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Abstract

The queue length results for the abandonment/retrial model in Theorem 5.1 ([4],
Section 5) are extended to include the fluid and diffusion limits for the waiting time in
nonstationary, many server Jackson networks with abandonment.
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Figure 1: The abandonment queue with retrials.

1 Introduction

Our model is a multi-server queue with time-varying parameters, in which customers are
impatient and hence abandon after (subjectively) excessive wait. Moreover, obtaining service
is important enough for some customers that they return and seek service after experiencing
a “time-out”. Formally, our model is depicted in Figure 1: there is a single “service” node
with n;, t > 0, servers. New customers arrive to the service node following a Poisson process
of rate A\;. Customers arriving to find an idle server are taken into service that has rate
. Customers that find all servers busy join a queue, from which they are served in a
FCFS manner. Each customer waiting in the queue abandons at rate ;. An abandoning
customer leaves the system with probability ¢, or joins a retrial pool with probability 1 — ;.
Each customer in the retrial pool leaves to enter the service node at rate 7. Upon entry
to the service node, these customers are treated the same as new customers. The behavior
of the system is described by the two-dimensional, continuous time Markov chain Q(¢) =
(Ql(t),Qg(t)) where ()1(t) equals the number of customers residing in the service node
(waiting or being served) and ()3(t) equals the number of customers in the retrial pool.
Time variability manifests itselt through time-dependent rates for arrivals, abandonments
and retrials, as well as a varying number of servers. (It is worth noting that, even if all of
these parameters are constant, the model in Figure 1 is analytically intractable.)

Our work is motivated by the need to develop analytical tools that support performance
analysis of large telecommunication systems, such as telephone call centers, where aban-
donments and retrials arise naturally. Call centers are constantly subject to time-varying
conditions, and waiting customers in phone queues are unable to observe the state of the
system. It follows that time-dependent modeling (as opposed to also state-dependent) is
natural for call centers. Finally, we point out that the analysis of waiting times is (typically)



analytically more challenging than that of the queue lenghts, and in many applications (like
call centers) is probably more important. For more discussion and related references on these
issues, see [5].

As mentioned above we are interested in the behavior of a system with large number of
servers and large input rate. Thus, we consider the asymptotic regime where we scale up
the number of servers in response to a similar scaling up of the arrival rate by customers.

More precisely, the asymptotic regime is as follows. Assume that ¢, 3¢, i}, 7, 1, ng are
fixed functions of time ¢. We consider a sequence of systems indexed by scaling parameter
N = N,M2... N — 00 as k — oo. (To avoid combersome notations, in what follows,
we index a system by 1, and when we write n — oo, we mean that 5 goes to infinity by
taking values from the sequence 11,72, ....) In a system with index 5, the arrival rate (i.e., the
intensity of the Poisson arrival process) is nA; and the number of servers is nn;. (Actually, the
latter should be, for example, the integer part of nn;, but again, to avoid trivial complication
and simplify notations, we assume it’s just nn;.) We also make the following additional

Assumption 1.1 The function n; is continuously differentiable in [0, c0).

Sample paths of a scaled version Q"(t) = (Q?(t), Q;(t)) of the queue length process Q,
are determined by the following equations:

Qi = Quoy+ 115, ([ Qusitas) — i ([ (Qus) —an) 1 = wyas) (1)
i ([Fansas) =11 ([(@109) —wms) "B ) — 1 ([ (QUs) nym, ks

and
Q1) = QU0) + 112, ([ (@0s) = ) .01 = wupds) — 115, ([ (@4} ds) L (12

where I1¢,I1°, II¢, II},, ITS,, are independent standard (rate 1) Poission processes. In this
paper we use the notations x A y = min(x,y) and 27 = max(x,0) for all real x and y.

In the rest of the paper we also use the following notation. Let £ be a complete separable
metric space, and a be a real number. Then we denote by D(F, a) the Skorohod space of F-
valued functions defined in the interval [a, o0) which are right continuous and have left limits.
The space D(F,a) is endowed with Skorohod Ji-metric and the corresponding topology.

2 Waiting Time in Node 1: Marginal Distribution at
a Given Time.

Suppose, we are interested in the waiting time of a “virtual” customer arriving at station 1 at
a fired time 7 > 0. Since we have a system with abandonment, a convenient way to approach
this problem will be to consider the system which is obtained from the original one by the
following modification. Suppose, that after time 7, there are no new exogeneous arrivals into
the system, and any customer departing any station 1 leaves the system. In other words,
starting time 7, each station ¢ has no new arrivals, and it just serves the customers which
were at the station at time 7. Theorem 5.1 in [4] still applies to the modified system; the



only difference is that the terms in the equations, corresponding to the arrivals after time
7, should be “zeroed out”. Namely, the following results follow directly from Theorem 5.1
(and its proof) in [4].

Denote the arrival and departure processes for station 1 by

AT={ A" t>0} and A7={At)[t>0)}

respectively. Let, by convention, the arrival process include the customers in node 1 at time

0, 50 A7(0) = QI(0), A"(0) = 0, and A7(1) — A(t) = QI(t), ¢ >0,
Then we get the following ﬂuzd limit result.

Theorem 2.1 With probability 1, the following convergence holds uniformly on compact sets
(u.0.c.) of t:
1
_(anAnvAn) - (Q(O)vA(O)vA(O)) (21)
n

where Q" = (QF,Q3), Q) = (ngv ng)), the fluid limit Q(©) satisfies the following equations

Q1) = Q"0+ /0 e +12Q0()] Ler — 1 (@0 An) = 8, (Q0(s) =) T (22)

AT + 13
Q) = Q) + [ 80 =0 Q) =) s - [ P9y (23)
Moreover, A9 and A are equal to

A0 = Q) + [ [+ el (s)] ds (2.4)
and .
A0 = [ |at (@) Am) + 8.(Q1) — )] ds (2.5)

where A©) is a continuously differentiable non-decreasing function in [0, 00).
From this fluid limit, we get the following diffusion limit.

Theorem 2.2 The following weak convergence holds (in the space being the direct product
of corresponding Skorohod spaces D(R,—T)) :

1 1 1
\/ﬁ(;Q" — Q) ;A” — AO) ;A” — AO) N (QW, AW A1), (2.6)

where Q) = (le),Q(QI)) is the unique continuous solution to the stochastic differential
equations

A = Qo)+ [ [ (@) - sy ) +5,00)7 ds 2.7
[ — s ([ (@) ias) + 57 (| Ot s
- B, ( /0 t(Qﬁo)(S) —n) B - ) B ( Qs n5)+ﬁ5¢sds)

—B° (/Ot (ng)(s) A ns),uids)
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Q0 = QO+ [T - s — [ Qs 29
+B&(A“X@ykaﬁ@k)+B$(A“XQ9@>—nJUUﬂ—¢»@),

with
1) % 1
QM = QO g0 sn — AT G000 (2.9)
where AV and AW are defined as

AV = Q0 + [T Qs - By, ([T (00 )was) 4 5 ([T ads) (210)

t

AW(n= [ i (Q0(s) = Q(s)7) + B.QP(sY] ds + B ( [ (@) nn,) M;ds) (2.11)
VB, (/Ot (Q©(s) = ) A1 - ¢5)ds) + B (/Ot(ng(s) _ n5)+ﬁs¢sds) .

Clearly,
QU () = AV — AW@) (2.12)

Now, let us define the “potential service initiation” process D" for node 1 by
D"(t)=A"t)+nny, t>0.

Note that if Q7(t) < nns, then A"(t) < D7(t); so the potential service can be “ahead” of
arrivals.
Obviously, we have the (probability 1, u.o.c.) convergence:

1
~—D"(t) — DOt), t >0,
7

where DO (1) = AO(¢)+n;, ¢ > 0. Since n, is continuously differentiable by assumption and
we know that A0)(1) is continuosly differentiable, D(®)(#) is also continuously differentiable
and we denote its derivative by d®(¢). Now we will make an important (but not very
restrictive in majority of applications) additional assumption.

Assumption 2.1. The function D© (of #) is continuously differentiable with strictly
positive derivative, and

lim DO (1) > AO(r) (2.13)

t—0o0
(Note, that according to our definitions, both A7(-) and A®)(-) are constant in the interval

[7,00).)
Also, it will be convenient to adopt a convention that all the processes we consider are
defined in the interval [T, o0), with

T = 1o/d®(0) .
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Figure 2: The diffusion term for the virtual waiting time

We make this extention by assuming that nothing is happening in the interval [—T,0) (no
arrivals or departures) except the number of servers is increasing linearly from 0 to nng (for
the unscaled process with index 7).

We then can rewrite (2.1) and (2.6) as follows (with all the functions being now defined
fort > —T):

1
QA7 D7) = (Q, A0, D) (2.14)
n
and ) 1 1
\/ﬁ(;Q" _ Q(O)7 ;A” _ A(O), ;D” _ D(O)) KR (Q(l),A(l),D(l)) 7 (2.15)
where
DM =AM (2.16)

Note that processes A®, DO AN D) are continuous and DO (=T) = DU (=T) = 0.

Our conventions together with the Assumption 2.1 make the following processes well
defined and finite with probability 1 for all sufficiently large . Let us define, for all ¢ > =T,
the first attainment processes and the attainment waiting time processes or

STty =1inf{s > =T : D"(s) > A"(1)} and S(O)(t) =inf{s > -T: D(O)(S) > A(O)(t)}

and

Wo(t)=S"(t)—t and WO(t) = SO@#) —1¢

respectively. Similarly, we define
Denote by W"(7) the virtual waiting time at 7, i.e. the time a “test” customer (in the
original non-modified system) arriving in node 1 at time 7 would have to wait until its service
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starts, assuming this customer does not abandon while waiting. Then the relation between
the virtual waiting time W7(7) and the attainment waiting time W"(7) is simply

Wi(r)= W)t t>0. (2.17)

Indeed, note that W7(7) (and W (7)) may be negative. All this means is that Q7(7) < nn.,
and therefore in this case W”( ) = 0. If W7(7) is non-negative, then its value is exactly
equal to the virtual waiting time.
It follows directly from Theorem and Corollary in [6] that (2.14), (2.15), and Assumption
2.1, imply the following convergences.
With probability 1, u.o.c.,
(%Q”, %A”, %D”, W) = (Q®, A®, D) ) | (2.18)

In distribution,
\/ﬁ(lQn Q) lAn — AO) an — DO W — W) 4, (QW, AW pW wy = (2.19)
U] U] U]

where

AW () = DO(SO(1))
dO(S©O)(t))

Since the processes AN, DM QW W) are continuous with probability 1, we automati-

W) =

cally get the weak convergence of finite dimentional distributions.
In particular, consider the non-trivial case S(©(7) > 7 (which is equivalent to Ql ( ) >

n;). We get

Loy o o,
UW() W (r)

VW (r) = WO(r)) & Wih(r) = 24
Solving ODE for ng)(-) in the interval [r, oo], we get
o o ¢ ¢ ¢
Q00 = Qe (= [t w)ds) + [[exp (=[5 + p)ir) Banads 12,
Then we can find S©(7) from
SOy = min{t > 7 | Q1(t) = ny} .

Solving a stochastic differential equation for le)() in the interval [r, S©(7)], we get

Q) £ Qrenp (= [ s} [T e (= [ ) pam

It = (ng)(t) — ng) B+ nepy
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Figure 3: The fluid approximations for the queue lengths and virtual waiting time

and B is a standard Brownian motion process. In particular,
(1) (0) B (1) S(O)(T)
E[Q7(S™(7))] = E[Qy"(7)] exp | — 23,ds
and

1 o 1 S(O)(T) S(O)(T) S(O)(T) 5
Var[Qg )(S( )] = Var[Qg )(7')] exp (—/T ZﬂTdr) —I—/T exp (—/5 ZﬂTdr) fids.

Note that in case ng)(T) = n,, we get
SO 7y =7, WO(r) =0, d9(r) = pin, + 0,

and, therefore,

(1)
d 1 _ Qi(r)
Recalling (2.17), we get the following diffusion limit for the virtual waiting time in this case
. (D¢ \+
Vi) & DT g0y <,

1 1’
IuTnT —I_ nT

which is what intuitively expected.

3 Waiting Time in Node 1: A Process

In the previous section we derived fluid and diffusion approximations of the marginal dis-
tribution of the attainment waiting time, which uniquely determines those for the virtual



waiting time, in node 1 at a given time 7 > 0. A natural conjecture is that one can get a sim-
ilar asymptotics for the attainment waiting time as a random process defined for 7 € [0, o).
In this section we present results showing that the above conjecture is indeed true.

We need more definitions. First, in this section, unless otherwise explicitly stated, we will
view all the processes as random processes of two time variables, t € [T, 00) and 7 € [0, ).
(In the previous section 7 was a fixed parameter.) More precisely, we view them as random
elements X = ((X(¢,7), t € [-T,00)), 7 > 0) (X can be Q! or A" or ng), etc.) taking
values in the space D(D(R, —1T),0).

Note that for each fixed 7 all processes of interest are well defined in the previous section,
and the convergences (2.18) and (2.19) do hold for any fixed .

Assumption 3.1 Assumption 2.1 holds for any 7 > 0.

Then a generalization of the argument used in the proofs in [4] (roughly, making all
estimates in the convergence proofs “uniform on 77), and a generalization of the results in
[6], lead to the following results which are extensions of (2.18) and (2.19).

Theorem 3.1 (FSLLN) With probability 1, uniformly on compact sets of (t,7),

1 1 1
(;Qn7 ;A”, ;D”,S”,W”) N (Q(O),A(O),D(O),S(O) W(O)) 7 (3.1)

where all functions Q©), A©) DO 5O WO  are continuous jointly on T and t, and for
each fized T they (as functions of t) satisfy the ODE (2.2), (2.3), and equations (2.4), (2.5),
(2), (2). Moreover, d©)(t,7) = (3/0t)DO(t, 1) is strictly posilive.

Theorem 3.2 (FCLT) The following weak convergence holds:

1 1 1
Vi-Q! = QY. — A" = AO — D7 — DO (W(r.r) = WOz, 7), 7 20))
n n n
(QW, AV pO (WO (r 1), 7 >0)), (3.2)
where QW is a jointly continuous on T and t random process, which (as a function of t, with
7 fized) is the unique solution to the stochastic differential equations (2.7) and (2.8); AW
and DY (as functions of t) satisfy (2.10), (2.11), (2.16), and are jointly continuous on T
and t; and
A(l)(Tv T) — D(l)(s(o)(Tv 7—)7 T)
(SO, 7). 7)

W(l)(T, T) =

s continuous on T.
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