# A Personal Tool for Workforce Management

#### Service Engineering

Garnett, O. Technion

Zeltyn, S. Technion

Borst, S. CWI

Reiman, M. Bell Labs

Wharton, Call Center Forum

May 16, 2002

e.mail: avim@tx.technion.ac.il

Tool: http://4CallCenters.com (register & use)

Course: http://ie.technion.ac.il/serveng

#### Contents

- 1. Service Engineering Teaching, Practice: Research-Based
- 2. Workforce Management: Hierarchical View

The Role of **iProfiler** (or **Charisma**)

3. "Secrets of the Trade" – Recalling Previous Forums

**Operational Regimes** 

**QED**: Beyond the Quality-Efficiency Tradeoff

Rough Performance Analysis

- 4. Example: Pooling Call Centers, via Erlang-C
- 5. What is Lacking: Abandonment

Patience: Understanding, Estimating, Managing

- 6. **Erlang-A**: Abandonment (Busy, Overflow)
- 7. Feedback: for Work? Classroom? Research?
- 8. Homework: HW7 in <a href="http://ie.technion.ac.il/serveng">http://ie.technion.ac.il/serveng</a>

#### Service Engineering

• Contrast with the traditional and prevalent

Service Management (Business Schools)

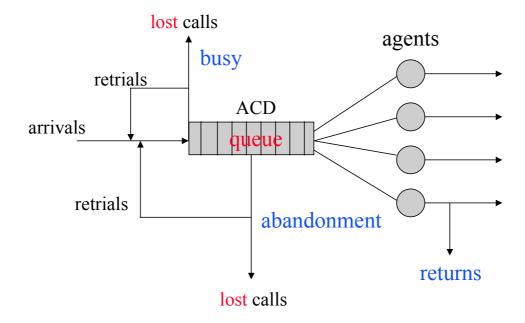
Industrial Engineering (Engineering Schools)

• Goal: Develop scientifically-based design principles (rules-of-thumb) and tools (software), that support the balance of service quality and efficiency, from the (often conflicting) views of customers, servers and managers.

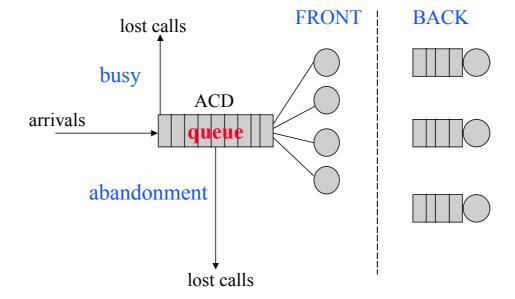
• Theoretical Framework: Queueing Networks

• Applications focus: Call (Contact) Centers

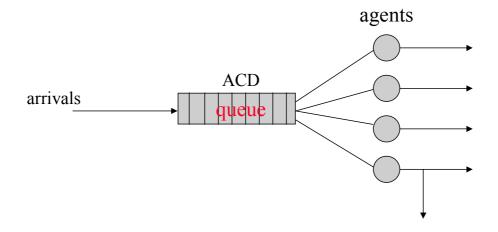
Example: Designing Techology-Intensive User-Interfaces


- Support + Sales via Telephone + Chat + e.mail

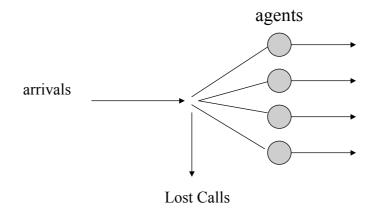
Example: Staffing the Modern Call Center


People = 60-80% costs of running a call center
 (±1% of 1000 agents = 10 salaries; 2% U.S. workforce.)

Multi-Disciplinary: Typical (OR, Marketing, CS, HRM)


#### A Basic Call Center




#### 4CallCenters.com



#### Erlang-C



#### Erlang-B



#### Workforce Management: Hierarchical Operational View

Forecasting Customers (Statistics), Agents (HRM)

**Staffing**: Queueing Theory (Erlang-A and beyond) Service Level, Costs # FTE's (Seats) per unit of time Shifts: IP, Combinatorial Optimization; LP Union constraints, Costs Shift structure Scheduling: Heuristics, AI (Complex) Individual constraints **Agents Assignments** 

Online Skills based Routing: Stochastic Control (ongoing)

#### Potential Gain from "Perfect" Multi-Site Routing = Pooling

K = # sites

*N* = # agents/site

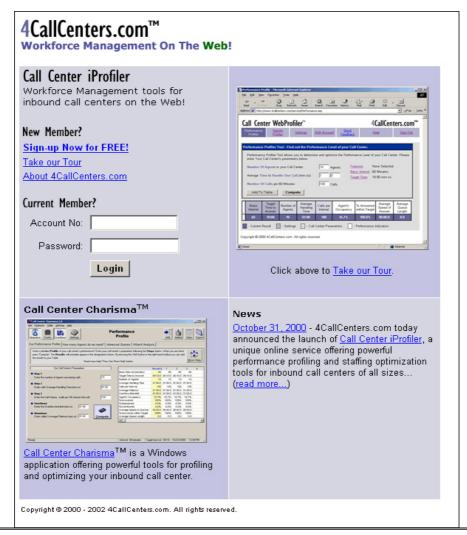
#### Calculate

$$R(K,N) = \frac{\text{ASA for } K \text{ isolated sites, each w/ } N \text{ agents}}{\text{ASA for FCFS with } K \times N \text{ agents}} \ge 1$$

Parameters: K = 2, 16, 50 # sites

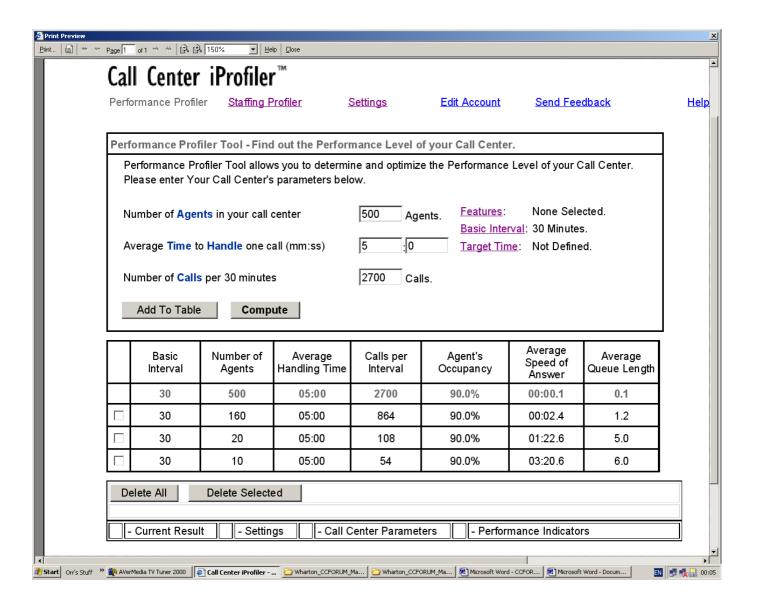
N = 10, 20, 50 # agents/site

= 0.9, 0.8 occupancy


#### **€**.9

| $K \setminus N$ | 10   | 20    | 50   |
|-----------------|------|-------|------|
| 2               | 2.43 | 2.67  | 3.35 |
| 16              | 83.6 | 206.5 | X    |
| 50              | 2006 | X     | X    |

#### = 0.8


| $K \setminus N$ | 10         | 20     | 50   |
|-----------------|------------|--------|------|
| 2               | 3.20       | 4.21   | 8.87 |
| 16              | 1688       | 60,528 | X    |
| 50              | 24,533,333 | X      | X    |
|                 |            |        |      |

#### iProfiler @ 4CallCenters.com



| Performance Pr         | ofiler              | Staffing Profiler                       |                       | <u>Settings</u>                             | Edit Acc                      | <u>ount</u>             | Send Feedb |
|------------------------|---------------------|-----------------------------------------|-----------------------|---------------------------------------------|-------------------------------|-------------------------|------------|
|                        |                     |                                         |                       |                                             |                               |                         |            |
| formance Prof          | iler Tool - Fi      | nd out the Perfo                        | rmance Level          | of your Call Cent                           | er.                           |                         |            |
|                        |                     | rs you to determin<br>s parameters belo | •                     | the Performance L                           | evel of your Call             | Center.                 |            |
| Number of <b>Agen</b>  | ts in your call     | center                                  | 10 Ag                 | ents. <u>Features:</u><br><u>Basic Inte</u> | None Sele                     |                         |            |
| Average <b>Time</b> to | Handle one          | call (mm:ss)                            | 1 ;0                  |                                             |                               |                         |            |
| Number of Calls        | per 30 minute       | s                                       | 100 Ca                | ılls.                                       |                               |                         |            |
| Add To Table           | Comp                | oute                                    |                       |                                             |                               |                         |            |
| Basic Interval         | Number of<br>Agents | Average<br>Handling Time                | Calls per<br>Interval | Agent's<br>Occupancy                        | Average<br>Speed of<br>Answer | Average<br>Queue Length |            |
| 920                    | 22                  | 100                                     | 100                   | 12                                          | Ti .                          | ¥                       |            |
| - Current Result       | : Setti             | ings 🔲 - Call                           | Center Parame         | ters Perfor                                 | mance Indicators              | 3                       |            |
|                        |                     |                                         |                       |                                             |                               |                         |            |

### Using iProfiler for calculating the first column of "Table = 0.9"



$$3:20.6 / 1:22.6 = 200.6 / 82.6 = 2.43$$

$$3:20.6 / 0:02.4 = 83.6$$

$$3:20.6 / 0:00.1 = 2006$$

#### "First National City Bank Operating Group"

"By tradition, the method of meeting increased work load in banking is to increase staff. If an operation could be done at a rate of 80 transactions per day, and daily load increased by 80, then the manager in charge of that operation would hire another person; it was taken for granted..." (Harvard Case)

#### 1:1 Staffing: Performance Analysis (Erlang-C = M/M/N)

8 transactions per hour  $\Rightarrow$  E(S) =  $\frac{7:30}{}$  minutes (=M)

| $\lambda / hr$ | N Agents | $ \rho = OCC $ | Q-Length | ASA min |
|----------------|----------|----------------|----------|---------|
| 8              | 2        | 50%            | 0.3      | 2:30    |
| 16             | 3        | 67%            | 0.9      | 3:20    |
| 24             | 4        | 75%            | 1.5      | 3:49    |
| 32             | 5        | 80%            | 2.2      | 4:09    |

| $\lambda / hr$ | N        | <u>OCC</u> | Q-Length | <u>ASA</u> |
|----------------|----------|------------|----------|------------|
| 72             | 10       | 90%        | 60       | 5:01       |
| 120            | 16       | 93.8%      | 11       | 5:29       |
| 400            | 51       | 98%        | 42       | 6:18       |
| 640            | 81       | 98.8%      | 70       | 6:32       |
| 1,280          | 161      | 99.4%      | 145      | 6:48       |
| 2,560          | 321      | 99.7%      | 299      | 7:00       |
| 3,600          | 451      | 99.8%      | 423      | 7:04       |
|                |          |            |          | 1          |
| $\infty$       | <b>▼</b> | 1          | $\infty$ | 7:30 !     |

#### ⇒ Efficiency-Driven Operation (Heavy-Traffic)

Intuition: at 100% utilization, N servers = 1 fast server

Indeed 
$$\overline{W}_{q} \approx \overline{W}_{q} \mid W_{q} > 0 = \frac{1}{N} \cdot \frac{\rho_{N}}{1 - \rho_{N}} \cdot E(S) \to E(S) = 7:30$$
! since  $\rho_{N} = \frac{\lambda_{N} \times E(S)}{N} = \frac{8(N - 1) \times 7.5 / 60}{N} = \frac{N - 1}{N} = 1 - \frac{1}{N}$ 

$$N(1 - \rho_{N}) = 1 \quad , \quad \rho_{N} \to 1 \; .$$

# What can be adrieved

Copy of Summary Interval . Order PK

Date: 7/7/97 Spli/Skill: Order PK

| MX %ACW %ACD                                    | 8        | 2 16 6    | 1 26 63   | 0 28 65  | 33       | 9 2 18   | 5 3 29  | 13 4 34  | 7 4 32   | 8 6 33   | 10 7 37 | 9 7 47  | 8 8 52   | 8 55      | 8 8       | 7 8 45                                 | 8 5 45   | 8 5 47     | 8 8 46    | 11 8 44  | 11 7 50 | 10 5 46  | 10 4 50                    | 8 5 51   | 7 5 45  | 8 7 47   | 8 5      | 8 5 48           | 40 01    | 2       |
|-------------------------------------------------|----------|-----------|-----------|----------|----------|----------|---------|----------|----------|----------|---------|---------|----------|-----------|-----------|----------------------------------------|----------|------------|-----------|----------|---------|----------|----------------------------|----------|---------|----------|----------|------------------|----------|---------|
| Calls Per KServ KAux<br>Pos Lav Time            | 149      | 4 51      | 3 48      | 7        | 0        | 2 500    | 2 100   | 3 100    | 3 100    | 3 100    | 3 100   | 4 97    | 4 93     | 4 98      | 98        | 3 100                                  | 100      | 4 85       | 3         | 8        | 4 98    | 4 100    | 4 100                      | 96 4     | 3 100   | 4 100    | 4 88     | 4 100            | 4 95     |         |
| Avg<br>Staff                                    | 98 70 14 | 51 7      | 52 5      | 1 06     | 0        | Z 00     | 100 14  | 100 21   | 00 30    | 100 47   | 100 61  | 89 75   | 97 91    | 87 88     | 36 66     | 100 102                                | 76 001   | 95 95      | 26 68     |          | 66 66   | 100 108  | - 22                       |          | 100 100 | 98 OO    | 26 87    | 38<br>0 <b>-</b> | 98 56    |         |
| X ACD %<br>Time Ans                             | 53       | 76        | 88        | <u>-</u> | 0        | 21       | 32 1    | 8        | 88       | 30       | 4       | 4       | 9        | 63        | 25        | 51                                     | 49       | 25         | 33        |          | 28      | £        | 7                          | 22       | =<br>9  | 54       | 55       | 23<br>==         | 28       | 33      |
| -2                                              | 9*       | -         | -         | 0        | o        | 0        | 0       | 0        | 0        | 0        | 0       | o       | CV       | -         | þ         | O                                      | ۵        | 0          | 0         | 0        | ٥       | 0        | o                          | -        | 0       | 0        | 0        | 0                | ٥        |         |
| Avg ACW Aben<br>Time Calls                      | :00:25   | 20:00     | :00:33    | :11:29   |          | 91:00    | :00:50  | :00:15   | :00:34   |          |         |         |          | - 50      | 200       |                                        | :00:18   | :00:18     | :00:21    | :00:32   | 100:14  | 700:17   | :00:13                     | :00:18   | \$1:00: | :01:37   | 00:19    | 00:19            | :00:19   |         |
| Awg ACD                                         | :03:47   | :04:31    | :07:27    | 04:54    |          | 193.21   | :02:51  | :03:34   | 11:50:   | 103:37   | 40:00   | :03:25  | :03:45   | :03:48    | :03:35    | :03:50                                 | :03:44   | :03:69     | :03:38    | :03:53   | :03:52  | :03:55   | 03:58                      | :04:02   | :03:58  | :03:48   | :03:41   | :03:63           | :03:58   |         |
| Avg Speed Avg Aban ACD Calls Avg ACD Ans Y Time | 10456    | 58        | 4.        | con      | ٥        | 2        | 27      | ß        | £        | 120      | 193     | 293     | 381      | 418       | 349       | 352                                    | 348      | 354        | 338       | 347      | 388     | 383      | 403                        | 410      | 347     | 382      | 378      | 114              | 387      |         |
| ivg Aben Al<br>ime                              | :00:28   | 00:00:    | :04:10    |          |          |          |         |          |          |          |         |         | 90:00:   | 100:00:   |           |                                        |          |            |           |          |         |          |                            | 90:00:   | •       |          |          |                  |          |         |
| beed & pv                                       | :00:05   | :00:00    | E0:00:    | 00:00    |          | 00:00    | 00:00   | 00:00:   | 00:00:   | 90:00    | 00:00:  | 10:00   | 20:00:   | :00:05    | 00:00:    | 300:00                                 | 90:00:   | 10:00:     | 00:00:    | 00:00:   | 00:00:  | :00:01   | 00<br>00<br>00<br>00<br>00 | 00:00:   | 00:50   | 00:00:   | 00:00:   | 90:00            | 10:00:   |         |
|                                                 | Totals   | 12:00 AM* | 12:90 AM* | 1:00 AM  | 5:30 AM* | 6:00 AM* | 6:30 AM | 7:00 AM* | 7:30 AM* | 8:00 AM* | 8:30 AM | 9:00 AM | 8:30 AM* | 10:00 AM* | 10:30 AM* | 11:00 AM*                              | 11:30 AM | 12:00 P.M* | 12:30 PM* | 1:00 PM* | 1:30 PM | 2:00 PM* | 2:30 PM*                   | 3:00 PM* | 3:30 PM | 4:00 PM* | 4:30 PM* | 5:00 PM*         | 5:30 PM" | ** ** * |
| FFT.                                            |          |           |           |          |          |          |         |          |          |          |         |         | •        | 1         |           | ************************************** | _        |            |           |          |         | Ø2       |                            |          |         |          | 82       |                  |          |         |

#### Rough Performance Analysis

Peak 
$$10:00 - 10:30$$
 a.m., with 100 agents

400 calls

3:45 minutes average service time

2 seconds ASA = Average Speed of Answer

1 abandonment (after 1 second)

$$\mathbf{R} = \lambda \times \mathbf{M}$$

 $= 400 \times 3:45 = 1500 \text{ min.}/30 \text{ min.}$ 

= 50 Erlangs

Occupancy 
$$\rho = R/N$$

$$\rho = R/N$$

$$=50/100=50\%$$

⇒ Quality-Driven Operation (Light-Traffic)

 $\Rightarrow$  Classical Queueing Theory (Erlang-C = M/M/N)

#### Quality-driven100 agents, 50% utilization

#### ⇒ Can increase offered load (more calls) - by how much?

N=100 M = 3:45 min.

Erlang-C

| <u>λ</u> /hr | OCC   | ASA       | % Wait ≤ 2 sec |
|--------------|-------|-----------|----------------|
| 800          | 50%   | 0         | 100%           |
| 1000         | 62.5% | 0         | 100%           |
| 1200         | 75%   | 0         | 99.7%          |
| 1400         | 87.5% | 0:02 min. | 88%            |
| 1500         | 93.8% | 0:15 min. | 60%            |
| 1550         | 96.9% | 0:48 min. | 35%            |
| 1580         | 98.8% | 2:34 min. | 15%            |
| 1585         | 99.1% | 3:34 min. | 12%            |

#### **⇒** Efficiency-Driven Operation (Heavy Traffic)

Intuition: at 100% utilization, N agents = 1 fast agent.

#### Changing N (Staffing Level) in Erlang-C

|               |                          |       | M = 3:45 |                      |
|---------------|--------------------------|-------|----------|----------------------|
| $\lambda$ /hr | $\underline{\mathbf{N}}$ | OCC   | ASA      | % Wait $\leq 2 \sec$ |
| 1585          | 100                      | 99.1% | 3:34     | 12%                  |
| 1599          | 100                      | 99.9% | 59:33    | 1%                   |
| 1599          | 100+1                    | 98.9% | 3:06     | 13%                  |
| 1599          | 102                      | 98.0% | 1:24     | 24%                  |
| 1599          | 105                      | 95.2% | 0:23     | 51%                  |

#### ⇒ New operational regime

Heavy traffic, in the sense that OCC > 95%;

Light traffic, 50% answered immediately.

- ⇒ Rationalized Operation: high service+ efficiency levels
- ⇒ QED Regime = Quality-Driven + Efficiency-Driven

Enabler: Economies of Scale in a Frictionless Environment (e.g. Call Center)

#### Rules of Thumb: Operational Regimes

 $R = \lambda \times M$  units of work per unit of time (pure)

**Efficiency-driven** 

$$(\%{\text{Wait}} > 0) \rightarrow 1)$$

$$N = \lceil R + x \rceil,$$

x > 0 service grade

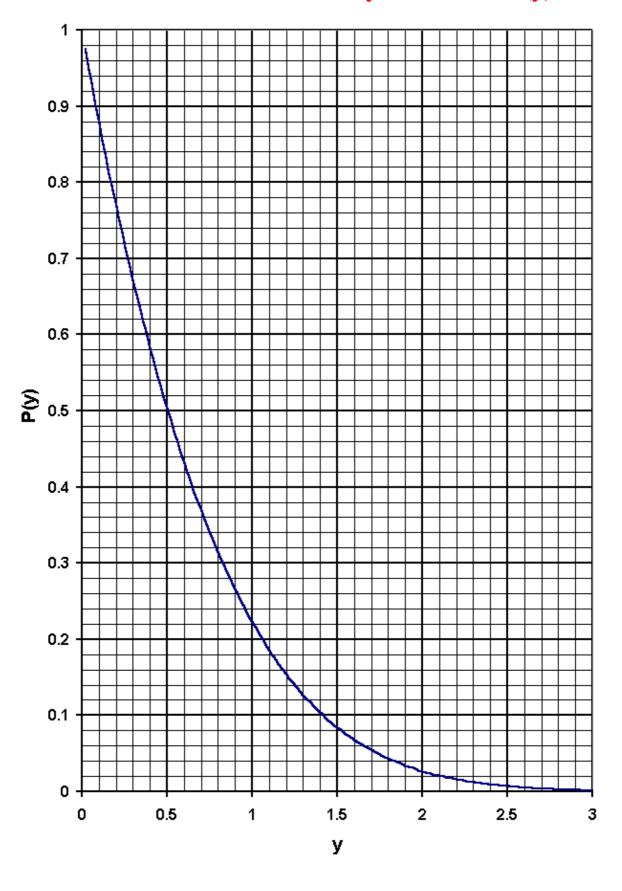
**Quality-driven** 

$$(\%{\text{Wait}} > 0) \rightarrow 0)$$

$$N = \lceil R + z R \rceil$$
,

**QED** regime

$$(\%{\text{Wait}} > 0) \rightarrow \alpha, \ 0 < \alpha < 1)$$


$$\mathbf{N} = \begin{bmatrix} R + y\sqrt{R} \end{bmatrix}$$

$$N = \lceil R + y\sqrt{R} \rceil$$
,  $y > 0$  service grade

 $%{Wait > 0} = P(y)$ : Halfin-Whitt approx.for Erlang-C

How to determine regimes? Strategy, Economics

#### The Halfin-Whitt Delay Function *P(y)*



#### Strategy: Sustain Regime under Pooling

Base: = 300/hr, AHT = 5 min, N = 30 agents
$$R = 300 \times \frac{5}{60} = 25, OCC = 83.3\% ASA = 15 sec$$

$$y = (N-R)/\sqrt{R} = (30-25)/\sqrt{25} = 1, P(1) = 22\%$$

**4** CC: 
$$= 1200$$
, AHT = 5, R = 100; N=?

$$N = 120$$
,  $ASA = .5 \text{ sec}$ ,  $y = (120 - 100)/10 = 4$ 

Efficiency-Driven: maintain ASA at 15 sec.

$$N = 107$$
,  $OCC = 95\%$ ,  $y = 0.8$ 

**QED**: maintain %{Wait>0}) at 22% (y at 1). 
$$N = 100 + 1 \cdot \sqrt{100} = 110$$
, OCC = 91%, ASA = 7 sec

**9** CC: 
$$= 2700$$
, AHT = 5, R = 225

$$Q: N = 271$$

E: 
$$N = 233$$

**QED**: 
$$N = 225 + 1 \cdot \sqrt{225} = 240$$
, OCC = 94%, ASA = 47 sec

# **Economies of Scale**

Base case: M/M/N with parameters  $\lambda$ ,  $\mu$ , N

Scenario:  $\lambda \to m \lambda \ (R \to m R)$ 

|                                                             | Base Case                      | Efficiency-driven                                 | Quality-driven                          | Rationalized                                          |
|-------------------------------------------------------------|--------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------------|
| Offered load                                                | $R = \frac{\lambda}{\mu}$      | mR                                                | mR                                      | mR                                                    |
| Safety staffing                                             | Δ                              | ۵                                                 | $m\Delta$                               | $\sqrt{m}\Delta$                                      |
| Number of agents                                            | $N = R + \Delta$               | $mR + \Delta$                                     | $mR + m\Delta$                          | $mR + \sqrt{m}\Delta$                                 |
| Service grade                                               | $eta = rac{\Delta}{\sqrt{R}}$ | $rac{eta}{\sqrt{m}}$                             | $eta\sqrt{m}$                           | $\beta$                                               |
| $\text{Erlang-C} = P\{\text{Wait>0}\}$                      | P(eta)                         | $P\left(\frac{\beta}{\sqrt{m}}\right) \uparrow 1$ | $P(\beta\sqrt{m})\downarrow 0$          | B(eta)                                                |
| Occupancy                                                   | $\rho = \frac{R}{R + \Delta}$  | $rac{R}{R+rac{\Delta}{m}} \uparrow 1$           | $\rho = \frac{R}{R + \Delta}$           | $rac{R}{R+rac{\Delta}{\sqrt{m}}}\uparrow 1$         |
| $ASA = E\left[\frac{Wait}{E(S)} \mid Wait > 0\right]$       | $\frac{1}{\Delta}$             | $\left[rac{1}{\Delta} = 	ext{ASA} ight]$         | $rac{1}{m\Delta} = rac{	ext{ASA}}{m}$ | $rac{1}{\sqrt{m}\Delta} = rac{	ext{ASA}}{\sqrt{m}}$ |
| $TSF = P\left\{\frac{Wait}{E(S)} > T \mid Wait > 0\right\}$ | $e^{-T\Delta}$                 | $e^{-T\Delta} = TSF$                              | $e^{-mT\Delta} = (\mathrm{TSF})^m$      | $e^{-\sqrt{m}T\Delta} = (TSF)^{\sqrt{m}}$             |

#### Economics: √. Safety-Staffing

Optimal 
$$\mathbf{N}^* \approx \mathbf{R} + \mathbf{y}^* \left(\frac{d}{c}\right) \sqrt{\mathbf{R}}$$

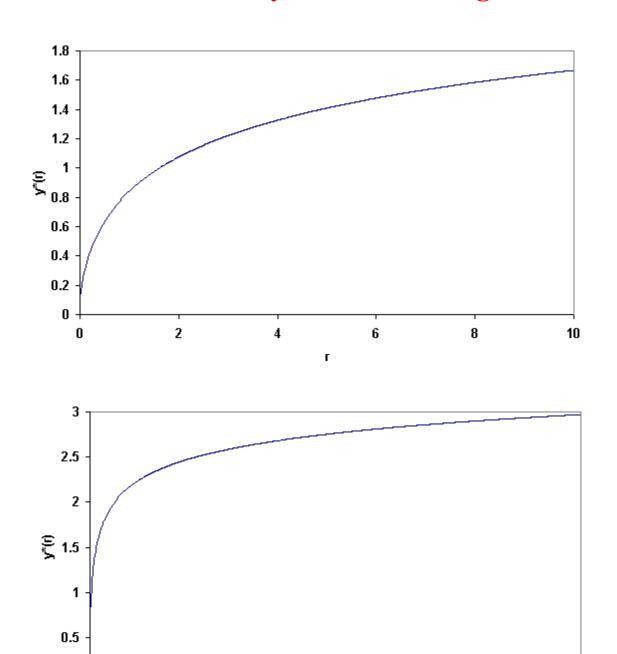
where  $\mathbf{d} = \frac{\text{delay/waiting costs}}{\text{delay/waiting costs}}$ 

**c** = service/staffing costs

Here 
$$y^*(\mathbf{r}) \approx \left(\frac{r}{1 + r(\sqrt{\pi/2} - 1)}\right)^{1/2}$$
,  $0 < r < 10$ 

$$\approx \left(2 \ln \frac{r}{\sqrt{2\pi}}\right)^{1/2}$$
, r large.

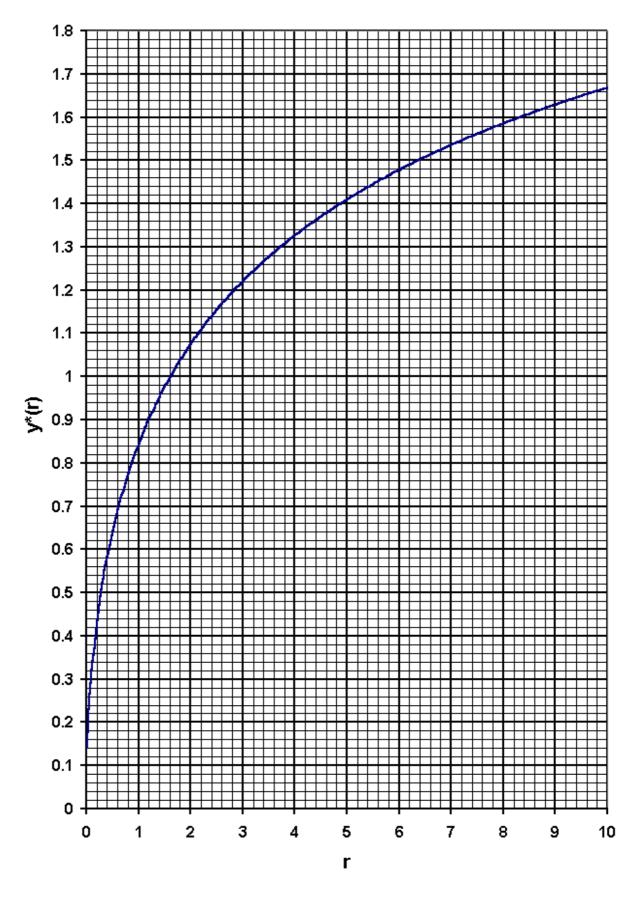
Performance measures:  $\Delta = y^* \sqrt{R}$  safety staffing


%{Wait > 0} 
$$\approx \mathbf{P}(\mathbf{y}^*) = \left[1 + \frac{y^*\phi(y^*)}{\varphi(y^*)}\right]^{-1}$$
 Erlang-C

TSF = %{\frac{\text{Wait}}{E(S)} > T \Big| \text{Wait} > 0} = \text{e}^{-T\Delta}

ASA = E\left[\frac{\text{Wait}}{E(S)} \text{Wait} > 0\right] = \frac{1}{\Delta}

Occupancy = 1 - \frac{\Delta}{\Delta} \approx 1 - \frac{\mathcal{y}^\*}{\sqrt{\Delta}}


## **Square-Root Safety Staffing:** $N = R + y^*(r)\sqrt{R}$ $r = \cos t$ of delay / $\cos t$ of staffing



Г

o + 

#### $y^*(r)$ , $r = \cos t$ of delay / $\cos t$ of staffing



#### √ Safety-Staffing: Overview

#### Parameters

Average service time M seconds

Arrival rate  $\lambda$  calls per hour

 $\Rightarrow$  Offered load  $\mathbf{R} = \lambda \times M / 3600$  hours work per hour

Delay costs d per customer-min

Staffing costs c per agent-hour

 $\Rightarrow \frac{\text{Waiting}}{\text{Staffing}} \qquad \qquad \mathbf{r} = \frac{d}{c} \times 60$ 

• Optimal  $N^* \approx R + y^*(r)\sqrt{R}$ 

**△**: safety-staffing

• Simple, robust, accurate, relevant, instructive

#### √ Safety-Staffing: Overview (cont'd)

Simple Rule-of-thumb: 
$$\mathbf{N}^* \approx \mathbf{R} + \mathbf{y}^* \left(\frac{d}{c}\right) \sqrt{\mathbf{R}}$$

Robust: covers also efficiency- and quality-driven

Accurate: to within 1 agent (from few to many 100's) typically

**Relevant**: Medium to Large CC do perform as above.

**Instructive**: In large call centers, high resource utilization and service levels could **coexist**, which is enabled by **economies of scale** that dominate stochastic variability.

Example: 100 calls per minute, at 4 min. per call

 $\Rightarrow$  R = 400, least number of agents

$$\frac{\Delta}{R} \approx \frac{y^*(r)}{\sqrt{R}} = \frac{y^*}{20}$$
, with  $y^*: 0.5-1.5$ ;

Safety staffing: 2.5%-7.5% of R=Min!  $\Rightarrow$  "Real" Problem?

| <u>Performance</u> : | $N^*$           | % wait > 20 sec. | <u>Utilization</u> |
|----------------------|-----------------|------------------|--------------------|
|                      | 400 + 11        | 20%              | 97%                |
|                      | 400 + <b>29</b> | 1%               | 93%                |

#### Scenario Analysis: A "Best-Practice" Call Center

- 15,000 callers per day, with 1,800 calls at peak hour (avg);
- 4 min. service time (avg);
- Significant service variability: 5% served over 12 min. (avg);
- 90% servers' utilization (avg).
- No "busy" signals, mere seconds waits, no abandonment.

#### Peak hour analysis:

$$R = \lambda \times M = 1800 \times 4/60 = 120$$
 Erlangs offered-load  $N = R/\rho = 120/0.9 = 133.3$  agents  $\Delta = N - R = 13.3$  safety staffing  $y^* (d/c) = \Delta / \sqrt{R} = 13.3 / \sqrt{120} = 1.22$   $\frac{d}{c} = (y^*)^{-1} (1.22) \approx 3$ , service index

1 hr of customers' wait is valued at 3 times hr wage of agents

#### Performance(via Erlang -C):

- 
$$\%$$
(Wait > 0) = P(1.22) = 15% delayed  
-  $\%$ (Wait > 20 sec) = 5% delayed over 20 sec.  
- ASA = E[Wait] = 2.7 sec average wait  
- ASA | Wait > 0 = 18 sec average wait of delayed

#### Scenario Analysis: 80:20 Rule (Large Call Center)

Prevalent std: at least 80% customers wait less than 20 sec.

Formally: %(Wait > 20 sec.) < 0.2

• Base Case:  $\lambda = 100$  calls per min (avg) M = 4 min. service time (avg) R = 400 Erlangs offered load (large)

$$y^*(\frac{d}{c}) = 0.53$$
, by %{Wait > 20 sec.} = P( $y^*$ )  $e^{-1.67y^*} = 0.2$ 

Hence:  $N^* = 400 + 0.53 \sqrt{400} = 411$ , by  $\sqrt{\cdot}$  safety-staffing

And 
$$\frac{d}{c} = (y^*)^{-1} (0.53) = 0.32$$
, by inverting  $y^*$ 

Low valuation of customers' time, at  $\frac{1}{3}$  of servers' time, yet reasonable 80:20 performance? enabled by scale!

• What if 
$$\frac{d}{c} = 5$$
?

$$N^* = 429$$
 agents (vs. 411 before)

Agents' accessibility (idelness) = 7% (vs. 3% before)

Hence, 1 out of 100 waits over 20 sec. (vs. 1 out of 5)

#### Scenario Analysis: on Economies of Scale

"Best Practice" call center

 $\lambda = 1,800$  calls per peak hour; M = 4 min.

$$R = 1800 \times \frac{4}{60} = 120$$
 Erlangs offered-load

• Base Case: How many agents are required so that, on avg, only 1 out of 100 wait more than 20 sec.?  $N^* = 140$ 

$$\Delta = 140 - 120 = 20 \text{ (safety staffing)}$$

$$y^* \left(\frac{d}{c}\right) = \frac{\Delta}{\sqrt{R}} = \frac{20}{\sqrt{120}} = 1.75$$

 $\frac{d}{c}$  = 12.5, namely customers' wait is highly valued.

• What if M = 30 sec. (as in 411 services),  $N^* = 126$  suffices for the above performance, which implies

$$\Rightarrow y^* \left(\frac{d}{c}\right) \approx \frac{6}{\sqrt{120}} = 0.53, \quad \text{or} \quad \frac{d}{c} = 0.32.$$

This equals the performance of a **large** call center (R = 400), **but** with E(S) = 4 min. (vs. only 30 sec. here).

#### Scenario Analysis: "Satisfization" vs. Optimization

Theory: The least N that guarantees  $%{Wait > 0} < \varepsilon$  is close to  $N^* = R + P^{-1}(\varepsilon)\sqrt{R}$  (again  $\sqrt{\cdot}$  safety-staffing).

(Folklore: 
$$N^* = R + \overline{\phi}^{-1}(\varepsilon)\sqrt{R}$$
,  $\overline{\phi} = 1 - \phi$ ,

based on normal approximations to infinite-servers models.

The two essentially coincide for small  $\varepsilon$ .)

Example: 
$$\lambda = 1,800$$
 calls at peak hour (avg)

 $M = 4$  min. service time (avg)

 $R = 1800 \times \frac{4}{60} = 120$  Erlangs offered-load

Service level constraint: less than 15% delayed, equivalently at least 85% answered immediately.

$$\Rightarrow N^* = R + P^{-1}(0.15)\sqrt{R} = 120 + 1.22\sqrt{120} = 133 \text{ agents}$$

$$\Rightarrow$$
 %{Wait > 20 sec.} = 5% delayed over 20 sec.

$$ASA = E[Wait] = 2.7 \text{ sec.}$$
 average wait

$$ASA \mid Wait > 0 = 18 \text{ sec.}$$
 average wait of delayed

#### Scenario Analysis: Reasonable Service Level?

Theory: The least N that guarantees  $%{Wait > 0} < \varepsilon$  is close to  $N^* = R + P^{-1}(\varepsilon)\sqrt{R}$  (again  $\sqrt{\cdot}$  safety-staffing).

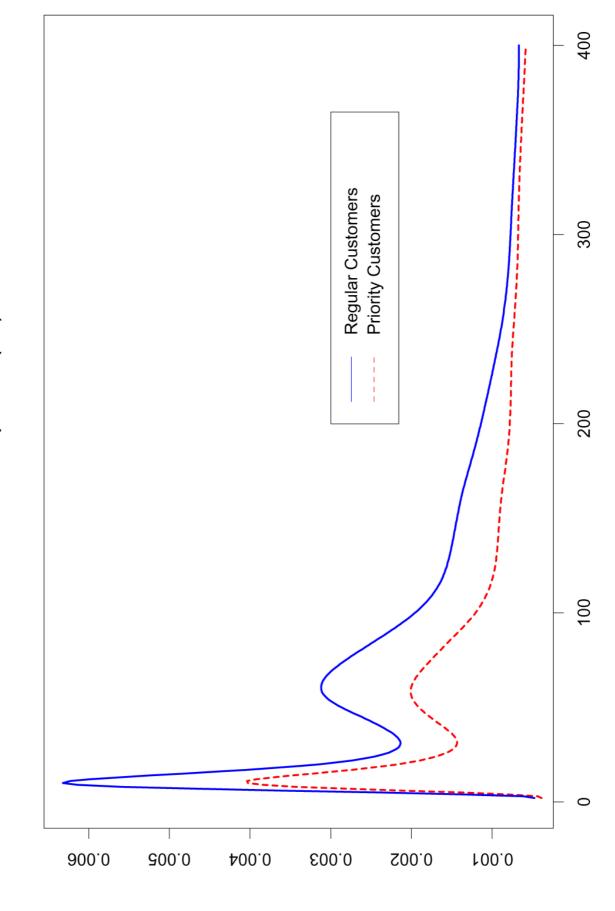
Example:  $\lambda = 1,800$  calls at peak hour (avg) M = 4 min. service time (avg)  $R = 1800 \times \frac{4}{60} = 120$  Erlangs offered-load

Service level constraint: 1 out of 100 delayed (avg), namely 99% answered immediately.

$$\Rightarrow N^* = R + P^{-1} (0.01) \sqrt{R} = 120 + 2.38 \sqrt{120} = 146 \text{ agents}$$

$$\Rightarrow \frac{d}{c} = (y^*)^{-1} (2.38) = 75 \text{: very high se rvice index}$$

Valuation of customers' time as being worth 75-fold of agents' time seems reasonable only in extreme circumstances:


- Cheap servers (IVR)
- Costly delays (Emergency)

#### Charlotte – Center

6/13/00 - Tue

| Time  | Recvd  | Answ   | Abn % | ASA | AHT | Occ %  | On     | On    | Sch   | Sch     |
|-------|--------|--------|-------|-----|-----|--------|--------|-------|-------|---------|
|       |        |        |       |     |     |        | Prod%  | Prod  | Open  | Avail % |
| Total | 20.577 | 10.070 | 2.00/ | 20  | 207 | 05 10/ | 05 40/ | FTE   | FTE   | 05.00/  |
| Total | 20,577 | 19,860 | ~3.0% | 30  | 307 | 95.1%  | 85.4%  | 222.7 | 234.6 | 95.0%   |
| 8:00  | 332    | 308    | 7.2%  | 27  | 302 | 87.1%  | 79.5%  | 59.3  | 66.9  | 88.5%   |
| 8:30  | 653    | 615    | 5.8%  | 58  | 293 | 96.1%  | 81.1%  | 104.1 | 111.7 | 93.2%   |
| 9:00  | 866    | 796    | 8.1%  | 63  | 308 | 97.1%  | 84.7%  | 140.4 | 145.3 | 96.6%   |
| 9:30  | 1,152  | 1,138  | 1.2%  | 218 | 303 | 90.8%  | 81.6%  | 211.1 | 221.3 | 95.4%   |
| 10:00 | 1,330  | 1.286  | 3.3%  | 22  | 307 | 98.4%  | 84.3%  | 223.1 | 229.0 | 97.4%   |
| 10:30 | 1,364  | 1,338  | 1.9%  | 33  | 296 | 99.0%  | 84.1%  | 222.5 | 227.9 | 97.6%   |
| 11:00 | 1,380  | 1,280  | 7.2%  | 34  | 306 | 98.2%  | 84.0%  | 222.0 | 223.9 | 99.2%   |
| 11:30 | 1,272  | 1,247  | 2.0%  | 44  | 298 | 94.6%  | 82.8%  | 218.0 | 233.2 | 93.5%   |
| 12:00 | 1,179  | 1,177  | 0.2%  | 1   | 306 | 91.6%  | 88.6%  | 218.3 | 222.5 | 98.1%   |
| 12:30 | 1,174  | 1,160  | 1.2%  | 10  | 302 | 95.5%  | 93.6%  | 203.8 | 209.8 | 97.1%   |
| 13:00 | 1,018  | 999    | 1.9%  | 9   | 314 | 95.4%  | 91.2%  | 182.9 | 187.0 | 97.8%   |
| 13:30 | 1,061  | 961    | 9.4%  | 67  | 306 | 100.0% | 88.9%  | 163.4 | 182.5 | 89.5%   |
| 14:00 | 1,173  | 1,082  | 7.8%  | 78  | 313 | 99.5%  | 85.7%  | 188.9 | 213.0 | 88.7%   |
| 14:30 | 1,212  | 1,179  | 2.7%  | 23  | 304 | 96.6%  | 86.0%  | 206.1 | 220.9 | 93.3%   |
| 15:00 | 1,137  | 1,122  | 1.3%  | 15  | 320 | 96.9%  | 83.5%  | 205.8 | 222.1 | 92.7%   |
| 15:30 | 1,169  | 1,137  | 2.7%  | 17  | 311 | 97.1%  | 84.6%  | 202.2 | 207.0 | 97.7%   |
| 16:00 | 1,107  | 1,059  | 4.3%  | 46  | 315 | 99.2%  | 79.4%  | 187.1 | 192.9 | 97.0%   |
| 16:30 | 914    | 892    | 2.4%  | 22  | 307 | 95.2%  | 81.8%  | 160.0 | 172.3 | 92.8%   |
| 17:00 | 615    | 615    | 0.0%  | 2   | 328 | 83.0%  | 93.6%  | 135.0 | 146.2 | 92.3%   |
| 17:30 | 420    | 420    | 0.0%  | 0   | 328 | 73.8%  | 95.4%  | 103.5 | 116.1 | 89.2%   |
| 18:00 | 49     | 49     | 0.0%  | 14  | 180 | 84.2%  | 89.1%  | 5.8   | 1.4   | 416.2%  |

Hazard Rate: Empirical (Im)Patience



#### Abandonment's Impact (+ Busy Signals)

| F    | <sup>o</sup> erforma | nce Profil             | ler                         | <u>Staff</u>             | ing Profiler        |                        | <u>Settir</u>        | i <u>gs</u>   | <u> </u>         | Edit Account   |                               | Send                             | Feedbac                     | <u>k</u>                   |
|------|----------------------|------------------------|-----------------------------|--------------------------|---------------------|------------------------|----------------------|---------------|------------------|----------------|-------------------------------|----------------------------------|-----------------------------|----------------------------|
| Perf | ormano               | e Profile              | er Tool - F                 | ind out                  | the Perfo           | rmance                 | Level of you         | ır Call Cen   | iter.            |                |                               |                                  |                             |                            |
|      |                      |                        | er Tool allo<br>Call Cente  | -                        |                     |                        | timize the P         | erformance    | Level of y       | our Call Cen   | ter.                          |                                  |                             |                            |
| N    | umber o              | f Agents               | in your ca                  | II center                |                     | 164                    | Agents.              | Features      | : Tru            | unks,Abando    | ns.                           |                                  |                             |                            |
| А    | verage <b>T</b>      | ime to H               | landle one                  | e call (m                | m:ss)               | 5                      | :[6                  | Basic Int     | terval: 30       |                |                               |                                  |                             |                            |
| Ν    | umber o              | f Calls pe             | er 30 minu                  | tes                      |                     | 1061                   | Calls.               | Target Ti     | i <u>me</u> : No | t Defined.     |                               |                                  |                             |                            |
| Α    | verage c             | allers' Pa             | ntience (m                  | ım:ss)                   |                     | 12                     | :0                   |               |                  |                |                               |                                  |                             |                            |
| N    | umber o              | f Trunks               | in your ca                  | II center                |                     | 264                    | Trunks.              |               |                  |                |                               |                                  |                             |                            |
|      | Add To               | Table                  | Con                         | ipute                    |                     |                        |                      |               |                  |                |                               |                                  |                             |                            |
|      | Basic<br>Interval    | Number<br>of<br>Agents | Average<br>Handling<br>Time | Calls<br>per<br>Interval | Average<br>Patience | Number<br>of<br>Trunks | Agent's<br>Occupancy | %<br>Answered | %<br>Blocked     | %<br>Abandoned | Average<br>Trunks<br>Utilized | Average<br>Speed<br>of<br>Answer | Average<br>Time in<br>Queue | Average<br>Queue<br>Length |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 264                    | 99.9%                | 90.9%         | 0.0%             | 9.1%           | 202.6                         | 01:08.2                          | 01:05.8                     | 38.8                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 264                    | 99.9%                | 90.9%         | 0.0%             | 9.1%           | 202.6                         | 01:08.2                          | 01:05.8                     | 38.8                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 253                    | 99.9%                | 90.8%         | 0.1%             | 9.1%           | 202.3                         | 01:07.6                          | 01:05.3                     | 38.5                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 220                    | 99.9%                | 90.8%         | 1.7%             | 7.5%           | 195.8                         | 00:56.8                          | 00:55.1                     | 32.0                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 209                    | 99.8%                | 90.8%         | 2.9%             | 6.3%           | 190.6                         | 00:48.0                          | 00:46.8                     | 26.8                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 165                    | 96.9%                | 88.1%         | 11.9%            | 0.0%           | 159.0                         | 00:00.2                          | 00:00.2                     | 0.1                        |
|      | 30                   | 164                    | 05:06                       | 1061                     | 12:00               | 1-                     | 99.9%                | 90.8%         | -                | 9.2%           | -                             | 01:08.3                          | 01:06.0                     | 38.9                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 10:00               | -                      | 99.9%                | 90.8%         | -                | 9.2%           | -                             | 00:57.1                          | 00:55.2                     | 32.6                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 05:00               | 15                     | 99.6%                | 90.5%         | -                | 9.5%           | -                             | 00:29.1                          | 00:28.4                     | 16.7                       |
|      | 30                   | 164                    | 05:06                       | 1061                     | 01:00               | -                      | 98.5%                | 89.6%         | -                | 10.4%          | -                             | 00:06.1                          | 00:06.3                     | 3.7                        |
|      | 30                   | 219                    | 05:06                       | 1179                     | -                   | -                      | 91.5%                | -             | -                | -              | -                             | 00:02.2                          | -                           | 1.4                        |
|      | 30                   | 218                    | 05:06                       | 1179                     | -                   | 12                     | 91.9%                | -             | -                |                | -                             | 00:02.6                          | -                           | 1.7                        |
|      | 30                   | 135                    | 05:28                       | 615                      | -                   | -                      | 83.0%                | -             | -                | -              |                               | 00:00.3                          |                             | 0.1                        |
| De   | elete All            |                        | elete Sele                  | cted                     |                     |                        |                      |               |                  |                |                               |                                  |                             |                            |
| -    | Current              | Result                 | - Se                        | ttings                   | - Call              | Center P               | arameters            | Perfo         | ormance l        | ndicators      |                               |                                  |                             |                            |
|      | ht @ 2000            | 4CallCent              | ers.com. All r              | ights reser              | ved.                |                        |                      |               |                  |                |                               |                                  |                             |                            |

#### Erlang-A: Input, Inference

#### Input parameters:

Number of Agents (N): in ACD data

Arrival rate ( ): ACD

Average Service time (M): ACD

Average Patience (T) estimated from ACD data via:

$$T = \frac{(\# \text{ served}) \times \left(\text{average wait of served}\right) + (\# \text{ abandon}) \times \left(\text{average wait of abandon}\right)}{\# \text{ abandon}}$$

$$= \frac{\text{Average wait (overall)}}{\text{% abandon}}$$

[can be estimated via linear regression of (Avg Wait, % abandon)]

For square-root safety staffing, which does apply here,

$$\mathbf{y} = \frac{N - R}{\sqrt{R}}$$
 , possibly negative (via N = R + y  $\sqrt{R}$ )

where  $\mathbf{R} = \lambda \cdot \mathbf{M}$  is the Offered Workload

#### Erlang-A: Pooling in the QED-Regime

Base Case: Call Center in the QED-Regime

with

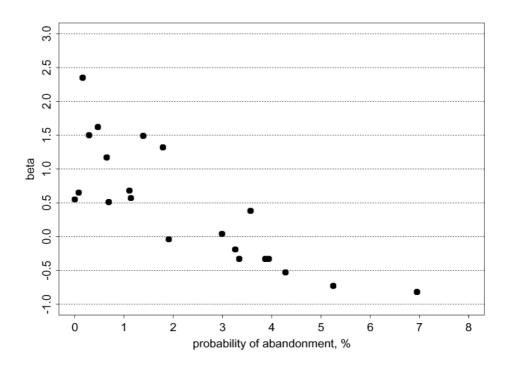
Forecast: Pooling m call centers into a single one (m = 4)(Load increases by a factor of m.)

Sustain present service level (remain QED) via:

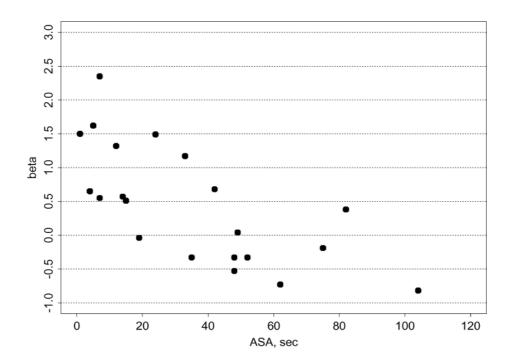
- Observe 
$$N_{old}$$
 (110)

- Calculate offered load 
$$R_{old} = \lambda \times M$$
 (100)

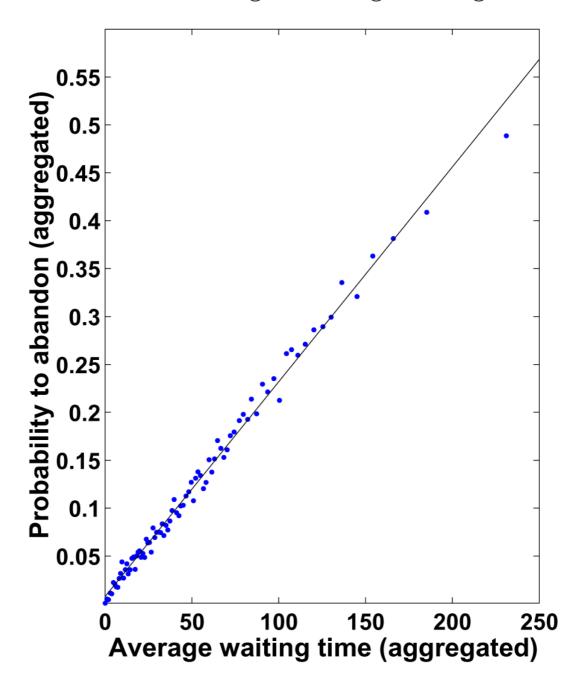
- Calculate service grade 
$$y = (N - R)\sqrt{R}$$
 (1)


- New staffing level 
$$N = mR + \sqrt{mR}$$
 (400+20)

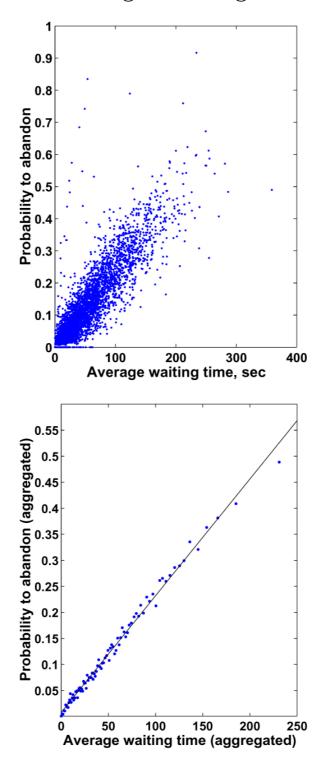
Expect new performance as follows:


 $%{Wait > 0}$  unchanged

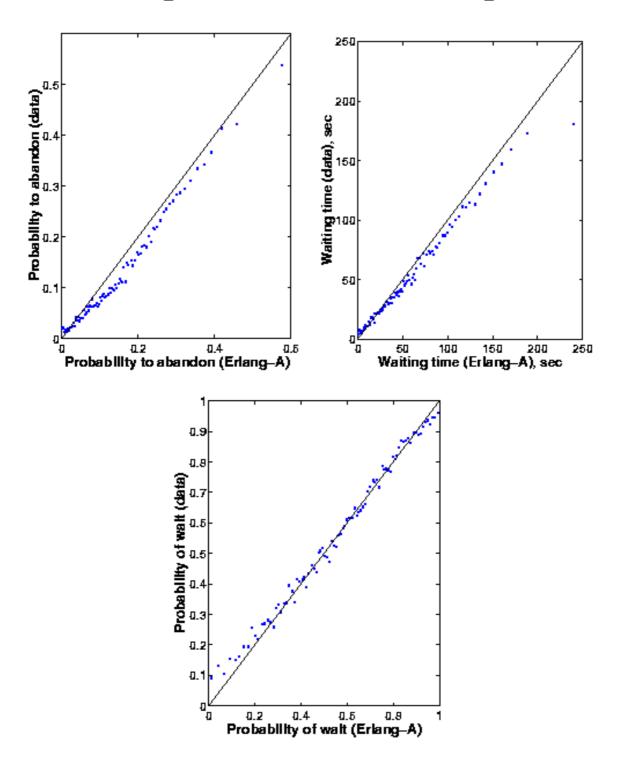
 $%{Abandon} & ASA improved by factor \sqrt{m} : EOS (2)$ 


 $\label{eq:Figure 5} \mbox{American data. Beta vs $P\{Ab\}$}$ 




 $\begin{array}{c} {\bf Figure~6} \\ {\bf American~data.~Beta~vs~ASA} \end{array}$ 




#### Fraction Abandoning vs. Average Waiting Time



## Fraction Abandoning vs. Average Waiting Time



Erlang-A Formulae vs. Data Averages



## PATIENCE INDEX

• How to Define? Measure? Manage? (via Israeli Data Base)

| <u>Statistics</u> | Time Till | <u>Interpretation</u> |  |  |  |
|-------------------|-----------|-----------------------|--|--|--|
| 360K served (80%) | 2 min.    | ? must = expect       |  |  |  |
| 90K abandon (20%) | 1 min.    | ? willing to wait     |  |  |  |

"Time willing to wait" of served is **censored** by their "wait".

"Uncensoring" (simplified)

**Willing to wait** 
$$1 + 2 \times \frac{360 \text{K}}{90 \text{K}} = 1 + 2 \times 4 = 9 \text{ min.}$$

**Expect to wait** 
$$2 + 1 \times \frac{90 \text{K}}{360 \text{K}} = 2 + 1 \times \frac{1}{4} = 2.25 \text{ min.}$$

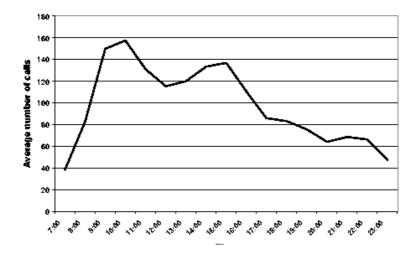
Patience Index = 
$$\frac{\text{time willing}}{\text{time expect}} = 4 = \frac{\text{# served/wait} > 0}{\text{# abandon/wait} > 0}$$

definition measure

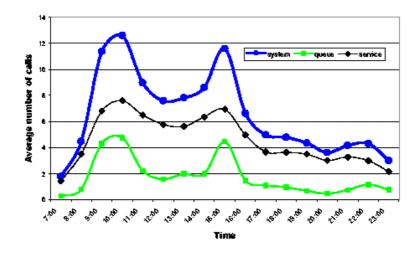
• Supported by ongoing research (Wharton).

# **Designing Call/Contact Centers**with Impatient Customers:

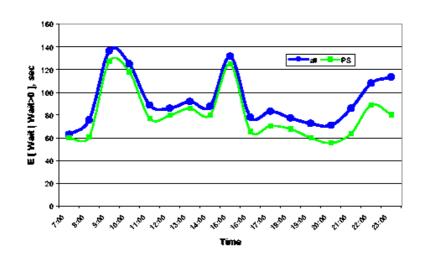
## 10 Years History, or A Modelling Spectra


- 1. Kella, Meilijson: Practice ⇒ Abandonment important
- 2. Shimkin, Zohar: No data ⇒ Rational patience in Equilibrium
- 3. Carmon, Zakay: Cost of waiting  $\Rightarrow$  Psychological models
- 4. Garnett, Reiman: Palm/Erlang-A to replace Erlang-C/B as the standard Steady-state model
- Massey, Reiman, Rider, Stolyar: Predictable variability ⇒
   Fluid models, Diffusion refinements
- 6. Ritov, Sakov, Zeltyn: Finally Data ⇒ Empirical models
- 7. Brown, Gans, Haipeng, Zhao: Statistics ⇒ Queueing Science
- 8. Garnett, Atar, Reiman: Skills-based routing ⇒ Control models
- 9. Nakibly, Meilijson, Pollatchek: Prediction of waiting ⇒Online Models and Real Time Simulation
- 10. Garnett: Practice ⇒ 4CallCenters.com

# Staffing the "Modern" Basic Call Center


- 1. Erlang-C  $N \approx R + y\sqrt{R}$ , y > 0
  - Conceptual: Halfin & Whitt
  - Dimensioning: Borst & Reiman  $\Rightarrow$  y\*(d/c)
- 2. Erlang-A (Abandonment, with  $-\infty < y < \infty$ )
  - Conceptual: Garnett & Reiman
  - Dimensioning: (Borst & Reiman) in progress
- 3. Time-Varying (Non-homogeneous Poisson arrivals)
  - Ample-server heuristics: Jennings & Massey & Whitt
  - Conceptual part (Massey & Rider) in progress
  - Dimensioning: open
- 4. General Service Time (for all the above)
  - Conceptual supported by Puhalski & Reiman, M/PH/N
  - M/D/N (Jelenkovic & Momcilovic) in progress
  - M/G/N open and challenging (measure-valued limit)

# Time-Varying Queues: Predictable Variability


## Arrivals



# Queues



# Waiting



## BONUS SUPPLEMENT: E-TAILING'S FUTURE GEN www.businessweek.com isiness OCTOBER 23, 2000 A PUBLICATION OF THE McGRAW-HILL COMPANIES Mutual **Funds** How to avoid a big tax bill Wall Street Will tech's slide Companies know just how good a keep spreading? customer you are—and unless you're **Dot-coms** a high roller, they The search for would rather new business lose you models than fix your Managed problem Care **Employers** seek a new solution

#BXBBGDD\*\*\*\*\*CAR-RT\_SORT\*\*\*B083 |...||...||...||...||...||...||...|| #06032865631763#J010201\_018489

52/INDUSTRIAL

BIRMINGHAM AL

ENGINEERING LIBRARY PO BOX 830657 0830

103

35283-0657

AOL Keyword: BW

## Common Performance

BCMS SKILL REPORT Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999 Skill: 37 Skill Name: !BA AUTH1 Acceptable Service Level: 30 AVG AVG AVG TOTAL TOTAL % IN ACD SPEED ABAND ABAND TALK AFTER FLOW FLOW AUX/ AVG SERV DAY CALLS ANS CALLS TIME TIME CALL IN OUT OTHER STAFF LEVL 3/04/99 637 0:19 219 0:26 1:57 92:05 D 0 4310:06 8.7 66 3/05/99 849 0:06 135 0:06 1:35 179:58 0 0 4299:43 11.3 3/06/99 1330 0:11 363 0:13 1:42 280:22 0 0 5592:29 13.2 73 3/07/99 1213 0:12 358 0:18 1:46 226:20 0 0 4830:15 11.5 72 3/08/99 631 0:26 382 0:33 1:57 150:50 Ω 0 3743:04 7.9 49 3/09/99 570 0:40 487 0:43 1:52 148:41 0 0 3979:04 6.7 38 3/10/99 512 0:29 0:28 1:41 292 243:06 0 0 3046:00 7.9 50 SUMMARY 5742 0:18 2236 0:26 1:46 1321:22 Ω 0 \*\*\*\*\* 9.6 63

### Arrivals

## Abandons 40 %

Switch Name: FDC/HAMPDEN Date: 7:00 pm WED MAR 10, 1999 Skill: 46

| Skill Name | : !BA . | AUTHOR | IZATIO | There were |          |         |      | able : | Service 1 | Level: | 30   |
|------------|---------|--------|--------|------------|----------|---------|------|--------|-----------|--------|------|
|            |         | AVG    |        | AVG        | AVG      | TOTAL   |      |        | TOTAL     |        | % IN |
|            | ACD     | SPEED  | ABAND  | ABAND      | TALK     | AFTER   | FLOW | FLOW   | AUX/      | AVG    | SERV |
| DAY        | CALLS   | ANS    | CALLS  | TIME       | TIME     | CALL    | IN   | OUT    | OTHER     |        |      |
| 3/04/99    | 1185    | 0:22   | 479    | 0:31       | 2:08     | 190:16  | 0    | 0      | 4213:22   | 8.4    | 61   |
| 3/05/99    | 1805    | 0:05   | .308   | 0:04       | 1:38     | 337:20  | 0    | 0      | 4299:43   | 11.3   | 84   |
| 3/06/99    | 2437    | 0:12   | 642    | 0:12       | 1:51     | 444:03  | 0    | a      | 5592:29   | 13.2   | 73   |
| 3/07/99    | 2260    | 0:13   | 558    | 0:14       | 1:46     | 326:33  | 0    |        | 4830:14   | 11.5   | 74   |
| 3/08/99    | 1260    | 0:35   | 676    | 0:28       | 2:06     | 308:19  | 0    |        | 3743:04   | 7.9    | 48   |
| 3/09/99    | 1126    | 0:40   | 653    | 0:34       | 2:10     | 250:40  | 0    |        | 3979:04   | 6.7    | 44   |
| 3/10/99    | 890     | 0:30   | 472    | 0:32       | 2:16     | 162:13  | 0    |        | 3046:00   | 7.9    | 51   |
|            |         |        |        |            | <b>-</b> |         |      |        |           |        |      |
| SUMMARY    | 10963   | 0:19   | 3788   | 0:22       | 1:55     | 2019:24 | 0    | 0      | ****:**   | 9.6    | 65   |

30%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN Date: 7:01 pm WED MAR 10, 1999

Skill: 33

| Skill Nam | e: GA A | uthori: | zation |       |      | A       | ccepta | able : | Service 1 | Level: | 3.0   |
|-----------|---------|---------|--------|-------|------|---------|--------|--------|-----------|--------|-------|
|           |         | AVG     |        | AVG   | AVG  | TOTAL   | 100    |        | TOTAL     |        | % IN  |
|           | ACD     | SPEED   | ABAND  | ABAND | TALK | AFTER   | FLOW   | FLOW   | AUX/      | AVG    | SERV  |
| DAY       | CALLS   | ans     | CALLS  | TIME  | TIME | CALL    | IN     | OUT    | OTHER     |        | LEVI. |
| 3/04/99   | 1248    | 0:27    | 61     | 0:42  | 1:57 | 330:04  | 0      | 0      | 4390:04   | 9.5    | 72    |
| 3/05/99   | 1521    | 0:14    | 37     | 0:20  | 1:58 | 353:48  | 0      | 0      | 6035:35   | 13.0   | 85    |
| 3/06/99   | 2388    | 0:20    | 130    | 0:34  | 2:10 | 550:16  | 0      | 0      | 6369:58   | 14.4   | 76    |
| 3/07/99   | 1748    | 0:14    | 66     | 0:30  | 2:08 | 432:16  | 0      | Ö      | 4616:11   | 11.7   | 82    |
| 3/08/99   | 925     | 0:18    | 50     | 1:00  | 1:53 | 191:06  | 0      |        | 3835:19   | 8.4    | 81    |
| 3/09/99   | 856     | 0:26    | 57     | 0:53  | 1:54 | 125:16  | Ō      |        | 4388:02   | 8.1    | 73    |
| 3/10/99   | 959     | 1:15    | 125    | 1:55  | 1:48 | 186:44  | ā      |        | 4198:39   | 8.9    | 53    |
|           |         |         |        |       |      |         |        |        |           |        |       |
| SUMMARY   | 9645    | 0:25    | 526    | 0:57  | 2:02 | 2169:30 | 0      | 0      | ****:**   | 10.6   | 76    |

6%

BCMS SKILL REPORT

Switch Name: FDC/HAMPDEN

Date: 7:02 pm WED MAR 10, 1999

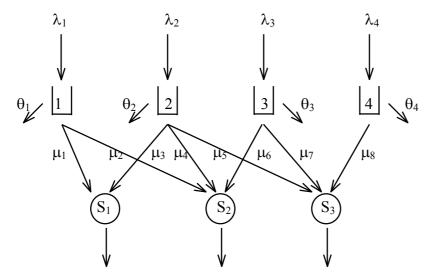
# Beyond the "Basic" Call Center

- Skills-based Routing:
  - Efficiency-drive (Stolyar): index control; ~ easye.g., e-mail, chat(?)
  - QED (Atar, Reiman):  $\sqrt{\cdot}$  staffing; difficult
- Networks
  - IVR + ACD; Retrials
  - Hierarchical Help Desk
  - Distributed Call Centers
- Information
- Profit Contact Centers: \$-driven multi-media interface
- Forecasting (Brown, Haiping, Zhao): very important

# An Introduction to Skills-Based Routing and its Operational Complexities

By Ofer Garnett and Avishai Mandelbaum Technion, ISRAEL

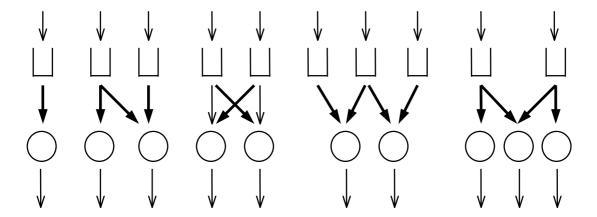
(Full Version)


#### Contents:

- 1. **Introduction**
- 2. N-design with single servers
- 3. X-design with multi-server pools and impatient customers
- 4. Technical Appendix: Simulations the comutational effort

<u>Acknowledgement</u>: This teaching-note was written with the financial support of the Fraunhofer IAO Institute in Stuttgart, Germany. The authors are grateful to Dr. Thomas Meiren and Prof. Klaus-Peter Fähnrich

#### Introduction


Consider the following multi-queue parallel-server system (animated, for example, by a telephone call-center):



Here the  $\lambda$ 's designate arrival rates, the  $\mu$ 's service rates, the  $\theta$ 's abandonment rates, and the S's are the number of servers in each server-pool.

Such a design is frequently referred to as a **Skills-Based** design since each queue represents "customers" requiring a specific type of "service", and each server-pool has certain "skills" defining the services it can perform. In the diagram above, the arrows leading into a given server-pool define its skills. (For example, a server from pool 2 can serve customers of type 3 at the of rate  $\mu_6$  customers per unit of time).

Some canonical designs are: I (I<sup>k</sup>), N, X, W, M (V).



## What Next

- Feedback: for work, for whom ?
   for classroom, for whom ?
   for Research ?
   ⇒ face-to face, note, e-mail = avim@tx.technion.ac.il
- Register at <u>www.4CallCenters.com</u>, and play some
   (eg. Review lecture, do Scenarios)
- Visit <a href="http://ie.technion.ac.il/serveng">http://ie.technion.ac.il/serveng</a>, then do
  - Homework 7: Gazolco
  - Homework 11: Staffing a Small, Medium, Large CC
- Feedback on Homework (⇒ I'll send solution)
- Download Charisma, and play some (eg. Redo HW).

### Homework 7: GazolCo's Call Center\*

Ten agents are busy answering calls at GazolCo's call center. Most calls are by customers calling to pay or inquire about their gas bills. Looking through recent ACD reports you see that the average handling time of each call is approximately 3.5 minutes. Methaney, the call center's manager, is sitting behind her desk playing with the screen saver's settings while awaiting the opening remarks of your analysis. As for you - your head is all clouded and you feel a bit queasy, but gradually you begin to recall a long forgotten assignment you once did for your Service Engineering course...

... calls are answered by 10 agents, the average handling time being 3.5 minutes. Normally the call volume is 150 calls per hour.

Start out with the iProfiler's "Performance Profiler" or Charisma's "Performance Profile".

1. Use the Erlang-C (M/M/N) model (no features) to answer the following questions:

Record the change in the average speed of answer and agent's occupancy as the call volume gradually increases from 150 to 180 calls per hour (test at least 4 values). Can you explain the phenomenon you encounter in terms of system stability?

- 2. Continue your analysis using the Erlang-A (M/M/N+M) model (i.e. the Erlang-C model with the addition of exponential abandonment). (Select the "abandons" feature).
  - a. Set the average patience parameter to a value that seems reasonable (keep in mind that the average handling time is 3.5 minutes). What value have you selected?
  - b. Repeat 1 and compare the results. What are the "positive" side-effects of abandonment?
  - c. How do you expect the following performance indicators to change (increase/decrease) as the average patience parameter increases?
    - I. % Abandoned
    - II. Average speed of answer
    - III. Average queue length
    - IV. Agent's occupancy

Test this with values of average patience ranging over 30, 90, 300, 450, 600 seconds (with the "normal" call volume).

49

<sup>\*</sup> Prepared by Ofer Garnet; modified by Sergey Zeltyn.

- d. How about the "fraction answered within 2 minutes"? Try and give a qualitative explanation to the phenomenon that you observe.
- e. The average speed of answer (ASA) is a common "service measure", meaning that it is frequently regarded as a "score" given to the call center. It is thus constantly monitored and staffing levels are planned so as to meet given "service goals". Use 2c to argue against the use of ASA as an exclusive "service goal". (In light of 2c, how could you improve your call center's ASA?).

#### From here on assume that average patience is 2 minutes.

- f. Repeat 2c but now vary the average handling time (use the same range 30-600 seconds as with patience). Variations of which parameter (patience or handling time) has a greater impact on performance?
- g. Plot the fraction of calls <u>abandoned</u> within T seconds, T = 0, 10, 20, 30, 40, 60, 120, 180. Use this data together with the total fraction of calls abandoned to plot an approximate density function of the abandoning calls' waiting time.
- h. Check what happens at the call center when there is a surge of calls which is double or triple the normal call volume (i.e. 300 or 450 calls per hour). Give a description of how "bad" things get, based on your results.
- i. To maintain the original (i.e. with the "normal" call volume) fraction of abandoned calls when these surges occur, do you need more or less than double/triple the original number of agents? What is the reason for this? (use the iProfiler's "Staffing Profiler" or Charisma's "How Many Agents").
- j. Garnet, Mandelbaum & Reiman (GMR), in their paper "Designing a Call Center with Impatient Customers," suggest a staffing rule (rationalized staffing) that ensures both high quality and efficiency of service (given arrival rate to the call center is sufficiently large). GMR follow earlier work by Whitt, and both will be described later in our course. The present question, which continues Part i. above in some sense, demonstrates GMR's staffing rule.

Assume that performance measures of a given call center are considered reasonable. Call this the "Base Case", and assume for concreteness that this is the call center described above (normal circumstances, 2 minutes average patience). Suppose that the arrival rate increase by a factor m. (For example, by pooling m call centers into a single large call center.) It turns out now possible to both increase servers' utilization (*efficiency*) and improve service level (*quality*). (One typically expects to achieve only one of these two.)

Let  $\rho$  denote the offered load per server, where offered load per server = (arrival rate \* average service time) / (number of agents).

**GMR rule**: Choose the number of agents so that  $(1-\rho)$  decreases by factor  $\sqrt{m}$ .

For example, consider our base case: 150 calls per hour, average handling time 3.5 minutes and 10 agents. Then the offered load per server is equal to 87.5%. If the arrival rate increases to 600 calls per hour (by factor 4), we should decrease  $(1 - \rho)$  by 2, namely  $\rho = 93.75\%$ . The closest approximations to this value of  $\rho$  are achieved with 37 agents ( $\rho = 94.59\%$ ) and with 38 agents ( $\rho = 92.11\%$ ).

Then theory predicts that the following changes in performance measures are expected (approximately):

- Probability to get service immediately P{Wait=0} is sustained on the same level as in the base case.
- ASA decreases by factor  $\sqrt{m}$ .
- Average queue length increases by factor  $\sqrt{m}$ .
- Probability of abandonment decreases by factor  $\sqrt{m}$ .

How can you explain the fact that ASA and the average queue change in the opposite directions? Which performance measure of the two is more important from a customer's point of view? Why could queue length be a significant performance measure in a call center?

The following table was partially filled in order to check the theoretical statements above:

| Number of | Service | Arrival | Average  | Occupancy | P{Abandon} | ASA | P{Wait=0} | Average |
|-----------|---------|---------|----------|-----------|------------|-----|-----------|---------|
| Agents    | Time    | Rate    | Patience |           |            |     |           | Queue   |
| 10        | 03:30.0 | 150     | 02:00.0  |           |            |     |           |         |
| 37        | 03:30.0 | 600     | 02:00.0  |           |            |     |           |         |
| 38        | 03:30.0 | 600     | 02:00.0  |           |            |     |           |         |
| 82        | 03:30.0 | 1350    | 02:00.0  |           |            |     |           |         |
| 83        | 03:30.0 | 1350    | 02:00.0  |           |            |     |           |         |
| 144       | 03:30.0 | 2400    | 02:00.0  |           |            |     |           |         |
| 145       | 03:30.0 | 2400    | 02:00.0  |           |            |     |           |         |

Explain how arrival rates and number of agents in the four bottom lines were chosen. Fill in the table using Charisma or iProfiler and comment on the degree of compliance between the table and the theoretical statements above. What can you say about changes in occupancy?

**Technical Remark.** iProfiler does not allow to calculate P{Wait=0} (Charisma does.) If you use iProfiler, compute P{Wait > 2 sec} as a proxy instead.

3. One easy-to-implement mechanism for preventing extreme overloading as in 2h is to reduce the number of trunks available. (An arriving call with all trunks occupied encounters a "busy" tone.) So far, using the M/M/N and M/M/N+M models, we have assumed that the system has an unlimited waiting capacity. In reality the capacity is always finite, but is frequently large enough to practically eliminate "blocking". Use the M/M/N/B+M model (select the trunks and abandons features) for the following section which tests the behavior of a system with busy tones.

- a. Test the performance with the various call volumes ("normal", "double" and "triple") and the following trunking levels: 10, 15, 20. Based on the results, which trunking level seems best to you? (remember that the objective is to achieve a "safety valve" effect).
- b. One of this model's performance measures is the "Average Trunks Utilized". Construct a formula for this measure from the number of agents, agent's occupancy and average queue length.
- c. The benefits of limiting a system's capacity are even more significant in the case of call centers accessed via toll-free numbers.
  - I. Why is this? (who's paying for the call? ...).
  - II. Which performance measure can one use to estimate this expense?
  - III. What fraction of this expense is saved with 10, 15 and 20 trunks, at 300 calls per hour? (compare to a system with unlimited capacity using II above and the formula from 3b).
- d. Assuming the number of trunks is 15 and the call volume is 300 calls per hour, anticipate the change in the number of agents needed to reduce the fraction of blocked calls by 5%. Now check your answer. (use "Staffing Profiler" / "How Many Agents").
- e. Repeat 3d with an average patience parameter of 5 minutes (start out by finding the fraction of blocked calls in the system with this new patience parameter). Draw transition diagrams of the corresponding Markov processes and explain the inconsistent behavior you've just encountered.
- 4. Another mechanism for controlling the workload is to "overflow" calls out of the queue when their waiting time reaches a certain time limit. Overflowed calls might be transferred to a different group of agents (or call center) or, as sometimes done, to a voice box. (The latter clearly being not very desirable from a service-level point of view!) Select the "Overflows" feature (note that the "Trunks" feature deactivates).
  - a. What are the drawbacks (service-wise) of such a mechanism? Can you suggest similar more sophisticated/sensitive mechanisms?
  - b. Test the performance with the various call volumes ("normal", "double" and "triple") and at least 4 time limits in the range of 15-200 seconds. What time limit would you select for this call center?

#### **Technicalities:**

Here are some technical instructions and information concerning the assignment.

#### 1. Software:

To perform the analysis and various calculations required in this assignment you can use either **Call Center iProfiler** or **Call Center Charisma** TM. Both of these can be found at <a href="https://www.4callcenters.com">www.4callcenters.com</a>. You will be using tools that determine a call centers performance ("Performance Profiler") and help set the staffing levels needed to meet performance goals ("Staffing Profiler" / "How Many Agents"). These tools support various queueing models from the basic Erlang-C to state-of-the-art models including abandons, blocking and overflows.

#### Here's how you get started:

- a. To use Call Center iProfiler you need to "Login" to the service, and then register. For a general overview of this service, take the "Tour" offered. For more details try accessing the "Help" after you login.
- Advantages: Does not require installation; Accessible from any computer with internet; Multiplatform (PC, UNIX, ...).
- b. Call Center Charisma is a Window's application which can be downloaded from this site (you get a 30 day trial version). Installing this software on a PC is easy just follow the instructions. Call Center Charisma has basic instructions appearing in the header of each tool and additional more detailed "Help".

Advantages: Offers two more advanced tool that are not available in Call Center iProfiler; Can export results to files easily read (and then plotted) by any spreadsheet.

Note that Charisma has an "Indicators" setting determining which performance indicators are visible - you will need to change these settings for the assignment.

#### 2. General:

- a. Keep your answers short and clear.
- b. Unless stated otherwise, answers should present your analysis results in either tables or graphs try selecting only the more important/interesting performance indicators. In most cases you have the freedom to choose the format that seems clearest to you. Using a spreadsheet is recommended.
- c. Within the assignment, instructions concerning the software have this special "Century Gothic" font.
  - d. You are asked to fill out and hand in the attached "Feedback Questionnaire."
- e. Any questions or problems should be addressed to Avi Mandelbaum.at avim@tx.technion.ac.il