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Telephone call centers are data-rich environments that, until recently, have not received

sustained attention from academics. For about a decade now, we are fortunate to have

worked with our colleague, mentor and friend, Larry Brown, on the collection and analysis of

large call-center datasets. This work has provided many fascinating windows into the world

of call-center operations, stimulating further research and affecting management practice.

Larry’s inexhaustible curiosity and creativity, sharp insight and unique technical power,

have continuously been an inspiration to us. We look forward to collaborating and learning

from him on many occasions to come.

In this paper, we study operational heterogeneity of call center agents. Our proxy for

heterogeneity is agents’ service times (call durations), a performance measure that preva-

lently “enjoys” tight management control. Indeed, managers of large call centers argue that

a 1-second increase/decrease in average service time can translate into additional/reduced

operating costs on the order of millions of dollars per year.

We are motivated by an empirical analysis of call-center data, which identifies both short-

term and long-term factors associated with agent heterogeneity. Operational consequences

of such heterogeneity are then illustrated via discrete event simulation. This highlights the

potential benefits of analyzing individual agents’ operational histories. We are thus naturally

led to a detailed analysis of agents’ learning-curves, which reveals various learning patterns

and opens up new research opportunities.

1



Contents

1 Introduction 3

1.1 Measuring and Modeling Operational Performance . . . . . . . . . . . . . . . 3

1.2 Designing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Work on Heterogeneous Servers . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Erlang Models and Beyond . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Pooling and Skill-Based Routing . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Why Exponential Service Times - QED Convenience . . . . . . . . . 6

1.3.4 A Process-View of Service: Duration and Structure . . . . . . . . . . 7

1.3.5 Why Study Service Times . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.4 Paper Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Data Background 10

3 Empirical Analysis of Agent Service Times 10

3.1 Call-by-Call Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Analysis of Daily Service-Time Averages . . . . . . . . . . . . . . . . . . . . 14

4 Effects of Agents Heterogeneity on Operational Performance 17

5 Learning Curve Modeling 19

5.1 Four Learning-Curve Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Learning Patterns of Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Out-of-sample Prediction of Service Rate . . . . . . . . . . . . . . . . . . . . 24

6 Conclusion and Outlook 26

2



1. Introduction

A call center is the common name for a service operation over the phone. It consists of

groups of people, called agents or customer-service representatives (CSRs), who provide the

service while sharing telecommunications and information technology infrastructure. The

current paper focuses on “inbound” call centers, which take calls that are initiated externally.

Examples include phone operations that support hotel, airline, and car-rental reservations

and sales, service centers of retail banks and brokerages, as well as various emergency services.

1.1 Measuring and Modeling Operational Performance

Performance of inbound call centers varies predictably and stochastically. Predictable vari-

ability refers, for example, to variability over time of the mix of types of calls seeking service,

the arrival rate of each call type, and the average duration of service (service-time) provided

to served calls. Stochastic variability captures unpredictable deviations around predictable

averages. For example, service times are modeled as random variables, and the number of

arriving calls over short periods of time (seconds or minutes or hours) is typically taken to be

a Poisson process or one of its relatives, e.g. a Cox process (also called Doubly or Compound

Poisson), which is used to accommodate over-dispersion (relative to Poisson) that is often

encountered in practice. The significance of predicable vs. stochastic variability is quanti-

fied by coefficients of variation (noise-to-signal ratios). For example, over longer periods of

time (days, weeks, months), the numbers of arrivals become more predictable, in the sense

that means become increasingly accurate representations of reality (formally, coefficients of

variation diminish).

Operational performance measures are roughly divided into efficiency measures, e.g. oc-

cupancy levels of agents, and measures of operational service-quality, e.g. abandonment

rates of customers and waiting-time measures (average waiting time, fraction waiting more

than 20 seconds). These performance measures are, of course, an outcome of the number of

agents that is handling calls, which is referred to as staffing or capacity level; the latter, in

turn, is typically recommended, or determined, by Workforce Management (WFM) systems,

which are software packages that help track historical arrivals, forecast future demand, and

staff and schedule the workforce accordingly.
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1.2 Designing Performance

Capacity-planning and workforce scheduling is a process of central importance in call centers.

(It is commonly agreed that over two-thirds of the costs of running a call center stems from

agent salaries.) This process is complex, and hence it is typically “divided-and-conquered” in

four hierarchical steps (Buffa et al. 1976). First, historical arrival data are used to generate

point forecasts of the numbers of calls that are expected to arrive in each time-interval (e.g.

1/2 hour) of the day, over some planning horizon (e.g. one week to a month). Second,

the WFM system uses queueing models to determine staffing levels required for each time-

interval within its planning horizon. Third, work schedules (e.g. shifts) are chosen so that the

number of agents on hand, during each interval, does not deviate too much from the staffing

requirement. Fourth, individual agents are assigned to schedules through a rostering process.

(More complete description of the planning process, as well as of call-center operations and

research in general, can be found in Gans et al. (2003) and Aksin et al. (2007).)

Traditionally, the staffing procedure performed in Step 2 (for each time-interval) uses

the so-called Erlang-C (or M/M/N) queueing model, which imposes the following three as-

sumptions: 1) the call-arrival process is Poisson, in particular customers are treated as being

homogeneous; 2) service-times are independent and identically distributed (iid) according

to an exponential distribution, thus agents are also assumed to be homogeneous; and 3)

arriving callers never abandon the queue, and hence all are ultimately served. Garnett et al.

(2002) have shown that the neglect of customer abandonment is a serious shortcoming, and

they propose, as an alternative, the so-called Erlang-A (or M/M/N+M) model. This model

acknowledges the abandonment phenomenon by adding to the Erlang-C assumptions that

customers are equipped with finite (im)patience, the duration of which is also exponentially-

distributed, iid across customers.

The simple Erlang-A model has been proved useful, in some circumstances, for capturing

the far more complex reality of call centers (Section 7.3 in Brown et al. (2005)). Still, its

predictive power is severely limited by its postulates of exponentiality and homogeneity. Such

assumptions are imposed for merely mathematical tractability, but they hardly prevail in

practice. To wit, the pioneering empirical analysis of Brown et al. (2005) reveals that arrival-

rates are time-varying (with variations that can hardly be assumed constant over 1/2 or even

1/4 hours), service-times are log-normally distributed (as opposed to being exponential), and

patience has a non-monotone hazard rate (e.g. peaking at instances of a voice-message, as

opposed to a constant). Now, the accuracy of a model’s prediction improves with the validity

of its building blocks. It is hence a researcher’s challenge to improve the latter, which we

contribute to here. We do that in the context of heterogeneity and learning (or forgetting)

among agents, as it is manifested through their service times.
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1.3 Work on Heterogeneous Servers

1.3.1 Erlang Models and Beyond

Both Erlang models assume that service times are independent and identically distributed,

within each interval during the planning horizon. But, as already mentioned, this assump-

tion typically fails to hold in call centers. Agents are humans with varying experience and

skills, which (along with many other factors) affect their performance (productivity). For

example, Gustafson (1982) illustrates a “learning-curve” phenomenon: agents become faster

in their jobs as they gain experience. Sze (1984) reports a “shift fatigue” effect, in which

“operators may initially work faster during periods of overload to work off the customer

queue, but may tire and work slower than usual if the heavy load is sustained and if no relief

is provided.” Brown et al. (2005) show that service times at one call center are positively

correlated with arrival rates: the higher the arrival rate, the longer the service times. And

Reich et al. (2010) demonstrate that service times are also positively correlated with indi-

vidual patience: the longer the service time the longer the customer is willing to wait for

service.

1.3.2 Pooling and Skill-Based Routing

Queueing theory has long dealt with heterogeneous servers. Interesting examples arise in

the context of pooling servers; for example, combining separate queues, each served by a

single server, into a single queue which is served by all these servers. It turns out that server

heterogeneity can reduce the operational benefits of pooling to a level that pooling is actually

harmful (which explains the existence of express lines in supermarkets). Readers are referred

to Mandelbaum and Reiman (1998) for details and further references.

A recent line of queueing research has been motivated by Skills-Based Routing (SBR)

in call centers, which is the protocol for online-matching of multi-type customers to multi-

skilled agents, the latter constituting a heterogeneous workforce. Lieberman et al. (2008)

describes SBR in the U.S. Bank that is our data source: the tables and flow-chart on pages

13-14 there provide a convincing representative example of workforce heterogeneity within

today’s call centers. (Readers are referred to Gans et al. (2003) for details on SBR and its

operational complexities.)

The importance of SBR goes beyond its operational benefits (e.g. reducing waiting times).

In fact, it has been welcomed in call center circles mostly because it enables the creation

of career-paths for agents, hence job-enrichment, which is essential in the monotonous pres-

sured high-turnover environment of call centers. Thus, SBR technology goes hand in hand
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with agent heterogeneity and learning. Aksin et al. (2007) surveys this multi-disciplinary

perspective, to which readers are referred for SBR-motivated queueing research. More re-

cent relevant work is Tezcan (2008), Armony and Mandelbaum (2008), Gurvich and Whitt

(2009a) and Gurvich and Whitt (2009b).

Further recent research by Atar and colleagues (Atar 2008, Atar and Shwartz 2008, Atar

et al. 2010) models agent heterogeneity by letting service times have an exponential distri-

bution with rates being iid across servers. These rates are fixed at the outset, which provides

a random environment with heterogeneous servers. The challenge here is to design and ana-

lyze blind SBR strategies, blind in the sense that no knowledge of system parameters (most

importantly arrival and service rates) is required for application of the protocol. Another ex-

ample of a blind strategy is the List-Based strategy of Momcilovic and Mandelbaum (2010),

which blindly gives preference to fast servers over the slow ones. Yet another example is

Sisselman and Whitt (2007), who propose Value- and Preference-Based Routing: these are

protocols in which agents are allowed to express their heterogeneity through preferences for

serving specific types of customers, preferences that are then incorporated into the SBR

protocols. A final queueing example, from the very different environment of hospitals, is

Tseytlin et al. (2010): the subject here is fairness dilemmas that arise from heterogeneity

of length-of-stay in hospitals (beds playing the role of servers), in the context of routing

patients from emergency departments to hospital wards.

1.3.3 Why Exponential Service Times - QED Convenience

Significantly, most SBR-driven queueing research (and all of the above) has confined atten-

tion to exponential service times. To elaborate, SBR presents a problem that is intractable

in closed form, hence one resorts to approximations for tractability and insights. These

approximations are based on an asymptotic analysis in a specific many-server operational

regime, mathematically founded by Halfin and Whitt (1981) for Erlang-C, and then adapted

to Erlang-A and call centers in Garnett et al. (2002). This regime has been referred to as

the QED regime; here QED stands for Quality- and Efficiency-Driven, reflecting the ability

to achieve, due to economies of scale (many servers), both very high levels of server-efficiency

(occupancy levels) and customer-service (short delays).

While the state of servers with exponential service times can be summarized by merely the

number of busy servers, say, due to the memoryless property of the exponential distribution,

the situation is far more complex in the non-exponential case. Here, the exact state of each

individual server must be maintained (e.g. the elapsed service time), which gives rise to a

state-space dimension that increases with the number of servers, and hence requires far more

complex models (e.g. measure-valued diffusions in the limit). The relaxation of service-time
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exponentiality is a central challenge for current research. For further leads see Mandelbaum

and Momcilovic (2010), which is the general-service time analogue of Garnett et al. (2002).

1.3.4 A Process-View of Service: Duration and Structure

Beyond the above theoretical results, little is known about the nature, magnitude and con-

sequence of server heterogeneity. As suggested by Gans et al. (2003), “many sources of

systematic variation in service times should be better described and analyzed.” For exam-

ple, what drives the duration of service times? How should one model these driving factors?

Why are service-times log-normally distributed (which we demonstrate below)? How should

a manager take servers’ heterogeneity into account? What if a manager ignores server het-

erogeneity?

A framework for addressing some of these questions has been proposed by Khudyakov

et al. (2010). In that work, the prevalent view of service-time, as a static entity, is altered

in favor of viewing the customer-agent interaction as a (dynamic) process or, formally, the

evolution of a finite-state continuous-time absorbing Markov process. The service process

then has two attributes - duration and structure: its duration, namely service-time, is the

time-until-absorption of the corresponding Markov process; its structure is then captured by

the sequence of states visited until absorption. This renders the distribution of service-time

as Phase-Type (Asmussen 2000), where a visit at a state corresponds to a phase in the service

process. Interestingly, “Phase-type distributions are the computational vehicle of much of

modern applied probability” (page 215 in Asmussen (2000)); but their history in Statistics

has been that of recurring, independent rediscoveries of their virtues, with the work of Aalen

and colleagues (Aalen et al. 2008) standing out as an outlier.

The process-view of service is advocated in Mandelbaum and Zeltyn (2009). It describes

a course, entitled “Service Engineering”, that has been taught at the Technion for over a

decade. Section 4.5.2 of that paper, corresponding to a 3-hour lecture in the course, is devoted

to the service process, which includes (Figure 20 there) a data-based phase-type model of a

telephone call. Such a model constitutes a natural framework for addressing questions that

pertain to the fine structure of the service process: for example, identifying phases that have

little added-value and quantifying the effects of eliminating or changing them, cost-analyzing

the addition of cross-selling phases, and more. Nevertheless, our present paper is restricted

to the duration attribute of the service process, namely service-times.

1.3.5 Why Study Service Times

Customer heterogeneity has received ample attention in both practice and theory. Indeed,
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Skills-Based Routing in call centers, as well as Customer Relationship Management (CRM)

(e.g. Winer (2001)) and Revenue Management (e.g. Talluri and Ryzin (2005)), can all

be viewed as the study and exploitation of customer heterogeneity. In contrast, server

heterogeneity has received relatively scarce attention. And, in particular, research inspired

by call centers has not addressed the statistical and practical implications of service-time

heterogeneity among agents. This paper aims to take a first, small step towards narrowing

this gap, a step that further motivates new research problems.

Are service times worthy of the attention that we advocate? The answer is an emphatic

“yes,” from both the practical and theoretical view-points. Quoting managers of large call

centers (with 1000’s of agents), the economic saving of decreasing (or cost of increasing) the

average service time by 1 second can be millions of dollars annually. It is thus no wonder

that managers of call centers exercise a very tight control over the durations of their agents’

service encounters. Furthermore, service times trigger wonderful research challenges, as we

hope that this paper clearly brings out.

1.4 Our Contribution

1.4.1 Overview

We use detailed transaction-level data from a network of call centers to investigate actual

heterogeneity among agents. We perform an empirical analysis to characterize and quantify

important aspects of agent heterogeneity: learning effects, agent-by-agent differences, shift

fatigue, system congestion, etc. The analysis is carried out at the call-by-call scale to identify

short-term effects, as well as the day-by-day scale to understand long-term factors. We

illustrate the operational effect of agent heterogeneity on system performance using discrete

event simulation. We also consider four learning-curve models of long-term agent learning

and compare their success in predicting agent service rates.

1.4.2 Covariates

The covariates that we have access to, all of which are operational in nature, can explain

only a small part of the variability embodied in individual service times. Having additional

covariates (such as agents’ professional histories, team memberships, etc.) will certainly

improve the situation. However, even then, it is our belief that call-by-call variation (due to

call content) will still dominate these covariate effects.

Nevertheless, a number of short-term (operational) covariates are associated with signif-

icant differences in mean service times. Specifically, higher abandonment rates, as ancillary
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measures for system congestion, are associated with increased mean service times. For calls

that involve multiple segments (or agents) in the service process, the initial segment has

a shorter average service time. Next, average call times are shorter for calls that are ter-

minated by agents. (The desired norm is for calls to be terminated by customers; but see

Brown et al. (2005), who expose the phenomenon of agents hanging-up on customers.) Fi-

nally, most types of transferred calls take longer to serve, on average (with the exception of

consumer-loan calls).

1.4.3 Learning

Agent learning is a significant factor that is associated with long-term reduction in average

service times. Conversely, after days- or months-long breaks (vacations) in call-handling,

average service times systematically increase. This may reflect agents forgetting their skills,

thus needing to re-learn. In some cases, it may also reflect a change in the service type

handled by a given agent. The analysis also shows that there exists significant heterogeneity

across agents, both in initial average service time and in the rate of learning.

A detailed analysis of agents’ learning curves reveals that agents exhibit a variety of learn-

ing patterns, and among four models tested, a nonparametric spline provides the most robust

means of modeling agents’ learning behavior across the different patterns. Furthermore, the

spline model is most sensitive to local changes in the pattern of service rates. Operationally,

discrete event simulation shows that ignoring potential agent heterogeneity may lead to

quality of service (QoS) performance that deviates significantly from its designated target.

1.4.4 Paper Contents

The rest of the paper is organized as follows. We first describe our call-center data in Section

2. We perform some empirical analysis on a cohort 21 agents, in Section 3, and report our

findings about agent heterogeneity. These results motivate us to perform a simulation study,

in Section 4, that reveals some operational effects of ignoring agent heterogeneity. They also

prompt us to study more carefully agent learning, in Section 5, which is here based on a

sample of 129 agents, all of whom are just starting work as CSRs at the center (and are

disjoint from the 21 agents mentioned above). Throughout our study, we identify interesting

phenomena that motivate additional research problems - several of these are discussed in

Section 6, which concludes the paper.
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2. Data Background

Our data come from a bank that operated a network of four call centers in the Northeast

USA. The data archive calls that were connected to the centers from March 2001 through

October 2003. As of April 2001, the four call centers handled 200,000-270,000 calls during

weekdays, 120,000-140,000 calls on Saturdays and 60,000-100,000 calls on Sundays. About

80% of these calls completed their service process in Voice Response Units (VRUs), leaving

20% of the calls to be also handled by agents. During the period in which our data were

collected, about 5,000 agents worked in these call centers. To sketch a temporal distribution

of the workforce, 900-1,200 agents worked on weekdays and 200-500 worked on weekends.

Among these agents, the busy ones handled on the order of 50-100 calls each day.

A comprehensive description of the U.S. Bank data-base appears in Donin et al. (2006).

The data are what we call transaction-level operational data (Trofimov et al. 2006). For

each call, the data record its whole event-history, including the arrival, waiting and service

(if served) phases. A call served by agents may contain multiple segments, during which

single or multiple agents provide the sought-after services. Our data record the IDs that

agents used to log into the system, and these IDs typically identify the agents uniquely over

the analyzed period. This allows one to extract all the call segments that are served by a

particular agent, thus enabling the analysis reported in the sequel.

Our data do not contain accurate agent demographic information, nor do they include hu-

man resource records concerning agent hiring/training, previous experience, break/vacation,

or agent cohort/supervisor. We can foresee that many of these covariates may be relevant

for studying agent heterogeneity. And indeed, as will be clarified later, these data limitations

naturally restrict the scope of our analysis and interpretation of the results. We have thus

been in constant pursuit of such non-operational agent characteristics, and it is plausible

that a call center that has recently partnered with the Technion SEELab will provide us the

data we desire.

3. Empirical Analysis of Agent Service Times

3.1 Call-by-Call Analysis

As a pilot study, we focus on a cohort of 21 agents who, to the best of our judgment, all

started working on July 1, 2002, at two different sites: “S” and “U.” The agents specialized

in several different service types, such as retail banking, consumer loans and online banking,

and only a few left the bank’s employment (“Term”) before the data collection period ended,
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on October 26, 2003. Figure 1, below, summarizes this information for our ad hoc cohort.

Site Service Start ID Term
1 U Retail 01-Jul-02 4115 28-Jan-03
2 U EBO 01-Jul-02 4122
3 U Retail 01-Jul-02 4128 06-May-03
4 U Retail 01-Jul-02 4130
5 U On-Line 01-Jul-02 4136 04-Apr-03
6 U On-Line 01-Jul-02 4151 31-Dec-10
7 U Loans 01-Jul-02 4235 26-Jul-03
8 U Loans 01-Jul-02 4243
9 U Loans 01-Jul-02 4254
10 S Retail 01-Jul-02 6735
11 S Retail 01-Jul-02 6737
12 S Retail 01-Jul-02 6738
13 S Retail 01-Jul-02 6739
14 S Retail 01-Jul-02 6740
15 S Retail 01-Jul-02 6741
16 S Retail 01-Jul-02 6744
17 S Retail 01-Jul-02 6747
18 S Retail 01-Jul-02 6764
19 S Retail 01-Jul-02 6909
20 S Retail 01-Jul-02 6911
21 S Retail 01-Jul-02 6912

Figure 1: Pilot population of 21 agents

While traditional capacity planning in call centers assumes that service times within

a given interval are independent and identically distributed, most often according to an

exponential distribution, the service times in this group are not. As is consistent with

Brown et al. (2005), these data reflect lognormally-distributed service times.

Figure 2 displays a histogram of log10(service times) of the calls handled by Agent 4115

at site U (referred to as Agent 14115 henceforth), together with a corresponding normal

quantile plot. The plots suggest that the service times for calls longer than 15 seconds fit

well the lognormal distribution. The relatively heavy presence of short-duration calls (of

less than 15 seconds) may be due to system’s mis-measurement or, alternatively, peculiar

phenomena such as agents hanging up on customers; see Brown et al. (2005).

Figure 3 depicts the time series of log10(service times) derived from Agent 14115 (against

the dates that the calls started to be served). Note that the data display a very slight but

significant (to the eye) downward slope. The fact that their log is normally distributed makes

the use of lognormally distributed service times appealing for statistical analysis. We are
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Figure 2: Agent 14115 - Log(Service Times) for calls longer than 15 seconds

able to develop careful regression analyses of log(service time) on a variety of factors. Below

we fit a traditional learning curve model (Yelle 1979) to the data:

log(yk) = a+ b log(k) + εk, (3.1)

where k ∈ {1, 2, . . . , } indexes chronologically each of the calls handled throughout the

agent’s tenure, yk denotes the service time of the kth call, and εk ∼ N(0, σ2). In fitting the

above regression model, we have omitted the first 2 weeks of call times (758 out of 11,500

calls).

Not surprisingly, regression results for this model yield R2 = 0.005; the great bulk of call-

by-call variability is not explained by learning. Indeed, most of the variation in call times

remains unexplained, even when other covariates are included in the regression. We presume

that this phenomenon is driven by the fact that call times are driven by the randomly varying

work content of various customer questions and requests.

At the same time, the estimate of b is −0.1247 and it is highly significant, with a p-value of

less than 0.0001. This coefficient value translates to a systematic decrease of 2−0.1247 = 8.3%

in expected service time, with each doubling of the number of calls cumulatively handled by

the agent. (The underlying calculation is (ea+σ
2/2(2k)b)/(ea+σ

2/2(k)b) = 2b.)

Furthermore, the 8.3% figure is managerially significant. That is, although (after a few

weeks of work) the relative number of calls handled in a single day will not be enough to

significantly affect the agent’s expected service times, cumulative experience does appear

to have a significant association with shorter average service times. This is consistent with
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an earlier, anecdotal report by Gustafson (1982), who claims that the average call times of

AT&T Directory Assistance operators declined systematically over their first 12-18 months’

experience. To the best of our knowledge, Gustafson’s anecdotal report is the only published

empirical evidence of agent learning, prior to the present work.

Figure 3: Agent 14115 - Longitudinal view of service-time evolution

In addition to learning, there are other factors that might affect service times. Sze (1984)

reports that agents suffer from “shift fatigue,” where they “initially work faster during

periods of overload to work off the customer queue, but may tire and work slower than usual

if the heavy load is sustained and if no relief is provided.” Brown et al. (2005) find that

service times depend on the time of day as well as the type of service. Another short-term

factor is the congestion level at the time of service.

To carefully study the effects of various factors on agent service rate, we consider each of

the 21 agents and regress his or her log service times on the following covariates, to which

we have access:

• rec num: nth service the agent has performed over his tenure

• run length: nth service the agent has performed since the last gap of > 1 hour

• ab rate: the abandonment rate at the time at which the call is handled

• call term: call termination type: by the customer, by the agent, or by transfer
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• later seg: 1st or later segment of call for the customer and agent (0/1)

Results from the individual regressions are reported in Figure 4. Observe that, after

the table’s first two columns, each pair of columns reports the estimate and significance of

(the intercept and) a given coefficient. Negative estimates are underlined, and insignificant

p-values have shaded backgrounds.

The regression results suggest the following. First, the intercepts that estimate agents’

base-line service rates, as well as the “log(rec num)” that estimate the slopes of the learning

curves, are generally significant and vary significantly across agents. Second, the “later

segment” coefficient shows that whether or not the agent was the first to work on the call is

significant: later segments are associated with increased average log call times. Third, how

a call terminates is also significant: “agent term” is associated with decreases in average log

service times; and “unknown term” and “transfer term” are associated with increases, except

in the case of consumer loans. Here, transfers are associated with decreased average log call

times, and we speculate that the more difficult consumer-loan calls are quickly transferred

to a specialist group whose call times we do not track. Fourth, higher abandonment rates

– a measure of increased system congestion at the time a call is handled – are (usually)

associated with statistically significant increases in average log service times, but the effect

is not large. Finally, the coefficient for log(run length), as a proxy for shift fatigue, is mixed

in sign and significance.

3.2 Analysis of Daily Service-Time Averages

The empirical analysis of call-by-call service times, in Section 3.1, identifies several short-

term factors associated with differences in average (log) call times. In this section, we focus

on the longer-term evolution of agent service times over days or weeks. For that purpose,

we look at daily means of log service times, which average out the effects of short-term

factors such as call-by-call variability, time-of-day, shift-fatigue, and system congestion. The

analysis reveals longer-term effects, such as learning and forgetting (Nembhard and Osothsilp

2002).

We now restrict attention to a more homogeneous group of agents, focusing on the 12

retail agents at site S. Figure 5 provides some simple examples of the types of longitudinal

trends that the daily averages of log service-times reveal. Each of the figure’s panels shows

the day-by-day evolution of service times for a given agent, and each point within a panel

plots the daily average of the log(service time) for that agent. We superimpose smooth

curves on the panels to highlight underlying patterns.

These plots are representative of a number of phenomena that come out of our preliminary
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log log
agent intercept p-value (recnum) p-value (run_len) p-value ab_rate p-value

1 14115 5.460 0.000 -0.087 0.000 0.034 0.001 0.019 0.000
2 14122 5.062 0.000 -0.016 0.128 -0.014 0.204 0.018 0.000
3 14128 5.763 0.000 -0.075 0.000 -0.048 0.030 0.019 0.018
4 14130 5.405 0.000 -0.066 0.000 0.028 0.000 0.018 0.000
5 14136 5.251 0.000 -0.059 0.000 0.026 0.002 0.018 0.000
6 14151 5.126 0.000 -0.034 0.001 0.061 0.000 0.017 0.000
7 14235 5.866 0.000 -0.058 0.000 -0.027 0.005 -0.003 0.571
8 14243 5.592 0.000 -0.044 0.000 -0.030 0.000 0.013 0.003
9 14254 5.364 0.000 -0.011 0.142 -0.040 0.000 0.001 0.817

10 26735 4.362 0.000 -0.043 0.000 0.018 0.030 0.007 0.143
11 26737 4.906 0.000 0.002 0.848 0.021 0.015 0.012 0.021
12 26738 5.335 0.000 -0.046 0.000 0.005 0.561 0.017 0.006
13 26739 5.416 0.000 -0.048 0.000 0.004 0.655 0.015 0.000
14 26740 5.203 0.000 -0.046 0.000 -0.006 0.414 0.031 0.000
15 26741 5.147 0.000 -0.052 0.000 0.028 0.000 0.020 0.000
16 26744 5.209 0.000 -0.054 0.000 0.024 0.000 0.015 0.000
17 26747 4.950 0.000 0.023 0.003 0.027 0.001 0.020 0.000
18 26764 5.456 0.000 -0.040 0.000 -0.009 0.400 0.012 0.045
19 26909 5.711 0.000 -0.091 0.000 0.005 0.439 0.019 0.000
20 26911 4.369 0.000 0.087 0.000 -0.022 0.057 0.024 0.000
21 26912 5.703 0.000 -0.078 0.000 0.008 0.212 0.018 0.000

agent unknown transfer later
agent term p-value term p-value term p-value segment p-value

1 14115 -0.365 0.000 0.872 0.000 0.273 0.000 0.053 0.650
2 14122 -0.450 0.000 1.069 0.000 0.300 0.000 0.109 0.379
3 14128 -0.538 0.000 0.795 0.000 0.047 0.553 -0.368 0.091
4 14130 -0.775 0.000 0.869 0.000 0.256 0.000 0.302 0.002
5 14136 -1.020 0.000 0.803 0.000 -0.032 0.179 0.126 0.165
6 14151 -1.258 0.000 0.699 0.000 0.091 0.004 0.220 0.068
7 14235 -0.659 0.000 0.365 0.000 -0.190 0.000 0.132 0.000
8 14243 -0.645 0.000 0.460 0.000 -0.110 0.000 0.126 0.000
9 14254 -0.750 0.000 0.376 0.000 -0.131 0.000 0.107 0.000

10 26735 1.087 0.000 1.624 0.000 1.357 0.000 0.562 0.000
11 26737 -1.102 0.000 0.862 0.000 0.144 0.000 0.131 0.114
12 26738 -0.609 0.000 0.952 0.000 0.346 0.000 0.306 0.001
13 26739 -1.227 0.000 0.751 0.000 0.036 0.084 0.023 0.782
14 26740 -0.377 0.000 1.029 0.000 0.213 0.000 0.213 0.010
15 26741 -1.088 0.000 0.855 0.000 0.302 0.000 0.457 0.000
16 26744 -1.197 0.000 0.858 0.000 0.101 0.000 0.376 0.000
17 26747 -0.703 0.000 0.721 0.000 0.167 0.000 0.219 0.015
18 26764 -1.145 0.000 0.774 0.000 0.122 0.000 0.343 0.002
19 26909 -0.449 0.000 0.648 0.000 0.098 0.000 0.286 0.000
20 26911 -0.560 0.000 0.820 0.000 0.241 0.000 0.636 0.000
21 26912 -1.127 0.000 0.666 0.000 0.053 0.006 0.307 0.000

Figure 4: Regression results for the 21 agents

analysis. All three demonstrate systematic, long-term decreases in average (log) service

times. This clearly suggests the existence of learning. At the same time, there are differences

among the agents’ learning rates. The center plot shows an abrupt increase in service times
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Figure 5: Long-term trend of daily average service time

after a long (102 day) absence by that agent, which may reflect a forgetting effect that offsets

the gains of learning. The right panel shows an even more pronounced increase in average

log service times after a relatively brief (18 day) break. We believe that, in this case, the

increase may reflect the agent’s transfer to a different type of call.

To study potential differences among the learning behaviors of agents, we omit the call

records after these types of breaks. We first use the efficient estimator proposed by Shen

et al. (2006) to estimate the daily average service time. For each agent, we then fit the

following regression model using weighted least squares:

log(mj) = a+ b log(j) + εj, εj ∼ N(0, σ2/nj),

where mj is the estimated mean service time for day j, and nj is the number of calls

answered by the agent during that day. The number of calls answered for each day is used

as the weight in the regression model, reflecting the fact the response is estimated using that

many individual calls.

Figure 6 depicts the daily learning curve for each of the agents, based on the regression

results. (Each unit on the x-axis represents one week; hence the time-horizon is 20 weeks.)

The learning curves suggest that there are significant variations among the agents and that

agent heterogeneity takes two forms: 1) on any given day, there is significant variation among

the 12 agents’ expected service rates; and 2) the learning-curve parameters themselves,

that is, the baseline mean log service time (a) and learning rate (b), are different across

agents. The fact that the learning process affects average call-times only gradually, over

weeks rather than days, also suggests that one can usefully address short term and longer-

term heterogeneity as distinct phenomena. More specifically, over a given day, we view an

individual agent as having a relatively stable expected service time and treat agent service

rates as a set of static parameters. Conversely, over weeks or months, we view agent service

rates as evolving according to a heterogeneous set of a’s and b’s. These learning curves will

be used to generate inputs for the discrete-event simulation study in the upcoming section,

where we illustrate some short-term operational effects of agent heterogeneity.
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4. Effects of Agents Heterogeneity on Operational Per-

formance

As outlined in Section 1, call center staffing usually assumes that agents are (statistically)

identical, with a common service rate during a staffing interval. In contrast, if we draw a

vertical line anywhere along the x-axis of Figure 6, we see that, on any given day, the expected

service rate can vary widely among agents. Thus, the mis-application of traditional staffing

procedure to agents with heterogeneous service rates can lead to flawed solutions of staffing

and scheduling problems.

For example, consider a staffing problem based on the 12 learning curves shown in Figure

6. At the end of week twelve, the estimated service rates per hour are

3.86, 4.05, 4.59, 4.63, 4.65, 4.80, 4.83, 5.02, 5.38, 5.77, 6.27, and 6.33,

with an average of 5.015 services per hour. We shall show that the use of a traditional

performance model, which assumes that all agents have a service rate of 5.015, can lead to

poor estimates of performance.

Suppose the arrival rate is forecasted to be λ = 21 calls per hour, and an individual’s

average time to abandonment is θ−1 = 30 minutes. That is, the time at which a customer
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becomes impatient and hangs up is expected to be θ−1 = 0.5 hours, and the average service

time is µ−1 ≈ 0.2 hours. Thus, the average time to abandonment is about 2.5 times that

of an average service time (which, perhaps somewhat surprisingly, reflects our practical

experience). Then, for statistically identical agents, each with service rate µ = 5.015 calls

per hour, results for the M/M/n+M (Erlang-A) model (Garnett et al. 2002) suggest that 6

agents are required to ensure an average delay in queue of 1 minute or less. (In fact, with

6 agents, the estimated delay is 58.8 seconds.) In contrast, a random draw of 6 from the 12

service rates described above will most typically yield results that do not match the intended

QoS target.

Figure 7 illustrates this effect. The figure’s left panel plots the average service rate

obtained when 6 of the 12 agents are sampled at random (without replacement). The plot’s

x-axis marks the sample-average of the 6 sampled service rates, and its y-axis shows the

frequency (in 100 trials) with which various sample results occur. While the mean and

median of the trials are close to 5.015, there exists significant variation about this center.

The right plot displays an analogous frequency histogram for the average delay in queue,

obtained from 100 simulations of the Markovian system that results from λ = 21, θ = 2, and

the six sampled µ’s. In each of the 100 trials, we run a discrete-event simulation to estimate

the average delay in queue. In the simulations, service is first-come-first-served, and if more

than one agent is idle when a call arrives, then the call is routed to the agent that has

been idle the longest. (Note that routing to the fastest available agent would systematically

improve average delay in queue. See Armony and Mandelbaum (2008).) In 14 of the hundred

trials, the actual average delay is more than 20% below the 58.8 second estimate, and in 18

of the cases it is more than 20% above the target.
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Figure 7: Average service rate (left) and Approximate ASA (right) obtained from random

sampling

Now consider a simple scheduling problem with two planning periods, as above, both

periods with the same λ, θ and QoS target as before. With our 12 agents, as above, but
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wrongly assuming that all agents have service rate 5.015, the Erlang-A model would again

recommend 6 agents per period. But if we randomly divide the 12 agents into two groups

of 6, with each group assigned to one period, then the realized performance may exceed the

QoS target in one period and fall short of it in the other. That is, by ignoring service-rate

heterogeneity we can encounter both problems, of over- and under-performance, on a single

given day.

In actual operations, both the disparity among agents’ service rates and the resulting

capacity mismatches, may be even worse. Recall that the 12 service rates were sampled

from agents who had all started on the same day. In a service operation such as a call

center, in which there are many more employees, and in which employee turnover can be

both high and highly variable, the disparity among agents’ service rates is likely to be even

more pronounced. (It is left to discover, however, how the number of agents affects capacity

mismatch; after all, 12 agents correspond to an exceptionally small call center.)

Thus, explicit use of individual agents’ expected service times should help improve short-

term capacity planning. To effectively manage this heterogeneity, one requires two com-

plementary sets of tools: 1) the ability to predict key service-time statistics for each agent

available during the planning horizon; and 2) an extension of standard capacity-planning

tools to accommodate agent heterogeneity when scheduling. We start to develop the first

tool in Section 5 from the learning-curve perspective, and we discuss the development of the

second tool in Section 6 as part of our proposed future work.

5. Learning Curve Modeling

Learning effects have been studied extensively in the past. See Yelle (1979) for a literature

review on this topic. Recent developments include Bailey (1989), Nembhard and Uzumeri

(2000), Shafer et al. (2001) and Nembhard and Osothsilp (2002), etc. However, this literature

focuses on worker learning in the manufacturing/production context, while scarce literature

has investigated agent learning in call centers. Our work supplements their work by providing

a comprehensive study on the learning curves of a large group of call center agents. To our

best knowledge, this work is the first to do so.

As discussed above, we view agents as accumulating experience on a day-to-day basis.

In this section, we consider different learning-curve models and compare the performance of

their in-sample estimates, as well as the accuracy of their out-of-sample predictions.
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5.1 Four Learning-Curve Models

We assume that service times of an agent follow lognormal distributions. For an arbitrary

agent, let yjk denote the service time of the kth call during the jth day over this agent’s

tenure, and nj be the total number of calls served by this agent during the jth day. Define

zjk = log(yjk).

We consider the following three parametric models and one nonparametric model to

capture the agent learning effect.

Model 1

zjk = a+ b log(j) + εjk, εjk ∼ N(0, σ2
j );

Model 2

zjk = a+ b log(
j

j + γ
) + εjk, εjk ∼ N(0, σ2

j );

Model 3

zjk = a+ b
j

j + γ
+ εjk, εjk ∼ N(0, σ2

j );

Model 4

zjk = f(j) + εjk, f(·) is a smooth function, εjk ∼ N(0, σ2
j ).

The first model adapts the learning curve equation in Yelle (1979). Model 2 and Model 3

have a common interesting feature: the mean log service time approaches some limit as the

training period approaches infinity. This feature conforms to the conjecture that the service

rate eventually stabilizes and will not improve further after the agent has taken calls for a

sufficiently long period of time. Unlike the first three models, Model 4 is nonparametric and

assumes the least amount of structure on the underlying learning curve.

Below, we briefly discuss how we estimate the parameters for each model, using our

data. To keep the models parsimonious, we assume homoscedasticity: σ2
j = σ2. For the

nonparametric Model 4, we estimate the smooth function f(·) using the smoothing spline

technique (Green and Silverman 1994), implemented via the function smooth.spline in the R

package. For the three parametric models, we estimate the model parameters using maximum

likelihood.

In particular, we illustrate the estimation procedure using Model 3, as it involves some

constraints. Let z = {zjk} and θ = (a, b, γ, σ). Then the likelihood function L(θ|z) can be

expressed as

L(θ|z) =
∏
j,k

1√
2πσ

e−
(zjk−a−bj/(j+γ))

2

2σ2 .
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Thus, the log likelihood is

log(L(θ|z)) =
∑
j,k

{
− log(

√
2π)− log(σ)−

(zjk − a− b j
j+γ

)2

2σ2

}
, (5.1)

which is to be maximized with respect to (a, b, γ, σ). Note that one must have γ > −1, since

j ≥ 1. Equivalently, we solve the following optimization problem:

min
∑
j,k

{
log(σ) +

(zjk − a− b j
j+γ

)2

2σ2

}
+ (−γ − δ)+M. (5.2)

In the last term of (5.2), the constant δ is a number smaller than but very close to 1, say

0.999, and M is a very large number, say 108. This term applies a very large penalty to the

optimization objective if γ ≤ −1 and does not affect the objective otherwise, so it ensures

that γ > −1. The criterion is then optimized numerically. Model 2 can be fitted similarly.

The last term in (5.2) is not needed for Model 1.

5.2 Learning Patterns of Agents

We fit the four learning models to a group of 129 agents, whose records suggest that they

are common agents with no previous work experience in the call center. Remarkably, we find

that there exists a variety of learning patterns among these agents. They exhibit mainly the

following three patterns: (1) always learn, (2) never learn, and (3) learning and forgetting

interwoven throughout the whole tenure. The majority of the agents possess the third

pattern. For ease of presentation, we name these three learning patterns: the optimistic

case, the pessimistic case and the common case, respectively. To illustrate these behaviors,

we select two agents from each case and display their estimated learning curves below.

The Optimistic Case: agents always learn

Figure 8 plots the learning curves for two agents: Agent 33156 and Agent 33235, re-

spectively. On both panels of the figure, the x-axis is the duration of the agent’s working

experience (in days), and the y-axis displays the mean log service time for that day. The

dots are the average log service times calculated from the data. More precisely, for day j on

the x-axis, the value of the corresponding dot on the y-axis is calculated as

z̄j· =
1

nj

nj∑
k=1

zjk.

The four curves show the estimates for the mean log service time, given by the four models

that we considered. See the legend within each panel for a detailed description.
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Figure 8. Learning curves for the optimistic case

the learning curve becomes flatter, which suggests that the purely log-log linear learning

curve (Model 1) is too simple to capture the underlying behavior.

The Pessimistic Case: agents never learn

Not all agents learn during their working period, and in Figure 9, we show two agents

who never learn. As we see, Agent 74527 is getting slower as he works longer, and Agent

76859 seems to maintain a stable service rate throughout her tenure.

From the plot of Agent 74527, one also observes that the nonparametric spline model

is more sensitive to the short-term trend of the service rate. In particular, this agent’s

mean service time has a significant leap around day 130, which is captured nicely by the

nonparametric model. The three parametric models are too rigid to fit such a dramatic

change.

The Common Case: agents may learn as well as forget

We observe that most agents do not have a monotone learning curve: their log mean

service times are “zigzagging” throughout their working period; for such a behavior, the

nonparametric model captures much better the trend of the mean log service time. Figure

10 depicts the learning curves of two such agents.

Agent 33146’s mean log service time is decreasing during his first 100 working days and

afterwards has two significant leaps. The first leap starts at around day 110 and reaches

Figure 8: Learning curves for the optimistic case

From Figure 8, we deduce that, throughout these two agents’ tenures, their mean log

service times are decreasing. This implies that they are always learning and are getting

faster on their jobs as they work longer. However, their learning rates seem to be decreasing,

and the learning curve becomes flatter, which suggests that the purely log-log linear learning

curve (Model 1) is too simple to capture the underlying behavior.

The Pessimistic Case: agents never learn

Not all agents learn during their working period, and in Figure 9, we show two agents

who never learn. As we see, Agent 74527 is getting slower as he works longer, and Agent

76859 seems to maintain a stable service rate throughout her tenure.

From the plot of Agent 74527, one also observes that the nonparametric spline model

is more sensitive to the short-term trend of the service rate. In particular, this agent’s

mean service time has a significant leap around day 130, which is captured nicely by the

nonparametric model. The three parametric models are too rigid to fit such a dramatic

change.

The Common Case: agents may learn as well as forget

We observe that most agents do not have a monotone learning curve: their log mean

service times are “zigzagging” throughout their working period; for such a behavior, the

nonparametric model captures much better the trend of the mean log service time. Figure

10 depicts the learning curves of two such agents.

Agent 33146’s mean log service time is decreasing during his first 100 working days and

afterwards has two significant leaps. The first leap starts at around day 110 and reaches

a peak at around day 150. After that, the log service time starts to decrease. The second

jump begins at about day 220 and arrives at the apex at about day 270, after which the log
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Figure 9. Learning curves for the pessimistic case
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Figure 10. Learning curves for the common case

a peak at around day 150. After that, the log service time starts to decrease. The second

jump begins at about day 220 and arrives at the apex at about day 270, after which the

log service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure 10, her

mean log service time first drops, then starts to jump at around day 100, reaches its peak

around day 130, then begins to decrease slowly until day 240, makes a sharp drop between

day 240 and day 280, and finally seems to stabilize, from day 280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ significantly.

However, we note that the above analysis uses only the service times of the calls; other

Figure 9: Learning curves for the pessimistic case
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Figure 9. Learning curves for the pessimistic case
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Figure 10. Learning curves for the common case

a peak at around day 150. After that, the log service time starts to decrease. The second

jump begins at about day 220 and arrives at the apex at about day 270, after which the

log service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure 10, her

mean log service time first drops, then starts to jump at around day 100, reaches its peak

around day 130, then begins to decrease slowly until day 240, makes a sharp drop between

day 240 and day 280, and finally seems to stabilize, from day 280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ significantly.

However, we note that the above analysis uses only the service times of the calls; other

Figure 10: Learning curves for the common case

service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure 10, her

mean log service time first drops, then starts to jump at around day 100, reaches its peak

around day 130, then begins to decrease slowly until day 240, makes a sharp drop between

day 240 and day 280, and finally seems to stabilize, from day 280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ signifi-

cantly. However, we note that the above analysis uses only the service times of the calls;

other factors may explain the leaps and bumps observed in the learning curves; however, we

do not have access to them.
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5.3 Out-of-sample Prediction of Service Rate

As the simulation results in Section 4 suggest, managers need statistical models that can

sensitively monitor the service rates of individual agents; otherwise, the call center may end

up being overstaffed or understaffed. The analysis in Section 5.2 compares the in-sample

performance of four learning models. In addition, we calculate below the out-of-sample

prediction errors of the service rate, using the four models.

We incorporate a rolling-window prediction procedure. For a given agent, the schematic

algorithm of the out-of-sample prediction exercise is as follows:

Algorithm for Computing Prediction Errors

For j = 6 to n, with n being the length of the agent’s tenure (in days):

• Fit Model i using data from the 1st day to the (j − 1)th day, for i = 1, 2, 3, 4;

• Predict the mean log service time of the agent on the jth day, denoted as ẑij, using

the fitted learning model;

• Predict the mean service rate of the agent on the jth day as µ̂ij = e−(ẑij+σ̂
2
i /2) where

σ̂i is the estimated standard deviation for the measurement error in Model i;

• Estimate µj, the “true” mean service rate of the agent on the jth day, calculating it

as the reciprocal of the mean service time of the calls answered on that day;

• Calculate the prediction errors (PE) and relative prediction errors (RPE) of the service

rates on the jth day as

PEij = µ̂ij − µj, (5.3)

and

RPEij =
µ̂ij − µj
µj

× 100%. (5.4)

End For

After reviewing the out-of-sample prediction performance of the models, we conclude

that the nonparametric learning model is more sensitive and effective in monitoring the

changes in agent service rate, no matter what the agent’s learning pattern. Hence, among

the four approaches tested, the nonparametric model is the most robust. To illustrate this

observation, below we plot in Figures 11 and 12 the prediction errors for Agent 33146 and
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33147. As shown in Section 5.2, these two agents have the most intricate learning patterns

among the six agents plotted there.
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Figure 11: Prediction errors for Agent 33146

In each panel, the x-axis is the number of historical working days used to fit the learning-

curve models for the agent; the y-axis shows either the prediction error or the relative

prediction error. The curves for the four models are plotted using different colors, as indicated

in the panel legend. From these plots, we observe that, over the full tenure of both agents, the

performance of the nonparametric spline model is the best and the most stable. In particular,

from Figure 10, we observe that the mean log service time of Agent 33146 has a clear jump

from day 110 to day 150. Correspondingly, in Figure 11, we see that the prediction errors of

using the spline model are much closer to zero during this time period. Similar observations

can be made for the periods between day 220 and day 270 for Agent 33146, and between

day 100 to day 130 for Agent 33147. In addition, the spline model is also more sensitive to

drops in mean log service time (i.e., service rate jumps), during the period between day 240

to day 280 for Agent 33147. These observations imply that the nonparametric model is the

most sensitive one in capturing agent service-rate changes.
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Figure 12: Prediction errors for Agent 33147

6. Conclusion and Outlook

In this paper, we studied agent heterogeneity and learning in call centers. We used empirical

call-center data to identify several significant factors that affect agent service rate, and we

illustrated some operational consequences of ignoring such heterogeneity. But the present

paper is only a first step: its empirical analysis should be expanded and the theory it

motivates should be addressed. We conclude the paper with an outline of some worthy

natural next steps.

Additional Data: The data that we have are enough for starting the empirical analy-

sis, which leads to identifying several interesting phenomena, exploring agent learning and

generating some insights on agent heterogeneity. The data, however, are not enough for a

comprehensive analysis of agent heterogeneity. First, we analyzed only about 140 agents

from a single call center - the sample size should increase, and more call centers should be

analyzed. But more significantly, we are lacking agents’ human-resource records, which are

to be linked with our operational data, and which are clearly important for explaining and

predicting agent performance. As mentioned, we are hopefully in the process of obtaining

such data.
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Service-Level, Efficiency, Fairness and Learning: The simulation results from Sec-

tion 4 suggest that, unaccounted for heterogeneity in agent service rates can lead to poor

agent staffing and scheduling decisions. Recent work by Armony (2005), Tezcan (2008), Atar

(2008), Armony and Mandelbaum (2008) shows that, given sufficient information, short-term

control decisions can actually benefit from agent heterogeneity. For example, routing cus-

tomers to the fastest idle agents, assuming agent speeds (average service times) are known,

could clearly reduce, even optimize, measures that are associated with customer waiting.

However, such routing is unfair to the faster servers since they work more than the slower

ones - more in the sense of “enjoying” higher occupancy (fraction of busy-time). Thus, a

compromise must be struck between fairness towards customers (short delays) and fairness

towards agents (low occupancies). This is the subject of Tseytlin et al. (2010), who offer

tunable protocols that can, for example, ensure that the faster agents work less than slower

ones (their occupancy is lower), making faster servers happy, but they also serve more cus-

tomers (have higher throughput), making management happy. Note, however, that if some

slow servers are at the outset of their learning process, higher throughput for them could

accelerate their learning and ultimately benefit the organization in the longer-run.

Blind (Robust) Routing: The above routing schemes are based on knowledge of agent’s

expected service time, which could be hard to track. To this end, “blind” (robust) strate-

gies are called for, that do not need service-time information yet could compete with the

strategies described above. The simplest blind strategy is to choose an idle agent at random.

Interestingly, it exposes the slow-server phenomenon, where less capacity could actually im-

prove performance: specifically, time-in-system could be reduced if calls are never routed to

too-slow servers. (Waiting time, in contrast, will always suffer from capacity reduction; see

Tseytlin et al. (2010) for further discussion and references.)

Another blind strategy routes customers to the agents who were idle the longest. This

was shown in Atar (2008) to yield, in the QED regime, equal idleness among heterogeneous

agents, who cater to a single queue of homogenous customers. Fairness with shorter waiting

times were achieved in Armony and Ward (2010), but at the cost of knowledge of service

rates: the routing policy is a threshold policy that prioritizes faster agents when the number

of customers in the system exceeds some threshold level and otherwise prioritizes slower

agents. As a summary, a theory is thus required for heterogeneous agents, that trades off

service-level, efficiency, fairness (agent preferences) and learning, and which is based on

information that is easily tractable.

Medium-term Scheduling: The discussion has been restricted so far to short-term con-

trol. Related issues, however, are as interesting and challenging for medium-term scheduling.

Specifically, in Step 3 of the traditional capacity-planning hierarchy (Section 1.2), one must
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schedule enough agents so that their aggregated service rate matches the required capacity,

as calculated by the staffing in Step 2. When agents are highly heterogeneous, this scheduling

problem can become quite difficult to solve. In the extreme case, in which individual pro-

cessing rates are accommodated, the problem becomes an assignment problem with many

thousands of 0-1 variables, which are required to represent assignments of (100-1000s of)

agents to (100s of) possible schedules.

Random Effects: Another interesting direction for future research is to incorporate random

effects into learning-curve modeling. For example, recall the standard model (3.1), where

a stands for initial speed and b denotes learning rate. Random-effects models would allow

either a or b or both to be random variables, the distribution of which is inferred from data.

Such models could then incorporate within-agent dependence among the calls handled by

the same agent, and enable understanding of a whole agent population, yet based only on a

sample (subset) of the agents. In a Bayesian context, the estimated distribution for a or b

can serve as the prior for a newly hired or trained agent. Then, as the agent handles calls and

gains experience, he moves down his own idiosyncratic learning curve, and his own service

records enable improved posterior inferences of his personal a or b. Such information can

support the prediction of future performance and the design of career paths, among other

things.

Random effects have already been used in closely related work. Khudiakov and Gorfine

(2010) develop frailty models for customers patience while waiting over the phone (time

till they hang up), applying these models to understand how such patience changes with

customer redials. Larry Brown and his collaborators have proposed a Bayesian procedure for

dynamically updating predictions for intra-day arrival rates, based on continuously updated

arrival information (Weinberg et al. 2007). The problem of updating arrival-rate curves was

also studied later on by Shen and Huang (2008) and Goldberg et al. (2010). We propose to

adopt similar ideas in order to update or continue agent learning curves, based on updated

information on additional calls handled.

An application of random learning curves is for judging the value of a given agent, say

agent i. A manager can then compare her posterior estimates for ai or bi against the prior

distribution of a or b associated with the population of potential new hires. In some cases,

the posteriors may suggest that i is more valuable than a new hire, but in others the posterior

may suggest that an untried agent, with the prior distribution, is preferred. In the former

case the manager retains the current agent i and in the latter she does not, hiring someone

new instead. A fully sequential version of this retention problem has the structure of a

multi-armed bandit (Arlotto et al. 2010).

Scale: Our simulation model, in Section 4, was that of an unusually small call center

28



(6 agents). It is left to understand the operational effects of heterogeneity and learning

in realistic-size call centers (100’s of agents): in a large agent population, the scope of

heterogeneity is wider but laws of large numbers have their opposite effects - it is plausible

that the “winner” will have to be determined from actual call center data. Moreover, a large

number of agents renders asymptotic theory natural, for example within the QED and other

many-server operational regimes.

Workload instead of Arrivals and Service-Times: Forecasting in call centers, and

other service systems, has been traditionally confined to forecasting the number of arrivals.

As WFM systems presume Poisson arrivals, they actually require merely arrival rates which,

furthermore, are assumed to be piecewise constant over daily time-intervals (e.g. half-hours).

But staffing is determined not only by arrival counts but also by the amount of work that each

arrival imposes on agents, summarized here in terms of the arrival’s service-time. This gives

rise to the notion of offered load, both stationary and transient, which we now introduce.

For a service system of interest, let S denote its (generic random) service-time, and

suppose that the arrival-rate to this system is a constant λ. Then R = λ×E[S] is called the

(stationary) offered load, representing the amount of work, measured in units of service-time,

that arrives to the system per time-unit (e.g. minutes of work per minute). The driver of

staffing is then the offered load R, as opposed to only λ, or λ and µ separately. In particular,

WFMs can be fed with R only (though this is not widely acknowledged), and staffing recipes

can be formulated in terms of R.

For example, in the context of the Erlang-C (Halfin and Whitt 1981) and Erlang-A

(Garnett et al. 2002) models, but applicable far beyond, a fundamental staffing-recipe is the

square-root staffing rule

n ≈ R + β
√
R ,

where β is a constant that corresponds to grade-of-service; its specific value (which is prac-

tically small - less than 1.5 in absolute value) can be determined by economic considerations

(for example, the ratio between delay costs and staffing costs, as in Borst et al. (2004)).

The importance of square-root staffing stems from the fact that it guarantees, uniquely,

QED (Quality- and Efficiency-Driven) performance in many-server environments: that is, a

natural, delicate balance between high levels of Quality-of-service and Efficiency-of-servers.

Now the call-center environment is time-varying, and there are periods of a day during

which arrival-rates change quite abruptly. A time-varying analogue of the offered load is then

required, one which will serve as the driver for time-varying staffing. Letting λ(t) denote the

time-varying arrival rate, the right answer is not λ(t)/µ (though it is sometimes practically

acceptable). Indeed, the answer must be a quantity that, at time t, takes into account work

that arrived prior to time t. Formally (assuming that time t ∈ (−∞,∞), for simplicity of
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notation), the (transient) offered load R(t) turns out to be given by either of the following

two representations:

R(t) = E[

∫ t

t−S
λ(u) du] = E

∫ t

−∞
λ(u) Pr{S > t− u} du , −∞ < t <∞ ,

where, as above, S denotes a generic (random) service time (of all customers). (Note that

when the arrival rate does not vary with time, λ(t) ≡ λ, then R(t) = λ× E[S], which is the

stationary offered load.) The first representation above tells us that the offered load at time

t is determined by the mean number of arrivals during the random time-interval (t − S, t].
The second representation is amenable to numerical calculations.

Readers are referred to Section 4.2.6 of Mandelbaum and Zeltyn (2009) (downloadable),

for a class-level discussion of the offered load R(·), in particular some practical approxima-

tions. Section 6 in Aldor-Noiman et al. (2010) discusses the offered load in the context of

forecasting towards QED performance, but using its naive representation λ(t)/µ.

The time-varying offered load {R(t), t ≥ 0} is the backbone for time-varying staffing.

Indeed, in the context of Erlang-A (and far beyond), setting time-varying staffing {n(t), t ≥
0} by

n(t) ≈ R(t) + β ×
√
R(t) ,

yields a remarkably time-stable performance, as discovered in Feldman et al. (2008); fur-

thermore, at any time, this stable performance is that of the stationary Erlang-A model

(M/M/n+M), with the number of servers n ≈ R + β
√
R (in which R is a natural time-

average of R(·)).

The reason for our lengthy discussion of the offered load is that its estimation and pre-

diction requires inference of both arrivals and services: the challenge is to model and infer

service-times, towards calculation of the time-varying offered load, in call centers where

multi-class customers are served by multi-skilled (heterogeneous) agents according to state-

dependent protocols. (Interestingly, the offered load must take into consideration also the

service-times of the un-served, namely those who abandoned, which Reich et al. (2010) are

doing for homogeneous customers and servers.) In view of the fact that the offered load is the

fundamental primitive for staffing procedures, its modeling and inference poses first-order

research challenges.

Tracking and Managing Individual Agents, in Call Centers and Elsewhere: Present

technology enables the tracking of call center activities, at any levels of granularity. This has

given rise, among other things, to CRM (Customer Relationship Management, or Customer

Revenue Management), which we interpret here as managing the relationships between a
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company and its individual customers, taking into account individual event histories and

future prospects. (CRM requires data of customer identification, which is lacking from the

U.S. Bank data that is used here; but data-bases of other call centers, available from the

Technion’s SEELab, does have customer IDs.)

Our present work, in analogy to CRM, raises the potential benefits of managing individual

agents, again based on their individual event histories and future prospects. The above

discussion of learning with random effects is a relevant example. Another example is Whitt

(1999), which requires continuous tracking of individual agents, in order to continuously

update staffing needs so that customers eventually hardly wait. Similar ideas were found

useful also in Zeltyn et al. (2009), who analyze staffing of Emergency Departments (EDs).

In EDs, heterogeneity of resources is yet to be understood, and the time-varying view of

the offered load is indispensable: this is due to the fact that ED length-of-stay is naturally

measured in several hours, hence the offered load at a given time t is affected by events that

took place several hours prior to t.
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