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Abstract—A Fork-Join Network (FJN) is a natural model
for a queueing system in which customers, or rather tasks
associated with customers, are processed both sequentially and
in parallel. In this paper we analyze a network that, in addition,
accommodates feedback of tasks. An example of a FJN is an
assembly operation, where parts are first produced and then
assembled to ultimately create a final product. Another example
is an emergency department, where a patient ‘“forks” into, say,
a blood test and an X-ray, which must then “join’ the patient as
a prerequisite for a doctor examination. There is a fundamental
difference between the dynamics of these two examples: In
an assembly network, parts are exchangeable while, in an
emergency department, tasks are associated uniquely with
patients. They are thus nonexchangeable in the sense that one
cannot combine/join tasks associated with different customers.

In single-server feed-forward FJNs, FCFS processing main-
tains a fully synchronized flow of tasks. Probabilistic feedback,
however, introduces flow disruptions that give rise to task delays
and ultimately a decrease in throughput rate. Nevertheless,
we show that a simple flow control of tasks can render this
decrease of performance asymptotically negligible (though it
is not absolutely negligible). More specifically, we analyze a
concrete FJN, with nonexchangeable tasks and Markovian
feedback, in the conventional heavy-traffic (diffusion) regime.
We prove asymptotic equivalence between this network and
its corresponding assembly network (exchangeable tasks), thus
establishing asymptotic throughput-optimality of our control.
The analysis also reveals further interesting properties, such as
state-space collapse of synchronization queues.

I. INTRODUCTION

There are many examples of processing systems where
arriving jobs fork (split) into several tasks, which are then
independently processed along parallel routes, and ultimately
joined (matched) to create a final product. Indeed, the idea of
breaking complex jobs into simpler multiple tasks, which are
then performed simultaneously and sequentially by special-
ized servers, is fundamental. A natural model that captures
the complex dynamics thus described is a Fork-Join (also
called Split-Match) queueing network. Such networks have
found applications in a wide variety of domains, for example
multi-project environments (Cohen, Mandelbaum and Shtub
[7]), parallel communication networks (Hoekstra, Van Der
Mei and Bhulai [8]), the justice system (Larson, Cahn and
Shell [11]), distributed data-bases (Avi-Itzhak and Halfin [1])
and, finally, health care systems, which have motivated the
present study.
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Fig. 1. Fork-Join network with probabilistic feedback

The main model considered in this paper is depicted in
Fig. 1. In this network, a sequence of i.i.d. customers (jobs)
arrive to the system (process A). Each customer “forks”
into two tasks; these tasks are then processed simultaneously
and independently along two parallel routes (Z; — Z5 and
Zs — Zy4), each route consisting of two service stations
in tandem; after the second station, some of the tasks are
completed (L;), and the others feed back (F}) to the first
station of their route (Z; or Zs). Each first-completed task
joins its Synchronization Queue (@1 or @Q)3), waiting there
until its partner task, originating from the same customer,
is completed. Both tasks are then joined, at which time the
corresponding customer departs from the system (D).

As noted, we are motivated by health care systems, where
the fork-join construct is prevalent. We thus assume that tasks
are nonexchangeable, in the sense that a task associated with
a specific customer (e.g. a blood test of a patient) cannot
join a task originating in another customer (e.g. an x-ray of
another patient). Note that this same Fig. 1 can also model an
assembly network. Here, the arrival process corresponds to
product orders, and service stations manufacture parts from
which, ultimately, products are assembled, namely tasks in
@1 and )2 are joined. In such assembly networks, the tasks
(parts) are naturally exchangeable, which is in contrast to
FJNs that arise in health care. We shall refer to the latter sim-
ply as Fork-Join networks: Each such network, after relaxing
its nonexchangeability constraints, turns into a corresponding
assembly network. This distinction and association between
Fork-Join and assembly networks is central for what is to
come.



II. ON EXCHANGEABILITY

The feedback in Fig. 1 is random (Markovian). Conse-
quently, the order of the arriving customers (according to
process A) is disrupted: It thus differs from the order of
departing tasks (in L;, ¢ = 1,2). This reshuffled order forces
tasks (e.g. task 5 in ()1 and task 7 in ()2) to wait for their
partner, which would not have happened had tasks been
exchangeable (5 and 7 would then join and leave as a final
product). An (exchangeable) assembly network can thus be
characterized by the following Complementarity Condition:

Q1(t) A Q2(t) =0,

in other words, one of the synchronization queues must be
empty at all times (which is clearly not the case in Fig. 1).
Our main result (Theorem 1) shows that a simple flow control
gives rise to asymptotic equivalence between the FIN in Fig.
1 and its corresponding assembly network. More precisely,
the above complementarity condition holds asymptotically, in
(conventional) heavy-traffic, if one always gives preemptive
priority to incomplete tasks whose partnering task is already
waiting in its synchronization queue. Such a strategy will
prove to be asymptotically optimal in the sense of maximum
throughput, but not optimal.

The technical challenge in the proof of our main result
stems from the dependencies caused by the abrupt infor-
mation exchange between routes: A task that reaches a
synchronization queue of one route is immediately changing
the priority of its partnering task on the other route. This
complex dynamics renders inapplicable the standard method
of fluid- followed by diffusion-approximation. Instead, we
develope estimates on down-crossing probabilities to deduce
tightness of the queue-length processes, which turns out to be
sufficient for the purpose of (1). By-products of the proof are
some dynamical properties of our FJN under heavy traffic,
specifically state-space collapse (to one dimension) of the
synchronization queues, and asymptotic equivalence between
Fork-Join and assembly networks.

vt > 0; (D

III. SIMPLER MODELS

While we do not consider in this paper more general
models, it is natural to regard Fig. 1 as a special case of
a model with several processing routes, each containing a
critically loaded Jackson network. The model that we do
solve is the simplest nontrivial representative of this class.
The following progression of models and results clarify this
(with further details provided in [17]):

o Single-server feedforward FJNs [13]: Here a first-come-
first-serve (FCFS) discipline at all stations maximizes
throughput at all times. Indeed, under such FCFS, the
order by which customers arrive is the exact order by
which their corresponding tasks are processed, hence the
Complementarity Condition (1) must prevail.

« Single-server Fork-Join queues with feedback, as in Fig.
1, but with a single station per route: An exhaustive-
service control serves a task until it reaches a syn-

chronization queue, thus maximizing throughput as it
reduces the model to the above feedforward case.

o Multi-server feedforward FJNs [17]: In this case,
FCFS is only asymptotically optimal. Specifically, task-
ordering is disrupted by the parallel processing of many-
server stations, but this disruption is proved to be
negligible in conventional heavy traffic.

IV. OUR FORK-JOIN NETWORK

All our stochastic processes are defined on a common
given probability space. We first introduce the building blocks
for external arrivals, service times, departures and feedback,
followed by the corresponding processes. Let a sequence of
i.i.d. random variables, {u(m), m > 1}, be given, where
u(m) are strictly positive with unit mean; set «(0) = 0.
Denote by A the average arrival rate. Then the external-
arrivals process is A = {A(t), ¢ > 0}, where

A(t) = max{k : an:() A lu(m) <t}, t>0.

We also have four unit-rate Poisson processes S; =
{S;(t), t > 0}, j = 1,...,4, and corresponding service-
rates p;, where each pair (S, p;) is associated with a
station j in Fig. 1. The departure process for station j,
D; = {D,(t), t > 0}, is given by

Dj(t) = S;(u; Bj(t));
Bj(t) = [y Iz, (s)>0ydsi

1(t) = t = Bj(t) = [y Iz, (9-0)ds:

here B; and I; are, respectively, the Busyness and Idleness
processes associated with station j, and each Zj;, to be
formally introduced momentarily, is the number of tasks in
station j, either served or waiting in the resource queue
preceding server j.
Remark on Work-Conservation: Following standard termi-
nology, a control is work-conserving if it does not idle
servers that are faced with waiting customers. Formally,
work-conservation is precisely the above defining relation of
the Bj’s in terms of Z;’s. We are thus restricting attention
to work-conserving controls which, in fact, turns out to be
without loss of generality. Indeed, as will be formalized in
the sequel, we shall be concerned with maximizing system
output (the processes D;’s and D). Turning a control into
work-conserving can only increase its “Busyness” process
and hence its output. O

Next, consider two sequences of i.i.d. indicators fi =
{¢, k € N}, i =1,2. Each r.v. & is {0,1}-valued, and
is equal to 1 to indicate that task %k at route 7 is fed back
to re-initiate the service process, after completing service at
route ¢. The probability of feedback on route 7 is given by p;,
1 = 1,2. The feedback building block for route i, F}, is then
defined as Fy(d) = Y¢_, &, d =0,1,..., with F;(0) = 0.

Note that the customer population is assumed to be ho-
mogeneous, in the sense that all customers have the same
precedence constraints, interarrival time distributions, service



time distributions and feedback probability. It is further
assumed that all building blocks A, S;, F; are mutually
independent.

Finally, we state basic relations among the stochastic
processes. These are given, for ¢ > 0, by

Zl(t) = A(t) — D1 (t) + Fl(Dg(t));

Zy(t) = D1(t) — Da(t);

Z3(t) = A(t) — D3(t) + Fo(Dy());

Z4(t) = D3(t) — Da(); )
Li(t) = Da(t) — F1(Da(t));

Lo(t) = Dy(t) — Fo(Da(t));

Ql(t) = Ll(t) — Dout(t), i = 1, 2;

— Dout(t).

The interpretations of the various processes in (2) are as
follows:

e Dyui(t) - Throughput process: cumulative number
of departures, namely customers that completed their
services, up until time t;

e L;(t) - Route departure process: cumulative number of
departures, namely tasks that completed their services
on route ¢, till time ¢;

e Dj;(t) - Station departure process: cumulative number
of departures, namely tasks that completed their pro-
cessing at station j, till time ¢;

e Z;(t) - Number of customers in station j, either served
or waiting for service at the resource queue of station
7, at time t;

e Q;(t) - Number of customers in the synchronization
queue at the end of route 4, at time t;

e N(t) - Total number of customers within the network,
at time t; (Note that the number of tasks in both routes
at all times is identical, hence equals N (¢).)

V. RELATED WORK

Exact analysis of Fork-Join models is extremely hard,
hence their analysis has traditionally focused on bounds and
approximations. Baccelli and Makowski [2] and Baccelli,
Makowski and Shwartz [3] obtained bounds via stochas-
tic ordering (association of random variables). Squillante
et al. [16] deployed approximate matrix-analytic methods,
for the analysis of general parallel-server Fork-Join queues
with dynamic task scheduling. Boxma, Koole and Liu [5]
reviewed various solution methods for models of parallel and
distributed systems. And lastly, most relevant to the present
work, Nguyen [13] analyzed single-server feedforward FCFS
FINs, working within the framework of conventional heavy
traffic and deriving Brownian approximations. Since [13], to
the best of our knowledge, there as been little if any research
progress on fork-join control in heavy-traffic. An explanation
can be found in [14], specifically in its title and the fact
that the paper is restricted to FCFS. (For example, redoing
[14] with static priorities would turn the model tractable -
see Section XI). Our hope is that the present paper will
change this state of affairs. Specifically, our paper continues
[13], and it is based on [17]. We analyze the FJN in Fig. 1,

assuming nonexchangeable tasks. This is more general than
the models in [13] in that it allows feedback. The latter causes
throughput degradation, which we overcome asymptotically
in heavy traffic.

VI. HEAVY TRAFFIC

Our FJN will be analyzed in Heavy Traffic, as we now
define precisely. Consider a sequence of FINs, each as in
Fig. 1, which are indexed by n. The following relations are
assumed to hold, as n 1 oo:

o Arrival rates: X" = X -n+ X - v/n + o(y/n);

o Service rates: puf = p; - n+ fij - /14 o(y/n);

o Heavy Traffic: lim,,_, n%(p? — 1) = 0, where p is

the traffic intensity of station j.

These traffic intensities of the stations are given by:
)\n
pg-(1—p1)°
)\71,

n o__ A" no__
p1 = M{’"(ln—m)’ P2
and py =

P8 = i =

Note that 1_1 - is the average number of times that a task
“visits” route ¢ (following a Geometric distribution with
success probability 1 — p;, i € {1,2}).

In the above, the following scalars are apriori given and
assumed finite: A > 0, p; > 0, 5\, fij € (=00, ), p; >0,
6; < 0. A simple sufficient condition for Heavy Traffic is

A=py-(1=p1) =p3- (1 —p2); p2 = p1, pa = 3.

The following notation for scaled (and possibly cen-
tered) stochasﬁic processes is standard: resource-queue length
Zr(t) = Zf/g), synchronization-queue length Q7 (t) =
Q) : ce Gn(p) — Silmit—myt
L potential service SHt) = G

process f}L (t) = I?S), all defined for ¢ > 0.

and idleness

VII. OPTIMAL CONTROL

As already discussed, the order of customer departures
becomes unsynchronized due to the random feedback at the
end of each route. This phenomena causes a delay in the
join process and hence reduces throughput. Heuristically, the
optimal performance (maximal throughput) is that of a corre-
sponding assembly network, with exchangeable tasks. Thus,
one could attempt to characterize optimal performance by
the Complementarity Condition (1). We shall now rigorously
formulate our control problem, and demonstrate that (1) is
indeed a sufficient condition for optimal performance, in the
sense of maximum throughput.

A. Optimality Criteria

The identity of the job being processed at time ¢ by server
7, for every t and j, is regarded as the control process. We use
« to denote a generic control processes. A rigorous definition
requires significant additional notation, which we prefer
to avoid and thus settle for the above verbal description.
Similarly, we do not provide a complete definition of the term
state process, but only a verbal description. The state process
is defined as the information on the identity of all jobs at
each station at each time. Note that this does not include



information on which jobs are being processed at each time,

and so thus the control, in general, cannot be reconstructed

from the state. We will regard a control admissible if it

is adapted to the filtration of the state process. Note, in

particular, that such a control is nonanticipating, in the sense

that it does not obtain information from future events.
Denote by A the set of admissible controls.

Definition 1. Optimality is defined in terms of maximal
achievable number of departures over a finite time-horizon,
namely maximal throughput. More precisely,
o Exact Optimality: Control v € A is optimal if, for all
T > 0, v attains esssupaecp (DS, (T)). (Here, and in
the sequel, a control is appended as a superscript of a
process (e.g. DS, . ) to indicate that this process evolves
under that control.)
o Asymptotic Optimality.: Control v € A is asymptotically
optimal if for any other control o € A and for all T > 0,

DT = DS(T) — en(T), with €,(T) — 0,

out out

where the convergence of €,(+) is uniformly on compacts
(u.o.c.), in probability. (Here, and in the sequel, a super-
script n of a stochastic process ( e.g. Dout ) indicates that
this process arises from the n'" network in the heavy-
traffic sequence.)

Proposition 1. Each of the following conditions implies its
corresponding Definition 1:
« Exact Optimality: Q1 (T ) A QQ( )=0, VI >0,
« Asymptotic Optimality: Q7 (-)AQR(-) 5, 0, where 5,
denotes convergence u.o.c., in probability.

Proof of Proposition 1: The proof is a direct consequence of
three sample-path properties of our system. These will now
be formulated and their proofs outlined. (For the full details,
here and in the sequel, readers are referred to [17].)
Property 1: Restricting to work-conserving controls, the
processes Z;, D; and L; do not depend on the control,
for all routes ¢ and stations j. This independence is due to
servers time being server dependent, as opposed to customer
dependent. (Alternatively, only the following are control-
dependent processes: @;, D,,: and N; this dependence is
due to the departure synchronization constraints associated
with nonexchangeable tasks. )

Property 2: argma:caeA( e (1)) =

— argminaesY}_, Z,(T) + Q5 (T) + Q5 (T)]

Property 3: Qf (1) + Qg (T) =

= [L1(T) = Lo(T)| +2- Q7(T) A Q5 (T), Vo€ A (3)

Proof of Property 1: By tracking sample-path evolutions
(according to our system equations), it does indeed follow
that as long as there is no forced idleness of servers, task-
counts (Z;’s) and flows prior to the synchronization queues
(A,D;,L; and Fy(Ds), F5(D4)) are control-independent.
The network output (D,,:), on the other hand, generally
does depend on the control, which affects the @;’s and N as
well. O]
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Fig. 2. Customer classes under the ~y-control

Proof of Property 2: The total number of customers within
each route is the same at each given time, since a customer
joins and departs all routes simultaneously. It follows that
2-N*(T) = Zj 1 Z;(T)+ QT (T)+ Q% (T), for any control
a. Now, the external arrlval process A is primitive and thus
uncontrollable. Recalling the definition of D,,; in (2) now
yields Property 2. O
Proof of Property 3: We omit the « for notational conve-
nience. Using the relation N(T) = A(T)—Li(T)+Q+(T) =
A(T)— Lo(T) 4+ Q2(T), we deduce that |Q1(T) —Q2(T)| =
|L1(T)— Lo(T)|, for all T > 0. However, Q1(T)+Q+(T) =
Qu(T) vV Q2(T) — Qu(T) A Q2(T) + 2 - Qu(T) A Q2(T).
Therefore, for all T' > 0,

Q1(T) + Q2(T) = |L1(T) — L2(T)| + 2 - Q1(T) A Q2(T).

O
In view of the above three properties, the Exact Optimality
condition in Proposition 1 implies Definition 1. We now
continue with asymptotic optimality. For any control o € A
and T > 0, one has Q¥(T) + Q3(T) > |L1(T) — Lo(T)|.
Hence, Q)(T) + Q}(T) < Q3(T) + Q§(T) +2 - Q] (T) A
Q5 (T), for any «,~. Taking + in Proposition 1, and letting
en() = QM () AQL () B, 0, one deduces that

QI(T) +Qy7(T) < QY™ (T) + Q5

for all 7" > 0 and any o € A. Property 2 now enables one to
translate this last inequality for ’s to an inequality for D’s,
as in Definition 1. O

(T) + en(T),

B. Control Policy

The exact control problem for the model in Fig. 1 seems

intractable. We now propose a control that, while not optimal,
will be proved asymptotically optimal.
Proposed Control (referred to as Cronyism- or ~-control):
Within each route, assign preemptive priority to tasks of
customers whose service was completed in the other route.
(Preemptive priority entails interrupting and resuming a task
at a later time.)

The Cronyism-control creates a natural division of all
customers into two classes:

o LP (Low Priority) Customers: Customers whose service
is still incomplete in both routes; e.g., gray customers
in Fig. 2.



o HP (High Priority) Customers: Customers whose service
is completed in one of the routes but is still incomplete
in the other; e.g., black customers in Fig. 2.

Finally, assume FCFS within each class, which now fully
characterizes the control. (The control is adaptive in the
sense that decisions depended solely on immediate system
state.) Note that the «-control requires information exchange
between routes, which creates dependencies between routes.
This dependency, on one hand, is the reason for asymptotic
optimality but, on the other, is the main technical challenge
in establishing it.

In the sequel, we use the following notation for a generic
process G;: GI(GE) is the process associated with the
High-Priority (Low-Priority) tasks, respectively, and G? is
associated with all customers. We then have

Z{ly =Qy and Z§, =Q, 4)

where Z{, = Z{' + Z3' and Z3!, = Z§' + Zj'. Hence,
minimizing synchronization queues is equivalent to minimiz-
ing the number of tasks within the resource queues that are
associated with HP customers.

Denote by A = {A¥(t), t > 0} the “Birth” ("arrival”)
process of HP customers in Station j. For example, assume
a departure of a task from Route 2, associated with an LP
customer; then this departure causes a priority change (to
HP) of that customer, as well as a count increase in A]H , if
7 is the station on Route 1 where the partner task is then
present.

VIII. ASYMPTOTIC OPTIMALITY

The following is our main result. Its proof is outlined in
Section X.

Theorem 1 (Asymptotic Optimality). For any fixed interval
[0,T] and any € > 0,

P(mazcio [ 215 () A Z3 ()] > €)—40,  (5)

where ZﬁbH = Z{L’HJrZ;’H, and Z§1’4H =zrHyz0H O
From (4), we now conclude that Q7(-) A Q3(-) 5, 0

A central part of the proof is to establish tight estimates
on the number of HP customer at the various stations. The
challenge stems from the dynamics of HP customers being
coupled with that of LP customers. Specifically, the departure
of a task associated with an LP customer at a given route,
joining the corresponding synchronization queue, triggers a
priority change of that customer (its task in the other route),
from LP to HP. The dynamics of LP customers, in turn,
is constrained by the presence of HP customers. These HP
“Birth” processes (A;-H ) are far from standard models of
arrival processes: their precise analysis would entail tracking,
for every individual customer in the system, the precise
station where each of its tasks is located, which would give
rise to an intractable state-description. Instead, rather than
making an attempt to characterize A%, our approach is to
develop estimates (Lemma 3) that are uniform over all birth

|
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Fig. 3. System Dynamics in Heavy Traffic

processes with intensity that is not too large. Since these HP
births are caused by departures of LP customers from the
other route, showing that the birth intensity is indeed not
too large amounts to bounding the intensity of LP departure
(Lemma 2).

Asymptotically Optimal but Not Optimal. Our y-control
will be proved asymptotically optimal, but it is not optimal.
To see that, consider the following +'-control: In each route,
assign preemptive priority to tasks of customers whose ser-
vice was completed in the other route, as before, but also
to tasks of customers whose service was initiated in the
departure station (Station 2 or Station 4) in the other route;
again, assume FCFS within each priority class. Consider now
the realization in Fig. 2, for this extended ~’-control: the task
to be scheduled for service in Station 3 (bottom-left station)
is associated with customer 11; in contrast, the previous ~y-
control would have served Customer 10, adhering to FCFS
of LP customers. We now explain that

(T) > D]

out

ar st. P(D).

out

(1)) >0,

assuming, without loss, the scenario in Fig. 2 at some time
To.

Denote by le the departure time of the [-th customer
from station j (I = 1,2,...,). Consider the event {17}
T? < T4 < T8 < T3 < Ti}; for this event, and for
the above departures from Stations 2 and 4, we further
assume that these departures directly join the corresponding
synchronization queue (no feedbacks). Thus, under the +'-
control, one has Douf(TZ) DZut (To) = 2 (departures of
Customers 5 and 11); this is in contrast to the y-control,
where D7, (T4—) — DJ,.(To) = 1 (departure of Customer

5 only). The above event has a positive probability, hence
there must be a deterministic time T for which P(T €

(T4, T4], D0 (T) > D}, (T)) > 0. O
IX. SYSTEM DYNAMICS IN HEAVY TRAFFIC

Theorem 1 and Properties 1-3 reveal asymptotic equivalence
between our FJN under ~y-control and a corresponding assem-
bly network: same topology, arrivals and services; exchange-
able tasks with FCFS control. To see that, note the following
relations for an assembly network, at all 7' > 0, each of
which reflects exchangeability in the assembly dynamics:
Q1(T) A Q2(T) =0, Qu(T) vV Q2(T) = |L1(T) — Lo(T)],
Dout(T) = L1(T) A Lo(T) (the latter following from the
general relation D, (T) = Li(T) V Lo(T) — Q1(T) V
Q2(T)). The equivalence alluded to amounts to having these
last relations hold also for the FIN with non-exchangeable



tasks, though only asymptotically after rescaling, as we now
explain.

State-space Collapse of Synchronization Queues. The rela-
tion Q?/\QS 20 (Theorem 1) implies that the 2-dimensional
stochastic process Q?,QQ collapses to 1-dimension, being
restricted (with high probability) to an e-environment of the
axes (e > 0 arbitrarily small); see Fig. 3, the right graph.
Throughput Equivalence, or Asymptotic Exchangeability.
For the two networks (fork-join under ~y-control and assembly
under FCFS control), the processes Z;, D; and L; have
identical sample paths, for all routes ¢ and stations j. To
see that, first consider both networks with FCFS control, in
which case the considered sample paths are clearly equal.
Then, according to Property 1, the processes Z;, D; and L;
do not depend on the control.

Theorem 1 is one way of expressing asymptotic exchange-
ability under v-control. Together with Property 3, it also
implies that Q7 (-)V Q% (-) & J=|LY() — L§(-)], from which
we deduce: Dy (1) = L{() v LE() = Q17() v Q57 () &
Lr() A LE().

The significance of asymptotic exchangeability is that,
in heavy-traffic, applying v-control to our FIN yields a
throughput process D,,; that has approximately the same
distribution as that of an assembly network under FCFS
control. The latter is the minimum of the L;’s, each of
which is the exogenous output process of a 2-station Jackson
network (with feedback); as such, each L; is a Poisson
process with rate A, though the L;’s are dependent (emanating
from the same exogenous input A). The distribution of
D,y = Ly N Ly is thus tractable, in principle, following from
the joint distribution of exogenous output processes from a
Generalized Jackson Network [6].

X. PROOF OUTLINE FOR THEOREM 1

We now outline the proof of Theorem 1. (More details
appear in [17].) Fix any interval [0,7] and € > 0.
Proof of Theorem 1: Introduce
By = {mazieor{ 21y (t) A Z3 (1)} > ey/n}.
Then define
o=1inf{t : Zﬁ’QH(t) A Z;f(t) > ey/n};

T=sup{t<o : Z1y (t)ANZyl(t) < §v/n).
Now let E,, = E,, 7 N {Z;’;;lH(T) < Z{3'()}. Then on E,
and during the time-interval (7,0) (Fig. 4):

o Both processing routes contain more than §\/ﬁ HP

customers;

o The number of HP customers in Z’ ’4H increases by more

than §./n.

We prove Theorem 1 by showing that P(E,)—,0. The
proof that P(E,)—,0, where E,, = E,r N {Z:;’ZLH(T) >
7" (1)}, is completely analogous. The proof of the former
is based on the following three lemmas; their proofs are given
subsequently.

For any process, say X, and random times a < b, we write
X|a,b] for X(a) — X (b).

Fig. 4. Example of possible sample-path for event En

Lemma 1. (Bounding HP idleness): Fix 6 € (0,1/4). Then

P(IS’H[T, o] > n_%+5)—>n0;
(6)

P} 1, 0] > n~3t0)—,0.

Lemma 2. (Bounding number of LP departures): Fix § €
(0,1/4). Then

P(Dy" (o) — Dy (1) > n#t?)—,0. (7)
Lemma 3. (Bounding |0 — 7]|): Fix § € (0,1/4). Then
P(lo—r| <n™, Ajillr,o] > 2 Vi)—0. ®

Now consider the event

H, ={3o,7€[0,T] s.t. Agv’f[r, o] <n'ts, BZ’H[T, o] >

2, 23 0] > 5V}

Using Lemmas 1-3, system’s equations (Section IV) and

some computation, one can verify that

P(E,) <P(H,) + an, an—,0.

Hence it is enough to prove that P(H,)—,0. To this

end, divide [0, nT] into K intervals with fixed interval-length

|Jx| & n'=°. On the event H,, there is at least one interval

on which ApLSy < n‘”%, where S; is the unit-rate Poisson

process defined above (Section IV). It follows that

P(H,) <Pk € {1,...,K} st ApS < nftz) —, 0,

where A S is the increment of S over the interval Jj. This

completes the proof of Theorem 1. [ ]
Proof of Lemma 1: We shall prove the claim for

157, o] the proof for I} [r, o] is similar.

For a fixed § € (0,1/4), define the event E, = E, N

{157, 0] > n~ 219}, Recall that, for any ¢ > 0,

ZpMe) = ZM0) + ApP(e) + SHuBRT 1) —

SH(upBYH (1)), where A" denotes the birth process of

HP tasks in Station 2. Note that AZ"H is a positive increasing

process. Scale by y/n and define

Xy (t) = SP T (BI(8) = S5 (BS (1)) + (i — fiz) -t (9)
Then the following relation holds on the event E,;:
ZM () = Z"M(0) + increasing process + X5 (t)+
.o fSL’H(Q —h I e);
{ fot H{Z;vH(s)>o}d{2n’ L 0;
JoLizg <y =0
(10)

Hence the measures induced by the increasing processes
17" I5™ do not charge the set of times ¢ where Z"" (t) €



(0, §). Define the following random times, e.g., Fig. 5 (where
the infimum over the empty set is +00).
A= inf{r<t<o:ZpT(s) =0}
By = inf{A; <t<o: Z;H(s) >%h
continue in an inductive manner fore=1,2,...:
Ajy1 = inf{B; <t<o:2Zy ()—O};
By = inf {A1+1 <t<o: Z2 ( ) > i}

For every interval [B;, A;11) contained in (7,0), define
Ci = sup {t € [B;, Aiy1) : 2Z5H(s) > £} By the defini-
tions above, one sees that, on the intervals [C;, A;41), Zg H
starts at ¢ and ends at zero without exiting (0, ). We shall
refer to [C;, A;y1), for which A; 1 < oo, as Down Crossing
intervals.

Claim. Denote by R"™[r, o] the number of down crossings on

[7,0]. Then R"[r,0]1p are tight r.v.s.
Proof of Claim. Define Hx = E, N {R"[r,0] > K}.
Using (10), positivity of the arrival process and the fact that
[1,0] C [0,T], one can verify that
HK§{30§81<t1<82§...
| Xp[sits]] > €, Vie{l,...

<tg <T s.t.
K}

0<t;—s < %)

Thus
P(Hk) <P(3i st |[X3[s;, ti]| >

< P(modT(X27 K) )

£
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Here modr (X, 52 = SUPg<s<i<Ti—s<s | X (f)

— X(s)].
The processes S;-I’H are centered, scaled Poisson pro-
cesses, which converge weakly to a Brownian Motion (BM)
process. In particular, they are C'-tight, that is, tight in the
Skorohod J; topology, and having a.s. continuous sample
paths for every subsequential limit. Since Bf have sample
paths that are Lipschitz with constant 1, the processes Xg
are also C-tight. Thus Vi > 0 3K € N s.t. P(Hg) <1, as
follows from Proposition VI.3.26 of [10], which characterizes
C-tightness. This proves the claim. O
We now return to the proof of Lemma 1. Given n let
K be so large that P(Hg) < n/2. Let us analyze the
event E, N H¢. On this event one has less than K + 1
intervals of [A;, B;). Note that """ does not increase
outside these intervals. Therefore, there(S ezcists an interval j
on which I}""[A;, B;) increases by %1~ Using (10) and
positivity of the arrival process, on this event one must have
| X2 [Aj, Bj)| > | | for some constant K’ (that depends on
K). By the C- tlghtness of the processes X", the probability
for such an event converges to 0, as n — 0.
As a result, for all large n, P(E’n) < m; since 7 is arbitrary,
we obtain P(E,) —, 0.
This completes the proof of Lemma 1. ]
Proof of Lemma 2: Fixing ¢ € (0,1/4), consider H,, =

{DI" (o) — DY (1) > n2+9}. Define
a=inf{r<t<o:DPt) - Dy r) > %1 nzto}
B=inf{r<t<o: D) —Dyl(r)>nzts}.

On H,, «,f are finite. With § = g
P(H,) = P(H,, I;""[a, ] > n® ~#)+P(H,, I [a, 8] <
n® 1),

H
Zy

Zz 15 full
of H-P
3
el eyl S e e by
Zris full | |
of H-P | |
ol t
A B4 Az B-
Fig. 5. Tllustration of ZQH sample-path

%}, the following

On the event H, N {I}"" [, f] > n®

holds: P(H,, I}'"[a, 8] > n® —%) < P30, 8] >
n‘s/*%) < PUIPH[r0) > n® - 2)—,0, according to
Lemma 1.

On the event H, N {I}""]a,B] < n‘si_%}, notice that
B"L[ Bl < I3Ma, B), since I3[, 8] = 17 [a, 8] +
B2%[a, B]. Therefore on the event considered, the following

relations hold:
o Averaged LP departure rate: MSBS Lo ,B} <zt
« LP cumulative departures: Dy "[a, 8] > 1nz+9,
One can verify that the probability for such an event con-
verges to zero, as n — oo. This completes the proof
Lemma 2.

Proof of Lemma 3: Note that DJ[r o]
Apfiro] > gym since ApS(1) = D)
Fy (D" (t)). For any fixed § € (0,1/4), we now define
the event H,, = {|o — 7| < n7?, Z1% (s) = §v/n, Vs €
[,0], D" [r, 0] > Sv/n}. Let

a=inf{t>7 : ZP" () > Vnks
inf{r<t<o: T

and represent P(H,,) = P(H,, a <o )+ P(H,, a >0).
On the event H, N {a < a/}, Z;“H must perform at least
one Down Crossing from £+/n to 0, before the completion of
ADS"L > $+/n. i.e., server 2 will not serve LP tasks unless
the number of HP tasks decreases to 0. Hence, the probability
for such an event is less than P(mody(Xy,n=%) > 7)) —
0, where the latter convergence is due to C-tightness.

4+
.

Ve g

’
g =

On the event H,N{a > o'}, Station 2 serves more than sV
LP tasks on interval |7, 0'], while Server 1 is continuously
busy (Zf’QH(s) > £4/n, hence ZMH(s) > Svn, Vs €
[1,0]) with HP tasks, which are served and depart to Server
2. Note that

Dyl r 0| = DY o' + Dy r 6. ()
On the even% H,n{a>0o'}, on% has .
ADy " [r,0'] = 53 (g By (o)) — 53 (s By (7));
ADSL[TJ] > 5 \/ﬁ;
ADy " [r,0'] > S (ui By (o)) — ST (i By (7).

The last inequality is due to the preemptive control, i.e.,
all HP tasks must be served before LP service can begin.
Therefore, on the event considered, the following relations
hold:



. ADS’T[T, o]— AD?’H[T, o] > SV

o o =7 <|o—7|<nY;

o BP0 =0 —7| > By [r,0], since server 1 is
always busy with HP customers;

e Recall also that o = g3 (Section VI).

One can verify that the probability for such an event con-
verges to zero, as n — oo. This completes the proof of
Lemma 3. u

XI. GENERALIZATION AND EXTENSIONS

We have not calculated the limiting distribution of the
throughput process (Section IX). Our derivations are also
restricted to preemptive controls and exponential service du-
rations. We believe, however, that ideas from the proof (e.g.,
C-tightness, down-crossing considerations) may be used in
far greater generality.

The model considered can be extended in various ways.
We now describe some that are especially relevant to our
healthcare motivation (in an increasing order of difficulty).
Multiple processing routes. Consider M parallel routes,
rather that 2 as in Fig. 1.
Optimality conditions (maximizing throughput):

o Exact Optimality: A,y 5y (Qi(T)) = 0,YT > 0;

o Asymptotic Optimality: /\ie{L__,M}(Qf(J) — 0,u.0.c.,

in probability.

Optimal control: At each route, assign preemptive pri-
ority to tasks of customers whose service is com-
pleted at all other routes. Optimality is based on
the following analogue of Property 3 in Section VII:
S QuT) = S (L) = Nieqr, oy (Eo(T))) + M -
Nieqr,..ary (Qi(T)), for all ' > 0.
The Customer View, or the Snapshot Principle. The prin-
ciple asserts [15], [13] that the “state” (e.g. queue-lengths)
which a customer “sees” upon arrival does not change
(in diffusion scale) during that customer’s sojourn within
the system. The validity of this principle thus dramatically
simplifies the prediction of customer sojourn times, a prob-
lem that is important in our motivating service (healthcare)
applications. However, our asymptotically optimal ~y-control
creates a volatile environment of priority switches (LP to
HP). This renders challenging even the precise articulation
of the snapshot principle, which we thus leave as a natural
significant direction for future research.
Heterogeneous customer population. Consider a FIN with
several customer classes: each class has its own precedence
constraints, interarrival-time and service-time distributions.
This is the model in Nguyen [14] where, in addition, a
FCFS discipline was enforced at each station. The heavy
traffic limits in [14] turn out intractable, which is due to
task disordering in view of ample overtaking. However,
we conjecture that applying static priority among customer
classes (the same priority uniformly across stations, with
FCFS within a class), will reduce in heavy traffic to a fork-
join critical single-class FCFS network. This is a consequence
of the collapse of high-priority processes [15] that “see” a

network in light-traffic, which leaves only the lowest priority
class in heavy-traffic. A far more challenging question is
(asymptotically) optimal control of such heterogenous net-
works (eg. mixing global y-control with station-level Gcp).
Many-server FJNs. Consider a FIN in which the number
of servers per station is very large. Due to a high level of
parallel processing, the phenomena of customer overtaking
becomes both uncontrollable (as long as parallel servers
operate independently) and non-negligible (if the number of
servers scales up sufficiently fast). This is in contrast to multi-
servers in conventional heavy-traffic [17]. The question that
now arises is whether there exists a control under which Fork-
Join and assembly networks are asymptotic equivalent. An
interesting scaling to contemplate is the one in Halfin and
Whitt [9]. Such many-server networks seem important since
they naturally arise in intelligence or biological networks.
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