define the Markov process { Q(¢)| ¢ > 0} by the equation
¢
Q1) = QM)+ X 17 ([ au(@s);i)ds ) v (1)
el

where the II; are an i.i.d. family of standard Poisson processes. Given n > 0 we can now
define Q" to be a scaled version of this process where

¢ 1 .

Q)= Q0+ 1 [ e (GQreri)as) v (1.2
€]

In [3], we proved the following functional strong law of large numbers limit theorem

Theorem 4.1 [flim,_ . %Q”(O) = Q(0) holds a.s., then

1
lim —Q" = Q© as. (4.3)

n—00 7’]

where the convergence is uniform on compact sets of t, Q¥ = { Q1) ‘ t > 0} is uniquely
determined by Q) (0) and the autonomous differential equation

d
QU1 = (QV(1) (44)
with
o (x) = Z;ozt(x; Vi (4.5)
forallx e V.

For the diffusion limit, we first need to define the tensor product of vectors x and y in V
to be

iy TiYyz o Tiln
T2l T2Yz2 - T2Yn
XQy = : : : (4.6)
Tpl1 TplY2 - Tpln
where x = [21,29,...,2,] and y = [y1,92,...,¥y,]. Vectors are rank one tensors and the

above array is a rank two tensor. The vector space of rank two tensors is the finite linear
sum of all products x @ y. We can use the tensor product to define the covariance matriz of

two random vectors X = [ X7, Xy,..., X, ] and Y =[¥1,Y5,....Y,] to be
Cov[X,Y] =E[X® Y] - E[X] ® E[Y], (4.7)

where we define Cov[X] = Cov[X, X].

It A and B are defined to be square matrices that map V into itself, then we define A ® B
to be the Kronecker product of A and B. The object A ® B is a linear transformation on
the family of rank two tensors into themselves where

X2y (xA)®@(yB) (4.8)

17



which we will denote as (x @ y) o (A ® B). If we view x @ y as a matrix C, then in terms
of matrix multiplication we have

(x®y)o(A®B)=(xA)® (yB)=ATCB, (4.9)

where AT is the matrix transpose of A.
Now we state the general functional central limit theorem.

Theorem 4.2 [flim,_.., \/ﬁ(%Q”(O)—Q(O)(O)) = QMW(0) holds, where QM(0) is a constant,
then

n—00

lim i (%Q” _ Q(O)) 4 QW) (4.10)

where Q) = { Q1) ‘ t > 0} is a diffusion process and this is a convergence in distribution
of the stochastic processes in an appropriate functional space [3].

Moreover, if a(-) is differentiable at QO)(t) for almost all t, then QW) is a Gaussian
process and its mean vector and covariance matriz are the unique solutions to the autonomous
differential equations

d

TEQUM] = E[QUn] Da (QV1)). (1)

and

L Cov [@U(1)] = Cov [QW(1)] o (Dar, (QU(1)) T+ T Dar, (QU(1))) + e (V1))

dt
(4.12)
where Day, (Q(O)(t)) is the Jacobian of a,(-) when differentiated at Q) (t) and

a((x)) = Z a(x;0)v; @ v, (4.13)

el
for all x € V. Finally, for all s <t
%Cov [QM(5),QU(1)] = Cov [QW(5), QM (1)] o (T® Da (Q(1))) . (4.14)

Proof of Theorem 2.2: The formulas follow from the general theorems for Markovian
service networks. Here we write out these general equations for the two-dimensional case.
Viewing Q) as a two-dimensional row vector, we have

d

EE [Q(l)(t)] —E [Q(l)(t)] A, (4.15)

and

O
(@)
<
O
gy
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O
(@)
<
O
gy
g
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i
prs
g
+
prs
-+ -
O
(@)
<
O
gy
g
o~
i
+
=)
s
S
i
—_
=
S—’

where
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A‘t — [ él a%z ] 9 Bt — [ bf}z 6%2 ] . (418)

ay

Note that A; is not necessarily a symmetric matrix but B; always is. Writing these differ-

ential equations out explicitly gives us

and finally

TE[Q()] = ae (0] +a?E [0 (4.19)
TE[QV()] = @ [Q0)] + a2 [ (1) (4.20)
%Var [le)(t)] = 2a;'Var [le)(t)] + 2a?'Cov [le)(t),Q(zl)(t)] + b1 (4.21)
d
[

—Var [ (1)] = 2a2Var [QY"(1)] + 20}*Cov [Q1V(1), QL (1)] + 0 (4.22)

%Cov Q). (1) = af*Var [QV(1)] + aF'Var [Q(1)]
+af' + a?)Cov [V (1), Q87 (1)] + b2 (4.23)

Finally, to tailor this central limit theorem to the retrial model, observe that functions like
f(z) =2 Anand g(z) = (x — n)" are differentiable everywhere, except when x = n. g
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