
Optimal Staffing of Systems with
Skills-Based-Routing (SBR)

Zohar Feldman

Optimal Staffing of Systems with
Skills-Based-Routing

Research Thesis

Submitted in Partial Fulfillment of the

Requirements for the

Degree of Master of Science in
Operations Research and System Analysis

Zohar Feldman

Submitted to the Senate of the Technion -
Israel Institute of Technology

Heshvan, 5769 Haifa Nov, 2008

This Research Thesis was conducted under the supervision of Professor
Avishai Mandelbaum in the Faculty of Industrial Engineering and Man-
agement. I am deeply grateful to him for introducing me to the fascinating
world of research, and for all of the many things that he taught me in the
process. Working with him has been a great privilege and a truly exciting
experience.

I would also like to thank Professor Arkadi Nemirovski from the Georgia
Institute of Technology for his generous help and useful advice.

To my dear family and my precious wife, Lilach.
Your love and support are invaluable to me!

Finally, The Generous Financial Help Of The Technion Is Gratefully Ac-

knowledged.

Contents

List of Symbols 2

List of Acronyms 3

1 Introduction 4

1.1 Literature Review . 5

1.2 Thesis Outline . 10

2 The Staffing Problem 12

2.1 Model Formulation . 12

2.2 Stochastic Approximation . 14

3 The Staffing Algorithms 17

3.1 Cost Optimization . 20

3.2 Constraint Satisfaction . 22

3.2.1 Solution Feasibility . 26

3.3 Calculating the Bound M2
∗ . 27

3.4 Convexity . 28

4 Experimental Results 32

4.1 V Model . 32

4.2 N model . 34

4.2.1 Static Priority control . 34

4.2.2 FQR control . 40

i

4.2.3 Deterministic Service Times . 40

4.2.4 Log-Normal Service Times . 42

4.2.5 Adding Impatience . 46

4.3 M Model . 46

4.4 Time-varying Model . 51

4.5 Realistic Example . 53

5 Staffing Optimizer Tool 69

5.1 Simulation Description . 69

5.2 MATLAB GUI . 75

5.2.1 Creating a Service Model . 75

5.2.2 Running Simulation and Viewing Results 78

5.2.3 Running Optimization Algorithms 81

6 Future Work 86

References 87

ii

List of Figures

1 The
∨

-design - Multiple Customer Classes and a Single Server Type 6

2 The
∧

-design - Single Customer Class and Multiple Server Skills 7

3 The Generalized M Model For 3 Classes 8

4 Arbitrary N Model . 30

5 Stability Conditions . 31

6 Schematic Representation of the V-model Settings 33

7 Performance Measures For V Model With Threshold-Priority 35

8 Feasible Region and Optimal Solution . 36

9 Schematic Representation of the N-model Settings 36

10 Performance Measures for N model Case With Static Priority 38

11 Feasible Region and Optimal Solution . 39

12 Cost Function for N model Optimization Formulation 39

13 Performance Measures for N model Case With FQR 41

14 Feasible Region and Optimal Solution for Target Tail Probability 42

15 Performance Measures for N Model Case With Deterministic Service Times 43

16 Performance Measures for N Model Case With Log-Normal Service Times . 44

17 Feasible Region and Optimal Solution Log-Normal and Deterministic Service 45

18 Schematic Representation of the N Model Settings With Abandonments . . 45

19 Performance Measures for N Model Case With Abandonments 47

20 Feasible Region and Optimal Solution for Target Abandonment Probability 48

21 Cost Function for N Model Optimization Formulation With Abandonments 48

iii

22 Convergence To The Optimal Solution . 49

23 Schematic Representation of The M Model Settings 50

24 Feasible Region and Optimal Solution . 50

25 Schematic Representation of The Time-Varying N-model Settings 52

26 Arrival Rate and Staffing Function for The Time-Varying Example 54

27 Delay Probability and Tail Probability for The Time-Varying Example . . 55

28 Utilization Profile and Customer Distribution for The Time-Varying Example 56

29 Call Volumes to a Medium-Size Call-Center 57

30 Service Distributions . 59

31 Patience Distributions Analysis . 60

32 Staffing Levels for Satisfying Hourly Delay Probability 61

33 Delay Probability . 62

34 Average Wait . 63

35 Staffing Levels for Satisfying Hourly Delay Probability 64

36 Delay Probability . 65

37 Average Wait . 66

38 Abandonment Probability for Hourly Service Levels 67

39 Abandonment Probability for Daily Service Levels 68

40 Staffing Levels for The Waiting Cost Optimization 69

41 Average Wait for The Waiting Cost Optimization 70

42 Main Screen of Staffing Optimizer GUI . 75

43 Classes Definition Screen . 76

iv

44 Pools Definition Screen . 77

45 Connection Definition Screen . 78

46 Summary Settings Screen . 79

47 Loading Simulation Screen . 80

48 Sample Plots of Simulation Results . 82

49 Sample Plots of Simulation Results . 83

50 Defining Optimization Parameters . 85

List of Tables

1 Cost Optimization Algorithm . 21

2 Constraint Satisfaction Algorithm . 25

v

Abstract

In this work we optimize operational costs of systems with Skills-Based-Routing
(SBR). In such systems, heterogeneous customers are routed to different types of
servers, based on the servers’ skills. In the settings we consider, each server skill is
associated with a corresponding cost, and service level can either appear as a strong
constraint or incur a cost.
This work is motivated mainly by Telephone Call Centers, where the term SBR
is taken from. The SBR framework, however, arises in other contexts of service
systems, for example technical support providers, banking systems, health-care etc.
The solution we propose is based on the Stochastic Approximation (SA) approach.
Since SBR models are analytically intractable in general, we use computer sim-
ulation to evaluate service-level measures. Under the assumption of convexity of
the service-level functions in staffing levels, SA provides an analytical proof of con-
vergence, together with a rate of convergence. We show via numerical examples
that, although the convexity assumption does not hold for all cases and all types of
service-level objectives, the algorithm still succeeds in identifying the optimal solu-
tion. We also apply our algorithms within time-varying environments, in particular
to a realistic Call Center.

1

List of Symbols

λi Arrival rate of Customer Class i

DPi Patience distribution of Customer Class i

DSij Service time distribution of Customer Class i by Servers Pool j

X ∼ D X has distribution D

Nj Number of servers in Server Pool j

Nj,t The number of server in Server Pool j at time interval t

N Staffing levels vector N = (N1, . . . , NJ)

PN {A} Probability of the event A under staffing levels N

T Number of iterations

γ Step-size

ΠX (x) Projection of the point x onto the set X

[x]+ Positive part of x, i.e. the maximum between x and 0

dxe Smallest integer that is larger than x

∂f (x) Sub-differential of the function f - the set of all sub-gradients of f at point x

PX (y) Prox mapping

V (x, y) Prox function

d (x) Distance generating function

2

List of Acronyms

SBR Skills Based Routing

ISA Iterative Staffing Algorithm

LP Linear Programming

QIR Queue-Idleness-Ratio

FQR Fixed-Queue-Ratio

SP Static Priority

TP Threshold Priority

FSF Fastest Server First

SA Stochastic Approximation

SAA Sample-Average Approximation

SL Service Level

SRS Square-Root Staffing

3

1 Introduction

Call centers, and service systems in general, give rise to many operational problems,

one of which is the Staffing Problem: under an existing operational reality, finding the

minimal-cost staffing levels that is required to meet some given Quality of Service (QoS)

constraints. This problem has received a great deal of attention over the years, as it

rightly deserves: staffing costs are estimated at about 70% of a call center’s operational

costs. Staffing ”wisely” can thus result in substantial savings while achieving operational

objectives.

In the modern call center scene, customers are distinguished by the type of service they

require. For instance, customers might be associated with different priority levels (VIP vs.

Members) or different functional requirements (technical support vs. billing). Naturally,

call centers address this situation by employing various types of servers, with varying sets

of skills. This multi-class customers , multi-type servers system is often referred to as a

system with Skills Based Routing (SBR) (See [7]). Due to model complexities, there exists

only limited amount of exact analysis for specific SBR designs while many works address

the general model heuristically. The staffing problem then becomes an integral part of

the general problem of designing a call center with SBR. The three major problems when

implementing SBR systems are: design (determine server types), staffing (determine

staffing level of each type) and control (determine how customers are routed to servers).

Although interrelated, these problems are typically addressed separately because of the

complexity involved in addressing all three jointly.

In our research, we focus on the problem of staffing. Specifically, we rigorously relate the

staffing problem of an SBR system to the formal framework of Stochastic Approximation

(SA), as proposed in Juditsky, Lan, Nemirovski and Shapiro [15].

This relation enables the solution of SBR staffing, in the following sense:

1. An SA-based algorithm is proposed for a solution.

2. Under appropriate theoretical conditions, the algorithm converges at rates that were

established in [15].

3. In practical conditions, an implementation of the algorithm yields solutions to two

versions of the staffing problem: cost optimization and constraint satisfaction.

4

1.1 Literature Review

The constantly increasing body of literature on SBR systems includes exact analysis as

well as asymptotic and heuristic analysis.

Gans, Koole and Mandelbaum [7] review the state of research on Telephone Call Cen-

ters. They explore the operational aspects and complexities associated with Call centers,

including forecasting, time-varying arrival rates, uncertain arrival rates, staff scheduling

and rostering, SBR and more. They also survey academic research devoted to the man-

agement of Call Centers operations, and outline important problems that have not been

addressed.

A more recent survey is Aksin, Armony and Mehrotra [1]. Here the focus is on the multi-

disciplinary nature of operational problems that arise in Call Centers.

In what follows, we mention only a selective set of related research that affected this

current work, either in defining the research problem or in drawing ideas to solve it. For

additional details, readers are referred to the surveys [7, 1].

Gurvich, Armony and Mandelbaum [11] explores the
∨

-design, in which there are J

customer classes, each having Poisson arrivals at rate λj, j = 1, . . . , J and N statistically

identical servers, all capable of serving all classes of customers with a common service-time

distribution exp (µ).

In this work, Gurvich et al. address the following joint problem of staffing and control:

maximize profit, subject to Quality of Service (QoS) constraints that are expressed as a

uniform upper bound on the fraction of class i customers who wait more than Ti units of

time before starting service. There are also customer classes that do not have a service

level constraint associated with them: they are referred to as best effort (and WLOG

there is only one such class which is class J). Assume WLOG that T1 < T2 < . . . < TJ−1,

so that the lower the index the stricter is the constraint. In addition, another global

constraint is imposed on the Average Speed of Answer (ASA) of the entire customer

population. Gurvich et al, characterize the routing and staffing schemes that, under some

assumptions, are asymptotically optimal in the limit, as the arrival rate and the number of

servers increase to infinity. The suggested staffing rule is the Single Class Staffing (SCS)

rule; namely, finding the number of agents required to satisfy the global ASA constraint

5

Figure 1: The
∨

-design - Multiple Customer Classes and a Single Server Type

…

N

�1 �2 �J

µ

approximately, using a simple M/M/N model. The corresponding control policy is the

Idle Server Threshold Priority (ITP) scheduling: it assigns the head-of-the-queue class i

customer upon customer arrival or service completion to an idle server if and only if:

1. Queue j is empty for all higher priority classes j (∀j ≤ i) (those with stricter con-

straints on their service levels)

2. The number of idle servers exceeds a threshold Ki, where 0 = K1 ≤ K2 ≤ . . . ≤ KJ

Once the number of agents N is determined using SCS, the thresholds {Ki} are calculated

using a recursive formula.

Armony and Mandelbaum [2] provides exact and asymptotic analysis of the inverted-
∨

design (also denoted
∧

-design), in which there is a single customer class and K server

skills, each skill k has Nk servers in its pool, k = 1, . . . , K; See Figure 2. Service times

are assumed to be exponential, where the service rate µk depends on the skill type k of

the particular server. Assume WLOG that that µ1 < µ2 < . . . < µK . Customers arrive

6

according to a Poisson process with arrival rate λ.

Figure 2: The
∧

-design - Single Customer Class and Multiple Server Skills

µK µ1 µ2

N1

�

N2 NK …

Armony and Mandelbaum explores the following joint problem of staffing and control:

minimize staffing costs of the form Cp(N) = c1 · Np
1 + . . . + cK · Np

K , where N =

(N1, N2, . . . , NK) is the staffing level vector, subject to the constraint that the fraction of

delayed customer should not exceed some given threshold α.

Regardless of the staffing costs, the asymptotic optimal control is identified as the Fastest

Server First rule (FSF), assigning any newly arriving or waiting customers to the fastest

available server. Indeed, separation of the control from staffing is a central finding in [2].

For p > 1, the optimal staffing level is proportional to the vector
(
µ1

c1
, µ2

c2
, . . . , µK

cK

)
and is

determined by
K∑
k=1

Nkµk = λ+ δ
√
λ, (1.1)

where δ = β
√
µ1, β deduced from the Halfin-Whitt function α =

[
1 + β · φ(β)

ϕ(β)

]−1

, and µ1

is the service rate of the slowest server skill. This formulae is in some sense the analog of

the SRS for the
∧

-design. Note that in case p = 1, i.e. linear staffing costs, the control

is to choose a single pool having the largest value of µi/ci if it is also the globally slowest

7

Figure 3: The Generalized M Model For 3 Classes

λ2 λ1

N1 N2 N3

λ3

N4 N5

type; otherwise it is unclear what to do.

Gurvich and Whitt, in [12] and [13], propose a family of Routing controls called Queue-

Idleness-Ratio (QIR) rules. A special case of these rules is the Fixed-Queue-Ratio (FQR)

rule, According to which, a newly available agent next serves the customer from the head

of the queue of the class whose queue length most exceeds a specified proportion of the

total queue length. Similarly, an arriving customer is routed to a pool of servers in which

the number of idle servers most exceeds a specified proportion of the total number of

idle servers. Under some regularity conditions on the network structure, [12] shows that

FQR gives rise to state-space collapse which facilitates the establishment of asymptotical

results. In simplified but natural settings, FQR is shown to provide a solution to the joint

problem of design, staffing and routing in a nearly optimal manner. Starting with the

design phase, the general model is reduced to a concatenation of M systems (termed the

generalized M model), establishing a diminishing returns property, i.e. moderate cross-

training is sufficient to make the call center work as efficiently as a single-pool system.

See Figure 3 for an example of a generalized M Model with three customer classes. In

the staffing phase, an aggregate approach is carried out to determine the total number of

required servers. LP is then used to allocate the total number of servers to service pools,

each with a designated skill set.

8

In addition to analytical and asymptotic analysis, there is an extensive amount of work

that tries to address the staffing problem heuristically, and/or with the help of simulation.

Wallace and Whitt [19] present a heuristic for staffing call centers with SBR. The follow-

ing settings are considered: there are n customer classes, C servers, all serving customers

according to their (not necessarily identical) set of skills, but all at rate µ independently

of the customer type; finally, there are K extra waiting spaces. One major result demon-

strated in [19] is that little flexibility goes a long way: with a limited amount of

cross-training, well-designed SBR can perform nearly the same as if all agents have all

skills. (This result was supported later on by the mathematical analysis in Bassamboo et

al. [4]). For example, their experiments with simulation revealed that the performance

of a system in which agents have 2 skills improve tremendously compare to a system in

which all agents have only a single skill. However, the contribution of adding a skill for all

agents becomes rather negligible beyond the second skill. Wallace and Whitt [19] apply

the limited flexibility principle in order to develop a full algorithm to both route and staff

call centers with SBR. Their objective is to find the minimal values of C and K, subject

to some per-class QoS constraints of two types:

1. The blocking probability of type-k customer should not exceed εk, k = 1, . . . , n.

2. The conditional probability that type-k customer waits more than τk time units,

given that he was not blocked, should not exceed δk, k = 1, . . . , n.

There is also a constraint in [19] on the number of skills that each agent enjoys. The

general scheme of the solution is given as follows:

The algorithm in [19] finds initial values for C and K using the M/M/c/k model, with

the total aggregate arrival rate λ = λ1 + · · ·+ λn. Then, the skills and priority levels for

the C agents are determined. First, the number of agents Ck having a skill k as their first

priority is determined for all k = 1, . . . , n, so that
∑n

k=1Ck = C and Ck = Rk + β ·
√
Rk,

where Rk is the per-class offered load. Second, the number of agents Ck,i having skill k

as a primary skill and skill i as their secondary skill is obtained using Ck,i = Ck·Ci
C−Ck

. The

lower priority skills of each agent is chosen in a more or less arbitrary manner. At the

proceeding steps, a feasible solution is obtained by increasing C and K and checking the

feasibility of the solution using simulation: first, C is iteratively incremented, setting the

skills and priorities according to the extent of constraint violation, i.e. the first priority

9

skill is the skill for which the difference between the target and service level is the highest,

the second priority skill is the skill with the second highest value and so on. Once C is

found, K and C are incremented until a feasible solution satisfying both constraints is

obtained. At last, a refinement stage is applied to improve the solution by performing

local search.

The proposed control is Static Priority (SP) defined by the prioritized skills of the servers:

arriving calls of class k are routed to a server that has a primary skill k and has been idle

for the longest time since service completion. If all agents in this group are occupied, the

customer is routed to the group of agents whose skill k is their secondary skill. Again, a

server with the longest idle time is chosen and so on. If none of the servers are available,

the customer is queued. When a server becomes idle, he visits the queues of all classes

feasible for his skills in the order of the agent’s priority levels. Wallace and Whitt [19]

shows by simulation experiments, that their joint solution for routing and staffing is nearly

the same as if all agents had all skills and therefore it is near optimal.

Additional relevant works include [3], which identifies an optimal shift plan satisfying

some given service level constraints. Namely, [3] finds the required number of servers in

each shift, given a set of admissible shifts by applying the Cutting-Plane method and

integer programming, where the relevant service level is calculated by simulation instead

of analytical expressions.

1.2 Thesis Outline

In this work, we find optimal staffing levels in systems with SBR. In our settings, heteroge-

nous customers are routed to appropriate skilled server according to some pre-specified

routing control.

We define two different optimization formulations. In one, we find the minimal cost

staffing levels whereas service level appears as a hard constraint that must be satisfied.

In the other formulation, service levels incur costs. We thus try to identify the staffing

levels that minimize the total operational costs.

Due to the analytical complexities of SBR models, it is impossible to calculate service

levels for any configuration and staffing levels. Instead, we use simulation to evaluate

10

these values. The greatest advantage of using simulation is its ability to support complex

models that capture reality far better than simplifying analytic models. Complicated fea-

tures such as time-varying rates, general distributions and even uncertainty of parameter

values can be accommodated in simulation quite easily.

On the other hand, the advantage of analytical models over simulation is their ability to

provide insights as they typically provide closed-form expressions for the measures under

consideration as function of the model parameters and the decision variables. Attaining

a solution can therefore be immediate, or at least much faster than using simulation.

We use the Stochastic Approximation (SA) approach (as in [15]) as the core mechanism of

our staffing algorithms. The SA approach is based on a Monte-Carlo sampling technique

mimicking sub-gradient descent methods. To this end, we must make the assumption

that the service level functions that we consider are convex in the staffing levels. An

alternative approach, that was traditionally considered to produce superior performance

over the SA method, is called the Sample Average Approximation approach (SAA). SAA

approximates the stochastic programming function by averaging generated samples and

performing some numerical procedure. However, in a recent work by Juditsky, Lan, Ne-

mirovski and Shapiro [15], a modified SA is introduced and shown to be competitive and

even outperform SAA.

This work is organized as follows. In §2 we introduce our model for an SBR service system

and formulate corresponding optimal Staffing problems. We also describe in general the

SA approach with some modified and improved procedures that we use in our algorithms.

We describe in details our proposed SA-based solution in §3, presenting our algorithms

and sub-routines. We also provide a proof of convergence stemming from Stochastic Ap-

proximation theory, and propose ways to calculate the necessary inputs for the algorithms

in order to guarantee desired accuracy. Although we do not provide theoretical proof for

convexity in the general case, we characterize the conditions under which it is more likely

to expect the service level functions to be convex. We also mention a family of SBR

systems, in which the convexity assumption was proven for several SL functions.

In §4 we describe a numerical study and demonstrate the accuracy of our algorithm in var-

ious settings of SBR systems and routing controls and also in time-varying environments.

Our experiments show that the convexity assumption is very reasonable in many cases

and, more importantly, even when the convexity assumption is refuted, our algorithms

11

still provide optimal solutions.

Finally, in §5 we describe a simulation tool for systems with Skills-Based-Routing, as used

in this work. We also provide a short manual for a Staffing Optimizer GUI, which can be

used for running simulation and optimizing SBR models.

2 The Staffing Problem

2.1 Model Formulation

The model we consider may be given in its most general form by the following description:

there is a set I of customer classes, and a set J of server pools (stations). We denote

the cardinality of the sets I and J by I and J , respectively. Customers of class i ∈ I
arrive according to a Poisson process with rate λi , and the time they are willing to wait

before abandoning is taken from a distribution DPi (the superscript P stands for Patience).

Servers of pool j ∈ J process customers of class i ∈ I according to a service duration from

distribution DSi,j (the superscript S stands for Service). Moreover, each pool of servers

is associated with a cost such that the staffing cost per time unit of a server from pool

j ∈ J is cj.

We consider two optimization problems: the Cost Optimization Problem and the

Constraint Satisfaction Problem.

The Cost Optimization Problem is formulated as follows:

min
N

cTN +
K∑
k=1

fk(N)

s.t. ATN ≤ b

N ∈ ZJ
+

(2.2)

Here fk(N) are service-level related average cost functions, where cost is measured per

unit of time. For instance, fk(N) = cabk λkPN {abk} is the average cost of abandonments

per unit of time, in case each abandonment of class k customer incurs a cost of cabk . An-

other example for such a function may be fk(N) = λkEN

[
cWk (Wk)

]
, which is the expected

cost of waiting time per time unit, given a cost function cWk for the waiting-time-in-queue

12

of class k customers.

In the Constraint Satisfaction Problem, one is interested in solving

min
N

cTN

s.t. fk(N) ≤ αk ∀k = 1, . . . , K

ATN ≤ b

N ∈ ZJ
+

. (2.3)

Here fk(N) denotes a Service Level Objective associated with a specific performance

measure and class of customers. The most common objective takes the form ”no more

than 20% of VIP customers are to wait more than 20 seconds” which can be expressed

mathematically by P {WV IP > 20sec} ≤ 0.2. Other typical constraints include perfor-

mance measures such as the probability of abandonment (P {Abandon}) or average wait

(E [Wq]). An important performance measure, rarely tracked, is the delay probability

(P {Wq > 0}).
In both problem formulations, we are allowing additional linear constraints on the staffing

levels. These constraints arise from operational issues such as servers’ availability, train-

ing considerations etc. For instance, if there are only 50 expert servers, one should

incorporate the simple constraint Nexpert ≤ 50. The requirement that at least 10%

out of the entire workforce should be trainees is translated into the linear constraint

Ntrainee ≥ 0.1 (Ntrainee +Nexpert), and so on. More importantly, we use these linear con-

straints to introduce Stability Conditions: in a multi-class, multi-pool system, this is the

set of necessary conditions for stabilizing the system, i.e. none of the queues explodes in

the long run. The contribution of these constraints is two-fold: first, the search space is

reduced and thus convergence is faster; second, the service level functions, reduced to the

restricted region, are more likely to be convex and thus the validity of the algorithm is

guaranteed. Indeed, if we look at a single-class single-pool queue (G/G/N), then service

level measurements such as the delay probability are convex on the set N ≥ R , λ
µ
, but

not on ZJ
+. Namely, the delay probability is essentially 1 for all staffing levels that are

smaller than the offered load R, and start decreasing in a convex manner from that point

and on. In our multi-class, multi-pool situation, we expect to have the same behavior

component-wise, i.e. if we examine the staffing levels in each pool while fixing the staffing

in all others, the delay probability of a certain class will equal to one for any staffing levels

13

that falls out of the ”stability” region, and decrease monotonically when increasing the

staffing in the specific pool in the ”stability” region. We provide examples in §4.

The main difficulty of solving (2.2) and (2.3) is the intractability of the functions fk. In-

deed, only for a scanty set of relatively simple models, with a specific design and control,

only few objectives similar to the ones described above can be calculated either analyti-

cally, numerically or asymptotically. One is then led naturally to using simulation.

The solution we propose is based on a Stochastic Optimization approach called Stochas-

tic Approximation (SA). We give a general outline of this approach and demonstrate its

application to our problem in the following section.

2.2 Stochastic Approximation

Our discussion follows the notations and assumptions in Juditsky, Lan, Nemirovski and

Shapiro [15].

The Stochastic Approximation (SA) approach uses Monte-Carlo sampling techniques to

solve optimization problems of the form

min
x∈X
{f (x) := E [F (x, ξ)]} , (2.4)

where X ⊂ Rn is a non-empty bounded closed convex set, ξ is a random vector whose

probability distribution P is supported on set Ξ ⊂ Rd and F : X × Ξ → R. It is further

assumed that for every ξ ∈ Ξ the function F (·, ξ) is convex and that for every x ∈ X, the

function F (x, ·) is integrable with respect to P.

The SA makes the following assumptions

Assumption 1. There is a way of generating iid samples ξ1, ξ2, . . . of the random vector

ξ

Assumption 2. There is an Oracle at our disposal that, for any ξ ∈ Ξ and x ∈ X,

returns the value of F (x, ξ) and a stochastic sub-gradient - a vector G (x, ξ) such that

g (x) := E [G (x, ξ)] is well defined and is a sub-gradient of f (·) at x, i.e. f (y) ≥ f (x) +

gT (x) (y − x) ,∀y ∈ X (g (x) ∈ ∂f (x)).

Throughout this section we use the notation ΠX (x) to denote the metric projection op-

erator onto the set X, that is ΠX (x) := arg minx′∈X ||x′ − x||.

14

The Classical SA algorithm [18] solves (2.4) by mimicking the simplest sub-gradient de-

scent method. The algorithm iteratively moves along the opposite direction of the gen-

erated sub-gradients with decreasing step-sizes to find the minimal valued solution. In

some sense, the decreasing step-sizes are used for masking the ”noise”of the sub-gradients,

when reaching to the proximity of the optimal value.

The Classic SA is defined by the iterative step

xj+1 := ΠX (xj − γjG (xj, ξj)) , j = 1, 2, . . . (2.5)

where, γj = θ
j

is the step size and θ is calculated based on the strong convexity constant c

of f (x) (that is, f (x′) ≥ f (x) + (x′ − x)T ∇1
2
c||x′− x||22,∀x, x′ ∈ X). The expected error

of the corresponding objective value is of order O (j−1). Namely, E [f (xj)− f (x̄)] ≤ L
j

for

some constant L and the minimizer x̄. However, the algorithm parameters are based on

knowing the value of the strong convexity parameter and performance is highly sensitive

to it (see for example [15]).

The Robust SA [17], [15] does not make any assumptions regarding strong convexity. It

maintains (2.5) intact:

xj+1 := ΠX (xj − γjG (xj, ξj)) , j = 1, 2, . . . (2.6)

and it produces x̂T as a final solution:

x̂T :=
1

T

T∑
t=1

xt. (2.7)

Here, γj ≡ θ√
T

is constant. Namely, instead of using decreasing step-sizes, the Robust

SA uses constant step sizes, and the final solution is the average over the trajectory

x1, . . . , xT
1. The expected error of the objective is higher than the Classis SA (O (T−0.5)),

but the result is insensitive to the choice of θ and makes no further assumptions beyond

convexity.

The Mirror Descent SA [15] is a generalization of the Robust SA. It is similar to the Robust

SA, except that it uses a Prox Mapping Px (y) in the iterative step instead of (2.6). The

Mirror Descent SA is defined by

xj+1 := Pxj (γjG (xj, ξj)) , j = 1, 2, . . . (2.8)

x̂T :=
1

T

T∑
t=1

xt, (2.9)

1In some variants, only part of the trajectory is used for final the solution

15

where the Prox Mapping is given by

Px (y) := arg min
z∈X

{
yT (z − x) + V (x, z)

}
(2.10)

The function V (x, z) from (2.10) is called the Prox function and is associated with a

distance generating function d : X → R as follows:

V (x, z) := d (z)−
[
d (x) +∇d (x)T (z − x)

]
. (2.11)

We do not go into details regarding the algebraic properties that the distance generating

function dmust satisfy. The interested reader is referred to [15] for further details. We only

mention that the choice of a good distance generating function depends on the geometry

of the problem. Note that in the case d (x) := 1
2
||x||22, the procedure (2.8) coincides with

(2.6). Indeed, it is easy to see that for d (x) := 1
2
||x||22, we have that Px (y) = ΠX (x− y).

The expected error of the objective is again O (T−0.5).

Juditsky et al. [15] also shows how the Mirror Descent SA algorithm can be modified to

solve the convex-concave saddle point problem

min
x∈X

max
y∈Y
{φ (x, y) := E [Φ (x, y, ξ)]} , (2.12)

where φ : X × Y × Ξ→ R is convex in x ∈ X and concave in y ∈ Y for every ξ ∈ Ξ.

A special case of (2.12) is the Minimax problem taking the following form:

min
x∈X

max
k=1,...,K

{
fk (x) := E

[
F k (x, ξ)

]}
, (2.13)

which is exactly the same as solving the Saddle Point Problem

min
x∈X

max
y∈Y

{
φ (x, y) :=

K∑
k=1

ykf
k (x)

}
. (2.14)

Here Y =
{
y ∈ RK :

∑K
k=1 yk = 1, y ≥ 0

}
is the standard k-dimensional simplex.

The solution to (2.14) is given by the Mirror SA for the Saddle Point Problem. Let

z := (x, y) and Z := X × Y , and let G (z, ξ) := G (x, y, ξ) be the stochastic sub-gradient

G (x, y, ξ) =

[
Gx (x, y, ξ)
−Gy (x, y, ξ)

]
, (2.15)

such that gx (x, y) = E [Gx (x, y, ξ)] ∈ ∂xφ (x, y) and −gy (x, y) = −E [Gy (x, y, ξ)] ∈
∂y (−φ (x, y)).

Then the Saddle Point Mirror SA algorithm is defined by the iterative step

zj+1 := Pzj (γjG (zj, ξj)) , (2.16)

16

and the final solution

ẑT :=

(
T∑
t=1

γt

)−1 T∑
t=1

γtzt. (2.17)

In (2.16), γj is the step-size; the Prox mapping Pz (ζ) is defined similarly to (2.8), and

associated with the distance generating function d : Z → R, which is in turn defined in

terms of the distance generating functions dx (x) and dy (y) in the following way

d (z) :=
dx (x)

2D2
dx,X

+
dy (y)

2D2
dy ,Y

, (2.18)

with Dd,X := [maxz∈X d (z)−minz∈X d (z)]1/2. More specifically, for the Saddle Point

Problem (2.14), a simple derivation yields the stochastic sub-gradient

G (x, y, ξ) :=

[∑K
k=1 ykG

k (x, ξ)(
−F 1 (x, ξ) , . . . ,−FK (x, ξ)

)] (2.19)

3 The Staffing Algorithms

First, we establish the connection between the objective functions in (2.4) and (2.13)

considered by the SA and the Service Level functions from our optimization problem

(2.2) and (2.3).

Denote by (Ω,F , P) the probability space formed by the distributions of arrival times,

service times and patience. For some SL types, the expectation form arises quite naturally.

For instance, if we look at SL functions of the form f (N) = E [#Abandons], i.e. the

expected number of abandonments, over a given optimization horizon and staffing levels

N ∈ Rn, then we fall exactly into the domain of SA. Namely, define F : RJ × Ω → R
such that F (N,ω) is a random variable denoting the number of abandonments, given a

possible outcome ω and staffing levels N ∈ ZJ
+. Obviously, we can write

f (N) :=

∫
Ω

F (N,ω) dP (ω) , (3.20)

which is equivalent to f (x) := E [F (x, ξ)] in (2.4): in (2.4) the random variable F (x, ω)

is defined with an intermediate random vector ξ, where in our case it is imbedded in the

probability space (Ω,F , P).

In other cases, however, we may need to perform additional steps before using SA.

17

For example, when using simulation, the conventional way to represent the SL function

P {W > τ} is by the following ratio:

PN {W > 0} =

∫
Ω
D (N,ω) dP (ω)∫
Ω
A (ω) dP (ω)

; (3.21)

here D (N,ω) denotes the number of delayed customers and A (ω) denotes the total num-

ber of arrivals, over a given time-horizon.

Fortunately, the expectation in the denominator of (3.21) is independent of the staffing

levels N . We can thus accommodate such SL functions as follows: In Cost Optimization,

f appears in the objective function. Since the denominator is independent of the decision

variables N , we can ignore it completely as it has no affect over the solution. In this case

we just set F (N,ω) := D (N,ω).

In the Constraint Satisfaction, the SL functions appear as constraints, e.g.

P {W > τ} ≤ α (3.22)

In this case, we translate (3.22) into

E [D (N, ·)] ≤ αE [A (·)] , (3.23)

where E [A (·)] can be calculated in advance, and therefore the right-hand-side of (3.23) is

constant. We explain later in 3.2 how we deal with constraints in our proposed algorithm.

Theoretically, ω here may be an infinite-size vector as it may include an infinite number

of arrivals. In practice, however, when we seek to estimate steady-state service levels, we

are looking at a finite number of arrivals, starting from a point in which we believe the

system is stable. In other cases, we are interested in transient service levels. For example,

in time-varying situations, we may wish to look at the the delay probability during each

hour. We thus generate a sample path of the system only at the relevant time.

We use simulation for systems with SBR to both generate iid sample ω1, ω2, . . . from Ω,

and calculate the values of F k (N,ω) for any N ∈ RJ
+ and ω ∈ Ω that arise along the

steps of the algorithms. An important point to be made here is that in practice, we are

required to evaluate the functions F k (N,ω) for non-integral values of N , even though N

is discrete in our case (there is no such thing as a fraction of a server). In this case, we

round the point N to the nearest integral point and plug it into the simulation to obtain

the required value.

18

Similarly to [3], we evaluate the stochastic sub-gradient Gk (N,ω) by taking finite differ-

ences of length 1 as follows:[
Gk (N,ω)

]
i

:= F k (N + ei, ω)− F k (N,ω) . (3.24)

Here, ei denotes a vector of the same dimension as N , in which all entries are zeros except

for the i’th component which equals to one.

There are several optional ways of producing sub-gradients, such as infinitesimal per-

turbation analysis [20] and likelihood ratio gradient estimation [10]. In fact, the finite

differences method does not guarantee to yield a sub-gradient. Examples in which this

method fails are easy to find. Nevertheless, finite differences still appear as a reason-

able method and our numerical studies demonstrate that the method could yield optimal

solutions.

Recall from Section 2.2 that the SA depends strongly on the convexity of the objective

function f (x) defined in (2.4). We are therefore required to make the same assumption

on our SL functions fk (N) = E
[
F k (N, ·)

]
defined in (2.3) and (2.2):

Assumption 3. [Convexity of service level objectives] ∀ω ∈ Ω, the functions F k (·, ω) are

convex, and for every N ∈ ZJ
+, F k (N, ·) are integrable, with respect to P .

Remark 3.1. we are not trying to say, and it is evidently untrue, that all the types of SL

functions that we consider are convex for any configuration of design and routing scheme.

However, there exist supporting theory for the convexity of some performance measures

under some configurations. Moreover, it appears that even in the case that Assumption

3 fails to hold, the obtained solution is still satisfactory and even sometimes optimal. For

instance, functions that turn out to be convex on the feasible region but not on the whole

space. We discuss this further in §3.4

Recall from Section 2.2 and [15] that SA provides computational procedures for calculating

the optimal solution of two types of optimization problems:

1. The minimization problem minx∈X E [F (x, ξ)]

2. The Minimax problem minx∈X maxk=1,...,K E
[
F k (x, ξ)

]
.

19

The Cost Optimization Problem (2.2) conforms exactly to Formulation 1 of the minimiza-

tion problem. However, in the Constraints Satisfaction Problem (2.3) the SL functions

appear as constraints rather than objectives. To resolve this, we make use of the Minimax

problem in the following manner:

• There exist a feasible solution2 that incurs a cost C if and only if the following

condition holds (
min
x∈XC

max
k=1,...,K

{
fk (x)− αk

})
≤ 0,

where XC :=
{
x ∈ X : cTx = C

}
• We search for the minimal C for which we can find a feasible solution in an efficient

way such as a binary search

We elaborate and describe in details both the Cost Optimization and Constraints Satis-

faction algorithms in the following sections.

3.1 Cost Optimization

We apply the Robust SA algorithm in a straightforward manner to solve the Cost Opti-

mization Algorithm.

Few preliminary calculations are required in order to provide the step size γ and the num-

ber of iteration T , which guarantee a desirable accuracy of the solution. First, we set the

search space X to be the intersection of the polyhedron
{
x : ATx ≤ b

}
from (2.2) with

the J-dimensional cube C =
{
x : 0 ≤ xj ≤ xbj ∀j = 1, . . . , J

}
. Here, xbj is the required

number of agents in pool j that guarantees a perfect service experience (delay probabil-

ity of all the customer classes that are served by this pool is essentially 0), given that

all customers are served by this pool only. We compute the value of xbj by finding the

minimal staffing level in a corresponding M/M/N system for which the delay probability

is 0 (practically, smaller than some small threshold) with arrival rate λ =
∑

i∈I(j) λi and

service rate µ = 1
λ

∑
i∈I(j)

λi
µji

; I (j) denotes the set of classes that are served by pool j.

Note that any solution that is not in C is dominated in terms of cost by some solution in

C. Indeed, by reducing the staffing levels of all the components to the level of the bound

2A feasible solution is a solution in which all SL constraints are satisfied

20

we decrease the staffing costs, but do not increase the cost of SL and therefore improve

the overall cost. We choose the initial solution x1 := ΠX

(
1
2
xb
)
.

Next, in order to determine the step-size γ and required number of iterations T , we must

evaluate the term

M2
∗ := sup

x∈X
E
[
||G (x, ·) ||22

]
, (3.25)

where G is the sub-gradient of the objective function, composed of the service cost vector

and the summation of sub-gradients of the SL cost functions. Formally, G (x, ω) :=

c+
∑K

k=1G
k (x, ω). We propose a way to evaluate M2

∗ in §3.3.

Moreover, we calculate DX := maxx∈X ||x− x1||2 = 1
2
||xb||2.

Finally, the required number of iterations is given by

T :=

(
DxM∗
εδ

)2

(3.26)

and the step-size is

γ :=
Dx

M∗
√
T
, (3.27)

Table 1: Cost Optimization Algorithm

Initialization Set i := 1;

Step 1 Run simulation to generate ωi and obtain the value Gk (xi, ωi) ∀k = 1, . . . , K;

Step 2 Set G (xi, ωi) := c+
∑K

k=1G
k (xi, ωi), xi+1 := ΠX (xi − γG (xi, ωi));

Step 3 If i ≥ T return the solution x̂T := 1
T

∑T
t=1 xt;

Step 4 Set i := i+ 1. Go to Step 1;

The Cost Optimization algorithm is displayed in Table 1.

Theorem 3.1. Upon termination of the Cost Optimization Algorithm at point x̂T , with

step-size γ, we achieve

P {f (x̂T)− f (x̄) ≥ δ} ≤ ε, (3.28)

where f is the objective function in the Cost Optimization Problem (2.2), and x̄ is a

minimizer of f .

Proof. It follows from (2.19) in [15] that E [f (x̂T)− f (x̄)] ≤ εδ. Then (3.28) is immediate

by the Markov inequality.

21

3.2 Constraint Satisfaction

The Constraint Satisfaction Problem appears to be more complicated in the sense that

it does not fit the form of the optimization problem (2.4). Namely the functions fk (x)

appear as constraints rather than objective functions. For this matter, we start first with

solving the following Minimax Problem

min
x∈XC

max
k=1,...K

{
fk (x)− αk

}
, (3.29)

where XC :=
{
x ∈ X : cTx = C

}
. As already mentioned in (2.14), this is equivalent to

solving the Saddle Point Problem

min
x∈XC

max
y∈Y

{
K∑
k=1

yk
(
fk (x)− αk

)}
. (3.30)

Suppose that solving (3.29) yields some solution x̂. We shall then be able to identify, with

the help of some additional validation mechanism, if x̂ satisfies the constraints in (2.3).

Namely, there is some feasible solution x that incurs a cost of C monitory units, if and

only if max
k=1,...,K

{
fk (x̂)− αk

}
≤ 0. We then search for the minimal cost C for which a

feasible solution exists, in a binary search fashion, where the above procedure of solving

(3.29) and validating the solution feasibility is used to either return the feasible solution

or determine that such one does not exist.

We describe our validation mechanism Feasible (x), which returns whether a solution x

is feasible or not with confidence level α and accuracy δ, in 3.2.1.

We make additional efforts to transform XC into a standard simplex. In this case, the

choice of the entropy-distance-generating-function d (x) :=
∑n

i=1 xi lnxi, potentially yields

optimal performance. (The error of the algorithm turns out almost independent of the

number of constraints - O
(√

lnK
)

, and the number of variables (pools) - O
(√

ln J
)

).

To be able to work with the standard simplex, we define new variables x̃ := (x̃1, . . . , x̃J)

by

[x̃]i :=
xici
C
, i = 1, . . . , J, (3.31)

where ci is the per-time staffing cost of pool i server, and C is the overall cost. Similarly,

let z̃ := (x̃, y). For notational convenience, x (x̃) will actually stand for the vector x with

components xi = x̃iC/ci.

22

Our problem is now formulated by

min
x̃∈X̃

max
y∈Y

{
K∑
k=1

yk
(
fk (x (x̃))− αk

)}
, (3.32)

where both X̃ and Y are standard simplices with the dimensions J and K respectively.

By choosing dx and dy to be the entropy distance generating function, it is easy to show

that the Prox Mapping Pz (ζ) defined in (2.10) with the distance generating function dz

in (2.18) is given by

[Pz (ζ)]i =


ziJ
−2ζi∑J

j=1 zjJ
−2ζj

, i=1,. . . ,J;

ziK
−2ζi∑J

j=1 zjK
−2ζj

, i=J+1,. . . ,J+K.

(3.33)

Moreover,

Gz̃ (z̃, ω) :=

[∑K
k=1 ykG

k
x̃ (x, ω)(

−F 1 (x, ω) + α1, . . . ,−FK (x, ω) + αK
)] , (3.34)

where [
Gk
x̃ (x, ω)

]
i

:=
d

dxi
F k (x, ω)

d

dx̃i
xi =

[
Gk
x (x, ω)

]
i

C

ci
(3.35)

We can now define the solution to (3.32) to be the outcome x∗ of the MirrorSaddleSA:

z̃j+1 := Pz̃j (γjGz̃ (z̃j, ωj)) (3.36)

ẑT := (x̂T , ŷT) =

(
T∑
t=1

γt

)−1 T∑
t=1

γtz̃t (3.37)

x∗ := x (x̂T) (3.38)

with the constant step-size

γj :=
2

M∗
√

5T
. (3.39)

Here,

M2
∗ := 2M2

∗,x ln J + 2M2
∗,y lnK (3.40)

and M2
∗,x,M

2
∗,y are the bounds

E
[
‖Gk

x̃ (x, ·) ‖2
∞
]
≤M2

∗,x ∀k, x

E
[
F k (x, ·)2] ≤M2

∗,y ∀k, x
. (3.41)

We are referring to the procedure (3.36)-(3.38) as the MirrorSaddleSA associated with

the cost C, or more specifically MirrorSaddleSA(C).

23

Theorem 3.2. Following the Mirror Saddle SA procedure (3.36)-(3.38) with the step size

(3.39) we have that, for any δ > 0,

P
{

max
k=1...K

fk (x∗)− φ∗ > δ
}
≤ 2M∗

√
5

Tδ2
, (3.42)

where φ∗ is the optimal solution to the Minimax problem 3.29

Proof. Immediate from (3.22) in [15] and the Markov inequality.

Corollary 3.3. It follows from Theorem 3.2 that in order to guarantee accuracy of δ with

probability at least 1− ε, one can use the sample size

T ≥ 20M2
∗

δ2ε2
. (3.43)

Discussion (accuracy of estimators). In both the Cost Optimization and Constraint

Satisfaction algorithms, we use F k (x, ω) (resp. Gk (x, ω)) to estimate the actual value

of the SL function fk (x) (resp. subgradient gk (x)). F k (x, ω) and Gk (x, ω) are called

unbiased estimators, since fk (x) = E
[
F k (x, ·)

]
and gk (x) = E

[
Gk (x, ·)

]
.

Note that the only place where the variances Var
[
F k (x, ·)

]
and Var

[
Gk (x, ·)

]
come up is

through the term M∗. In both cases, the required number of iterations T that guarantees a

desired accuracy δ and confidence ε depends on a factor of M2
∗ , which bounds the second

moment of our estimators F k (x, ω) and Gk (x, ω) (See (3.41) and (3.25)) . Obviously,

we can reduce the required number of algorithm iterations by reducing the variance of

our estimators. This can be achieved by basing our estimators on a larger sample. In

our case, larger sample means generating several simulation sample paths of the system

on a given time-horizon, or using longer sample path (larger time-horizon), but this is

valid only for steady-state estimation. However, increasing the sample size naturally

increases the computational efforts. The important question to ask here is what is the

optimal sample size that minimizes the overall computational efforts? Let us assume that

producing our estimators is the most expensive in terms of computational effort, and that

all other procedures are negligible compared to it. We also assume that the time required

to produce an estimator is proportional to the sample size. We thus aim to minimize the

required efforts associated with estimator calculation, by determining the optimal sample

size. The total efforts required throughout the algorithm is of order s×M2
∗ (s), where s

is the sample size, and M2
∗ (s) is proportional to the required number of iterations. Since

24

M2
∗ (s) includes constants as well as terms that decrease at rate 1

s
, we conclude that the

optimal sample size is the minimal one that provides unbiased estimators.

Next, we define the range of the cost in which we perform the binary search.

For this purpose, We calculate an upper bound for the optimal cost. Since we cannot

assume anything regarding the routing scheme, we consider the case where each class of

customers i is routed to pool j which maximizes the cost of the required staffing level Nij

for meeting the SL constraint. We can compute the required staffing levels for typical

SL functions using a simple stationary queueing system (such as Erlang-C, or Erlang-A).

Other SL functions that cannot be computed in this way, we replace with the constraint

P {W > 0} = 0 (practically, smaller than some threshold) which is the strongest constraint

possible in the sense that satisfying the constraint P {W > 0} = 0 implies satisfying any

other SL constraint. Let

xij =

{
Nij, j ∈ arg maxk ckNik;
0, otherwise.

and let xj =
∑I

i=1 xij. Then our upper bound is given by Cmax = cTx.

Finally, the Constraints Satisfaction Algorithm is displayed in Table 2.

Table 2: Constraint Satisfaction Algorithm

Initialization dC := Cmax, x
∗ := x;

Step 1 if dC ≤ δC return the solution x∗;

Step 2 dC := dC/2;

Step 3 if Feasible (x) returns true then x∗ := x, C := C − dC, x := x C
(C+dC)

.

Go to Step 1;

Step 4 x := MirrorSaddleSA (C);

Step 5 if Feasible (x) returns true then x∗ := x, C := C − dC, x := x C
(C+dC)

Go to Step 1;

Step 6 C := C + dC, x := x C
(C−dC)

. Go to Step 1;

Theorem 3.4. Following the constraint Satisfaction procedure, with accuracy of δ, cost

accuracy δC and confidence level ε in the sub-procedures Feasible and MirrorSaddleSA,

we achieve the following:

25

1. Feasibility: P
{

max
k=1,...,K

(
fk (x̂)− αk

)
> δ

}
≤ 1− (1− ε)dlog Cmax

δC
e

2. Optimality: P
{
cT x̂− c∗ > δC

}
≤ 1− (1− 2ε)

dlog Cmax
δC
e

Proof. First, note that the CS algorithm terminates after exactly dlog Cmax
δC
e iterations.

Denote by x̂(i) the solution obtained by the i-th iteration. Then,

1. The probability that Feasible
(
x̂(i)

)
returns the answer ’true’ given that x̂(i) is not

feasible is bounded by ε. Hence, the probability that the final solution x̂ is not

feasible is bounded by the probability that in at least one iteration i of the algorithm,

the sub-procedure Feasible wrongly declared x̂(i) as feasible. Since there are logCmax

iterations, we deduce the result.

2. The probability that at some iteration i with a feasible cost Ci
3, the algorithm will

fail to identify a feasible solution is bounded by the probability that either the sub-

procedure MirrorSaddleSA fails to find a δ-optimal solution or that it successfully

finds such a solution but it is wrongly denied by the sub-procedure Feasible. The

first event is bounded by ε, and the latter is bounded by ε (1− ε). The overall bound

is thus 2ε− ε2 < 2ε. In the worst case, the cost will be feasible at all iterations and

hence the result.

3.2.1 Solution Feasibility

Our algorithms use simulation in order to evaluate service level objectives. In this section

we describe how we determine whether a certain solution N is feasible in the sense that

it satisfies the SL constraints with some accuracy δ and level of confidence α. Assume we

would like to estimate fk (N) = P {Wk > T}, where Wk denotes the waiting time of class

k customers. For this purpose we run n independent simulation replications. Let Aki be

the number of arrivals in replication i, and Dk
i (N) is the number of class k customers

3A feasible cost C is a cost, for which there exists a δ-feasible solution x̂, that is maxk=1,...,K fk (x̂)−
αk < δ.

26

which had to wait more than T time units. Then, we use the estimator

f̂k (n) :=

∑n
i=1D

k
i∑n

i=1 A
k
i

. (3.44)

Furthermore, the confidence interval for P {Wk > T} is given by
[
lbk (n) , ubk (n)

]
, where

lbk (n) := f̂k (n)− zα
√

σD−2σD,Af̂k(n)+f̂k(n)2σA
nĀ2

ubk (n) := f̂k (n) + zα

√
σD−2σD,Af̂k(n)+f̂k(n)2σA

nĀ2

(3.45)

In (3.45) σA and σD are the sample variance of A and D, respectively, σA,D is the their

sample covariance and zα is the α-percentile of the Standard Normal distribution. To

determine whether a solution N is feasible or not, we run simulation and stop at iteration

n if and only if one of the following conditions hold:

∀k : ubk (n) ≤ αk + δ, (3.46)

or

∃k : lbk (n) ≥ αk + δ. (3.47)

In the first case we say that the solution is feasible, and in the latter it is not.

3.3 Calculating the Bound M 2
∗

In order to calculate the the required number of iterations for both algorithms, we must

evaluate the expression M2
∗ in (3.25) and (3.40). To do this, one must be able to obtain

bounds for the estimator of the SL functions (resp. subgradient) E
[
F k (N, ·)2] (resp.

E
[
Gk (N, ·)2]). In what follows, we propose a bound for the estimators of the SL function

f (N) := PN {W > 0}. Other SL functions can be handled similarly. In fact, in some

cases, the bound for the delay probability can serve as bound for other SL types (e.g. the

probability to abandon, tail probability, etc.).

We start with E
[
F k (N, ·)2]: recall that after we ”translate” P {W > 0} to the divi-

sion of the expected number of delayed arrivals E [D (N, ·)] by the expected number

of arrivals E [A (·)], we are actually considering only the nominator. Namely, we set

F (N, ξ) := D (N,ω), and the components of the subgradient G (N,ω) symbolize the num-

ber of arrivals that are delayed in the original system, but admitted to service upon arrival

27

when there is an additional server in the respective pool. Obviously, F (N,ω) ≤ A (ω)

since the number of delays up to a given time T cannot exceed the number of arrivals dur-

ing that time. Note that A (ω) ∼ Poisson (λT), and therefore E
[
F (N,ω)2] ≤ λ2T 2 +λT .

Next, we bound E
[
Gk (x, ·)2]. An immediate bound for G (N,ω) is the number of delays

itself which is in turn bounded by the number of arrivals A (ω). Adding a server can

reduce the number of delays of a certain class either directly in case the server can cater

to the specific class or indirectly by diverting load from a pool that caters to that class.

Let Sij (ω) be the number of potential service completions of class i made by a server from

pool j in T time units, i.e. when one service is starting immediately after the completion

of a preceding service. It is easy to see that the reduced number of delays in class i

by pool j is bounded by Sij (ω) if pool j is serving class i. In this case [Gi (N,ω)]j ≤
min {A (ω) , Sij (ω)}, where Sij (N,ω) ∼ Poisson (µijT).

It is more likely that under a reasonable routing policy the affect of adding a server to a

pool that serves class i would be higher than adding a server to a pool that doesn’t serve

class i. However, it is certainly possible that the case would be the other way around.

For example, one can think of a system in which there is a pool that serves some class a

and also serves some other class b with relatively long service times. Now let us suppose

that there is an additional pool that serves class b, but much faster than the first pool.

Adding a server in that pool might divert much of the load that is directed to the first

pool. Consequently, servers of the first pool would be more available to serve class a,

possibly much more than the contribution of an additional single server. We may still be

able to bound the indirect contribution in the same spirit of the previous bound. However,

calculations may get extremely complicated when considering the general case. We thus

settle for the trivial bound A (ω).

3.4 Convexity

Intuitively, one expects that, with the proper representation, the service level functions

fk (x) under consideration should be component-wise monotone decreasing and convex.

That is, service level such as the probability PN {Wk > Tk} is decreasing (not increasing)

28

as the number of agents in any pool increases for any reasonable routing sceme4. More-

over, the marginal decrease should get smaller as any component of N increases similarly

to the behavior of the simple single-class single-pool queue (Erlang models).

Indeed, for this special case of SBR systems, with a single class of customers and a single

pool of servers, there exists supporting theory for the convexity of several SL functions,

such as the delay probability PN {W > 0} or the tail probability PN {W > T}.
In this work, we are imposing a stronger assumption: the SL functions are jointly convex

in N . This assumption need not prevail for any given SBR model, and in fact we show

later in Section 4 examples where our assumption is refuted.

However, we propose a heuristic to characterize here the conditions under which the con-

vexity assumption is plausible, relating it to stability consideration that naturally arise

for the model under consideration.

It seems that what mostly affects the convexity of the service level functions is the un-

derlying design of the model, and to some extent also the routing scheme.

We assert that whenever the necessary conditions for stability that we introduce below,

expressed in linear constraint, form a convex space, it is likely that the service level func-

tion would be convex and vice versa. For instance, let us consider an arbitrary N -model

(see Figure 4) with two classes of customers and two pools of servers. Let λ1 and λ2 be

the the arrival rates of class 1 and class 2, respectively; pool 1 serves class 1 with rate

µ11; Pool 2 serves class 1 with rate µ21 and class 2 with rate µ22.

To keep class 1 from exploding, one must require that the total service rate of pool 1

servers and pool 2 servers will be greater or equal to the arrival rate of class 1. This can

be expressed mathematically by[
N2 −

λ2

µ22

]+

µ21 +N1µ11 ≥ λ1 (3.48)

It is easy to see that (3.48) comprise a non-convex space (see blue curve in Figure 5). Our

numerical study demonstrates that in these cases the SL function is indeed not convex

(See for example Figure 13)

Having said that, there is still room for optimism as even in cases in which not all the SL

functions are convex on the entire space they may be convex within a region containing the

4One can cook up some pathological routing scheme, dependent of specific staffing levels, that negates
the monotonicity and convexity conjecture, but these rules are impractical.

29

Figure 4: Arbitrary N Model

µ22

λ2 λ1

µ12 µ11

N2 N1

relevant points. For instance, if we add the stability condition for class 2 in our previous

example

N2µ22 ≥ λ2 + [λ1 −N1µ11]+ , (3.49)

then the formed space is convex (red curve in Figure 5). Going back to Figure 13, it

is visible that the SL function of the second class indeed turns out to be convex. More

importantly, it seems that on the restricted region, the service level functions of both

classes are convex.

30

Figure 5: Stability Conditions

N1

N2

λ2/µ2

λ1/µ11

31

4 Experimental Results

In this section we walk through a simple example of a skills-based-routing system. We

continuously modify the model configuration in order to test our algorithm performance

in various settings. We use simulation to reconstruct the real functional constraints and

consequently identify the real optimal solution. This provides the solid ground for com-

paring our results to the optimal solution. The main purpose of this numerical study is to

show the accuracy of our algorithm. Moreover, we would like to show that the convexity

assumption that we are making is actually valid in many cases, and in the cases that it is

not valid we are still doing surprisingly well.

4.1 V Model

We start off with describing the general settings of the service system that we consider.

We look into a situation in which there are two distinct classes of customers, say class1 and

class2. Each one of the two classes is associated with a different service level agreement

and may have different service requirements. The arrivals are assumed to be Poisson with

class dependent arrival rate λi, i = 1, 2. At first, we consider the case where the two

classes are served by a single pool of servers. That is, all servers are statistically identical.

This model is known as the V model arising from the shape of the corresponding graph

representation of this system. For the sake of example, let us say that arrival rate for

both classes is 100, that is λ1 = λ2 = 100. class1 is associated with the constraint

P {W1 > 0} ≤ 0.2 and class2 has the constraint P {W2 > 0} ≤ 0.5. Moreover, each server

processes customers of class1 according to exponential distribution with rate µ1 = 1 and

customers of class2 with rate µ2 = 1.5.

As in [11], we use the Threshold Priority control in order to differentiate the service level

of the two classes. Namely, we let class2 customers to be admitted to service if”f there

are no customers of class1 waiting in queue, and there are at least k available servers.

Finally, our goal is to find the optimal number of servers n∗ and the control threshold k∗

for which the service constraints are met.

Observation 1. For any V model with a Threshold Priority control, we can construct an

equivalent N model with Static Priority control. In what follows, we show the construction

32

Figure 6: Schematic Representation of the V-model Settings

�2=100 �1=100

C1=2

µ12=2 µ11=1.5

N2

for the case of two classes. The construction for three and more classes follows the same

lines. Let the number of agents in the V model be n, and let the threshold for class 2 be

k. We construct the N model as follow: We put k servers in pool 1 and n-k servers in

pool 2. The routing schema is as follows: arriving customer of class1 is routed to pool

1 if there is available server in that pool. Otherwise he is routed to pool 2 or queued if

there is no available server also in pool 2. Customers of class2 can only be routed to pool

1. Upon service completion, servers of pool 1 will try to take any one of the customers

that are in service in pool 2. If there are none they will look to serve customer from the

head of class1 queue and only then from class2 queue. Servers of pool 2 will only look in

the queue of class1.

Having formalized the equivalence between the two models, we can apply our algorithm

to solve the corresponding problem (4.50) with the equivalent N model, and derive the

optimal solution by the simple transformation

(n∗, k∗)↔ (N∗1 +N∗2 , N
∗
2) .

33

For the sake of stability, we demand that N1 ≥ 167.

min
N

1N1 + 1N2

s.t. PN {W1 > 0} ≤ 0.2

PN {W2 > 0} ≤ 0.5

−N1 ≤ −167

N ∈ Z+

. (4.50)

As it may be clearly viewed in Figure 7, both service level functions, reduced to the feasible

area that is determined by the stability conditions, are convex in N . This guarantees

the accuracy of the solution obtained by our algorithm. Indeed, the solution we obtained

N∗ = (171, 1) turned out to be one of the optimizers of (4.50) as was verified by simulation

(see the derived feasible region and optimal solution in Figure 8). Moreover, this results

is consistent with the theoretical solution from [11].

4.2 N model

4.2.1 Static Priority control

In this example we take the same settings as in §4.1, only here we intend to use two pools

of servers. pool1 is dedicated only to class1 and serves them with rate µ11 = 1. pool2 serves

both classes with service rates µ21 = 1.5 and µ22 = 2 for class1 and class2 respectively.

pool1 are only half as costly as pool2 as they are less skilled and less productive. Since

there is no significance to the cost values rather to their proportions, let us say that each

server from pool1 costs 1 monetary units per time unit and each server from pool2 costs

only 2 monetary units per time unit. For routing we use the Static Priority : class1 are

having higher priority for pool1. When becoming available, servers of pool2 has higher

priority to class1. We first state the stability conditions

N1 + 1.5N2 ≥ 100
2N2 ≥ 100

N2 ≥
100

2
+

100−N1

1.5

. (4.51)

34

Figure 7: Performance Measures For V Model With Threshold-Priority

0
20

40
60

80
100

120

0
20

40

60
80

100

120

0

0.5

1

P{W
1
>0}

0
20

40
60

80
100

120

0

20
40

60

80
100

120

0.4

0.6

0.8

1

P{W
2
>0}

0
20

40
60

80
100

120

0
20

40
60

80

100
120

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.1}

0
20

40
60

80
100

120

0

20

40

60

80

100

120

0

0.5

1

P{W
2
>0.1}

0

50

100

150

0

50

100

150

0

200

400

600

E[W
1
]

0
20

40
60

80
100

120

0

50

100

150

0

200

400

600

800

1000

1200

E[W
2
]

35

Figure 8: Feasible Region and Optimal Solution

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

⋅
N*=(83,68)

C=219

Figure 9: Schematic Representation of the N-model Settings

�2=100 �1=100

C2=2 C1=1

µ22=2 µ11=1 µ21=1.5

N1 N2

36

Since the first condition is redundant we set A =

[
0 −1
−2

3
−1

]
, and b =

[
−50
−117

]
. The

problem is instantiated into

min
N

1N1 + 2N2

s.t. PN {W1 > 0} ≤ 0.2

PN {W2 > 0} ≤ 0.5

AN ≤ b

N ∈ Z+

. (4.52)

We used simulation in order to obtain the values of the delay probability of both classes

as function of the staffing levels. The results are displayed on Figure 10

From Figure 10 it is easy to derive the feasible area along with the optimal solution as

shown in the left hand side of Figure 11. The solution we got was N = (83, 68), which

was in fact one of the optimizers of (4.52).

Let us now impose another restriction to our problem. On top of the functional constraints

and the stability conditions in (4.52), we will also like to have that at least 50% of the

overall staffing levels will be servers of pool2, which is translated into the linear equation

N2 ≥ N1. Again, our algorithm succeeded to identify the optimal solution N∗ = (74, 75)

(see right hand size of Figure 11.

Another interesting experiment is to associate a cost to the waiting times of customers,

and try to solve a Cost Optimization formulation. Let us assume that a cost of one time

unit of wait is 0.2 for class1 customers, and 0.1 for class2 customers. This is consistence

with class1 having a more strict service level constraint in the previous problem. In the

problem formulation (4.56), we multiply the waiting costs per time unit by the arrival

rate to represent the expected cost of waiting times.

min
N

1N1 + 2N2 + 20EN [W1] + 10EN [W2]

s.t. AN ≤ b

N ∈ Z+

. (4.53)

The optimal solution obtained by simulation was found to be N∗ = (80, 54), while our

solution was N = (88, 47) (only 2 cost units difference).

37

Figure 10: Performance Measures for N model Case With Static Priority

0

50

100

150

0
50

100
150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0}

0

50

100

1500 50 100 150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.2}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0.1}

0

50

100

150

0
50

100
150

0

50

100

150

200

250

300

350

E[W
1
]

0
50

100
150

0

50

100

150

0

100

200

300

400

500

600

E[W
2
]

38

Figure 11: Feasible Region and Optimal Solution
basic setting with additional constraint

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

⋅
N*=(83,68)

C=219

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

N*=(74,75)

⋅

C=224

Figure 12: Cost Function for N model Optimization Formulation

0

50

100

150

0

50

100

150

0

2000

4000

6000

8000

10000

12000

N1

c1
TN + E[c2

TW]

N2

39

4.2.2 FQR control

Now, we would like to change the service level constraints. We are now interested in the

tail probability. We set the target for class1 to be T1 = 0.1 time units and for class2

T2 = 0.2, and we demand that not more than 20% of each class will have to wait more

than their target. This is translated into

min
N

1N1 + 2N2

s.t. PN {W1 > 0.1} ≤ 0.2

PN {W2 > 0.2} ≤ 0.2

AN ≤ b

N ∈ Z+

. (4.54)

Again, although the tail probability turns out to be not convex, it is still convex on the

feasible area. Again, We derive the feasible area and optimal solution by simulation. The

solution we produced was again very close to optimal (N = (91, 60) with a total cost of

211, compared to 210 which was the optimal cost in this case).

Interestingly, the routing scheme has a significant affect on the optimal solution. Had one

used the Static Priority control for the same problem, it would have turned out that the

optimal solution would be N∗ = (93, 64) (see right hand side of Figure 14) with a total

cost of 221 monetary units, 11 units more than the cost when using FQR control. We

could expect that FQR would achieve better performance, since it is shown in [12] to have

good qualities with constraints of the tail probability type. SP, on the other hand, can

be naive in the sense that it does not try to adjust to dynamics of the system. In other

cases, we observed even higher differences.

4.2.3 Deterministic Service Times

Here we assume that the service times are deterministic, i.e. the time that it takes a

server from pool j to serve a customer of class i is dji = 1
µji

. Consider the basic N model

with static priority, and deterministic service times d11 = 1, d21 = 2
3

and d22 = 0.5.

40

Figure 13: Performance Measures for N model Case With FQR

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0}

0
50

100
150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0}

0

50
100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.1}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0.2}

0

50

100

150

0
50

100
150

0

100

200

300

400

E[W
1
]

0

50

100

150

0
50

100
150

0

100

200

300

400

500

E[W
2
]

41

Figure 14: Feasible Region and Optimal Solution for Target Tail Probability

FQR control SP control

0 20 40 60 80 100 120
0

20

40

60

80

100

120

N
1

N
2

N*=(94,58)

C=210

0 50 100 150
30

40

50

60

70

80

90

100

110

120

130

C=220

N*=(100,60)

4.2.4 Log-Normal Service Times

In most practical service systems, the Log-Normal distribution seems to fit the actual

distribution of service times the most. The Log-Normal distribution has two parameters:

the mean µ and the variance σ2. As in the former Deterministic example, we consider

the basic N model and modify the service time distribution to be Log-Normal with with

coefficient of variance CV = 1, that is µ = σ as in the exponential distribution.

Namely, we take D11 = LN (1, 1), D21 = LN
(

2
3
, 2

3

)
and D22 =

(
1
2
, 1

2

)
.

While deterministic service times in single class single pool settings (M/D/N) constitutes

an upper bound for the performance of the general service distribution queue (M/G/N),

it appears from our study (Figure 17) that this is not the case here. The optimal solution

for the Log-Normal case, obtained by our algorithm and confirmed by simulation, seems

to be somewhat better than the solution for the deterministic case.

42

Figure 15: Performance Measures for N Model Case With Deterministic Service Times

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.05}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0.1}

0

50

100

150

0

50

100

150

0

100

200

300

400

E[W
1
]

0

50

100

150

0

50
100

150

0

100

200

300

400

500

600

E[W
2
]

43

Figure 16: Performance Measures for N Model Case With Log-Normal Service Times

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.05}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0.1}

0

50

100

150

0

50

100

150

0

100

200

300

400

E[W
1
]

0

50

100

150

0

50

100

150

0

100

200

300

400

500

600

E[W
2
]

44

Figure 17: Feasible Region and Optimal Solution Log-Normal and Deterministic Service

Log-Normal Service Deterministic Service

0 50 100 150
30

40

50

60

70

80

90

100

110

120

130

C=216

N*=(92,62)

0 50 100 150
30

40

50

60

70

80

90

100

110

120

130

C=218

N*=(94,62)

Figure 18: Schematic Representation of the N Model Settings With Abandonments

�2=1 �1=1

�2=100 �1=100

C2=2 C1=1

µ22=2 µ11=1 µ21=1.5

N1 N2

45

4.2.5 Adding Impatience

min
N

1N1 + 2N2

s.t. PN {ab1} ≤ 0.05

PN {ab2} ≤ 0.1

AN ≤ b

N ∈ Z+

. (4.55)

Again, we try the alternative cost formulation

min
N

1N1 + 2N2 + 300PN {Ab1}+ 200PN {Ab2}
s.t. AN ≤ b

N ∈ Z+

. (4.56)

Here, the optimal solution is N∗ = (102, 56).

In addition, we demonstrate in Figure 22 the convergence of the SA algorithm to the

optimal solution. At the top plot we display the convergence of each component of the

approximation x̄j, and at the bottom plot the path of the iterative process xj along with

the instantaneous approximation x̄j are displayed on the solution space. The algorithm

started off at point x̄1 = x1 = (140, 180) and ended at x̄3000 = (98, 58).

4.3 M Model

We expand the model from 4.2 by adding another pool of servers, this time the servers in

this pool are serving only customer of class2. The servers of this pool has the same cost

as pool 1 but they serve class2 customers with rate µ32 = 2.5. The stability conditions in

this case are
N1 + 1.5N2 ≥ 100
2N2 + 2.5N3 ≥ 100
0.66N1 + 1.25N2 +N3 ≥ 116

(4.57)

The problem formulation is given by

min
N

1N1 + 2N2 + 2N3

s.t. PN {W1 > 0} ≤ 0.2

PN {W2 > 0} ≤ 0.5

AN ≤ b

N ∈ Z+

, (4.58)

46

Figure 19: Performance Measures for N Model Case With Abandonments

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
2
>0}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{W
1
>0.1}

0

50

100

150

0
20

40
60

80
100

120
140

0

0.2

0.4

0.6

0.8

1

P{W
2
>0.05}

0

50

100

150

0
50

100

150

0

0.2

0.4

0.6

0.8

1

P{ab
1
}

0

50

100

150

0

50

100

150

0

0.2

0.4

0.6

0.8

1

P{ab
2
}

0

50

100

150

0

50

100

150

0

0.5

1

1.5

E[W
1
]

0

50

100

150

0

50

100

150

0

0.5

1

1.5

E[W
2
]

47

Figure 20: Feasible Region and Optimal Solution for Target Abandonment Probability

0 20 40 60 80 100 120 140
30

40

50

60

70

80

90

100

110

120

C=200

N*=(80,60)

Figure 21: Cost Function for N Model Optimization Formulation With Abandonments

0

50

100

150 0

50

100

150

200

300

400

500

N2

c1
TN + c2

TP{ab}

N1

48

Figure 22: Convergence To The Optimal Solution

0 500 1000 1500 2000 2500 3000
40

60

80

100

120

140

160

180

�����

�����

j

80 90 100 110 120 130 140
40

60

80

100

120

140

160

180

���

�� �

x1

x 2

49

Figure 23: Schematic Representation of The M Model Settings

C3=1

µ32=2.5

�2=100 �1=100

C2=2 C1=1

µ22=2 µ11=1 µ21=1.5

N1 N2 N3

where A =

 −1 −1.5 0
0 −2 −2.5
−2

3
−1.25 −1

 and b =

 −100
−100
−117

. The feasible region appears in 24

as the area above the displayed surface. The optimal solution N∗ = (105, 37, 9) is marked

as a red point pointed by an arrow. In this case, the optimal solution was obtained exactly.

Figure 24: Feasible Region and Optimal Solution

0

10

20

30

40

50

0
20

40
60

80
100

120

0

20

40

60

80

100

120

N
2

N
1

N
3

50

4.4 Time-varying Model

We consider here models in which arrival rates vary with time, and service levels are

measured in various time bases. (e.g. the delay probability may be maintained on an

hourly basis, daily or even weekly). Consequently, staffing levels are also allowed to

change with time in order to meet with the timely constraints or align with the timely

cost optimization.

There are additional operational complexities arising from the extension to a time-varying

environment. First, a policy should be pre-determined for what to do in case of a decrease

in staffing level. Two main alternatives are the preemption discipline and the exhaustive

discipline. According to the preemption discipline, whenever there is a decrease in staffing

level, the last-to-enter-service customers are removed from service and returned to the

front of their queue; the number of removed customers equals the decrease in the staffing

level. This situation seems to be unreasonable for most service systems. The Call Center

reality is probably much closer to the exhaustive discipline, stipulating that servers can

be released only after they complete their present service.

In the most general case, we may want to optimize a system on a given time horizon, which

may differ from Service Level time basis and from the planning period5. For instance,

we may wish to optimize the staffing levels of a whole week, satisfying daily service level

constraints, and considering hourly planning period. We are dealing with this situation

as follows. We are first dividing the entire time horizon into intervals of the same length

of the Service Level time basis. Since Service level must be maintained for each one of

those intervals, we are able to treat the global optimization problem as several smaller

independent problems that are solved sequentially, interval by interval. The state at the

end of each interval is taken as the state at the beginning of the consecutive interval.

For the purpose of solving each smaller problem we must generalize our algorithm. Similar

to what is carried out in [3], we differentiate the Service Level with respect to the staffing

level in each pool, on each planning period. We will thus have to make the assumption

that the service level functions are convex in the J ×T -dimensional staffing vector, where

J is the number of pools and T is the number of planning periods. To facilitate, following

the example from above, we will divide the week into seven days, and solve each day as a

separate problem starting from the first day. Within the day we will estimate the gradient

5we refer to planning period as the shortest amount of time over which staffing must remain constant

51

in each iteration of our algorithm by increasing the staffing levels of each pool in each

hour. Once we complete the solution of the first day, we will start with the second day,

having the state of end of the first day to be the initial state on the second day.

Let us consider an N -model with time varying arrival rates. class1, as well as class2

customers, arrive according to an inhomogeneous Poisson process with arrival rate λ1 (t) =

λ2 (t) = 1000 + 200 sin (t) , t ∈ [0, 10]. Servers from pool1 serve class1 at rate µ11 = 10 and

class2 with rate µ12 = 15. pool2 servers serve only class2 with rate µ22 = 20.

Figure 25: Schematic Representation of The Time-Varying N-model Settings

�2=1000+200sin(t) �1=1000+200sin(t)

C2=2 C1=1

µ22=20 µ11=10 µ21=15

N1,t N2,t

In addition, delay probability constraints should be maintained on an hourly basis and

our planning period is also an hour, i.e. the staffing levels can vary every hour but not

within the hour. Formally, we consider the following problem

min
N

∑10
t=1 1N1,t +

∑10
t=1 2N2,t

s.t. PN {W1,t > 0} ≤ 0.1 ∀t = 1, . . . , 10

PN {W2,t > 0} ≤ 0.5 ∀t = 1, . . . , 10

N ∈ Z2
+0

, (4.59)

where Wi,t is the waiting time of Classi customer arriving at interval [t− 1, t], Nj,t is the

staffing levels in Pool j at time interval [t− 1, t], and Nt = (N1,t, . . . , NJ,t).

52

We solve this problem by dividing the 10 hours to 10 problems of 1 hour. We start in the

first hour, letting the final state given the optimal solution be the initial state for next

hour and so on.

The results of the algorithm and the service levels are displayed in Figures 26, 27 and 28.

In Figure 26 we can see the arrival rates and staffing levels that were obtained by the

algorithm. Note that the arrival rates do not follow exactly the sinusoidal function. This

is because the values are averaged for each time interval of length 1. In Figure 27 we can

see that the target delay constraints was satisfied at all times. The moderate fluctuations

in service level and staffing levels are the consequence of having several optimal cost

solution, each of which incurs a slightly different service level. In case there are several

optimal solutions, we do not have control over which solution the algorithm will converge

at. In Figure 28 two types of graphs are displayed. The first two graphs display the

occupation profile of each servers pool, i.e. the proportions of the time spent on serving

each class of customers, and being idle out of the total available time of all servers on that

pool and time interval. The values are stacked so that their total sums up to 1 (100 %).

Interestingly, it appears that these proportions remain rather stable throughout all time

intervals. The bottom graphs display for each the average number of customers in each

pool and in queue for any time interval. The values are stacked so that the total value

represents the average number of customers in the system.

4.5 Realistic Example

In this example, we take data of a random day from a real medium-size Call Center,

providing different types of banking services. We focus on two types of calls: calls coming

from Business customers and Quick Request calls.

The arrival rates of the incoming calls is depicted in Figure 29.

Furthermore, we try to fit a distribution for the service times. We assume that the service

times are dependent of the class, but do not depend on the server taking the call, nor on

the time of day.

As shown in Figure 30, the Log-Normal distribution seems to be a good fit for the

service times of both classes. We thus take the service distribution of the Business

class to be LN (0.063, 0.058) and the service distribution of the Quick Request class is

LN (0.065, 0.073).

53

Figure 26: Arrival Rate and Staffing Function for The Time-Varying Example

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Arrival Rate of Class1

time

ar
riv

al
s/

tim
e

un
it

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

Arrival Rate of Class2

time

ar
riv

al
s/

tim
e

un
it

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Staffing Function of Type1

time

se
rv

er
s

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

Staffing Function of Type2

time

se
rv

er
s

54

Figure 27: Delay Probability and Tail Probability for The Time-Varying Example

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Delay Probability of Type 1

time

P
(d

el
ay

)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Delay Probability of Type 2

time

P
(d

el
ay

)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Tail Probability of Type 1

time

P
(W

>
0.

01
)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Tail Probability of Type 2

time

P
(W

>
0.

01
)

55

Figure 28: Utilization Profile and Customer Distribution for The Time-Varying Example

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Occupation Profile of Pool 1

time

pr
op

or
tio

n

Class 1
Class 2
Idle

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
Occupation Profile of Pool 2

time

pr
op

or
tio

n

Class 1
Class 2
Idle

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Customer Distribution of Class 1

time

#c
us

to
m

er
s

Pool 1
Pool 2
Queue

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

Customer Distribution of Class 2

time

#c
us

to
m

er
s

Pool 1
Pool 2
Queue

56

Figure 29: Call Volumes to a Medium-Size Call-Center

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

650.0

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time

ca
lls

 p
er

 h
ou

r

Business Quick&Reilly

57

We also use Survival analysis to fit a distribution for the patience of customers, i.e. the

time they are willing to wait for service before they abandon the call. Our analysis shows

that the patience of both classes fits to the Exponential Distribution rather well (see Fig-

ure 31), and that there is a significant difference in the mean time. Business customers

are willing to wait on average 7.35 minutes, while Quick Request customers are willing to

wait as much as 19.35 minutes on average.

There are two types of servers in this system. One type is catering to both classes, while

the other is dedicated only to Business customers, and their cost are similar.

For start, we want to find the minimal cost staffing levels for which not more than 10

percents of Business customer and not more than 50 percents of Quick Request customers

will have to be delayed on any hour. More formally we would like to solve

min
N

∑24
t=1 N1,t +

∑24
t=1N2,t

s.t. PN {W1,t > 0} ≤ 0.1 ∀t = 1, . . . , 24

PN {W2,t > 0} ≤ 0.5 ∀t = 1, . . . , 24

N ∈ Z48
+

, (4.60)

We run our algorithm and obtained the solution as presented in 32 with the total labor

of 575 hours. The target was obtained at all hours (Figure 33). Moreover, it appears that

the average waiting time is negligible (few seconds) throughout the entire day.

We now try to run our algorithm with daily service level constraints, that is, the delay

probability targets should be maintained on the overall arrivals.

min
N

∑24
t=1N1,t +

∑24
t=1N2,t

s.t. PN {W1 > 0} ≤ 0.1

PN {W2 > 0} ≤ 0.5

N ∈ Z48
+

, (4.61)

In the solution obtained by the algorithm, the number of working hours was reduced by

65 hours (11%).

The daily probability of delay was satisfied (P {W1} = 0.19 and P {W2} = 0.32). However,

as shown in Figure 36, while the service levels were very good during the rush hour (8:00

am until 17:00 pm), essentially all the customers that arrived outside of these hours

58

Figure 30: Service Distributions

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00

Time(mm:ss)

R
el

at
iv

e
fr

eq
ue

nc
ie

s
%

Empirical Lognormal Three-Parameter Lognormal Inverse gaussian Fatigue life

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Time(mm:ss)

R
el

at
iv

e
fr

eq
ue

nc
ie

s
%

Empirical Lognormal Three-Parameter Lognormal Fatigue life

59

Figure 31: Patience Distributions Analysis

Probability Plot (modified Kaplan-Meier method)
Business service

0.00

0.01

0.10

1.00

10.00

1 10 100 1000 10000

Time(seconds)

P
ro

po
rt

io
n

Fa
ili

ng

Exponential Fitted Line Cumulative Probability

Probability Plot (modified Kaplan-Meier method)
Quick&Reilly service

0.001

0.010

0.100

1.000

10.000

1 10 100 1000 10000

Time(seconds)

P
ro

po
rt

io
n

Fa
ili

ng

Exponential Fitted Line Cumulative Probability

60

Figure 32: Staffing Levels for Satisfying Hourly Delay Probability

0 5 10 15 20
0

5

10

15

20

Staffing Function of Type1

time

se
rv

er
s

0 5 10 15 20
0

20

40

Staffing Function of Type2

time

se
rv

er
s

61

Figure 33: Delay Probability

0 5 10 15 20
0

0.5

1

time

P
(d

el
ay

)

Delay Probability of Type 1

actual
target

0 5 10 15 20
0

0.5

1

time

P
(d

el
ay

)

Delay Probability of Type 2

actual
target

62

Figure 34: Average Wait

2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

x 10
−3 Average Wait of Type 1

time

tim
e

un
its

2 4 6 8 10 12 14 16 18 20 22
0

0.01

0.02

0.03

0.04

Average Wait of Type 2

time

tim
e

un
its

63

Figure 35: Staffing Levels for Satisfying Hourly Delay Probability

0 5 10 15 20
0

10

20

Staffing Function of Type1

time

se
rv

er
s

0 5 10 15 20
0

20

40

60
Staffing Function of Type2

time

se
rv

er
s

were delayed and encounter a bad service experience (average wait is several minutes).

Moreover, the two solution are not totaly comparable in term of service level, since the

status at the end of the horizon is different. While there are very few customers on the

queues during the entire horizon when service level is satisfied on each hour, a sizable

queue was built up at the end of the horizon when the service level was maintained on a

daily basis. Consequently, more agents will have to be assigned on the following day to

compensate.

Smaller difference in total required staffing hours was detected, when we tried to satisfy

constraints on the probability to abandon both hourly and daily. We demanded that not

more than 10% of the Business customers will abandon, and not more than 20% of the

Quick Requests customers.

The total amount of staffing hours was 463 for the hourly service level, and 432 for the

daily service level (approximately 6.7% reduction). Again, in the case of daily constraints,

64

Figure 36: Delay Probability

0 5 10 15 20
0

0.5

1

time

P
(d

el
ay

)

Delay Probability of Type 1

actual
target

0 5 10 15 20
0

0.5

1

time

P
(d

el
ay

)

Delay Probability of Type 2

actual
target

65

Figure 37: Average Wait

2 4 6 8 10 12 14 16 18 20 22

0.05

0.1

0.15

Average Wait of Type 1

time

tim
e

un
its

2 4 6 8 10 12 14 16 18 20 22

0.1

0.2

0.3

Average Wait of Type 2

time

tim
e

un
its

66

Figure 38: Abandonment Probability for Hourly Service Levels

0 5 10 15 20
0

0.5

1

time

P
(a

ba
nd

on
m

en
t)

Abandonment Probability of Type 1

actual
target

0 5 10 15 20
0

0.5

1

time

P
(a

ba
nd

on
m

en
t)

Abandonment Probability of Type 2

actual
target

the probability to abandon was below the target during the rush hours in which the critical

mass of customers arrives, and significantly worse on the rest of the hours (Figures 38,39).

In another experiment that we carried out, we associated a cost to the waiting time

of customers and tried to find staffing levels that minimize the total staffing cost and

waiting time cost. We set the cost of one hour of wait to be 0.2 cost units for the Business

customers, and only 0.1 for the Quick Requests customers. Much like in the constraints

satisfaction mode, the cost optimization mode can also be applied with different service

level time base. However, there was no significant difference in the solution when we tried

different time bases.

67

Figure 39: Abandonment Probability for Daily Service Levels

0 5 10 15 20
0

0.5

1

time

P
(a

ba
nd

on
m

en
t)

Abandonment Probability of Type 1

actual
target

0 5 10 15 20
0

0.5

1

time

P
(a

ba
nd

on
m

en
t)

Abandonment Probability of Type 2

actual
target

68

Figure 40: Staffing Levels for The Waiting Cost Optimization

0 5 10 15 20
0

2

4

6

8

Staffing Function of Type1

time

se
rv

er
s

0 5 10 15 20
0

20

40

60
Staffing Function of Type2

time

se
rv

er
s

5 Staffing Optimizer Tool

In this section we give general outlines of the simulation we developed for SBR systems

with time-varying parameters. Furthermore, we describe a MATLAB interface that is

used for creation of simulation models, optimizing staffing, running simulation and viewing

their results.

5.1 Simulation Description

We give here the general design of our simulation including a short description of the

main classes and their associations. Our simulation is written in C++. In addition to

the simulation library, we created a dynamic link library (dll) that provides simple API

for creation of simulation models and running them according to user parameters. This

library is then linked to our MATLAB interface code.

The main classes:

69

Figure 41: Average Wait for The Waiting Cost Optimization

0 5 10 15 20
0

0.5

1

Average Wait of Type 1

time

tim
e

un
its

0 5 10 15 20
0

0.5

1

Average Wait of Type 2

time

tim
e

un
its

CustomerClass This class implements a type of customers. It includes data about the

arrival rate function, the distribution of patience associated with customers from

this class, thresholds for waiting times and sojourn times that are used for statistics

gathering. The main functionality of this class is generating Customer objects and

queueing them.

ServerPool This class implements a pool of servers. It holds the staffing function of

this pool and the service discipline. Service discipline dictates what happens when

staffing level is reduced and can be either exhaustive or preemptive. In case it is

exhaustive, server that has to leave will first finish the service and only then leave.

In case of preemption discipline, the server will leave immediately and the customer

will be returned to the head of the queue.

Connection This class defines the service information for a certain customer class and

a pool of servers (if a certain pool cannot serve a certain class of customers, there

will not be a connection defined for them). The information includes the service

distribution, and the control parameters.

70

ServiceSystem This class implements a skills-based-routing system that is composed of

one or more customer classes, one or more pools of servers and the topology defined

by the set of connections between them. It contains the data of control schema,

both arrival control and Idleness control, the grid according to which statistics is

gathered. the main functionality of this class is running the simulation according

to user parameters: start time, end time, and the number of replications. The

simulation is event driven and based on heap of events processed by event handler.

Event Events are the building blocks of the simulation. There are five types of events:

• Customer Arrival - Customer enters the system. He is routed to a pool ac-

cording to the routing scheme or queued if there are no idle servers capable of

serving him.

• Customer Release - Customer is released from service after it completed. The

newly idle server is taking another customer to service according to the routing

scheme or remains idle if there are no customer that he can serve.

• Customer Abandon - Customer abandons the system and removed from queue.

• Change Shift - number of servers and customers are handled according to the

service discipline.

• Report Time - Statistics regarding the number of customers of each class is

gathered.

Events are entered into a heap. Events handling process invoke the creation of other

events.

Customer Customer objects are generated by the CustomerClass objects. They are

used to keep track of time stamps along the service process and report statistics.

Control Control implements the routing scheme according to which customers are routed

to servers upon their arrival (Arrival Control), and idle servers choose a customer

to serve (Idleness Control). There are several control schemes implemented in the

code.

1. Arrival Control

We say that a pool is a candidate for a customer at a given time if servers in

71

this pool are able (there is a connection between the pool and class) to serve

the customer, and there is at least one available server in this pool.

• Random (RAND) - a customer will be routed a randomly (with equal

probability) to any of the candidate pools at the time of arrival.

• Static Priority (SP) - a customer will be routed the to a candidate pool

with the highest priority according to a predefined class-dependent priority

list.

• Threshold Priority (TP) - A customer will be routed to the highest priority

candidate pool that has at least K idle servers. The threshold K is defined

for each pool and class.

• Preemptive Static Priority (PSP) - A customer will be routed to the highest

priority candidate pool that is either available or has at least one server

that serves a customer with lower priority. In the latter case , the lower

priority customer will be removed from service back to the head of his

queue for the benefit of the coming customer.

• Fastest Server (FS) - A customer will be routed to candidate pool that

serves him with the lowest expected service time.

• Fixed Queue Ratio (FQR) - A customer will be routed to a candidate pool

j with the highest value of
Ij∑
Ij
− pj, where Ij is the number of idle servers

in pool j and pj is a predefined parameter.

• Mixed Priority (MP) - Each class can be either preemptive class or not. A

preemptive class customer will be routed according to the PSP scheme, else

he will be routed according to SP scheme. In case a customer is removed

from service he will be inserted to the end of queue of all ejected customers.

2. Idleness Control

• Threshold Priority (TP) - A newly become idle server will take the head-of-

queue customer from a candidate class i and there are at least Ki available

servers on that pool.

• Static Priority (SP) - A newly become idle server will take the head-of-

queue customer with the highest priority

• Most Delayed (MD) - A newly become idle server will take the head-of-

queue customer with the longest wait.

72

• Fixed Queue Ratio (FQR) - A newly become idle server will take the head-

of-queue customer for the queue that maximize the value of the index
Qi∑
Qi
− pi, where Qi is the number in queue of class i and pi is a predefined

parameter.

• Fixed Wait Ratio (FWR) - A newly become idle server will take the head-

of-queue customer for the queue that maximize the value of the index
Wi

τi
− pi, where Wi is the waiting time of the head-of-queue customer of

class i, τi is a predefined threshold parameter and pi is a predefined ratio

parameter.

• Mixed Priority (MP) - A newly become idle server will take the head-

of-queue customer from the preemptive classes. If all preemptive classes

queues are empty he will take a the customer from the head of the queue

of all ejected customers. If this queue is empty he will take a customer

from the non-preemptive class queue with the highest priority.

• Servient (SER) - A newly become idle server will take a customer that he

can serve from any pool with higher priority. If there is no such customer

he will take a customer from one of the queues according to SP scheme.

Statistics This class stores the relevant data for all pools and classes and time intervals

in arrays. The types of data that are stored include the following:

• Arrivals - stores for each Customer Class an array of how many customers of

that class arrived in each interval.

• Delays - stores for each Customer Class an array of how many customers were

delayed before admitted to service in each interval.

• Abandonments - stores for each Customer Class an array of how many cus-

tomers that arrived in a specific interval abandoned.

• Waited Less Then T - stores for each Customer Class an array of how many cus-

tomers that arrived in a specific interval waited less then their defined threshold.

• Satisfied - stores for each Customer Class an array of how many customers that

arrived in a specific interval and were admitted to service waited less then their

defined threshold.

73

• Sojourns - stores for each customer class an array of how many customers that

arrived in a specific interval spent time in the system less than their defined

sojourn threshold.

• Waiting Times - stores for each Customer Class the summation of total waiting

times of all customers that arrived in a specific interval.

• Wait Histograms - stores for each customer class an histogram of the total

waiting time of all customers that arrived during the entire simulation horizon.

• Queue Length - stores for each Customer Class an array of the number in queue

at the middle of specific interval.

• Number in System - stores for each pool an array of how many customers are

in service in the middle of a specific interval.

• Utilization - stores for each customer class and for each pool the fraction of

time spent on serving customers of the specific class out of the entire available

time of all server in that pool.

Distribution This class is used to generate random variables according to given param-

eters and retrieve their moments. There are several types of random distribution

implemented:

• Exponential (µ)

• HyperExponential (p1, µ1, p2, µ2)

• LogNormal (µ, σ2)

• Uniform (a, b)

• Normal (µ, σ2)

• Deterministic (value)

Image The Image class implements a ”snapshot” of specific realization of the system at a

given time. Images are used to save and restore the status of the system at a given

time. This functionality is extremely useful when optimizing subsequent intervals

in a time-varying settings. In this case the images are recorded at the end of each

intervals, and by that the need to run simulation from the beginning of the period

is prevented.

74

5.2 MATLAB GUI

System requirements: MATLAB v.6 or higher.

Installation requires only to unzip StaffingOptimizer.zip into a desirable directory. To run

the GUI one must open a MATLAB session and run the command StsffingOptimizer from

the relative path in which the StaffingOptimizer directory was placed. The tool GUI will

open up. Note that the messages box should contain the text ”SBRDll is loaded” - this

indicates that the C++ simulation dll was loaded successfully.

5.2.1 Creating a Service Model

Figure 42: Main Screen of Staffing Optimizer GUI

In the main screen (see figure 42) one should define the following input:

• Customer Classes - The number of customer classes

• Skills - The number of server pools

• End Time - the total simulation time

75

• Delta - the grid according to which statistics are gathered and displayed

• Warmup - The time from which statistics will be gathered

• Arrival Control - Choose the desired arrival control from a dropdown list.

• Idleness Control - Choose the desired idleness control from a dropdown list.

Then, the user should press the Create SBR button. The messages box should display

the text: SBR Created. Pressing this button at any stage resets the system settings.

Definition of the customer classes is done by pressing the Classes button. When hitting

Figure 43: Classes Definition Screen

this button the Classes screen opens up (see Figure 43). The user can switch between the

classes settings by choosing the desirable class from the top dropdown. The drop down

76

list is created with the number of classes that was fed in previous stage. In this form

the arrival rate should be chosen. The option for this input is either constant - in this

case one should only define a scalar rate, or sinusoidal - in this case one should input two

scalars separated by space representing the formula a + b · sin (t). Patience distribution

with the parameters should be chosen. The available distribution types are detailed in

simulation description (Statistics class). Wait and Sojourn thresholds are defined for

statistics purposes. The last line is for optimization purposes and explained on 5.2.3. The

Commit button should be pressed for each class definition. The Close button closes the

screen.

Definition of servers pools is done by pressing the Pools button. Pressing this button

opens up the Pools screen allowing to define the staffing levels and cost of each pool. The

Figure 44: Pools Definition Screen

drop down list is created with the number of pools inserted in previous stage. There are

three forms of staffing function definitions

• Constant - see arrival rate definition.

• Sinusoidal - see arrival rate definition.

77

• Functional - MATLAB style function inserted in the format of MATLAB function

definition.

Recall that staffing levels can only vary from interval to interval and remain constant

within each interval. The staffing levels in each interval will be evaluated as the function

value at the beginning of the interval.

The cost definition will be explained on 5.2.3.

Pressing the Assign Class to Pool button opens up the connection screen that allows to

define a connection between any class and any pool. The service distribution id defined

Figure 45: Connection Definition Screen

similar to patience distribution definition. In addition to control parameters can be defined

for each class and pool, one for arrival control and one for idleness control.

Once completing these stages, the simulation model is properly defined. By pressing the

Show Settings button, a window opens up displaying the system parameters including all

classes pools and their connections.

5.2.2 Running Simulation and Viewing Results

After defining the simulation model (see 5.2.1), the following is needed in order to run the

simulation:

78

Figure 46: Summary Settings Screen

79

• Enter the number of replications the Replications text box

• Enter the name of the file to which results as well as model settings will be saved.

• Press the Run button.

During the simulation run, the message box displays the estimated time to complete the

run. When done, simulation model and results are saved into file, and the message box

should say ”Results are saved in filename.mat”. Any saved simulation can be loaded and

viewed at a later time by pressing Load Simulation. A directory list is opened up (Figure

47). The user should double click the desired file from the results directory. To view

Figure 47: Loading Simulation Screen

the results the user should check all the statistics that he wishes to view. The available

pre-interval statistics are:

• Arrivals - average of Arrivals statistics (see 5.2.2) over all replications

• Staffing - the staffing levels for each pool

• Delay Probability - sum of Delays statistics divided by Arrivals statistics.

80

• Abandonment Probability - the sum of Abandoned statistics divided by the sum of

Arrivals statistics over all replications.

• System - the average number of each class in service of each pool and in queue.

• Tail Probability - the sum of Waited Less Than T statistics divided by the sum of

Arrivals statistics over all replications.

• Satisfied - the sum of Satisfied statistics divided by the sum of Arrivals statistics

over all replications.

• Utilization - the utilization profile of each pool (portion of time spend on each class

and being idle)

• Wait Average - the sum of Waits statistics divided by the sum of Arrivals statistics

over all replications.

• Wait Histograms - the waiting time histogram.

• Average Queue - the average queue of each class.

• Served Tail Prob - the Satisfied Statistics divided by Arrivals minus Abandoned

statistics.

• Sojourn - the Sojourn statistics divided by Arrivals statistics.

Figure 5.2.2 displays sample statistics plots of arbitrary N model. Finally, pressing the

Close button will all opened figures and pressing the Save Figures button will save all

figures in a separate pdf file with the name of the statistics.

5.2.3 Running Optimization Algorithms

There are two optimization models available for use:

1. Cost Optimization - In this model, the service level is associated with some penalty

cost.

2. Constraint Satisfaction - In this model, the service level appears as strong constraint.

81

Figure 48: Sample Plots of Simulation Results

0 5 10 15 20
0

10

20

30

40

50

60

70

Customer Distribution of Class 1

time

#c
us

to
m

er
s

Pool 1
Pool 2
Queue

0 5 10 15 20
0

20

40

60

80

100

Customer Distribution of Class 2

time

#c
us

to
m

er
s

Pool 1
Pool 2
Queue

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Occupation Profile of Pool 1

time

pr
op

or
tio

n

Class 1
Class 2
Idle

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Occupation Profile of Pool 2

time

pr
op

or
tio

n

Class 1
Class 2
Idle

82

Figure 49: Sample Plots of Simulation Results

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Delay Probability of Type 1

time

P
(d

el
ay

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Delay Probability of Type 2

time

P
(d

el
ay

)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Tail Probability of Type 1

time

P
(W

>
0.

00
5)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Tail Probability of Type 2

time

P
(W

>
0.

01
)

83

The penalty cost or constraint threshold are inserted in the classes screen. The desired

service level objective should be picked up from a dropdown containing the following

options:

• P {W > 0} - the delay probability.

• P {W > t} - the probability to wait more than threshold t. t is taken from the class

tail threshold.

• P {ab} - the probability to abandon.

• E [W] - the expected wait.

The cost or threshold should be filled in respective to the optimization model.

In addition, the cost of each pool should be defined in the Pools screen. In the this

screen the user is able to edit the coefficients of polynomial cost function. Note that in

the current version, the Cost Optimization mode allows only linear staffing function (i.e.

the power component equals 1)

For instance, in Figure 50 there is a constraint defined for Class 1 stating that not more

than 30% should wait more than 0.1 time units; The cost per time unit of Pool 1 servers

is 5N1.

Finally, in order to run the optimization algorithm, one should choose the desired opti-

mization method from the dropdown list and press the Optimize button. If the settings

are time-varying, i.e. the chosen Delta is smaller than End Time implying multiple inter-

vals, the algorithm will solve sequentially the problem for each interval. On the messages

text box the currently solved interval will be displayed. Once solution is reached, a sim-

ulation will run with the obtained staffing. The results will be saved to file and will be

displayed automatically.

84

Figure 50: Defining Optimization Parameters

85

6 Future Work

In this work we developed algorithms for identifying optimal staffing of systems with

skills-based-routing given the routing scheme. These algorithms can be used for very gen-

eral settings, including time-varying models and general distributions, to either optimize

service levels and labor costs or optimize labor costs while satisfying some desirable Ser-

vice Level constraints.

The algorithms were proven to work very well, and in most cases attained the optimal

solution even when the service levels were not convex in the staffing levels. However, in

few other cases, the non-convexity nature of the service levels caused the algorithms to

converge to sub-optimal solution. Although this can be controlled by applying simple

procedures, it can be interesting to try to find alternative algorithms that do not rely on

the convexity, and might even work faster.

While our solution can be very practical for many applications, it lacks the ability to

incorporate labor scheduling constraints and thus can not be used to provide an optimal

scheduling solution.

One important direction is to develop algorithms or combine the ones that are introduced

in this work, with a scheduling mechanism which is traditionally carried out by some

mathematical programming solver.

Another potential direction is to provide optimal solution for more complex systems with

complex processes, such as Service Networks, Petri Nets etc. This will probably require

more sophisticated algorithms.

86

References

[1] Aksin, Z., Armony, M., Mehrotra, V., The modern Call-Center: A Multi-

Disciplinary Perspective on Operations Management Research. Production

and Opetations Management, November 2007 1.1

[2] Armony, M. and Mandelbaum, A. Design, Staffing and Control of Large Ser-

vice Systems: The Case of a Single Customer Class and Multiple Server

Types. Draft, March 2004. 1.1, 1.1

[3] Atlason, J., Epelman, E., Henderson, S.,Call-Center Staffing with Simulation

and Cutting Plane Methods 1.1, 3, 4.4

[4] Bassamboo, A., Randhawa, R. S., A Little Flexibility is All You Need – Opti-

mality of Tailored Chaining 1.1

[5] Eick, S., Massey, W., Whitt, W. The Physics of The Mt/G/∞ Queue. Opera-

tions Research, 41(4), 731-742, 1993.

[6] Feldman, Z., Mandelbaum, A., Massey, W.A., Whitt, W. Staffing of Time-

Varying Queues to Achieve Time-Stable Performance, Management Science,

2006.

[7] Gans, N., Koole, G., Mandelbaum, A. Telephone Call Centers: Tutorial, Re-

view and Research Prospects. Invited review paper by Manufacturing and Service

Operations Management (MSOM), 5 (2), pp. 79–141, 2003. 1, 1.1

[8] Garnett, O., Mandelbaum, A. An Introduction to Skills Based Routing and

its Operational Complexities. May 2000.

[9] Garnett, O., Mandelbaum, A. and Reiman, M. Designing a Call Center with

Impatient Customers. Manufacturing and Service Operations Management, 4(3),

208–227, 2002.

[10] Glynn, P.W Limit theorems for the method of replications Comm. ACM 33,

75-84 3

[11] Gurvich, I., Armony, M. and Mandelbaum, A. Service Level Differentiation in

Call Centers with Fully Flexible Servers. Draft , April 2006. 1.1, 4.1, 4.1

87

[12] Gurvich, I., Whitt, W., Service Level Differentiaition in Many-Server Service

Systems: A Solution Based on Fixed-Queue-Ratio Routing 1.1, 4.2.2

[13] Gurvich I., Whitt W. (2006) Asymptotic Optimality of Queue-Ratio Routing

for Many-Server Service Systems. Submitted, September 2008 1.1

[14] Halfin, S., Whitt, W. Heavy-Traffic Limits for Queues with Many Exponen-

tial Servers. Oper. Res., 29(1981), 567-587.

[15] Juditsky, A., Lan, G., Nemirovski, A., Shapiro, A. Stochastic Approximation

Approach to Stochastic Programming 1, 2, 1.2, 2.2, 2.2, 2.2, 2.2, 3, 3.1, 3.2

[16] Nemirovski, A., Yudin, D., Problem complexity and method efficiency in op-

timization, Wiley- Interscience Series in Discrete Mathematics, John Wiley, XV,

1983

[17] Polyak, B.T. and Juditsky, A.B., Acceleration of stochastic approximation by

averaging, SIAM J. Control and Optimization, 30 (1992), 838-855 2.2

[18] Robbins, H. and Monro, S., A Stochastic Approximation Method, Annals of

Math, Stat., 22 (1951), 400-407 2.2

[19] Wallace, R.B., Whitt, W. A Staffing Algorithm For Call Centers With Skill-

Based Routing, August 2004. 1.1, 1.1

[20] Y.C. Ho, X.R. Cao Optimization and perturbation analysis of queueing net-

works J. Optim. Th. Appl. 40, 559-582

3

88

	List of Symbols
	List of Acronyms
	Introduction
	Literature Review
	Thesis Outline

	The Staffing Problem
	Model Formulation
	Stochastic Approximation

	The Staffing Algorithms
	Cost Optimization
	Constraint Satisfaction
	Solution Feasibility

	Calculating the Bound M*2
	Convexity

	Experimental Results
	V Model
	N model
	Static Priority control
	FQR control
	Deterministic Service Times
	Log-Normal Service Times
	Adding Impatience

	M Model
	Time-varying Model
	Realistic Example

	Staffing Optimizer Tool
	Simulation Description
	MATLAB GUI
	Creating a Service Model
	Running Simulation and Viewing Results
	Running Optimization Algorithms

	Future Work
	References

