Toward a Simulation-Based Real-Time Decision-Support System for Emergency Departments

Yariv N. Marmor¹, Segev Wasserkrug², Sergey Zeltyn², Yossi Mesika², Ohad Greenshpan², Boaz Carmeli², Avraham Shtub¹, Avishai Mandelbaum¹

¹Technion – Israel Institute of Technology ²IBM Haifa Research Labs

Winter Simulation Conference 2009

Motivation - ED overcrowding

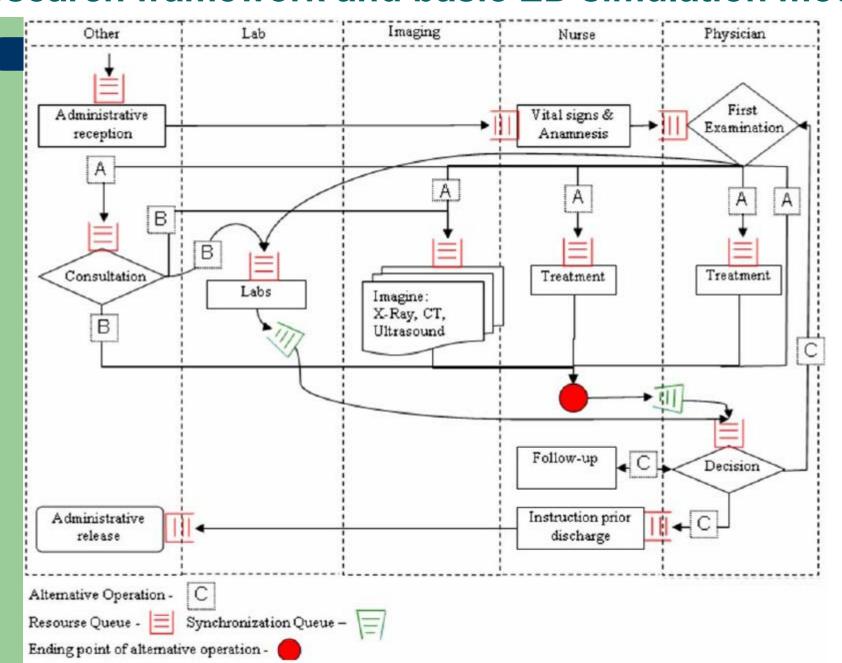
- Staff (re)scheduling (off-line) using simulation:
 - Sinreich and Jabali (2007) maintaining **steady utilization**.
 - Badri and Hollingsworth (1993), Beaulieu et al.
 (2000) reducing Average Length of Stay (ALOS).
- Alternative operational ED designs:
 - King et al. (2006), Liyanage and Gale (1995) aiming mostly at reducing **ALOS**.
- Raising also the patients' view: Quality of care
 Green (2008) reducing waiting times (also the time to first encounter with a physician).

Simulation support: short- to long-term

- Part 1 (short-term): Decision-Support system (ED Staffing) in real-time (hours, shift).
- Part 2 (medium) (Staffing) Over mid-term (weeks).
- Part 3 (long): Fitting an efficient operational model to a given ED Environment.
- Part 4 (long): Benefits of using real-time patients tracking (e.g. RFID) in the ED.

Here we focus on Part 1 - ED staffing in real-time, over a single shift (intraday staffing).

Part 1: Decision-Support system for Intraday staffing in real-time


Real-Time staffing: Objectives

- [Gather real data in real-time regarding current state]
- Complete the data when necessary via simulation.
- Predict short-term evolution (workload) via simulation.
- Corrective **staffing**, if needed, via simulation and mathematical models.
- All the above in **real-time** or close to real-time

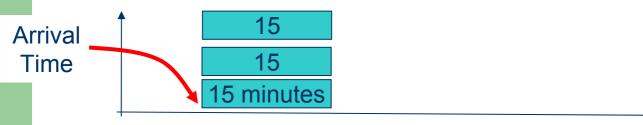
- Our ED admits 80,000 patients annually:
 - ~ 60% classified as Internal.
 - ~ 40% classified as Surgical or Orthopedic.
- The ED has three major physical areas:
 - (1) Internal acute
 - (2) Trauma acute
 - (3) Walking.

- Generic simulation tool (Sinreich and Marmor, 2005).
- ED activity-resource chart:

Estimation of current ED state

- Goal Estimate current ED state (using simulation):
 - For each patient: **type** (e.g. internal,) and **status** in the ED process (e.g. X-ray, Lab,...)

[status un-extractable from most currently installed ED IT systems]


- Data description:
 - Accurate data arrival and home-discharge processes.
 - Inaccurate (censored) data departure times for delayed ED-to-Ward transfers (recorded as departures but are still in an ED bed).
 - Unavailable data all the rest (e.g. patients status).
- Method to estimate present state:

Run ED simulation from "t=-∞"; keep replications that are consistent with the observed data (# of discharged)

Required staffing level – short-term prediction

Staffing models:

• RCCP (Rough Cut Capacity Planning) – Heuristic model aiming at operational-efficiency (resource utilization level).

• OL (Offered Load) - Heuristic model aiming at balancing high levels of service-quality (time till first encounter with a physician) and operational-efficiency (resource utilization).

OL: Offered-Load (theory)

In the simplest time-homogeneous steady-state case*:

R - the offered load is:

 λ – arrival rate,

E(S) – mean service time,

$$R = \lambda * E(S)$$

*Little's Law

"Square-Root Safety Staffing" rule: (Erlang 1914, Halfin & Whitt ,1981):

$$n \approx R + \beta \sqrt{R}$$

 β > 0 is a "tuning" parameter.

Gives rise to **Quality** and **Efficiency-Driven** (**QED**) operational performance: carefully balances <u>high</u> service-quality (time to first-encounter) with <u>high</u> resource-efficiency (utilization levels).

Offered-Load (theory), time-inhomogeneous

Arrivals are better modeled by a **time-inhomogeneous** Poisson process, with arrival rate $\lambda(t)$; $t \ge 0$:

OL is calculated as the number of busy-servers (or served-customers), in a corresponding system with an **infinite** number of servers (Feldman *et al.* ,2008).

For simple model (not the ED):

$$R(t) = E\left[\int_{t-S}^{t} \lambda(u)du\right] = \int_{-\infty}^{t} \lambda(u)P(S > t - u)du$$

S - (generic) service time.

Offered Load (theory): time-inhomogeneous

QED-staffing approximation, achieving service goal α :

$$n_r(t) = R_t + \beta_t \sqrt{R_t}$$

$$1 - \alpha = P(W_q > T) \approx h(\beta_t) e^{-T\mu\beta_t \sqrt{n_r(t)}}$$

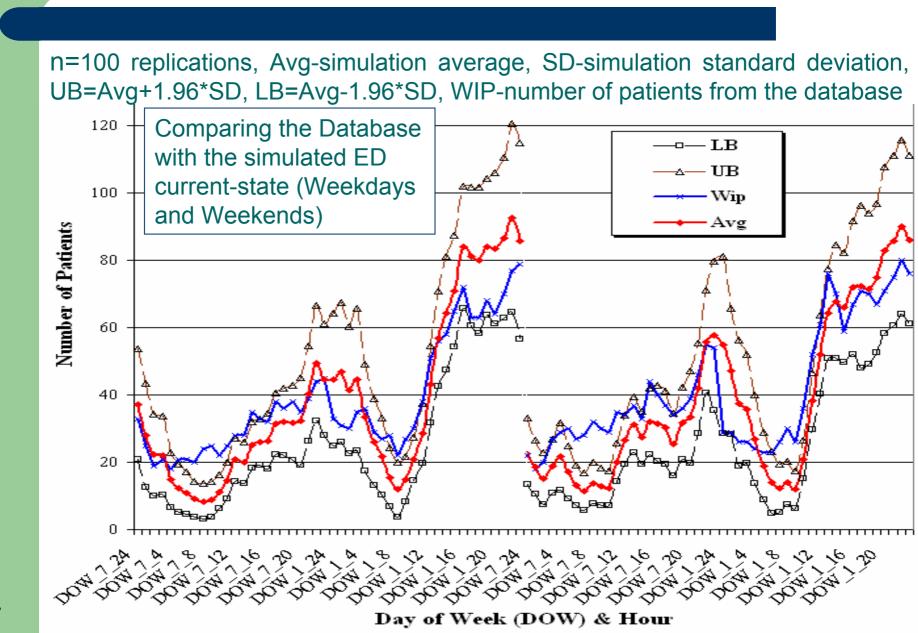
 $n_r(t)$ - recommended number of resource r at time t, using OL.

 α - fraction of patients that start service within T time units, W_q - patients waiting-time for service by resource r, $h(\beta_t)$ - the Halfin-Whitt function (Halfin and Whitt ,1981),

Offered Load methodology for ED staffing

- • servers: simulation run with "infinitely-many" resources
 (e.g. physicians, or nurses, or both).
- Offered-Load: for each resource *r*, and each hour t, calculate the number of busy resources (= total work).
- Use this value as an estimate for the offered load *R*(*t*) of resource *r* at time *t* (averaging over simulation runs).
- Staffing: for each hour t we deduce a recommended staffing level $n_r(t)$ via the formula:

$$n_r(t) = R_t + \beta_t \sqrt{R_t}$$


$$1 - \alpha = P(W_q > T) \approx h(\beta_t) e^{-T\mu\beta_t \sqrt{n_r(t)}}$$

Methodology for short-term forecasting and staffing

Our simulation-based methodology for short-term staffing levels, over 8 future hours (shift):

- 1) Initialize the simulation with the **current ED state**.
- 2) Use the average arrival rate, to generate **stochastic arrivals** in the simulation.
- 3) Simulate and collect data every hour, over 8 future hours, using **infinite resources** (nurses, physicians).
- 4) From Step 3, calculate **staffing** recommendations, both $n_r(RCCP,t)$ and $n_r(OL,t)$.
- Run the **simulation** from the current ED state with the **recommended staffing** (and existing staffing).
- 6) Calculate **performance** measures.

Simulation experiment – current state (# patients)

Experiment – performance of future shift

Utilization:

 I_p - Internal physician

 S_p - Surgical physician

 O_p - Orthopedic physician

N₁₁ - Nurses.

Used Resources (avg.):

#Beds – Patient's beds,

#Chairs - Patient's chairs.

Service Quality:

%W - % of patients getting physician service within 0.5 hour from arrival (effective of α).

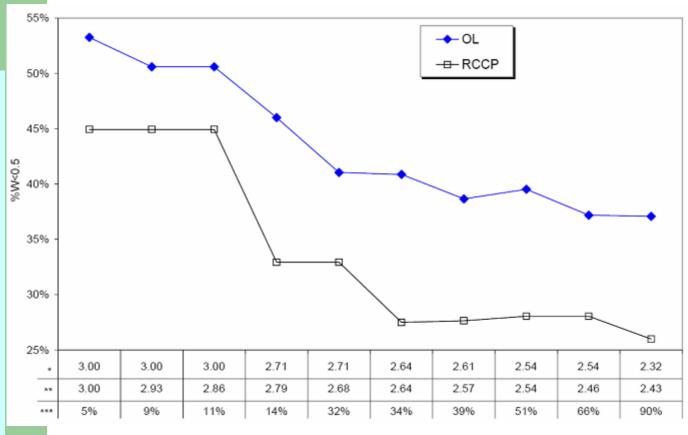
		Utiliza	<u>ation</u>				
Hour	Ιp	Sp	Ор	Nu	#Beds	#Chairs	%W
09-10	73%	1%	23%	55%	15.7	8.6	7%
10-11	93%	25%	59%	б8%	23.5	17	33%
11-12	94%	59%	67%	72%	29.3	22.8	51%
12-13	90%	45%	81%	58%	33.2	30.3	53%
13-14	95%	68%	94%	71%	36.2	34.7	77%
14-15	90%	62%	76%	63%	34.2	33.3	70%
15-16	91%	51%	46%	51%	34.4	30.5	77%
16-17	100%	43%	41%	53%	34.6	27.6	69%
17-18	95%	58%	46%	57%	33.4	23.6	52%
18-19	90%	46%	52%	50%	32.4	23.9	31%
19-20	89%	64%	70%	58%	29.3	25.3	40%
20-21	79%	64%	75%	56%	26.5	20.6	39%
21-22	84%	46%	60%	45%	23.4	17	23%
22-23	66%	38%	51%	46%	20.2	13.9	20%

Simulation experiment – staffing recommendations

Staffing levels (current and recommended)

	n (Current)				Offered Load			n (OL)				RCCP Load				n (RCCP)				
Hour	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u
16-17	4	1	2	5	7.8	0.8	0.8	4.1	9	2	2	5	3	0.5	0.6	2.4	4	1	1	3
17-18	4	1	2	5	3.7	0.4	0.9	2.5	5	1	2	3	3.3	0.4	0.7	1.3	4	1	1	2
18-19	4	1	2	5	3.2	0.4	1.1	2.7	4	1	2	4	2.3	0.4	0.4	1.3	3	1	1	2
19-20	4	1	2	5	2.3	0.5	1.2	2.5	3	1	2	3	2.4	0.5	0.6	1	3	1	1	2
20-21	4	1	2	5	2.7	0.6	1.5	2.7	4	1	2	4	2.3	0.5	0.4	1	3	1	1	2
21-22	4	1	2	5	2.4	0.4	1.3	2.4	3	1	2	3	2.8	0.5	0.4	1.1	4	1	1	2
22-23	4	1	2	5	2.3	0.2	0.9	2	3	1	2	3	2.4	0.3	0.2	1	3	1	1	2

Simulation experiments – comparison


		Peı	form	ance n	neasure	s using	Performance measures using									
			OL 1	ecom	mendati	ion	RCCP recommendation									
	Resource Utilization				//D - 1	// C1	0/337	Reso	ource	Utiliza	ation	#Doda	# C1	0/337		
Hour	Ip	Sp	Ор	Nu	#Beas	#Chair	%W	Ip	Sp	Ор	Nu	#Beds	#Chair	%W		
16-17	62%	38%	40%	58%	36	29	56%	90%	54%	60%	59%	38.3	35.3	78%		
17-18	59%	33%	35%	67%	34.8	31.6	36%	82%	47%	65%	81%	39.3	40.2	82%		
18-19	75%	49%	53%	76%	32.2	29.9	46%	80%	45%	69%	92%	40.6	46.2	86%		
19-20	84%	48%	57%	80%	31.5	31.1	38%	72%	43%	79%	97%	42.3	52.2	90%		
20-21	76%	52%	65%	71%	28.7	28.4	38%	68%	46%	85%	99%	43.4	57.7	91%		
21-22	83%	49%	59%	75%	27.8	27.9	42%	55%	45%	89%	99%	44.7	62.4	91%		
22-23	85%	45%	50%	73%	25.7	25.4	50%	63%	39%	87%	99%	45.9	64.9	91%		

OL method achieved good service quality: %W is stable over time.

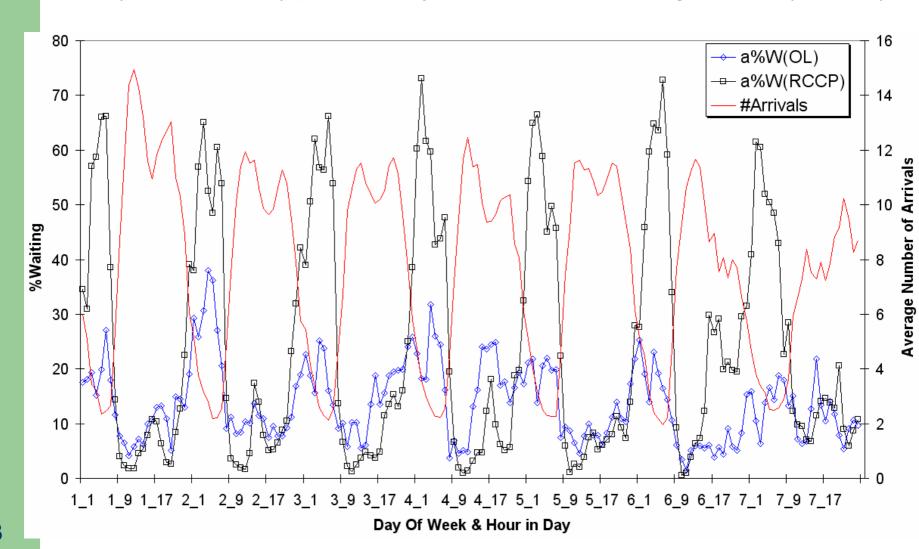
RCCP method yields good performance of resource utilization - near 90%.

Simulation experiments – comparisons

Comparing RCCP and OL given the same average number of resources

^{*} avg number of resources per hour (RCCP)

** avg number of resources per hour (OL)


*** α

The simulation results are conclusive – OL is superior, implying higher quality of service, with the same number of resources, for all values of α .

Part 2: Intraday staffing over the mid-term

Mid-term staffing: Results

%W (and #Arrivals) per Hour by Method in an Average Week (α = 0.3)

Conclusions and future research

- Developed a staffing methodology for achieving both high utilization and high service levels, over both short- and mid-term horizons, in a highly complex environment (e.g. ED)
- More work needed:
 - Refining the analytical methodology (now the α is close to target around α = 50%).
 - Accommodate constrains (e.g. rigid shifts).
 - Incorporate more refined data (e.g. from RFID).

Part 3: Fitting an efficient operational model to a given ED environment, using Simulation and DEA

With Prof. B. Golany & Prof. A. Mandelbaum

Research problem: matching design to environment (long run)

Current practice: Priority queues at the ED are based on patients' urgency and illness type (e.g. Garcia *et al.*, 1995).

Problem: No account of operational considerations, e.g. relieving overcrowding by accelerating discharges (SPT).

Managerial solution: To use ED design to enforce operational preferences:

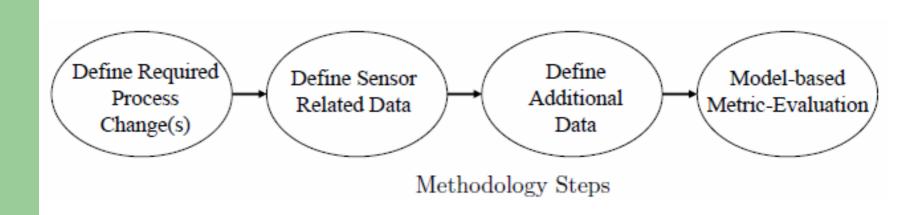
- Illness-based
- Triage
- Fast Track
- Walking-Acute

Conclusions (sample)

- There is no dominant operating model for all ED environments.
- EDs exposed to high volume of elderly patients need a Fast-Track lane for high-priority patients.
- Other EDs (Low volume of elderly patients) can use Triagebased priorities.
- If FT and Triage are not feasible options (e.g. no extra nurse is available for Triage or no room for FT), use Walking-Acute for differentiation.

Future Research:

 Adding operational models (e.g. Output-based approach and Specialized-based approach).


Part 4: long-term benefits of using real-time tracking (RFID) in the ED

With:

Prof. Mandelbaum Prof. Shtub, Dr. Wasserkrug, Dr. Zeltyn (M.D. Schwartz – ED Manager, Tzafrir – IT Head)

Goal

Present a multi-stage methodology to evaluate the potential benefits of introducing RFID technology, supported by examples of its application (operational, clinical, financial).

Questions?