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Abstract

We address the modeling and analysis of abandonments from a queue that is invisi-
ble to its occupants. Such queues arise in remote service systems, notably the Internet
and telephone call centers; hence, we refer to them as tele-queues. A basic premise of
this paper is that customers adapt their patience (modeled by an abandonment-time
distribution) to their service expectations, in particular to their anticipated waiting
time. We present empirical support for that hypothesis, and propose an M/M/m-
based model that incorporates adaptive customer behavior. In our model, customer
patience depends on the mean waiting time in the queue. We characterize the result-
ing system equilibrium (namely, the operating point in steady state), and establish
its existence and uniqueness when changes in customer patience are bounded by the
corresponding changes in their anticipated waiting time. The feasibility of multiple
system equilibria is illustrated when this condition is violated. Finally, a dynamic
learning model is proposed where customer expectations regarding their waiting time
are formed through accumulated experience. We demonstrate, via simulation, con-
vergence to the theoretically anticipated equilibrium, while addressing certain issues

related to censored-sampling that arise because of abandonments.
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1 Introduction

Customer characteristics in service systems are largely dependent upon the system perfor-
mance characteristics as perceived by its users. For example, the arrival rate is likely to
increase as the typical waiting time decreases. This dependence interacts with the queueing
process to determine the system operating point, and may have a considerable effect on

performance.

Our focus in this paper is on the modeling of customer abandonments and their interplay
with the system performance. We consider a queueing system with impatient customers, who
may abandon the queue if not admitted to service soon enough. We assume that the queue
is invisible, in the sense that waiting customers do not obtain any information regarding the
queue size or their remaining waiting time before admitted to service. Queues of this type
are especially relevant to remote service systems, such as telephone call centers or Internet-
based services; hence, we refer to them as tele-queue. For a discussion of the central role

that customer patience plays in tele-queues see Garnett et al. (1999).

The foundation for our model is the hypothesis that customers’ patience significantly
depends on their expectations regarding the waiting time in the system. These expectations,
in turn, are formed through accumulated experience and affected by subjective factors — time
perception, the importance of the service being sought, and so on. As an example, customers
who expect to wait a few seconds will behave differently, in terms of their abandonment
time, in case they expect to wait several minutes or even hours. These expectations, in turn,
conceivably differ if past experience consists of short waits, or long waits, or short and long
waits intertwined. Patience is obviously influenced by numerous factors related to customer
profiles and environment characteristics (see, for example, Maister, 1985; Zakay and Hornik,
1996; Levine, 1997). However, for the purpose of performance analysis, most of these factors
can be taken as a-priori given and fixed. The waiting time distribution is singled out in this
respect since it is the outcome of the queueing process (hence, in fact, itself influenced by

the patience profile).

Empirical Support — a Preview: Inconsistent with the above adaptivity hypothesis, the

prevalent assumption in traditional queueing theory is that patience (the time-to-abandon



or its probability distribution) is “assigned” to individual customers independently of any
system performance characteristic (see Garnett et al., 1999 for a recent literature review). In
particular, patience is unaltered by possible changes in congestion. Such models, however,

can not accommodate the following scatterplot, that exhibits remarkable patience-adaptivity.
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Figure 1: Adaptive behavior of IN (experienced) customers — abandonment probability vs.
average wait (of customers who waited a positive time). Each point corresponds to a 15-
minute period of the weekdays, starting at 7:00am, ending at midnight, and averaged over

the whole year of 1999.

The data is from a bank call center as reported in Mandelbaum et al. (2000); see also
Section 4. We are scatterplotting abandonment fraction against average delay, for delayed
customers (positive waiting time) who seek technical Internet-support. It is seen that average
delay during 8:30-8:45am, 17:45-18:00, 18:30-18:45 and 23:30-23:45pm is about 100, 140, 180
and 240 seconds respectively. Nonetheless, the fraction of abandoning customers (among
those delayed) is remarkably stable at 38%, for all periods. This stands in striking contrast
to traditional queueing models, where patience is assumed unrelated to system performance:
Such models would predict a strict increase of the abandonment fraction with the waiting
time, as in Figure 3. The behavior indicated in Figure 1 clearly suggests that customers do

adapt their patience to system performance.



A Descriptive Approach: Several recent papers have proposed an optimization-based
model for customer patience, where abandonment decisions are based on a personal cost
function that balances service utility against the cost associated with the expected remain-
ing time to service. In particular, Hassin and Haviv (1995), Haviv and Ritov (2001) analyze
systems with a single customer type, and Mandelbaum and Shimkin (2000) considers a
heterogeneous customer population, in terms of utility functions and the resulting abandon-
ment profiles. In these models, the optimal abandonment decision depends on the entire

waiting-time distribution offered by the system.

Unlike this prescriptive approach, we consider here a descriptive model, where the depen-
dence of patience on system performance is explicitly specified within the model primitives,
in much the same way that a demand function is assumed to be given in economic mod-
els. Such an explicit model can be more directly related to experimental data, and is not

restricted by the assumption and consequences of strictly rational behavior of the customers.

Our model is highly simplified by assuming that customers’ patience depends on the
waiting time in the queue only through its average, namely the mean wait; thus, the pa-
tience depends on a single performance parameter rather than an entire distribution. The
motivation for this simplified model is threefold. First, the mean arguably presents a natural
parameter that summarizes customers’ expectations regarding their waiting time; indeed, a
typical customer can hardly be expected to form a clear estimate of the entire waiting time
distribution based on limited experience. Second, the dependence on a single parameter
makes it much easier to relate the model to empirical data; see Section 4. And third, it of-
fers a considerable simplification in performance analysis (compared, say, with Mandelbaum

and Shimkin, 2000).

Outline of the Paper: Section 2 presents the basic queueing model, which incorporates the
dependence of the patience profile on the average waiting time, and defines the system equi-
librium point®. We distinguish between the average waiting time assumed by the customers

(denoted z), which determines the patience profile, and between the actual quantity, namely

5The term equilibrium in this paper refers to an operating point of the system, as used in standard market
and supply-demand models, and should not be confused with the Nash equilibrium or other game-theoretic

concepts.



the offered expected wait that results from this patience profile. Simply put, equilibrium is

achieved when the two coincide.

In Section 3 we analyze the equilibrium and its properties, focusing first on existence
and uniqueness. Assuming that customer patience decreases as the (assumed) average wait
x increases, existence and uniqueness of equilibrium follow from basic monotonicity consid-
erations, as shown in Subsection 3.1. The more interesting case is when patience is allowed
to increase with x (Subsection 3.2). Here customers adjust their behavior to comply with
their expectations. When patience can grow not more than proportionally with z, existence
and uniqueness of the equilibrium can still be established and the equilibrium point may be
calculated. When this growth condition is violated, multiple equilibria are feasible, as we

explicitly demonstrate there.

In Subsection 3.3, we apply the proposed model to address the following question: what
is the required dependence of customer patience, so that the abandonment fraction is kept
constant despite varying congestion conditions. This question is motivated by the relative

insensitivity of the abandonment fraction that was revealed in Figure 1.

Section 4 presents additional empirical support for the dependence of customer patience
on the anticipated waiting time. Section 5 provides a brief survey of the literature on patience

modeling.

Our basic equilibrium model assumes that the system is in steady state, in the sense that
the system characteristics are stationary and the customers are well acquainted with those
characteristics that are relevant to their behavior. In Section 6, we complement the static
equilibrium viewpoint with a dynamic learning model, which incorporates the additional
ingredient of learning by the customers, and traces the system evolution towards a possible
equilibrium. Indeed, the average waiting time parameter x is not initially known, but may
be estimated by the customers based on their accumulated experience. We briefly address
the issue of censored sampling that arises here: In those customer’s visits that end up with
abandonment, the offered wait itself is not observed but rather a lower bound on it, namely
the abandonment time. As consistent estimation of the mean is quite complicated in this

case, we also consider a simpler nonconsistent estimator and its effect on the equilibrium



point. The dynamics of the queueing system which incorporates the proposed learning
process is examined via simulation, and its convergence to the anticipated equilibrium is
demonstrated. We conclude in Section 7 with a brief summary and comments concerning
future work. The Appendix describes some methods of censored sampling that are used in

the paper to estimate means of censored data.

2 Model Formulation

Consider an M/M/m queue with Poisson arrivals at rate A\, and an exponential service time

L at each of the m servers. The service discipline is First-Come First-Served.

with mean p~
Waiting customers may abandon the queue at any time before admitted to service. Poten-
tial abandonment times of individual customers are assumed independent and identically
distributed, according to a probability distribution G(-) over the non-negative real line. We
shall refer to G as the patience distribution function. Let G = 1 — G denote the survival
function; thus G(#) is the probability that a waiting customer will not abandon within ¢ time
units. We allow G to depend on a parameter z to be specified below, so that G(t) = G(z,1).
When convenient we shall suppress the dependence on . While we assume here for sim-

plicity that the arrival rate A is constant, our model and analysis easily extend to the case

where A\ depends on the same parameter x; see the remark at the end of Section 3.

Let V' denote the offered waiting time, or offered wait, which is the time that a (non-
abandoning) customer would have to wait until admitted to service. We assume throughout
that the system is in steady state, so that the distribution of V' is the same for all customers.
Under the stability condition mu > AG(c0), the density F}, of V is given by (Baccelli and
Hebuterne, 1981)

F (t) = AP, _1exp(J(t)), t>0 (1)

with P,,_; specified below, and

/tmu MG (s))ds . (2)

Let P; denote the stationary probability for exactly j occupied servers; thus, V' has an atom



at 0, with P(V = 0) = 37" P;. The normalization condition is:
m—1 o0 )\ .7 1
$ Pj+/F{/(t)dt: 1, P= (-) =P,
§=0 0 Ky o3-
It follows that
exp(J (1))
Em 4 Ofexp(J(s))ds

P S U] (i)jm{ (4)

= I
We shall also refer to the distribution Fj of (V' |V > 0), namely the distribution of the waiting

Fi(t) =

where

time V' given that the customer is not immediately admitted to service; the corresponding

density is obviously given by the expression (3) with K, set to zero.

Consider next the dependence of the patience function G on system performance. As
discussed in the introduction, we focus here on a simplified model which assumes that this
dependence is expressed through a single parameter x, corresponding to the average offered

wait in the system. Specifically, we shall consider the following two alternatives:

1. x = E(V), the expected wait.

2. x = E(V|V > 0), the expected wait given that the wait is nonzero (all servers busy

upon arrival).

These two options correspond to slightly different evaluations of the waiting time, and lead
to some differences in the analysis. The expected waiting time may be the most natural
single parameter that comes to mind as a summary of waiting time performance. Still, the
probability of finding a vacant server upon arrival becomes irrelevant to customers who are

required to wait, and therefore the second option may turn out to be more appropriate.

We remark that for modeling purposes, it may be useful to specify the dependence of GG
on z in two steps. First, let G, be some parameterized family of probability distributions.
For example, G, may be the set of exponential distributions, with 7 the expected value.
Or it may the set of degenerate distributions, where now 7 is the deterministic time of

abandonment. Further, let the parameter n be determined by the value of the performance



parameter z, namely n = n(z). The actual patience distribution G is thus selected out of
the family G, and it depends on z according to G = Gy,). This parameterization will be

employed in some of our examples.

We have thus parameterized the patience distribution G in terms of the performance
parameter x, which may be one of the two options itemized above. This completes the model
description. We can now consider the ensuing operating point of the system in equilibrium.
Note that the operating point is fully specified once the value of the parameter x has been

determined.

We proceed to characterize the equilibrium conditions explicitly. Of the two options

specified above, first consider the case of x = E(V'). For each 2 > 0, define

where E, is the expectation induced by the distribution (3), with G = G(x,-). Thus v;(x)
is the expected waiting time that would be induced by the patience distribution associated
with x. The equilibrium condition requires that the customers’ evaluation of the expected

waiting time (z) coincide with the actual value, namely
x =uv(x). (5)

This gives a scalar equation in the single variable x. The questions of existence and unique-
ness of an equilibrium point are thus equivalent to the existence and uniqueness of a fixed
point in Equation (5).
Similarly, when the performance parameter x is taken as the conditional waiting time
E(V|V > 0), define
ve(z) = E,(V|V >0).

The equilibrium condition is then

x = vy(x). (6)

We assume throughout that the stability condition G(z,00) < mpu holds for some .

Both expected values v;(z) are finite when this condition holds.



3 Equilibrium Analysis

We now turn to examine the system equilibrium and analyze its properties — focusing first on
the questions of existence and uniqueness of the equilibrium point. We shall then employ the
model to address some performance analysis issues, related to the feasibility of maintaining

a constant abandonment fraction despite different load conditions, as depicted in Figure 1.

The equilibrium analysis proceeds in two steps. Recall that the customer patience dis-
tribution depends on a performance parameter x, which represents the expected wait in the
queue. In Subsection 3.1, we address the relatively simple case where patience is decreasing
in the performance parameter x (Assumption Al). This dependence may be interpreted
as intolerance of the customer population to service degradation: When the waiting time
becomes longer, customers find it less appealing to keep waiting and react by abandoning
earlier. This behavior can also be explained within a “rational” model for abandonments
as presented in Mandelbaum and Shimkin (2000), since the expected return per unit wait
becomes smaller as time progresses. Still, in practice one often observes an opposite ten-
dency of customers who adapt their patience to comply with the expected waiting time in
the system. This was indeed observed in the empirical results of Section 4. In Subsection

3.2 we extend our analysis to the “increasing patience” case.

3.1 Decreasing Patience

We assume first that the customer patience is decreasing in the performance parameter x, in
the sense of stochastic ordering. Recall the following definitions (Shaked and Shanthikumar,
1994). Given two real-valued random variables Y] and Y, with distributions F; and Fy, we
say that Y] stochastically dominates Y5, denoted Y| > Yy, if Fy(t) > Fy(t) for all ¢ (here
F;=1—F;). Y] strictly dominates Y5, denoted Y; >; Y5, if, in addition, F} # F,. We shall
also adopt the corresponding notations F, >, F, and F, >, F, to denote these relations.
Note that E(Y]) > E(Y3) is implied in the former case, and E(Y}) > E(Y3) in the latter. A
set of random variables {T'(z)} in the real parameter z is said to be decreasing in stochastic

order if x; < xo implies T'(z1) >4 T(x2), and is strictly decreasing if the latter dominance



relation is strict.

Assumption A1l. The set of patience distribution functions {G(z,-)} is decreasing in z in

stochastic order. That is, z; > x5 implies that G(x1,t) < G(xy,1), for all t > 0 .

Remark. The condition above on the patience distribution, which relates to the customer
population as a whole, can be usefully interpreted in terms of individual customer patience.
Suppose that each arriving customer is randomly and independently assigned a type, de-
noted z, which determines his personal abandonment time as a function of z. That is, the
abandonment time of a customer of type z is T, (). Then assumption A1 is satisfied if 7, (z)
is decreasing in x, for each z. Note further that assumption Al can always be translated
to this form, by the standard construction which translates stochastic dominance relations
between distributions to almost-sure relations between random variables, cf. Shaked and

Shanthikumar (1994).

Proposition 3.1 Assume Al.

(i) Let Gy and Gy be two patience distributions, with F and Fy the corresponding dis-
tributions of the offered waiting time V', specified in (3). Then Gy <y Gy implies
Fi <4 F.

(ii) A similar implication holds for Fy, the distribution function corresponding to the con-

ditional waiting times (V|V > 0) as specified following (3).

Proof: For each G;, ©: = 1, 2, denote:
H(t) = = [ (i = AGils))ds (7
and let D(t) = Go(t) — G4 (t). By our assumption D > 0. Thus,
To(t) = Ju() +)\/0tD(s)ds > L) (8)
The hazard rate functions H; corresponding to these waiting time distributions are given by:
Fi(t) exp(Ji(t))

O =F0 = Feoti))a 120 ©)




To establish F} <, F,, we shall in fact prove the stronger property that Fy(t)/Fy(t) is
(weakly) decreasing in t. The latter is equivalent to dominance in the hazard rate order;
see Chapter 1 of Shaked and Shanthikumar (1994). To establish that Fy/F; is a decreasing
function, it suffices to show that Hy(t) > Hy(t) for all ¢ > 0, and that at the discontinuity
point at t = 0 we have F}(0)/F,(0) < 1. By substituting (8) in the expression for H;, we

obtain:

exp(Ji(t) ) exp(A Jy D(s)ds)
[ [exp(J1(v) ) exp(A [y D(s)ds)]dv
But by the assumed positivity of D we have that exp(\ [ D(s)ds) > exp(\ fi D(s)ds) for

Hz(t) —

(10)

all v > ¢, which immediately implies

Hy(t) < xp((t)) = H\(t).

— [T exp(i(v) )dv

It remains only to show that F(0)/F5(0) < 1, or equivalently that F;(0) > Fy(0). This
follows from J (£) < Jo(t) by noting from (3) that F}(0) = K /[Ku 4 :foexp(,]i(t) dtl.

The proof of (ii) follows similarly to the first part of the proof above, since V and
(V|V > 0) have identical hazard rate functions for ¢ > 0, while F;(0) = 1 by definition. O

Uniqueness of the equilibrium follows easily from the last result, as shown next. For
existence some basic continuity and stability conditions are naturally required. The param-
eterized family of distributions G(z,-) is weakly continuous in x if g(z) := [ ¢(t)dG(z,1t) is
continuous in x for every bounded continuous function ¢. Note that this allows the distri-

butions G' to contain point masses which depend continuously on z.

Theorem 3.2 Assume Al. Assume further that the patience distributions G(z,-) are weakly
continuous in x. Then for either one of the equilibrium equations (5) or (6), a solution exists

and is unique.

Proof: Recall that X < Y implies E(X) < E(Y). From the last proposition we therefore
obtain that both functions vy (x) and ve(z) are decreasing in x, and uniqueness of the solution
follows immediately. As for existence, the assumed continuity condition is easily shown to
imply the continuity of v; and v,. Since we our model assumes that both functions are finite

for some z, existence follows. O

10



3.2 Increasing Patience

We shall now relax the decreasing-patience assumption, and replace it by a bound on the
growth rate of the patience distribution (Assumption A2). The main result here is Theorem

3.3, which extends the results of the previous section while relying on them for the proof.

Assumption A2 allows an increase in the customer’s patience with the performance pa-
rameter x, but essentially requires that the rate of increase of the former does not exceed
that of the latter. That is, when x (the anticipated average wait) increases by ¢, the pa-
tience (willingness to wait) of the customer population will increase by § at the most. Some
growth condition of that nature is essential to guarantee uniqueness, as demonstrated by the

example that closes this subsection.

Assumption A2. Let 7'(x) be a random variable with distribution G(z, ). Then the family

of random variables {T'(z) — z} is decreasing in z, in stochastic order.

An equivalent statement of the last condition is that T(x+y) <, T'(z)+y for every y > 0.
In terms of the distribution functions, it may be expressed as G(z + vy, ) <. G(z,- +y). It
implies, in particular, that E(T(x)) — x is decreasing in x.

We establish below that under assumption A2, the functions v;(x) —z (i = 1,2) are
strictly decreasing in z. This immediately implies uniqueness of the corresponding equilibria
defined in (5) or in (6). To establish existence, it is further required to show that v;(z)—z <0
for x large enough (note that v;(0) > 0). However, Assumption A2 alone may not suffice
here (as may be verified via a simple example — e.g., with a deterministic T'(x) = x). The
existence claim will thus require an additional condition, which is either a system stability

requirement or a slight strengthening of A2, as specified below.

Theorem 3.3 Assume A2. Consider the equilibrium defined in (5) or in (6).

(i) Uniqueness: The equilibrium point, if one exists, is unique.

(ii) Existence: Assume, in addition, that the patience distribution functions G(x,-) are
weakly continuous in x, and that either one of the following conditions hold:

a. A <mpu, or

11



b. [T(z) — (1 — €)x] is decreasing in x in stochastic order, for some ¢ > 0.

Then the equilibrium exists.

The proof proceeds through some lemmas. We start by establishing the uniqueness of
the equilibrium defined through v, in (6), which turns out to be simpler, and follows directly
from the next proposition. In the following, W stands for the random variable (V [V > 0)
with distribution Fj.

Lemma 3.4 Assume A2. Then {W(x) — x} is strictly decreasing in stochastic order. In

particular, the function [vy(x) — x| is strictly decreasing in x.

Proof: For any z and y > 0, we need to show that W (x +y) <, W(z)+y. Our assumption
in A2 is that T'(z+y) <s T(x)+y. Since W is increasing in T, as established in Proposition
3.1(41), it is clearly sufficient to prove the lemma under the assumption that T'(x + y) =
T(x)+y.

Assume, then, that the latter holds. In terms of the distribution functions, our assump-
tion is that G(x + y,t) = G(x,t — y), and we wish to show that Fy(z + y,t) < Fo(z,t — y)
for all . As in the proof of Proposition 3, it is convenient to work here with the correspond-
ing hazard rate functions. Since the distributions Fj are absolutely continuous, namely the

density Fj exists at every point, it suffices to show that for all ¢,

F6(£U+y,t) > Fé(x,t—y)
F0(£U+y,t) - FO(xat_y) ‘

(11)

Now, from (1),
t—y
Fifw.t = y) = Cla)exp( [ K(w.s)ds), t2y
0
where K (z,t) := uG(x,t) — m\, and C(z) is a normalization constant. Note that Fj(x,t —

y) =0 for t < y. On the other hand,

¢
Fé(x+y,t):C(I+y)exp(/K(x+y,s)d8), t>0.
0

But our assumption on G implies that K(z + vy, s) = K(x,s — y). We thus obtain

Flz+y,t) = C(m+y)exp(/K(x,s)ds)

-y

12



0 t—y

= C(z+vy) exp(/ K(z,s)ds) exp(/ K(xz,s)ds).

2y 0
Comparing the expressions above, it is apparent that (11) holds with equality for ¢t > y.
For t < y the right-hand side of (11) is null, so that inequality holds trivially. Moreover,
since the left-hand side is nonzero for 0 < ¢ < y, then strict inequality holds on that
interval. This implies that Fy(z +y,t) < Fy(x,t — y), with strict inequality holding on some
interval; hence Fy(z +y,-) <g Fo(z,-). This establishes the main claim of this lemma. Since

vo(z) = E(W(x)), the second claim follows immediately. 0

We proceed to establish the uniqueness of the equilibrium defined in (5), with v;(z) =
E,(V). To relate this case to the previous one, observe that vi(z) = po(z)ve(z), where
po(x) = P{V > 0} is the probability that an arriving customer does not find an available
server. It was shown above that vy(x + y) < va(x) + y. However, as G(z,-) increases so
does po(z), and we cannot infer from the above equality a similar relation for v;(z). On
the technical side, the distribution Fy (z,-) of V' obviously contains a jump at ¢ = 0 (with
magnitude py(x)), and this prevents the application of the hazard-rate comparison argument
which was used in Lemma 3.4. We therefore resort in the analysis below to direct calculation

of vy (x) and its derivative.
Lemma 3.5 Assume A2. Then [vi(x) — x] is strictly decreasing in x.

Proof: It is required to establish the assertion under Assumption A2, namely G(z +y,t) <

G(z,t—y) for y > 0. By the monotonicity result in Proposition 3.1 it is sufficient to consider
the extreme case where G(z + y,t) = G(z,t — y), which we henceforth enforce.

We introduce some further notations. From (3) we have that v (z) = %, with

Alz) = Zotexp[J(x,t)]dt, B(z) = kp + / explJ (z, )]dt

J(z,t) = fK(a:, s)ds, K(z,s) = AG(x,8) —myu.

and k, = K,/\. Note that our assumption concerning G implies that K(x + y,t) =

13



K(x,t —y). We proceed to evaluate v, (z + y) for y > 0. First,

t 0 t—y
J(z+uyt) = /K(m,s—y)ds:/K(x,s)ds—i—/K(x,s)ds
0 —y 0
= by+ J(z,t—vy), t>uy

since K (z,s) = b for s < 0, with b = A —mp. Similarly, J(x+y,t) = bt for 0 <t < y. Thus,

Az +y) /texp[J(x+y,t)]dt

o0

y

— / tebtdt + et / (t + ) explJ (w, )] dt

0 0
= g(y) + " [Az) +y(B(z) — kn)]

where g(y) stands for the first integral. Note that lim, 0 ¢g(y)/y = 0, which we denote by

g(y) = o(y). Similarly,
Yy 00
Blot+y) = b+ [ edt+e [expls(s, 0]t
0 0

= km +ye” +o(y) + € [B(x) — k]
= e"[B(x) + (1 — bkm)y] + o(y) .

It follows that

Al +y)  Ax)
ulety)=ul®) = Fots " B
_ A@) +y[B(@) ~ ka] +oly) _ Alz)
B(a) + (1 - bkn)y +o(y)  B(x)
which implies
; __FnB() + (1 — bkn) A(2)
—[oi(2) — 2] = - B(x)? '

Obviously, the proof may be concluded if we show that the latter is negative. Since A(z),
B(z) and k,, are all positive, we need only verify that (1 — bk,,,) > 0. Using the definition
of ky, and b, this inequality is equivalent to (1 — %#)K,, < 1. This obviously holds when

7k > 1. Otherwise, we have from (4)

m—1 ) Jj—m+1 m—1 m—1—j -1
weFon ()R @) e



which again implies the required inequality. O

Proof of Theorem 3.3: Uniqueness of the equilibrium under either definition follows from
the last two lemmas. As for existence of the equilibrium defined in (6), since vy(0) > 0
and wvy(x) is continuous by the Theorem’s continuity assumption, it suffices to show that
va(r) —x < 0 for x large enough. If (a) holds then the system is stable even without
abandonments so that vy(-) is bounded. If (b) holds, then by re-scaling in x it follows from
Proposition (3.4) that vy(x) — (1 — €)x is decreasing in z, hence vy(x) —x < C' — ex for some
finite constant C', which clearly implies the required inequality. Existence of the equilibrium

(5) follows similarly since vy (z) < vo(x). O

We conclude this section with a simple example that shows that multiple equilibria are

feasible when Assumption A2 is violated.

Example 1: Multiple Equilibria. Consider an M/M/1 queue with A = 1, p = 1, and a

deterministic abandonment time 7'(x) which is the same for all customers. Thus G(z,t) =1

for t < T(z) and G(z,t) = 0 for t > T(z). By (3) we have

[ texp(J(t))

vo(x) 1= B [VIV > 0] = o— .

[ exp(J(t) )dt

0
Substituting G and m = X\ = p = 1 gives by explicit calculation
T°/2+T+1 1 1
=———=—(TH+ 1+ — 1
v2(7) T+1 2( + +T+1) (13)

where T = T(z). It is now simple to verify that the choice T'(z) = z — 1 + V22 — 1 gives
va(z) = x for all x > 1. According to the definition of the equilibrium in (6), this implies
that every value x > 1 corresponds to equilibrium point — hence there is a continuum of
equilibria. It may be seen that by slightly perturbing the above expression for T'(x) we can

also induce any discrete number of equilibria.

Remark. So far we have assumed a constant arrival rate A\. It stands to reason that the
arrival rate would also depend on the system performance. In our model, we may assume
that A depends on the system performance parameter x, and is naturally decreasing as x
increases. It may be verified that the offered waiting time V' (possibly conditioned on V' > 0)

is stochastically decreasing in A, so that the previous results hold in this case as well.
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3.3 Maintaining a Constant Abandonment Fraction

We shall briefly examine here certain aspects of system performance using the adaptive
patience model and the related equilibrium framework. As will be observed in Section 4, one
possible effect of customer adaptation is to keep the abandonment fraction approximately
constant, even under varying congestion conditions (cf. Figures 1 and 4 and the related
discussion). It may thus be of interest to find the precise patience variation that would keep
the abandonment fraction constant. A reasonable conjecture in this regard, which we verify
below, is that patience should be approximately proportional to the offered waiting time in
order to keep the abandonment fraction fixed. This indeed conforms well with the empirical

relation that has been observed between these quantities in Figure 5.

We shall consider as before an M/M/m+G queue, with myu fixed (normalized to 1), and
let the arrival rate A serve as a parameter that controls the system load. We require P,, = (3,
with 3 a specified constant (taken as 0.3 below), and P, is the fraction of abandoning cus-
tomers out of those that are not immediately admitted to service. The patience distribution
G depends on a system performance parameter x, taken as x = vy := E(V|V > 0). We are
thus considering the system equilibrium defined in equation 6. We specify G as a member of

some parametric family {G,}, where the parameter 7 is also the mean of G,, and depends

75
on z according to some relation 7 = n(x), which is determined below. We shall consider two

parametric families:

1. Deterministic: G,(t) = 1{t > n}. Thus, T = .

2. Exponential: G, (t) =1 — exp(—t/n).

We now wish to compute the required dependence of 1 on = so that the abandonment
fraction is fixed at P,, = 3, for all feasible A\. This is done as follows. For each fixed A, P,
is a function of 7, and one may solve (possibly numerically) for the value of n that gives
P,, = 3. Given 7, namely G,, we can now compute the corresponding x = E(V|V > 0).

This procedure yields x and 7, parameterized by A, and hence obtains the required function

n(z).
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For concreteness, let us outline the computation of n. We have
Py, := P{abandon|V > 0} = P{T < V|V > 0} = / F!(0)G (v)dv
v=0

where F{ is the density of (V|V > 0) obtained from (1). In the deterministic case, substi-

tuting G(t) = 1{t > n} and using (1) gives, after some calculations,

00 fOO ej(t)dt Lefn(mﬂf/\)
Pa :/ F, v)dv = N — ML ‘
b e 0( ) fOOO eV dt mul—)\(l — efn(muf/\)) + miuefn(mﬂf,\)
Solving P,, = [ for n gives
1-p A
= log[l + ——(1 — —)].
1 mp — A ogll + Iv) ( m,u)]

In the exponential case a numeric computation is required.

Deterministic Patience Exponential Patience.
6 T T 6 T ™7 T
— n/x | — n/x /‘ |
— - n=EM) | — - n=EM : |
— — x=E(V|V>0) R — — x=E(V|V>0) /
! / '
5 I 5 : I
I / |
[ ‘/ |
/ /
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Figure 2: Patience profiles that keep P,, = 0.3, with patience that is deterministic (left) and
exponentially distributed (right).

The results obtained for my = 1 and 8 = 0.3 for deterministic and exponential patience,
respectively, are shown in Figure 2. It depicts both 7 := E(T'), z := E(V|V > 0) and their

ratio /x as a function of A\. (Observe that A beyond mu/(1 — () = 1.43 is not feasible since

17



it implies a service rate which is higher than the server capacity). It may be seen that the
ratio is approximately constant over the entire range of A\, which means that indeed 7 should
be approximately proportional to x to obtain a fixed abandonment rate. It is interesting to

note that the required ratio of n to x is significantly lower for the deterministic case.

4 Empirical Support

Traditional queueing theory has been naive in its modeling of abandonment. To wit, from
the classical Palm (1953), Riordan (1962), Daley (1965) to the state-of-the-art Baccelli and
Hebuterne (1981), Garnett et al. (1999), Brandt and Brandt (2000), it has always been as-
sumed that patience is assigned to customers only upon arrival to the system, independently
and identically distributed among customers, and unrelated to experiences of the past or
anticipation of the future. In practical applications of the theory, furthermore, the distri-
bution of patience, if at all acknowledged, has been assumed exponential; see, e.g., Garnett
et al. (1999). (The papers Palm, 1953 and Roberts, 1979 are notable, but perhaps outdated,
exceptions.) This is despite the fact that theory has actually accommodated general patience
(Daley, 1965; Baccelli and Hebuterne, 1981). A main reason for that, one deduces, is the lack
of empirical evidence that either supports or refutes exponentiality. More fundamentally, we
believe that there is simply sufficient understanding of human patience in general, and of

the distribution of the time to abandon while waiting in tele-queues in particular.

A comprehensive empirical analysis of a telephone call center has been recently docu-
mented in Mandelbaum et al. (2000). This center provides banking tele-services of various
types, for example balance inquiries, information to prospective customers, technical Inter-
net, support, stock management and more. The event-history of each individual call during
1999 was recorded, starting at the VRU (Voice Response Unit) and culminating in either a

service by an agent or an abandonment from the tele-queue.

Part of the analysis in Mandelbaum et al. (2000) focuses on customer patience while

waiting, and among its relevant findings we single out the following three observations:

(1) Patience definitely need not be exponential, and it varies significantly with service-type,
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customer-priority and information provided during waiting; see Section 6.2 in Mandelbaum
et al. (2000). We note that the heterogeneity of patience among customers has already been
confirmed convincingly; for example, in Thierry (1994), Friedman and Friedman (1997),
Diekmann et al. (1996) it is shown that patience, or value of time as its proxy, is affected by

factors such as goal (service) motivation, mood, social status and others.

(2) The waiting time distribution, over customers who actually got served, is found to be
remarkably exponential (Figure 11 in Mandelbaum et al., 2000). Note that this result is the-
oretically exact for the M/M/m queue in steady state only when there are no abandonments
(cf. (1)).

(3) Experienced callers seem to adapt their patience to system performance (congestion),
as exhibited in Figure 1. Patience of novice callers, on the other hand, is less sensitive to

system performance.

For the rest of the section, we substantiate this last observation with further empirical

evidence, first for novice and then for experienced callers.

Calls by novice customers are denoted in Mandelbaum et al. (2000) by type NW (for
New). An example of such calls is inquiries by potential customers on marketing campaigns.
In analogy to Figure 1, the following scatterplot relates the fraction of NW abandonment to
their actual wait (restricted to delayed customers). As in Figure 1 and throughout the figures
below, each scatterpoint corresponds to 15-minute periods of a day (Sunday to Thursday),

starting at 7:00am, ending at midnight, and averaged over the whole year of 1999.

The plotted relation in Figure 3 seems linearly increasing, with a positive intercept
through the y-axis. (The line in the figure, as well as those below, are standard least-
square fits.) We take this linearity as supporting the independence between patience and
system performance. Indeed, for the G/G/m queue in steady state, with abandonment times

that are i.i.d. exponential (6), the relation is exactly linear through the origin:
P{abandon|wait > 0} = 0 x E[wait|wait > 0]. (14)

For a verification, start with the fact that the abandonment rate equals either Ax P{abandon}

or E[queue-length)x0. Equating these last two expressions, using Little’s law E|[queue-length] =
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Figure 3: Novice (NW) customers. P{abandon|wait > 0} vs. E[wait|wait > 0].

A x Elwait], and dividing by P{wait > 0}, yields the above linearity. (For non-exponential
patience, linearity holds asymptotically, as demonstrated in Theorem 4.2 of Brandt and
Brandt, 2000). To allow for a positive y-intercept, assume further that, among the abandon-
ing customers, some abandon immediately upon arrival if forced to wait — which is commonly
referred to as “balking”. We then have P{abandon} = P{balk} + 0 x E[wait]. Letting V'

denote the offered wait, one deduces the relation
P{abandon|V > 0} = P{balk|V" > 0} + 0 x E[wait|V > 0]. (15)

(Note that here we condition on V' > 0 rather than wait > 0 since balking is inconsistent with
the latter.) One can now interpret Figure 2 as portraying customers whose patience seems
unaffected by varying conditions of congestion. For example, an increase in E[W ait|Wait >
0] from 80 to 120 seconds has the same affect as an increase from 120 to 160 seconds: both

accompany an increase of about 12.5% in abandonment, out of those delayed.

We now turn to experienced callers, denoted IN (technical INternet support) in Mandel-
baum et al. (2000). As already demonstrated in the Introduction (Figure 1), the patience of
experienced callers may exhibit remarkable adaptivity to system performance. This is first

rediscovered through Figure 4 (of which Figure 1 is simply a zoom). The difference between
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NW customers (Figure 3) and IN customers (Figure 4) is clearly manifested.

60%
15:00-15:15
50% °
~ e® o 0 ® 23.00-23:15
R 8:30-8:45 3 ® °
 40% ° ‘—WH %o °
© ) (] :30-23;
E . o ."... ° 23:30-23:45
S 30% 020 °
S
5
< 20%
g [
o 7:00-7:15
10%
0%
0 50 100 150 200 250 300

E [ Wait | Wait>0 ], sec

Figure 4: IN customers. P{abandon|wait > 0} vs. E[waitjwait > 0].

Finally, we examine the relation between patience and perceived system performance.
To this end, Patience will be represented by E[time-to-abandon|, while system performance
will be measured by E|offered-wait |wait > 0]. For ezperienced callers, we expect that actual
performance, represented by this measure, coincides with anticipated performance, the latter
being forged through previous experience. In other words, with enough service (sampling)
experience, the distribution of the offered wait would be unraveled to experienced customers;

they summarize this distribution via its mean, which in turn approximates their anticipation.

Figure 5 covers IN (experienced) customers. Each point corresponds to a pair (patience,
anticipation), during a 15-minute period of a day. We see that y (patience) increases with z
(anticipation). The slope of the least-square line fit is somewhat over unity. We take this as a

confirmation for the adaptivity of patience to variations in anticipated system performance.

Remark. On Censoring: The data in Figures 1 to 4 is directly observable. In Figure 5, on
the other hand, both coordinates have to be “uncensored”, since what is actually observed
for each customer i is the actual wait W; = min{V;, T;}, which equals T; (the patience, or

time-to-abandon) only when i abandons, and V; (the offered wait) only if 7 survives to be
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Figure 5: IN customers. Elpatience] vs. E|offered wait|/wait > 0]; E|-] stands for the mean

of the Kaplan-Meier estimator for the corresponding distribution.

served. We use for this purpose the classical Kaplan-Meier estimator which is described in

the Appendix.

Remark. An analogue of Figure 5 for NW (novice) customers is not displayed. The reason
is a lack of statistical confidence — see the remark on robustness in the Appendix, especially

Figure 9.

5 Modeling Patience

Abandonments of waiting customers are a common and important factor in service systems,
and most people personally experience potential abandonment situations on a daily basis.
Still, there appears to be little work concerning the modeling of the abandonment decision
process and its contributing factors. We present here a brief discussion of some of the

literature that seems relevant to abandonment modeling.

Abandonment decisions are predominantly a psychological process, which is triggered

by negative feelings that build up while waiting. These are coupled with various factors
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such as the service utility and urgency, observed queue status, time perception, and exoge-
nous circumstances. The exact trigger for abandonment remains largely unexplored. In an
early work, Palm (1953) assumed that the abandonment rate is proportional to the momen-
tary dissatisfaction, or annoyance, of the customers. An alternative model could specify an
abandonment when annoyance (or another measure of negative feelings) reaches a certain
threshold. A central ingredient in either case is the subjective disutility (or cost) of waiting,
that has been addressed in a number of papers. A distinction can be made between the
economical (opportunity) component of that cost and the psychological cost. The latter
relies on both the sense of waste of invested time, and the stress caused by the remaining
waiting time and associated uncertainty. Major factors that affect the waiting experience
and its effect on service evaluation have been discussed in Maister (1985) and Larson (1987).
A mathematical model for stress that has been introduced in Osuna (1985), and further
developed in several papers, for example Suck and Holling (1997), explicitly models the de-
pendence of stress on the distribution of the remaining waiting time. However, this model
does not directly address the effect of customer service expectations. Empirical studies in-
clude Taylor (1994), Leclerc et al. (1995), Hui and Tse (1996), and Carmon and Kahneman
(1998). The latter, in particular, studies the evolution of the momentary affect in a queue

and its relation to (observed) queue length.

The dependence of the subjective waiting cost on service expectations, and particularly
on the expected waiting time, has been addressed qualitatively from several perspectives.
The “first law of service” in Larson (1987) postulates that “satisfaction equals perception
minus expectation”. A reasonable consequence is that stress picks up when the expected
wait has been surpassed. Hueter and Swart (1998) point out that customer perception of
waiting time in a fast-food establishment increases steeply beyond an actual wait of several
minutes (with a corresponding increase in the likelihood of abandonment). The effect of
expectations and their disconfirmation on the momentary affective response is discussed and

indicated empirically in Carmon and Kahneman (1998).

A normative, utility-maximizing model for abandonments has been considered in several

recent papers (Hassin and Haviv, 1995; Mandelbaum and Shimkin, 2000; Haviv and Ritov,
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2001). The abandonment time of each customer is chosen to maximize a personal utility
function, which balances the service utility and the expected cost of waiting. We note that
in the basic form of these models, the customer choice relies on the entire distribution of
the offered waiting time, rather than just on its average (z) as was assumed in the present
paper. Still, the model may be appropriately reduced by allowing the customers to assume
an exponentially distributed waiting time. The reduced model is presented in Zohar et al.

(2001), and related there to the Assumptions of Section 3.

Further work is required to establish analytical abandonment models that are based on

the integration of a psychological framework with experimental and empirical data.

In this subsection we consider a normative model (decision-theoretic) that has been
considered in the literature, relate it to our basic descriptive model, and discuss some of
its limitations. The abandonment time of each customer is chosen to maximize a personal
utility function. In essence, the optimal choice strikes an optimal balance between the utility

of the requested service and the disutility of the (remaining) wait.

The model we consider here is a simplification of the one proposed in Mandelbaum
and Shimkin (2000). In the latter, the customer’s choice relies on the knowledge of the
entire distribution of the offered waiting time. Here, in keeping with the simplifying model
assumption of Section 2, we only allow the customer to observe the mean waiting time,
namely the performance parameter x specified above. We shall briefly present the main
elements of the model in Mandelbaum and Shimkin (2000), and then consider its reduction

to the present framework.

Consider a specific customer, or customer type, indexed by z. The relative occurrence
of customer types is specified by some probability distribution on z. The elements of the

decision model for each type-z customer:

e (,(t), a waiting cost function which specifies the cost for waiting ¢ time units in the

queue, and its derivative c,(t).
e r,, the expected service utility .

e F,(t), the probability distribution of the offered waiting time V' in the queue.
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We shall assume here that the marginal waiting cost ¢, (t) is strictly increasing and continuous

in . The optimal abandonment time 7, maximizes the utility function
u,(T) = E,(r. 1{V < T} — C,(min{V,T})),

where T is the abandonment time (to be chosen), min{V T} is the actual time in queue,
{V < T} denotes the event that the customer enters service before abandoning, and E, is
the expectation with respect to the distribution F}, of V. It may be verified by differentiation

that a stationary point of u, satisfies
H,(T) = .(T)

where H, = F'/F, is the hazard rate function, and ~,(T) = c,(T)/r, is the cost-benefit

ratio.

To utilize the above relation using the single parameter x, we shall employ the above
decision model under the (subjective) presumption that the virtual waiting time distribution
F, is exponential, with expected value z. Besides its associated model simplification, this
assumption may be justified on the ground that typically a customer will not be aware of
the details of the waiting time distribution, but rather summarize his beliefs concerning
the expected wait by its average. Under this assumption, we have that H,(T) = 1/z, and
the optimality condition reduces to 1/2 = 7,(T). Note that this equation has at most one
solution since ¢, (hence 7,) is increasing by assumption. It may now be verified that the
optimal solution which maximizes u,(T") is T, = 0 if 1/z is below the range of v,, T, = oo if

1/z is above the range of v,, and
T, = 72_1(;) (16)
otherwise. Here 7, ! is the inverse function of ~,. To illustrate, if v,(T) = a,T, then
T, =1/(a,x).
Let us now relate this model to the assumptions made in Section 3, concerning the
dependence of the patience distribution on x. Since 7, is increasing, it follows immediately

that T, = T,(x) is decreasing in z. Since this holds for each customer type, it immediately

implies assumption Al of Section 3.1.
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As argued in Section 3.2, it is plausible that the patience of certain customers will increase,
rather than decrease, when they anticipate a longer wait. To include such a trend in the
above model, it is required to allow the cost function itself to depend on the customer
expectations, namely on z. Such dependence is reasonable since in a typical situation the
waiting cost is subjective and includes a predominant psychological component, as discussed

at the beginning of the present section.

To be specific, assume that as the expected waiting time x increases, the waiting cost may
decrease, but in a manner bounded by a shift of the original cost; that is ¢,(t) = ¢,(z, ), and
c.(x+y,t) > c,(r,t —y). Then (16) implies that T,(x + y) < T,(x) + y, which corresponds

to assumption A2 of section 3.2.

6 Modeling the Learning Process

Our equilibrium model assumes that customers know the average waiting time in the system.
The model is thus static with respect to the customer’s knowledge. In practice, however, the

customer assessment of the waiting may be evolve through experience.

In this section we consider a simple model for such a learning process, where each cus-
tomer estimates the average waiting time based on personal experience, namely his own
waiting times in previous visits. He then goes own to modify his abandonment decision
according to the current estimate. Of prime interest to us here is the long-term or steady-
state behavior of this learning process, which serves to validate our equilibrium analysis and
examine some of its hypotheses. The transient behavior of the process may also be of con-
siderable importance, for example to assess the time it takes to reach the steady operating

point after the system is considerably modified, but we shall not address this aspect here.

Learning processes of similar nature have been considered in Altman and Shimkin (1998),
Ben-Shachar et al. (2000) in the context of bulking decisions. In our case, abandonments
complicate the estimation process, since the observations of the offered waiting time are
censored by abandonment; that is, a customer that abandons the queue before being admitted

to service does not observe the required wait but rather a lower bound on it. We are thus
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faced again, as in Section 4, with the need to estimate the mean of a distribution based on

censored data.

We first employ a standard non-parametric estimator for censored data, namely the
Kaplan-Meier (KM) estimator discussed in the Appendix, which provides a consistent esti-
mator of the mean. It will be demonstrated that when each simulated customer uses KM,

the system does indeed converge to its unique equilibrium point.

The KM estimator relies on complex computations, and in practice the customers’ es-
timates are likely to be formed by much simpler procedures. It is therefore of interest to
examine the consequences of using simpler estimators. The estimator we consider here is a
(parametric) maximum likelihood estimator, which is derived based on the assumption that
the estimated quantity (the virtual waiting time in our case) is exponentially distributed (or
equivalently that the hazard rate of entering service is constant). This assumption, while
false in the presence of abandonments, is a reasonable starting point from the customer’s
viewpoint, and leads to a simple estimator — see (18). We shall refer to it as the Censored
MLE. Since the exponential assumption is false in our system, the Censored MLE turns
out to be biased, and thus leads to a steady-state of the learning system that differs from
the previously postulated equilibrium. Our simulations will demonstrate convergence to this

alternative steady-state.

The one-line learning model that we propose is based on the following scenario. Each cus-
tomer initially possesses some estimate z of the average waiting time, and his abandonment
time (or distribution) is given by a function T'(x). The queueing system is that of Section
2, with the specific customer to enter the queue at each arrival is chosen randomly from a
finite population. When the customer leaves the queue, either through service completion

or abandonment, he updates his estimate x, and returns to the pool of idle customers.

6.1 Simulation Results

We describe here the results of two simulation experiments: The first employs the KM-
based estimator, while the second employs the simpler Censored MLE. In both the system

is a single-server (M/M/1) queue, with A = 4 = 1. Each customer maintains a personal
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estimate x of the average waiting time, and determines his abandonment time in the next
trial as T'(x) = 0.8 - x. The estimated waiting time is taken here as v, = E(V|V > 0) (see
(6)). Note that the customer population is homogeneous in terms of the patience function.
Simulation results for heterogeneous customer populations may be found in Zohar (2000),
and lead to similar conclusions. This reference also contains a more complete description of

the present simulations.

The specific customer who enters the queue is randomly and uniformly selected out of
a pool of idle customers. If the pool is empty, a new customer is created. The initial
knowledge base of a new customer is “inherited” from one of the existing customers, chosen
at random. The first customer who initializes the simulation is arbitrarily initialized with

ten “observations” of waiting times with duration wy = 1.5 each.

For reference, let us first calculate the equilibrium point for this system as per the analysis
of Section 3. Note that the specified patience function T'(x) satisfies the requirements of
Theorem 3.3 and hence the equilibrium is unique. The equilibrium condition (6) is vy (x) = .
An expression for vy(x) is terms of T'(z) has been obtained in (13) for this system, which

o T(z)?/2+T(x)+1
T(r)+1

With T'(x) = 0.8 - z, this equation indeed has a single positive solution at = = 1.25, which is

=XT.

the equilibrium value.

A slight modification was implemented in these simulations regarding the choice of aban-
donment times. Every once in a while (on each 30th trial), each customer was allowed to
stay in the queue untill admitted to service, instead of abandoning at T'(xz). This allowed
customers with low patience to sample the actual waiting time more fully, and turned out

to be important for a reasonable convergence of the estimators.

Simulation 1: Kaplan-Meier estimator. The system was simulated with the KM-based
estimator. Recall that this estimator calculates an estimate of the entire waiting-time distri-
bution (from which the mean is extracted). The results of the simulation are shown in Figures
6 and 7. The number of customers created in this example was 8; this is just the number that

was required in this run to prevent starvation in the arrival process. The simulation was run
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for over 40000 arrivals, which amounted to about 5200 arrivals for each customers. Figure 6
shows the estimates of customers 1 and 8 for the distribution of (V|V > 0), as obtained at
the end of the simulation. The graphs also depict for reference the theoretical distribution
at the equilibrium point according to (1), and an exponential distribution with the same
mean. The results for the other customers were similar (Zohar, 2000). Figure 7 shows the
estimated mean vy = E(V|V > 0) of the offered waiting time for these two customers, as a
function of their “iteration number” (the number of times they visited the queue). We can
see that the estimates tend to converge. At the end of the simulation the mean estimate
of the waiting time across the 8 customers was 1.2007, with a standard deviation of 0.0672.

This agrees well with the theoretical equilibrium value of x = 1.25 as calculated above.

customers 1,8 — estimated distribution

1,
0.9 — customer 1
customer 8
0.8} - - calculated(2.1)
- - exponential
07F
calculated
06}
o5t
mean:1.19
0.4} \/Std:0.04
0.3t mean:1.21
exponential & std:0.02
02LMmean:1.2
01f
0 | S —
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Figure 6: Simulation 1: Estimates of the waiting time distribution for customers 1 and 8

using the Kaplan—Meier estimator

Simulation 2: Censored MLE. The same system was simulated with the Censored MLE
estimator (18). The number of customers created in this simulation was 11. The results are

depicted in Figure 8. We can see that the estimated waiting time converges. The simulation
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Figure 7: Simulation 1: Estimates of the mean waiting time E(V |V > 0) for customers 1

and 8

yields a much higher mean waiting time of 1.6452 across 11 customers with standard deviation
of 0.0218. This deviation may be attributed to the bias of this estimator, as discussed in the

previous subsection, since the waiting time distribution here is not exponential.

The theoretical value of the equilibrium in the last example can in fact be recalculated
with an appropriate consideration of the Censored MLE. Based on (18), the asymptotic
value Z of the Censored-MLE for E(V |V > 0) may be written as

i o= EW|V >0) _ E(min(V,T)|V > 0)

P(no abandon|V > 0) PV <T|V>0) "’

where we suppress the dependence of T on x. Letting py denote the distribution of (V [V > 0),

this gives
Jo tpo(t)dt + T J7° po(t)dt
Jo po(t)dt

and from (3) we have py(v) = Ky exp(— f; (mu — )\@(s)) ds, with K, a normalization con-

T =

stant. Recall that the abandonment time 7" is assumed here deterministic and identical for
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Figure 8: Simulation 2: Estimates of the mean waiting time E(V |V > 0) for customers 1

and 11, using the biased MLE estimator

all customers, so that G(t) =1 for t <T and G(t) =0 fort > T. Withm = pu= =1 we
obtain py(v) = K for t < T, and py(v) = Koexp(T —t) for t > T. Tt follows that

o fOTtdtJrTff’exp(T—t)dt T
S 1dt 2

The required equilibrium equation now is & = x, with 7' = T(x) = 0.8 - z. This gives
T = % +1,orz = g ~ 1.66. This is in close agreement with the estimated value that was

obtained in the simulation.

7 Conclusion

This paper focused on certain adaptive aspects of customer behavior, namely the dependence
of the customers’ patience on the anticipated waiting time, and its effect on the performance

of queues with invisible state. We have shown how the steady-state operating point (or
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equilibrium) can be characterized and computed, and demonstrated the applicability of the
proposed model for performance analysis. We have shown how the static equilibrium concept
can be interpreted as the steady state of a dynamic learning process; while highly idealized,
this lends in our opinion considerable credibility to the proposed equilibrium solution. At the
same time, the learning process examples demonstrate how the way that customers evaluate

their experience can have a significant effect on the resulting equilibrium.

Our model allows considerable freedom in the specific dependence of patience on system
performance (i.e., the dependence of G on z). To extend its usefulness in queueing practice,
further characterization of this dependence is required, specifying both trends and quanti-
tative relations that hold in given classes of systems. This calls for further research into the
abandonment process. Such research must combine empirical analysis, as in Mandelbaum
et al. (2000), with further understanding of the triggers of abandonment, as in Zakay and
Hornik (1996).
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Appendix — Censored Sampling

The need for accommodating censored data arose first in Section 4. Based on the call center
data in Mandelbaum et al. (2000), we sought to estimate patience — the distribution of the
time a customer is willing to wait, and relate it to offered wait - the time a customer if forced
to wait. As explained in Section 4, these two quantities actually censor each other. Then, in
Section 6, censored data arose again. Simulated customers sought to estimate the system’s
offered wait, based on their individual service history where some samples of the offered
wait were censored by abandonment. In both Sections 4 and 6, one is required actually
to estimate only means, as opposed to the full fledged distribution. (The latter is needed,
for example, to support our first observation in Section 4, regarding the non-exponentiality
of patience. See Mandelbaum et al. (2000), Section 6, especially Figures 12 and 14, for

interesting hazard-rate estimators of patience and offered wait.)

Techniques for analyzing censored data have been developed within the well-established
Statistical branch of Survival Analysis (Miller, 1981 is an elementary exposition, and Fleming
and Harrington (1991) is advanced measure-theoretic). As will be explained in the sequel,

our needs for such techniques vary from the rudimentary to the unexplored.

In Section 4 we estimated mean patience and mean offered-wait via the means of the
corresponding classical Kaplan-Meier (KM) estimator (17). KM generalizes the empirical
distribution function to accommodate censored samples (see page 46 in Miller, 1981, or
page 4 in Fleming and Harrington, 1991). It is a non-parametric estimator, proven to have
desirable properties, and common enough to be incorporated in essentially all respectable
statistical packages. In Section 6 we used again KM, and then continued with a simpler
parametric estimator, namely the maximum-likelihood estimator (MLE) of the mean of an
exponential distribution; it is defined in (18) and referred to in our paper as the censored
MLE (CMLE). The rest of the Appendix is devoted to a description of KM and CMLE,

tailored to the estimation of patience and offered wait.

The KM setup for estimating patience is as follows. We are given a sample {I¥;} of N
waiting times from a call center. Some of the calls end up with abandonment (W; = T;) and

the others with a service (W; = V;). Denote by M < N the number of distinct abandonment
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times in the sample. Let 7! < T? < ... < TM be the ordered observed abandonment times,
and A, the number of abandonment at 7%, namely those who abandon after exactly T*
units of time. The Kaplan-Meier estimator S’(t), t > 0, estimates the survival function

F(t) = P(T > t), where T is the time to abandon (patience). It is given by

where Bj, denotes the number of customers still present at 7%, that is neither served nor

abandoned before T%. The estimator for mean patience is then based on the tail-formula

E[T] = 75*(15)(11:. (17)

In the above we estimated patience, which was censored by offered wait. Similarly, KM
can be used to estimate the offered wait, by switching the roles of V; and T;. This estimate
was used both in Section 4 and 6, in the latter by individual customers in order to estimate

the system’s offered wait that affects their patience.

A simpler alternative for estimating offered wait takes a parametric approach. As above,
let {Wy, Ws, ..., Wy} denote the collection of all waiting times, both abandoning and served.
Assuming that offered wait is exponentially distributed, the standard parametric (maximum
likelihood) estimator for its mean is given by (Miller, 1981, page 22)

A 1 N
B{T) =+ 2 Wi, (15)

$ i=1
where N is the number of service experiences that ended up with a service, i.e. were not
censored by abandonment. If 7" is not exponential, the estimator (18) is biased enough to

be inconsistent.

Remark. On Independence: KM assumes independence for the observations whose distri-
bution is to be estimated. Such an independence is plausible for patience (T}’s). It also
applies for offered wait (V;’s), if these are sampled during independent sparsely-timed visits
to the queue, as in Section 6. Such independence can not hold for successive offered loads,
that are in fact highly dependent. In this case one is taken out of the KM paradigm. The
effect of such dependence has been ignored in Section 4, as well as in Mandelbaum et al.

(2000), and it is the subject of ongoing research.
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Remark. On Robustness: The KM (Kaplan-Meier) estimator is very sensitive to censored
data at the upper tail of the sample. For example, if the longest wait in a customer’s history
ended up with an abandonment, the KM estimator of the offered wait has a positive mass at
infinity, hence its mean is infinity; similarly if one is interested in patience, and the longest
wait ended up with a service. The consequence is that in estimating patience and offered
wait, one of the resulting two KM’s must be defective, and common practice is to simply
truncate it at its last observation. (There are some parametric tail-smoothing techniques,

but to the best of our knowledge they are ad-hoc.)

Another alternative is to use medians, rather than means, as more robust estimators of
a location-parameter. For example, the analogue of Figure 5 for NW customers, but with

medians rather than means, is the following:
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Figure 9: NW customers. M|patience] vs. Mloffered wait|wait > 0]; M][-] stands for the

median of the Kaplan-Meier estimator for the corresponding distribution.

The flatness, to be compared against the slope in Figure 5, can be attributed to in-
sensitivity of NW patience to congestion, due to their unfamiliarity with the system. As
mentioned in Section 4, replacing the medians in Figure 9 with means yields statistically

unreliable scatterplots — this is, in fact, the subject of ongoing research.

Two final comments (or reservations) on the use of medians. First, in the context of
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this paper the mean seems to be a more natural descriptor of human perception of past
performance, and is also more amenable for analysis. Hence the median is not appropriate
as a basis for an adaptive theory as developed here. On the technical side, one should
note that with ample censoring it is also possible for the KM median to be undefined; this
happens, for example, when the whole upper half of the sample consists of customers who
were patient enough to get served, hence their patience is censored. This phenomenon does

occur in Mandelbaum et al. (2000), but not for the customer types that are discussed here.
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