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Abstract

This work addresses the problem of analysis and control of fork-join networks in the con-

ventional Heavy-Traffic diffusion regime. Standard fork-join networks are feed-forward,

which are relatively easy to control. Motivated by healthcare systems, we allow proba-

bilistic feedback, which turns the problem into a challenging one.

In our models, activities are associated uniquely with customers. They are hence non-

exchangeable in the sense that one can not combine/join activities associated with differ-

ent customers - this is the case in healthcare (e.g. emergency departments) and multi-

project environments (in contrast to assembly networks).

We introduce a natural concept of optimality for our model, and then solve for the op-

timal control, asymptotically in heavy-traffic. The central ingredient in the proof is the

establishment of asymptotic equivalence between non-exchangeable and exchangeable dy-

namics.
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1 Introduction

1.1 Background

The following sections survey the relevant work regarding Fork-Join networks, Heavy

Traffic analysis and Scheduling and Routing policies. Sections 1.1.2, 1.1.4 and part of

Section 1.1.1 were adapted from Neguyen [33], and Section 1.1.3 from Shaikhet [4].

1.1.1 Fork-Join Networks: Definition and Some Applications

A fork-join network consists of a group of service stations, which serve the arriving

customers simultaneously and sequentially according to preset deterministic precedence

constraints. More specifically, one can think in terms of “jobs” arriving to the system

over time, each job consisting of different tasks that are to be executed according to the

precedence constraints. The job may leave the system only after all its tasks have been

completed. The distinguishing features of this model class are the so-called “fork” and

“join” constructs. A fork occurs whenever several tasks are being processed at the same

time. In the network model, this is represented by a “splitting” of the job into multiple

tasks, which are then sent simultaneously to their respective servers. A join node, on the

other hand, corresponds to a task that may not be initiated until several other tasks have

been completed. Components are joined only if they correspond to the same job; thus a

join is always preceded by a fork. If the last stage of an operation consists of multiple

tasks, then these tasks regroup into a single job before departing the system.

Examples of Fork-Join Networks

In Fig. 1.1 we see the process progressing from the Arrest of “alleged” criminals until

getting them to trial (arraignment). As shown, the process consists of three simultaneous

paths—the path of the arrestee, the path of the arresting officer, and the path of the

arrestee information through the system. This example is taken from Larson’s article [16]

on “Improving the N.Y.C A-to-A System”.

In Fig. 1.2 we see the process from the arrival of an order to build a house until the

completion of the numerous tasks required in the construction plan. In the graph, the

construction orders “split” and “join” throughout the system till all the tasks are com-

pleted; the precedence constraints take the form of a flow chart.

Fork-Join networks are natural models for a variety of processes including communication

and computer systems, manufacturing and project management (as introduced in Fig.
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Figure 1.1: Arrest-to-Arraignment process

Figure 1.2: Construction of a House
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1.2) and service systems (as introduced in Fig. 1.1). A fork-join computer or telecommu-

nication network typically represents the processing of computer programs, data packets,

etc., which involve parallel multitasking and the splitting and joining of information. In

manufacturing, prevalent fork-join networks are assembly networks, which represents the

assembly of a product or system that requires several parts which are processed simulta-

neously at separate workstations or plant locations.

Fork-join networks can be found frequently in the health-care system in general, and hos-

pitals in particular (see Fig. 1.3), in which patients and their medical files, test results

and insurance policy may split and join in different parts of the process, in order to get to

the final task, that may be admitting a patient to the wards, starting an operation, etc.

Another reason for the need of a fork-join network in hospitals is the necessity to join and

synchronize many separate resources—doctors, nurses, room/bed, special equipment—in

order to perform one integrated operation. In this research we develop and implement

some mathematical approximations that support practical aspects in the analysis and

control of hospital processes.

Figure 1.3: Fork-join Networks in Hospitals—Preparation to Surgery
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1.1.2 Heavy Traffic Analysis of Queueing Networks

Consider single-station queueing systems with multiple arrival streams and multiple servers,

operating under the FIFO discipline, Iglehart and Whitt [15] showed that for a sequence

of such systems, with the traffic intensities approaching one, normalized versions of the

queue length process converge to a one-dimensional reflected Brownian motion. The pa-

rameters of the RBM are completely specified in terms of the first and second moments

of the distributions of the interarrival times and service times. Related results are also

obtained for the departure, workload, and virtual waiting time processes. In [37], Whitt

generalizes this result to a single queue with several priority classes of customers and a

preemptive-resume discipline. Whitt obtained heavy traffic limit theorems for the queue

length and unfinished work processes associated with each priority class. A significant

contribution of this paper, in comparison with earlier work, is that Whitt obtains joint

convergence for the various processes of interest.

This analysis was carried out by Harrison in [12], in which he treats the case of two tan-

dem queues, the simplest example of a feedforward queueing network. In [12] Harrison

was the first to characterize the heavy traffic limit of certain processes associated with a

queueing network as a multi-dimensional RBM on an orthant, describing the directions of

reflection as well as the drift vector and covariance matrix. This characterization enables

Harrison to derive partial differential equations associated with various system perfor-

mance measures. Although no general solution is available, he was able to compute the

solutions for certain special cases.

Peterson [28] generalizes this treatment to a network with deterministic feedforward rout-

ing and multiple customer types. At each station in the network, customer types are

partitioned into two classes, one of which has preemptive-resume priority over the other.

The designation of priority class for each type is allowed to vary over stations, and within

each priority class customers are served in a FIFO manner. The main result in [28] is a

heavy traffic limit theorem showing convergence of the workload and queue length pro-

cesses to an RBM in an orthant. The representation obtained by Peterson enables him to

deduce a simple expression for sojourn time processes in terms of the workload processes.

The analysis in [28] begins by generalizing the results of Iglehart-Whitt for a single-station

network to the setting of multiple customer types. In an ”inductive” manner, the analysis

is then extended to all stations in the network.

So far we have restricted our discussion to the class of networks with deterministic and

feedforward routing. The first significant heavy traffic approximation result for an open

queueing network with feedback was obtained by Reiman [7]. In [7], he investigates a net-

work model with Markovian switching between stations, whose customers have general
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interarrival time and service time distributions. This network has been called a general-

ized Jackson network [20]. Reiman proves a heavy traffic limit theorem which shows that

the workload and queue length processes converge to an RBM whose state space is an

orthant. He also shows that the limiting process for sojourn times is given by a simple

transformation of the workload processes.

The analysis was extended by Chen and Mandelbaum [17], who analyzed generalized Jack-

son networks in which not all stations operate in heavy traffic. A station is said to be a

bottleneck if the traffic intensity at that station is greater than or equal to one, and is said

to be a non-bottleneck otherwise. A bottleneck stations is said to be balanced if the traffic

intensity is equal to one, and it is called a strict bottleneck if the traffic intensity exceeds

one. Roughly speaking, the results of Chen and Mandelbaum quantify the common belief

that bottleneck stations dominate the performance of the network. They show that in

the heavy traffic scaling, queue lengths and workloads vanish at non-bottleneck stations,

and they tend to infinity at the strict bottleneck stations. When properly centered, how-

ever, the queue lengths and workloads at strict bottleneck stations converge to a simple

functional of Brownian motion. The limit of the subnetwork composed of the balanced

stations, as one may expect, corresponds to an RBM of the appropriate dimension.

The analog of Reiman’s model with multiple customer types presents significant difficul-

ties. Reiman [8] has completed analysis of a single-station network with feedback which

is populated by several types of customers. In the work of Mandelbaum and Stolyar [23],

they treat the parallel server models (J nonidentical servers working in parallel and I

customer classes) and convex cost functions. Finally, they conjectured about the asymp-

totically optimal solution for model with feedback.

Recent Work by Katsuda [32] study the multiclass queueing networks (MQNs). In the first

part of his work he consider the MQNs for which the fluid stability is valid, state-space

collapse is exhibited under suitable initial conditions and a heavy traffic limit theorem

holds. For such MQNs we establish that, under the assumption of the tightness of a

sequence of stationary scaled workloads, the sequence converges to the stationary distri-

bution of semimartingale reflecting Brownian motion in the heavy-traffic regime. In the

second part, using the result obtained, it is shown that such a convergence of stationary

workload holds for a multiclass single-server queue with feedback routing.

Finally, for a recent general framework on Brownian approximations, one may refer to

Harrison [18].
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1.1.3 Scheduling and Routing of Queueing Networks

Optimal scheduling and routing present the most interesting and difficult challenges in

the management of queueing networks. The routing problem is to determine, upon an

arrival, which of the available servers, if any, should we assign to serve a customer. The

scheduling problem is to indicate, upon service completion, which of the available waiting

customers, if any, should be served.

The earliest control work for single server queues was the exact analysis by Cox and Smith

[14]. They looked at a multi-class single-station network (M/G/1) with linear waiting cost,

i.e. one pays ciτ units for each job of class i that waits for service τ units of time. This

is equivalent to looking at
∫ t
o

∑
i

ciQi(s)ds - the integral over a linear combination of

the queue lengths. They proved the classical cµ rule, which can be described as follows.

With each class of jobs we associate an index ciµi (with µi being its service rate) and

at a decision point one always serves the highest index. See Walrand [9] for various

extensions.

A similar setting was considered in the conventional heavy traffic asymptotic regime

by Van Mieghem [11], with his generalized cµ rule. This culminated in the work of

Mandelbaum and Stolyar [23]. They treat the parallel server models (J nonidentical

servers working in parallel and I customer classes) and convex cost functions Ci(·), i =

1, . . . , I. Optimal scheduling corresponds to the following: at each time t, when server

j becomes idle, it chooses for a service a type i customer with the largest C
′
i(Qi(t))µij .

Note however that the cost functions C(·) in [23] were restricted to convex functions with

C(0) = 0 and C
′
(0) = 0. This excludes a direct application to linear costs.

For linear delay costs, one is referred to Williams [10] and to Harrison [13] and Harrison

and Lopez [18]. In [18] it is proved that for the parallel server models, the diffusion control

problem exhibits a massive state-space collapse and is reduced from multi-dimension to

one-dimension, which is much easier to solve. This is done by the striking ”equivalent

workload formulation”. See also Harrison and Van Meighem [24].

The difficulty in [24] is that the asymptotic solution does not have a clear interpretation

within the prelimit model. Bell and Williams [25] proved that for the 2-parallel servers

model the asymptotically optimal policy is a threshold policy; i.e., the priority of service

depends on whether the queue lengths are below or above certain levels - thresholds. The

subsequent paper [26] of the same authors deals with extending the threshold strategy to

parallel server systems.

Results are less established for networks with many-server stations. By taking the QED

diffusion scaling (taking the number of servers N to infinity in an appropriate manner),
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Armony and Maglaras [2] model and analyze rational customers in equilibrium; they treat

jointly the problem of optimal control and staffing. Harrison and Zeevi [27] analyze the

diffusion control problem associated with a single pool (multiple customer classes) model

with linear costs. Specifically, they show that this control problem has an optimal Markov

control policy (cf. [22]) which is characterized in terms of its underlying Hamilton- Jacobi-

Bellman (HJB) equation.

The works of Atar, Mandelbaum and Reiman [19] and Atar [29] and [29] established

asymptotic optimality of policies in the QED regime, for treelike models (the J nodes,

which correspond to the J multi-server stations and the I nodes, corresponding to the I

classes, jointly constitute a tree). The scaling then enforces convergence of the prelimit

control problem to a diffusion control problem which can be dealt with by stochastic

control methods, namely via the HJB equations. Then a method is provided on how to

translate the obtained solutions into prelimit policies. The diffusion limit problem arises as

a formal weak limit of a preemptive network scheduling problem, i.e. one where a service

to a customer can be stopped at any moment and resumed at a later time, possibly in

a different station. In the prelimit, the behavior is clearly different for non-preemptive

networks, but it is proved that this difference vanishes asymptotically.

Few papers have dealt with Scheduling and Routing of parallel processing systems and

fork-join networks. The work of Avi-Itzhak and Halfin [30] introduces the question of non-

preemptive priority assignment in multi-class fork-join queue. The model considered in

their work consist of a fork-join queue (simple fork-join) with m single-servers in parallel

and m classes of customers. A customer belongs to class k = 1, 2, . . . ,m if it is a k-split

customer, i.e., it forks into k out of the m servers. They showed that there is an advantage

in granting priority to non-splitting jobs (class-1) unless their service times are relatively

large. Their result established exact optimality based on a simple coupling argument.

An interesting observation may be using the m classes model to represent customers in

different phases of service. By this analogy, the non-preemptive priority to class-1 may

be equivalently described as: At each route, assign non-preemptive priority to customers

whose service was completed in all other routes. This is the same policy we propose and

analyze for a broader class of networks.

Cohen, Mandelbaum and Shtub [1] examined control mechanisms for project management

in a multi-project environment. They surveyed a variety of buffer management techniques

in open and closed systems. Our work examine the control problem which arises in their

work by means of optimal control techniques.

8



1.1.4 Heavy Traffic Analysis of Fork-Join Networks

Although heavy traffic analysis has been applied successfully to conventional open queue-

ing networks, not much progress has been reported regarding its applicability to the study

of networks with fork and join constructs. An analysis of a fork-join model was carried

out by Varma [31]. He considers both heavy traffic and light traffic approximations for

this class of networks. Varma proves a limit theorem showing that in heavy traffic the

workload levels converge to a process which is given by a functional of a multi-dimensional

Brownian motion. For the special case of a fork-join queue, he obtains a characterization

for the invariant distribution of the throughput time in the limiting process. When the

fork-join queue consists of two symmetric queues, he was able to solve for all moments of

the throughput time. However, he was not able to characterize the invariant measure of

the general fork-join network.

This analysis was expanded by Nguyen [34], in which she provided characterization of

certain limiting processes for a fork-join network as reflected Brownian motions. Unlike

the RBM described in Section 1.1.2, the RBM which arises from this analysis lives in a

state space that is a polyhedral cone in an orthant. This compact and elegant represen-

tation enables her to obtain an analytical characterization of the stationary distributions

associated with the limiting process. In particular, she derives conditions which guarantee

the stability of the limiting RBM.

1.2 Preliminaries and Notations

1.2.1 Organization of The Thesis

In this thesis, we address the problem of analysis and control of Fork-Join Networks in

the conventional Heavy Traffic Regime.

In Section 2 we introduce the problem of task synchronization in Fork-Join networks with

non-exchangeable customers. i.e., customers which are uniquely labeled in the sense that

one can not join tasks associated with different customers. We show that, in this setting,

there may be dependencies that degrades system’s performance. We then formulate a con-

trol problem and criteria for maximum throughput in Exact and Asymptotic optimality

problems via an analogy to Assembly networks and proved them be efficient for a general

class of networks. Finally, some simple examples are considered.

Section 3 introduces a model with multi-server stations, which is the simplest setting in

which Exact optimality seems intractable. Under this setting, we prove an asymptotic

9



optimality of the FCFS policy in the conventional Heavy Traffic regime.

Section 4 introduces a model with feedback. In this setting, FCFS is no longer asymp-

totically optimal, thus solving for optimal scheduling is hard. Under this setting, a new

control policy is proposed and asymptotic optimality is proven in conventional Heavy

Traffic. Finally, in Section 5 we summarize the contribution of the Thesis, and propose

some worthy directions for future work.

10



1.2.2 Notations

x+ = max{x, 0}, x ∈ R.

x− = max{−x, 0}, x ∈ R.

x ∧ y = min{x, y}, x, y ∈ R.

x ∨ y = max{x, y}, x, y ∈ R.

|x|∗T = sup0≤u≤T |x(u)|. A norm of an R− valued function.

P Probability measure.

σ{A} The sigma-field generated by a collection A of random variables.

i Route index.

j Station index.

s Server index.

m Customer index.

α, γ Policies index.

n The Heavy Traffic index, construction of a ”sequence of systems”.

X̄n(t) = X(nt)
n

Fluid scaling.

X̂n(t) = X(nt)−λ·nt√
n

Diffusion scaling, when λ denotes the process average rate.

⇒ Weak convergence of probability measures.

11



2 Problem Definition

In this section we introduce the problem of tasks synchronization in Fork-Join networks.

We shall first introduce the network class considered and then the central concept of

non-exchangeable customers. We then continue with a rigorous definition of the control

problem. Finally, some simple examples are introduced for the proposed problem.

2.1 Network Models

This work addresses the problem of analysis and control of fork-join networks in the con-

ventional Heavy-Traffic diffusion regime. In our work we shall consider two classes of

network models: multi-server networks and single-server networks with feedback.

Model 1: Networks with Multi-Server Stations. Single-Server Fork-Join Networks

are relatively easy to control. We thus allow multi-server networks, which turns the control

problem into a challenging one. We shall represent that model with the following test

case:

Figure 2.1: Multi-Server Simple Fork-Join

In the network of Figure 2.1, a job arriving to the system “forks” into tasks processed

simultaneously in two parallel processing routes. Each route contains multiple service

stations (queues) in tandem with multiple servers in each station. Complete jobs depart

from the system only after the completion of the tasks associated with it. The completed

task in each route waits in the Synchronization Queues (Q1&Q2) until tasks of both routes

are completed and departure is permitted. In the context of this Example, a “join” node

may be viewed as the merge of the completed tasks and the departure of the complete

12



job. In a broader sense, the join node may correspond to a service station where service

may not be initiated until all the predecessor tasks have been completed.

Notations

• A(t) - Arrival process: number of customers (jobs) arriving to the system till time

t;

• Dout(t) - Departure process: number of departures of (complete) customers till time

t;

• Li(t) - Route departure process: number of departures of complete tasks from route

i till time t;

• Ki - Number of service stations in route i;

• N j
i - Number of servers in station j on route i;

• Qi(t) - Number of customers in the synchronization queue in route i at time t;

Model 2: Networks with Feedback. Standard fork-join networks are feed-forward.

We shall consider a broader class of models that allow probabilistic feedback, as repre-

sented by the following test case:

Figure 2.2: Fork-Join with Feedback

In this network, a job arriving to the system “forks” to tasks processed simultaneously

in two parallel processing routes, each route consisting of two service stations in tandem,

followed by a probabilistic feedback. The feedback may be viewed as a quality check at

13



the end of the processing line, in which unsatisfying tasks are sent back to be processed

again.

Notations

• A(t) - Arrival process: number of customers (jobs) arriving to the system till time

t;

• Dout(t) - Departure process: number of departures of (complete) customers till time

t;

• Li(t) - Route departure process: number of departures of complete tasks from route

i till time t;

• Dj(t) - Station departure process: number of departures of complete tasks from

station j till time t;

• Zj(t) - Number of customers in the resource queue preceding station j, at time t;

• Qi(t) - Number of customers in the synchronization queue in route i, at time t.

The model in Figure 4.1 seems to be the simplest setting of a Fork-Join network where

solving for optimal scheduling is challenging.

We shall assume the following for both models throughout our work.

Model Assumptions:

• Poisson arrival process of homogeneous customers, with arrival rate λ.

• Exponential service durations with rate µj, for the iid servers in station j

2.2 Customers and Tasks

In our model, tasks are associated uniquely with customers. They are hence non-exchangeable

in the sense that one can not join tasks associated with different customers. This property

can be viewed as though arriving customers receive a characterizing ID code which ac-

companies them through the system. This property is natural for a variety of applications
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such as communication in which data packets are labeled, Project management, service

systems and especially health-care. Indeed, in the health-care case, mixing a patient with

another patient’s blood test or medical file may have severe consequences.

The counter example to non-exchangeable networks are Assembly Networks, in which all

tasks are exchangeable. Some basic differences between these two types of networks are

now demonstrated in the following example

Figure 2.3: Assembly Networks vs. Health-care Networks

On the left Figure 2.3, we see an Assembly Network example in which an arriving job

“forks” into two simultaneous manufacturing tasks. The waiting tasks are represented as

the gray balls in the closed squares which represents the processing routes. The complete

tasks then depart to the open squares which represent synchronization queues. The gray

uniform color indicates that the complete tasks are identical and thus exchangeable, hence

every complete pair of tasks from both routes can immediately “join” and depart the join

node. One can see that this property can be expressed in terms of the following constraint:

one of the synchronization queues must be empty at all times or, equivalently, the minimal

synchronization queue equals zero at all time.

Thus,

Q1(t) ·Q2(t) = 0, or equivalently Q1(t) ∧Q2(t) = 0. (2.1)
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We shall refer to Condition (2.1) as the Complementarity Condition.

On the right figure 2.3, we have a Health-Care Network example in which an arriving

patient “forks” into two simultaneous tasks, for example x-ray and blood-test. The waiting

tasks are represented as the colored balls in the closed squares such that every patient is

uniquely labeled by a unique color. The complete tasks then depart to the open squares,

which represents the synchronization queues. One notes that patients can be divided into

two categories:

• Customers whose service is still incomplete in both routes, such as the red patient.

• Customers whose service was completed in one of the routes, but is yet incomplete

in the other, such as the yellow and blue patients.

In addition, the customers’ processing orders were not synchronized, causing the synchro-

nization queues to be occupied by waiting patients while the join node is Idle. Indeed

the waiting tasks in the synchronization queues are not associated with the same patient

hence they are not allowed to join and depart the system.

Note that the number of waiting customers in the Health-Care Network is larger than the

number of waiting customers in the Assembly Network even though in both networks the

stations served the same number of tasks.

The scenario above has a positive probability (larger than zero) to occur in networks with

multi-server station and / or probabilistic feedback. The reason for that behavior is due to

customers disorder caused by the processing dynamic. In multi-server stations, customers

bypass (overtake) each other within the stations due to the servers random service times.

In the probabilistic feedback case, the feedback shuffles the customers order of departures

due to the random decision to depart or return back to the start of the processing routes.

We deduce from the above discussion the important observation that Customers’ disorder

may cause increase of Idle-time in the join nodes and hence lower throughput.
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2.3 Control Problem Formulation

A natural conclusion of the previous section is that some control mechanism is needed

in order to help synchronize customers departure order. This control mechanism should

have global information of customers status throughout the system and the ability to

control customers priorities at each of the service stations in the system.

Heuristically, the ideal performance can be deduced through an analogy to Assembly Net-

work, were the network is unrestricted by join constraints derived from customers unique-

ness. Thus one may characterize the optimal performance by the Complementarity

condition defined in Equation (2.1).

In the following section, we shall introduce a control problem that formulates the above

discussion rigorously.

General Model Definition Let a complete probability space (Ω,F ,P) be given, sup-

porting all random variables and stochastic processes defined below.

Consider the following general definition for a simple Fork-Join network:

Figure 2.4: General Simple Fork-Join Network

The model consists of a stream of customers, a pair of routes, and two synchronization

queues. Upon arrival, a customer ”forks” into two tasks, each task being served in one of

the routes, and each route representing a General Jackson Network with the restriction

of exponential service times and markovian routing. A complete task is then queued at

the synchronization queue, and customers leave the system only when both of their tasks

have completed their service.

Notations
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• Zi(t)− Total number of customers in the processing phase of route i at time t. i.e.,

customers who are still within the Jackson Network ;

• Qi(t)− Number of customers in the synchronization queue of route i at time t;

• A(t)− System’s External Arrival Process, assumed to be a general renewal process.

i.e., iid interarrival times;

• Li(t) − Route i’s Departure process, which is the Arrival Process for the corre-

sponding synchronization queue;

• Dout(t)− System’s Departure process.

System equations

We assume an empty system at t = 0, namely Zi(0) = Qi(0) = 0, ∀i.
Then


Zi(t) = A(t)− Li(t);

Qi(t) = Li(t)−Dout(t);

(2.2)

Optimal Control

Assume that the control policy is Nonanticipating, i.e., priority decisions are adapted to

the natural filtration containing all customers processing times.1 Let us define I as the set

of all admissible control policies under the assumption above. Let γ ∈ I denote a specific

control policy.

Definition 1. We define exact optimality as achieving the maximum throughput, in the

sense of maximum achievable number of departures over any finite time-interval [0, T ].

i.e., γ is the optimal policy over [0, T ] if γ = argmaxα∈I(Dout(T )), a.s.

Proposition 2.1. Each of the following conditions is equivalent to maximum throughput:

• Complementarity condition: Q1(T ) ∧Q2(T ) = 0, a.s.,

• Minimal queues size: Q1(T ) +Q2(T ) = |L1(T )− L2(T )|, a.s.,

for any fixed T.

1In particular, the decisions can not depend on future processing times.
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Proposition 2.1 relies on the following relation

Q1(t) +Q2(t) = |L1(t)− L2(t)|+ 2 ·Q1(t) ∧Q2(t),

which is proved in the following.

Proof of Proposition 2.1.

The number of customers in the system at time t can be calculated by N(t) = A(t) −
D out (t). Since A(t) is primitive and thus uncontrollable, we have

argmaxγ∈I(Dout(t)) = argminγ∈I(N(t)).

Notice that a customer joins all routes simultaneously when arriving, and finishes service

in the system only after finishing service in all routes. Therefore

N(t) = Z1(t) + Q1(t) = Z2(t) + Q2(t), or equivalently 2 · N(t) =
∑

j Zj(t) +
∑

j Qj(t).

Hence

argminγ∈I(N(t)) = argminγ∈I(
∑
j

Zj(t) +
∑
j

Qj(t)).

We shall use the following lemma to establish our claim. The proof of the lemma will be

provided following the proof of the proposition.

Lemma 2.1. Assuming a homogeneous customer population and a work conserving policy,

the processes Zi(t) and Li(t) do not depend on the control policy, for every route i.

Remark- A policy is said to be work conserving if, for every t, a server can not be idle

when the preceding queue is not empty. One can verify that any policy which is not

work conserving can only decrease the number of departures over any finite time-interval

(refer to the proof of the Lemma 2.1). Thus, in the following, we shall only consider work

conserving policies.

The conclusion from the Lemma is that

argmaxγ∈I(Dout(T )) = argmin γ∈I(
∑
j

Qj(T )).

We now claim that argmin γ∈I(Q1(T ) +Q2(T )) = argmin γ∈I(Q1(T ) ∧Q2(T ))

As seen before, in Section (2.2), the customers may be divided into two categories, or

classes:
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• Class A: Customers whose service is still incomplete in both routes.

• Class B: Customers whose service has completed in one of the routes but is still

incomplete in the other.

Let us use the following notations for this part:

• ZB
i (t)− The number of all Class B customers in the processing phase of route i at

time t, i.e., customers whose service is still incomplete in route i but was completed

in the opposite route;

• ZT
i (t)− The number of all customers in the processing phase of route i at time t;

• ZA
i (t)− The number of all Class A customers in the processing phase of route i at

time t, i.e., customers whose service is still incomplete in both routes;

Notice that ZA
1 (t) = ZA

2 (t) ≤ ZT
1 (t)∧ZT

2 (t) = A(t)−L1(t)∨L2(t), i.e., the set of Class A

customers is identical in both routes and therefore must be smaller than ZT
1 (t) ∧ ZT

2 (t).

In addition, under the assumption of an empty system at t = 0, one can verify that

Q1(t) = ZB
2 (t), which means that Q1(t) = ZT

2 (t) − ZA
2 (t). Now if we use the relations:

ZT
2 (t) = A(t)− L2(t) and ZA

2 (t) ≤ A(t)− L1(t) ∨ L2(t), we get

Q1(t) ≥ A(t)− L2(t)− A(t) + L1(t) ∨ L2(t) = L1(t) ∨ L2(t)− L2(t).

This yields the following relations:
Q1(t) ≥ (L1(t)− L2(t))

+;

Q2(t) ≥ (L2(t)− L1(t))
+;

Q1(t) +Q2(t) ≥ |L1(t)− L2(t)|.

(2.3)

As we mentioned above, the number of total customers in both routes is always equal,

meaning that N(t) = A(t)−L1(t)+Q1(t) = A(t)−L2(t)+Q2(t). Therefore Q1(t)−Q2(t) =

L1(t)− L2(t). We conclude that
Q1(t) +Q2(t) ≥ |L1(t)− L2(t)|;

|Q1(t)−Q2(t)| = |L1(t)− L2(t)|;
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But Q1(t) +Q2(t) = Q1(t) ∨Q2(t)−Q1(t) ∧Q2(t) + 2 ·Q1(t) ∧Q2(t).

Therefore we get the following relation:

Q1(t) +Q2(t) = |L1(t)− L2(t)|+ 2 ·Q1(t) ∧Q2(t),

from which we conclude

Q1(t) +Q2(t) = |L1(t)−L2(t)|, which is minimal value, if and only if Q1(t)∧Q2(t) = 0

Now recall that

argmaxγ∈I(Dout(T )) = argmin γ∈I(
∑
j

Qj(T )).

We get that a sufficient and necessary condition for maximum departures is minimum

customers in the synchronization queues and, specifically, a policy is optimal if

• Complementarity condition: Q1(T ) ∧Q2(T ) = 0, a.s.,

• Minimal queues size: Q1(T ) +Q2(T ) = |L1(T )− L2(T )|, a.s.,

for any fixed T. This completes the proof of Proposition 2.1.

Proof of Lemma 2.1. Let us focus on a specific route i (the following can be applied

to each route separately). The service system on route i can be represented as a Jackson

Network with K stations, each with multi-servers and exponential service durations.

Assume that Zk
i (t) is the total number of customers in station k at time t, i.e., the num-

ber of customers in resource queues and customers who receives service at t. Let us

define the following sequences of standard Poisson processes {Sk,si (t), k ∈ (1, . . . , K), s ∈
(1, . . . , Nk)}, and the associated busyness processes {Bk,s

i (t)), k ∈ (1, . . . , K), s ∈ (1, . . . , Nk)},
for the separate servers in the stations. Additionally define {Ski (t), k ∈ (1, . . . , K)} , and

the associated busyness processes {Bk
i (t)), k ∈ (1, . . . , K)} for the complete stations. We

assume that all underlying Poisson processes are mutually independent.

Therefore the system equations are
Zk
i (t) = Zk

i (0) + Aki (t)−Dk
i (t) +

∑K
j=1X

j,k
i (Dj

i (t)), for all k ∈ {1, . . . , K};

Li(t) =
∑K

j=1X
j,out
i (Dj

i (t));

(2.4)

When
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• Aki (t), External arrival process to station k.

• Bk,s
i (t) =

∫ t
0

I{ server s in station k is busy at time s }ds, Busyness process for server

s in station k.

• Bk
i (t) =

∑Nk
s=1B

k,s
i (t), Cumulative busyness process for station k.

• Dk
i (t) =

Nk∑
i=1

Sk,si (µkiB
k,s
i (t)) = Ski (µkiB

k
i (t)), Departure process for station k.

• Xj,k
i (M) =

∑M
α=1 ξ

j,k
i,α, Internal arrival process to station k.

• ξj,ki,α, α ∈ N, defines a sequence of i.i.d random variables with Bernoulli-distribution

(taking values 0/1), which denotes the feedback decision process from station j to

station k.

Assume a work-conserving policy, we have

Bk
i (t) =

Nk∑
j=1

Bk,j
i (t) =

∫ t

0

(Zk
i (s) ∧Nk)ds.

Assume homogeneous customer population and Nonanticipating policy, then Ski (t) do not

depend on the priority decisions, i.e., the service process do not depend on customers

identity. Also, the elements Zk
i (0), Aki (t) and ξj,ki,α are primitives, therefore uncontrollable.

Proposition 2.2. Under the assumptions above, Ct ≡ {Zk
i (t), Dk

i (t), B
k
i (t), k ∈ {1, . . . , K}}

is a unique solution to the system equations (2.4).

Proof of Proposition 2.2. Let us assume that Ct is not unique and prove a contradic-

tion.

Assuming that there is a second solution, C
′
t ≡ {Z

′k
i (t), D

′k
i (t), B

′k
i (t), k ∈ {1, . . . , K}},

there exist τ < ∞ s.t τ = inf {t : Ct 6= C
′
t}. so ∃tn ↓ τ s.t Bk

i (tn) 6= B
′k
i (tn) for at least

one k ∈ {1, . . . , K}. From the definition of τ we have ∀tn ↑ τ Bk
i (tn) = B

′k
i (tn) for all

k ∈ {1, . . . , K}. Thus from continuity of Bk
i (t) we get Bk

i (τ) = B
′k
i (τ). Thus

Dk
i (τ) = Ski (µkiB

k
i (τ)) = Ski (µkiB

′k
i (τ)) = D

′k
i (τ) ∀k.

But Ski (t) is càdlàg (right continuous with left limit) function. It follows that

∃ε s.t Dk
i (t) = D

′k
i (t) ∀t ∈ [τ, τ + ε), ∀k.

Therefore
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

Zk
i (t) = Z

′k
i (t), ∀t ∈ [0, τ), ∀k; ( by the definition of τ)

Zk
i (t)− Z ′ki (t) = Dk′

i (t)−Dk
i (t) +

K∑
j=1

Dj
′
i (t)∨Dji (t)∑

α=Dj
′
i (t)∧Dji (t)

ξj,ki,α = 0, ∀t ∈ [τ, τ + ε), ∀k;

Or equivalently

Zk
i (t) = Z

′k
i (t), ∀t ∈ [0, τ + ε), ∀k.

Hence we get

Bk
i (t) =

∫ t

0

(Zk
i (s) ∧Nk)ds =

∫ t

0

(Z
′k
i (t) ∧Nk)ds = B

′k
i (t), ∀t ∈ [0, τ + ε), ∀k.

Finally we may conclude that

(Zk
i (t), Dk

i (t), B
k
i (t)) = (Z

′k
i (t), D

′k
i (t), B

′k
i (t)), ∀t ∈ [0, τ + ε), ∀k ∈ {1, . . . , K}.

This is a contradiction to the existence of a second solution , and therefore completes the

proof for Claim 2.2.

Recall that Li(t), the route departure process, is defined by the following equation Li(t) =∑K
j=1X

j,out
i (Dj

i (t)), hence it is also a unique solution. Note that by Proposition 2.2 the

processes Zi(t) and Li(t) are unique solutions for the system equations, hence they are

invariant to the control policy.

This completes the proof of Lemma 2.1.

In addition, one can verify for policies which are not work-conserving, that

Bk
i (t) ≤

∫ t

0

(Zk
i (s) ∧Nk)ds,

hence, by the proof above, it can be seen that the network throughput can only decrease

by not work-conserving policies.

Asymptotically Optimal Control

We shall assume now that the system is in Heavy Traffic in a sense to be now defined.

The precise formulation of our Heavy Traffic limit requires the construction of a ”sequence

of systems”, indexed by n. It is assumed that the following relations hold:
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• λn = λ · n+ λ̂ ·
√
n+ o(

√
n).

• µnj = µj · n+ µ̂j ·
√
n+ o(

√
n).

• Heavy Traffic Condition - Define the traffic intensity at station j to be ρnj ; it is

assumed that there exists a deterministic number −∞ < θj < ∞, such that

n
1
2 (ρnj − 1) −→n θj, as n −→∞, for each station j.

Here λ denotes the average external arrival rate, and µj denote the average departure

rate from each station j, respectively.

Definition 2. Policy γ ∈ I is asymptotically optimal if, given any other policy β ∈ I and

a fixed T,

D̂n,γ
out(T ) ≥ D̂n,β

out (T )− ε(n), with ε(n)→ 0 in probability .

Proposition 2.3. Each of the following conditions is equivalent to the asymptotic opti-

mality condition:

• Q̂n
1 (T ) ∧ Q̂n

2 (T )→ 0, in probability ;

• Q̂n,γ
1 (T ) + Q̂n,γ

2 (T ) ≤ Q̂n,β
1 (T ) + Q̂n,β

2 (T ) + ε(n), ε(n)→ 0 in probability;

for any fixed T.

Proof of Proposition 2.3.

Given that the first condition defined in Proposition 2.3 is valid, we shall prove that the

asymptotic optimality condition defined above applies.

For any fixed T, and every ε > 0
P(Q̂n,γ

1 (T ) ∧ Q̂n,γ
2 (T ) ≤ ε) −→n 1;

Q1(t) +Q2(t) = |L1(t)− L2(t)|+ 2 ·Q1(t) ∧Q2(t);

Now, for any other policy β ∈ I we proved that Qβ
1 (t) +Qβ

2 (t) ≥ |L1(t)− L2(t)|. Hence

Qγ
1(T ) +Qγ

2(T ) ≤ Qβ
1 (T ) +Qβ

2 (T ) + 2 ·Qγ
1(t) ∧Qγ

2(t).

Scaling by (
√
n)−1 and using the convention Q̂n

i (t) =
Qni (t)√

n
we get

P(Q̂n,γ
1 (T ) + Q̂n,γ

2 (T ) ≤ Q̂n,β
1 (T ) + Q̂n,β

2 (T ) + 2ε) −→n 1.
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Now using Lemma 2.1 we have Zγ
1 (T ) + Zγ

2 (T ) = Zβ
1 (T ) + Zβ

2 (T ) for all γ, β ∈ I

P(
∑
k

Q̂n,γ
k (T ) +

∑
k

Ẑn,γ
k (T ) ≤

∑
k

Q̂n,β
k (T ) +

∑
k

Ẑn,β
k (T ) + 2ε) −→n 1.

Using 2 ·N(t) =
∑

j Zj(t) +
∑

j Qj(t) and N̂n(t) = Nn(t)√
n

P(2N̂n,γ(T ) ≤ 2N̂n,β(T ) + 2ε) −→n 1.

Now, using N(T ) = A(T )−Dout(T ) and the scaling notations

Nn(t)√
n

= An(t)−λnt√
n
− Dnout(t)−µnt√

n
+ (λn−µn)t√

n
;



N̂n(t) = Nn(t)√
n

;

Ân(t) = An(t)−λnt√
n

;

D̂n
out(t) =

Dnout(t)−µnt√
n

;

λ̂n − µ̂n = (λn−µn)√
n

;

we get N̂n(t) = Ân(t)− D̂n
out(t) + (λ̂n − µ̂n) · t.

Hence

P([Ân(T )− D̂n
out(T ) + (λ̂n − µ̂n)T ]γ ≤ [Ân(T )− D̂n

out(T ) + (λ̂n − µ̂n)T ]β + ε) −→n 1.

But Ân,γ(T ) = Ân,β(T ) and [(λ̂n − µ̂n)T ]γ = [(λ̂n − µ̂n)T ]β, and therefore

P(D̂n,γ
out(T ) ≥ D̂n,β

out (T )− ε) −→n 1.

This completes the proof of Proposition 2.3.

2.4 Comment About Generalizations

Note that both the exact and asymptotic conditions may be generalized to any number

of parallel processing routes. For M processing routes, the proof outline will consist of

the following steps:
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• argmaxγ∈I(Dout(t)) = argminγ∈I(N(t));

• M ·N(t) =
∑

j (Zj(t)) +
∑M

i=1(Qi(t));

• Lemma 2.1 - Assuming homogeneous customer population, the processes Zi(t) and

Li(t) do not depend on the priority policy, for every route i.

•
∑M

i=1Qi(t) =
∑M

i=1 (Li(t)−
∧
i∈{1,..,M}(Li(t))) +M ·

∧
i∈{1,..,M}(Qi(t));

The appropriate conditions in this case are

• Exact optimality:
∧
i∈{1,..,M}(Qi(T )) = 0, a.s.,

• Asymptotic optimality:
∧
i∈{1,..,M}(Q̂

n
i (T ))→ 0, in probability ,

for any fixed T.

Also note that the proofs for Propositions 2.1 and 2.3 can be generalized to general service

time distribution. The only part of the proofs that needs to be generalized is the proof

for Lemma 2.1.
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2.5 Some Simple Examples

2.5.1 Single-Server Fork-Join Network with FCFS Discipline

Model definition In this section we shall consider the class of feed-forward fork-join

networks consisting of K single server stations; the size K is insignificant to the analysis.

We consider here an arbitrary topology, e.g., Figure 1.3. This section adopts the model

definition presented in Neguyen [34].

Jobs arriving to the system are considered to be homogeneous in the sense that all jobs

have the same route through the network. We further assume that tasks compete for

resources at each station in a FCFS manner. At nodes that do not involve a joining of

tasks, this simply means that the tasks enter service in the order of their arrival. At

join nodes, the arrival time of a task is defined to be the arrival of the complete job,

or equivalently, the arrival time of the last task associated with the specific job. Such a

service discipline can be characterized as a local policy since it considers only station-level

information. However, in the proposed model, the FCFS discipline does in fact preserve

the ordering of the jobs throughout the system.

Is FCFS discipline optimal under Definition (2.1)? For any join node (station) j

in the system, define β((j)) as the set of queues preceding j. Additionally we define s(k)

to be the source of queue k, that is the station whose output feeds into queue k.

Hence we claim: For every join node (station) j we have :

min
k∈β((j))

Qk(t) ≡ 0.

Proof. Assume that the customers order of arrival is preserved throughout the system

(see model definition). One can see that the following relations prevail, for any join node

j:


Aj(t) = min

k∈β((j))
Ds(k)(t) Customers’ ordering is preserved ;

Qk(t) = Ds(k)(t)− Aj(t) = Ds(k)(t)− min
k∈β((j))

Ds(k)(t), ∀k ∈ β((j));

Therefore, min
k∈β((j))

Qk(t) = min
k∈β((j))

Ds(k)(t)− min
k∈β((j))

Ds(k)(t) ≡ 0, by definition. This implies

that the optimality criterion for Exact Optimality is fulfilled (see Section 2.3).
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2.5.2 Single-Station Fork-Join with Feedback

Model Definition

Let us consider a specific model of a Simple Fork-Join network with probabilistic feedback.

The network scheme is as follows:

Figure 2.5: Simple Fork-Join with Feedback

Notations:

• Zi(t) − The number of tasks on route i at time t, waiting in queue i or being

processed by server i.

• Qi(t)− The number of tasks in the synchronization queue i at time t.

• Li(t)− The number of departing tasks from route i until time t;

• D out (t)− The number of complete jobs departed from the system until time t;

Every task whose service is finished in route i has a probability pi to depart to the

Synchronization Queue, and probability 1 − pi to be sent back to wait at the Resource

Queue. This property may be viewed as a quality check at the end of the processing line,

in which unsatisfying tasks are sent back to be processed again. In this model, we shall

consider general arrival and service processes.

Optimal Control

The probabilistic feedback has a disordering effect on the customers departure order and

may cause synchronization problems at the join node, which may cause Q1(t) ∧ Q2(t)

to be greater then zero. Thus the conventional FCFS discipline is not efficient in such

systems. In conventional FCFS we refer to a priority policy in which tasks compete for

resources according to their local arrival time to the station. It is easy to verify that,
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with this discipline, every task that feedbacks joins the end of the Resource Queue and

the customers order is not preserved.

Therefore, we suggest the following control policy: Exhaustive Service. Tasks will

compete for resources according to their arrival time to the system (global arrival time),

meaning that upon arrival every customer receives a unique ID number which determines

the priority order of his tasks at every station in the system.

According to our policy, every task which feedbacks to the start of the processing route

will enter service immediately without waiting. Thus according to this policy, the server

and feedback block act jointly as a G/G/1 server, hence the system can be viewed as a

Single-Server Fork-Join Network with FCFS Discipline, which has optimal performance

as seen in the previous example.

2.5.3 Single-Station Fork-Join with Multi-Server

In this section we consider a network in which an arriving job “forks” into tasks processed

simultaneously in two parallel processing routes, each route containing one service station

with multiple servers. All completed tasks are waiting in the Synchronization Buffers

until all tasks are completed and departure is then permitted. The network scheme is as

follows:

Figure 2.6: Simple Fork-Join with Multi-Servers

Notations:

• A(t) - Arrival process: number of customers arriving to the system till time t;

• Dout(t) - Departure process: number of departures of complete customers till time

t;

• Di(t) - Route departure process: number of departures of complete tasks from

route i till time t;
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• Ni - Number of servers in route i;

• Qi(t) - Number of customers in the synchronization queue in route i on time t;

The two parallel multi-server stations seems to be the simplest setting where Exact Op-

timality is unreachable, meaning that P(Q1(T ) ∧ Q2(T ) > 0) > 0, for any fixed T and

any control policy. The reason is that customers overtake each other via the multi-server

processing.

Is Q1(T ) ∧Q2(T ) at least bounded under the FCFS discipline?

We shall provide a positive answer to this question in a more general case in Section 3.

But here we will give some intuition for the problem and its solution.

Assume that both routes have the same number of servers, meaning that N1 = N2 = N .

Also assume that the system is under Heavy Traffic in the sense that all servers are busy

all the time (Heuristic definition). Define Ṽi(t) as the vector of all customers indices who

enter service in station j till time t; the index vector is arranged according to the service

initiation times. One can see that |Ṽi(t)| = Di(t) + Ni(t), assuming all servers are busy

at time t, as defined before. But Di(t) = Qi(t) +Dout(t), ∀i, therefore

|Ṽi(t)| = Qi(t) +Dout(t) +Ni(t), ∀i,

meaning that

|Ṽ1(t)| − |Ṽ2(t)| = (Q1(t)−Q2(t)) + (N1(t)−N2(t)) = Q1(t)−Q2(t).

Now assume that, for some fixed T, Q2(T ) < Q1(T ), which means that |Ṽ2(T )| < |Ṽ1(T )|.
Then, according to the property |Ṽ2(T )| < |Ṽ1(T )| and the FCFS discipline, we can

conclude the following statement:

Each customer index m whose task waits in Q2 at time T (his service has completed

in route 2) must be already in service in route 1; or, equivalently, if m ∈ Q̃2(T ) then

m ∈ Ṽ1(t). Now, since the last customer who enters service in route 1 is |Ṽ1(T )| (by the

FCFS discipline) and |Ṽ2(T )| < |Ṽ1(T )| then the same customer still waits at the resource

queue in route 2. This implies that the maximum number of customers who are still in

service in route 1, but their service have completed in route 2 (customers who are in Q2),

is bounded by N − 1. The same logic can be used for Q1(T ) < Q2(T ) in order to get

Q1(T ) ≤ N − 1, for any fixed T.

Thus, under our model assumption, for any fixed T we have

P(Q1(T ) ∧Q2(T ) ≥ N) = 0.
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In Section 3 we shall use the same method to prove asymptotic optimality of the FCFS

discipline in a more general class of networks.

2.5.4 Unsynchronized Policies in Fork-Join Networks

So far we described the problem of customers’ synchronization in Fork-Join networks with

non-exchangeable customers. The problem was then formulated as a stochastic control

problem, and some Simple examples of networks and optimal policies were presented.

In the following example we shall address the question

Can a priority policy hurt system performance and how bad can it get?

We shall consider the following model

Assume that there are only two priorities, with high priority (H) tasks having preemptive

priority over low priority (L)tasks. Additionally, we assume that all customer tasks have a

unique ID number received upon arrival, but priority decision is local for each server and

it is unsynchronized. By this we mean, for example, that server 1 assigns high priority to

all tasks whose arrival ID is an even number, while server 2 ascribe high priority to all

tasks whose arrival ID is an odd number.

Notations:

• Zi(t) − The number of customers on route i at time t, waiting in Buffer i or

processing by server i;

• ZH/L
i (t) − The number of High / Low priority customers in the resource queue on

route i at time t, respectively;
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• Qi(t) − The number of customers in the synchronization queue preceding the join

node at time t;

• QH/L
i (t) − The number of all High / Low priority customers in the synchronization

queue, respectively;

• N(t) − Total number of customers in the system at time t;

One can verify the following relations for any control policy:

N(t) = Z1(t) +Q1(t) = Z2(t) +Q2(t);


Q1(t) ≤ Z2(t);

Q2(t) ≤ Z1(t).

(2.5)

Here, the first equation states that the number of customers is equal in both routes

preceding the join node, and the two inequalities are derived from the definition of the

synchronization queues: tasks waiting in the synchronization queues are tasks associated

with a customer whose service was completed in one of the routes but is still incomplete

in the other.

Using the Collapse of High-Priority Processes notion described in Reiman and Simon

paper ([21]) for conventional Heavy Traffic, one can argue heuristically that Q̂
H,(n)
i (T )⇒

0, for all i and any fixed T, meaning that the normalized queue length of high priority

customers converge weakly to zero, as n −→ ∞. The intuition for that is clear since the

high priority, under preemptive discipline, see a queue that is not entering heavy traffic

(ρnH < 1 for all n).

Let us denote by Z̃n
i (T ) the set of all customer IDs at time T in route i. Then the previous

result can be expressed as Z̃n
1 (T ) ∩ Z̃n

2 (T ) −→n ∅. Therefore, for any fixed T,
Q̂n

1 (T )⇒ Ẑn
2 (T );

Q̂n
2 (T )⇒ Ẑn

1 (T );

N̂n(T )⇒ Ẑn
1 (T ) + Ẑn

2 (T );

(2.6)

One can verify by Eq (2.5) that Ẑn
1 (T ) + Ẑn

2 (T ) is the maximum number of customers

achievable in the system. It follows that we have achieved the worst performance possible.
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Note - At this point we can point out the difference between optimal performance Q1(t)∧
Q2(t) ≡ 0 or N(t) = Z1(t) ∨ Z2(t), to the worst performance Z̃n

1 (T ) ∩ Z̃n
2 (T ) −→n ∅ or

N̂n(T )⇒ Ẑn
1 (T ) + Ẑn

2 (T ).
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3 Fork-Join Network with Multi-Servers

In this section we shall consider a generalized version of the problem introduced in Section

2.5.3. Under this multi-server settings, one can verify that Exact Optimality is unreach-

able. We thus consider the question

Is the FCFS discipline asymptotically optimal for the model in Figure 2.1?

We will show that the answer is positive.

3.1 Model Definition

Let a complete probability space (Ω,F ,P) be given supporting all random variables and

stochastic processes defined below.

Let us consider the following network

Figure 3.1: Multi-Server Simple Fork-Join Network

In this network a job arriving to the system “forks” to tasks processed simultaneously in

the two parallel processing routes, each route contains multiple service stations with mul-

tiple servers in each station. In each route the task is performed sequentially according to

the stations’ order. The job departs the system only after the completion of the two tasks

associated with it. All tasks completed in one of the routes wait in the Synchronization

buffers (Fig 2.1, green buffers) until the corresponding task completes in the other route.

Notations

• A(t) - Arrival process: number of customers arriving the system till time t;

• Dout(t) - Departure process: number of departures from the system till time t;
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• Zj
i (t) - Number of customers in the resource buffer preceding station j in route i

on time t;

• Dj
i (t) - Route i station j departure process: number of departures of complete tasks

from route i station j till time t;

• Li(t) - Route departure process: number of departures of completed tasks from

route i till time t;

• Ki - Number of service stations in route i;

• N j
i - Number of servers in station j in route i;

• Qi(t) - Number of customers in the synchronization buffer in route i at time t;

Let Q̃i(t) be s set-valued process with values in the set of subsets of N, representing the

set of customers’ index who are waiting in the synchronization buffer in route i at time

t. Note that |Q̃i(t)| ≡ Qi(t).

Let V j
i (t) be s set-valued process with values in the set of subsets of N, representing

the set of customers’ index whose service have completed in station j (route i) till time

t. The set is arranged according to the customers service completion times. Note that

|V j
i (t)| ≡ Dj

i (t), ∀j ≥ 1.

Let U j
i (t) be s set-valued process with values in the set of subsets of N, representing the

set of customers’ index whose service have initiated in station j (route i) till time t. the

set is arranged according to the times in which the customers enter service.

Under the definition above, we define additional notations

• V 0
i (t) , the set of all customers’ index who enter route i till time t, the set is arranged

according to the arrival times. Note that V 0
1 (t) ≡ V 0

2 (t), due to the common arriving

process to the fork node.

• V Ki
i (t) , the set of all customers’ index whose service have completed in route i till

time t. Note that |V Ki
i (t)| ≡ Li(t) ;

System equations

The system primitive processes are the following

• Z1
i (0) = 0, ∀i, j, assuming empty system on t = 0;
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• Qi(0) = 0, ∀i ∈ {1, 2}, assuming empty system on t = 0;

• A(t), External Arrival Process : general distribution renewal process with average

arrival rate of λ ;

• Sji (t), ∀i, j, Potential service process. Where {Sj1(t), j ∈ (1, . . . , K1)} and {Sj2(t), j ∈
(1, . . . , K2)} are assumed to be K1+K2 mutually independent standard Poisson pro-

cesses, independent of A(t).

Now we shall describe the system equations

Z1
i (t) = A(t)−D1

i (t); ∀i ∈ {1, 2}

Zj
i (t) = Dj−1

i (t)−Dj
i (t); ∀i ∈ {1, 2}, ∀j > 1

Li(t) = DKi
i (t); ∀i ∈ {1, 2}

Qi(t) = Dout(t)− Li(t);

Dj
i (t) = Sji (µ

j
iB

j
i (t));

(3.1)

When µji , B
j
i (t) are the average service rate and busyness process associated with station

j in route i.

We shall assume from now on that the system is in Heavy Traffic in the following sense

Heavy Traffic conditions We shall use a construction of a sequence of systems, indexed

by n. It is assumed that the following relations hold

• arrival rate: λn = λ · n+ λ̂ ·
√
n+ o(

√
n).

• service rate: µnj = µj · n+ µ̂j ·
√
n+ o(

√
n).

• λ = Nj · µj, for all stations j.

The following definition will be used in order to quantify the customers’ disorder.

Definition 3. Define a distance function for the position of a customer in two separate

departure index vectors

dm(V j
1 (t), V k

2 (t)) = |dm(V j
1 (t))− dm(V k

2 (t))| · I{m ∈ V j
1 (t) ∩ V k

2 (t)}; (3.2)
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here dm(V j
1 (t)) (dm(V k

2 (t))) is the position of the m’th customer in the departure index

vector of station j in route 1 (station k route 2), respectively. From the following distance

function, we can define a semi-metric for the distance between two index vectors

d(V j
1 (t), V k

2 (t)) =
∑

m∈V j1 (t)∩V j2 (t)

|dm(V j
1 (t))− dm(V k

2 (t))|; (3.3)

We will see that this function can measure disorder in the customers order between two

vectors.

Control definition

We shall assume that tasks compete for resources at each station in a FCFS manner.

At stations that do not involve a joining of tasks, this simply means that the tasks

enter service in the order of their arrival to the station. Such a service discipline can be

characterized as a local policy since it considers only station-level information. However

we aim to show that this policy is asymptotically optimal in the conventional Heavy-

Traffic.

3.2 Asymptotically Optimal Control

Following the condition for asymptotically optimal control defined in Section 2.3, for any

fixed T

Theorem 3.1. 
P(Qn

1 (T ) ∧Qn
2 (T ) > K)−→n0;

When K = [
∑K1

j=1 (N j
1 − 1)] ∨ [

∑K2

j=1 (N j
2 − 1)];

(3.4)

K is a deterministic number defined by the network structure, which is a generalized

version of the result in Section 2.5.3.

We shall use three lemmas to prove the theorem, the lemmas’ proofs can be found in

Section 3.3.

Lemma 3.1. For any fixed T and δ ∈ (0, 1/4)

P(||V K1
1 (T )| − |V K2

2 (T )|| ≤ n
1
2
−δ)−→n0. (3.5)

in Heavy Traffic.
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Lemma 3.2. Let us consider a single M/M/N station, we shall define R(t) as the set

of all customers’ indexes whose service have completed until time t. For any fixed T and

δ ∈ (0, 1/4), we claim that under the FCFS discipline one has

P( max
m∈Rn(T )

[dm(VA(T ), VD(T ))] ≥ nδ)−→n0. (3.6)

Here VA(T ) denotes the index vector for the arrival process until time T, and VD(T )

denotes the index vector for the departure process, respectively.

Lemma 3.3. Triangle inequality for the distance function in tandem systems, for any

customer m:

dm(V K1
1 (t), V K2

2 (t)) ≤ dm(V K1−1
1 (t), V K2−1

2 (t))+dm(V K1
1 (t), V K1−1

1 (t))+dm(V K2
2 (t), V K2−1

2 (t)).

Note that dm(V 0
1 (t), V 0

2 (t)) ≡ 0, due to the common arriving process to the fork node, along

with defining dm(V 0
1 (t), V −1

1 (t)) = dm(V 0
1 (t), V 0

1 (t)) ≡ 0, dm(V 0
2 (t), V −1

2 (t)) = dm(V 0
2 (t), V 0

2 (t)) ≡
0. We may use induction to conclude the following inequality

dm(V K1
1 (t), V K2

2 (t)) ≤
K1∑
j=1

dm(V j
1 (t), V j−1

1 (t)) +

K2∑
j=1

dm(V j
2 (t), V j−1

2 (t)), (3.7)

where K1 and K2 denote the number of stations in each route, respectively.

Proof of Theorem 3.1.

Let En,T = {Qn
1 (T ) ∧Qn

2 (T ) > K}.
Note that

P(En,T ) = P(Q1(T ) ≤ Q2(T ), Q1(T ) > K) + P(Q2(T ) < Q1(T ), Q2(T ) > K).

Let us define the event on the first term of the r.h.s as En, we shall prove P(En) −→n 0.

One can see that the proof for the second term on the r.h.s is similar with opposite route

indexes.

Recall that U j
i (t) is the set of customers’ index whose service have initiated in station j

(route i) till time t. Note that |U j
2 (t)| = |V j

2 (t)| + dBj
2(t) when dBj

2(t) is the number of

busy servers in station j at time t (Bj
2(t) =

∫ t
0
dBj

2(t) is the busy time process).

Let us assume that there are more than K customers whose service was completed at

route 1 but is still incomplete in route 2, which means more than K customers in Q1(T ).

We may divide the event into two cases
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1. There exist a station j ∈ {1, . . . , K2} in which all servers are busy (N j
2 servers)

and all the customers in the station j belongs also to Q1(T ). In this case, we shall

consider m to be the last customer to enter service in station j. By the property of

the FCFS priority discipline, we get

∃m ∈ Q1(T ), ∃j ∈ {1, . . . , K2} s.t dm(V j−1
2 )(T ) = |U j

2 (T )| = |V j
2 (T )|+N j

2 > |V
j
2 (T )|.

2. There exist a station j ∈ {1, . . . , K2} and a customer m ∈ Q1 s.t customer m is

waiting in the resource buffer preceding station j. By the property of the FCFS

priority discipline, we get

∃m ∈ Q1(T ), ∃j ∈ {1, . . . , K2} s.t dm(V j−1
2 )(T ) > |U j

2 (T )| = |V j
2 (T )|+dBj

2(t) > |V j
2 (T )|.

One see that P(En) ≤ P( case 1 ) + P( case 2 ), i.e., if there are more than K customers

in Q1(T ) at least one of the cases above must be true.

Let us define the event

Hn = {∃m ∈ Q1(T ), ∃j ∈ {1, . . . , K2} s.t dm(V j−1
2 )(T ) > |V j

2 (T )|}.

Hence, P(En) ≤ P(Hn).

Notice that |V K2
2 (T )| ≤ |V K2−1

2 (T )| ≤ . . . ≤ |V j
2 (T )|, due to that the arrival process at

any time T is always larger or equal to the departure process (assuming empty system at

t = 0).

On the new event Hn, there exist a customer m and ∃j ∈ [1, . . . , K2] s.t dm(V j−1
2 )(T ) >

|V j
2 (T )| ≥ |V K2

2 (T )|, but m ∈ Q1 which means dm(V K1
1 )(T ) ≤ |V K1

1 (T )| by definition. In

addition Q1(T ) ≤ Q2(T ) which can be interpreted as |V K2
2 (T )| ≥ |V K1

1 (T )|, due to the

relation |V Ki
i (T )| = D out (T )+Qi(T ). D out (T ) is the system’s departure process which

include customers whose service was completed in both routes. In conclusion we get the

following relation- dm(V j−1
2 )(T ) ≥ |V K2

2 (T )| ≥ |V K1
1 (T )| ≥ dm(V K1

1 )(T ), which can be

interpreted as

|dm(V j−1
2 )(T )− dm(V K1

1 )(T )| ≥ ||V K2
2 (T )| − |V K1

1 (T )||.

On the event {||V K2
2 (T )| − |V K1

1 (T )|| > n
1
2
−δ}, we get

dm(V j−1
2 , V K1

1 )(T ) = |dm(V j−1
2 )(T )− dm(V K1

1 )(T )| ≥ ||V K2
2 (T )| − |V K1

1 (T )|| > n
1
2
−δ.

Let us define the event

H̃n = {∃m, ∃j ∈ {1, . . . , K2} s.t dm(V j−1
2 , V K1

1 )(T ) > n
1
2
−δ}.
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Hence, by Lemma 3.1 we get P(Hn) ≤ P(H̃n) + αn, αn−→n0.

By Lemma 3.3 we get

dm(V j−1
2 , V K1

1 )(T ) ≤
∑j−1

k=1 d
m(V k

2 (T ), V k−1
2 (T )) +

∑K1

k=1 d
m(V k

1 (T ), V k−1
1 (T ))

≤
∑K2

k=1 d
m(V k

2 (T ), V k−1
2 (T )) +

∑K1

k=1 d
m(V k

1 (T ), V k−1
1 (T ))

When dm(V k
2 (T ), V k−1

2 (T )) = 0 ∀k > j − 1 by definition .

(3.8)

Therefore

P(Hn) ≤ {Lemma 1} P(∃m, ∃j ∈ {1, . . . , K2} s.t dm(V j−1
2 , V K1

1 )(T ) > n
1
2
−δ) + αn, αn−→n0

≤ {Lemma 3} P(∃m, ∃k ∈ [1, . . . , K2] s.t dm(V k
2 (T ), V k−1

2 (T )) > n
1
2−δ

2·K2
)

+P(∃m, ∃k ∈ [1, . . . , K1] s.t dm(V k
1 (T ), V k−1

1 (T )) > n
1
2−δ

2·K1
)

Recall that K1, K2 are deterministic numbers, and δ ∈ (0, 1/4)

one can see that for any fixed δ
′ ∈ (0, 1/4)

∃N s.t ∀n > N {nδ
′
≤ n

1
2−δ

2·K1
} and {nδ

′
≤ n

1
2−δ

2·K2
};

≤ P(∃m, ∃k s.t dm(V k
2 (T ), V k−1

2 (T )) > nδ
′
)

+P(∃m, ∃k s.t dm(V k
1 (T ), V k−1

1 (T )) > nδ
′
)

(3.9)

Finally from Lemma 3.2 we conclude P(En) ≤ P(Hn)−→n0. That completes the proof of

Theorem 3.1.

Remark- notice that the customer index m analyzed here is a random variable taking value

from the set of all served customers on route 1. That is why we use uniform convergence

over all customers in the definition of Lemma 3.2.

Using the diffusion scaling Q̂n
i (t) =

Qni (t)√
n

with Claim 3.1 we get that for any fixed T

Q̂n
1 (T ) ∧ Q̂n

2 (T ) ≤ K

n
1
2

w.p. converging to 1 .
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We may conclude that Q̂n
1 (T )∧Q̂n

2 (T )→ 0 in probability, which is asymptotically optimal

under the definition above (2.3).

Note that the proof above also determines the rate of convergence, which is (
√
n)−1.

3.3 Proof of Lemmas

In this section we provides proofs for the three lemmas used in Section 3.2.

Fix T, and define δ ∈ (0, 1/4).

Proof of Lemma 3.1. Let us define the event Hn = {||V K1
1 (T )|− |V K2

2 (T )|| ≤ n
1
2
−δ}.

When |V K1
1 (t)| and |V K2

2 (t)| denotes the departure processes from route 1 and route 2,

respectively (see Section 3.1).

Let us define the following sequences of standard Poisson processes {SsK1
(t), s ∈ (1, . . . , NK1

1 )},
{SsK2

(t), s ∈ (1, . . . , NK2
2 )}, and the associated busyness processes of the separate servers

in the departure station- {Bs
K1

(t)), s ∈ (1, . . . , NK1
1 )}, {Bs

K2
(t), s ∈ (1, . . . , NK2

2 )}, where

s refers to the server index. We assume that the K1 +K2 Poisson processes are mutually

independent. In addition we shall define S1(t), S2(t) as two standard Poisson processes

mutual independent to all other Poisson processes

We use the following notations

• V Ki
i (t) , the set of all customers’ index whose service have completed in route i till

time t;

• SsKi(t)- Standard Poisson process with rate 1, associated with the server s in the

departure station of route i;

• N j
i - Number of servers on station j in route i;
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The relevant system equations for fixed T, are

|V K1
1 (T )| =

N
K1
1∑
s=1

SsK1
(µnK1

·Bs
K1

(T )) = S1(µ
n
K1
·
N
K1
1∑
s=1

Bs
K1

(T )) = S1(µ
n
K1
·BK1(T ));

|V K2
2 (T )| =

N
K2
2∑
s=1

SsK2
(µnK2

·Bs
K2

(T )) = S2(µ
n
K2
·
N
K2
2∑
s=1

Bs
K2

(T )) = S2(µ
n
K2
·BK2(T ));


Bs
j (t) =

∫ t
0

I{ server s in station j is busy at time u }du, j ∈ {K1, K2};

Bj(t) =
∑Nj

s=1B
s
j (t), j ∈ {K1, K2};

(3.10)

Recall that the system approaches Heavy-Traffic in the sense (see Section 3.1)

• λn = λ · n+ λ̂ ·
√
n+ o(

√
n).

• µnj = µj · n+ µ̂j ·
√
n+ o(

√
n), j ∈ {K1, K2}.

• λ = Nj · µj, for all stations j.

Therefore



|µK1 ·NK1
1 − µK2 ·NK2

2 | = 0. Due to the common arrival process .

|BK1(T )−NK1
1 · T | −→n 0 for any fixed T. Since ρK1,n

1 −→n 1 as n −→∞.

|BK2(T )−NK2
2 · T | −→n 0 for any fixed T. Since ρK2,n

2 −→n 1 as n −→∞.

Above µnK1
, µnK2

are the average service rates for the servers in the departure station of

route 1 and 2, respectively.

Now let us define the event

H̃n =


|S1(µ

n
K1
·NK1

1 T )− S2(µ
n
K2
·NK2

2 T )| ≤ n
1
2
−δ,

µnK1
·NK1

1 T − µnK2
·NK2

2 T = (µ̂K1 ·NK1
1 − µ̂nK2

·NK2
2 ) ·

√
n · T


Then P(Hn) ≤ P(H̃n) + αn, when αn −→n 0.

On the new event H̃n,
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We shall ”scale” |S1(µ
n
K1
·NK1

1 T )−S2(µ
n
K2
·NK2

2 T )| ≤ n
1
2
−δ by n−

1
2 and center the random

variables to get

|
S1(µnK1

·NK1
1 T )− µnK1

·NK1
1 T

n
1
2

−
S2(µnK2

·NK2
2 T )− µnK2

·NK2
2 T

n
1
2

+
(µnK1

·NK1
1 − µnK2

·NK2
2 ) · T

n
1
2

| ≤ n−δ.

Using the diffusion scaling Ŝnk (t) =
Sk(µ

n
k t)−µ

n
k t√

n
, and from the event H̃n we get the relation

µ̂K1 ·NK1
1 − µ̂nK2

·NK2
2 =

µnK1
·NK1

1 −µnK2
·NK2

2√
n

.

Therefore

|ŜnK1
(T )− ŜnK2

(T ) + (µ̂K1 ·NK1
1 − µ̂nK2

·NK2
2 ) · T | ≤ n−δ.

When ŜnK1
(T ) and ŜnK2

(T ) are scaled Poisson random variables which converge weakly to

Normal random variables, by the central limit theorem.

Let us define - ŵn(T ) = ŜnK1
(T ) − ŜnK2

(T ) + (µ̂K1 · NK1
1 − µ̂nK2

· NK2
2 ) · T , then ŵn(T )

converge weakly to Normal random variable. Therefore P(H̃n) = P(|ŵn(T )| ≤ n−δ).

However, since ŵn(T ) converge to a continuous R.V., the probability measure to be

bounded by n−δ tends to zero with n. Thus P(H̃n) = P(|ŵn(T )| ≤ n−δ) −→n 0.

We conclude that P(Hn) −→n 0, which completes the proof of Lemma 3.1.

Proof of Lemma 3.2. Let us consider a single M/M/N station in which customers

compete for resources according to FCFS discipline. Define R(t) as the set of all cus-

tomers’ indexes whose service have completed until time t, and define the event Hn
m =

{dm(VA(T ), VD(T )) ≥ nδ} for a specific m ∈ Rn(T ) and fixed T.

One may see that,

P( max
m∈Rn(T )

[dm(V n
A (T ), V n

D(T ))] ≥ nδ) = P(∪m∈Rn(T )H
n
m) ≤

∑
m∈Rn(T )

P(Hn
m).

Define {Sj(t), j ∈ (1, . . . , N)} and S(t) to be N + 1 mutually independent standard Pois-

son processes. The system equations are
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

|Rn(T )| =
N∑
j=1

Sj(µnj ·Bj(T )) = S(
N∑
j=1

µnj ·Bj(T )) =

= S

(
µ · n ·B(T ) +

N∑
j=1

[(µ̂j ·
√
n+ o(

√
n)) ·Bj(T )]

)
;

Bj(t) =
∫ t

0
I{ server j is busy at time s }ds;

B(t) =
∑N

j=1B
j(t);

µnj = µ · n+ µ̂j ·
√
n+ o(

√
n), ∀j ∈ {1, . . . , N},

i.e., assuming identical servers’ avarage rates ;

Step 1- Upper bound for |Rn(T )|.

Claim 3.1. For fixed δ ∈ (0, 1/4), P(|Rn(T )| > n1+δ) −→n 0.

Proof of Claim 3.1.

B(t) is a non-decreasing function from [0, T ] to [0, T ] which is Lipschitz continuous and

0 ≤ B(T )
NT
≤ 1. Therefore

P(|Rn(T )| > n1+δ) ≤ P(|S(µ · n ·NT )| > n1+δ) + αn, αn −→n 0.

By Markov inequality we get-

P(|S(µ · n ·NT )| > n1+δ) ≤ µ·n·NT
n1+δ = µ·NT

nδ
−→n 0.

That completes the proof of Claim 3.1.

Therefore

P( max
m∈Rn(T )

[dm(V n
A (T ), V n

D(T ))] ≥ nδ) ≤
∑

m∈Rn(T )

P(Hn
m) ≤ n1+δ · P(Hn

m) + βn, βn −→n 0.

Hence it is enough to prove that P(Hn
m) converge to zero with exponential rate.

Under the FCFS discipline the event Hn
m occurs if and only if while customer m is served

by a server j, the other N−1 servers complete the service of another nδ customers. Which

means that in this event there exist a server j who serves 1 customer and server k who

serves at least nδ

N−1
at the same time period.
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Let
τm = {t : customer m enters service in server j };

σm = {t : customer m departures from server j };
Note that on Hn

m there exist j s.t. 0 ≤ τm ≤ σm ≤ T , and τm, σm are stoping times

adapted to the natural filtration containing all customers’ arrivals and departures.

Step 2- Upper bound for |σm − τm|.
Let us define the event,

En = {∃j, τm, σm as defined , |σm − τm| > n−1+δ}.

Claim 3.2. P(En) −→n 0.

Proof of Claim 3.2.

τm, σm are stoping times, thus

4Sj[τm, σm] = Sj(µ
n
j · 4Bj[τm, σm]) = Sj(µ

n
j · |σm − τm|).

The last equality is derived from the definition of [τm, σm], during this period of time

server j is busy serving customer m. Therefore

P(En) = P(Sj(µ · nδ) = 1).

Using a large deviation technique with fixed u = 1, we get

P(Sj(µ · nδ) = 1) = P(eSj(µ·n
δ) = e1)

Markov
≤ E(eSj(µ·n

δ))

e1
= (∗);

Now using the Poisson moment generating function,

E(eSj(µ·n
δ)) = e−(µ·nδ)·(1−e) ∝ e−n

δ

.

Hence

(∗) ∝ e−n
δ−1 ∝ e−n

δ

.

From above we conclude that P(En) −→n 0, which completes the proof of Claim 3.2.

Step 3- We prove that P(Hn
m) converges to zero with exponential rate.

We calculate the probability of the event, in which there exists a server j who serves 1

customer and server k who serves at least nδ

N−1
at the same time period. Define [τm, σm]

as before, let us define the event -

H̃n = {∃j, k s.t 4(Sk − Sj)[τm, σm] ≥ nδ

N − 1
− 1 ≥ c · nδ, |σm − τm| ≤ n−1+δ}.
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One can see that P(Hn
m) ≤ P(H̃n)+βn, when βn ∝ e−n

δ
converge to zero with exponential

rate 2.

Claim 3.3. P(H̃n) −→n 0 with exponential rate.

Proof of Claim 3.3.

4Bj[τm, σm] = [τm, σm] follows from the definition of [τm, σm], i.e., during this period of

time server j is busy serving customer m. In addition, 4Bk[τm, σm] ≤ [τm, σm]. Now on

the event H̃n we get 3

P(4(Sk − Sj)[τm, σm] ≥ c · nδ) ≤ P(S[|µnk − µnj | · |σm − τm|] ≥ c · nδ)

≤ P(S[(µ̂j − µ̂k) · n−
1
2
+δ] ≥ c · nδ) + βn, βn −→n 0;

When S(t) is standard Poisson processes with rate 1.

Using a large deviation technique with fixed u = 1, we get

P(S[|µ̂j − µ̂k| · n−
1
2
+δ] ≥ c · nδ) = P(eS[|µ̂j−µ̂k|·n−

1
2+δ] > ec·n

δ
)

Markov
≤

Markov
≤ E(eS(|µ̂j−µ̂k|·n

− 1
2+δ

))

ec·nδ
= (∗);

Now using the Poisson moment generating function,

E(eS(|µ̂j−µ̂k|·n−
1
2+δ)) = e−|µ̂j−µ̂k|·n

− 1
2+δ·(1−e) = e−c̃·n

− 1
2+δ

.

Hence

(∗) = e−c̃·n
δ− 1

2−c·nδ = e−c·n
δ·( c̃

c
n−

1
2 +1) = e−c·n

δ · e(
c̃
c
n−

1
2 +1) ∝ e−n

δ

.

Therefore P(H̃n) −→n 0 with exponential rate, which completes the proof of Claim 3.3.

In conclusion we get

P(Hn
m) ≤ P(H̃n) + βn ≤ e−n

δ

+ βn, βn ∝ e−n
δ

.

Which means that P(Hn
m) converge to zero with exponential rate, or

P( max
m∈Rn(T )

[dm(V n
A (T ), V n

D(T ))] ≥ nδ) ≤ n1+δ · P(Hn
m) ≤ n1+δ · e−nδ −→n 0.

This completes the proof of Lemma 3.2.

2according to step 2
3τm, σm are stopping times
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Proof of Lemma 3.3.(Triangle inequality for the distance function in tandem systems)

Let us define V j
i (t) as the vector of all customers’ indexes whose service have completed

in station j (route i) till time t, the index vector is arranged according to the service

completion times (see Section 3.1). We shall prove the claim for any customer m

dm(V K1
1 (t), V K2

2 (t)) ≤ dm(V K1−1
1 (t), V K2−2

2 (t)) + dm(V K1
1 (t), V K1−1

1 (t)) + dm(V K2
2 (t), V K2−1

2 (t)).

The rest can be checked by using simple induction.

By the definition in Section 3.1 we set dm(V K1
1 (t), V K2

2 (t)) to be

dm(V K1
1 (t), V K2

2 (t)) = |dm(V K1
1 (t))− dm(V K2

2 (t))| · I{m ∈ V K1
1 (t) ∩ V K2

2 (t)}.

Now let us check the validity of the inequality,

• if m ∈ V K1
1 (t) ∩ V K2

2 (t): surely m ∈ V K1−1
1 (t) and m ∈ V K2−1

2 (t) because these are

the arrival processes for V K1
1 (t) and V K2

2 (t), respectively. Then dm(V K1−1
1 (t)) and

dm(V K2−1
2 (t)) are well defined. Now

dm(V K1
1 (t), V K2

2 (t)) = |dm(V K1
1 (t))− dm(V K2

2 (t))|

= |(dm(V K1
1 (t))− dm(V K1−1

1 (t))) + (dm(V K2−1
2 (t))− dm(V K2

2 (t)))

+(dm(V K1−1
1 (t))− dm(V K2−1

2 (t)))|

≤ |dm(V K1
1 (t))− dm(V K1−1

1 (t))|+ |dm(V K2
2 (t))− dm(V K2−1

2 (t))|

+|dm(V K1−1
1 (t))− dm(V K2−1

2 (t))|

• if not: dm(V K1
1 (t), V K2

2 (t)) ≡ 0, which means that the inequality is valid. Due to the

fact that all the distance functions on the right side of the inequality are positive.

This completes the proof of lemma 3.3.

Although we do not use this in this work, note that

d(V n
1 (t), V k

2 (t)) =
∑

i∈V n1 (t)∩V n2 (t)

|di(V n
1 (t))− di(V k

2 (t))|,

is a semi-metric in the space of the index subsets (Nd).

• d(V n
1 (t), V k

2 (t)) is symmetrical by definition.
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• d(V n
1 (t), V k

2 (t)) = 0 if {V n
1 (t) ≡ V k

2 (t)} Or {V n
1 (t)

⋂
V k

2 (t) = ∅}.

• The triangle inequality is satisfied (by the proof above).

3.4 Comments About Generalization

The model presented in this section consist of a single join node at the departure end of

the system. This model can be extended to a general multi-server feedforward fork-join

network with multiple fork and join constructs, such as in Cohen, Mandelbaum and Shtub

[1].

Note that the proof for the Asymptotic Optimality Theorem (3.1) relies on the property

that customers disorder is bounded by the order of nδ throughout the system. Now using

the following intuition, this property can be extended to general fork-join system.

Define d(j) to be the ”degree” of the join node j, meaning that d(j) is the number of

predecessor join nodes preceding join node j. Starting with the join nodes J such that

d(j) = 0 for each j ∈ J , each route preceding a join node j ∈ J is a finite sum of stations

with bounded disorder. Hence, focusing on a join node j ∈ J , by using the Triangle

Inequality (3.3), we get that customers disorder is bounded by the order of nδ. Also,

the customers disorder in the departure set from the join node j ∈ J is bounded by the

maximum disorders in all the preceding routes, which is bounded by the order of nδ.

In an inductive manner, this bound can be extended to all join nodes in the network.

Consider a join node j (d(j) ≥ 1) such that all immediate predecessor join nodes have

been ”treated”, meaning that their disorder bound has been established. Then each route

preceding the join node j is a finite sum of stations and join nodes with bounded disorder.

Therefore, the customers disorder in the departure set from the join node j (d(j) ≥ 1) is

also bounded by the order of nδ.

Hence, we expect (but did not prove) that Theorem 3.1 may be generalized to general

multi-server feedforward fork-join networks, such as in [1], meaning that FCFS policy is

asymptotically optimal for this general setting, contradicting the observations made in

[1].
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4 Fork-Join Network with Feedback

In this section we shall consider a broader class of models which allow probabilistic feed-

back. This setting is a generalized version of the problem introduced in Section 2.5.2.

Under this settings one may see that is Exact Optimality is unreachable for any definition

of FCFS. In fact, this seems to be the simplest setting of a Fork-Join network where

solving for optimal scheduling is hard. We shall propose a new control policy and prove

asymptotic optimality for the specific network introduced here.

4.1 Model Definition

Let a complete probability space (Ω,F ,P) be given supporting all random variables and

stochastic processes defined below.

Let us consider the following network

Figure 4.1: Double Station Simple Fork-Join with Feedback

In this Network a job arriving to the system “fork” to tasks processed simultaneously

in the two parallel processing routes, each routes contains two service stations and a

probabilistic feedback. The feedback may be viewed has a has a quality check at the end

of the processing line, in which unsatisfying tasks are sent back to be processed again.

Notations

• A(t) - Arrival process: number of customers arriving to the system till time t;

• Dout(t) - Departure process: number of departures of complete customers till time

t;
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• Li(t) - Route departure process: number of departures of complete tasks from route

i till time t;

• Dj(t) - Station departure process: number of departures of complete tasks from

station j till time t;

• Zj - Number of customers in the resource buffer preceding station j on time t;

• Qi(t) - Number of customers in the synchronization buffer in route i;

System equations

The system primitive processes are the following

• Zj(0) = 0 ∀j ∈ {1, . . . , 4}, Initial condition, assuming empty system on t = 0;

• Qi(0) = 0 ∀i ∈ {1, 2}, Initial condition, assuming empty system on t = 0;

• A(t) System’s External Arrival Process, general distribution renewal process with

average arrival rate of λ ;

• Sj(t) ∀j ∈ {1, . . . , 4} , System’s Potential service process. Where {Sj(t), j ∈
(1, . . . , 4)} are assumed to be mutually independent standard Poisson processes.

• ξik ∀i ∈ {1, 2}, k ∈ N= defines a sequence of i.i.d random variables with Bernoulli-

distribution (taking values 0/1), which denote the feedback decision process. Let us

define the probability of feedback on route i to be 1− pi;

The primitive processes are assumed to be mutually independent.
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Now we shall describe the System’s equation

Z1(t) = A(t)−D1(t) +R1(t);

Z2(t) = D1(t)−D2(t);

Z3(t) = A(t)−D3(t) +R2(t);

Z4(t) = D3(t)−D4(t);

L1(t) = D2(t)−R1(t);

L2(t) = D4(t)−R2(t);

Bj(t) =
∫ t

0
I{Zj(s)>0}ds;

Ij(t) = t−Bj(t) =
∫ t

0
I{Zj(s)=0}ds;

Dj(t) = Sj(µjBj(t));

R1(t) =
∑D2(t)

k=1 ξ1
k;

R2(t) =
∑D4(t)

k=1 ξ2
k;

(4.1)

Where µj is the average service rate associated with station j, and Bj(t), Ij(t) are the

station’s busyness, Idleness processes,respectively.

We shall assume from now on that the system is in Heavy Traffic in the following sense

Heavy Traffic definition

Let us define the Heavy Traffic condition for the upper route (for the lower route the
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result is the same). According to ([3])

λ = α + P
′
(λ ∧ µ)

Thus

 λ1

λ2

 =

 α

0

+

 0 p

1 0

 ·
 λ1 ∧ µ1

λ2 ∧ µ2



Thus


λ1 = α + p · (λ2 ∧ µ2);

λ2 = λ1 ∧ µ1;

Let us assume Heavy Traffic on both servers, meaning λ1 = µ1, λ2 = µ2;

Thus Heavy Traffic condition -


µ1 = µ2 = µ;

α = µ · (1− p);

(4.2)

When α denote the average external arrival rate to server 1, p denote the feedback prob-

ability, and λi denote the average arrival rate to each server, respectively. Note that we

relay on the Lemma from [3] that the equation solution exist and unique.

The precise formulation of our Heavy Traffic limit theorem requires the construction of a

”sequence of systems”, indexed by n. It is assumed that the following relations hold-

• αn = α · n+ α̂ ·
√
n+ o(

√
n).

• µnj = µj · n+ µ̂j ·
√
n+ o(

√
n).

• Heavy Traffic Condition:

µ1 = µ2;

µ3 = µ4;

α = µ1 · (1− p1) = µ3 · (1− p2);

4.2 Proposed Control

As noted before FCFS is no longer even asymptotically optimal in this setting. Therefore

we shall define a new control policy which is assumed to be asymptotically optimal, which
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we will prove later on. Let us assume that there are only 2 priorities, with high priority

(H-P) tasks having preemptive priority over low priority (L-P) tasks, i.e., a service to

a low priority customer can be interrupted and resumed at a later time. Let us define

the Control policy as follows: At each route, assign preemptive priority to customers

whose service was completed in the other route. Preemptive priority, i.e., a service to a

customer can be interrupted and resumed at a later time.

Note that this policy requires information flow between servers and central coordination

(global control). We shall assume immediate awareness of each station to the status in

all other stations.

One may see that the definition of the policy creates an artificial division of the customers

into two classes:

• LP (Low Priority) Customers: Customers whose service is still incomplete in both

routes.

• HP (High Priority) Customers: Customers whose service was completed in one of

the routes but is still incomplete in the other.

Define FCFS priority policy within each class, the policy is fully defined.

Let us define the following notation- Consider a generic process Gj(t), we shall refer to

• GT
j (t) as the process associated with the total amount of customers in station j on

time t, hence high priority customers and low priority customers together;

• GH
j (t) as the process associated with the amount of high priority customers in station

j on time t;

• GL
j (t) as the process associated with the amount of low priority customers in station

j on time t;

Using the above notations we get

ZT
j (t) = ZH

j (t) + ZL
j (t);

DT
j (t) = DH

j (t) +DL
j (t);

LTi (t) = LHi (t) + LLi (t);
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Note that the generation of high priority (H-P) customer in route 1 is caused by a de-

parture of low priority (L-P) customer from route 2, and the opposite around. Meaning

that LL2 (t) = DL
4 (t) −

∑DL4 (t)
k=1 ξ2,L

k = AH1 (t) + AH2 (t), when AHj (t) denote the generation

(”arrival”) process of high-priority customers to station j. Under this context ξ2,L
k means

the appropriate sub-sequence of ξ2
k, which is used to draw Low-Priority feedbacks.

In the same way, we may define ξi,Lk and ξi,Hk as the appropriate sub-sequence of ξik, which

is used to draw Low-Priority and High-Priority feedbacks, respectively. One may see that

each is a sequence of i.i.d Bernoulli random variables with the probability 1− pi;

Note that the Heavy Traffic definition above is referred to the total customers amount

process. The high priority and low priority behavior is not yet defined under the system’s

Heavy Traffic.

4.3 Asymptotically Optimal Control

Following the condition for asymptotically optimal control defined in Section 2.3, we aim

to prove that the proposed policy is asymptotically optimal.

Fix T and ε > 0,

Theorem 4.1.
P(maxt∈[0,T ]{Ẑn,H

1,2 (t) ∧ Ẑn,H
3,4 (t)} > ε)−→n0;

When


Ẑn,H

1,2 (t) = Ẑn,H
1 (t) + Ẑn,H

2 (t);

Ẑn,H
3,4 (t) = Ẑn,H

3 (t) + Ẑn,H
4 (t);

(4.3)

Proof of Theorem 4.1. Let En,T = {maxt∈[0,T ]{Ẑn,H
1,2 (t) ∧ Ẑn,H

3,4 (t)} > ε}.
Let

σ = inf{t : Ẑn,H
1,2 (t) ∧ Ẑn,H

3,4 (t) > ε};

τ = sup{t < σ : Ẑn,H
1,2 (t) ∧ Ẑn,H

3,4 (t) ≤ ε
3
};

Note that on En,T one has 0 ≤ τ ≤ σ ≤ T .

Define

En = En,T ∩ {Ẑn,H
3,4 (τ) ≤ Ẑn,H

1,2 (τ)}

Then it is sufficient to prove P(En) −→n 0.
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On the event En

Note that on the event En one has

• Ẑn,H
1,2 (s) ≥ ε

3
∀s ∈ [τ, σ];

• Ẑn,H
3,4 (s) ≥ ε

3
∀s ∈ [τ, σ];

• Ẑn,H
3,4 (σ)− Ẑn,H

3,4 (τ) ≥ ε
2
;

We shall use three lemmas to prove that P(En) −→n 0, the lemmas’ proofs can be seen

in Section 4.4.

Lemma 4.1. Using the defined interval [τ, σ] and fixed δ ∈ (0, 1/4)

P(In,H2 [τ, σ] > n−
1
2
+δ)−→n0;

P(In,H4 [τ, σ] > n−
1
2
+δ)−→n0;

(4.4)

Upper bound on the cumulative Idleness time for H-P customers on interval [τ, σ].

Lemma 4.2. Using the defined interval [τ, σ] and fixed δ ∈ (0, 1/4)

P(Dn,L
2 (σ)−Dn,L

2 (τ) > n
1
2
+δ)−→n0; (4.5)

Upper bound on the cumulative amount of L-P customers’ departure from route 1 on

interval [τ, σ].

Lemma 4.3. Using the defined interval [τ, σ] and fixed δ ∈ (0, 1/4)

P(|σ − τ | < n−δ, An,H3,4 [τ, σ] ≥ ε

2
·
√
n)−→n0; (4.6)

Lower bound on the length of time of interval [τ, σ].
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Note that An,H3,4 [τ, σ] ≤ Dn,L
2 (σ) − Dn,L

2 (τ), since the generation of high priority (H-P)

customers in route 2 is caused by a departure of low priority (L-P) customer from route

1. Meaning that An,H3,4 (t) = Dn,L
2 (t)−

∑Dn,L2 (t)

k=1 ξ1,L
k .

Let us define the event

Ẽn = {An,H3,4 [τ, σ] ≤ n
1
2
+δ, Ẑn,H

1,2 (s) ≥ ε

2
∀s ∈ [τ, σ], In,H4 [τ, σ] ≤ n−

1
2
+δ, Ẑn,H

3,4 (σ)−Ẑn,H
3,4 (τ) ≥ ε

2
}.

Note that by using Lemma 4.1&4.2 one get P(En) ≤ P(Ẽn) + αn, αn−→n0.

Hence it is enough to prove that P(Ẽn)−→n0.

P(Ẽn) = P(Ẽn, An,H3,4 [τ, σ] < ε
2
·
√
n) + P(Ẽn, An,H3,4 [τ, σ] ≥ ε

2
·
√
n);

But on the event Ẽn

∆Zn,H
3,4 [τ, σ] = An,H3,4 [τ, σ]−∆Ln,H2 [τ, σ] > ε

2
·
√
n;

∆Ln,H2 [τ, σ] ≥ 0 Thus An,H3,4 [τ, σ] ≥ ε
2
·
√
n;

Thus

P(Ẽn) = 0 + P(Ẽn, An,H3,4 [τ, σ] ≥ ε

2
·
√
n).

Hence on the event Ẽn, by using Lemma 4.3 we get

Bn,H
4 [τ, σ] = |σ − τ | − In,H4 [τ, σ] ≥ n−δ − n− 1

2
+δ ≥ n−δ(1− n− 1

2
+2δ) = (∗)

∃N s.t ∀n > N 1− n− 1
2
+2δ > 1

2
Thus (∗) ≥ n−δ

2
∀n > N ;

Now let us define the event

Hn = {∃σ, τ ∈ [0, T ] s.t An,H3,4 [τ, σ] ≤ nδ+
1
2 , Bn,H

4 [τ, σ] ≥ n−δ

2
, ∆Zn,H

3,4 [τ, σ] > 0}.
We have shown that P(Ẽn) ≤ P(Hn) + α

′
n, α

′
n−→n0.

Hence it is enough to prove that P(Hn)−→n0.

In order to proceed let us write the model equation

Zn,H
3,4 (t) = Zn,H

3,4 (0) + An,H3,4 (t)− SH4 (µn4B
n,H
4 (t)) + P̃2(S

H
4 (µn4B

n,H
4 (t)));

Where



SH4 − Poisson process with rate 1 ;

µn4 = µ4 · n+ µ̂4 ·
√
n+ o(

√
n);

Bn,H
4 (t) =

∫ t
0

I{Zn,H4 (s)>0}ds;

P̃2(N) =
∑N

k=1 ξ
2
k;

(4.7)
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Note that Ln,H2 (t) = SH4 (µn4B
n,H
4 (t)) − P̃2(S

H
4 (µn4B

n,H
4 (t))), the departure process from

route 2. Therefore on the event Hn

∆Zn,H
3,4 [τ, σ] > 0 equal to Ln,H2 (σ)− Ln,H2 (τ) < An,H3,4 [τ, σ].

But the route departure process for H-P customers (Ln,H2 (t)) is the outcome of a thin-

ning procedure on process SH4 (µn4B
n,H
4 (t)). One may see that Ln,H2 (t) is determined from

SH4 (µn4B
n,H
4 (t)) by random sampling, i.e., Ln,H2 (t) =

∑DH4 (t)
k=1 1− ξ2,H

k . Hence each depar-

ture H-P customer tosses a coin with a probability p2 to leave and hence be counted in

Ln,H2 (t) . The thinning is done by the random toss represented by ξ4,H
k which are iid

Bernoulli R.V with probability 1 − p. Hence we may define Ln,H2 (t) = S(p · µn4B
n,H
4 (t)),

where S is a standard Poisson process.

Let us define the Event

H̃n = {σ̄ = p·µ4nB
n,H
4 (σ), τ̄ = p·µ4nB

n,H
4 (τ) S(σ̄)−S(τ̄) < nδ+

1
2 , |σ̄− τ̄ | > pµ4 · n1−δ

2
}.

Hence

P(Hn) ≤ P(H̃n) + βn, βn−→n0

Divide [0, nT ] into K intervals with length p·µ4n1−δ

4
, when K = ] intervals = c · nδ. Let us

define ∆kS = ∆S(Jk), when Jk denote time interval k. On the event H̃n there is at least

one interval on which ∆kS < nδ+
1
2 .

P(H̃n) ≤ P(∃k ∈ {1, . . . , K} s.t ∆kS < nδ+
1
2 , |Jk| ≈ n1−δ) = 1− (1−P(∆1S < nδ+

1
2 ))K .

Let us focus on
P(∆1S < nδ+

1
2 ) = P(S(n1−δ) < nδ+

1
2 ) = (∗);

S − Standard Poisson process with rate 1 ;

(∗) = P(S(n1−δ)
n1−δ < n2δ− 1

2 )

{δ < 1/4} Thus ∃N s.t ∀n > N n2δ− 1
2 < 1

2
;

(∗) ≤ P(S(n1−δ)
n1−δ < 1

2
) ≤ P(|S(n1−δ)

n1−δ − 1| ≥ 1
2
)

chebysheb
≤ 4 · Var (S(n1−δ)

n1−δ − 1);

= 4
n2−2δ · Var (S(n1−δ)) = 4n1−δ

n2−2δ = 4 · nδ−1;

.

Therefore
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P(Hn) ≤ 1− [1− 4 · nδ−1]n
δ −→n 0;


lim (1− xn)yn = e− lim xnyn −→n 1;

lim xnyn = lim (nδ−1 · nδ) = lim (n−1+2δ) −→n 0; ( since 2δ ≤ 1
2
)

.

Which mean P(En) −→n 0. That completes the proof of Theorem 4.1.

Now by the asymptotic optimality criterion defined in 2.3, one may see that the proposed

control policy is asymptotically optimal.

Note- The High-Priority Birth-Process is hard to define in the sense of probabilistic dis-

tribution, recall that any departure of Low-Priority customer in one of the routes will

cause a birth of High-Priority in the other route in one of the servers (in which one? hard

to define). Hence, the lemmas can not be proven by ”simple” fluid and diffusion limits.

Thus, a central ingredient in the proof of the Lemmas is the use of a down-crossings

technique on the random process of H-P customers’ queue length (see proofs on Section

4.4).

4.4 Proof of Lemmas

Now we shall prove the three Lemmas which were used in the previous Section (4.3).

Fix T, and define δ ∈ (0, 1/4), ε > 0.

Proof of Lemma 4.1.

We shall prove the claim for In,H2 [τ, σ] , the proof for In,H4 [τ, σ] is similar. Let us define

the event

En = {Ẑn,H
1 (s) + Ẑn,H

2 (s) ≥ ε
2
∀s ∈ [τ, σ], In,H2 [τ, σ] > n−

1
2
+δ};

We need to show that P(En)−→n0.
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Consider the relevant system equation-

Zn,H
1 (t) = Zn,H

1 (0) + An,H1 (t)− SH1 (µn1B
n,H
1 (t)) + P̃1(S

n,H
2 (µn2B

n,H
2 (t)));

Zn,H
2 (t) = Zn,H

2 (0) + An,H2 (t) + SH1 (µn1B
n,H
1 (t))− SH2 (µn2B

n,H
2 (t));

Where



An,H1 (t) + An,H2 (t) = Ln,L2 (t) = SL4 (µn4B
n,L
4 (t))− P̃2(S

L
4 (µn4B

n,L
4 (t)));

SH1 (t), SH2 (t), SL4 (t)− Are Poisson processes with rate 1 ;

µni = µi · n+ µ̂i ·
√
n+ o(

√
n) ∀i, µ1 = µ2;

Bn,H
i (t) =

∫ t
0

I{Zn,Hi (s)>0}ds;

Ij(t) = t−Bj(t) =
∫ t

0
I{Zn,Hi (s)=0}ds;

P̃1(N) =
∑N

k=1 ξ
1,H
k ;

P̃2(N) =
∑N

k=1 ξ
2,L
k ;

(4.8)

Let us scale Zn,H
2 (t) by

√
n and get

Zn,H2 (t)√
n

=
Zn,H2 (0)√

n
+ increasing process +

SH1 (µn1B
n,H
1 (t))−µn1B

n,H
1 (t)√

n
− SH2 (µn2B

n,H
2 (t))−µn2B

n,H
2 (t)√

n
+

+
µn1B

n,H
1 (t)√
n
− µn2B

n,H
2 (t)√
n

;

We shall use the identity Bn,H
i (t) = t− In,Hi (t), and the notation

Ẑn,H
2 (t) =

Zn,H2 (t)√
n
, Ẑn,H

2 (0) =
Zn,H2 (0)√

n
, Ŝn,Hi (t) =

SHi (µni t)−µni t√
n

, În,Hi (t) =
In,Hi (t)√

n
, µ̂1 − µ̂2 =

µn1−µn2√
n
.

Thus

Ẑn,H
2 (t) = Ẑn,H

2 (0) + increasing process + Ŝn,H1 (BH
1 (t))− Ŝn,H2 (BH

2 (t)) + (µ̂1 − µ̂2) · t+

+µn2 · Î
n,H
2 (t)− µn1 · Î

n,H
1 (t);

Let us define

X̂n
2 (t) = Ŝn,H1 (BH

1 (t))− Ŝn,H2 (BH
2 (t)) + (µ̂1 − µ̂2) · t.
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Thus the following relations holds on the event En-

Ẑn,H
2 (t) = Ẑn,H

2 (0) + increasing process + X̂n
2 (t) + µn2 · Î

n,H
2 (t)− µn1 · Î

n,H
1 (t);


∫ t

0
I{Ẑn,H2 (s)>0}dÎ

n,H
2 = 0;

∫ t
0

I{Ẑn,H2 (s)< ε
4
}dÎ

n,H
1 = 0;

(4.9)

The above is derived from work conservation and from Ẑn,H
1 (s) + Ẑn,H

2 (s) ≥ ε
2

on the

event En;

In other words, any time t s.t Ẑn,H
2 (t) ∈ (0, ε

4
) we get from work conservation that

dÎn,H1 (t) = dÎn,H2 (t) = 0.

Let us define the following random times-

A1 = inf {τ ≤ t ≤ σ : Ẑn,H
2 (s) = 0};

B1 = inf {A1 < t ≤ σ : Ẑn,H
2 (s) ≥ ε

4
};

continue in inductive manner ;

Ai+1 = inf {Bi < t ≤ σ : Ẑn,H
2 (s) = 0};

Bi+1 = inf {Ai+1 < t ≤ σ : Ẑn,H
2 (s) ≥ ε

4
};

Notice that on the event En one has at least one time point- τ ≤ A1 ≤ σ, otherwise
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Ẑn,H
2 (s) > 0 ∀s ∈ [τ, σ] meaning that In,H2 [τ, σ] = 0 which contradicts the event.

Note that the above construction divides [τ, σ] into regions, with the following property

• [Ai, Bi): dÎ
n,H
1 (s) = 0 ∀s ∈ [Ai, Bi), În,H2 (s) increase on {s ∈ [Ai, Bi) : Ẑn,H

2 (s) =

0}.

• [Bi, Ai+1): dÎn,H2 (s) = 0 ∀s ∈ [Ai, Bi), În,H1 (s) increase on {s ∈ [Bi, Ai+1) :

{Ẑn,H
1 (s) = 0} ∩ {Ẑn,H

2 (s) ≥ ε
4
}}.

• [τ, A1): dÎn,H2 (s) = 0 ∀s ∈ [Ai, Bi), În,H1 (s) increase on {s ∈ [Bi, Ai+1) :

{Ẑn,H
1 (s) = 0} ∩ {Ẑn,H

2 (s) ≥ ε
4
}}.

Notice that on every [Bi, Ai+1) interval there is a unique time Ci = sup {t ∈ [Bi, Ai+1) :

Ẑn,H
2 (s) ≥ ε

4
}, when i is the interval index. By the definitions above one can see that on

the intervals [Ci, Ai+1) Ẑn,H
2 starts at ε

4
and ends at zero without exiting (0, ε

4
]. We shall

call these intervals Down Crossings .

Claim 4.1. Let us denote by Rn[τ, σ] the number of Down Crossings on [τ, σ]. Then

Rn[τ, σ] are tight on En.

Equivalently - letting

HK = {σ, τ ∈ [0, T ] as defined , Ẑn,H
1 (s) + Ẑn,H

2 (s) ≥ ε
2
∀s ∈ [τ, σ], Rn[τ, σ] > K}.

Thus ∀η > 0 ∃K ∈ N s.t P(HK) ≤ η.

Proof of Claim. Notice that on s ∈ [Ci, Ai+1) Ẑn,H
2 (s) ∈ (0, ε

4
) and therefore În,H1 and

În,H2 are constant in the interval.

Hence

Ẑn,H
2 (Ai+1)− Ẑn,H

2 (Ci) = Positive R.V. + X̂n
2 (Ci)− X̂n

2 (Ai+1) = − ε
4
.

Then on HK using positivity of the arrival process, we have |∆X̂n
2 [Ci, Ai+1)| > ε

4
. Hence

HK ⊆ {∃0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ tK ≤ T s.t |∆X̂n
2 [si, ti)| ≥

ε

4
∀i ∈ {1, . . . , K}}.

Using the notion of modulus of continuity, we have

P(HK) ≤ P(∃i s.t |∆X̂n
2 [si, ti)| ≥

ε

4
, 0 ≤ ti − si ≤

T

K
) = P(modT (X̂n

2 ,
T

K
) ≥ ε

4
)

Where modT (X, δ) is the modulus of continuity defined in the following way -

modT (X, δ) = sup  s, t ∈ [0, T ]

|s− t| < δ

|X(s)−X(t)| (4.10)
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But

P(HK) ≤ P(modT (X̂n
2 ,

T
K ) ≥ ε

4) = P(modT

(
Ŝn,H1 (BH

1 (t))− Ŝn,H2 (BH
2 (t)) + (µ̂1 − µ̂2) · t, TK

)
≥ ε

4)

≤ P(modT (Ŝn,H1 ◦BH
1 ,

T
K ) +modT (Ŝn,H2 ◦BH

2 ,
T
K ) +modT ((µ̂1 − µ̂2) · t, TK ) ≥ ε

4)

≤ P(modT (Ŝn,H1 ◦BH
1 ,

T
K ) ≥ ε

12) + P(modT (Ŝn,H2 ◦BH
2 ,

T
K ) ≥ ε

12) + P(modT ((µ̂1 − µ̂2)t, TK ) ≥ ε
12)

(4.11)

First term in the r.h.s of (4.11) BH
1 (t) is a non-decreasing function from [0, T ] to

[0, T ] which is Lipschitz continuous, in fact

0 ≤ BH
1 (t)−BH

1 (s)

t− s
≤ 1, ∀t < s.

Therefore modT (Ŝn,H1 ◦ BH
1 ,

T
K

) ≤ modT (Ŝn,H1 , T
K

). Note that Ŝn,H1 (t) is a scaled Poisson

process which converges weakly to BM process. Therefore it converges to a continuous

sample-path process. As a result, it is C-tight. Hence

For each positive η1, there exist K1 > 1, δ = T
K1

, and an integer n1, s.t.-

P(modT (Ŝn,H1 ◦BH
1 ,

T

K
) ≥ ε

12
) ≤ P(modT (Ŝn,H1 ,

T

K
) ≥ ε

12
) ≤ η1, ∀n > n1.

Second term in the r.h.s of(4.11) By the same way, we get

For each positive η2, there exist K2 > 1, δ = T
K2

, and an integer n2, s.t.-

P(modT (Ŝn,H2 ◦BH
2 ,

T

K
) ≥ ε

12
) ≤ P(modT (Ŝn,H2 ,

T

K
) ≥ ε

12
) ≤ η2, ∀n > n2.

Third term in the r.h.s of(4.11) (µ̂1 − µ̂2)t is a continuous linear function,

modT ((µ̂1 − µ̂2) · t,
T

K
) < (µ̂1 − µ̂2) ·

T

K
.

Which means that for each fixed ε, there exist K > 1, s.t.-

P(modT ((µ̂1 − µ̂2) · t,
T

K
) ≥ ε

8
) < P((µ̂1 − µ̂2) ·

T

K
≥ ε

8
) = 0, ∀K >

8T

ε
· (µ̂1 − µ̂2).

Concluding that For each positive η, there exist K = max{K1, K2, K3}, δ = T
K

, and an

integer n, s.t.

P(HK) ≤ η/2 + η/2 + 0 = η

This proves Claim 4.1.
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Back to the proof of Lemma 4.1. Fix K, on the event {En} ∩ {Hc
K} we get

There exist Rn ≤ K + 1 intervals of [Ai, Bi) on [τ, σ], and only on those intervals În,H2 (s)

increases by nδ−1. Therefore there exist an interval j on which În,H2 [Aj, Bj) increases by
nδ−1

K+1
.

Let us define the event

ẼK = {∃j s.t [Aj, Bj) as defined above , Rn[τ, σ] ≤ K, În,H2 [Aj, Bj) >
nδ−1

K + 1
}.

One can see that P(En) = P(En ∩Hc
K) + P(En ∩HK) ≤ P(ẼK) + P(HK).

Claim 4.2. P(ẼK)−→n0.

In interval [Aj, Bj) we get ∆În,H1 [Aj, Bj) = 0, and Ẑn,H
2 (s) is bounded by ε

4
for all

s ∈ [Aj, Bj). So by Equation 4.9

Ẑn,H
2 (Bj)− Ẑn,H

2 (Aj) = Positive R.V. + ∆X̂n
2 [Aj, Bj) + µn2 · Î

n,H
2 [Aj, Bj)− µn1 · Î

n,H
1 [Aj, Bj);

Or ∆X̂n
2 [Aj, Bj) = ∆Ẑn

2 [Aj, Bj)− µn2 · Î
n,H
2 [Aj, Bj)− Positive R.V. ;

µn2 = 0(n), ∆Ẑn
2 [Aj, Bj) <

ε
4
, ∆Â[Aj, Bj) > 0, În,H2 [Aj, Bj) >

nδ−1

K+1
;

Thus |∆X̂n
2 [Aj, Bj)| > | n

δ

K+1
− ε

4
| > | nδ

K′
|;

But X̂n
2 (t) = Ŝn,H1 (BH

1 (t))− Ŝn,H2 (BH
2 (t)) + (µ̂1 − µ̂2) · t;

Therefore |∆{Ŝn,H1 ◦BH
1 }[Aj, Bj)−∆{Ŝn,H2 ◦BH

2 }[Aj, Bj)| > | n
δ

K′
− |µ̂1 − µ̂2| · |Bj − Aj| | > | n

δ

K′′
|;

Hence P(ẼK) = P(|∆{Ŝn,H1 ◦BH
1 }[Aj, Bj)−∆{Ŝn,H2 ◦BH

2 }[Aj, Bj)| > | n
δ

K′′
|)

≤ P(|∆{Ŝn,H1 ◦BH
1 }[Aj, Bj)| > | n

δ

2K′′
|) + P(|∆{Ŝn,H1 ◦BH

1 }[Aj, Bj)| > | n
δ

2K′′
|);

≤ P(|Ŝn,H1 ◦BH
1 |∗T > | n

δ

4K
′′ |) + P(|Ŝn,H1 ◦BH

1 |∗T > | n
δ

4K
′′ |);

≤ P(|Ŝn,H1 |∗T > | n
δ

4K′′
|) + P(|Ŝn,H1 |∗T > | n

δ

4K′′
|) −→n 0;

Due to the tightness of the scaled Poisson processes.

Now we get the following- For any given η there exist K s.t ¯lim nP(En) ≤ η, since η is

arbitrary we can take it to zero and get lim nP(En) = 0.

This completes the proof of Lemma 4.1.
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Proof of Lemma 4.2. Let Hn = {Dn,L
2 (σ)−Dn,L

2 (τ) ≥ n
1
2
+δ}.

Let

α = inf {t > τ : Dn,L
2 (t)−Dn,L

2 (τ) ≥ 1
3
· n 1

2
+δ};

β = inf {t > τ : Dn,L
2 (t)−Dn,L

2 (τ) ≥ n
1
2
+δ};

Note that on the event Hn one has τ ≤ α ≤ β ≤ σ.

Define δ
′
= δ

2
, Thus

P(Hn) = P(Hn, I
n,H
2 [α, β) > nδ

′− 1
2 ) + P(Hn, I

n,H
2 [α, β) ≤ nδ

′− 1
2 ); (4.12)

Analysis of the first term on (4.12)

P(Hn, I
n,H
2 [α, β) > nδ

′− 1
2 ) ≤ P(In,H2 [α, β) > nδ

′− 1
2 ) ≤ P(In,H2 [τ, σ) > nδ

′− 1
2 )−→n0,

according to Lemma 4.1.

Analysis of the second term on (4.12)

Notice that Bn,L
2 [α, β) ≤ In,H2 [α, β), because In,H2 (t) measures time when server 2 is not

working on High-Priority customers. This is equal to the amount of time when the server

is idle plus time when it is busy serving Low-Priority customers, i.e., Bn,L
2 (t). Or, equally

written In,H2 [α, β) = In,T2 [α, β) +Bn,L
2 [α, β).

Let us define

H̃n = Hn ∩ {Bn,L
2 [α, β] ≤ nδ

′− 1
2}.

Claim 4.3.

P(Hn, I
n,H
2 [α, β) ≤ nδ

′− 1
2 ) ≤ P(H̃n)−→n0.

Proof of Claim 4.3. Let us write the system’s equation

Dn,L
2 (t) = SL2 (µn2B

n,L
2 (t));

SL2 − Standard Poisson process with rate 1 ;

µn2 = µ2 · n+ µ̂2 ·
√
n+ o(

√
n);

Define τ̄ = µ2 · n ·Bn,L
2 (τ), σ̄ = µ2 · n ·Bn,L

2 (σ), an = 1
2
· n 1

2
+δ, bn = µ2 · nδ

′
+ 1

2 . We have

P(H̃n) ≤ P(SL2 (σ̄)− SL2 (τ̄) ≥ an, |σ̄ − τ̄ | ≤ bn) + αn, αn −→n 0;

Divide [0, nT ] into intervals with length bn, on the event H̃n there exist index k s.t on

interval Jk we have at least 1
2
an increment on SL2 [Jk].
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P(H̃n) ≤ P(∃k s.t SL2 [(k+1)bn]−SL2 [(k)bn] > 1
2
an) = 1−[1−P(SL2 [J1] >

1
2
an)]] intervals =T ·n

1
2−δ
′

.

When SL2 [J1] = SL2 (bn). Hence, using a simple large deviation argument,

Fix u > 0

P(SL2 (bn) > 1
2
an) = P(eu·S

L
2 (bn) > eu·

1
2
an)

Markov
≤ E(eu·S

L
2 (bn))

eu·
1
2an

= (∗);

SL2 (T ) is a Poisson R.V. Therefore E(eu·S
L
2 (bn)) = e−bn·(1−e

u);

(∗) = e−bn·(1−e
u)−u· 1

2
an

fix u=1
≤ en

1
2+ δ

2 ·((e−1)− 1
4
δ
2
)
∀n>n0

≤ e−
1
2
·n

1
2+ δ

2 ;

Hence P(H̃n) ≤ 1− [1− e− 1
2
·n

1
2+ δ

2 ]n
− δ2+1

2 −→n 0;


lim (1− xn)yn = e− lim xnyn −→n 1;

lim xnyn = lim e−
1
2
·n

1
2+ δ

2 n−
δ
2
+ 1

2 −→n 0;

.

This shows P(H̃n)−→n0 and completes the proof of Claim 4.3;

As a result,

P(Hn) = P(Hn, I
n,H
2 [α, β) > nδ

′− 1
2 ) + P(Hn, I

n,H
2 [α, β) ≤ nδ

′− 1
2 ) −→n 0.

Hence the proof of Lemma 4.2 is complete.
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Proof of Lemma 4.3. Note that ∆D̂n,L
2 [τ, σ] ≥ Ân,H3,4 [τ, σ] ≥ ε

2
, since the generation

of high priority (H-P) customers in route 2 is caused by a departure of low priority (L-P)

customer from route 1. Meaning that An,H3,4 (t) = Dn,L
2 (t)−

∑Dn,L2 (t)

k=1 ξ1,L
k .

Let us define the event

Hn = {|σ − τ | < n−δ, Ẑn,H
1 (s) + Ẑn,H

2 (s) ≥ ε

2
∀s ∈ [τ, σ], ∆D̂n,L

2 [τ, σ] ≥ ε

2
}.

When [τ, σ] as defined in Section 4.3.

Hence P(|σ − τ | < n−δ, An,H3,4 [τ, σ] ≥ ε
2
·
√
n) ≤ P(Hn).

Let

α = inf {t ≥ τ : Ẑn,H
2 (t) ≥ ε

4
};

σ
′
= inf {t ≥ τ : ∆D̂n,L

2 [τ, t] ≥ ε
2
};

Therefore

P(Hn) = P(Hn, α ≤ σ
′
) + P(Hn, α > σ

′
); (4.13)

Analysis of the first term on (4.13)

Let us define


β = inf {t ≥ α : Ẑn,H

2 (t) = 0};

γ = sup {t ≥ α : Ẑn,H
2 (t) ≥ ε

4
};

Notice that on the event Hn ∩ {α < σ
′} one has ∆D̂n,L

2 [τ, α] < ε
2
. Also, one can see that

for all s ∈ [α, β) we have Ẑn,H
2 (s) > 0, and by work conservation property In,H2 [α, β) =

0 ⇒ Bn,L
2 [α, β) = 0 ⇒ Dn,L

2 [α, β) = 0. Therefore, ∆D̂n,L
2 [τ, β] < ε

2
which means

τ ≤ α ≤ γ ≤ β ≤ σ
′ ≤ σ and |σ − τ | ≥ |β − α| ≥ |β − γ|.

On [γ, β) the process Ẑn,H
2 (t) starts at ε

4
and ends at zero without exiting (0, ε

4
]. Hence

we shall refer to |β − γ| as the down-crossing time of the process Ẑn,H
2 (t). Thus on the

event Hn ∩ {α < σ
′} there is at least one down crossing during [τ, σ).

Claim 4.4. Since |σ − τ | ≥ |β − γ| we claim that

P(Hn ∩ {α < σ
′}) ≤ P(|β − γ| < n−δ) −→n 0.
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Proof of Claim 4.4.

As was seen before in the proof of Lemma 4.1, we have the following equations

Ẑn,H
2 (t) = Ẑn,H

2 (0) + increasing process + X̂n
2 (t) + µn2 · Î

n,H
2 (t)− µn1 · Î

n,H
1 (t);

X̂n
2 (t) = Ŝn,H1 (BH

1 (t))− Ŝn,H2 (BH
2 (t)) + (µ̂1 − µ̂2) · t;

∫ t
0

I{Ẑn,H2 (s)>0}dÎ
n,H
2 = 0;

∫ t
0

I{Ẑn,H2 (s)< ε
4
}dÎ

n,H
1 = 0;

(4.14)

Since Ẑn,H
2 (s) ∈ [ ε

4
, 0) for all s ∈ [γ, β) we get În,H1 [γ, β) = În,H2 [γ, β) = 0. In addition

|∆Ẑn,H
2 [γ, β)| > ε

8
. Thus |∆X̂n

2 [γ, β)| > ε
8
.

Now using the notion of modulus of continuity, one may see that

P(|β − γ| < n−δ) = P(modT (X̂n
2 , n

−δ) ≥ ε

8
)

Where

modT (X, δ) = sup  s, t ∈ [0, T ]

|s− t| < δ

|X(s)−X(t)| (4.15)

But

P(modT (X̂n
2 , n

−δ) ≥ ε
4) = P

(
modT (Ŝn,H1 (BH

1 (t))− Ŝn,H2 (BH
2 (t)) + (µ̂1 − µ̂2) · t, n−δ) ≥ ε

8

)

≤ P(modT (Ŝn,H1 ◦BH
1 , n

−δ) +modT (Ŝn,H2 ◦BH
2 , n

−δ) +modT ((µ̂1 − µ̂2) · t, n−δ) ≥ ε
8)

≤ P(modT (Ŝn,H1 ◦BH
1 , n

−δ) ≥ ε
24) + P(modT (Ŝn,H2 ◦BH

2 , n
−δ) ≥ ε

24) + P(modT ((µ̂1 − µ̂2)t, n−δ) ≥ ε
24)

(4.16)

First term in the r.h.s of (4.16) BH
1 (t) is a non-decreasing function from [0, T ] to [0, T ]

which is Lipschitz continuous and, in fact

0 ≤ BH
1 (t)−BH

1 (s)

t− s
≤ 1, ∀t < s.
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Therefore modT (Ŝn,H1 ◦ BH
1 ,

T
K

) ≤ modT (Ŝn,H1 , T
K

). Note that Ŝn,H1 (t) is a scaled Poisson

process which converges weakly to BM process. Therefore it converges to a continuous

sample-path process. As a result, it is C-tight. Hence

P(modT (Ŝn,H1 ◦BH
1 , n

−δ) ≥ ε

12
) ≤ P(modT (Ŝn,H1 , n−δ) ≥ ε

12
) −→n 0.

Second term in the r.h.s of (4.16) By the same reason we get

P(modT (Ŝn,H2 ◦BH
2 , n

−δ) ≥ ε

12
) ≤ P(modT (Ŝn,H2 , n−δ) ≥ ε

12
) −→n 0.

Third term in the r.h.s of (4.16) (µ̂1 − µ̂2)t is a continuous function, and therefore

P(modT ((µ̂1 − µ̂2)t, n
−δ) ≥ ε

12
) −→n 0.

This completes the proof of Claim 4.4.

Analysis of the second term on (4.13)

We have shown before that τ ≤ σ
′ ≤ σ, meaning that |σ − τ | ≥ |σ′ − τ |.

Now let us define the following event

H̃n = {|σ′ − τ | < n−δ, ∆D̂n,L
2 [τ, σ

′
] ≥ ε

2
} ∩ {Ẑn,H

2 (s) ∈ (
ε

4
, 0], Ẑn,H

1 (s) ≥ ε

4
∀s ∈ [τ, σ

′
]}.

Claim 4.5.

P(Hn, α > σ
′
) ≤ P(H̃n) −→n 0.

Proof of Claim 4.5.

Note that

∆Dn,T
2 [τ, σ

′
] = ∆Dn,L

2 [τ, σ
′
] + ∆Dn,H

2 [τ, σ
′
]; (4.17)

Where under the event H̃n

∆Dn,T
2 [τ, σ

′
] = ST2 (µn2B

n,T
2 (σ

′
))− ST2 (µn2B

n,T
2 (τ));

∆Dn,L
2 [τ, σ

′
] ≥ ε

2
·
√
n;

Recall that

Zn,H
2 (t) = Zn,H

2 (0) + An,H2 (t) + SH1 (µn1B
n,H
1 (t))− SH2 (µn2B

n,H
2 (t)).

Therefore

Zn,H
2 (σ

′
)− Zn,H

2 (τ) = ∆An,H2 [τ, σ
′
] + SH1 (µn1B

n,H
1 (σ

′
))− SH1 (µn1B

n,H
1 (τ))−∆Dn,H

2 [τ, σ
′
]

(4.18)
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Claim 4.6. Zn,H
2 (σ

′−) = 0.

Proof of Claim 4.6.

By definition 
σ
′
= inf {t ≥ τ : ∆D̂n,L

2 [τ, t] > ε
2
};

Dn,L
2 (t) = SL2 (µn2 ·B

n,L
2 (t));

Hence Dn,L
2 (σ

′
) − Dn,L

2 (σ
′−) = 1 ⇒ Ḃn,L

2 (σ
′−) = 1 ⇒ Zn,H

2 (σ
′−) = 0 due to the

preemptive priority discipline, L-P customers are served only if there are no H-P customers

waiting in the resource buffer. That completes the proof of Claim 4.6.

Therefore, according to (4.18) we get

∆Dn,H
2 [τ, σ

′
]− Zn,H

2 (τ)−∆An,H2 [τ, σ
′
] = SH1 (µn1B

n,H
1 (σ

′
))− SH1 (µn1B

n,H
1 (τ))

Note that Zn,H
2 (τ) ≥ 0, and ∆An,H2 [τ, σ

′
] ≥ 0, therefore

∆Dn,H
2 [τ, σ

′
] ≥ SH1 (µn1B

n,H
1 (σ

′
))− SH1 (µn1B

n,H
1 (τ)).

To summarize, we have

∆Dn,T
2 [τ, σ

′
] = ST2 (µn2B

n,T
2 (σ

′
))− ST2 (µn2B

n,T
2 (τ));

∆Dn,L
2 [τ, σ

′
] ≥ ε

2
·
√
n;

∆Dn,H
2 [τ, σ

′
] ≥ SH1 (µn1B

n,H
1 (σ

′
))− SH1 (µn1B

n,H
1 (τ)).

Hence from Equation (4.17) we get

∆Dn,L
2 [τ, σ

′
] = ∆Dn,T

2 [τ, σ
′
]−∆Dn,H

2 [τ, σ
′
].

Therefore

∆Dn,L
2 [τ, σ

′
] ≤

[
ST2 (µn2B

n,T
2 (σ

′
))−SH1 (µn1B

n,H
1 (σ

′
))

]
−
[
ST2 (µn2B

n,T
2 (τ))−SH1 (µn1B

n,H
1 (τ))

]
.

Where


SH1 , S

T
2 − are mutualy independent Poisson processes with rate 1 ;

µni = µi · n+ µ̂i ·
√
n+ o(

√
n) ∀i, µ1 = µ2;

Define S
′
(t) = ST2 (µn2 ·B

n,T
2 (t))− SH1 (µn1 ·B

n,H
1 (t)) . Define the event

En = {|σ′−τ | < n−δ, S
′
(σ
′
)−S ′(τ) ≥ ε

2
·
√
n}∩{Ẑn,H

2 (s) ∈ (
ε

4
, 0], Ẑn,H

1 (s) ≥ ε

4
∀s ∈ [τ, σ

′
]}.
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One can see that P(H̃n) ≤ P(En). Hence it is enough to prove P(En) −→n 0.

Divide [0, T ] into intervals with length n−δ. Then on the event En there exists an interval

Jk s.t ∆S
′
[Jk] ≥ ε

4
·
√
n. Thus

P(En) ≤ P(∃k s.t ∆S
′
[Jk] ≥

ε

4
·
√
n) = 1− [1− P(∆S

′
[J1] ≥

ε

4
·
√
n)]] intervals =T ·nδ .

Note that on the event En one has Ẑn,H
1 (s) ≥ ε

4
∀s ∈ [τ, σ

′
). i.e., server 1 is always

busy with H-P customers, meaning that Bn,H
1 [J1] = |J1|. Also note that Bn,T

2 (t) is a non-

decreasing function from [0, T ] to [0, T ] which is Lipschitz continuous and Bn,T
2 [J1] ≤ |J1|.

Therefore

P(∆S
′
[J1] ≥

ε

4
·
√
n) ≤ P

(
ST2 (µn2 · n−δ)− SH1 (µn1 · n−δ) ≥

ε

4
·
√
n

)
.

We now use an elementary large deviation argument. Fix u > 0,

P(ST2 (µn2 · n−δ)− SH1 (µn1 · n−δ) ≥ ε
4
·
√
n)) = P(eu·[S

T
2 (µn2 ·n−δ)−SH1 (µn1 ·n−δ)] > eu·

ε
4
·
√
n)

Markov
≤ E(eu·[S

T
2 (µn2 ·n

−δ)−SH1 (µn1 ·n
−δ)])

eu·
ε
4 ·
√
n

.

Also,

E(eu·[S
T
2 (µn2 ·n−δ)−SH1 (µn1 ·n−δ)]) = E(eu·S

T
2 (µn2 ·n−δ)) · E(e−u·S

H
1 (µn1 ·n−δ)]) = e−µ

n
2 ·n−δ·(1−eu) · eµn1 ·n−δ·(1−eu)

= e(µ̂1−µ̂2)(1−eu)·n
1
2−δ = ec·n

1
2−δ

.

Hence, letting u = 1,

P(∆S
′
[J1] ≥ ε

4
·
√
n) ≤ ec·n

1
2−δ− ε

4
·
√
n = e−

ε
4
·
√
n·(1−c′n−δ)

∃N : ∀n>N
≤ e−

ε
8
·
√
n; .

Hence, we get

P(En) ≤ 1− [1− e−
ε
8
·
√
n]Tn

δ −→n 0.

Meaning that P(H̃n) −→n 0, which completes the proof of Claim 4.5.

Finally, we conclude that

P(Hn) = P(Hn, α < σ
′
) + P(Hn, α > σ

′
) −→n 0.

This completes the proof of Lemma 4.3.

70



4.5 Comments About Generalization

The strategy of the proof is designed to extend to general service time distributions and a

nonpreemptive discipline. However, these extensions have not been established as of this

time.

Recall that

• General service time distribution refers to iid service durations.

• Non-Preemptive is a policy where service to a customer can not be interrupted

before it is completed.

4.6 High-Priority Dynamics

Recall that Ẑn,H
1,2 (t) = Q̂n

2 (t) and Ẑn,H
3,4 (t) = Q̂n

1 (t). In Section 4.3, we showed that

Q̂n
1 (t) ∧ Q̂n

2 (t) converges uniformly to 0, in probability.

In this section we discuss two important consequences of the result above.

Remark 1. The state space for the synchronization queues may be reduced to one-

dimension in the limit.

Figure 4.2: Synchronization Queues Dynamic in Heavy Traffic
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One may see that the synchronization queues are restricted to an ε-environment around

the axes, where ε > 0 may be arbitrarily small. Hence, even though we have not formu-

lated the limit distributions of the synchronization queues, we are able to determine that

these distributions are one dimensional.

Remark 2. At any given time there is a critical route which determines the customers’

departure order. The critical route index is a random variable defined by the routes service

dynamics.

Figure 4.3: Critical Route Dynamic in Heavy Traffic

The following relation is equivalent to the above result

Ẑn,H
1,2 (t) ∧ Ẑn,H

3,4 (t) converges uniformly to 0, in probability.

Hence, at any given time there is one processing route (assume this route is indexed 2)

which is busy with High-Priority customers, and by the Preemptive property we may

say that in this route almost only High-Priority customers are served. While the other

route (assume this route is indexed 1) is free from High-Priority customers and therefore

its departure process consists of almost only Low-Priority customers. Therefore, route 1

creates a birth process of High-Priority customers for route 2.

We may conclude that at any given time there is a critical route which is the route that

serve mostly Low-Priority customers, this route determines the customers’ departure or-

der in the sense that this route departures order is similar to the system departure order.

One may see that the critical route index can be formulated by argmaxi∈{1,2}Di(t), mean-

ing that the route which has maximum departures till time t is the critical route.

72



5 Extensions and Concluding Remarks

5.1 Summary

We introduced a natural concept of optimality for a broad class of Fork-Join networks with

non-exchangeable customers, including networks with multi-server stations and networks

with probabilistic feedback. In this setting, a stochastic control problem was formulated

(see Section 2.3), an optimality condition was derived via an analogy to Assembly net-

works and proved to be efficient for a general class of networks. In Sections 3 and 4, we

present examples for two of the main causes for customers’ disorder, i.e., multi-server sta-

tions and feedback. In these sections we formulate the specific control problem, propose

optimal policies for priority control and prove asymptotic optimality for both models.

These proofs introduce a characterization of the synchronization queues dynamics, under

Heavy-Traffic, although limit distributions were not achieved. Finally, the results yield

an asymptotic equivalence between non-exchangeable and exchangeable dynamics in

Heavy-Traffic.

The contribution of this thesis from a mathematical perspective is the impor-

tant observation of the asymptotic equivalence between non-exchangeable and exchange-

able dynamics in Heavy-Traffic. As mentioned in Nguyen [34] and [35], any deviation from

the simple setting which consists of feedforward network, single-server stations, single-class

customers and FCFS discipline, makes the model highly intractable. Our work indicates

that under our proposed priority policy, the heavy-traffic limit of the non-exchangeable

Fork-Join model may be equivalent to the Assembly model Heavy-Traffic limit, which is

clearly easier to analyze.

The contribution of this thesis from a system engineering perspective is the ob-

servation of the need for global control in parallel processing systems, with the rigorous

formulation of these models as stochastic control problems. The models introduced here

are natural models for a variety of applications, one of them is the Multi-Project Schedul-

ing Problem. In this field of study there are many Heuristics but few rigourously proven

results. In Section 3, we contradict the paper from Cohen, Mandelbaum and Shtub [1],

by proving the asymptotic optimality of FCFS priority policy in feedforward Fork-Join

model. Additionally, in Section 4, we propose a priority policy for a broader class of

networks that allow probabilistic feedback, which proves to be asymptotically optimal in
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conventional Heavy Traffic. Note that simulation runs for our model with feedback show

improvements of 33% in sojourn time and almost 66% in synchronization time, for the

proposed policy vs. FCFS in Heavy-Traffic (approximation).

5.2 Extensions

5.2.1 Modeling Extensions

When presenting the control problem for the two models, we restrict our attention to

simple settings that represent the general problem. One may attempt to extend these

settings in the following way:

1. Multiple processing routes: (refer to Section 2.4) The models may be generalized

to include more than two processing routes. Then, the optimality condition can be

expressed by ∏
i∈{1,..,M}

(Qi(t)) = 0, or equivalently
∧

i∈{1,..,M}

(Qi(t)) = 0.

where M is the number of processing routes.

Note that, in this setting, the proposed control policy should change to: At each

route, assign absolute preemptive priority to customers whose service was completed

in all other routes.

2. General arrival and service distribution and more general policies: The strategy of

the proofs is designed to extend to general service time distributions and a non-

preemptive discipline. However, these extensions have not been established as of

this time.

3. General Fork-Join networks: (refer to Section 3.4) The models presented in our

work consist of a single join node at the departure end of the system. We expect

that this model can be extended to a general fork-join network with multiple fork

and join constructs, such as in Cohen, Mandelbaum and Shtub [1].

4. Jackson network routes: The models may be combined and extended in such a way

that each processing route will represent a General Jackson Network with Multi-

server stations, as assumed in Section 2.3. It is our belief that the proposed priority

policy: At each route, assign absolute preemptive priority to customers whose service

was completed in all other routes, will be optimal in this broad setting.
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5. Heterogeneous customer population: The models presented here assume single type

customers, such that all jobs share the same precedence constraints, interarrival

time distributions and service time distributions. However, these properties may

vary across different job types in the Heterogeneous case. As mentioned in Nguyen

[35], the setting where multiple customer types traverse possibly different routes

through the network, may cause a disordering phenomenon in which tasks overtake

each other.

5.2.2 The Halfin-Whitt Regime (QED)

The Halfin-Whitt regime [36] (also known as the QED regime), one increases the number

of servers at the rate of N, N ↑ ∞. In this setting, the disordering effect under the

diffusion scaling will not be negligible, as in the multi-server case in the conventional

Heavy-Traffic. Note also that, in this setting, customers bypass each other within the sta-

tions due to the servers random service times, and therefore the disordering phenomenon

is uncontrollable. Such models give rise to the question: Do extreme cases of multi-server

stations present a disadvantage in parallel processing systems in general and fork-join

networks in particular?. This question may arise in wide variety of applications; one ex-

ample appears in Kaplan [5] and [6] in the context of intelligence processing networks. In

this context, the information flow between many intelligence agents (servers) and centers

(stations) can be modeled by a Fork-Join network in the Halfin-Whitt regime.
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APPENDIX

A Simulation Tool

The objective of the simulation design is to implement a generic flexible infrastructure

for the simulation, which can be used for wide variety of systems’ models. This objective

can be elaborated to the following demands:

• The simulation structure and time advancement mechanism should be insensitive

to the implemented network structure and parameters.

• The simulation should support any network structure imposed by the system’s

model.

• The simulation should support wide variety of routing and scheduling mechanisms.

• The simulation should support wide variety of sample mechanisms (distributions).

• The simulation should allow long periods of operations for complex models and still

provide full system’s and patients’ history throughout the operation period.

Another important aspect in simulation design is automation. In order to calculate and

compare system performance for a wide variety of routing policies in finite time, we ought

to implement an automated ability to run, collect data and analyze several policies in one

simulation batch.

The proposed simulation Design is composed of three layers, as can be seen in Figure

A.1. We shall describe them from top (Automation and management layer) to bottom

(Network simulation layer).

Automation and management layer: This is the external green layer in Figure A.1.

The purpose of this layer is to automatize the process of building different scenarios,

running them through the network simulator (see below), collecting the appropriate in-

formation and analyzing it. Typical management layer operation includes reading the

user scenarios requirements from the Main Run process. Scenario parameters include-

system definition (in M.file format, see Scenario simulation layer below), requested prior-

ity discipline and routing algorithm. The Main Run feed each scenario to the Sym Main

process in the Scenario simulation layer which run the simulation. After all the scenarios
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Figure A.1: Simulation Infrastructure

are processed Main Run activate the Analyze Main process which analyze the simulation

data. Due to the computer memory constraints all of the system’s and customers’ infor-

mation during network simulation is saved in excel format files (csv format), and then

can be filtered and analyzed by the Analyze Main. The Analyze Main process produce

and save all the system’s requested statistical data and charts for each scenario. In this

research the scenarios data was collected during a system’s operational time of 10,000

days, and was analyzed after reduction of the first 1,000 days as a warm-up period (in

order to reach steady state). The main processes (each one corresponds to the Matlab

file with the same name) in this layer are:

Main Run - This is the main M. (Matlab) file from which the simulation is executed. A

user inputs the requested batch of runs including systems, routing methods and priority

methods for each run. This batch of runs then passes on to be processed by the network

simulator sequently. There is no feedback information since the simulator information is

saved in the csv files in the computer Hard-Drive. The information for a typical batch of

runs may exceed 1-2 Gbyt.

Analyze Main - From this M.file the simulation analysis is executed. The user inputs

the batch of information to be analyzed, including systems, routing methods and priority

methods. This batch passes on to be processed by the Analyze Results sequently. The

analyzed information is then gathered and compared.
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Analyze Results - This M.file reads all the csv files of each scenario from the specified lo-

cation, filters and analyzes the information. The relevant information includes customers’

entrance time to each object (server/buffer) in the network, and the system occupancy

rate at each time point. From this we can calculate and compare means and variances of

LOS, waiting times for the transfer to the wards, wards occupancy rate, and so on.

Scenario simulation layer: This is the blue layer in Figure A.1. The purpose of this

layer is to prepare the requested scenario for the network simulator. The main process in

this layer is the Sym Main. This M.file gets the requested system, routing and priority

from the Main Run, loads the appropriate system data which is saved in Matlab workspace

file format (.mat), sets up the arrivals rate vector (which can vary with time), and the

simulation run time and warm-up time.

System definition (.mat file) includes:

• Defining the number of objects or nodes in the system network.

• Defining the role of each node - service station, buffer, entrance node, departure

node.

• Defining connections between the nodes with the help of two matrices. The first

matrix contains precedence constraints, and is denoted as “Fork-Join connections”.

The second matrix contains probabilities according to which routing is done, and is

denoted as “Jackson connections”.

• Defining for each service station the requested amount of servers, service time dis-

tribution, mean and variance.

Network simulation layer: This is the purple layer in Figure A.1. This layer is the

stochastic network simulation for specific scenario and system. It receives the requested

scenario and system, simulates system operations throughout long periods of time and

saves system information in the csv format on the computer HD.

The simulation operates according to the event-driven methodology. When we define

event as the departure time of a customer from one of the system service stations or from

the entrance node (which means entrance to the system). The simulation layer receives

system parameters, including number of nodes in the system network - node may be a

service station or a buffer, and the connection between the nodes by routing matrices

(Fork-Join and/or Jackson). At each time step at the simulation there occurs a transition

of customers between nodes. There may be two kinds of transitions - customer leaves
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service station (after service completion) and enters the following buffer (or buffers for

fork nodes), or customer enters service in some station and leaves the preceding buffer.

After finishing all the current customer transitions, the event vector is updated and the

next time step is set to be the minimum time event (more detailed definition can be found

below).

Let us define e = [e1, . . . , eN+1] to be the event vector, where N is the number of service

stations in the system. ei ∀i ∈ {1, . . . , N} denote the next customer departure time

from station i, and eN+1 denote the next departure time from the entrance node - which

mean the next customer entrance time to the system. Now let’s describe the simulation

operation’s algorithm at each time step:

• Step 1 - Find the customer whose departure4 time is the current step time. There will

be only one departure - the probability of two simultaneous departures is negligible.

Send the departing customer to Routing Manager in order to route him to the

appropriate buffer or buffers5.

• Step 2 - Check all service stations for idle servers - if there is at least one idle server,

try to get another customer to be served. The non-idle condition and priority

disciplines are carried out by the Get Client From Buffer module. Every customer

accepted for a service in one of the service stations, is assigned to the Server module

for calculation of his service duration.

• Step 3 - Update the system and customer’s data and save it to the HD when needed

(if the data exceed certain size on disc). Calculate the new event vector6 e and

define next step time as min(e).

The advantage of this methodology is that the time steps are set adaptively to the system,

in contrast to fixed-step time, which may miss some of the system events if they are too

dense in time. In addition, it can be seen that this simulation implementation is insensitive

to the requested network structure and parameters. Let us describe the main processes

in this layer:

Net Analyze - This is the main simulation engine. Its operation is described above (by

the above three steps). This module’s input is the scenario and system received from Sym

4Remember that customer arrival to the system is defined as a departure from the entrance node.
5A customer may be routed to more than one buffer at once in the case of fork nodes.
6Collect from all of the service stations the next customer departure time- ei ∀i ∈ {1, . . . , N}, and

from the entrance node the next customer arrival- eN+1.
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Main, and his output is the csv files which are created throughout the entire simulation’s

operation (this way clearing computer memory during the run) and contain the system

and customers information.

Routing Manager - This module is in charge of the routing discipline. The input to this

module is the departure client and the station he departures from. Then the routing is

performed according to Fork-Join discipline and/or Jackson discipline or by some hard-

coded algorithm - by this variety of options we can perform any routing discipline needed

including Feedback and close-loop algorithms. The change in customers location in the

network is then updated in the network data structure.

Get Client From Buffer - This module is in charge of the non-idle condition and the

priority discipline, and its job is to move customers from the preceding buffers to the

service stations, when it is possible. As in the Routing Manager, the priority discipline

can be any given algorithm, including close-loop and time-varying algorithms. In addition

every given station in the system can have its own different priority discipline.

Server - This module generates an appropriate distribution sample for customers’ service

duration. The input to this module is the server’s properties, including distribution type,

mean and variance parameters. In our implementation the module can generate samples

for exponential, deterministic and log-normal distributions.
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  תקציר המחקר

  

 מבוא .1
  

למספר ) Fork( הינן רשתות בהן לקוח הנכנס למערכת השירות מתפצל Fork-Joinרשתות 

קוח ת ויציאת הלו המוגמרמטלותה) Join(מיזוג , מטלות המבוצעות במקביל ובטור עד לסיום כל המטלות

,  ומערכות כגון מערכות מחשוב מקבילישימושיםרשתות אלו הינן ייצוג טבעי למספר רב של . מהמערכת

ניהול ארגונים גדולים ובפרט ניהול , מערכות ייצור, תקשורת של חבילות מידע דרך שרתי אינטרנט

ת בריאות במערכו,  אכן,מערכות שירות ומערכות בריאות, יםקט של מספר רב של פרוימחקר ופיתוח

צול ומיזוג של מטלות בכלל ובבתי חולים בפרט ניתן לראות דוגמאות רבות של תהליכים בהם מעורבים פי

 החלטה על אשפוז מטופל בחדר מיון מערבת מספר רב של גורמים והחלטות כגון ,למשל .ואינפורמציה

  .תבדיקת רופא והיסטוריה רפואי, בדיקת אחות, צילומי רנטגן, פענוח בדיקות דם

ערכית ללקוח הנכנס לשירות ולכן הן -חד-במודלים הנחקרים בעבודה זו המטלות משויכות חד

 במובן שמיזוג העבודה המוגמרת ויציאת הלקוח מתאפשרת רק אם כל ,)Non-Exchangeable(ייחודיות 

נס  כאילו כל לקוח הנכמחשהתכונה זו ניתנת לה. המטלות המשויכות אליו סיימו שירות ומוזגו יחדיו

 ומבחין ביניהן לבין מטלות של לקוחות מטלותיולשירות מקבל מספר זיהוי ייחודי המוצמד לכל אחת מ

,  ניהול ארגונים,תקשורת,  ומערכות רבות כגון מערכות מחשובשימושיםתכונה זו מאפיינת . אחרים

כות ייצור בהם  למערכות עם לקוחות ייחודיים היא מערהדוגמה הנגדית. מערכות שירות ומערכות בריאות

אנו , מפס ייצור אחרכל החלקים היוצאים מפס ייצור מסוים הינם זהים וניתנים למיזוג עם כל חלק אחר 

  ).Exchangeable(נקרא ללקוחות אלו לקוחות לא ייחודיים 

במודל הכולל לקוחות ייחודיים באה לידי ביטוי בעיה של חוסר סנכרון בסדר יציאת מטלות 

תופעה זו גוררת הצטברות מטלות הממתינות למיזוג בתורי , בוד מקבילי שוניםבערוצי עי) לקוחות(

, )תורים עבור מטלות שסיימו עיבוד ומחכות למיזוג עם מטלות בערוצי עיבוד מקבילים אחרים(הסנכרון 

. ירידה בתפוקת המערכת ואי ניצול נכון של פוטנציאל התפוקה של השרתים בנקודות המיזוג של המערכת

מכיוון שאין משמעות לסדר (במודלים הכוללים לקוחות לא ייחודיים שתופעה זו אינה קיימת כמובן 

זהות  ( בכל זמןחייב להיות ריקותכונה המאפיינת מערכות אלו היא שאחד מתורי הסנכרון ) הלקוחות

  .)התור הריק הינה משתנה מקרי

קוחות ייחודיים במובן של  כללי עם לFork-Join   הגדרנו בעיית בקרה סטוכסטית עבור מודל 

הוכחנו כי מדיניות בקרה אופטימאלית עבור . קבלת תפוקת מערכת מכסימלית לכל אינטרוול זמן סופי
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, מקיימת תכונה האנלוגית לחלוטין לתכונה שתוארה עבוד מודל עם לקוחות לא ייחודייםו , קיימת זובעיה

כמו כן הוכחנו כי .  בכל זמןריקורי הסנכרון כלומר מדיניות בקרה הינה אופטימאלית אם ורק אם אחד מת

 עבור תנאי אנלוגי לתנאי המתקיים במודל עם בעומס גבוה מדיניות בקרה הינה אופטימאלית אסימפטוטית

  .לקוחות לא ייחודיים

 עבור שני מודלים  בעומס גבוה מדיניות אופטימאלית אסימפטוטית קיום שלהוכחנובהמשך 

  . מערכות שירותהמייצגים משפחות רחבות של 

  

כוללת הבקרה אסימפטוטית אופטימלית לרשת  .2
 תחנות מרובות שרתים

  

 ניתחנו בעיית בקרה של רשת הכוללת מספר תחנות שירות בשני ערוצי בחלק זה של המחקר

לקוחות  ,ניתן לראות כי במערכות מסוג זה. כך שכל תחנה מורכבת ממספר שרתים, שירות מקביליים

 תהליך יציאת ,עקב כך. עוקפים את חבריהם בתוך תחנות השירות כתוצאה מתהליך השירות הסטוכסטי

) הראשון שמגיע לתחנה נכנס ראשון לשירות (FCFSהלקוחות בשני הערוצים המקביליים תחת מדיניות 

 תחת עומס ,הוכחנו כיעבור מודל זה . איננו מסונכרן ותנאי האופטימאליות איננו מתקיים עבור מדיניות זו

כלומר תחת מדיניות זו בעומס גבוה תור , FCFS מתקיים תנאי האופטימאליות האסימפטוטית עבור ,גבוה

קצב הכניסה לתחנה וקצב השירות בתחנה בגבול  (1- כשהנצילות שואפת ל0-הסנכרון המינימלי שואף ל

 לקוחות ייחודיים לביצועי מערכת תוצאה זו מצביעה על שקילות של ביצועי המערכת עם. ) הינם זהים

  . ייצור עם לקוחות לא ייחודיים

  

כוללת הבקרה אסימפטוטית אופטימלית לרשת  .3
 הסתברותימנגנון החזרה לאחור 

  

שבה מאפשרים החזרה לאחור של לקוח  של המחקר ניתחנו בעיית בקרה של רשת בחלקו השני

 שמושים תכונה זו מאפיינת ).תנה ברנולירלת משהג(לתחילת ערוץ שירות מקבילי בהסתברות מסוימת 

לאחר , פיתוח/ ייצור /  ביצוע בדיקת איכות בסוף תהליך שירות -לדוגמה, ומערכות רבות בעולם האמיתי

תכונה זו . בדיקה זו מתקבלת החלטה האם המטלה בוצעה כשורה או שנדרש לבצעה שוב מההתחלה

י חולים בהם מבוצעות בדיקות קפדניות של כל מאפיינת פעמים רבות מערכות רפואיות ותהליכים בבת

ניתן לראות שבמערכות מסוג זה סדר הלקוחות . אבחון רפואי, בדיקת דם, תהליך כגון פענוח צילום רנטגן
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י מנגנון ההחזרה לאחור "עקב תופעת הערבוב המתבצעת ע,  שירות מקביליים שונים הוא שונהבערוצי

  .ההסתברותי

. על כן בעיה זו קשה יותר לפתרון,  איננו אופטימאלי אסימפטוטיתFCFSכי  ניתן לראות עבור מודל זה

  :זו הגדרנו את מדיניות הבקרה הבאהבעבודה 

 הסתיים בכל שירותובכל ערוץ ניתן עדיפות עליונה לשירות לכל לקוח ש

  .ערוצי השירות האחרים

אי האופטימאליות  מתקיים תנ, תחת עומס גבוה,הוכחנו כיעבור המודל הנידון ומדיניות זו 

 כשהנצילות שואפת 0-כלומר תחת מדיניות זו בעומס גבוה תור הסנכרון המינימלי שואף ל, האסימפטוטית

תוצאה זו מצביעה על שקילות של . )קצב הכניסה לתחנה וקצב השירות בתחנה בגבול הינם זהים (1-ל

 כמו כן תוצאות . לא ייחודייםביצועי המערכת עם לקוחות ייחודיים לביצועי מערכת ייצור עם לקוחות

 וזמן השהיה בתורי הסנכרון 33%-סימולציה הראו כי מדיניות זו משפרת את זמן השהיה במערכת ב

  .66%בכמעט 

  

 כיוונים להמשך מחקר .4
  

אנו הגבלנו את עצמנו , הצגנו מודלים פרטניים המייצגים משפחות כלליות של רשתותבעבודה זו 

ניתן .  הצגת ופתרון בעיית האופטימיזציה האסימפטוטית בעומס גבוהאילוצים מסוימים שייפשטו אתל

  :להרחיב את המודלים המוצגים באופנים הבאים

ניתן להרחיב את מודל הרשת למודל הכולל מספר סופי כלשהוא של רשתות שירות  •

 .מקביליות

 עדיפויות ללקוחות  מתןניתן להרחיב את המודל להתפלגות שירות כללית ולמדיניות  •

-Non(אינה מאפשרת הפסקת שירות ללקוח שכבר נמצא בעמדת שירות ש

Preemptive.( 

 כללית יותר הכוללת מספר רב Fork-Joinניתן להרחיב את מודלי הרשתות לתצורת  •

 .של נקודות פיצול ונקודות מיזוג מטלות

ולהרחיבם כך שכל ערוץ ) 3- ו2סעיף (ניתן לאחד את שני המודלים שהוצגו להלן  •

 .Jacksonקבילי ייצג רשת שירות מ

 תהיה אופטימאלית אסימפטוטית בעומס גבוה לכל 3 המדיניות המוצעת בסעיף אנו מאמינים כי

  .הרחבות המודל המוצעות להלן
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ניתן להרחיב את המודל כך שיכלול מספר רב של סוגי לקוחות עם מסלול והתפלגות  •

 .שירות ייחודית לכל סוג לקוחות

 בתחום לית שהוגדרה בעבודה זו תחת עומס גבוהאדוק את בעיית הבקרה האופטימ כמו כן אנו מציעים לב

 כך שמספר השרתים שואף 1-במודל זה הנצילות שואפת ל. Halfin-Whitt שונה הנקרא תפעולי

 בעיית ,תחת מודל עומס גבוה. לאינסוף ובגבול קצב הכניסה לתחנה וקצב השירות בתחנה הינם זהים

נה פתירה ועל כן לא קיימת מדיניות המביאה את ביצועי המערכת עם לקוחות הבקרה המוגדרת כאן אי

מעניין לבדוק האם בעיית הסנכרון הנגרמת . ייחודיים לביצועי מערכת ייצור עם לקוחות לא ייחודיים

, עבור רשתות עיבוד מקבילי בהן מספר השרתים בכל תחנה הוא מוגבלבמודל זה מצביעה על יתרון 

  . רון לגודלכלומר קיים חיס
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