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Abstract

We consider a nonstationary Markov multiserver queueing model where waiting
customers may abandon and subsequently retry. The fluid and diffusion approxi-
mations for the associated queue length process were obtained in [4] (see also [5]).
In this paper we derive fluid and diffusion approximations for the corresponding
waiting time process.

1 Introduction

The model we consider in this paper is a multi-server queue with time-varying parameters,
in which customers are impatient and hence abandon after (subjectively) excessive wait.
Moreover, obtaining service is important enough for some customers that they return
and seek service (retry) after a “time-out”. Formally, our model is depicted in Figure
1: there is a single “service” node with n;, t > 0, servers. New customers arrive to the
service node following a Poisson process of rate \;. Customers arriving to find an idle
server are taken into service that has rate p;. Customers that find all servers busy join
a queue, from which they are served in a FCFS manner. Each customer waiting in the
queue abandons at rate ;. An abandoning customer leaves the system with probability
W or joins a retrial pool with probability 1 — ;. Each customer in the retrial pool leaves
to enter the service node at rate py?. Upon entry to the service node, these customers
are treated the same as new customers. The behavior of the system is described by
the two-dimensional, continuous time Markov chain Q(t) = (Ql(t), QQ(t)) where Q1 (?)
equals the number of customers residing in the service node (waiting or being served)
and @Qy(t) equals the number of customers in the retrial pool.

Our work is motivated by the need to develop analytical tools that support perfor-
mance analysis of large telecommunication systems, such as telephone call centers, where
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Figure 1: The abandonment queue with retrials.

abandonments and retrials arise naturally. Call centers are constantly subject to time-
varying conditions, and waiting customers in phone queues are unable to observe the
state of the system. It follows that time-dependent modeling (as opposed to also state-
dependent) is natural for call centers. Finally, we point out that the analysis of waiting
times is (typically) analytically more challenging than that of the queue lenghts, and in
many applications (like call centers) is probably more important. For more discussion
and related references on these issues, see [5].

The remainder of this paper is organized as follows. The asymptotic regime we
consider is introduced in Section 2. In Section 3 we provide fluid and diffusion limits for
the virtual waiting time at a fixed time 7. Process level fluid and diffusion limits for the
virtual waiting time are presented in Section 4.

2 Asymptotic Regime

As mentioned above we are interested in the behavior of a system with large number of
servers and large input rate. Thus, we consider the asymptotic regime where we scale up
the number of servers in response to a similar scaling up of the arrival rate by customers.

More precisely, the asymptotic regime is as follows. Assume that A, By, u}, u2, 1y, ny
are fixed functions of time t. We consider a sequence of systems indexed by scaling
parameter 1 = 9,179, ..., Ny, — 00 as k — 0o. (To avoid cumbersome notation, in what
follows, we index a system by n, and when we write n — oo, we mean that 7 goes to
infinity by taking values from the sequence 7y,7s,....) In a system with index 7, the
arrival rate (i.e., the intensity of the Poisson arrival process) is nA; and the number of
servers is nny. (Actually, the latter should be, for example, the integer part of nn;, but
again, to avoid trivial complications and simplify notation, we assume it’s just nn,.) We
also make the following additional

Assumption 2.1 The function n, is continuously differentiable in [0, 00).

Sample paths of the family of queue length processes Q"(t) = (Q’l’(t), Qg(t)), indexed



by the scaling parameter 7, are determined by the following equations:
t t n
QU = QUOy+ 15, ([ @bopzas) — 11ty ([ (Q1s) —mm) B = w)ds)  (2)
t t n t
a b c 1
110 ([Cands) = 1 ([ (QUs) = . “Bovads ) — 11 ([ (@1(s) A m,) ks )

and
Q3(1) = Q1)+ 11ty ([ (@16) = ms) 5.1 = wyas) — 115, ([ (Q8))ds) , (22

where IT%, I1°, I1¢, IT%,, ITS,, are independent standard (rate 1) Poission processes. In this
paper we use the notation x A y = min(x,y) and 2% = max(z,0) for all real z and y.
Throughout this paper we assume that the following initial conditions hold:

%Q”(O) - QW) , (2.3)

n~2Q1(0) = nQ(0)] = Q(0) (2.4)
where Q((0) and Q™ (0) are fixed vectors, and

Q”(0)>0. (2.5)

In the rest of the paper we also use the following notation. Let E be a complete
separable metric space, and a be a real number. Then we denote by D(E, a) the Skorohod
space of E-valued functions defined in the interval [a,00) which are right continuous
and have left limits. The space D(F,a) is endowed with Skorohod Ji-metric and the
corresponding topology.

3 Waiting Time in Node 1: Marginal Distribution
at a Given Time.

Suppose that we are interested in the waiting time of a “virtual” customer arriving at
station 1 at a fized time 7 > 0. Since we have a system with abandonment, a convenient
way to approach this problem is to consider the system that is obtained from the original
one by the following modification. Suppose, that after time 7, there are no new exogenous
arrivals into the system, and any customer departing any station i leaves the system. In
other words, starting time 7, each station ¢ has no new arrivals, and it just serves the
customers which were at the station at time 7. Theorem 5.1 in [4] still applies to the
modified system; the only difference is that the terms in the equations, corresponding to
the arrivals after time 7, should be “zeroed out”. Namely, the following results follow
directly from Theorem 5.1 (and its proof) in [4].
Denote the arrival and departure processes for station 1 by

AT={A"(#)[t>0)} and A"={A"1)]|t>0}

respectively. Let, by convention, the arrival process include the customers in node 1 at
time 0, so A"(0) = Q7(0), A"(0) =0, and A"(t) — A"(t) = Q(t), t > 0.
Then we obtain the following fluid limit result.



Theorem 3.1 With probability 1, the following convergence holds uniformly on compact
sets (u.o.c.) of t:

1
(@ A7, A7) = (QU), 4D, A1) (3.1)

where Q" = (Q7,Q1), QO = (ng), g")), the fluid limit Q) satisfies the following
equations

Q1) = Q") + [ e+ 1200 (9)] Loy — (@0 () Amy) = 8(Q(5) ) ds

(3.2)
and
Q0 1) = QW (0) + OtATﬁs<1—ws>(Q§°’< / 12QV (s)ds . (3.3)
Moreover, A and A are equal to
A () = Q)+ [ [r, + 20l ()] ds (3.4)
and .
AO(t) = /0 [ul (@7 (s) Ans) + 8, (Q0(s) - ns)+] ds , (3.5)

where A©) is a continuously differentiable non-decreasing function in [0, 00).
We also obtain the following diffusion limit.

Theorem 3.2 The following weak convergence holds (in the space being the direct prod-
uct of corresponding Skorohod spaces D(R,0)) :

1 1 1
ﬁ(;Q"—Q‘O AT - AD), S AT = AD) 5 (QW, AW, AW), (3.6)

where Q) = (le),QS)) is the unique continuous solution to the stochastic differential
equations

Q) = QPO+ [ Q) - QP (s)) + B (s)] ds (3.7)
[ e s — g ([ (@ ) ds) + 1o ([ auas)
_BgQ (/0 (Q®(s) = n,) 8,01 - ¢s)ds) _B (/Ot( 0)(5) — ns)+ﬁs¢sds)

-B° </Ot (Q(lﬂ)(s) A ns),u;ds>

tAT

tAT

A0 = O+ [0 - vds— [ 108 (5)ds (39

+B5, (/OW(QS’% ))uds) + b(/(f”(@&“()—ns) 5,01~ w)ds)

with



where AV and AW are defined as

tAT

AV = QPO+ | 150" (5)ds By, (/OMT(QéO)(s))u?dS)w“( 0

tAT

)\sds> (3.10)
and
AW (1)= /0 (@0 () - Q) + 8@ ()] ds + B ( /0 (@7 (s) A ns)u;ds)&m
8% ([(@6) =) 51— vds) + B ([ (@) = n.) " Brwds)

Clearly,
QM) = AV — AV | (3.12)

Now, let us define the “potential service initiation” process D" for node 1 by
D"(t) = A"(t) +nny, t > 0.

Note that if Q7(t) < nny, then A"(t) < D"(t); so the potential service can be “ahead” of
arrivals.
Obviously, we have the (probability 1, u.o.c.) convergence:

1
5D’?(t) — DO), t>0,

where DO (¢) = A (¢) 4 n,,t > 0. Since n, is continuously differentiable by assumption
and we know that A0 (#) is continuously differentiable, D) () is also continuously dif-
ferentiable and we denote its derivative by d©(t). Now we will make an important (but
not very restrictive in majority of applications) additional assumption.

Assumption 3.1. The function D® (of ) is continuously differentiable with strictly
positive derivative, and

: 0 0
Jim D) > AO(7) . (3.13)

(Note, that according to our definitions, both A”(-) and A () are constant in the
interval [r, 00).)

Also, it will be convenient to adopt a convention that all the processes we consider
are defined in the interval [—7', 00), with

T = ng/d?(0) .

We make this extension by assuming that nothing is happening in the interval [T 0)
(no arrivals or departures) except the number of servers is increasing linearly from 0 to
nng (for the unscaled process with index 7).

We then can rewrite (3.1) and (3.6) as follows (with all the functions being now
defined for t > —T):

1
5(Q”, A", D"y — (Q©, A D) (3.14)
and
Vit =@, Lar — 40 Lpr_ poy 4w 40 pwy (3.15)
7 7 7
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Figure 2: The diffusion term for the attainment waiting time

where
DV =AW (3.16)

Note that processes A®, DO AM DM are continuous and DO (~T) = DM (-T) =
Our conventions together with the Assumption 3.1 make the following processes well

defined and finite with probability 1 for all sufficiently large 7. Let us define, for all
t > —T, the first attainment processes

S™(t) =inf{s > =T : D"(s) > A"(t)}

and
SOty =inf{s > =T : DO(s) > AO (1)}, (3.17)

and the attainment waiting time processes
Wh(t) = S"(t) —t
and
WO@)=5O0¢) —t. (3.18)

Denote by W(7) the virtual waiting time at 7, i.e. the time a “test” customer (in the
original non-modified system) arriving in node 1 at time 7 would have to wait until its
service starts, assuming this customer does not abandon while waiting. Then the relation
between the virtual waiting time W7(7) and the attainment waiting time W7 (r) is simply

W(r)=wn(r)*t. (3.19)

Indeed, note that W"(7) (and WEO) (7)) may be negative. All this means is that Q7(7) <
nn,, and therefore in this case W7(7) = 0. If W"(7) is non-negative, then its value is
exactly equal to the virtual waiting time.



It follows directly from Theorem and Corollary in [7] that (3.14), (3.15), and Assump-
tion 3.1, imply the following convergences.
With probability 1, u.o.c.,

1 1 1
(-Q, ~ A", ~D" W) - (Q©, A0, DO W O) . (3.20)
n n n

In distribution,

\/,—,(lqn _ QO L A Lo DO — ) & (M) A0 pO )y (3.91)
n " n

where
A0 (1) — DO(SO()

TRIEI)

Since the processes AN, DM QW WO are continuous with probability 1, we auto-
matically obtain the weak convergence of finite dimensional distributions.

In particular, consider the non-trivial case S(°)(7) > 7 (which is equivalent to Q" (1) >
n,). We obtain

wW(t) =

wW(r) — w© (1)
and

VAW (r) = WO(r)) 5 W(r) =
Solving equation (3.2) for ng)(') in the interval |7, 00), we obtain
(0) (0) ' ! ! 1
Qi (t)=Q1 (1) exp (—/ ﬂsds> +/ exp <—/ Brdr> (Bs — pg)nsds , t > 7.
We can find S©(7) from
SOy = min{t > 7 | Q1" (t) = ns} .

Solving a stochastic differential equation for le)(') in the interval [r, S©(7)], we
obtain (cf. [2]

le)(S(O)(T)) d le)(T) exp (_ /Tg<o>(r) 6Sds> N /Tgun(r) exp (_ /: @dr) FdB(s 7).

where
F2=(QV (1) = n) By + gt

and B is a standard Brownian motion process. In particular,

©)(r
el (5 )] = El@ e (— [ )
and

Var[le)(S(O)(T))] _ Var[Q(ll)(T)] exp (_ /5(0)(7') Qﬁrdr> +/5(0)(7') exp (_ /5(0)(7') 2@«d7“> f?dS .
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Figure 3: The fluid approximations for the queue lengths and virtual waiting time

Note that in case ng)(r) = n,, we obtain
5(0)(7) =, W(O)(T) =0, d© (1) = uim +nl,

and, therefore,
(1)
d 1 @)
Recalling (3.19), we obtain the following diffusion limit for the virtual waiting time in

this case 1) x4
which is what we intuitively expected.

We checked the accuracy of the fluid approximation for the virtual waiting time via
simulation. The system we considered has all parameters constant except for A;. In
particular we considered n; = 50, uj = 1, p? = 0.2, 3, = 0.25, and ¢y = 0.5, with
A = 10+ 20t — t2, 0 < t < 20. The results are shown in Figure 3. The graph on the
left compares the fluid and simulation results for the queue length, and the graph on
the right compares the fluid and simulation results for the virtual waiting time. (The
simulation results depicted are an average of 5000 independent replications. More details
on the simulation method are contained in [5].)

4 Waiting Time in Node 1: A Process

In the previous section we derived fluid and diffusion approximations of the marginal
distribution of the attainment waiting time, which uniquely determines those for the
virtual waiting time, in node 1 at a given time 7 > 0. A natural conjecture is that one can
obtain similar asymptotics for the attainment waiting time as a random process defined
for 7 € [0,00). In this section we present results showing that the above conjecture is
indeed true.

We need more definitions. First, in this section, unless otherwise explicitly stated,
we view all the processes as random processes of two time variables, ¢ € [T, 00) and



7 € [0,00). (In the previous section 7 was a fixed parameter.) More precisely, we view
them as random elements X = ((X(¢,7), t € [-T,00)), 7 > 0) (X can be @] or A" or
Ql(j), etc.) taking values in the space D(D(R, —T),0).

Note that for each fixed 7 all processes of interest are well defined in the previous
section, and the convergences (3.20) and (3.21) do hold for any fixed 7.

Assumption 4.1 Assumption 3.1 holds for any 7 > 0.

A generalization of the argument used in the proofs in [4] (roughly, making all esti-
mates in the convergence proofs “uniform on 7”), and a generalization of the results in
[7], lead to the following results which are extensions of (3.20) and (3.21). The details
are contained in [6].

Theorem 4.1 (FSLLN) With probability 1, uniformly on compact sets of (t, ),

Lo Lan Lo gn ) 5 (@O, 4@ p® 5O o)) (4.1)
n n n
where all functions Q©, AQ DO SO WO  are continuous jointly on T and t, and
for each fixed T they (as functions of t) satisfy the ODE (3.2), (3.3), and equations (3.4),
(3.5), (3.17), (8.18). Moreover, d(t,7) = (0/0t) DO (t,7) is strictly positive.

Theorem 4.2 (FCLT) The following weak convergence holds:

\/ﬁ(%Q" -QY, %A" — A, %D" = DO, (Wi(r,7) = WO, 1), 72 0) 5
(QW, AW, DO, (Wh(r,7),7 > 0)),  (42)

where QW) is a jointly continuous on T and t random process, which (as a function of t,
with T fized) is the unique solution to the stochastic differential equations (3.7) and (3.8);
AW and DY (as functions of t) satisfy (3.10), (3.11), (3.16), and are jointly continuous
on T and t; and
0,7y = AV () = DS, 1). 7
dO (SO (r,7),7)

15 continuous on T.
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