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Abstract

The queue length results for the abandonment�retrial model in Theorem ��� ���	

Section �� are extended to include the �uid and di
usion limits for the waiting time in
nonstationary
 many server Jackson networks with abandonment�
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Figure �� The abandonment queue with retrials�

� Introduction

Our model is a multi�server queue with time�varying parameters� in which customers are
impatient and hence abandon after �subjectively� excessive wait� Moreover� obtaining service
is important enough for some customers that they return and seek service after experiencing
a �time�out	� Formally� our model is depicted in Figure �� there is a single �service	 node
with nt� t � 
� servers� New customers arrive to the service node following a Poisson process
of rate �t� Customers arriving to �nd an idle server are taken into service that has rate
��t � Customers that �nd all servers busy join a queue� from which they are served in a
FCFS manner� Each customer waiting in the queue abandons at rate �t� An abandoning
customer leaves the system with probability �t or joins a retrial pool with probability ���t�
Each customer in the retrial pool leaves to enter the service node at rate ��t � Upon entry
to the service node� these customers are treated the same as new customers� The behavior
of the system is described by the two�dimensional� continuous time Markov chain Q�t� ��
Q��t�� Q��t�

�
where Q��t� equals the number of customers residing in the service node

�waiting or being served� and Q��t� equals the number of customers in the retrial pool�
Time variability manifests itself through time�dependent rates for arrivals� abandonments
and retrials� as well as a varying number of servers� �It is worth noting that� even if all of
these parameters are constant� the model in Figure � is analytically intractable��

Our work is motivated by the need to develop analytical tools that support performance
analysis of large telecommunication systems� such as telephone call centers� where aban�
donments and retrials arise naturally� Call centers are constantly subject to time�varying
conditions� and waiting customers in phone queues are unable to observe the state of the
system� It follows that time�dependent modeling �as opposed to also state�dependent� is
natural for call centers� Finally� we point out that the analysis of waiting times is �typically�






analytically more challenging than that of the queue lenghts� and in many applications �like
call centers� is probably more important� For more discussion and related references on these
issues� see ����

As mentioned above we are interested in the behavior of a system with large number of
servers and large input rate� Thus� we consider the asymptotic regime where we scale up
the number of servers in response to a similar scaling up of the arrival rate by customers�

More precisely� the asymptotic regime is as follows� Assume that �t� �t� �
�
t � �

�
t � �t� nt are

�xed functions of time t� We consider a sequence of systems indexed by scaling parameter
� � ��� ��� � � �� �k � � as k � �� �To avoid combersome notations� in what follows�
we index a system by �� and when we write � � �� we mean that � goes to in�nity by
taking values from the sequence ��� ��� ����� In a system with index �� the arrival rate �i�e�� the
intensity of the Poisson arrival process� is ��t and the number of servers is �nt� �Actually� the
latter should be� for example� the integer part of �nt� but again� to avoid trivial complication
and simplify notations� we assume it�s just �nt�� We also make the following additional

Assumption ��� The function nt is continuously di�erentiable in �
����

Sample paths of a scaled version Q��t� �
�
Q�

��t�� Q
�
��t�

�
of the queue length process Q�
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where 	a�	b�	c�	b
���	

c
��� are independent standard �rate �� Poission processes� In this

paper we use the notations x � y � min�x� y� and x� � max�x� 
� for all real x and y�
In the rest of the paper we also use the following notation� Let E be a complete separable

metric space� and a be a real number� Then we denote by D�E� a� the Skorohod space of E�
valued functions de�ned in the interval �a��� which are right continuous and have left limits�
The space D�E� a� is endowed with Skorohod J��metric and the corresponding topology�

� Waiting Time in Node �� Marginal Distribution at

a Given Time�

Suppose� we are interested in the waiting time of a �virtual	 customer arriving at station � at
a �xed time 
 � 
� Since we have a system with abandonment� a convenient way to approach
this problem will be to consider the system which is obtained from the original one by the
following modi�cation� Suppose� that after time 
 � there are no new exogeneous arrivals into
the system� and any customer departing any station i leaves the system� In other words�
starting time 
 � each station i has no new arrivals� and it just serves the customers which
were at the station at time 
 � Theorem ��� in ��� still applies to the modi�ed system� the

�



only di�erence is that the terms in the equations� corresponding to the arrivals after time

 � should be �zeroed out	� Namely� the following results follow directly from Theorem ���
�and its proof� in ����

Denote the arrival and departure processes for station � by

A� � f A��t� j t � 
 g and �� � f ���t� j t � 
 g
respectively� Let� by convention� the arrival process include the customers in node � at time

� so A��
� � Q�

��
�� �
��
� � 
� and A��t�����t� � Q�

��t�� t � 
�
Then we get the following �uid limit result�

Theorem ��� With probability �� the following convergence holds uniformly on compact sets
�u�o�c�� of t	

�
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where Q� � �Q�
�� Q

�
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���
� �� the �uid limit Q��� satis�es the following equations
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Moreover� A��� and ���� are equal to
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where ���� is a continuously di�erentiable non
decreasing function in �
����

From this �uid limit� we get the following di�usion limit�

Theorem ��� The following weak convergence holds �in the space being the direct product
of corresponding Skorohod spaces D�R��T �� 	
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and
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where A��� and ���� are de�ned as
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Q
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� �t� � A����t�������t� � �
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Now� let us de�ne the �potential service initiation	 process D� for node � by

D��t� � ���t� � �nt� t � 
 �

Note that if Q�
��t� � �nt� then A��t� � D��t�� so the potential service can be �ahead	 of

arrivals�
Obviously� we have the �probability �� u�o�c�� convergence�

�

�
D��t�� D����t�� t � 
�

where D����t� � �����t��nt� t � 
� Since nt is continuously di�erentiable by assumption and
we know that �����t� is continuosly di�erentiable� D����t� is also continuously di�erentiable
and we denote its derivative by d����t�� Now we will make an important �but not very
restrictive in majority of applications� additional assumption�

Assumption ���� The function D��� �of t� is continuously di�erentiable with strictly
positive derivative� and

lim
t��

D����t� � A����
 � � �
����

�Note� that according to our de�nitions� both A���� and A������ are constant in the interval
�
�����

Also� it will be convenient to adopt a convention that all the processes we consider are
de�ned in the interval ��T���� with

T � n�
d
����
� �

�
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Figure 
� The di�usion term for the virtual waiting time

We make this extention by assuming that nothing is happening in the interval ��T� 
� �no
arrivals or departures� except the number of servers is increasing linearly from 
 to �n� �for
the unscaled process with index ���

We then can rewrite �
��� and �
��� as follows �with all the functions being now de�ned
for t � �T ��

�
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�Q�� A��D��� �Q���� A����D���� �
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and p
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d� �Q���� A����D���� � �
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where
D��� � ���� � �
����

Note that processes A����D���� A����D��� are continuous and D�����T � � D�����T � � 
�
Our conventions together with the Assumption 
�� make the following processes well

de�ned and �nite with probability � for all su�ciently large �� Let us de�ne� for all t � �T �
the �rst attainment processes and the attainment waiting time processes or

S��t� � inffs � �T � D��s� � A��t�g and S����t� � inffs � �T � D����s� � A����t�g
and

W ��t� � S��t�� t and W ����t� � S����t�� t

respectively� Similarly� we de�ne
Denote by �W ��
 � the virtual waiting time at 
 � i�e� the time a �test	 customer �in the

original non�modi�ed system� arriving in node � at time 
 would have to wait until its service

�



starts� assuming this customer does not abandon while waiting� Then the relation between
the virtual waiting time �W ��
 � and the attainment waiting time W ��
 � is simply

�W ��
 � � W ��
 ��� t � 
 � �
����

Indeed� note thatW ��
 � �andW ����
 �� may be negative� All this means is that Q�
��
 � � �n� �

and therefore in this case �W ��
 � � 
� If W ��
 � is non�negative� then its value is exactly
equal to the virtual waiting time�

It follows directly from Theorem and Corollary in ��� that �
����� �
����� and Assumption

��� imply the following convergences�

With probability �� u�o�c��

�
�

�
Q��

�

�
A��

�

�
D��W ��� �Q���� A����D����W ���� � �
����

In distribution�

p
��
�

�
Q� �Q����

�

�
A� �A����

�

�
D� �D����W � �W ����

d� �Q���� A����D����W ���� � �
����

where
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A����t��D����S����t��
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�

Since the processes A����D���� Q����W ��� are continuous with probability �� we automati�
cally get the weak convergence of �nite dimentional distributions�

In particular� consider the non�trivial case S����
 � � 
 �which is equivalent to Q���
� �
 � �

n� �� We get
�
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 �
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Solving ODE for Q���
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Figure �� The �uid approximations for the queue lengths and virtual waiting time

and B is a standard Brownian motion process� In particular�

E�Q���
� �S����
 ��� � E�Q���

� �
 �� exp

�
�
Z S������

�

�sds

�

and

Var�Q���
� �S����
 ��� � Var�Q���

� �
 �� exp

�
�
Z S������

�

�rdr

�
�
Z S������

�
exp

�
�
Z S������

s

�rdr

�
f�s ds �

Note that in case Q
���
� �
 � � n� � we get

S����
 � � 
� W ����
 � � 
� d����
 � � ���n� � n	� �

and� therefore�

p
�W ��
 �

d�W ����
 � �
Q

���
� �
 �

���n� � n	�
�

Recalling �
����� we get the following di�usion limit for the virtual waiting time in this case

p
� �W ��
 �

d� Q
���
� �
 ��

���n� � n	�
� if Q

���
� �
 � � n� �

which is what intuitively expected�

� Waiting Time in Node �� A Process

In the previous section we derived �uid and di�usion approximations of the marginal dis�
tribution of the attainment waiting time� which uniquely determines those for the virtual

�



waiting time� in node � at a given time 
 � 
� A natural conjecture is that one can get a sim�
ilar asymptotics for the attainment waiting time as a random process de�ned for 
 � �
����
In this section we present results showing that the above conjecture is indeed true�

We need more de�nitions� First� in this section� unless otherwise explicitly stated� we will
view all the processes as random processes of two time variables� t � ��T��� and 
 � �
����
�In the previous section 
 was a �xed parameter�� More precisely� we view them as random

elements X � ��X�t� 
 �� t � ��T����� 
 � 
� �X can be Q�
i or A� or Q�j�

i � etc�� taking
values in the space D�D�R��T �� 
��

Note that for each �xed 
 all processes of interest are well de�ned in the previous section�
and the convergences �
���� and �
���� do hold for any �xed 
 �

Assumption ��� Assumption 
�� holds for any 
 � 
�
Then a generalization of the argument used in the proofs in ��� �roughly� making all

estimates in the convergence proofs �uniform on 
	�� and a generalization of the results in
���� lead to the following results which are extensions of �
���� and �
�����

Theorem ��� �FSLLN� With probability �� uniformly on compact sets of �t� 
 ��
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where all functions Q���� A���� D���� S���� W ���� are continuous jointly on 
 and t� and for
each �xed 
 they �as functions of t� satisfy the ODE ������ ������ and equations ���
�� ������
���� ���� Moreover� d����t� 
 � � ��
�t�D����t� 
 � is strictly positive�

Theorem ��� �FCLT� The following weak convergence holds	
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where Q��� is a jointly continuous on 
 and t random process� which �as a function of t� with

 �xed� is the unique solution to the stochastic di�erential equations ����� and ������ A���

and D��� �as functions of t� satisfy ������� ������� ������� and are jointly continuous on 

and t� and
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