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Abstract

The Emergency Department (ED) of a modern hospital is a highly complex system. Indeed, it
gives rise to numerous managerial challenges from the Service Engineering area, spanning the full
spectrum of operational, clinical and financial perspectives, over varying horizons: operational -
few hours or days ahead, tactical - weeks or a few months ahead, or strategically - months to years
ahead. Since realistic ED models are often intractable analytically, one resorts to simulation for
an appropriate framework to address these challenges, which is what we do here. We start with
short-term prediction and operational planning (physicians and nurse staffing) over several hours
or days ahead. To this end, we implement a novel simulation-based technique that utilizes the
concept of offered-load and discover that it performs better than a prevalent alternative. Next,
we evaluate ED staff scheduling that adjusts for mid-term changes (tactical horizon), and then
we analyze the long-term benefits of using real-time tracking in the ED (strategical horizon).
We also search for “best” ED operational models, via simulation and based on real data, where
DEA (Data envelopment Analysis) is the tool used to identify models that are efficient in a given
operational environment. Finally, we present a methodology that enables the creation of complex

simulations by reusing existing simulation submodels.



1 Introduction

1.1 Service-Engineering

Service can be perceived as the pursuit of positively changing the state of a service seeker (customer).
Although this definition implies that service cannot be accumulated as opposed to manufacturing
(and it perishes instantly), to deliver a service one does need resources and a service-channel of some
sort (e.g., telephone lines in a call center) (Shimomura and Tomiyama [2002]).

Service engineering is a scientific area that has been developed in the past two decades, starting
in Germany and in Israel (Bullinger et al. [2003]). It can be described as the “design, analysis
and management of services, fusing ingredients from Operations Research, Statistics, Industrial
Engineering, Game Theory, Economics, Sociology, Psychology, Management Information Systems,
Computer Science, and even more” (Mandelbaum [2007]).

The scope of services in our life extends from financial services (e.g., banking, insurance, real-
estate, and trades), to transportation services (e.g., public transportation, or shipping), social (e.g.,
health-care, education, or government), entertainment, and more. Service interfaces may include
face-to-face (e.g., a teller in a bank), quasi-face-to-face (e.g., telephone, Internet, chat, fax, and
snail-mail) and some are done automatically by machines (e.g., seeing a movie, or checking the
balance in one’s bank account) (Mandelbaum [2007]).

In this work, we focus on the health-care system, specifically on the services given in Emergency

Departments (EDs).

1.2 Health-care system

The rising cost of health-care services has been a subject of mounting importance and much discus-
sion worldwide. Ample explanations have been proposed. Yet, regardless of their cause, rising costs
impose, and rightly so, pressures on health-care providers to improve the management of quality,
efficiency, and economics of their organizations.

Hospitals play a central role in the provision of health services and, within hospitals, ED over-
crowding has been perhaps the most urgent operational problem (Sinreich and Marmor [2005], Hall
[2006], Green [2008]). Overcrowding in the ED leads to excessive waiting times and repelling en-
vironments which, in turn, cause: (1) Poor service quality (clinical, operational, perceived); (2)
Patients in unnecessary pain and anxiety; (3) Negative emotion (of patients and escorts), up to vio-
lence against staff; (4) Increased risk of clinical deterioration; (5) Ambulance diversion; (6) Patients’

LWBS (Leave Without Being Seen); (7) Inflated staff workload; and more (e.g., Derlet and Richards



2000]).

Dealing with over-crowding in the ED starts from Staff (re)scheduling using simulation (e.g.,
Sinreich and Jabali [2007] by maintaining a steady utilization, or Badri and Hollingsworth [1993]
and Beaulieu et al. [2000] focus on reducing Average Length of Stay (ALOS)), looking for alternative
operational ED designs (e.g., King et al. [2006], or Liyanage and Gale [1995] which aim mostly
at reducing ALOS), to raising the patients’ view (Quality of care) by reducing waiting times (in

particularly the time to first encounter with a physician) (e.g., Green [2008]).

1.3 Research objectives and the structure of the work

We start with empirical analysis of an ED, to learn about the ED environment. We then develop
simple descriptive and mathematical models (mainly of ED occupancy), and compare them to our
data (Chapter 2). We aim at discovering how far these simple models can take us in describing
the ED reality - our conclusion motivates the use of simulation, which is the main tool use here.
We then introduce a new intra-day staffing principle that is both fast and service oriented, It can
be used on-line as a command-and-control solution for the ED (for short-term periods), or as a
tool to rearrange the workforce of the ED to overcome crises such as those of flu epidemic periods
(Chapter 3). We then take a broader view of the ED and propose a strategic methodology, based
on analyzing the impact of operational environmental factors, for choosing the most efficient ED
operating model (Chapter 4). We continue with developing a methodology that applies simulation
to compare the long-term benefits of using real-time patients’ tracking devices in the ED (Chapter
5). Before summarizing the work on Chapter 7, we present a methodology for the reuse of simulation
components (Chapter 6); it is motivated by the increasing interest in discrete-time simulation for

achieving service engineering goals.



2 Empirical Model of the ED: Analysis and Comparisons to The-

oretical Models

2.1 Introduction

The rising cost of health-care services has been a subject of mounting importance and much dis-
cussion worldwide. Ample explanations have been proposed, yet regardless of their cause, rising
costs impose pressures on health-care providers to improve the management of quality, efficiency,
and economics of their organizations.

Hospitals play a central role in the provision of health services and, within hospitals, ED over-
crowding has been perhaps the most urgent operational problem (Sinreich and Marmor [2005], Hall
[2006], Green [2008]). Overcrowding in the ED leads to excessive waiting times and repelling en-
vironments which, in turn, cause: (1) Poor service quality (clinical, operational); (2) Patients in
unnecessary pain and anxiety; (3) Negative emotions (of patients and escorts), which sometimes lead
to aggression and even violence (e.g. against staff); (4) Increased risk of clinical deterioration; (5)
Ambulance diversion; (6) Patients’ LWBS (Leave Without Being Seen); (7) Inflated staff workload;
and more (e.g., Derlet and Richards [2000]).

A hospital is an institution for health care, which is able to provide complex treatments and
long-term patient stays. Hospitals include numerous medical units specializing each in a different
area of medicine, such as internal, surgery, intensive care, obstetrics, and so forth. In most of the
large hospitals there are several similar medical units operating in parallel. In our research we focus
on an Emergency Department (ED) with its six sub-departments in “Anonymous” Hospital (see
Section 2.1.1).

The first goal of this chapter is to introduce the ED world empirically and to describe our data-
base of the ED. We then try to fit a “black-box” stochastic model to the number of patients in the

ED. Failing to do so motivates our simulation approach.

2.1.1 “Anonymous” hospital

“Anonymous” hospital is a large Israeli hospital with about 1000 beds and 45 medical units. About
1,000 patients can be hospitalized simultaneously and 75,000 patients are hospitalized annually. We
focus on the ED - which is the gate and the window to the hospital, and which must operate in a
mass-customized mode - i.e., follow a structured care process while providing each individual the

customized care required.



The ED of “Anonymous” hospital attends to about 250-300 patients daily, with 58% classified
as Internal patients (their admission reason is mostly illness and treated by internists) and 42%
classified as Surgical or Orthopedic patients (their admission reason is mostly injury and treated
by surgical and orthopedic physicians accordingly). The ED contains three major areas (the chart
of the physicial area can be found in Figure 1): (1) Internal acute: waiting and treatment room
for acute internal patients treated by dedicated internists physicians and nurses; (2) Trauma acute:
waiting and treatment room for surgical and orthopedic patients treated by dedicated nurses, but
shared with orthopedic and surgical physicians; (3) Walking: area for Walking patients (patients
that do not need a bed and use chairs, usually with mild problems) contains waiting lobby and unique
treatment rooms for internal (dedicated for the walking area), surgical, and orthopedic physicians
(the last two shared with the Trauma acute area). In the walking area, there is also a Gynecology
unit, where patients with gynecology problems get help. There are other emergency room (ER)
locations, detached from the main one we are focusing on (which we refer to as the ED), which are
dedicated to special issues such as pediatrics ER, and Ophthalmology ER. “Anonymous” hospital
does not implement a fast-track process for non-emergency patients. Mean sojourn time of patients
in the ED (ALOS) equals 4:38 hours, with a large variance over individual patients. For more basic

counts, see Appendix A.

2.1.2 Data description

This documentation describes patient-level data at the Emergency Department of “Anonymous”
Hospital in Israel. The data was recorded over the following periods: 1/1/2004 — 1/12/2008. a
sample from the data can be found in Table 1.

There is a record (line in the file) for each patient’s visit. The following are the fields for each

record:

e Key - a unique number identifies each patient. The hospitals replaced the patients ID numbers

with a unique generate number.

e AdmissionNo - Patients in “Anonymous ED” are identified by a serial number starting with

the year and continued by a sequential 6-digit number (e.g., 1999000001)

e AdmissionDate - The patient’s arrival time and date. It is recorded when the admission

secretary types the patient into the system. The format is “dd/mm/yyyy hh:mm”.
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Figure 1: “Anonymous” ED physical layout chart

Discharge - The patient’s departure time and date. It is recorded when the admission secretary

types the patient into the system. The format is “dd/mm/yyyy hh:mm”.

SubUnitID - The code type of ward where the patients are admitted in the ED (as typed by
the admission secretary). The explanations of the codes are given in the sequential column (5

digits).
BirthDate - The patient’s day of birth.
Gender - The gender of the patient (“M” for male and “F” for female).

AdmissionCode - The code describing the patients’ general cause of admitting (as typed by

the admission secretary). The description of the code is listed in the sequential column.

SendByCode - The code describing the authority that sends the patients to the ED (as typed

by the admission secretary). The description of the code is listed in the next column.

SendLetter - The presence / absence of an application letter from the authority that sent the

patients to the ED (“Y” for presence and “N” for absence).



e ComplainRsnCode - The code describing the patient’s complaint at the time of her or his
arrival to the ED (as typed by the admission secretary). The description of the code is listed

in the sequential column.

e BodyPartCode - The code describing the patient’s body parts on which she or he complained
for admitting (as typed by the admission secretary). The description of the code is listed in

the sequential column.

e ArrivalStateCode - The status code of the patient arrivals (as typed by the admission secre-

tary). The description of the code is listed in the sequential column.

e ReleaseStatCode - The status code of the patient departure from the ED (as typed by the

admission secretary). The description of the code is listed in the sequential column.

e Ward - The ward where the patient is hospitalized.

2.2 Empirical analysis

This section provides an empirical analysis of ED visits in “Anonymous” hospital. Using individual
patient level hospital data for the years 20042008, we analyzed the arrival process (Section 2.2.1)
from strategic to tactical point of view, the ED process (Section 2.2.2), the Length Of Stay (LOS)
distribution (Section 2.2.3), and the ED load as manifested by the number of patients in the ED
(Section 2.2.4).

2.2.1 Arrival process

The arrival process records the time each patient is registered to the ED. It can be described at
different levels of details, and from various points of view. In this paper we provide only deter-
ministic “fluid-like” descriptions of arrivals, which arise from averaging out stochastic variability.
We leave the statistical characterization of arrivals for future research (for example: does a time-
inhomogeneous Poisson model fit the daily arrival process? if so, how accurate is the fit, and if
not, what does fit?) (Some work has already been done in Maman [2009], which does support an
over-dispersed Poisson process.)

The first subsection provides an arrival description hierarchy, which differs in its resolution:
yearly, monthly /weekly, daily, and hourly. In the second subsection, arrivals are stratified according

to customer types and acuteness.
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The arrival process will now be described at four levels of representation, which differ by their
time-scale as in Buffa et al. [1976]. The three top levels also correspond to the classical hierarchical
levels of decision making, proposed by Anthony [1965]: Figure 2 is a top-level yearly picture, with
month as the time unit, that supports strategic decisions; Figure 3 is a middle-level monthly picture
with day as unit, that supports tactical decisions; and Figure 4 is a daily picture, with unit hours,
that supports operational decisions. In typical ED, all three figures would exhibit predictable vari-
ables, in the sense that, for example, repeating Figure 3 for each month, as done in Figure 6, yields
a predictable pattern. In contrast, Figure 5 is an hourly picture, with minutes as a time unit, that
predicts stochastic or random variability. We shall provide momentarily a more detailed description
of the figures, then continue with several segmentations of the arrival process.

Hierarchical decision making is required, for example, to support the complex task of staffing
an ED. At the top level, one must decide on how many staff members (physicians and nurses) are
needed, perhaps by season which affects vocation planning. At a lower level one determines a shift
structure over a month, which is determined in turn by daily and hourly staffing levels. Hourly
staffing levels, or FTE’s (full-time-equivalent) are commonly determined via queuing models that
trade off service-quality against staff’s efficiency. In their simplest form, staffing algorithms are
described well already in Anthony [1965]. The needs of the modern ED, however, go far beyond
Anthony [1965], in fact beyond state-of-the-art research, as described in Garnett and Mandelbaum
[2000].

Figure 2 shows the number of patients per month during the years 2004-2008. Responding to
changes in it at a specific ED would require strategic decisions. Note the decrease in the number of
patients in June and July 2006 due to a war in the Middle-East.

The next level displays the number of patients per day over a month, specifically January 2005
in Figure 3. The “valleys” occur during weekends, where the ED operates in a special framework.
The picture for other months is similar (Figure 6). This is a tactical-level figure: weekends/holidays.
To this end, it is also useful to add a tactical weekly picture.

At the operational level, staffing should fit peaks (“rush hours”) and valleys. Figure 4 shows the
average number of patients per hour during weekdays in January 2005. Clearly the system is mostly
visited around 1lam (the common assumption is that people are coming from the home-clinics),
then the number of arriving patients decreases gradually till around afternoon, and increases again
till about 7pm (again, the common assumption is that people are returning from work or feeding
the kids).

Finally, when looking at individual hour, patients seems to arrive randomly. Figure 5, which
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manifests the stochastic variability, illustrate the number of patients arrives per minute at Sunday
(weekday) in January 2005. It is now clear that arrival prediction emerges from stochastic variability

by averaging the latter out.

2.2.2 Emergency department process

Below we describe the operating models of an ED using flow chart, such as Activities-Resources-Flow
chart (7). Additional ways to describe the operational model can be found in Appendix C.

When patients arrive to the ED, either walking or assisted by a stretcher or wheelchair, the first
step is assessment, which is typically followed by directing the patients to an appropriate bay where
they wait for their next stage of treatment. This stage of the medical-assessment is called ‘Triage’ if
it is performed by the medical staff (a nurse or a physician). There are possibly procedures prior to
the Triage, which include an initial assessment, by medical and non-medical personnel, such as clerks
and ambulance officers (Brentnall [1997]), and/or the initiation of diagnostic tests, by a (registered)

nurse (Cheung et al. [2002]). Such pre-Triage steps aim at accelerating the patient flow.

2.2.3 Length of Stay (LOS)

In this section we analyze the patient’s Length of Stay (LOS). For each patient category we have

found the average, the standard deviation (STD), the distribution curve (aggregated by 30 minutes),

11
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Figure 8: Percentage of number of patient departures from the ED by time of day

and the survival curve of the patient’s LOS.

One reason for analyzing the LOS was to evaluate the load of the ED measured by the number
of patients in the ED or occupied beds. We started not just by looking at the Arrivals rates, but
also at the discharges. For that we look on the percentage of the number of patient departures from
the ED by time of day (resolution of one minute). It seems in Figure 8 that we have three times in a
day that people exit the ED in an extreme volume. After consultation with the IT department, we
came to the conclusion that people who left with their medical sheet (about 5-9% of each patient
type) are registered in those times arbitrarily. The answer to this aberration is to assign a different
exit time to those patients according to their patient type LOS distribution (we didn’t want to use
the average length of stay because the distribution seems to be more accurate for our purpose).

We first tried to see the data for those patients that left in other times, e.g. what influenced
their LOS. We started to look on the LOS by departure hour. In Figure 9 we see three group types
of distributions of LOS: (1) Similar LOS distributions for patient departures during the second shift
and at the beginning of the third one (from 15:00 until 05:00); (2) High LOS distributions for patient
departures at the end of the third shift and the beginning of the first shift (from 05:00 until 11:00);
and (3) Group of LOW or mixed LOS distributions at the end of the first shift. The problem with
the analysis result is that we do not know when the patients should have left, so we cannot use it
to predict the departures of the patients for which we lack that data. We also analyzed the LOS
cumulative distribution by hour of arrival (Figure 10), where it seems that the LOS is the smallest
when patients arrived at the beginning of the first shift, and it is higher at the third shift.

We continue to investigate what was influencing the patient’s LOS in Appendix D. Since patient

type and Hour of arrival looks promising from the analysis, and this data is the most available in

14
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Figure 11: Average Length of Stay (ALOS) by hour of arrival per patient type

our database, we have tried to look on the effect of combining those two. In Figure 11 we see how
arrival hour has an affect on ALOS of Internal, Surgical, Orthopedic, and Trauma patients. It seems
that the effect of hour is different for each patient and we need to use them both when completing

the data of departure for the patients which lack this information.

2.2.4 Bed occupancy

Now, after we analyzed the basic empirical data, we can continue with calculating the Load in the
ED, which is manifested as the number of occupied beds. We would then have the opportunity to
compare it to theoretical methods in the following sections.

We start by evaluating the number of occupied beds (L) at time (¢), considering the arrivals
to the ED until time ¢ which have not departed yet. In Figure 12 we note that the number of
patients in the ED varies from 0 to 106. The distribution also reveals that most of the time (80%)
the number of patients in the ED changes from 21 to 59, and 50% of the time if changes from 29 to
50.

We believe that this kind of analysis of load is less relevant, since the proportion of time that
the ED is staying in each state is what is important, and not the number of visits in each state
(as in Figure 12). For that we calculate the distribution once more but now we are calculating
the percentage of time that the ED was in each state L. In Figure 13 we see that the distribution

is skewed to the left values and has a small tail in the right, as apposed to the previous way of
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Figure 12: Distribution of the number of occupied beds in the ED (L)

calculating L.

It seems that the non-ordinary shape of L distribution needs further investigation. We try
to look if the shape of the distribution is due to a combination of different distributions. We
start by analyzing the distribution of patient type (see Appendix E.1 for more details). We found
that the statistical order of the cumulative distributions of each type (‘F(type)’) are kept so that
F(Tra) > F(S) > F(O) > F(Int) is true for any L of the relevant type.

We also checked the distribution and the cumulative distribution of L by outcome of the treat-
ment - Releasing home, Hospitalization, or by Severity of the patient (see Appendix E.2).

After all the searchers we have done, the most influential factor on the distributions of the
number of occupied beds (See Figure 13) was the hour of the day. In Figure 14, we see the amount
of time, over all data, that the system was in each state (occupied beds) per each hour of the day (the
phenomena of the distribution by hour looks like the findings of Edie [1954] about the distribution
of the traffic arrivals, but in our case we could not find it to be Poisson). We also see the average L
per hour of the day in Figure 15. From both figures we can identify three main distributions that
compose the L distribution: (1) From 02:00 until 09:00, where the average number of occupied beds
(avgL) is about 20 and changes from 0 to 40; (2) From 12:00 until 22:00, where avgL is about 45
and it changes from 0 to 80; and (3) The rest of the hours, the average distribution moves from one

group to the other.
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Figure 15: Average number of beds (avgL) per hour of the day

2.3 Fitting a theoretical model

In this section we wished to fit a theoretical model to the empirical distribution of the number of
occupied beds. We started on Section 2.3.1 by using the stationary queueing models, such as model

We continued in Section 2.3.2 to use time-varying queueing models, such as model M;/M;/oco
using simulation.

In Section 2.3.3 we have tried to look on the problem from a different angle, meaning to see if
the arrival and departure rates are influenced by the number of occupied beds. If so, we want to see
if the models of Birth-and-Death process would do better than the simple models.

In Section 2.3.4 we introduce some advanced models, such as Erlang-R (Yom-Tov [2009]) and

Simulation to compare with the empirical data.

2.3.1 Stationary models

M/M /oo is the basic model we have checked. The model parameters are: (1) Poisson arrivals
with A rate; (2) Infinite number of exponential servers, which work at u rate (where the ALOS is

E(S) =1/u). The Steady-state distribution (7, for state ¢) is from a Poisson process and can be
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calculated from Equation (2.1), Where R = \/p.

R
m=e . i>0; (2.1)

From the comparison of the M/M /oo with p = 0.005 (ALOS is about 197 minutes) and A =
0.138, to the empirical data in Figure 16, it is clear that the M /M /oo model is not modeling well

the number of occupied beds in the ED.
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Figure 16: Comparison of the steady-state distribution of M /M /oo to the empirical Data

We tried to refine the model by looking just on fragments of the empirical data and compare
that to the M /M /oo model (we named it ‘Fragmental M /M /oo Model’). We started with looking
on each shift separately, and then on each group of hours that we found in Figure 15. From the
comparison of the ‘Fragmental M /M /oo Model’ with the empirical data in Appendix F, it is clear

that this model is not modeling well the number of occupied beds in the ED.

2.3.2 Time-varying models

My /M; /o is the the model we checked for the time varying models. The model parameters we used
was (1) Poisson arrivals, rate A; (¢ for each hour of the day); (2) Infinite number of exponential

servers, processing at rate p; (where the ALOS; is E(S) = 1/p;). The time-varying distribution
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(7;, for state i) was found using simulation with the data in Table 2. From Figure 17, we see that
the time-varying model got good results in until 15 beds, but it got worse in a greater number of

beds.
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Figure 17: Comparison of the distribution of the time-varying model to the empirical data

2.3.3 Birth-and-Death processes

We continued to check the Birth and Death models. For that we calculated first the arrival and
departure rates for each state of bed occupancy L. The way we calculated those parameters was
to calculate first the average time the system was in each state before moving to the next one (¢1),

and the percentage of the changes to a higher state (P;(L)) and to a lower state (I,,,(L)). From that

we could easily calculate the A(L) (Plt(LL)), and the p(L) (I?L(_LL)). The parameters of the model we
used are presented in Figure 18 (where we neglected to present the edge which was heavily noised).

The results for comparing the Birth and Death models with empirical data in Figure 19 looks
promising, especially when looking on the edges, where most of the operational decisions are made

(e.g., ‘how many beds to use in the ED?’).
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Table 2: Parameters for the time-varying model

t At Lt

0 || 0.12892 | 0.00531
1 |/ 0.09375 | 0.00502
2 || 0.07016 | 0.00482
3 0.0576 | 0.00478
4 || 0.04788 | 0.00454
5 [ 0.04064 | 0.00398
6 0.0443 | 0.00348
7 0.0642 | 0.00306
8 || 0.11707 | 0.00322
9 || 0.20304 | 0.00389
10 || 0.26176 | 0.00451
11 || 0.28211 | 0.0053

12 ]| 0.27188 | 0.00584
13 || 0.25655 | 0.00596
14 || 0.24875 | 0.00606
15 || 0.22996 | 0.00562
16 || 0.21198 | 0.00531
17 || 0.21486 | 0.00521
18 || 0.23929 | 0.00515
19 || 0.2456 | 0.00517
20 || 0.23642 | 0.00527
21 || 0.22354 | 0.00537
22 1 0.18916 | 0.00551
23 | 0.16302 | 0.00513
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Figure 18: Birth-and-Death model parameters - A(L)/L and p(L)
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Figure 19: Comparison of the distribution of the Birth-and-Death model to the empirical data
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2.3.4 Advanced models: Erlang-R and simulation

We have checked two additional types of models: one that is a descriptive model, a simulation model
using the data gathered in Sinreich and Marmor [2005]; the other a theoretical model, Erlang-R
(Yom-Tov [2009]), which is a model that uses simulation for finding its parameters and to calculate
the L distribution.

We first compared the simulation model and the empirical model using the official number of
resources per hour (Figure 20) which looks promising in the tails of the distribution, but less in
the lower volumes. We then refined the model by making some reasonable assumptions on the
number of resources, for example, that from 03:00 until the morning shift the ED physicians are
called to examine patients just in urgent cases; otherwise the patient waits for the next shift.
Another consideration was to used less staff during lunch breaks. The process we use to search for
those anomalies is described in Appendix G. The results of the comparison between the empirical
distribution and the adjusted simulation in Figure 21 looks much more promising. It is definitely
an encouraging finding for the use of simulation in the ED. (See Jacobson et al. [2006] for a list of
steps for successfully implementing simulation in healthcare; and Barone et al. [1999], and Kao and

Tung [1981] for the use of simulation to complement the results obtained by queuing theory.)
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Figure 20: Comparison of the distribution of the simulation model (Arena) to the empirical data

The comparison between the Erlang-R model (with the parameters P = 0.77427, § = 0.01617,
n =6, u = 0.22166, and A\; which is the A; in Table 2) and the empirical model (Figure 22) looks
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Figure 21: Comparison of the distribution of the adjusted simulation model (Arena) to the empirical

data

promising in the right tail of the distribution, but less in the rest of the distribution.

2.4 Conclusion and future research

The goal in this chapter was two-fold: One - to present some empirical analyses on the ED, and
second - to try and match theoretical models to the data. For the first part we presented the data we
have in hierarchical profiles: strategic, tactical, and operational. We also presented the data by the
patients’ characterization such as type and severity, and the administration’s categories (e.g., age,
gender and so on). We presented the process in the ED by simple types of charts, and investigated
the factors that influence the patient’s LOS and Bed occupancy.

For the second part we compared simple theoretical models with the empirical analysis, focusing
on the bed occupancy. We found out that the stationary, and time-varying models were not close
to the empirical data. The most promising model that was found was the Birth and Death model
(Section 2.3.3). The next reasonable model was the Simulation model 2.3.4. The Birth and Death
model and simulation models failed to predict the middle of the distribution, while they were both
very good at predicting the tails of the distribution. It means that when a decision is needed for
the tails, those models can be useful.

Of course, more work can be done. First, we could have used more sophisticated models or

tried to adjust one just for our use. Second, more attention could be given to the fact that the
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Figure 22: Comparison of the distribution of the Erlang-R model to the empirical data

distribution of bed occupancy for each hour looks from Poisson model (see Figure 14). It could infer
that there is a potential of finding a model for each hour (which we failed to do since we used just
simple analysis). Third, when tracking devices or electronic patient sheets will be introduced to the

ED, we could then use the data to further investigate the queues in the ED and not just the overall

occupancy.
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3 Simulation-Based Models of Emergency Departments: Opera-

tional and Tactical Staffing

Abstract

The Emergency Department (ED) of a modern hospital is a highly complex system that gives rise
to numerous managerial challenges. It spans the full spectrum of operational, clinical and financial
perspectives, over varying horizons: operational - few hours or days ahead; tactical - weeks or a few
months ahead; and strategic - which involves planning on monthly and yearly scales. Since realistic
ED models are intractable analytically, one resorts to simulation for an appropriate framework to
address these challenges, which is what we do here. Specifically, we apply a general and flexible
ED simulator to address several central wide-scope problems that arose in a large Israeli hospital.
The chapter focuses mainly, but not exclusively, on workforce staffing problems over the operational
and tactical time horizons. First, we demonstrate that our simulation model can support real-time
control, which enables short-term prediction and operational planning (physician and nurse staffing)
for several hours or days ahead. To this end, we implement a novel simulation-based technique that
utilizes the concept of offered-load and discover that it performs better than a common alternative.
Finally, we evaluate ED staff scheduling that adjusts for midterm changes (tactical horizon, several

weeks or months ahead).

3.1 Introduction

3.1.1 Operations management in Emergency Departments: main challenges and simulation-

based modeling

The rising cost of healthcare services has been a subject of mounting importance and much discussion
worldwide. Ample reasons have been proposed, for example, increasing life spans and the availability
of an ever-increasing number of costly diagnostic and therapeutic modalities Hall [2006]. Yet,
regardless of their cause, rising costs impose, and rightly so, pressures on healthcare providers to
improve the management of quality, efficiency and economics in their organizations.

A critical healthcare organization, widely recognized in need of urgent enhancements, is the large
hospital; and its complexity is well represented by the microcosm of its Emergency Department (ED).
The latter is our focus here - for being the window through which a hospital is judged for better or
worse, and for amplifying a variety of problems that arise also elsewhere, specifically intertwining

clinical, operational and financial dimensions. In this chapter, we focus on a somewhat operationally
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biased (business process) view, which is then expanded to accommodate interactions with the other
clinical and financial aspects.

From an operational view, overcrowding and consequent excessive delays are the most urgent
ED problems (Sinreich and Marmor [2005]), having clear interactions also with ED clinical and
financial dimensions. Citing Green [2008], “arguably, the most critical delays for healthcare are
the ones associated with healthcare emergencies”. Overcrowding in the ED can and does cause
numerous negative consequences, including poor service quality from the clinical point of view;
extended waiting times that inflate staff workload and lead to negative emotions of patients and
their families; ambulance diversion; patients who Leave Without Being Seen (LWBS); and so on.
See, for example, Derlet and Richards [2000], who provide a detailed analysis of causes and negative
effects of ED overcrowding.

One can identify various reasons for ED overcrowding. Our experience suggests that its key
driver is inadequate staffing resources, but other causes have been also identified (for example,
Tseytlin [2009] studied problems in the process of hospitalizing ED patients, which call for a tradeoff
between ED delays of patients vs. fair workloads on medical staff). Thus, tools and methods exist
to help alleviate overcrowding and excessive waiting times. These call for careful planning of the ED
processes, in concert with appropriate staffing and scheduling techniques for ED personnel (nurses,
physicians, X-Ray technicians and others). In the present research, we mainly emphasize simulation-
based solutions of staffing problems, over time horizons that vary from several hours to months and
beyond.

The first staffing problem that we consider in this chapter is the problem of short-term (oper-
ational) planning over a future horizon of several hours to a few days. Several challenges must be
addressed for effective operational planning. As a start, accurate data on the current state of the ED
is a prerequisite. Practically, however, a significant part of this data turns out inaccessible or unreli-
able (for example, since hospital personnel do not have time for online updates of IT systems). The
need thus arises for ED-state inference, which we address through online simulation (Section 3.5.1).
Next, one should implement an adequate forecasting model that predicts the number of exogenous
arrivals to the ED. Finally, a model that combines the forecasts of external arrivals with the internal
dynamics of the ED is to be developed. Such a model would support operational decision making
throughout the ED and, furthermore, it can be integrated into an ED decision support system.

While short-term planning deals with scheduling changes over several hours or a shift ahead,
midterm tactical planning is concerned with baseline schedules. These must accommodate seasonal

effects of patient arrivals, which could change from month to month (e.g., increase in arrival volume
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during flu period in the winter). We are thus concerned with a time horizon that spans one week
to several months - a challenge that can be addressed off-line, since there is no need for real-time
data updates.

All the staffing challenges formulated above require a trustworthy model of the ED. Analytical
models have been found unable to capture the complexity of ED operations, over the wide spectrum
that we require here. Hence, a major component of our solution is an ED simulation model (as
reported in Sinreich and Marmor [2005] and Sinreich and Marmor [2004], and discussed in Section
3.4). It turns out that our simulation-based model is general and flexible enough to address all the

above challenges.

3.1.2 Contribution and structure of the chapter

In subsequent sections, we continue with a brief survey of related work (Section 3.2) and describe
the ED of an Israeli hospital where our models have been applied (Section 3.3). Section 3.4 pro-
vides a detailed discussion of our universal simulation model. Then we proceed to the core of the
chapter, describing simulation-based staffing techniques for varying planning horizons. Section 3.5
introduces a new approach to staffing, based on the concept of offered-load, which is then com-
pared advantageously over the well-known method of Rough Cut Capacity Planning (RCCP); in
that section, we also study the problem of completing missing ED data via simulation. Section 3.6
discusses midterm tactical planning, where the approaches of offered-load and RCCP are applied
and again compared. We continue with a brief description of the overall decision support system
into which the simulation-based modeling is integrated in Section 3.7. Finally, Section 3.8 lists the
main conclusions of our chapter and discusses possible future research.

Contribution of the Chapter. Our chapter demonstrates that a single well-designed simulation
model of an Emergency Department can be instrumental in the solution of ED staffing problems,
across several different time domains: online decision support, short-term operational planning, and
middle-term tactical planning. In addition, we introduce a new offered-load approach to staffing
problems that yields very promising results over varying time domains. Finally, our simulation
framework is flexible and universal. Indeed, our ED model is based on a field research, carried out
in nine Israeli Emergency Departments. It can thus be easily tuned and customized to almost every

Israeli ED and, very likely, to most EDs worldwide.
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3.2 Related work
3.2.1 Simulation in support of ED operations

The application of simulation has been instrumental in addressing the multi-faceted challenges that
the healthcare domain is presenting (Kuljis et al. [2007]). A wide spectrum of ED problems have
also received significant attention in this line of research.

It is quite common to use simulation, mostly by researchers, to compare operational models or
to assess a model that addresses a specific research question. For example, Medeiros et al. [2008],
present a simulation-based validation of a novel approach to a change in ED processes, placing an
emergency care physician at triage. Kolb et al. [2008], study different policies of patient transfer
from ED to internal wards, in order to decrease the resulting overcrowding and delays (Tseytlin
[2009] addresses a similar problem for our hospital, but it uses an analytical approach, based on
queueing models).

For some reviews on a simulation-based approach in support of health care operations, see Jun
et al. [1999], White [2005] and Jacobson et al. [2006].

Improvement of patient experiences in EDs via application of simulation and lean manufacturing
tools was considered in Khurma et al. [2008].

The prevalent approach for addressing ED overcrowding is staff (re)scheduling (Sinreich and
Jabali [2007]; Badri and Hollingsworth [1993]), namely adding or shifting in time staff resources
so as to uniformly maintain acceptable ED performance (e.g., time to the first encounter with a
doctor, or FED time). Most such works focus on off-line steady-state decision making, as opposed
to on-line operational and tactical control. Other researchers analyze alter-native operational ED
designs (Garcia et al. [1995]; King et al. [2006]; Liyanage and Gale [1995]) - for example, compar-
ing acuteness-driven models (e.g., triage) against operations-driven models (e.g., fast-track, which
assigns high priority to patients with low resource requirements).

A widespread approach is to “divide and conquer” a complex problem by focusing only on one
type of resource associated with it. An example is an effort to schedule nurses while ignoring the
scheduling of other resources (Draeger [1992]); or scheduling physicians and nurses hierarchically
(Sinreich and Jabali [2007]). These attempts, based on simulation models, predict performances
of the ED as a function of staffing and scheduling decisions. The simulation models require input
in the usual form of patient arrivals and service durations, for each patient by each resource type,
exactly as in the simulation that we are using here.

We are, however, unaware of any uses of simulation in a hospital setting for online decision

30



support, nor are we aware of any work in which simulation has been used to complete missing data
regarding the current operational state. These research directions are pursued in Section 3.5.

Over a broader perspective, our research gives rise to a multitude of practical and theoretical
challenges, many of which touch on active simulation-driven research. For example, input modeling
(Biller and Nelson [2002]) and historical (trace-driven, resampling) simulation (Asmussen and Glynn
[2007]; Mcneil et al. [2005]) are both related to the problem of properly incorporating actual ED
data into our simulator.

Deserving of an expanded attention is symbiotic simulation (Fujimoto et al. [2002]; Huang et al.
[2006]), defined as “one that interacts with the physical system in a mutually beneficial way”, “driven
by real time data collected from a physical system under control and needs to meet the real-time
requirements of the physical system” (Huang et al. [2006]). Additionally (Fujimoto et al. [2002]),
symbiotic simulation is “highly adaptive, in that the simulation system not only performs ‘what-if’
experiments that are used to control the physical system, but also accepts and responds to data
from the physical system”. In some of our ED implementations, however, the interaction between
the simulator and its underlying physical system must go beyond the common symbiotic simulation
framework (see Section 3.5). Specifically, we obtain real-time data regarding current state, then
complete the data when necessary via simulation, next predict short-term evolution and workload,
and finally proceed with simulation and mathematical models as decision support tools, all this in

real-time or close to real-time.

3.2.2 Alleviating overcrowding: analytical approaches to staff scheduling

Although a simulation-based approach is the focus of our research, we emphasize that an optimiza-
tion approach to real-life ED problems should combine simulation and analytical insights. These
insights can be especially valuable when staff scheduling problems must be solved. In general, both
deterministic and stochastic mathematical methods can be applied.

For example, Beaulieu et al. [2000] present a deterministic mathematical programming approach
to staff scheduling. The RCCP approach, demonstrated in Section 3.5 (Vollmann et al. [1993]), is
also based on deterministic considerations.

However, in our opinion, stochastic models, based on queueing theory, are more appropriate for
capturing the volatile and inherently nondeterministic ED reality. Although it is hard to design a
tractable comprehensive queueing model for the ED, it is possible to develop simpler models and
combine them with simulation. The research on the offered-load concept, presented in Section 3.5

provides an example of this approach. Using the offered-load technique, applied to time-varying
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queueing systems in Feldman et al. [2008], we develop a novel staff scheduling algorithm which
jointly uses simulation and analytical staffing formulae. Readers are referred to Green [2008] for

further references on these and related issues.

3.3 Research framework

This research is a part of an Open Collaborative Research program, a combined research effort of
three organizations partnered together: the Faculty of Industrial Engineering & Management at
the Technion Institute, IBM’s Haifa Research Laboratory and the government-affiliated Rambam
hospital - which is Israel’s largest northern medical center, catering to over 2 million citizens (about
one-third of Israel’s population). The hospital comprises 36 wards; around 1,000 patients can be
hospitalized simultaneously and 75,000 patients are hospitalized yearly. In this research project, we
focus on several hospital units including the ED - which is the gate and the window to the hospital,
and which must operate in a mass-customized mode - i.e., follow a structured care process while
providing to each individual the specific care required.

The ED of Rambam Hospital accepts 82,000 patients per year, with 58% classified as internal
patients (their admission reason is mostly illness and treated by internists) and 42% as surgical or
orthopedic patients (their admission reason is mostly injury and cared for by surgical and orthope-
dic physicians accordingly). The ED contains three major areas: (1) internal acute: waiting and
treatment room for acute internal patients treated by dedicated internists physicians and nurses;
(2) trauma acute: waiting and treatment room for surgical and orthopedic patients treated by
dedicated nurses, but shared by orthopedic and surgical physicians; (3) walking: area for walking
patients (patients that do not need a bed and use chairs, usually with mild problems) contains
waiting lobby and unique treatment rooms for internal (dedicated for the walking area), surgical,
and orthopedic physicians (shared with the trauma acute area). In the walking area, there is also
a psychiatric unit, where patients with mental problems get help. There are other emergency room
(ER) locations, detached from the main one we are focusing on (which we refer to as the ED), which
are dedicated to special issues such as pediatrics ER, and ophthalmology ER. Rambam hospital
does not implement a fast-track process for nonemergency patients. Mean sojourn time of patients
in the ED, conventionally referred to as average length of stay (ALOS), equals 4:38 hours, with a

large variance over individual patients.
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3.4 Basic simulation model of the Emergency Department

In Figure 23, we depict two perspectives of the care process that patients undergo at the ED: the
resource (i.e. physicians, nurses, etc.) perspective, and the process (activities) perspective. In this
figure, two types of queues correspond to two types of delays encountered by patients: the first are
resource queues (rectangular), which are due to limited resources (e.g. nurses, imaging equipment);
the second are synchronization queues (triangular), which arise when one process activity awaits
another one (e.g. a patient waiting for results of blood tests and X-Ray, in order to proceed with
the doctor’s examination). Note that Figure 23 presents a somewhat simplified model of the care
process. A more complete model is presented in Sinreich and Marmor [2005]; see Figure 2 in that
reference, for example.

The care process in an ED was captured in a simulation model, created with the generic sim-
ulation tool of Sinreich and Marmor [2005]. This model is based on field studies, performed in
Emergency Departments of nine Israeli hospitals. The required data was gathered either from the
IT systems of these hospitals or via field measurements. In addition to the care process, the simula-
tion model requires patient arrival processes, for each patient type, and staffing levels of the medical
staff, with their respective skills. Service times in our model were assumed exponentially distributed
(Statistical analysis validated this fit for most data types).

Remark. Due to lack of space and our focus on staffing (vs. tool-oriented) issues, we do not
provide the detailed description of the tool. For the latter, readers are referred to Sinreich and
Marmor [2005] and Sinreich and Marmor [2004].

In this research, the model was configured to the ED specifications of the Rambam hospital, as
follows. There are six types of patients, which also require different skills from the caring physicians.
Patient types 1 and 2, which are internal acute and internal walking respectively, are treated by
internal physicians. Patient types 3 and 4, which are surgical acute and surgical walking respectively,
require treatment by surgical physicians. Finally, patient types 5 and 6, orthopedic acute and
orthopedic walking respectively, require an orthopedic physician. Acute patients need a bed while
walking patients use chairs. In addition, patient types differ by the arrival process (e.g., number of
arrivals per hour and by day-of-week; see Figures 24-25), and by the decisions made in the patient
care process (e.g., the percentage of patients sent to X-Ray).

The actual simulation tool is comprised of the following three modules:

1. The first module is a Graphical User Interface (GUI) that describes the general unified process,

partially presented in Figure 23. Through the GUI, the user can input data and customize
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the general process to fit the specific ED modeled and receive operational results from the ED
after the simulation run. (See the detailed GUI description with screen shots, in Section 2.1

of Sinreich and Marmor [2004].)

. The second module includes two mathematical models used to estimate patient arrivals and
staff walking time. The simulation tool uses the models for patient arrival estimation that

were developed in Sinreich and Marmor [2005].

. The third and final module is the simulation model itself. This model receives data from
both the GUI and the mathematical models. The simulation is updated and customized
automatically to fit a specific ED based on data and information the user passes on to the
GUI. The simulation model is transparent to the user who is only required to interact with a

user friendly GUI without the need to learn a simulation language syntax.
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3.5 Operational horizon: simulation-based modeling for online decision support

and operations planning in the ED

In this section, we start to apply our simulation-based modeling approach to real-life ED problems.
We show that this approach can help ED managers to infer the missing information on the current
ED state, provide a reliable forecast of the ED state in the short-term and perform operational staff

scheduling decisions.

3.5.1 Simulation-based validation of the current ED state

As discussed in Section 3.1.1, reliable information on the current state of ED is crucial for online
decision support and operational planning. Typically, only partial data of the current ED state is
maintained and available from the hospital’s electronic data systems. For example, in our case, no
data exists regarding the queue (number of patients) waiting to be seen by a physician. One expects
the amount and quality of usable data to constantly improve over time, due to the introduction
of additional data-entry systems or new technologies (e.g. sensor technologies, such as RFID and
ultrasound, for accurate location tracking of patients, staff and equipment). However, within the
chaotic ED environment, it is reasonable to expect that some data will always remain unavailable
or too costly to acquire.

We now discuss how to infer missing data, using the simulation model described above. Such
simulation-based inference must deal with several issues. The first is consistency: how to generate
simulation paths that are consistent with available ED data. Another important issue is data
inaccuracy (note that inaccurate data adds complexity to generation of simulation realizations that
are consistent with the provided data). A third challenge, arising due to the availability of only
incomplete data, is the identification of an appropriate initial state for the simulation. The way we
overcome this last hurdle is to feed in actual arrival data for a long enough period of time (we used
three weeks) that ensures that the simulation warm-up period is over (it usually takes three days to
get stable ALOS), prior to estimating the missing data.

Coping with consistency and inaccuracy raises interesting research questions. Here we content
ourselves with two ED-specific practical examples of accommodating actual ED data — accurate and
inaccurate.

Accurate data - taking actual arrivals into account: In our partner ED, receptionists enter data
into the IT systems, in particular regarding patient arrivals, as a part of the admittance process.

The medical state of the majority of arriving patients is such that they actively participate in the
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registration process, as the first step upon arrival. Acute patients, incapable of self-registration, are
registered shortly after arrival by the paramedics bringing them in. Therefore, arrival data accurately
captures actual patients’ arrival times - it can be thus fed as is into the simulator. (For acute patients
this time can be slightly inaccurate if a single paramedic is entering the patient and just afterwards
performs registration. If two paramedics enter the patient, the time would be accurate since the
first one registers the patient while the other one brings the patient in.) Receptionists also record
patient type (internal, surgical, or orthopedic) upon arrival. To this end, we modified, in an obvious
manner, our generic simulator, which originally generates arrivals as a stochastic process (Poisson
or its relatives, such as normal approximation to Poisson; see Sinreich and Marmor [2005]). It can
now generate realizations consistent with the arrival data (e.g., time and patient type), when the
latter is fed to the simulation package as a link from an external database (e.g., a text file generated
by the hospital IT from time to time).

Inaccurate data - taking discharges into account: Data about patients’ discharge (departure)
times, in our partner hospital, may be inaccurate. Specifically, each departure time is registered by
the receptionist upon completion of the ED treatments - the patient is then ready to leave, for either
home or to other hospital wards. In the (common) case when there is no ward immediately available
to accept the patient, inaccurate data arises. Then, patients spend additional time waiting in the
ED, which not only goes unrecorded but it also influences subsequent beds/chairs occupancy and ED
staff utilization (due to time spent on catering to these delayed patients). Additional inaccuracies
occur due to patients’ leaving without being seen (Green [2008]), with or without their medical files,
and some other accounting-related reasons.

We found no efficient way for generating simulation realizations that are consistent with our
discharge data, except for discarding inconsistent simulation paths. Note, however, that the proba-
bility of generating a realization in which the simulated departure times correspond exactly to the
provided departure times is negligible. To this end, and to overcome both inaccuracy issues, we
validate the current state simulation by conditioning it on the number of patients of each type that
were discharged from the ED according to the data. Namely, we considered a (short-term) simu-
lation realization to be consistent if, at the end of the simulation run, the number of patients that
were discharged (of each type) equals, within some accuracy constant, the number of patients of
this type that were discharged according to the data. In our case, we used 1.96-standard-deviation
accuracy and accepted around 42% of the simulations results.

See Section 3.5.5.1 for an application of the described techniques to the actual ED data.
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3.5.2 Forecasting ED arrivals

For simulating an ED future evolution, one must simulate patient arrivals to the ED. Figures 24-25,
based on IT data from the Rambam hospital, demonstrates that ED arrival rates strongly depend
on day-of-week and hour-of-day. In addition, holidays and days after holidays have unusual patterns
as well (holidays are lightly loaded and days after holidays are, as a rule, very heavily loaded). For a
reference on forecasting and modeling of ED arrivals, leading also to related literature, see Channouf

et al. [2007].
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Figure 24: Hourly arrival rates for internal patients (averaged over 4 years)

Arrivals in our simulation model are nonhomogeneous Poisson processes, with hourly rates that
are forecasted for each future hour in question (say a shift, or a day) and each patient type. The
nonhomogeneous Poisson assumption was validated in Maman [2009], using the test developed in
Brown et al. [2005]. Sinreich and Marmor [2005] demonstrated approximately normal distribution
of square root of the arrival volumes, which is also consistent with the Poisson assumption (again,
see Brown et al. [2005]). We assume that arrival rates are constant on an hourly scale. Long-
term moving average (MA) was used in order to predict hourly arrival rates. For example, in
order to predict the arrival rate (assumed constant) on Tuesday during 11-12am, we average the
corresponding arrival rates during the last 50 “Tuesdays 11-12am”, excluding those that are holidays
or days after holidays. We can also see that arrival patterns of internal and trauma patients are

not similar-internal peak at about 8pm is much smaller than the one at noon. In contrast, the
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Figure 25: Hourly arrival rates for surgical and orthopedic patients (averaged over 4 years)

corresponding peaks of the trauma intraday arrival rate are of similar height. In particular, it
means that we cannot predict the total number of arrivals and assign fixed probabilities to patient
types.

The reason for choosing long-term MA is that we found it to provide essentially the same
goodness-of-fit as more complicated time-series techniques. (Indeed, long-term MA, applied to the
overall arrival rate over a test period of 60 weeks, gave rise to a Mean Square Error (MSE) equal to
3.56, while two methods, based on Holt-Winters exponential smoothing, provide a MSE=3.55 and
3.54.) Another argument in favor of the use of long-term MA stems from the level of stochastic
variability in historical samples, calculated for each hour-of-week, which fits that of a Poisson process
(Maman [2009]); then, the historical mean (or MA) is a natural (Maximum Likelihood) estimate for

the Poisson parameter, namely the arrival rate.

3.5.3 Staff scheduling approaches

With the present ED state assumed given (following Section 3.5.1), simulation is now to be used for
predicting ED evolution, say several hours (a shift, a day) into the future; the goal is to determine
appropriate staffing levels of resources - nurses, physicians and support staff, as a function of time.

Staffing the ED is a complex multi-objective problem. It must trade off conflicting objectives such
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as (1) Minimizing costs, (ii) Maximizing resource utilization, (iii) minimizing waiting time of patients,
(iv) Maximizing quality of care. In this chapter, we concentrate on the control of operational
performance measures-utilization and waiting time. The complexity of theoretical analysis in a
large complicated service network, more so in a stochastic environment (e.g. randomness with
respect to patient arrivals, routing, service durations, resources availability, and more) renders the
optimization problem intractable analytically. This has thus led researchers to simulation-based
heuristic solutions.

A prerequisite for staffing is accurate forecasting of patient arrivals, as described in Section
3.5.2. We then continue with predicting resource utilization; this leads to a staffing method, based
on prespecified goals for resource utilizations (Section 3.5.3.1). However, the resources’ view cannot
accommodate the experience of patients — for example, controlling the time until the first encounter
with a physician (Section 3.5.3.2). To control the latter, we calculate, for each resource type, its
offered load as a function of time; then a classical staffing principle (square-root safety-staffing),
in conjunction with the appropriate queueing model, yields our recommended time-varying staffing

levels. In Section 3.5.4, a summary of our methodology is presented.

3.5.3.1 Staff scheduling via Rough Cut Capacity Planning: Rough Cut Capacity Plan-
ning (RCCP) is a technique for projecting resource requirements in a manufacturing or a service
facility. As such, RCCP supports decisions regarding the acquisition and use of resources. Proce-
dures for RCCP are listed in Vollmann et al. [1993]. These procedures are based on the estimated
processing time of each product or service unit, and the allocation of the total time among the
different resource types. The goal is to match offered capacity with the forecasted demand for
the capacity of each resource type. Thus, RCCP algorithms translate forecasts into an aggregate
capacity plan, taking into account the time each resource type spends on each type of product or
service.

We are proposing to apply RCCP in the ED environment, as follows:

e For each patient type i, calculate its average total time required from each resource type r

(e.g. physician, nurse), d;,.

e For each forecasted hour t, calculate the average number of external arrivals of patients of
type i, A;(t). Deduce the expected processing time required from each resource type r at time

t:

RCCP.(t) =) _ Ai(t)d (3.1)
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e The recommended number of units of resource r at time t, n,.(RCCP,t), is equal to the load
RCCP,(t), amplified by safety factor, or fs. fs is the maximum utilization we are targeting.
In other words, the RCCP staffing recommendation is given by n,(RCCP,t) = RCCP.(t)/ fs.

We expect RCCP to achieve preplanned resource utilization levels; its shortcoming, however, is
that it ignores the time lag between arrival times of patients and actual times when these patients
receive service or treatment from ED resources. Since patients spend, on average, several hours in
ED this time lag can be significant: the patient arrival rate frequently reaches maximum before the

workload for a specific resource reaches maximum. This problem is remedied by our next approach.

3.5.3.2 The Offered Load approach: The concept of offered-load is central for the analysis
of operational performance. It is a refinement of RCCP in the sense that it spreads workload
more accurately over time. For example, suppose that a nurse is required twice by a patient, once
for injecting a medicine (10 minutes) and then, 3 hours later (in order to let the medicine take
its effect), for testing the results (also 10 minutes). RCCP would “load” 20 minutes of nurse-
work upon a patient’s arrival; the offered-load approach, in contrast, would acknowledge the 3-
hours separation between the two 10-minute requirements. Such time-sensitivity enables one to
accommodate time-based performance measures, notably those reflecting the quality of care from
the patients’ viewpoint.

In the simplest time-homogeneous steady-state case, when the system is characterized by a
constant arrival rate A and a constant service rate yu, the offered load is simply R = A/ = AE(S)
where E(S) is the average service time. The quantity R represents the amount of work, measured
in time-units of service, which arrives to the system per the same time-unit (say, hours of work that
arrive per hour). Staffing rules can be naturally expressed in terms of the offered load: for example,
the well-known “square-root staffing rule” (Halfin and Whitt [1981]; Borst et al. [2004]) postulates

staffing according to
n=R+ BVR, (3.2)

where 3 > 0 is a service-level parameter, which is set according to some Service Level Agreement
(SLA) or goal. This rule gives rise to Quality and Efficiency-Driven (QED) operational performance,
in the sense that it carefully balances high service quality with high utilization levels of resources.
Arrival rates to an ED are, however, manifestly nonhomogeneous and depend on the day-of-week and

hour-of-day. Piecewise stationary approximations (such as SIPP - Stationary Independent Period
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by Period; Green et al. [2001]) work fine if the arrival rate is slowly varying with respect to the
durations of services. This, however, does not happen in the ED case.

Assume that exogenous arrivals to a service system can be modeled by a nonhomogeneous Poisson
with arrival rate A\(¢),t > 0. In this case, our definition of the offered load is based on the number of
busy servers (equivalently served-customers), in a corresponding system with an infinite number of
servers (Feldman et al. [2008]). Specifically, any one of the following four representations gives it:

R(t) = BA®t)— A(t—S)] = E[A(t— S.)|E[S] = E[/ts Mu)du] = /t Mu)P(S > t—u)du, (3.3)

t— —o0

where A(t) is the cumulative number of arrivals up to time ¢, S is a (generic) service time, and S.
is its so-called excess service time. (See the review paper by Green et al. [2007] for more details,
as well as for useful approximations of Equation (3.3).) Then, for calculating the time-varying
performance in the case of a single service station, we recommend to substitute Equation (3.3) into
the corresponding steady-state model. In our case, the classical M /M /n queue, or Erlang-C, is used.
To be concrete, assume that our service goal specifies a lower bound «, to the fraction of patients
that start service within 7' time units. The QED approximation, based on Halfin and Whitt [1981]

then gives rise to
1—a=P{W,>T}=P{W, > 0}P{W, > T|W, > 0} ~ h(B)e THoV Ee+6:VE: (3.4)

where h(f;) is the Halfin-Whitt function (Halfin and Whitt [1981]). Specifically, h(3) approximates
the delay probability P{W, > 0} in the Erlang-C queue given staffing level (3.2). Equation (3.4)
can now be solved numerically with respect to (3;, and the staffing rule Equation (3.2) is replaced

by the time-varying staffing function:

n(OL,t) = R(t) + Bi/R(1) (3.5)

The above procedure has been called the “modified offered load approximations” — readers are
referred to Feldman et al. [2008] for additional details and further references.

Square-root staffing are mathematically justified by asymptotic analysis, as workload (and hence
the number of servers) increases indefinitely. (Large telephone call centers provided initial practical
motivation.) However, ample experience (as well as recent research; e.g. Janssen et al. [2008])
demonstrates useful levels of accuracy, already for single-digit staffing levels. This renders the above
staffing rule relevant for EDs, as well as other healthcare systems, where the number of servers is
indeed single-digit. (For small systems, one could always apply exact Erlang-C formula. Indeed, we
tested these exact calculations against the QED approximations in our experiments below, and the

results were essentially unaltered.)
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Now we extend the above framework from a single service station to a service network, in order

to apply it in the ED. We proceed via the following steps::
e First, the simulation model is run with infinitely many resources (e.g. physiciansand nurses).

e Second, for each resource r (e.g. physician or nurse) and each hour ¢, we calculate the number
of busy resources (equals the total work required), and use this value as our estimate for the
offered load R(t) for resource r at time t. (The final value of R(t) is calculated by averaging

over simulation runs.)
e Finally, for each hour ¢ we deduce a recommended staffing level n,(OL,t) ,via formula (3.4)
and (3.5).
3.5.4 Methodology for short-term forecasting and staffing

In the following section, we set short-term staffing levels for eight hours into the future. Our

simulation-based methodology for short-term forecasting of the ED state is as follows:
1. Initialize with the simulation-based estimate of the current ED state

2. Use the average arrival rate, calculated from the long term MA, to generate stochastic arrivals

in the simulation.

3. Simulate and collect data every hour, for eight future hours, using infinite resources (nurses,

physicians).

4. From step 3, calculate staffing recommendations, both n,(RCCP,t) and n,(OL, t) using RCCP
and Offered Load (OL) methods, described in Sections 3.5.3.1 and 3.5.3.2, respectively.

5. Run the simulation from the current ED state with the recommended staffing.

6. Calculate performance measures. The above can be repeated with the actual staffing (in Step

5), which makes it possible to compare it against RCCP and OL staffing.

3.5.5 Simulation experiments

We now apply methodology from the previous section in simulation experiments. First, we demon-
strate the ability of our simulation-based tool to estimate the current ED state, using a database
from Rambam hospital (Section 3.5.5.1). For that, we randomly chose a month (August 2007) in the

database, for comparing the known number of patients in the system with the simulation’s outcome.
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In the second experiment (Section 3.5.5.2), we use the ED state at a specific time (September 279,
2007, 16:00) to predict 1-7 hours ahead. (The chosen day is a Sunday, which, in Israel, is a busy
day of the week, being the first day following the weekend.) We continue, in Section 3.5.5.3, with
a comparison of some ED performance measures, using two alternative staffing methods (follow-
ing methodology developed in Section 3.5.3). Finally, in Section 3.5.5.4 we compare our two main

staffing techniques (RCCP and OL) given the same number of resources is used.

3.5.5.1 Current state: We ran 100 one-month long replications of each scenario, in order to
compare our simulation results with the data from the hospital’s database. For each date and hour,
we calculated the average number of patients over the simulation replication (Avg series in Figure
26), and the corresponding standard deviation (SD), an Upper Bound (UB = Avg + 1.96SD),
and a Lower Bound (LB = Avg — 1.96SD). In Figure 26, we depict 4 days, chosen to test our
methodology against the (actual) number of patients from the database (Wip-Work in progress).
We chose two periods that are two days long, the last day of the weekend (Saturday in Israel) and
the first working day of the next week (Sunday). (For example, DOW _7_4 at time axis stands for
4am on Saturday and DOW _1_16 denotes 4pm on Sunday.)

These days are typically the calmest and busiest in the week, respectively. Note that the night
and early morning shifts (hours 1-10 in Figure 26) are not overloaded (see, for example, the utiliza-
tion profiles during 09-10, in Table 3), and performance measures are then less accurate. However,
once the ED becomes congested, the simulation does yield an accurate prediction of the number of
patients in the ED. At all times, though, the accuracy of prediction varies from reasonable to good.

Remark. A probable explanation for a somewhat worse fit of the simulation during lightly
loaded hours is the following. When the load is low, the staff has more time for activities that
are not incorporated into our simulation (e.g. department meetings). In contrast, during heavily
loaded periods, there is virtually no time for such activities and reality becomes consistent with the

simulation.

3.5.5.2 Calculation of short-term staffing recommendations: Next, we simulated the sys-
tem in the near future using methodology from Section 3.5.4, to see if there is a way to improve ED
operations via an appropriate staffing technique. We calculated the offered load of all the relevant
resources: internal physician (I,), surgical physician (S,), orthopedic physician (O,) and nurses
(Ny). For this experiment, we used ED data until 16:00 and then applied simulation to forecast

each succeeding hour, until the end of the day. Here and in the experiments described below, 100
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Table 3: Simulation performance measures - current and forecasted (actual staffing)

Hour I, Sp | Op | Ny | #Beds | #Chairs | %(W > T)
09-10 | 73% | 1% | 23% | 55% 15.7 8.6 ™%
10-11 | 93% | 25% | 59% | 68% 23.5 17.0 33%
11-12 | 94% | 59% | 67% | 72% | 29.3 22.8 51%
12-13 | 90% | 45% | 81% | 58% | 33.2 30.3 53%
13-14 | 95% | 68% | 94% | 71% 36.2 34.7 7%
14-15 | 90% | 62% | 76% | 63% | 34.2 33.3 70%
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simulations were performed. In Table 3, we display the ED state until 16:00, and then continue with
the simulation-based forecast; the staffing levels used in the simulation are the one exercised in our
partner ED - we refer to it as “the actual staffing”. Columns I, S,, O,, and N,, list utilization levels
of the respective staff. (For nurses, this accounts for the time devoted to patients’ care, excluding
administrative duties; physicians are exempted from the latter.) The column headings # Beds and
#Chairs represent the average number of occupied beds and chairs, respectively; %(W > T') is the
fraction of patients that are exposed to unsatisfactory care, which here is taken to be “physician’s
first encounter occurs later than 1" minutes after arrival to the ED”. In our research, the value of T'

is equal to 30 minutes.
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Figure 26: Comparing the database with the simulated ED current-state (weekdays and weekends)

In Table 4, we display the following characteristics:

e ED actual staffing is denoted by n(Current),

the offered load level (as explained in Section 3.5.3.2) in Offered Load column,

recommended staffing level based on the offered load (aiming to achieve %(W > T') < 0.25) —
n(OL),

the RCCP level (as explained in Section 3.5.3.1) — RCCP Load columns,

RCCP staffing recommendations aiming at less than 90% staff utilization - n(RCCP).

45



Table 4: Staffing levels (actual and recommended)
Offered Load H n (OL) RCCP Load H n (RCCP)

‘ ‘ H n (Current)

I, | S5 | Oy | N, I, | S, | Op | Ny

Hour || I, | Sp | Op | Ny I, | Sp | Op | Ny I, | Sp | Op | Ny
16-17 || 4 | 1 5 7810810841 9| 2 2 5 3 105(06(241( 4|1 1 3
17-18 || 4 1 2 5 3710410925 5 1 2 3 3310407 |13 | 4 1 1 2
1819 | 4 | 1 2 ) 32104 (1127 4|1 2 4 2310410413 3|1 1 2
19-20 || 4 | 1 2 5 23105112125 3|1 2 3 2410506 | 1 311 1 2
20-21 || 4 1 2 5 27106 |15 27| 4 1 2 4 2310504 1 3 1 1 2
21-22 || 4 | 1 2 5 24104113124 3|1 2 3 28105104 1.1 4|1 1 2
22-23 || 4 1 2 5 23102109 | 2 3 1 2 3 2410302 1 3 1 1 2

3.5.5.3 Short-term staffing recommendations - performance forecasting: In Table 5, we
record simulated performance, under staffing levels calculated via the OL and RCCP methods. As
anticipated, the offered-load method achieved good service quality: indeed, the fraction of patients
getting to see a physician within their first half hour at the ED is typically less than half of those
under RCCP, the latter being also more influenced by the changes in the arrival rate. RCCP of
course yields good performance at the resource utilization column, all being near the 90% target
(for the resources with staffing levels in larger than of 1-2).

It is interesting to compare Table 5 (recommended staffing) with Table 4 (levels of actual staffing
and the corresponding performance): the latter has obvious hours of under- and over-staffing while
the former’s performance is relatively stable. (For example, n(Current) implies under-staffing during
16-17 and over-staffing for 22-23 period.) Preplanned staffing, either for resource utilization (RCCP)

or, better yet, patients’ service level (OL), clearly has its merit.

Table 5: Simulation performance measures (using OL and RCCP)

Performance measures using Performance measures using
OL recommendation RCCP recommendation
Resource Utilization Resource Utilization
#Beds | #Chair | %(W > T) #Beds | #Chair | %(W > T)

How | 1, | 5, | o | W L] s o | N
16-17 || 62% | 38% | 40% | 58% 36 29 56% 90% | 54% | 60% | 59% | 38.3 35.3 8%
17-18 || 59% | 33% | 35% | 67% | 34.8 31.6 36% 82% | 47% | 65% | 81% | 39.3 40.2 82%
18-19 || 75% | 49% | 53% | 76% | 32.2 29.9 46% 80% | 45% | 69% | 92% | 40.6 46.2 86%
19-20 || 84% | 48% | 57% | 80% | 31.5 31.1 38% 2% | 43% | 79% | 97% | 42.3 52.2 90%
20-21 || 76% | 52% | 65% | 71% | 28.7 28.4 38% 68% | 46% | 85% | 99% | 43.4 57.7 91%
21-22 || 83% | 49% | 59% | 5% | 27.8 27.9 42% 55% | 45% | 89% | 99% | 44.7 62.4 91%
22-23 || 85% | 45% | 50% | 73% | 25.7 25.4 50% 63% | 39% | 87% | 99% | 45.9 64.9 91%
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Table 6 presents the standard deviations of performance measures calculated in Table 5. We
observe that these values are relatively small (the standard deviations in the other numerical exper-

iments are of the same order).

Table 6: Standard deviation of performance measures (using OL and RCCP)

Performance measures using Performance measures using
OL recommendation RCCP recommendation
Resource Utilization Resource Utilization
#Beds | #Chair | %(W > T) #Beds | #Chair | %(W > T)
‘ Hour 1, Sp ‘ Op N, 1, ‘ Sp ‘ Op N,
16-17 || 1.7% | 3% | 2.9% | 2.2% 0.8 1 2.8% 1.5% | 3.4% | 3.8% | 2.6% 0.7 0.9 3.1%
17-18 || 2.1% | 3% | 4.1% | 2.8% 0.8 1.2 3.5% 2% | 3.3% | 23% 3% 0.7 1.1 3.6%
18-19 || 1.9% | 2.7% | 2.1% | 2.4% 0.9 1.3 3.8% 23% | 3% | 2.6% | 2.5% 0.8 1.2 3.7%
19-20 || 2% | 2.8% | 2% | 2.3% 1 14 3.9% 2.2% | 2.8% | 4.4% | 2.4% 0.9 1.3 1%
20-21 2% 3% | 22% | 2.7% 1 14 3. 7% 1.6% | 2.6% | 2.9% | 1.3% 0.9 1.4 3.5%
21-22 || 1.9% | 2.9% | 2.2% | 2.1% 1.1 1.5 3.5% 1.4% | 2.6% | 2.5% | 1.1% 1 1.6 3.4%
22-23 || 1.8% | 3.5% | 5.3% | 3.7% 1.1 1.6 3.4% 1.8% | 2.5% | 2.3% | 1.4% 1.1 1.8 3.2%

3.5.5.4 Comparing RCCP and OL given the same average number of resources: In
this section, we provide a “fair comparison” between RCCP and OL staffing techniques. The same
simulation model for the same time period, as in Sections 3.5.5.2 and 3.5.5.3, was used. However,
in the previous sections, we allowed a different amount of resources for the two methods, obtaining
better results for OL with more resources. Here we targeted the two staffing methods to use the
same average number of resources (I, Sp, Op, and N,,) per hour. We used the following algorithm
to reach this goal. First, different values of the targeted service level a = %(W > T') were used
to get recommendations on the number of resources per hour via the OL method (recall Equations
(3.4), and (3.5)). The overall average utilization was computed for each case. Then we modified
the overall number of resources in the RCCP formula (Equation (3.1)), in order to target the same
values of the overall average utilization.

Finally, simulations were run in order to compare the quality of service % (W < T') for the two
methods; the results are presented in Figure 27. The simulation results are conclusive — the OL is
the superior method, which implies the higher quality of service with the same number of resources
for all values of a.

Remark. We are aware that it is not always feasible to schedule an additional workforce in a
hospital on short notice. This can pose a serious limitation for a practical application of our method.
However, “load balancing” might be possible, by transferring physicians and nurses from less loaded

positions to “bottlenecks”. In our hospital, such a solution is feasible mostly in the afternoon, when
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Figure 27: Quality of service of RCCP and OL with the same number of resources per hour

the ED and the internal wards can potentially share their staff (as opposed to the morning shift
when each department must adhere to rigid staff allocations). Even if workforce levels are inflexible,
operational forecasting exposes potential problem areas in advance, which provides ED managers

with some time to prepare for functioning in a high-load regime.

3.6 Tactical horizon: simulation-based modeling for the control of seasonal load

effects in ED

Although the patient intra-week arrival pattern does not change over time, there are midterm load
effects (e.g. flu epidemic months) that must be addressed when one plans and schedules the ED
resources. Assume that we have an arrival load forecast for a certain time period. (It can be obtained
either via formal forecasting methods or via expert assessments.) Our goal is to calculate hourly
staffing recommendations. For this goal, we do not need an on-line simulation, and we can look
on the average effects of a model, which uses the OL number of resources per hour, and a model,
which uses RCCP recommendations. For a fair comparison, we forced the total number of resource-
hours (aggregated staffing levels of nurses and the pooled physicians) of both methods to be the

same. The same technique as in Section 3.5.5.4 was used for this purpose (one hundred simulations
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for each special case with a three-day warm-up period were performed). The only difference with
respect to the on-line-simulation was that here we used a simulation model with shared physicians
instead of specific ones for simplicity reasons. We compared the two staffing methods with respect
to the following performance measures: % (W > T'); Average Length of Stay (ALOS), and number
of average occupied chairs and beds. We fixed ten values of the targeted service level a (from 0.1
to 1.0 with a step 0.1), got OL recommendations for the number of resources and, then, calculated
RCCP recommendations with the same overall utilization. We ran the simulation again to receive

the quality of service for comparison. The results are presented in Table 7.

Table 7: Simulation performance measures using OL and RCCP (Off-line)
H 0.10 ‘ 0.20 ‘ 0.30 ‘ 0.40 ‘ 0.50 ‘ 0.60 ‘ 0.70 ‘ 0.80 ‘ 0.90 ‘ 1.00 ‘

(0%
Hourly average %(W > T)(OL) 6.3% | 10.4% | 13.9% | 16.9% | 20.5% | 21.3% | 24.6% | 26.0% | 27.8% | 31.0%
Hourly stdev %(W > T)(OL) 17.4% | 23.0% | 26.7% | 29.6% | 32.3% | 33.2% | 34.8% | 35.6% | 36.5% | 38.4%

Hourly average %(W > T')(RCCP) || 15.7% | 21.6% | 23.9% | 26.5% | 29.4% | 30.9% | 35.6% | 36.3% | 39.1% | 42.3%
Hourly stdev %(W > T)(RCCP) | 30.9% | 35.6% | 36.9% | 38.4% | 30.7% | 40.2% | 41.9% | 42.1% | 42.9% | 43.6%

average %(W > T)(OL) 6.4% | 10.5% | 14.4% | 17.3% | 21.1% | 21.8% | 25.9% | 27.0% | 28.7% | 31.5%
average %(W > T)(RCCP) 11.2% | 16.5% | 18.4% | 21.1% | 23.0% | 24.8% | 29.1% | 30.5% | 32.9% | 36.1%
ALOS(OL) 2009 | 211.2 | 221.5 | 227.6 | 232.5 | 237.7 | 241.1 | 245.8 | 253.0 | 254.7
ALOS(RCCP) 211.2 | 226.2 | 238.9 | 244.6 | 251.8 | 256.6 | 267.7 | 270.6 | 279.4 | 291.4
Average Beds(OL) 134 | 140 | 144 | 149 | 152 | 151 | 157 | 159 | 16.0 | 16.4
Average Chairs(OL) 97 | 107 | 115 | 119 | 125 | 123 | 130 | 133 | 134 | 141
Average Beds(RCCP) 142 | 149 | 154 | 159 | 163 | 163 | 175 | 174 | 181 | 183

Average Chairs(RCCP) 10.6 11.6 12.2 12.7 13.1 13.2 14.4 14.4 15.0 15.4

In Figure 28 we observe that if the comparison is done over %(W > T'), OL is dominating RCCP
by 5% approximately if averages over all patients are compared, and by 10% if hourly averages are
compared. (In the latter case, we first calculate performance for each hour and then average the
results.) The superiority of the OL approach is also clear for ALOS, and for the average occupied

beds and chairs indices. If the performance is analyzed on an hourly basis, we observe that the

OL approach is not always dominant. It can be shown that the number of resources per hour

is not too different for the two methods. For example, see Figure 29 for o = 0.3 on an average
day, where aR(OL, Dr) and aR(OL, Nu) mean the offered load (3.3) for physicians and nurses,
respectively; aR(RCCP, Dr) and aR(RCCP, Nu) denote the expected processing time per resource
(3.1); and, finally, n(Dr,OL), n(Nu,OL), n(Dr, RCCP) and n(Nu, RCCP) denote staffing levels

for a corresponding method and resource type.

In Figure 30 (o = 0.3), we observe that OL maintains a steady quality of service during the week,
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Figure 28: Quality of service of RCCP and OL by using a similar number of resources per hour

(off-line)

while RCCP is gaining better (though not significantly better) results during increasing arrival rate
periods and fails when the arrival rate declines. The reason is the economies-of-scale phenomenon,
which is well-known in queueing theory. RCCP targets the utilization level, but a system with a
larger number of servers provides a better performance given the same utilization.

Summarizing, the OL method provides better and more stable performance. Since tactical
planning is per-formed weeks or months in advance, it is much easier to schedule the needed workforce
for the tactical horizon than in the case of operational planning. A possible limitation of tactical
planning is related to forecast reliability. Say, if load forecasting quality for flu epidemic periods is

low, the staffing recommendations will be far from optimal.

3.7 InEDvance: a support system for recording, predicting, and displaying ED

events

Input to our system originates from numerous data sources. For example, the ED current state
is based on information from a multitude of hospital IT systems, such as the Admit Discharge
Transfer (ADT) system, the Picture Archiving and Communication System (PACS), the Lab Order

Reservation system and the Electronic Medical Records system. Yet these systems provide only
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minimal operational information such as start and end of an activity. In particular, no information
on queue lengths or waiting times is available (and here our simulation-based capabilities of ED
state completion and prediction comes handy). The hospital IT system collects its information
and presents it to the user as a set of indicators and parameters. To inter-act with this hospital
system, we have designed InEDvance (Wasserkrug et al. [2009]): a decision support system that
can record, process, simulate, and present event data that hospital IT systems record and send,
along with current (as in Section 3.5.5.1) and future performance measures (as in Sections 3.5.5.2
and 3.5.5.3). The InEDvance system comprises algorithms that assist the ED manager in planning
resource allocation for the next several hours for handling forecasted resource scarcity. In particular,
InEDvance has, at its core, a simulation-based module that is fed (in real-time) data from the
hospital IT systems and then, through simulation (as described above), identifies and presents
patient flow bottlenecks (e.g. excessive lines at the X-Ray) and consequently alerts ED management.
The information arriving from the various I'T systems generates a dashboard of past, present and
predicted activities within the ED. We sample-demonstrate the use of such a dashboard by combining
it with our ED simulator, and graphically presenting (potentially in real-time) information on the
dashboard, using a graphical user interface. Figure 31 below shows a snapshot of the dashboard that
presents, in various ways, past, current, and future occupancy of the different ED rooms. Figure
32 demonstrates a dashboard that could alert, based on calculated forecasting indicators, against

predicted congestion and resource shortage.

Daily Occupancy Levels

800-12:00

e

1
00500 % Boasen
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Figure 31: Dashboard snapshot showing room occupancy
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Figure 32: Predicted arrivals and physicians load

3.8 Conclusions and worthy future research

In this chapter, we applied a simulation model of an emergency department to staff scheduling
problems in several different time horizons. The results turn out to be very promising. We introduced
a simulation-based offered-load staffing technique that seems to be superior to existing alternatives.
This combination of a flexible simulation model and of an advanced staffing technique can be (and
we hope, will be) used in other hospitals. In order to enhance our approach, it would be helpful
to design IT systems that integrate these tools with real-time decision support systems and RFID
technology.

Below we briefly describe our main research conclusions for each of the two staffing horizons
within which we worked.

Online Decision Support, Short-term Forecasting and Operational Planning. In Section 3.5, we
have shown how the algorithm setup problems are solved in this case, emphasizing simulation-based
inference of the current state and, especially, the problem of inferring patient discharge times, which
constitute a specific and, probably, wide-spread example of incomplete data.

We believe that the main theoretical contribution of the chapter is the introduction of the offered-
load framework for staffing problems. This method is not restricted to operational planning and
can be used for all planning horizons considered in the chapter. It uses simulation with infinite
resources and generalizes the single-station approach of Feldman et al. [2008] to a complicated ED
service network. We compared the offered-load method with the prevalent RCCP (Rough Cut

Capacity Planning) technique in several different setups and, overall, the staffing based on the
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offered load turns out to imply better performance given similar resources. The main reason for this
phenomenon is that the offered load concept refines RCCP in the sense that it allocates workload
accurately over time (while RCCP, on the other hand, accounts for all the workload brought in by
a patient right at the arrival time of that patient).

Simulation-based Staffing for a Tactical Horizon. In Section 3.6, we considered the problem
of middle-term staffing (weeks or months ahead). Two simulation-based staffing methods, OL
and RCCP were compared, again assuming the same average staffing level. For all considered
performance measures (ALOS, probability of a long wait for the first physician encounter, average
number of occupied beds and chairs), the OL approach turned out to be preferable.

Since this research covers several heterogeneous topics, many future research directions can arise

out of it. Here we briefly characterize some of these research issues.

e Enhancing Forecasting Algorithms. In this chapter, a simple MA technique is used for arrival
volume forecasting since we did not succeed in improving its goodness-of-fit via more elab-
orated approaches. However, this issue deserves additional research effort. For example, an
alternative approach to arrival load forecasting is presented in Kuhl et al. [2006], Kuhl and
Wilson [1999], Kuhl et al. [1997], where the authors estimate the parametric rate function of a
non-homogeneous Poisson process. Verifying if these methods provide a better goodness-of-fit

to our data than long-term MA is an interesting research topic.

o [Integration between ED Simulators and Hospital Data Repositories. The Service Engineering
Enterprise (SEE) Center at the Faculty of Industrial Engineering and Management in the
Technion has created and maintained data repositories from service systems. These are all
based on the DataMOCCA model (Data Model for Call Centers Analysis, see Trofimov et al.
[2004]). The model provides a uniform presentation of (mainly operational) data from vari-
ous sources for statistical analysis, operations research and simulation. Initially designed for
call center data storage and processing, DataMOCCA was generalized to accommodate other
sources and types of data, including healthcare data in general, and ED in particular. Indeed,
SEE repositories now contain data from ED and internal wards of several hospitals. Remark.

http://ie.technion.ac.il/Labs/Serveng/ is the website of the SEE Center.

In order to increase processing speed, SEE databases are designed in two levels, containing as
the second level precompiled summary tables, which are created once and are efficient enough to
support online (few-seconds) processing. This provides an environment that is suitable for real-time

statistical analysis and simulations. In addition, software for statistical algorithms (including fitting
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of parametric and mixture distributions, survival analysis, etc.) has been developed and connected
to the databases.

Data from any hospital, in particular SEE data, can be used by our simulation model. More-
over, the statistical capabilities of DataMOCCA could be integrated into the simulator. Note that
enhancement of data-collection methods (using RFID, for example) will increase the benefits of such
an integration. For example, estimates of service times for nurses and physicians will be derived

from the database, while field studies are now required in order to in-corporate them into the model.
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4 ED Design: via Data Envelopment Analysis (DEA)

Abstract

The health care industry is constantly being challenged by new regulation, new technology, and
structural changes due to public policy. Priority queues in EDs, are based on patients’ urgency
and illness, which implies that operational aspects, such as Average Length of Stay (ALOS), are
rarely taken into account, for example in determining staffing levels on ED operating strategies. To
this end, we are proposing the EDD methodology, which identifies an operating model that would
be the most efficient in a given environment. More specifically, we use Data Envelopment Analysis
(DEA), coupled with real data from eight hospitals and simulation, to compare efficiency of different
operating models, as we vary operational environmental parameters. It turns out that there is no
dominant operating model, but we did find that different operating models have weaknesses and
strengths over distinctive environmental parameters: For example, hospitals that get a high volume
of elderly patients per month, are most likely to require a separate lane for high (clinical) priority
patients (fast track) in order to be efficient, while others can use a priority rule (triage) without the

need for a distinguished space for high priority patients.

4.1 Introduction

The health care industry is constantly being challenged by new regulations (such as standard
LD.3.15, which the Joint Commission on Accreditation of Hospital Organizations (JCAHO) set
in early 2005 for patient flow leadership), new technology (e.g., introducing Picture Archiving and
Communication System (PACS) which replaced the old X-ray films), and structural changes due
to public policy. For example, when reimbursements from Medicare patients in the US started to
decrease in 1983, the health care industry found itself first in a retrenchment stage, but later on
it was realized that improving performance is the only way to reach a viable financial condition.
Therefore, DEA found its way as a benchmark tool to achieve health care institutional goals (Ozcan

2008)).

4.1.1 The ED design problem

Priority queues in EDs are based on patients’ urgency and illness (Garcia et al. [1995]). This
implies that operational aspects, such as Average Length of Stay (ALOS), are rarely accounted for
when determining operating policies. Therefore, hospital management has come up with various

ways to incorporate the operational point of view through the ED structure and its operational
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models. We focus here on the most prevalent operational models that are being used in ED’s:
Triage (Section 4.1.1.1), Fast-Track (Section 4.1.1.2), Walking-Acute (Section 4.1.1.3), Illness-based
approach (section 4.1.1.4), and Output-based approach (Section 4.1.1.5). The models are graphically

summarized in Figure 33.

4.1.1.1 Triage: Triage is an operational model originally focused on assuring that patients are
receiving appropriate attention at the right location with the right degree of urgency (George et al.
[1993]), thus triage was originally meant to be a clinically-based approach. In the illustration of this
operating model shown in Figure 33(a), we note that in the Triage model patient arrivals to the ED
are immediately classified by the Triage function before entering the ED areas. When used just as
a prioritizing tool, the benefits of triage are not clear because adding queues for a staff member to
prioritize the patients is adding a staff member and could increase the original waiting times (see
George et al. [1993] for more details). Others found that triage helps reduce ALOS when used as
a hospital gatekeeper (e.g. Derlet et al. [1992], and Badri and Hollingsworth [1993], who suggest
referring non-urgent patients to clinics), or when triage nurses are empowered to initiate lab tests
(e.g. blood or urine) or X-rays so that the results arrive when a physician is ready to evaluate
the patient (e.g. Macleod and Freeland [1992]). Of course, identifying appropriate staffing levels of

physicians (Wong et al. [1994]) can reduce unnecessary queues and therefore reduce ALOS as well.

4.1.1.2 Fast Track: “A Fast Track (FT) lane is a lane dedicated to serve a particular type of
patient with the sole intent of reducing their waiting time; thus, reducing their total time in the
system” (Garcia et al. [1995]). An example of this type of patient, who uses a special lane, is an
acute patient (e.g. myocardial infarction at Pell et al. [1992], or evolving STEMI at Heath et al.
[2003]). Fast-Track is a mixture of a clinical and operational-based approach, since it aims both at
saving lives and at reducing ALOS for those who really need it. In the chart in Figure 33(b), we
see that the Triage model and the F'T model are very similar except for the special Fast-Track lane,

which gave this model its name.

4.1.1.3 Walking-Acute: Another common meaning for the use of “Fast Track” in the literature,
is directed at shortening patients ALOS by dedicating a separate lane for patients with minor illnesses
or injuries (e.g. Docimo et al. [2000]). Since those Fast-Track patients are commonly called “Walking
Patients” (Falvo et al. [2007]), we shall use the term Walking-Acute (WA) for this approach instead
of FT. Another difference between the WA and the FT model is in the use in the latter of the Triage
function after patients enter the ED (see Figure 33(d) and Figure 33(b)). Being admitted without
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Triage could lead to miss-classifications and, hence, later in the process patients moving from one
area to another in the ED, or finding after a while that a patient’s problem is not relevant to the

ED, for example when the patient should have been admitted directly to one of the hospital’s wards.

4.1.1.4 Illness-based: This is another characteristic of an operating model, which is based on
the type of ED physician involved. ED physicians can be specialists in ED medicine, denoted here-
after as ED physicians, or specialists in specific disciplines such as Internal, Surgical or Orthopedic
(ISO) medicine, denoted hereafter as professional physicians (Sinreich and Marmor [2005]). When
an ED is operating with a special lane for each specialist, we call this approach “ISO”, an abbre-
viation of its specialist physicians. From Figure 33(a), and Figure 33(c), we notice that the main
difference between the Triage and the ISO model is the use of a Triage function, which could lead,
as in the WA model, for miss-classifications and for patients moving unnecessarily among areas in
the ED, or out of the ED to a hospital ward. The operational advantages of the ISO model over the

Triage model could be the use of fewer staff members (the one that was used in the Triage function).

4.1.1.5 OQutput-based: An interesting approach, based on lean manufacturing, employs a sep-
arate lane for patients who probably would be released after treatment in the ED, and another lane
for those who the triage nurse suspects would eventually be admitted to a hospital ward after ED
examination (King et al. [2006]). We call this approach the “output-based approach” since it is

based on the clinical outcome-state of the patient.

4.1.2 DEA - basic principles

DEA is a mathematical technique dealing with performance evaluation, namely the efficiency of
organizations, e.g. hospitals, government agencies, and of course business firms. An example of
measuring efficiency would be the cost (output) per unit (input), profit (output) per unit (input),
and so on, which is manifested by the ratio % (Cooper et al. [2000]). Charnes et al. [1978]
introduced the basic model they called CCR (an abbreviation of the authors names), which finds

the efficiency of a complex system with several outputs and several inputs for the Decision Making

Units (DMU’s):

S S
Z UrYro Z UrYrj
max hg = T:Ll ; st rfnli <1, u,v >0, (4.1)
> UrZio > UiXjj
i=1 i=1
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where z;; represents the amount of input ¢ utilized by DMUj, while y,; > 0 represents the amount
of output r produced by DMUj; v; is the weight given to output ¢, and wu; is the weight given to
input r. The optimal solution ensured that optimal hj = max hg will always satisfy 0 < hg < 1.

For solving Equation (4.1) we use linear programing with the following formulation:

s
max zp = E UrYro

r=1
m S m 4 2
s.t. Zvil‘io = 1, Zuryrj — Z'Uil'ij S 0 ( ’ )
i=1 r=1 i=1
j=1,.n, upv;>¢€ Vri.
4.1.3 DEA - including uncontrollable elements

It is often the case that some parameters are uncontrollable (for example, the weather condition,
or the inflation level), so there is the need to extend (4.1) to include uncontrollable inputs (Banker

and Morey [1986]):

S t
Yo wiYjo — Y UkZko
=1

k=1
max 6y = =
Z ViTio
i=1
S t
WiYjm — D UkZkm
i=1 k=1
st. 1> J

- , m=1,..n, (4.3)
> Vitim
=1

w; >0, j=1,..s,
v; >0, i=1,..r (weights for controllable inputs),

ug >0, k=1,..t (weights for uncontrollable inputs).

The benefit of this model is that we are not just getting the impact of controllable inputs, but
also the effect of the uncontrollable parameters over the model as well.
4.1.4 DEA - comparing different operating methods

The reasons for using DEA are broad. One use is to identify the sources and the extent of relative
inefficiency in each of the compared DM U, (for more reasons see Golany and Roll [1989]). Brockett

and Golany [1996] introduced a new approach that analyzes data by groups rather than by individual
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DMUs. If the DMUs are grouped by their operational characteristics, this approach can assist
management in evaluating what the best action or policy is from the available options. Their

suggested procedure is as follows (originally k=2):

I. Split the group of all DMUs (j = 1, ....,n) into k programs consisting of nq, ..., ny DMUs
(n1 +mn2 + .... + np = n). Run DEA separately (e.g. Equation 4.3).

II. In each of the k groups separately, adjust inefficient DMUs to their “level of efficiency”
value by projecting each DMU onto the efficiency frontier of its group (e.g. by changing

the controllable inputs in Equation 4.3).

ITI. Run a pooled (or “inter-enveloped”) DEA with all the n DMUs at their adjusted efficient

level (again like in Equation 4.3).

IV. Apply a statistical test to the results of III to determine if the k groups have the same
distribution of efficiency values within the pooled DEA set (or does it vary according to

different uncontrollable parameters).

4.1.5 DEA - use in the health care industry

In the last two decades, DEA has often been used to measure performance efficiency in the health
care industry (Hollingsworth et al. [1999]). For example (see Hollingsworth et al. [1999] for an exten-
sive review), DEA was used to evaluate efficiency of hospitals (e.g. Ozcan et al. [1992]), physicians
(e.g. Chilingerian [1995]), and health maintenance organizations (e.g. Draper et al. [2000]). Al-
though many articles used quantitative outcomes as outputs, a few have tried to incorporate quality

measures as well (Nayar and Ozcan [2008]).

4.2 Objectives

Our work focuses on analyzing Emergency Department (ED) efficiency. In Section 4.1.1 we saw that
ED managers can choose from several operating models. Also, we obtained an extensive database
from eight hospitals, which work in different operating models. What we have asked ourselves is the
question - can we find out why each hospital from the eight chose to work with its particular operating
model rather than another? In other words - can we find out which uncontrollable parameters

influence the operating model that ED managers should choose from?
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4.3 Structure of the chapter

The rest of the chapter is structured as follows: First we introduce a methodology to identify which
operating model should be used to operate the ED, and we implement the methodology on several
real hospital data (Section 4.4); then we display the results (Sections 4.5). We conclude, in Section

4.6, with a summary and a description of some planned future work.

4.4 Methodology

The EDD (ED Design) methodology, for recommending an efficient ED operating method, consists
of the following steps (based mainly on Golany and Roll [1989] and Brockett and Golany [1996])):

e Prepare the model data:

— Select DMUs to be compared.

— List relevant efficient measurements, operational elements, and uncontrollable elements

influencing ED performance.
— Choose the measurements and elements that would enter the DEA model by:

« Judgmental approach (I).

 Statistical (correlation) approach (II).
e Evaluate the model:

— Use the methodology in Section 4.1.4 to compare the different methods.

— Find which uncontrollable elements compel changing operating methods to reach an ef-

ficient system.

4.4.1 Available data

Our data came from the EDs of eight hospitals, of various sizes and employing different operating
models (see Table 8). Hospitals 2, 6, and 7 have small ED’s (around 4000 patient arrivals per
month). Hospitals 1, 3, 4, and 8 have medium-size EDs (around 6000 patient arrivals per month)
and Hospital 5 is a Level 1 Trauma hospital, which is the largest ED we had (above 7000 arrivals
per month).

Hospital 2 uses separate locations in the ED for Internal, Surgical, and Orthopedic patients. In
each location, a different physician type treats the patients. We call this method after the patient
types and locations (ISO). Hospitals 1, 3 and 6 adopted the Fast-Track (FT) operating model, which
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uses a dedicated area, physician, and nurse (who functions also as a Triage nurse) for treatment
of Internal patients considered to be less resource consuming (fast diagnosis process, no treatment
needed - somewhat like a clinic) while the rest of the ED operates as ISO (see Garcia et al. [1995],
Kraitsik and Bossmeyer [1992], and Samaha et al. [2003] for more details). Hospital 4 uses the ISO
method, separating the sites into a Walking area (where the patients use chairs), and an Acute area
(where the patients use beds). The last two hospitals (7 and 8) use a Triage nurse to route out
unrelated patients (those who need a specialist who is not available in the ED) and give priorities

to acute patients (e.g. Badri and Hollingsworth [1993]).

Table 8: Overview of hospital data

Hospital Start  Date | End Date Operating Modcl Average Monthly ED Scope
[Month-Year] | [Month-Year] Patient Arrivals
1(B) Apr-1999 Nov-2000 Fast-Track 5700 Medium
2(C) Apr-1999 Sep-2001 ISO 4200 Small
3(H) Apr-1999 Jun-2003 Fast-Track 6400 Medium
4(K) Jan-2000 Dec-2002 WA 6100 Medium
5(R) Jan-2004 Oct-2007 WA 7600 Big
6(BZ) Mar-2004 Feb-2005 Fast-Track 3200 Small
7(S) Apr-1999 Sep-2001 Triage 3400 Small
8(HY) Aug-2003 Mar-2005 Triage 5500 Medium

4.4.2 Enriching the data with simulation

As can be seen from Table 9, we do not have a representation of each operating model in each
size. We thus used the simulation model of Sinreich and Marmor [2005] to extend our scope of
models. The simulation enriched our data, by using different arrival volumes, with the same types
of patients. For example, Hospital 1 is a medium hospital which gets an average of 5,700 patients
per month. We use Hospital 1 simulation in order to get the results of applying the same procedures
(e.g. patient flow), but with different volumes of arrivals. For Hospital 1 we use 0.64*5700 patient
arrivals per month (and 64% of the original staff) in order to simulate the hospital working as a
small hospital, and 1.34*5700 patient arrivals per month (and 134% of the original staff) in order

to get the hospital to work as a large hospital.
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Table 9: Overview of hospital’s ratio and operating model

Ratio for each unrepresented magnitude | Represented Operating model
Hospital | Monthly Arrivals | 3000 — 5000 | 5000 — 7000 7000+ FT | Triage | WA 1SO

1(B) 5700 0.64 * 1.34 *

2(C) 4200 * 1.45 1.81 *
3(H) 6400 0.57 * 1.19 *

4(K) 6100 0.6 * 1.25 *

5(R) 7600 0.48 0.8 * *

6(BZ) 3200 * - — *

7(5) 3400 * 1.79 2.24 *
8(HY) 5500 0.66 * 1.39 *

Average 3600 6066.67 7600

4.4.3 Choosing DMUs and parameters to enter the model

We have chosen to take the period of a month as the base of the DMUs. The reason for that was the
need to control the variations influencing the ED performance (e.g. the impact of the day of week
and mass casualties episodes on patient arrival patterns and staff load). From Table 8 we see that
we have 245 DMUs from the eight hospitals. We use the simulation to add 4 DMUs (for months
with 28, 29, 30 and 31 days) for each ratio in Table 9. That adds up to 325 DMUs. (For Hospital
6 we did not have a simulation model in Sinreich and Marmor [2005].)

The parameters we obtained from the databases of each Hospital were limited. We narrowed it
down to the ones we thought would influence efficiency. Some of the parameters should be further
eliminated since they comprised complementary information (e.g. number of arrivals by ambulance,
and the number of arrivals not by ambulance). The parameters were divided into uncontrollable
input parameters (considered to be uncontrollable), controllable inputs, and output parameters. In

the brackets we put the min, max, and average of each parameter value (min - max; average).
e Qutputs:

— CountablelW: Number of patients which exit the ED without abandoning, who do
not die, or do not return to the ED after less than one week. This parameter is the

equivalent to “good” parts that exit from a factory line (2,699 - 7,576; 5,091).

— Countable2W: Number of patients which exit the ED without abandoning, who do

not die, or do not return to the ED after less than two weeks. This parameter is the
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equivalent to “good” parts that exit from a factory line (2,586 - 7,306; 4,906).

— Q_LOS _Less6Hours: Total number of patients whose length of stay is reasonable (less
than 6 hours) (2,684 - 8,579; 5,580).

— Q_ALOS_P _Minusl: Average length of stay (ALOS). Since we wish to get a high level
of output for high efficiency, we have taken ALOS to the power of —1, multiplied by the
average number of hours in a month: 30 * 24 x ALOS™! (119 - 445; 276).

— Q_notOverCrowded: Total number of patients who arrived to the ED when the ED
was not overcrowded (more patients than beds and chairs) (2,388 - 8,368; 5,290).

e Controllable inputs:

— Beds: Number of bed hours available per month (e.g. if ED has 10 available beds, and
the month consists of 30 days, the total number of beds should be 10 % 24 % 30 = 7200)
(840 - 2,573; 1669).

— WorkForce: Number of “cost hours”. An hour of a physician costs the hospitals 2.5
times the hour of a nurse. We then summarized the number of hours nurses worked in
a month and added the number of hours spent by physicians multiplied by 2.5 (10,900 -
35,914; 18,447).

— PatientsIn: Total number of patient arrivals to the General ED. This parameter is

considered to be a controllable one because hospitals can block patients from entering

the ED once the place is overloaded (though it is used rarely) (2,976 - 8,579; 5,717).

— Hospitalized: Total number of patients hospitalized after being admitted to the ED. We
know that some hospitals use hospitalization as a way to relieve ED congestion by moving
patients to the hospital wards unnecessarily. The main reason is that more patients can
be then admitted to the ED. Another reason could be a deliberate continues approach

for shortening the ALOS of ED patients (541 - 2,709; 1,496).

— Imaging: Total Imaging “cost” examination ordered for ED patients per month. Imaging
is a costly examination in the ED. The three main examination are X-Ray, CT, and
ultrasound (US), and rarely there are patients from the ED who are sent for an MRI
(since this is an expensive test, and ED tests are not necessarily all covered by insurance).
We weighted the different examinations by their relative cost (see Grisi et al. [2000]) as
follows: US = 1.8«X-Ray, CT = 4.4%xX-Ray and M RI = 6.1xX-Ray (1,312 - 14,860;
2,709).
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e Uncontrollable inputs:

— Age:
* Child: Number of patients under the age of 18 who arrive at the ED during a month
(95 - 1,742; 611).
* Adult: Number of patients under the age of 55 and over 18 who arrive at the ED
during a month (1,429 - 5,728; 3,178).
x Elderly: Number of patients over the age of 55 who arrive at the ED during a month
(728 - 3,598; 1,914).
— Admission reason:
*x Illness: Number of patients with admission reason related to illness who arrive at
the ED during a month (1,853 - 6,153; 3,775).
x Injury: Number of patients with admission reason related to injury who arrive at
the ED during a month (779 - 3,438; 1,849).

x Pregnancy: Number of patients with admission reason related to pregnancy who
arrive at the ED in a month (most patients with pregnancy reasons are directed to

the relevant wards without entering the ED) (0 - 16; 3).
— Arrivals mode:

* Ambulance: Number of patients arriving at the ED during a month by ambulance
(157 - 1,887; 795).

* Without Ambulance: Number of patients arriving at the ED during a month with-
out an ambulance (2,679 - 7,416; 4,921).

— Additional information:

x WithLetter: Number of patients arriving at the ED during a month with a letter
from their physician explaining the problem (1,624 - 6,536; 3,741).

x WithoutLetter: Number of patients arriving at the ED during a month without
a letter from their physician explaining the problem (803 - 3,651; 1,976).

* OnTheirOwn: Number of patients arriving at the ED during a month on their
own (786 - 3,579; 1,952).

* notOnTheirOwn: Number of patients arriving at the ED during a month not on

their own (1,744 - 6,576; 3,765).
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— Type of treatment:

*x Int: Number of patients arriving at the ED during a month needing Internal type

of treatment (1,431 - 5,176; 3,062).

x Trauma: Number of patients arriving at the ED during a month needing Trauma

type of treatment (378 - 4,490; 2,655).

Our next step is to identify which of those initial parameters will participate in our DEA model.

4.4.4 Choosing the parameters to enter the DEA model by correlation

Table 10: Correlation between each two parameters

s = | X . AR R IR 22 %
jaa] = A~ == = o < a @0 < = = = o a = = &) &) [«3 [e3
Beds 1
WorkForce 0.73 1
PatientsIn 0.95 | 0.78 1
Hospitalized 0.8 0.63 | 0.78 1
Imaging 0.82 | 0.64 | 0.88 0.7 1
Child 0.56 | 0.26 | 0.57 0.14 0.4 1
Adult 0.89 | 0.67  0.95 0.78 0.88 0.52 1
Elderly 0.59 | 0.73 | 0.61 0.6 0.52 | —0.02 | 0.39 1
Disease 0.85 | 0.78 | 0.89 0.74 0.73 0.37 0.78 0.75 1
Sabotage 0.84 | 0.58 | 0.87 0.53 0.69 0.85 0.85 0.25 | 0.71 1
Pregnancy —0.04 | 0.11 | —=0.04 | 0.21 | —0.05 | —0.34 | —=0.13 | 0.35 | 0.11 | —0.29 1
Ambulance 0.62 0.5 0.69 0.68 0.61 0.28 0.65 0.51 | 0.65 | 0.52 0.31 1
WithoutAmbulance =~ 0.94 | 0.77 = 0.98 | 0.74 0.87 0.59 0.93 | 0.58 | 0.87 | 0.87 | —0.12 | 0.55 1
WithoutLetter 0.74 | 0.65 | 0.74 0.7 0.69 0.28 0.72 0.5 0.7 0.59 | —0.03 | 0.24 | 0.8 1
WithLetter 0.88 0.7 0.94 0.68 0.81 0.61 0.88 0.56 | 0.82 | 0.84 | —0.04 | 0.78 | 0.9 0.48 1
OnHisOwn 0.78 | 0.62 | 0.78 0.75 0.74 0.3 0.81 0.44 | 0.72 | 0.63 | —0.02 | 0.33 | 0.82 0.97 | 0.55 1
notOnHisOwn 0.86 | 0.72 0.94 0.66 0.8 0.62 0.85 0.6 0.82| 0.84 | —0.05 | 0.77 | 0.89 | 0.47 0.99 | 0.51 1
Int 0.9 0.75 0.93 0.86 0.88 0.32 0.93 0.59 | 0.85 0.7 0.02 | 059 | 093 | 0.82 | 0.81 0.87 | 0.79 1
Trauma 0.84 | 0.68 0.91 0.57 0.74 0.75 0.81 0.53 | 0.78 0.9 —0.1 | 0.68| 0.89 | 0.54 0.93 | 0.56 0.94 0.7 1
CountablelW 0.95 | 0.79 ~ 0.99 0.77 0.86 0.61 0.92 0.63 | 0.89 | 0.88 | —0.05 | 0.68 | 0.98 | 0.75 093 | 0.78 0.93 0.91 0.93 1
Countable2W 0.95 | 0.79  0.99 0.77 0.86 0.61 0.93 0.62 | 0.89 | 0.88 | —0.04 | 0.68 | 0.98 | 0.75 0.93 | 0.78 0.93 0.91 0.92 1.0 1
Q_LOS_Less6Hours 0.93 | 0.72 0.98 0.78 0.87 0.55 0.94 0.58 | 0.86 | 0.85 | —0.01 [ 0.74 | 0.95 | 0.66 0.96 | 0.72 0.95 0.91 0.9 0.97 | 0.97 1
QnotOverCrowded | 0.82 | 0.68 | 0.82 0.6 0.66 0.68 0.73 0.49 | 0.65| 0.82 | —0.09 | 0.56 | 0.81 0.59 | 0.79 0.58 0.81 0.68 | 0.85 | 0.85 | 0.85 | 0.79 | 1
Q_ALOS_P_Minusl 0.19 |0.05| 0.16 | —0.01 | —=0.03 | 0.56 0.18 | —=0.25 | 0.02 | 0.46 | —0.27]0.28 | 0.12 | —=0.14 | 0.29 | —0.14 | 0.31 | —0.05 | 0.37 0.2 0.2 102104

In Table 10 we see the correlation between every two parameters. Then we erased those param-

eters with a correlation higher than 0.9. We are left with the following parameters (see Table 11 for

their correlation):

e Outputs: CountablelW, Q_notOverCrowded, and Q_ALOS_P_Minusl1 .

e Controllable inputs: WorkForce, Hospitalized, and Imaging.
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e Uncontrollable inputs: Child, Elderly, Illness, Injury, Ambulance, WithoutLetter. We
see that although Pregnancy has a low correlation with other parameters, we have chosen to
remove it from the model. The reason for that was pregnancy arrival to the ED is a rare event

(Hospitals have a distinct location for pregnancy cases).

Table 11: Correlation between model parameters
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WorkForce 1
Hospitalized 0.63 1
Imaging 0.64 0.7 1
Child 0.26 | 0.14 0.4 1
Elderly 0.73 | 0.6 0.52 | —0.02 1
Disease 0.78 | 0.74 0.73 0.37 0.75 1
Sabotage 0.58 | 0.53 0.69 0.85 0.25 | 0.71 1
Ambulance 0.5 | 0.68 0.61 0.28 0.51 | 0.65 | 0.52 1
WithoutLetter 0.65 | 0.7 0.69 0.28 0.5 0.7 |1 0.59 | 0.24 1
CountablelW 0.79 | 0.77 0.86 0.61 0.63 | 0.89 | 0.88 | 0.68 | 0.75 1
QnotOverCrowded | 0.68 | 0.6 0.66 0.68 0.49 | 0.65| 082|056 | 059 |08 1
Q_ALOS_P Minusl | 0.05 | —=0.01 | —0.03 | 0.56 | —0.25 | 0.02 | 0.46 | 0.28 | —0.14 | 0.2 | 04

In Table 12, we see the chosen parameters for each hospital, where each parameter is divided by
the number of arrivals (PatientIn) (e.g., WorkForce_Ratio means the average number of weighted
staff hours per patient, and I'maging_Ratio means the number of weighted imaging examination per
patient. We omitted the parameter focus on length of stay (Q-ALOS_P_Minusl), because dividing
it by the number of patients would not give us an intuitively graspable parameter value). In Figure
34, we see the hospitals efficiency using the original data after “normalization”. The least efficient
hospital by far is number ‘2’; its parameters are not so extreme compared to others, although its
output (%Q _notOverCrowded) is quite low (which can explain the second least effective hospital
‘5’, which has the same low parameter). It is good to see that there is no single ratio that effects

the efficiency of all hospitals.
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Table 12: Hospital’s parameters ratio (from the database without simulation)

Controllable Inputs Uncontrollable Inputs Outputs
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Figure 34: Efficiency by hospital for the original data (without simulation)
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4.4.5 “Normalizing” the data, and adding constraints on the weights

After choosing which of the parameters would participate in our model, we had to do two things
(Roll and Golany [1993]): (1) “Normalizing” the data so that the magnitude of the parameter would
not influence the model (see Equation (4.4)); (2) Putting restrictions on the weights of the model

(see Equation (4.5)).

~ 100*Pij

VTR

P;j — Normalized parameter i of DMU j

P;; — Parameter i@ of DMU j

g ! J (4.4)
P, — Average of parameter i over all DMUs

i=1,....m ; m — number of parameters

j=1,..,n ; n — number of DMUs

The rationale behind the following bounded constraints is to try and maintain reasonable weights.
We find it unreasonable to exclude input or output parameters from the model, so we forced them
to not differ by more than one order of magnitude from each other. For the uncontrollable inputs,
we just wanted the total of them to have a representation as one fifth of the total controllable inputs

(as recommended in Roll and Golany [1993]):

wi/w; >0.1 V 4,5 ; wj,w; — weight of controllable parameters
wi/w; > 0.1V kI ; wg,w; — weight of output parameters (4.5)
15 ;
X:Z:*wl >1V i, f; wg — weight of uncontrollable parameters
wy
4.5 Results

We used the EMS software (Scheel [2000]) to run the data and get the efficiency of each DMU. We
present the results in the following two subsections. In Section 4.5.1 we present the efficiency by
operating model over all DM U s, while in Section 4.5.2 we present the influence of uncontrolled data

on efficiency and we identify the leading operating models.

4.5.1 Results over all DMUs

Firstly we wish to see if there is a dominant operating model over the whole data. For that we used

the Mann-Whitney rank test (as suggested by Brockett and Golany [1996]). Table 13 represents
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Figure 35: Efficiency by rank for each operating model

the P-Value for comparison of each two methods. It seems that FT and Triage are the dominant
operational methods at a significance level of 0.01. From Figure 35, which represents the efficiency
of each method ranked (the order of efficiency from the smallest to the highest), we see that there
are segments in which different operating models are taking the lead over others (though Triage and
FT are switching the role for the best operating model throughout the whole data). The same result
is attained when we compare the efficiency quantiles (percentile starting from the smallest results)

of the different models (Figure 36).

Table 13: Mann-Whitney rank test P-Value between every two operating methods

FT ISO Triage
ISO < .0001 - -
Triage || 0.506 | < .0001 -
WA < .0001 | <.0001 | < .0001

4.5.2 Results by uncontrolled parameters

At first, we plotted the average efficiency vs. each High (more than the average) and Low (less
than the average) value for each uncontrolled parameter, by the operating models. Our uncontrolled

data were the monthly children arrivals (Figure 37), monthly elderly arrivals (Figure 38), monthly
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Figure 36: Efficiency by quantiles for each operating model

arrivals with illness (Figure 39), monthly arrivals with injury (Figure 40), monthly arrivals with
ambulance (Figure 41), and number of arrivals without letter (Figure 42).

From Figure 37 to Figure 42 we cannot identify an operating model that is superior over the
entire range of parameters. What we do see from those figures is that the FT and Triage method
efficiency is being influenced greatly by the parameters’ magnitude. FT increases while uncontrol-
lable parameters increase, while Triage decreases at the same time. That influenced us to try and
analyze the impact of the parameters (after stepwise choosing) on the efficiency of each operating

model (Linear Regression):

e FT: R? = 0.66, P —Value < .0001 where the parameters Illness and Injury, and the interac-
tions Elderly x Injury, Child*x Ambulance, Child « Without Letter, Elderly « Without Letter
and Illness x Ambulance have positive statistical-significance influence on the efficiency, and
the parameters Elderly and Ambulance, and the interactions ChildxIllness, ElderlyxInjury,
Injury « WithoutLetter and Injury x Ambulance have negative statistical-significance influ-

ence.

e ISO: R? = 0.75, P — Value < .0001 where the parameter Illness, and the interaction
Elderly « Ambulance have positive statistical-significance influence on the efficiency, while the

parameters Child, FElderly and Ambulance have negative statistical-significance influence.
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e Triage: R? = 0.85, P — Value < .0001 where the interactions Child * Illness and Elderly *
Illness have positive statistical-significance influence on the efficiency while the parameters

Elderly and Injury have negative statistical-significance influence.

e WA: R? = 091, P — Value < .0001 where parameters Elderly and Illness, and the in-
teractions Child x Ambulance and Illness x Ambulance have positive statistical-significance
influence on the efficiency, and the parameter C'hild and the interaction Elderly* Ililness have

negative statistical-significance influence.

Another approach that we used to find in which environment there is a dominant operating
model, is CART (Breiman et al. [1984]) as implemented in JMP (SAS Institute Staff [1996]). The
tree can be found in Figure 43.

The outcome of this analysis is as follows: FT and Triage are the preferable operational models
for the ED (P — Value < 0.0001). When the number of Elderly arrivals is higher than average,
choose FT (P — Value < 0.001), while when Elderly arrivals is less than average choosing Triage
over FT is not significant (P — Value = 0.42). When Triage and FT are not feasible, choose WA
(P—Value = 0.02) when the number of Elderly arrivals is higher than average, but when the number

of Elderly arrivals is low, there is no significant difference between the models (P — Value = 0.26).

4.6 Conclusions and future research

We presented the EDD methodology, which identifies a dominant operating model in an ED. Al-
though we did not find a uniformly dominant operating model, we did discover that different op-
erating models have weaknesses and strengths over various uncontrollable parameters. Hospitals
which get a High volume of elderly patients are most likely to need a separate lane for high priority
patients (FT model), while others can use a priority rule without the need for a distinguished space
for high priority patients (Triage model). When Triage and FT are not a feasible option, using a
different lane for Acute and Walking patients (WA) is the most effective operating model (mostly
when the number of elderly arrivals to the ED is high).

What our research did not do, and can be further investigated, is whether there is room to
choose an Output-based approach (we lacked the database and operating details for this), as well
as to answer what would happen if hospitals would be more and more specialized so they will admit

and care for only one type (or very few types) of patient (e.g. Internal, Surgical, or Orthopedic).
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5 RFID-Based Business Process Transformation: Value Assess-

ment in Hospital Emergency Departments

Abstract

Many enterprises, in a variety of industry domains, are evaluating RFID technology as an in-
frastructure for process improvement. A central domain where this technology promises significant
process improvements is health-care, and more specifically hospital emergency departments (EDs).
Indeed, EDs serve as the gateways to and showcases of hospitals and they host a myriad of complex
patient care processes, often under severe time-constraints. However, incorporating RFID technol-
ogy into the ED environment is both challenging and costly - in monetary terms and organizational
efforts. It is therefore necessary to evaluate the potential benefits of introducing RFID technology.
In the present work, we present a multi-stage methodology for carrying out such an evaluation,
supported by examples of its application (operational, clinical, financial). Our evaluation utilizes
a self-developed generic ED simulator which, for the current research, was adapted to the ED of a
partner-hospital. Our experience indicates that the proposed methodology is not restricted to EDs

and it is applicable to a wide variety of environments and domains.

5.1 Introduction

The modern hospital is a highly complex system in which uncertainty, in many forms, plays a
dominant role. One manifestation of this is the intricate paths of patients within the system. Thus,
most hospitals have patient-tracking systems that are capable of identifying the location of patients,
which is important to record and maintain even on-line. However, the data in these systems turn out
mostly unreliable as it is fed by humans, who tend to circumvent or ignore procedures and thus fail
to provide updates in real time (Ash et al. [2003]). (We hasten to add that in the hospital setting,
such failures are often the outcome of clinical emergencies taking their well-deserved priorities.) The
complexity of a large hospital is well represented by the micro-cosmos of its Emergence Department
(ED). The latter is our focus here - for being the window through which a hospital is judged for
better or worse, and for amplifying many problem that arise also elsewhere. More specifically, we
are concerned with assessing the ED from its clinical, operational and financial aspects. This is a
challenging undertaking, one that can be only partially supported by existing hospital IT systems.
The challenge is further exacerbated, in fact bordering on the impossible, if one is to assess, as is
often required, these aspects in real-time. Here, we believe, is where RFID systems can come to

the rescue, by depicting real-time reliable state snapshots and status evolutions. It is too much to
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encompass the ED clinical, operational and financial dimensions all within a single paper. We thus
content ourselves with taking a somewhat operationally-biased (business process) view, which is
then expanded to accommodate interactions with the other clinical and financial aspects. This bias
is also consistent with the fact that operational aspects are the most amenable to direct integration

with and into RFID systems.

5.1.1 Typical problems in the ED

The rising cost of health-care services has been a subject of mounting importance, and much dis-
cussion, worldwide. Ample reasons have been proposed, for example increasing life spans and
the availability of an ever-increasing number of costly diagnostic and therapeutic modalities (Hall
[2006]). Yet, regardless of their cause, rising costs impose, and rightly so, pressures on health-care
providers to improve the management of quality, efficiency and the economics in their organizations.

From an operational view, ED overcrowding is its most urging problem (Sinreich and Marmor
[2005]), having clear interactions also with ED clinical and financial dimensions. Overcrowding in

the ED can and does cause, among other things, the following (Derlet and Richards [2000]):

e Poor service (clinical) quality: Patients with a severe problem (e.g. undiagnosed myocardial
infraction) can wait for hours until physician meet them for first diagnostics (which could
become life threatening). Other patients are getting treatment that is inferior to the one they

would have gotten after being properly diagnosed and hospitalized in the appropriate wards.

e Patient in unnecessary pain: When ED staff is too busy, patients are often neglected to
experience unnecessary pain or discomfort - there could simply be no one able to approach

them, for example when all staff is catering to more urgent cases.

e Negative emotions, all the way to violence against staff: Extended waiting times, combined
with an overcrowded environment and psychological pressures, is a recipe for agitation and

violent behavior.

e Ambulance diversion: Over-congested EDs could turn incapable of accepting newly arriving

ambulances, which gives rise to ambulance diversion and its ripple effects.

e Patients’ LWBS (Leave Without Being Seen): Some patients, being exhausted by waiting,
abandon the ED at different stages of their process (often to be returning in later times and

worsened conditions).
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e Inflating staff workload: The longer the ED sojourn the longer the ED effort required (for

example, if procedures call for a nurse-visit every 15-minutes of a patients ED stay).

e Increased vulnerability: Long sojourns increase the likelihood of clinical deterioration, conta-

gion of additional maladies and, all in all, the occurrence of adverse events.

There exists research, such as Sinreich and Jabali [2007], Badri and Hollingsworth [1993],
Beaulieu et al. [2000], that addresses ED overcrowding by staff rescheduling, or by changing the
operational model that the ED adheres to (Garcia et al. [1995], King et al. [2006], Liyanage and
Gale [1995]) - for example, trading off triage against fast-track; see Green [2008] for further refer-
ences. And there is some work that proposes to resolve the problem of ED overcrowding on-line,

with the help of RFID systems. We take on this subject in our next section.

5.1.2 Some RFID background

Significant R&D efforts have been devoted to the search after efficient and accurate Indoor Location
Tracking (ILT) systems. While the Global Positioning System (GPS) has become the de-facto stan-
dard for outdoor tracking, and it serves as the foundation for many location tracking applications,
GPS has yet no equivalent leading technology which is suitable for indoor tracking (Lee et al. [2006]).

ILT systems are occasionally referred to as RFID, after the technology of Radio Frequency
IDentification. RFID technology has recently become widespread due to its many merits. Basically,
RFID provides unique identifications to objects, hence it can be used as the foundation for objects
tracking, monitoring and control (Hightower and Borriello [2001], Hightower et al. [2000]). RFID has
traditionally been used for tracking passive entities such as consumer package goods, medications
and medical equipment. Yet this same technology can be used for uniquely identifying humans e.g.
patients and care personnel in hospitals. Applying RFID for indoor location tracking requires an
additional layer, which associates the RFID tag with a specific location. This association can be

implemented via two conceptually different approaches (Saha et al. [2002]):

e Cell-based location tracking - location identified through the location of the reader of the

RFID tag.

e Triangulation - location calculated from radio frequencies, used in the communication between

the RFID tag and scattered RFID readers (Bahl and Padmanabhan [2000]).

RFID-based ILT systems have been recently developed for addressing specific needs that arise
in patients’ care. For example, MASCAL (Fry and Lenert [2005]) is an integrated solution for
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tracking patients and equipment during events of mass causality; MASCAL is based on the 802.11
communication network, and it is integrated with the hospital’s clinical database. As another
example, an RFID-based system was deployed in Taiwan (Wang et al. [2006]), for identification and
tracking of potential SARS cases; the system provides active patient-location tracking information
as well as body temperature indication. In this present work, RFID it the technology behind our
proposed ILT systems, which are the enablers of data-based business process management - in

particular transformation towards improvement.

5.1.3 Process improvement techniques

A process is an ordered set of related, structured activities, linked by precedence relationships, all
expressing the way that work is executed within an organization, through time and across space. A
process has a beginning and an end, clearly defined inputs and outputs, and it comprises three main
components: actions, decisions and controls. Process Improvement is a systematic approach to help
organizations make significant changes by defining the organization’s strategic goals and purposes,
determining the organization’s customers and aligning the processes to realize the organization’s
goals (how do we do it better?).

Frameworks for process improvement are designed to help the process designer in identifying
the issues that should be addressed, throughout the improvement process, and how these issues are
related (Alter [1999], Reijers and Mansar [2005]). Four measures are considered by most frameworks
as being central to an improved process (Reijers and Mansar [2005], Hammer and Champy [1994],
Florian [2006]): time, quality, cost and flexibility.

Improvement of a process is achieved by a manipulation or change/transformation of the com-
ponents constituting the process. These components are organized into: process (actions, decisions,
controls); objects (inputs received and outputs provided); organization (performers, customers); in-
formatics (data, information and knowledge support); IT application (computerized support); and
environment (process-process). Combining “what to change” with “how to change” results in a set
of patterns that can be applied in order to effect an improvement in or of a process.

A generic process management philosophy, originally developed by Toyota, is Lean Manufactur-

¢

ing. The philosophy focuses on “waste” reduction (e.g. in waiting, inventory, defects,). With roots
in manufacturing, its main principles have been also successfully applied to service organizations, in
particular hospitals (see George [2003]). A fundamental aspect of process improvement, according
to the Lean methodology, is that process improvement is to be based on measurable results/data;

to this end, RFID systems are natural enablers.
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5.1.4 The rest of the chapter

The rest of the chapter is structured as follows: First we introduce a methodology for assessing the
value of an RFID system (Section 5.2), then we use a case study to demonstrate an implementation
of the methodology in a (simulated) hospital ED (Sections 5.3-5.5). We then conclude, in Section

5.6, with a summary and a description of some planned future work.

5.2 Methodology

The purpose of our methodology is to estimate the value of introducing an RFID system (possibly
as part of a more comprehensive process improvement effort). Our methodology consists of four
main stages, as depicted in Figure 44. Recalling the discussion in Section 5.1.3, improvement of
a process can result from the transformation of several of its components, specifically: process,
objects, organization, informatics and IT applications. Of these components, the introduction of
RFID technology will support change in the informatics component, i.e., it will provide new data
that is currently unavailable, which may enable and trigger improvements of the other components
of the process. Therefore, in the first step of our methodology, Define Required Process Change(s),
it is necessary to define how the other (non-informatics) components of the process will change
given the new data. In addition, it is necessary to define which measures, or metrics, are expected
to improve due to the process change(s). The reason that it is important to specify the metrics that
are expected to improve is that only through these quantitative metrics, can the value of the RFID
system be estimated (or the values of several RFID alternatives be compared) - see Section 5.5 for
examples.

To concertize the concept of metrics in our ED setting - there are three different types of metrics:
clinical metrics, operational metrics, and financial metrics. Clinical metrics belong to the category
of quality measures described in Section 5.1.3, namely they are metrics that measure directly the
quality of care. Examples of such metrics are the duration of time a patient waits before being
first examined by a physician, the fraction of admitted patients whose clinical status deteriorates
(e.g. requiring intensive-care), and return-visits ratio (the fraction of patients, during a given time
window, that were released but then readmitted within some time-horizon, e.g. 2 weeks).

Operational metrics measure the operational efficiency of the ED. The time measures described
in Section 5.1.3 are a subset of such measures. Example of operational metrics are bed occupancy
(that can be measured in various ways) and Average Length of Stay (ALOS) - the amount of time

a patient spends in the ED before either being released from the hospital or being admitted to a
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Figure 44: Methodology steps

ward; one could account separately for patients who “left” due to other reasons, for example death
or those who Left Without Being Seen (LWBS - see Fernandes et al. [1997]). Another operational
metric is workload - the average amount of work-time required from the staff, or a subset of it
(nurses, physicians), quantified as a function of time.

Finally, Financial, or cost measures (again, see Section 5.1.3), include direct costs that the
hospital incurs due to the treatment of a specific patient, the income generated by treating the
patient. These costs should also include opportunity costs, for example due to adverse events (e.g.
ambulance diversion in Falvo et al. [2007])

Note that the above three types of metrics are interdependent. For example, if a patient waits for
a long time before first examination by a physician, this may adversely affect an operational outcome
such as ALOS which, in turn, could result in clinical deterioration, hence increased workload (more
care required by the staff), and additional costs.

Our second methodology step is exact specification of the data required from the RFID system,
in other words, what are the changes to the informatics component of a process that are directly
attributed to the RFID system. For example, it is necessary to specify whether it suffices to identify
only the room in the ED where a patient is residing or, alternatively, it is in fact necessary to
distinguish between two patients in adjacent beds within the same room. Exact specifications
are required since increased accuracy typically comes at a cost - different types of data may require
different RFID implementations or technologies, with potentially significant differing implementation
costs.

The third step in our methodology is to specify which additional changes to the informatics
component of the process (i.e., changes not provided by the RFID system), are prerequisites for the
required process change. It is also necessary to specify what level of integration is required between
this additional data and the data provided by the RFID system. For example, in the ED, it may
be necessary to integrate the location information provided by the RFID system with some clinical
information system. It is important to specify this additional information, as it could give rise to

additional investments for updating and integrating existing systems. It is also possible that new
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information systems will have to be designed and deployed.

In the fourth and final step of the methodology, the benefits of the process transformation are
estimated by calculating the potential impact of the process change (defined at the first phase) on
the metrics (defined at the first phase as well). This estimation requires a model that connects
the process change to the metrics. Such a model would be most likely simulation-based, as is the
case in the present paper. Indeed, the overall ED is too complex for capturing analytically; parts
of it, however, could me mathematically tractable, enough to capture some restricted dimension of
process transformation. (See, for example, Green [2008] for a survey of some Operations-Research
models that capture the operational reality of the ED.)

Given the above four steps, both the costs and the potential benefits of introducing a specific
RFID system can be estimated. The costs can be estimated by summing up the costs of potential
process changes, the total costs of introducing the RFID system, and the costs required to obtain the
additional data. The potential benefits are provided directly by the final phase, in which the changes
to the metrics are quantitatively estimated. Our methodology thus provides a promising measurable
basis for supporting decisions regarding the introduction of an RFID-based ILT system. As described
in Section 5.1.3, decision-making based on data is one of the most fundamental principles of lean
process improvement.

A noteworthy advantage of our methodology is that it does not explicitly mention the RFID
system. More specifically, it decouples the RFID system (the implementation technology) from the
data that we expect such a system to provide. This decoupling enables one to consider alterna-
tive ways for obtaining the required data, thereby potentially reducing substantially the required
investment. This decoupling is enabled by the core observation that what is required for process
improvement is a new type of data (e.g., location information), and that as long as the required
data is provided, its implementation technology is irrelevant. An important comment to make is
that while the methodology depicted in Figure 44 enables to estimate the benefits of introducing a
single type of RFID system, it can also be used to compare benefits from alternative RFID imple-
mentations (e.g. alternative technologies, or data-requirements). We do so in Section 5.5 where, in

one example, we compare three alternative RFID technologies.

5.3 Evaluation of the first step: required processes changes

The first step of the methodology is to identify processes that require change and in what way. To this
end, we established a team of physicians, operations managers, and IT experts, at the university

medical center Rambam, in Haifa, Israel. In concert with our proposed metric groups (Section
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5.2), we sorted the requirements into three categories: operational, clinical, and economical. The
operational aspect targets the reduction of patients’ average length of stay (ALOS) and on reducing
staff overload. The clinical aspect aims to improve patients’ clinical and nursing quality of care. The
economy aspect looks at total hospital profit, but accounting for the fact that the ED is the gate
and display window to the hospital - it is thus typically loosing money yet it generating a significant

fraction of income through other hospital operations.

5.3.1 Operational aspect

Our operational goal is a reduction in both length of stay (LOS) and staff overload - the two are
clearly interrelated since overloading is a major trigger of long delays. For reducing LOS, one
must identify: (1) When patients are waiting (2) How long are they wait (3) Whom or what they
are waiting for. To reduce staffing overload, one must first identify the staff and their activities.
Both identifications are preferable in real time. Implementation of an alerting ILT system that
helps reduce unnecessary waiting times (identifying when they occur and exposing their causes):
Extensive observations in nine Israeli hospitals (Sinreich and Marmor [2005]) revealed that about
80% of the time which patients spend in the ED is in waiting (80% for acute internal patients,
85% for surgical patients, 78% for walking patients, and 48% for orthopedic ones). Some waiting
occurs when staff is busy or for a medicine to take its effect. But ILT systems can reduce waits that
occur when patients return from examinations (e.g. imaging) without a notification; or staff is not
present in the ED when needed; or the staff is unaware of the patients’ whereabouts (e.g. restroom,
wandered to the shopping mall).

On-line identification of overloading, using this information to summon additional staff to help
reduce loads and clear the path for new patients to arrive: Nowadays, it is common that the system
is oblivious to a patients’ queue that is turning long. (A prevalent example is the physical queue for
the orthopedic physician, who attends to walk-in patients.) An ILT system can alert or even foresee
such congestion, for the benefit of both over-loaded staff and over-waiting patients.

Continuous reliable tracking of patients, staff, and equipment would identify, systematically,
process steps that cause most delays, and react to enhance control over waiting times. In fact,
online identification of bottlenecks is unavailable in the traditional ED. Using ILT systems would
also identify the parts of the load due to flawed design (e.g. a medication cabinet that is located
too far from the patients forces staff over-walking), and thus help modify an ED’s physical layout

accordingly.
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5.3.2 Clinical/Nursing aspect

The clinical and nursing aspect addresses the need to maintain and improve clinical and nursing
quality of care.

On-line alert of the completion of lab tests, integrated with patient ILT’s, reduces waiting times:
For example, the time wasted from the return of an irregular lab test until the staff reacts to it by
giving the patient an urgent treatment according to the lab result. Indeed, the Rambam medical
staff rank fast response time as a crucial factor in good medical care, especially when emergency
occurs.

Using tracking equipment system, can save lives: Different departments in the hospital commonly
share equipment. Finding those pieces of equipments quickly is essential when patient reach a critical
state. Also having the proper safety level of available equipment in the ED will improve quality
treatment in events of crises.

ILT of both patients and staff, in mass-casualty-incidents (MCIs), is crucial for providing timely
life-saving treatment. There is the need for efficient location of patients because this allows for
fast treatment of unstable patients, whose state can deteriorate rapidly if untreated. Locating staff
members is crucial because every second dearly counts in those MCIs. Enhancing staff security by
using smart tags: This would allow staff to open doors automatically or, more significantly, use their
tags as distress-buttons. Such practice will eventually relieve some pressure from the staff and allow

them to concentrate more on patients care.

5.3.3 Financial aspect

The financial aspect is focused on hospital’s profit and the ED’s, as the hospital’s gate and showcase,
contribution to it.

Using patients ILT will prevent the abandonment of unregistered patients and consequently
enhance the hospital payment collection: A direct way to improve ED profit is to identify patients’
who Leave Without Being Seen (Falvo et al. [2007]) or during their treatment (Leave On Their Own).
In Israel, about 4% of ED patients avoid payment by avoiding completion of their treatment. Having
a patients’ ILT system installed would alert security and prevent such departures from happening.

Using location-tracking technology will enable walking patients and visitors freely visit hospital
malls and increases its potential income: When patients or visitors become needed, a signal would
alert them to return. The contribution of hospital malls and commercial services has been increasing,

hence the financial potential of this kind implementation is high. On-line monitoring of service
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quality will reduce the risk of neglect lawsuits: Continuous patients and staff ILT systems will
measure and enforce response times, and will support priorities change when called for. This will
allow the ED to maintain high standard quality of care, and defend it in court if necessary.

Implementing on-line equipment ILT systems: Attaching tags to equipment will reduce thefts and
losses in the ED, and better the routines of equipment maintenance. ILT system that acknowledges
the interactions of patient-staff-equipment will generate reliable information that is a prerequisite
for implementing the “lean” methodology in EDs (see Section 5.1.3): learning from the experience
in manufacturing, one expects that lean methodologies will significantly reduce ED costs in the long
run. To implement lean methodologies, however, one must start with a good information system
that focuses on operational aspect.

Patients in most urban locations have alternatives EDs to choose from: It is clear, and especially
so when patient’s costs are equal (as is the case in Israel), perceived quality of service will determine
an ED’s choice. Improving perceived quality of service can be achieved by involving patients in their
treatment process and informing their relatives of its progress. We envision such an implementation
that updates current status via a mobile phone or to on a publicly available (yet privately secured)

dashboard.

5.3.4 Choosing process improvements for analysis

For concreteness and demonstration purposes, we have chosen three ED processes for assessing the

value of their improvements:

e Operational: Implementing an alerting ILT system, which will help reduce unnecessary waiting
times. We focus on patients who are “forgotten” in imagine areas: (a) in a remote CT area
after completing their scan. Based on practice, we are assuming that 25% of such patients
experience an average of one hour waiting before returning to the ED, when compared against
an average of 10 minutes for regular waits. (b) as above but now the patients are waiting
after an X-Ray scan. Here “forgotten” patients wait just half an hour instead of the regular
10 minutes. (The X-Ray is relatively close to the ED and easier to locate “forgotten” patients

at.)

e Financial: Using patients ILT that prevents the abandonments of unregistered patients, and

thus increases ED’s turnover rate which, in turn, will enhance hospital income.

e Clinical: Using staff (nurses, physicians) ILT that exposes physical layout problems, such as

poor placement of rooms or equipment in the ED, which have adverse clinical consequences.

86



For quantifying the value of the above, we use the metrics of ALOS, profit, and staff workload.

5.4 Evaluation of the second and third steps: data needs and RFID technological

options

This step of the methodology seeks to identify the data needed from the RFID system and from
the hospital information system, based on the process improvements (Section 5.3.4) that have been
chosen for analysis. We continue this step by choosing two RFID systems to demonstrate the
evaluation on. We conclude the section with data requirements from the hospital information

Systems.

5.4.1 Data needed from the RFID system

Before comparing RFID systems, we introduce the data needs for each of our process improvements.
Some of the data is available from the hospital information systems, but other must come from the

RFID system.

e CT: Implementing an alerting ILT system that helps reduce unnecessary waiting times, after
a CT scan: (1) the time a patient completes his/her CT scan, (2) the time the patient has the

CT scan results, (3) the patient’s waiting time in excess of 10 minutes. (same with X-Ray)

e Using patients’ ILT that prevents unregistered patient’s abandonments, thus enhancing the
hospital payment collection: (1) patient tag is near the hospital gate, (2) tag removed by

non-approved personal.

e Using staff ILT for exposing physical layout problems: (1) identifying staff location, (2) time
the staff relocates to another area in the ED, (3) distance between previous and current

location.

5.4.2 Choosing two technologies to compare from

For the present paper, we chose to compare two existing Indoor Location Tracking systems: WiFi
(802.11) and short range passive RFID.

WiFi is currently the most standardized and usable indoor wireless communication technology.
Simple location tracking mechanisms can be built on top of an existing WiFi infrastructure. WiFi is
designed to cover wide areas such as the overall hospital campus; hence it can provide wide location

tracking capabilities. The location tracking precision of WiFi, on the other hand, is poor. Naive
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implementation uses the tag only for access point (AP) association and hence provides only room
level resolution. Such installations may have also difficulties in distinguishing locations within two
adjacent hospital floors. WiFi is based on active tag communication hence provides continuous
location tracking.

Passive RFID systems, on the other hand, offer very accurate location tracking, as tags can be
identified only within short distances from the reader. The limited coverage issue can be resolved
via additional readers, and by placing readers in designated frequently-accessed spots such as doors,
pathways, mobile medical equipments (e.g. ECG machine) and patient beds. A significant advantage
of passive RFID system is low tag cost. Passive RFID tags are disposable and require little to no
maintenance. Thus, wide spread deployment is more likely because tags can be given to patients,
caregivers, families and visitors with little significant additional cost. Tags within a Passive RFID
tags can be identified only during the reading transaction itself, hence they do not render continuous

location tracking and monitoring.

5.4.3 Comparing data quality of RFID technologies and the data needed from the

hospital information system

WiFi technology provides continuous tag tracking; hence, patients and care personnel can be con-
tinuously monitored. It is simple to trigger an alert once a tag leaves the coverage range. WiFi
can provide room level location tracking, hence enables to track patient movement from say the
ED room to the CT and back. The continuous tag tracking allows for simple counting of patients
and care personnel within rooms or gathering areas. But WiFi can not provide in-room location
resolution e.g. for tracking the exact bed in which a patient resides. For our applications, this means
that we can identify 100% of the patients trying to abandon. On the other side, we cannot identify
the time that a patient is leaving the CT room and waits nearby for relocation to the ED, though
one can often infer this time from the hospital’s information system.

In contrast, Passive RFID requires the tag to be placed close to the reader, hence can provide
a very accurate location during the reading transaction. But reading transactions constitute a
discrete-time process - indeed, Passive RFID systems are incapable of providing continuous location
information. In our examples, this means that we would not know where and when patients remove
their tags before abandonment, but we can identify those who try to leave the hospital with their
tags. We can also infer the exact time that patients leave the CT room, and how long they waited,

before and after the CT.
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5.5 Evaluation of the fourth step: benefits and comparing options

In this section, we are presenting two outcomes of our work: first (Section 5.5.1) - comparing
WiFi against Passive RFID, and second (Section 5.5.2) - conceptually designing on-line and off-line

dashboards that accompany RFID ED implementation.

5.5.1 Examination of operational benefits via simulation

To evaluate the benefits of using an RFID system for our three example processes, we have used an
ED simulation model, based on Sinreich and Marmor [2005] and programmed to process six types
of patients: Orthopedic, Surgical, and Internal patients, each in two acute conditions - walking and
those in need of a bed. Additionally, we made changes to the simulation in order to accommodate
the two RFID technologies that we are testing.

For the process improvement, based on tracking abandonment, we made the following assump-

tions:

e As data of actual abandonment times is presently unavailable, we distributed 4% abandon-
ment over five process steps: (1) waiting for a nurse to take patients anamnesis; (2) waiting for
a physician’s initial diagnosis; (3) after the physician’s first examination and before sending
additional tests; (4) while waiting for a physician to collect all the relevant data for further
evaluation; (5) after further evaluation, while waiting to be released, hospitalized or for addi-

tional intensive tests.

e WiFi technology identifies 100% of the abandonments and feeds those patients back into
the process. Passive RFID, on the other hand, succeeds in only 50% of the cases. The
difference arises because some patients would not abandon with their tags, while others might
use vehicles, just as an example, to circumvent the passive sensors near the gates, which

otherwise would detect them.

e Abandoning patients are not included in calculating lengths of stay, and they are naturally

excluded from those who contribute to hospital profit.

For the process improvement, dealing with reducing waiting times in the Imaging (CT or X-Ray)

wards, we made the following assumptions and modifications:

e CT patients are waiting to return to the ED. Return timed is within 10 minutes for 75% of

the patients and an hour for the rest.
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e Passive technology is more effective than WiFi in this case: Passive technology accurately
tracks room relocations hence it gives rise to 100% reduction of the waiting time to 10 minutes.
WiFi, on the other hand, reduces waiting times of only 50% of those who are expecting

prolonged 60 minutes waiting.

e Of the delayed X-Ray patients, an average of 20% are waiting 10 minutes and the others 30

minutes.

The Passive and WiFi systems were compared against two additional scenarios: an “ideal RFID
system”, namely perfect process improvements, and the prevailing situation without RFID. We used
five week for simulation warm-up and 70 weeks of data for analysis. The simulations generated am-
ple information but, for space limitations, only the essentials are described here. From Table 14 we
see that, prior to any process improvement, the number of patients contributing to hospital income
was the least. This is of course due to the abandonments, who relieve congestion hence let remaining
patients move more quickly through the ED (Garnet et al. [2002] analyzes such operational conse-
quences of abandonments). We also see in Table 14 that although in WiFi system (and in “ideal
RFID system”) the contributing patients to the hospital income is the highest, the quality of service
measured as the average length of stay (ALOS) is the lowest, although the other quality measure-
ment, time to first encounter with physician from arrival (avgWp,1), has no sugnificant difference
between the methods. From the operational point of view, meaning the congestion (avgLoad) that
measured the number of busy physician and nurses per patient type, WiFi gets the highest load on
the staff, while it seems not very significant difference.

From an economic point of view (more paying patients), the Ideal and WiFi systems are having
the same impact, when compared against Passive RFID.

The operational aspect is captured by the intra-day staff workload in Figure 45. We observe
that Passive RFID is the technology that yields, at its peak, the lowest workload, when compared
to the other RFID options. This is, most likely, due to the moderate number of patients treated
(more than without RFID but less than with Ideal RFID) and improvements in waiting times due
to the proposed process improvements. As a result of the peak of load at the afternoon, which is
near the upper limits of one physician, Passive RFID is the only RFID-based ED that can employs
less than two physicians on average (though its average load is being very high).

Another dimension that we checked is the physical layout of the ED. From the simulation, we
found that orthopedic physicians are walking about 2 kilometers per shift, between the walking-

patients area and the acute area (most times, there is just one orthopedic physician available for
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Table 14: The simulation results: comparing of different RFID systems

With Passive RFID

With WiFi

Without RFID

With Ideal RFID H

Number of Patients 120,741 121,177 120,926 120,612
LWBS 2,440 0 4,842 0
ALSO 199.7 215.4 209.8 208.8
STDV(LOS) 174.7 182.8 184.6 181.1
STDV(ALSO) 2.0 2.6 2.8 2.3

H Patient Type H N ‘ ALOS | stdv ‘ avgWpr1 ‘ N ‘ ALOS | stdv ‘ avgWpr1 ‘ N ‘ ALOS ‘ stdv ‘ avgWpr1 ‘ N ‘ ALOS | stdv | avgWpyy H
Internal Acute 1 18,755 274 178 13.9 18,952 294 186 13.9 18,592 284 187 14.1 18,474 284 182 13.7
Surgical Acute 6,777 129 101 7.7 6,620 139 100 7.5 6,761 142 105 7.7 6,677 131 94 7.5
Orthopedic Acute 7,672 181 122 7.8 7,678 195 121 7.6 7,860 198 130 7.3 7,801 187 120 7.6
Internal Walking 35,290 146 144 13.0 35,156 155 150 13.1 35,216 151 152 12.9 35,048 151 147 13.0
Surgical Walking 11,724 123 119 8.5 11,900 130 125 8.3 12,013 130 124 8.4 11,725 125 119 8.1
Orthopedic Walking || 21,980 234 212 8.4 22,209 262 225 8.5 21,953 254 228 8.4 22,092 252 222 8.4
Internal Acute 2 18,543 275 180 13.9 18,662 291 180 13.8 18,531 284 190 13.9 18,795 288 188 14.0

H ResourceType H avgLoad (per Hour) H avgLoad (per Hour) avgLoad (per Hour) avgLoad (per Hour)
Internal Dr 1.76 1.80 1.73 1.78
Internal Walking Dr 0.88 0.89 0.87 0.89
Surgical Dr 0.44 0.44 0.44 0.44
Orthopedic Dr 0.69 0.71 0.69 0.70
Walking Nurse 1.23 1.25 1.22 1.23
Internal Nurse 1.05 1.06 1.04 1.04
Trauma Nurse 0.33 0.32 0.32 0.32
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both locations. A second one would join from the orthopedic ward, when needed).

Further investigation revealed that the distance between the two locations was excessive (about
100 meters) and the hospital managers had to take this into account in a redesigned ED. With
the distance being that long, both WiFi and Passive systems identified (and could quantify) this
problem easily. (WiFi, however, would be at a disadvantage with short distances, that could still
lead to excessive walking.)

Considering all three aspects (clinical, economical, operational), one is lead to prefer the Passive
RFID technology which, in our context, yields the best overall performance (smaller ALOS, and
less orthopedic physician needed). Other hospitals might choose differently depending on specific
preferences (for example, extra income from non-abandonments could be higher that the cost of

adding physicians).

5.5.2 RFID-based control views

The contribution of an RFID system to a hospital’s environment should encompass two main aspects.
The first inspects RFID’s impact on daily routine and hospital staff; the second should inspect long-
term impact for planning. We have designed and implemented these two aspects on an IBM Cognos
BI platform (COGOS), which is to be implemented on an active dashboard within the ED.

Examples of interfaces with the processes in Section 5.3.4 will be now demonstrated. The first
“Online View” supports real-time decisions by hospital staff and executives, hence it depicts detailed
events of hospital processes. These events must contain information about specific patients, staff
and services provided by the hospital. For our demonstration, we used again the discrete-event
simulator, based on Sinreich and Marmor [2005]. Figure 46 demonstrates how such an “online
view” alerts on extreme waiting times of patients after CT services (process 1 in Section 5.3.4).
Figure 47 demonstrates how the view alerts the presence of patients who attempt to abandon the
ED (process 2 in Section 5.3.4), together with detailing the process they have undergone until their
abandonment attempt.

The second “Offline View” should be used for supporting long term planning and therefore shows
higher level details, aggregated over a pre-specified horizon. This view is to be used for high-level
understanding and analysis of hospital processes, wordload on staff, quality and impact of decision
making and planning etc. Figure 48 and Figure 49 display patterns of patients arrivals rate over
hours of a day and along days of week. It also highlights the magnitude of the gradient, thus pointing
at the times of day when pattern-changes is the most significant. In such a view, we display averages

over a year, which are to be used for planning and assessment of strategic and longer run tactical
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Figure 46: Online view showing patients waiting time for CT services

PatientID |Operation |Operation Type [Hour [Minute
R1 in 14 0
Nurse in 14 0
Nurse out 14 7
Dr in 15 52
Dr out 16 0
131 Dr in 17 2
Dr out 17 5
Blood in 17 5
Dr in 17 26
Abandoned 17 28

Figure 47: Online view showing patient abandonment
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Figure 48: Offline view showing changes in averaged patient arrival during daytime and day of week

decisions. Figure 50 depicts workload on physicians at the hospital, through the analysis of patients

waiting time for service - excessive waits could trigger an alert.

5.6 Summary and future work

In this chapter, we introduce a methodology for estimating the value of an RFID-based indoor
location tracking (ILT) system, as part of a process transformation effort. Our methodology enables
to quantify the costs and benefits associated with such process change. In addition, the methodology
supports a quantitative comparison of alternative types of RFID implementations, which may require
different levels of investment. As was demonstrated by our results, the lack of such quantitative
analysis renders difficult informed decisions. This could give rise to a significant investment in such
a technology yet without obtaining any significant benefits from it, or in unnecessarily investing
more than required to obtain the benefits.

There is room for important future research in this area. Validation is first and foremost: the
benefits resulting from an actual RFID implementation must be compared against those predicted
by our methodology - we are planning such an experiment in a large partnering hospital in Israel.
An additional avenue for future research is expanding the methodology to account for additional
aspects of process improvement. For example, the methodology could accommodate a more detailed
mapping of the changes required from the I'T system and its applications, this in order to achieve a

more complete process improvement.
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Figure 49: Offline view showing averaged patient arrival during daytime and day of week

Figure 50: Offline view showing averaged patient wait time for physician [minutes]
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6 Semi-Automatic Simulation Component Reuse

Abstract

Discrete Event Simulation (DES) is the most prevalent technology used for system design mainly
because of the flexibility of its use for modeling complex systems and dynamic operations. There is
an increasing interest in implementing model re-use within the simulation community. Simulation
reuse is a special case of code reuse, where a developer writes a component once and can then reuse
it. However, two main characteristics differentiate it from other types of code reuse: 1) simulation
code, in many cases, is built by non-expert developers. These are not completely novice users, yet
they do not develop code on a regular basis. 2) by the very nature of simulation, it may be used
in many completely different application areas, if only the similarity of simulation components can
be recognized. Recognition of simulation component similarity cannot rely on syntactical means
such as similar name parameters, similar function names, or similar documentations. On the con-
trary, simulation code of a production floor can be easily reused to support emergency department
simulation, a thing that cannot be easily observed by looking at the code. In this work, we offer
a methodology for semi-automatic support for the process of simulation component reuse. Our
methodology is based on a table-based modeling of simulation components, hierarchical clustering
of existing components and then a careful walk-through of a designer through the hierarchy for the
identification of relevant components. To illustrate our approach, we shall make use of three real-
world case studies involving resource scheduling. The main contribution of this paper is twofold.
First, we provide a methodology to assist designers in a semi-automatic way to reuse simulation

components. Second, we use a detailed case study to illustrate the feasibility of our approach.

6.1 Introduction

Discrete Event Simulation (DES) is the most prevalent technology used for system design mainly
because of the flexibility of its use for modeling complex systems and dynamic operations (e.g.,
Grabau et al. [1997]). Simulation enables engineers to understand the complexity of a system being
developed and at the same time to examine how strategic decisions influence the overall performance
of a system Baldwin et al. [2000]. Acquiring knowledge about the relationship between variables in
complex systems is most likely the main reason for using simulation today Robinson et al. [2004].
There is an increasing interest in implementing model re-use within the simulation community.
The issue is not new, but it has been gaining importance due to the development of High Level

Architecture (HLA) DMSO and the intensive use of the Web. It is appealing to save time and
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costs by reusing one’s own simulation’s components or those created by others, and the appropriate
technology seems to be almost here Robinson et al. [2004].

Simulation reuse is a special case of code reuse, where a developer writes a component once and
can then reuse it. Code reuse promises the benefit of rapid application development with increased
quality in a distributed setting. Simulation code, in many cases, is built by non-expert developers.
These are not completely novice users, yet they do not develop code on a regular basis. Therefore,
reuse carries even a greater promise for them. In addition, by the very nature of simulation, it may be
used in many completely different application areas, if only the similarity of simulation components
can be recognized. Unlike regular code reuse, recognition of simulation component similarity cannot
rely on syntactical means such as similar name parameters, similar function names, or similar
documentations. On the contrary, as we will show in a detailed example in this work, simulation
code of a production floor can be easily reused to support emergency department simulation, a thing
that cannot be easily detected just by looking at the code.

The possibility of shortening the time needed to develop a simulation was discussed in DMSO,
Fernandez-Chamizo et al. [1996], Gu et al. [2004], Robinson et al. [2004], Xia [1994]. One possibility
is importing and modifying similar models to match the required needs by CBR Gu et al. [2004]
or by Reuse Robinson et al. [2004]. The other is to develop a generic simulation Xia [1994]. The
most up-to-date approach concerning simulation is the HLA DMSO. Parr Parr [2003] presents a
tool that stores and catalogues HLA components in a way that simplify their retrieval. Fernandez-
Chamzio et al. Fernandez-Chamizo et al. [1996] present a way to help software reuse through CBR.
The basic assumption behind these work is that simulations differ by their theme (e.g., Hospital
simulation differs from Call-Center simulation), therefore neglect the possibility of one theme to
reuse in another theme, which we demonstrate its applicability.

In this work, we offer a methodology for semi-automatic support of the process of simulation
component reuse. Such a methodology is motivated by the two observations above, namely lack
of programming experience and difficulty in similarity recognition. Our methodology utilizes a
table-based modeling of simulation components, hierarchical clustering of existing components and
then a careful walk-through of a designer through the hierarchy for the identification of relevant
components.

To illustrate our approach, we shall make use of three real-world case studies involving resource
scheduling. The first case focuses on improving productivity and profit in a production line of a
Sweden factory Johansson and Kaiser [2002]. The second case evaluates a personnel schedule in an

emergency department of a Louisville, Kentucky hospital Evans et al. [1996]. Finally, the third case
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study involves an example of a call center dealing with agent scheduling Mehrotra and Fama [2003].
The main contribution of this paper is twofold. First, we provide a methodology to assist
designers in a semi-automatic way to reuse simulation components. Second, we use a detailed case
study to illustrate the feasibility of our approach.
The rest of the paper is organized as follows. In Section 6.2 we provide the table-based repre-
sentation of simulations, extending the work in Marmor and Sinreich [2008] and discuss the main
challenges of reuse. In Section 6.3 we provide our proposed methodology. We conclude with a

summary and directions of future work (Section 6.4).

6.2 Model

In Marmor and Sinreich [2008], a simulation is specified using three constructs, abbreviated as POD
(Processes, Operations, and Data). Processes define the order in which different operations are
activated. Processes can be static, for instance, in a single linear product line with machines lined
up in a fixed order. A flow can also be dynamic if routing is random and no fixed order is needed,
e.g., in a hospital emergency department Sinreich and Marmor [2005]. Operations are steps, either
simple or complex, that an entity needs to follow while in the system. A complex operation is built
from simpler operation (see sub-models next). Finally, data parameters represent various aspect of
the simulation itself (e.g., processing time) and not the application data needs (e.g., product price).
These parameters are therefore shared by all simulation, regardless of the underlying application
they represent. Data parameters can relate solely to an entity or a group of entities and describe
their relevant characteristics. Data can be associated with entities, processes and operations in the
model. Data can be a number or an expression (e.g., product time is derived from an exponential
distribution with a different parameter for each entity type).

Simulations are typically built in hierarchies of sub-models. A sub-model helps the designer to
write modular code, nesting sub-models inside sub-models in a way that grabbing just few code
segments of a model can be done without the need to import the whole simulation. Sub-models are
therefore perfect for code duplication or reuse.

The three constructs can interact in various ways. Table 15 provides a classification of possible
pairwise interactions, along with a binary encoding of these relationships, to be used later in this
work. The influence interaction indicates the ability (degree) of one construct to change the value of
another. For example, the datum that contains the next step to activate can influence, if changed,
the course of the process. The include interaction represents a composition relationship (such as

between a model and its sub-model).
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Figure 51: POD tables of the Production Flow case study
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Figure 52: POD tables of the Emergency Department case study
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O does not influences D | O influences D
0 (D,0) | D does not influence O 00 10
D influences O 01 11

O does not influence P | O influences P
7 (P,0) P does not include O 00 10
P includes O 01 11

D does not influence P | D influences P
A (D, P) | P does not influence D 00 10
P influences D 01 11

Table 15: POD relationships

We use a simplified version of the production line case study Johansson and Kaiser [2002] as
presented in Figure 51. The simulation model (Production line Model) consist of three sequences
representing the two parts flow (S and S3) and one line of packaging (S3). In the first flow (S1), a
part part; goes through two consecutive operations: creating the part (module L;;), assigning the
parts with information (module L13), and matching them to the appropriate sequence (module L14)
as part of sub-model represented by By (module “Enter” as Lio and “Out” as Lis, are breakpoints
for the sequence process to start and continue respectively). Then, measuring the part (module
L) and deciding if more measurements are needed (module Log) as part of sub-model represented
by B (The other process were omitted from the example: grinding, polishing, and cleaning). In
the second flow, represented by the second sequence (S3), a part parts is processed using the only
sub-model, represented by (Bs). Therefore, m(Bi, L11) = 01 since Li; is part of By and has no
impact on part; course in By sub-model. Also, 7(S1, B3) = 00 since B3 sub-model is not part of the
sequence part; need to processed through. Finally, w(Bs, La3) = 11 since Log is the place where a
decision is made that could affect the next process step (to continue to By or to return to By after
finishing the measurements).

In the simplified process flow of the ED Evans et al. [1996] case study, as presented in Figure 52,
we will focus on explaining the data-operation and data-process relationships. Example of data
parameters are Dp, which represents the maximum number of batches (as in creating an entity)
and D3, a common parameter representing a value in operations. The examination result (Bs), for
instance, influences the status of the patient (Ds). The status of the patient, in turn, determines
from which of the following processes to choose, either trauma flow (Which we have not modeled

in the example) or non-cardiac flow (S7). Therefore, A(Ds, B2) = 10 leads to A(Ds, S1) = 10, but
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Figure 53: Summarization of the POD tables of the Emergency Department and Production Flow

examples

because A(D3, By) = 11 it will result in a relationship with the highest rank - A(Ds, S1) = 11.

Figure 51 and Figure 52 provide the table-based representation of a simulation using in a flatted
three dimensional table. In the center of the table we can see the ¢ relationship between data and
operations, the A relationship between data and process is presented as a vertical vector on the
right of the POD table and the 7 relationship between process and operations is presented as the
horizontal vector at the bottom of the POD table.

The POD tables handles sub-models as follows: first, a sequence is considered to be the process
on the model level, but when drilling down, sub-models become processes for their own sub-models.
In this way, we can choose the level of abstraction to analyze the simulation model. The lowest level
one can get is the lowest level of abstraction of the code (called modules in Arena).

Creating the POD is done automatically Marmor and Sinreich [2008] starting at the basic mod-
ule level. Creating POD for sub-models, which contains sub-models of modules, is performed by
summarizing the data from the POD tables of the lower levels. Each horizontal vector, in the higher
level, is a representative of a single table in its “children” tables. The summarization process takes
the highest rank of the relationship in the “children” tables. For example, in the ¢ relationship in
B3 POD table in Figure 52, the highest rank in each horizontal vector is “00” or “01”. Therefore,
the POD tables of S7 and S5 processes contain only “00” and “01” for Bs.

The only exception is when “01” and “10” are the relationships in the same POD table. Then,
we shall use “11” as the representative.

Finally, we introduce a compressed representation of the table representation discussed earlier.

An example is given in Figure 53. This compressions simply provides a vector representation of the
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table. We shall use this representation later in the paper, when we need to cluster sub-models.
Reusing code, and simulation is no exception, is not an easy task. Deciding if a known set of
sub-Models meet a declared set of objectives is NP-complete Page and Opper [1999]. The validation
and verification of reused component is not easy, either. The time it takes a designer to understand
what a component does and if it fits her needs leads Project manager to avoid the extra work
needed for making the project reusable Robinson et al. [2004]. Therefore, in what follows, we aim at
proposing a methodology for simulation code re-use that we believe removes some of the obstacles

mentioned above.

6.3 Simulation reuse

In Section 6.2 we introduced a table-based representation of simulation components. Such a rep-
resentation, in addition to its ability to stripe a component from its application-specific semantics,
leaving only the necessary parts for simulation reuse, can be now used to assist the designer in her
attempt of simulation reuse. Our main observation is that, given such a table-based representation,
one can come up with a distance measure between each two components that will be used to generate
a distance or similarity matrix. Then, we create a dendrogram for clustering. Lastly, we provide a
method for traversing the dendrogram for helping the designer to find the appropriate components

for her needs.

6.3.1 Creating distance matrix

To illustrate the creation of a distance matrix consider the table in Figure 53. When comparing
the Emergency Department model (M_ED) to the Production Flow model (M_PF) we notice that
they differ just in one entry - 6(Ds, M_ED) = 10 while 6(D3, M _PF) = 11. This means that the
production model can be easily modified to serve ED models while the other way around should
require more effort. The reason is that 6(Ds, M_PF) = 11 means that the data (D3) is influencing
and influenced by the process of the model, while §(D3, M _ED) = 10 implies of influence the data
has on the model but not the other way around. Changes among models are asymmetric and
we should consider giving each change a different penalty, representing the impact it has on the
designer. In Figure 54 we provide a suggested penalty table. We used a non-linear penalty metric
to emphasize the difference effort in overcoming difference changes. Other penalty tables can be
used as well. In Figure 55 we can see the outcome (5;;) of calculating the penalty needed for using

POD’s vector M; instead of using the POD’s vector M; for each pairs of vectors, using the formula:
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Figure 55: Similarity matrix
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6.3.2 Creating hierarchical clustering

Once a distance measure is given, components can be clustered according to their relative distance.
We propose to use hierarchical clustering (dendrogram) for this purpose. Such clustering involves
the use of a hierarchical tree. In the tree leaves, each component forms a separate cluster. Then,
we repeatedly merge the closest clusters until reaching a single root of the tree. Once clusters are
formed, we need to determine a representative component for each cluster. As we will show later,
this representative is offered to the designer to be used in her simulation. Therefore, we cannot be
satisfied with selecting a centroid, since it may not have any parallel in the component repository.
The representative is chosen as the cluster member with the smallest accumulated distance to all
other members. For creating the dendrogram we can use various methods. For demonstration
purpose, we used the sequential hierarchical clustering algorithm with a median metrics Olson
[1993] modified by the asymmetric approach of Hubert [1973] to support the asymmetric measure

we adopt.
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Figure 56: Dendrogram the hierarchical clustering

For using the dendrogram as a searching tool we have changed its appearance as follows: Each
representative (median) of a merged cluster, in each step, is written on its conjunction and placed
as the rightmost child. In the dendrogram in Figure 56 we can see, for example, that B;_ED is
the representative of Bi_PF, Bs_PF, and B;_ED. We can also observe that once the three PODs
clusters with So_PF', the representative of the merged clusters is changed to be Sy _PF. It means
that So_PF is easier to modify to fit the other PODs in its group than any other POD.

6.3.3 Reuse walkthrough methodology

Figure 57 illustrates the use of hierarchical clustering in guiding the user through the reuse of
simulation components. Rectangles represent activities and diamonds represent decision points.
Circles are “jump points” to other parts of the diagram. We have marked in grey the circles and the
activities to where control is transferred. We used reference-points ‘1’-‘6’ in Figure 57 to use in the
explanation .The process starts at the root of the cluster tree. If the designer finds the component
suitable (reference point ‘1’), it can run the simulation (‘2") and determine whether changes are
needed and if so, whether it is worth the bother. If not, the designer is asked whether the last POD

table looks promising for further investigation (‘3’). If the answer is yes, we can look through the
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Figure 57: Simulation reuse methodology

same cluster for a more suitable version of the same simulation (‘4’). Alternatively, we can delete
unnecessary modules or sub-models. If the answer is no, we are directed to search in another cluster
(‘5" and maybe ‘6’). Our search is done in a Depth-First form.

We will use the third case study Mehrotra and Fama [2003], presented in Figure 58(a), to
illustrate the use of the suggested tool. Circles represent agents, rectangles represent arrivals of calls
to the call center, while arrows directed from the calls to the suitable agents serving them (broken
arrow means that the connection is conditional). The first step will be to start with the root of
the dendrogram M _PF (Figure 51) which is the whole model of the Production Line simulation.
When we run the simulation (‘2’), after deciding it can fit our needs (‘1’), and look at the processing

of the parts, we can see that there are two sequences, which merge into one consecutive sequence.
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In the Call Center, we have two arrivals, one of the inbound calls and one of the outbound calls.

The first sequence (arrival) splits into three (abandonment, agent group #1, and agent group #2).

Therefore, we will answer “no” for the question “Dose it fit” and “yes” for trying to fix it, because

we need to remove most of the operations in the production model. Now, as we can see in Figure

58(b), we have part of the model that is working and we need to look for another part that split the

arrival for three possibilities (see Figure 58(c)).
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Figure 58: Queues, agents groups, and routing logic for Call Center (Mehrotra and Fama [2003])

The next step, after understanding that we cannot fix the missing part with the POD that we

have, is to choose whether to look in similar PODs or to look for a different one. Let us assume

we decide that the POD we have so promising (‘3’), the next step will be to look for a higher new

cluster, which is S2_PF we cannot get any higher and the right cluster is not "new”. Let us assume

the POD looks promising for replacing the missing component for the designer (‘5’) and we will add

the component to the simulation and run (‘2’) (Figure 58(d)). We will find that we cannot fix it so

we return to the last best result and look up to the nearest cluster, B2_ED (distance of about 0.05
compares to 0.07 of B4_PF and distance of 0.1 of M_ED). We add it the simulation. We get a

better result once we modify the logic of the route to fit the needs of the Call Center requirements,

so we finish. It is worth noting that if we would have found the first POD promising (3), we could

have kept looking (‘4’) to find the missing part easier. Changing and deleting elements in the reuse
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tool will lead to a feasible simulation ( Marmor and Sinreich [2008]).

6.4 Conclusions

In this work we presented a methodology for the reuse of simulation component. Our work is
motivated by the increasing interest in discrete-time simulation and the need in a rapid methodology
for developing such simulations. Our proposed methodology is based on a table-based representation
of simulation components, clustering a library of components and then a walkthrough procedure
that is based on distances in a hierarchical tree of clustered components, to reach the most suitable
component to be reused.

The contribution of our work is in the methodology and in the particular implementation of
asymmetric distance metrics to model the designer effort in component modifications. We have
developed a prototype of our methodology and we intend to import a massive amount of simulation

components to test the scalability of this methodology.
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7 Discussion and Conclusions

We started the work with empirical analysis of an ED, and compared the number of occupied beds
to common mathematical and descriptive models (Chapter 2) - finding the gaps between theory
and empirical data. We then introduced a new intra-day staffing principal that is both fast and
service-oriented, so it can be used on-line as a command-and-control solution for the ED (for short-
term periods), or as a tool to rearrange the workforce of the ED to overcome crises as those of
flu epidemic periods (Chapter 3). We then took a wider view of the ED problem and suggested a
strategic methodology based on analyzing the impact of operational environment factors on choosing
the most efficient ED operating model (Chapter 4). We also proposed a methodology that uses
simulation to compare the long-term benefits of using real-time patient tracking devices in the ED
(Chapter 5). We concluded with presenting a methodology for the reuse of simulation components
(Chapter 6). We hope this work contributes to the increasing interest in discrete-time simulation
for achieving service engineering goals in general, and in health care engineering in particular.

Our contribution covers several areas of interest:

First, we presented, a thorough empirical analysis of an ED, which can be easily used by others
to learn more about the ED and to use it for further research. Second, we match a Birth and
Death model to bed occupancy distribution (Section 2.3.3) that will allow researchers working on
ambulance diversion problems to fit more realistic models. Although the match was not perfect, the
benefit of using this model is its simplicity compared to the simulation model (Section 2.3.4).

Third, the Offered-Load (OL) staffing methodology we developed, is an easy and fast way to
help ED managers and researchers to carefully balance service quality with operational efficiency.
The OL method opens up ample opportunities for future research directions, such as continuing
the limited pilot experiments in Section 3.5.5, and expanding to compare it against actual ED
measurements. The simulation tool should also be refined, for example to account for patients who
leave without being seen (LWBS), or ambulance diversions (see Green [2008]) - both phenomena
reduce effective ED workload (see Reich [2007] for estimating OL of LWBS). Simulation accuracy
also calls for a better understanding (note the varying levels of accuracy in Figure 26). Related to
that is the need for improved calibration with analytical models that generate the staffing schedule.
Here one could also incorporate into the simulation optimization and staffing constraint capabilities
- indeed, ED staff availability is severely limited, as it is restricted by hospital needs beyond the ED
as well as HR laws.

Next, we presented the EDD methodology, which finds a dominant operating model in an ED.
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Our main contribution was to explain that there is no one dominant operating model that fits all
hospitals. It could be a warning sign for hospitals that seek new operating models for their EDs by
imitating the best ED around - they should look first for EDs that work under similar environmental
parameters. What our research did not do, and can be further investigated, is to see if there is room
to choose an Output-based approach (e.g., King et al. [2006] which reported this method which
dedicates separate lanes for patients who expected to depart, and for patients who would most
likely be hospitalized. For our needs their work lacks the data and the operating details), and to
answer what would happen if hospitals would be more and more specialized so they will extract
only one type of patient (e.g. Internal, Surgical, or Orthopedic).

We also introduced a methodology for estimating the value of an RFID-based indoor location
tracking (ILT) system, as part of a process transformation effort. Our methodology enables one to
quantify the costs and benefits associated with such a process change. In addition, the methodol-
ogy supports a quantitative comparison of alternative types of RFID implementations, which may
require different levels of investment. As was demonstrated by our results, the lack of such quanti-
tative analysis renders it difficult to make informed decisions. This could give rise to a significant
investment in such a technology yet without obtaining any substantial benefits from it, or in unnec-
essarily investing more than required to obtain the benefits. Our main contribution is the fact that
although RFID systems look promising on paper, their contribution is not clear cut, and people
should take the opportunity to analyze first their worthiness in investing in such systems. The fact
that we found very low contribution for the use of RFID should not weaken researchers’ motiva-
tion, but it should make them more realistic about what can be gained and what is unreachable.
Still, there is room for important future research in this area. Validation is first and foremost: the
benefits resulting from an actual RFID implementation must be compared against those predicted
by our methodology - we are planning such an experiment in a large partnering hospital in Israel.
An additional avenue for future research is expanding the methodology to account for additional
aspects of process improvement. For example, the methodology could accommodate a more detailed
mapping of the changes required from the I'T system and its applications, this in order to achieve a
more complete process improvement.

Last, we presented a methodology for the reuse of simulation components. Our work was moti-
vated by the increasing interest in discrete-event simulation and the need for a rapid methodology
to develop such simulations. Our proposed methodology was based on a table-based representation
of simulation components, clustering a library of components and then a walk-through procedure

that is based on distances in a hierarchical tree of clustered components, to reach the most suitable
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component to be reused. The contribution of our work is in the methodology and in the particular
implementation of asymmetric distance metrics to model the designer effort in component modifi-
cations. We developed a prototype of our methodology and we intend to import a massive amount

of simulation components to test the scalability of this methodology.
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A Counts

We start with basic counts of patients, segmented by different covariates: Patient type, and Admin-

istration data.

A.1 Data per type

Patients can be characterized by their care-physician, for example: Internal (Int), Surgical (Surg),
Orthopedic (Ort), and Trauma (Tra). We also know from the hospitalization data, which of the
patients were sent to ICU (Intensive Care Unit), and which of the patients were sent to semi-intensive
care units. We marked those patients by their future severity classes as ‘ICU’ and ‘V’ respectively.
Those not belonging to ICU or to V classes, were marked as Regular patients (R).

For Tables 16 — 20, we used a database stretching from the beginning of 2004 until almost the
end of 2008, where the numbers in parenthesis are the percentages out of the column total; (-)
represents a percentage smaller than 0.05. This database did not contain the administration data

(such as birthday, admission reason and so).

Table 16: Monthly patient arrival counts (% out of yearly total) for each year

Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H

6860 | 6962 | 7432 | 7247 | 7520 | 7445 | 7869 | 8053 | 7554 | 7860 | 7345 | 7314 | 89461
200 (77) | (7.8) | (8:3) | (8.1) | (84) | (8:3) | (8.8) | (9.0) | (84) | (8.8) | (82) | (82) | (19.9)
7844 | 6613 | 7988 | 7599 | 8070 | 8332 | 8434 | 8293 | 8127 | 7477 | 7328 | 7228 || 93333
200 (8.4) | (7.1) | (8:6) | (8.1) | (86) | (8.9) | (9.0) | (89) | (87) | (8.0) | (7.9) | (7.7) | (20.8)
7713 | 7029 | 7936 | 7642 | 7961 | 7929 | 6360 | 6252 | 8086 | 8047 | 7275 | 7565 || 89795
2000 (8.6) | (7.8) | (8.8) | (8.5) | (8.9) | (88) | (7.1) | (7.0) | (9.0) | (9.0) | (8.1) | (84) | (20)
8125 | 7070 | 7606 | 7413 | 7864 | 7999 | 8579 | 8434 | 7842 | 8168 | 7311 | 7356 | 93767
2001 (8.7) | (75) | (8.1) | (7.9) | (84) | (85) | (9.1) | (9.0) | (84) | (8.7) | (7.8) | (7.8) | (20.9)
yoos || 7466 | 7292 | 7630 | 7209 | 7350 | 7452 | 732U | 7552 | 7034 | 7325 | 6832 | 2038 | 82531
(9.0) | (8.8) | (9.2) | (87) | (89) | (9.0) | (8.9) | (9.2) | (85) | (8.9) | (8.3) | (2.5) || (18.4)
38008 | 34966 | 38592 | 37110 | 38795 | 39157 | 38563 | 38584 | 38643 | 38877 | 36091 | 31501 || 448887
total (8.5) | (7.8) | (8.6) | (8.3) | (8.6) | (87) | (8.6) | (8.6) | (8.6) | (87) | (8.0) | (7.0) || (100)

A.2 Administration data

ED’s patients were also being characterized by additional data:

e ‘Age’ - the age of the patient on arrival (for few patients there was no available age).
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Table 17: Monthly patient arrival counts (% out of total) for each patient type

H Patient H Jan ‘ Feb ‘ Mar Apr May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec ‘ Total H
23293 | 21247 | 23163 | 21735 | 22694 | 22706 | 22801 | 22728 | 22651 | 23132 | 21413 | 18842 || 266405
i (8.7) | (8.0) | (87) | (82) | (85) | (85) | (86) | (85) | (85) | (8.7) | (8.0) | (7.1) (59.3)
8784 | 8230 | 9236 | 9290 | 9838 | 10033 | 9517 | 9479 | 9771 | 9479 | 8873 | 7672 || 110202
ort (8.0) | (7.5) | (84) | (84) | (89) | (9.1) | (8.6) | (86) | (89) | (8.6) | (8.1) | (7.0) (24.6)
5640 | 5271 | 5884 | 5776 | 5937 | 6094 | 5817 | 5828 | 5949 | 5926 | 5491 | 4691 68304
Sure (83) | (7.7) | (8.6) | (85) | (8.7) | (8.9) | (85) | (85) | (87) | (8.7) | (8.0) | (6.9) (15.2)
291 218 309 309 326 324 428 549 272 340 314 296 3976
B (7.3) | (5.5) | (7.8) | (7.8) | (8.2) | (8.1) | (10.8) | (13.8) | (6.8) | (8.6) | (7.9) | (7.4) (0.9)
38008 | 34966 | 38592 | 37110 | 38795 | 39157 | 38563 | 38584 | 38643 | 38877 | 36091 | 31501 || 448887
total (8.5) | (7.8) | (8.6) | (83) | (8.6) | (8.7) | (86) | (86) | (86) | (8.7) | (8.0) | (7.0) (100)

e ‘Entry Reason’ - the main reason for the patient to enter the ED (for example - Illness,

expecting to give birth and so on).

e ‘Gender’ - the patient’s gender orientation. Except for Females (F) and Males (M), there

were rarely patients without gender, or that their gender was switched during hospitalization

(unknown).

e ‘Send By’ - the transferral status to the ED, if Independently, by Ambulance of by the home-

clinic Physician.

e ‘Left Reason’- The state in which the patient left the ED: Released home, Hospitalized in one

of the hospitals wards, found that abandonment is the best choice (LWBS), Deceased during

the stay in the ED, Refuse treatment, departure for other institutes. Few patients left the ED

with the reason “other” written in their medical sheet.

For Tables 21 — 33 we used the database stretching from the beginning of 2004 until September

2007, where the numbers in parenthesis are the percentages out of the column total; (-) represents

a percentage smaller than 0.05.
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Table 18: Monthly patient arrival counts (% out of total) for each patient type for each year

H Paticnt‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total

3052 | 3985 | 4286 | 4186 | 4327 | 4346 | 4577 | 4647 | 4365 | 4681 | 4250 | 4350 | 51952
200 (7.6) | (1.7) | (82) | (81) | (83) | (84) | (88) | (8.9) | (84) | (9.0) | 8:2) | (84) | (19.5)
|| 4815 | 3945 | 4809 | 4389 | 4652 | 4773 | 4932 | 4832 | 4726 | 4374 | 4341 | 4209 | 54797
200 (8.8) | (1.2) | (88) | (8.0) | (85) | (87) | (9.0) | (8.8) | (86) | (8.0) | (7.9) | (7.7) || (20.6)
|| 4600 | 4207 | 4848 | 4503 | 4691 | 4516 | 3796 | 3689 | 4756 | 4676 | 4261 | 4619 || 53252
2008 (8.6) | (81) | (9.1) | (85) | (88) | (85) | (7.1) | (6.9) | (8.9) | (8.8) | (8.0) | (87) | (20.0)
e 5176 | 4425 | 4551 | 4202 | 4607 | 4507 | 4991 | 4915 | 4554 | 4873 | 4296 | 4390 | 55667
201 93) | (79) | 82) | (7.7) | 83) | 83) | (9.0) | 88) | (82) | (88) | (7.7) | (7.9) || (20.9)
4750 | 4595 | 4669 | 4365 | 4417 | 4474 | 4505 | 4645 | 4250 | 4528 | 4265 | 1274 | 50737
2008 9.4) | (9.1) | (9.2) | 86) | (87) | (88) | (8.9) | (9.2) | (84) | (8.9) | (84) | (25) | (19.0)
23203 | 21247 | 23163 | 21735 | 22694 | 22706 | 22801 | 22728 | 22651 | 23132 | 21413 | 18842 | 266405
fotl (87) | (80) | (87) | (82) | (85) | (85) | (86) | (85) | (85) | (87) | (8.0) | (7.1) || (59.3)
|| 1661 | 1760 | 1780 | 1793 | 1897 | 1874 | 2002 | 2008 | 1897 | 1897 | 1871 | 1743 | 22183
20 (75) | (1.9) | (80) | (8.1) | (8.6) | (84) | (9.0) | (9.1) | (86) | (86) | (84) | (7.9) || (20.1)
|| 1812 | 1597 | 1863 | 1951 | 2011 | 2172 | 2179 | 2145 | 2085 | 1936 | 1821 | 1846 | 23418
200 (1.7) | (6.8) | (8.0) | (83) | (8.6) | (93) | (93) | (9.2) | (8.9) | (83) | (7.8) | (7.9) || (21.3)
‘ 1865 | 1609 | 1867 | 1946 | 1920 | 2100 | 1447 | 1424 | 2028 | 1982 | 1827 | 1761 || 21776
200 (8.6) | (7.4) | (86) | (89) | (88) | (96) | (6.6) | (6.5) | (9.3) | (9.1) | 84) | (81) || (19.8)
ort 1812 | 1667 | 1953 | 1928 | 2110 | 2099 | 2218 | 2195 | 2034 | 1976 | 1838 | 1863 || 23693
2ot (7.6) | (1.0) | (82) | (8.1) | (8.9) | (89) | (94) | (9.3) | (86) | (83) | (7.8) | (7.9) || (21.5)
1634 | 1597 | 1773 | 1672 | 1900 | 1788 | 1671 | 1707 | 1727 | 1688 | 1516 | 459 || 19132
200 (85) | (83) | (93) | 87) | (9.9) | (93) | 87) | (89) | (9.0) | 88) | (7.9) | (24) | («.3)
oga || 784 | 8230 | 0236 | 9200 | 0838 | 10033 | 9517 | 0479 | 0771 | 9479 | 8873 | 7672 | 110202
(8.0) | (7.5) | (84) | (84) | (8.9) | (9.1) | (8:6) | (8:6) | (8.9) | (86) | (81) | (7.0) || (24.6)
1189 | 1184 | 1304 | 1233 | 1250 | 1185 | 1240 | 1339 | 1248 | 1239 | 1159 | 1149 || 14719
20 (81) | (8.0) | (89) | (84) | (85) | (81) | (84) | (9.1) | (85) | (84) | (7.9) | (7.8) || (21.5)
1173 | 1024 | 1239 | 1192 | 1332 | 1311 | 1227 | 1237 | 1259 | 1107 | 1097 | 1110 || 14308
200 (82) | (1.2) | (87) | (83) | (9.3) | (92) | (86) | (86) | (88) | (7.7) | (7.7) | (7.8) || (20.9)
1185 | 1081 | 1159 | 1132 | 1202 | 1246 | 977 | 886 | 1256 | 1306 | 1132 | 1116 || 13768
2008 (8.6) | (7.9) | (84) | (82) | (9.4) | (9.0) | (7.1) | (6.4) | (9.1) | (95) | (8:2) | (81) || (20.2)
Swe 1082 | 931 | 1054 | 1135 | 1071 | 1239 | 1289 | 1247 | 1200 | 1247 | 1122 | 1035 || 13652
20t (7.9) | (68) | (7.7) | (83) | (7.8) | (9.1) | (94) | (9.1) | (88) | (9.1) | (8:2) | (7.6) || (20.0)
1011 | 1051 | 1128 | 1084 | 992 | 1113 | 1084 | 1119 | 986 | 1027 | 981 | 281 | 11857
2008 (85) | (89) | (9.5) | (9.1) | (8.4) | (94) | (9.1) | (94) | (83) | (87) | (83) | (24) || (17.4)
5640 | 5271 | 5884 | 5776 | 5937 | 6094 | 5817 | 5828 | 5949 | 5926 | 5491 | 4691 | 68304
fotal (83) | (1.7) | (86) | (85) | (87) | (89) | (85) | (85) | (87) | (87) | (8.0) | (6.9) || (15.2)
) 58 33 62 35 46 40 50 59 44 43 65 72 607
200 (9.6) | (5.4) | (10.2) | (5.8) | (7.6) | (6.6) | (82) | (9.7) | (7.2) | (7.1) | (10.7) | (11.9) || (15.3)
44 47 77 67 75 76 96 79 57 60 69 63 810
200 (5.4) | (5.8) | (95) | (83) | (9.3) | (94) | 11.9) | (9.8) | (7.0) | (7.4) | (8.5) | (7.8) || (20.4)
63 42 62 61 58 67 | 140 | 253 | 46 83 55 69 999
2008 (6.3) | (4.2) | (62) | (6.1) | (5.8) | (6.7) | (14.0) | (25.3) | (4.6) | (83) | (5.5) | (6.9) || (25.1)
A ‘ 55 47 48 58 76 64 81 77 54 72 55 68 755
20 (7.3) | (6.2) | (64) | (7.7) | (10.1) | (85) | (10.7) | (10.2) | (7.2) | (9.5) | (7.3) | (9.0) || (19.0)
71 49 60 88 71 77 61 81 71 82 70 24 805
2008 (8.8) | (6.1) | (7.5) | (10.9) | (8.8) | (9.6) | (7.6) | (10.1) | (8.8) | (10.2) | (8.7) | (3.0) || (20.2)
201 | 218 | 309 | 309 | 326 | 324 | 428 | 549 | 272 | 340 | 314 | 296 | 3976
fotl (7.3) | (5.5) | (7.8) | (7.8) | (8.2) | (8.1) | (10.8) | (13.8) | (6.8) | (8:6) | (7.9) | (7.4) | (0.9)
Total 38008 | 34966 | 38592 | 37110 | 38795 | 39157 | 38563 | 38584 | 38643 | 38877 | 36091 | 31501 | 448887
(8.5) | (7.8) | (86) | (8.3) | (8.6) | (8.7) | (8:6) | (8:6) | (86) | (87) | (8.0) | (7.0) || (100.0)
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Table 19: Monthly patients arrival counts (% out of total) for each patient severity

Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H

Severity H Jan ‘ Feb ‘ Mar

37006 | 34083 | 37673 | 36114 | 37756 | 38166 | 37468 | 37528 | 37677 | 37825 | 35004 | 30631 || 436931
(85) | (7.8) | (8:6) | (8.3) | (86) | (87) | (8.6) | (86) | (8.6) | (87) | (8.0) | (7.0) || (97.3)

R

774 | 703 | 746 | 755 | 812 | 765 | 815 | 760 | 702 | 765 | 777 | 634 | 9008
(8.6) | (7.8) | (8:3) | (84) | (9.0) | (85) | (9.0) | (8.4) | (7.8) | (85) | (8.6) | (7.0) || (2.0)
228 | 180 | 173 | 241 | 227 | 226 | 280 | 296 | 264 | 287 | 310 | 236 || 2948
v (7.7) | (6.1) | (5.9) | (82) | (7.7) | (7.7) | (9.5) | (10.0) | (9.0) | (9.7) | (10.5) | (8.0) || (0.7)
38008 | 34966 | 38592 | 37110 | 38795 | 39157 | 38563 | 38584 | 38643 | 38877 | 36091 | 31501 || 448887
(85) | (7.8) | (8.6) | (8.3) | (8.6) | (8.7) | (86) | (8.6) | (8.6) | (87) | (8.0) | (7.0) || (100)

ICU

Total
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Table 20: Monthly patient arrival counts (% out of total) for each patient severity per year

H Severity‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep Oct ‘ Nov ‘ Dec H Total

6740 | 6821 | 7296 | 7105 | 7371 | 7302 | 7721 | 7910 | 7422 | 7727 | 7190 | 7168 || 87773
200 (7.7 | (7.8) | (8:3) | (81) | (84) | (8.3) | (88) | (9.0) | (85) | (88) | (82) | (8.2) | (20.1)
_ || 7699 | 6468 | 7840 | 7364 | 7854 | 8112 | 8216 | 8100 | 7927 | 7259 | 7118 | 7025 | 90982
200 (85) | (1.1) | (86) | (81) | (86) | (8.9) | (9.0) | (89) | (87) | (80) | (7.8) | (7.7) | (20.8)
|| 7489 | 6827 | 7744 | 7457 | T7AT | 7741 | 6126 | 6004 | 7859 | 7784 | 7041 | 7345 || 87164
2000 (8.6) | (7.8) | (8.9) | (8.6) | (8.9) | (8.9) | (7.0) | (6.9) | (9.0) | (89) | 8.1) | (8.4) | (19.9)
t 7863 | 6885 | 7414 | 7212 | 7620 | 7782 | 8325 | 8206 | 7638 | 7947 | 7081 | 7119 | 91092
2007 (8.6) | (7.6) | (81) | (7.9) | (84) | (85) | (9.1) | (9.0) | (84) | (87) | (7.8) | (7.8) | (20.8)
7215 | 7082 | 7379 | 6976 | 7164 | 7229 | 7080 | 7308 | 6831 | 7108 | 6574 | 1974 | 79920
2008 (9.0) | (8.9) | (9.2) | (87) | (9.0) | (9.0) | (8.9) | (9.1) | (85) | (89) | (8:2) | (2.5) | (18.3)
Tota | 37006 | 34083 | 37673 | 36114 | 37756 | 38166 | 37468 | 37528 | 37677 | 37825 | 35004 | 30631 | 436931
(85) | (7.8) | (8.6) | (83) | (86) | (87) | (86) | (86) | (8.6) | (87) | (8.0) | (7.0) || (97.3)
120 | 141 | 136 | 142 | 149 | 143 | 148 | 143 | 132 | 133 | 155 | 146 | 1688
200 (71) | 84) | (81) | (84) | (88) | (85) | (88) | (8:5) | (7.8) | (7.9) | (9.2) | (8.6) | (18.7)
|| 4 | 141 | 142 | 159 | 168 | 156 | 167 | 144 | 135 | 149 | 137 | 153 | 1795
200 (8.0) | (7.9) | (7.9) | (89) | (9.4) | (8.7) | (93) | (8.0) | (75) | (83) | (7.6) | (8:5) | (19.9)
150 | 144 | 141 | 146 | 165 | 146 | 169 | 178 | 154 | 190 | 156 | 148 | 1887
oo 2000 (79) | (7.6) | (75) | 77 | 87) | 77) | 9.0) | 94) | (82) | (10.1) | 83) | (7.8) | (20.9)
182 | 133 | 141 | 131 | 167 | 153 | 162 | 145 | 139 | 139 | 160 | 143 | 1795
2007 (10.1) | (7.4) | (7.9) | (7.3) | (9.3) | (8:5) | (9.0) | (81) | (7.7) | (77) | (8.9) | (8.0) | (19.9)
178 | 144 | 186 | 177 | 163 | 167 | 169 | 150 | 142 | 154 | 169 | 44 1843
2008 9.7 | (7.8) | (10.1) | (9.6) | (88) | (9.1) | (9.2) | (81) | (7.7) | (84) | (9.2) | (2.4) | (20.5)
ot | T4 703 | 746 | 755 | s12 | 765 | 815 | 760 | 702 | 765 | 777 | 634 | 9008
(8.6) | (7.8) | (8.3) | (8.4) | (9.0) | (85) | (9.0) | (84) | (7.8) | (85) | (8.6) | (7.0) | (2.0)
- 1 4 6 76 48 64 51 49 65 69 73 50 556
(2) | (7 | @y |@sn | 86) | a15) | (92) | (88) | 1L7) | 12.4) | (13.1) | (9.0) | (18.9)
74 58 51 39 49 42 65 70 73 73 78 72 744
2000 (9.9) | (7.8) | (6.9) | (5.2) | (6.6) | (5.6) | (8.7) | (9.4) | (9.8) | (9.8) | (10.5) | (9.7) || (25.2)
v o007 | 52 51 70 77 64 92 83 65 82 70 94 880
(9.1) | (5.9) | (5.8) | (8.0) | (88) | (7.3) | (10.5) | (9.4) | (74) | (9.3) | (8.0) | 10.7) | (29.9)
73 66 65 56 53 56 72 94 61 63 89 20 768
2008 (95) | (8.6) | (85) | (7.3) | (6.9) | (7.3) | (9.4) | 122) | (7.9) | (8.2) | (11.6) | (2.6) | (26.1)
228 | 180 | 173 | 241 | 227 | 226 | 280 | 296 | 264 | 287 | 310 | 236 | 2948
toral ) | 61) | 5.9 | 82 | (1) | (7.7 | (95) | (10.0) | (9.0) | (9.7) | (10.5) | (8.0) | (0.7)
Total 38008 | 34966 | 38592 | 37110 | 38795 | 39157 | 38563 | 38584 | 38643 | 38877 | 36091 | 31501 | 448887
(85) | (7.8) | (8.6) | (83) | (86) | (87) | (86) | (86) | (86) | (87) | (8:0) | (7.0) | (100.0)
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Table 21: Monthly patient arrival counts (% out of total) for each patient age group

H Age H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total ‘
0 413 399 457 581 538 561 558 583 576 595 357 359 5977
(6.9) | (6.7) | (7.6) | (9.7) | (9.0) | (94) | (9.3) | (9.8) | (9.6) | (10.0) | (6.0) | (6.0) (1.7)
. 839 857 1095 | 1221 | 1336 | 1200 | 1112 | 1026 | 1140 | 1265 754 605 12450
i 6.7) | (6.9) | (8.8) | (9.8) | (10.7) | (9.6) | (8.9) | (82) | (9.2) | (10.2) | (6.1) | (4.9) | (3.5)
6714 | 6106 | 7024 | 6567 | 6963 7360 7540 7455 7409 7169 5200 | 5121 80628
1 (8.3) | (7.6) | (87) | (8.1) | (86) | (9.1) | (94) | (92) | (92) | (8.9) | (6.4) | (6.4) (22.9)
4561 4227 | 4772 | 4664 | 4887 | 4969 | 4902 4895 | 4789 | 4750 | 3303 | 3261 53980
234 (8.4) | (7.8) | (88) | (86) | (91) | (9.2) | (9.1) | (9.1) | (8.9) | (88) | (6.1) | (6.0) (15.3)
3536 | 3304 | 3610 | 3495 | 3685 | 3810 | 3665 | 3681 | 3805 | 3602 | 2426 | 2551 41170
- (8.6) | (8.0) | (88) | (85) | (9.0) | (9:3) | (8.9) | (89) | (92) | (87) | (5.9) | (6.2) (11.7)
. 3600 | 3229 | 3634 | 3457 | 3721 | 3813 | 3748 | 3660 | 3843 | 3866 | 2619 | 2586 | 41776
oo (8.6) | (7.7) | (87) | (83) | (8.9) | (9.1) | (9.0) | (88) | (9.2) | (9.3) | (6.3) | (6.2) || (11.9)
3213 2985 | 3223 | 3044 | 3223 | 3262 3153 3209 | 3382 3357 | 2331 2309 36691
s (8.8) | (8.1) | (88) | (8.3) | (88) | (89) | (86) | (87) | (92) | (9-1) | (6.4) | (6.3) (10.4)
. 3215 2803 | 3033 | 2970 | 3029 | 2963 2891 2804 2942 3064 | 2174 | 2250 34138
o5 (94) | (82) | (89) | (87) | (89) | (87) | (85) | (82) | (86) | (9.0) | (6.4) | (6.6) (9.7)
3074 | 2658 | 2863 | 2758 | 2925 | 2700 | 2603 | 2639 | 2680 | 2779 | 2001 | 2219 31899
e (9.6) | (83) | (9.0) | (8.6) | (92) | (85) | (82) | (83) | (84) | (87) | (6.3) | (7.0) (9.1)
. 1307 | 1068 | 1187 | 1086 | 1027 997 966 984 975 1021 730 808 12156
S (10.8) | (8.8) | (9.8) | (8.9) | (84) | (8.2) | (7.9) | (8.1) | (8.0) | (84) | (6.0) | (6.6) | (3.5)
91 53 75 68 91 76 112 104 72 88 59 40 929
unknown
(9.8) | (5.7) | (81) | (7.3) | (9.8) | (8.2) | (12.1) | (11.2) | (7.8) | (9.5) | (6.4) | (4.3) (-)
30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
fotal (8.7) | (7.9) | (88) | (8:5) | (89) | (9.0) | (89) | (88) | (9.0) | (9.0) | (6.2) | (6.3) | (100.0)
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Table 22: Monthly patient arrival counts (% out of total) for each patient age group by year partl

H Age ‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
. 132 129 149 183 149 139 190 175 143 152 142 121 1804
200 (7.3) | (7.2) | (83) | (10.1) | (83) | (7.7) | (10.5) | (9.7) | (7.9) | (8:4) | (7.9) | (6.7) || (30.2)
. 100 103 110 148 156 149 127 184 146 148 97 127 1595
2008 (6.3) | (65) | (6.9) | (9.3) | (9.8) | (9.3) | (8.0) | (11.5) | (9.2) | (9.3) | (6.1) | (8.0) | (26.7)
. 91 96 110 126 125 145 104 105 141 148 118 111 1420
-4 | 2008 (6.4) | (6.8) | (7.7) | (8:9) | (88) | (10.2) | (7.3) | (74) | (9.9) | (10.4) | (8.3) | (7.8) || (23.8)
90 71 88 124 108 128 137 119 146 147 0 0 1158
207 (7.8) | (6.1) | (7.6) | (10.7) | (9.3) | (11.1) | (11.8) | (10.3) | (12.6) | (12.7) | (-) | () | (19.4)
413 399 457 581 538 561 558 583 576 595 357 | 359 5977
fotal (6.9) | (6.7) | (7.6) | (9.7) | (9.0) | (94) | (9.3) | (9-8) | (9.6) | (10.0) | (6.0) | (6.0) || (1.7)
. 240 | 262 319 316 351 264 300 275 338 343 256 | 186 || 3450
200 (7.0) | (7.6) | (92) | (9:2) | (10.2) | (7.7) | (87) | (8:0) | (9.8) | (9.9) | (74) | (5.4) || (27.7)
. 203 201 279 344 341 304 321 259 267 302 252 219 3292
2008 (62) | (6.1) | (8.5) | (10.4) | (10.4) | (9.2) | (9.8) | (7.9) | (8.1) | (9.2) | (7.7) | (6.7) || (26.4)
202 198 | 245 265 328 324 207 174 263 321 246 | 200 || 2973
05-14 | 2006
(6.8) | (6.7) | (82) | (8.9) | (11.0) | (10.9) | (7.0) | (5.9) | (8.8) | (10.8) | (8.3) | (6.7) || (23.9)
194 196 | 252 296 316 308 284 318 272 299 0 0 2735
2007 (7.1) | (7.2) | (9.2) | (10.8) | (11.6) | (11.3) | (10.4) | (11.6) | (9.9) | (10.9) | (-) | () | (22.0)
839 857 1095 1221 1336 1200 1112 1026 1140 1265 754 605 12450
fotal (6.7) | (6.9) | (88) | (9.8) | (10.7) | (9.6) | (89) | (8:2) | (9.2) | (10.2) | (6.1) | (4.9) || (3.5)
) 1378 | 1504 | 1534 | 1533 | 1592 | 1694 | 1794 | 1829 | 1654 | 1651 | 1697 | 1588 || 19448
200 (70 | (77 | (79) | (7.9) | 82) | 87) | (92) | 94) | 85) | (85) | (87) | (82) || (24.1)
_ || 1806 | 1533 | 1878 | 1684 | 1948 | 2107 | 2290 | 2209 | 2145 | 1831 | 1875 | 1758 || 23064
2003 (7.8) | (6.6) | (8.1) | (7.3) | (84) | (9.1) | (9.9) | (9.6) | (9.3) | (7.9) | (8:1) | (7.6) | (28.6)
. 1779 | 1541 | 1856 1710 1726 1751 1488 1498 1915 1952 | 1628 | 1775 || 20619
15241 2006 (8.6) | (7.5) | (9.0) | (8:3) | (84) | (8:5) | (7.2) | (7.3) | (9.3) | (9.5) | (7.9) | (8.6) || (25.6)
) 1751 | 1528 | 1756 | 1640 | 1697 | 1808 | 1968 | 1919 | 1695 | 1735 0 0 17497
2001 (10.0) | (8.7) | (10.0) | (9.4) | (9.7) | (10.3) | (11.2) | (11.0) | (9.7) | (9.9) ) ) || 21.7)
6714 | 6106 | 7024 6567 6963 7360 7540 7455 7409 7169 | 5200 | 5121 || 80628
fotal (8.3) | (7.6) | (87) | (8.1) | (86) | (9.1) | (94) | (92) | (9.2) | (8:9) | (6.4) | (6.4) || (22.9)
) 1033 | 1082 | 1135 1211 1245 1165 1254 1287 1167 1229 | 1120 | 1081 || 14009
200 (7.4) | (7.7) | (81) | (8:6) | (89) | (83) | (9.0) | (92) | (83) | (8:8) | (8.0) | (7.7) || (26.0)
1191 | 1056 | 1235 1121 1228 1320 1347 1254 1185 1070 | 1075 | 1038 || 14120
2003 (84) | (75) | 87) | (7.9 | 87) | (9.3) | (9.5) | (8.9) | (8.4) | (7.6) | (7.6) | (7.4) || (26.2)
1096 | 1050 | 1232 1177 1182 1233 968 1044 1254 1237 | 1108 | 1142 || 13723
25-34 | 2006
(8.0) | (7.7) | (9.0) | (8:6) | (86) | (9.0) | (7.1) | (7.6) | (9.1) | (9.0) | (8.1) | (8.3) || (25.4)
1241 | 1039 | 1170 1155 1232 1251 1333 1310 1183 1214 0 0 12128
207 (10.2) | (8.6) | (9.6) | (9.5) | (10.2) | (10.3) | (11.0) | (10.8) | (9.8) | (10.0) | (-) | () || (22.5)
4561 | 4227 | 4772 4664 4887 | 4969 4902 4895 4789 4750 | 3303 | 3261 || 53980
fotal (84) | (7.8) | (8.8) | (8:6) | (9.1) | (9.2) | (9.1) | (9.1) | (89) | (8.8) | (6.1) | (6.0) | (15.3)
779 | 821 887 826 874 920 945 949 913 910 813 | 839 || 10476
20 (7.4) | (7.8) | (85) | (7.9) | (83) | (8:8) | (9.0) | (9.1) | (87) | (87) | (7.8) | (8.0) || (25.4)
910 774 | 909 936 921 937 946 937 934 783 784 | 878 | 10649
200 (8.5) | (7.3) | (85) | (8.8) | (86) | (8.8) | (89) | (8.8) | (88) | (74) | (74) | (82) | (25.9)
942 853 916 893 938 990 719 776 990 927 829 834 10607
35-44 | 2006
(8.9) | (8.0) | (86) | (8.4) | (88) | (9.3) | (6.8) | (7.3) | (9.3) | (8.7) | (7.8) | (7.9) || (25.8)
905 | 856 | 898 840 952 963 1055 | 1019 | 968 982 0 0 9438
2007 (9.6) | (9.1) | (95) | (8:9) | (10.1) | (10.2) | (11.2) | (10.8) | (10.3) | (10.4) | (-) | () || (22.9)
Total 3536 | 3304 | 3610 | 3495 | 3685 | 3810 | 3665 | 3681 | 3805 | 3602 | 2426 | 2551 || 41170
(8.6) | (8.0) | (8.8) | (85) | (9.0) | (9.3) | (8.9) | (8.9) | (92) | (87) | (5.9) | (6.2) || (11.7)
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Table 23: Monthly patient arrival counts (% out of total) for each patient age group by year part2

H Age ‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
843 808 876 833 903 919 961 985 958 1023 | 904 | 880 || 10893
200 (7.7) | (74) | (80) | (7.6) | (83) | (84) | (88) | (9.0) | (88) | (9.4) | (83) | (8.1) || (26.1)
. 937 e 932 849 926 957 968 969 958 914 837 | 852 10874
200 (86) | (7.1) | (8:6) | (7.8) | (85) | (88) | (8.9) | (8.9) | (88) | (8.4) | (7.7) | (7.8) | (26.0)
903 858 950 888 964 931 778 712 983 918 | 878 | 854 || 10617
45-54 | 2006
(8:5) | (81) | (8:9) | (84) | (9.1) | (88) | (7.3) | (6.7) | (93) | (8.6) | (8:3) | (8.0) || (25.4)
917 788 876 887 928 1006 | 1041 994 944 1011 0 0 9392
207 (9.8) | (8.4) | (9.3) | (9.4) | (9.9) | (10.7) | (11.1) | (10.6) | (10.1) | (10.8) | (-) | () | (22.5)
3600 3229 3634 3457 3721 3813 3748 3660 3843 3866 | 2619 | 2586 || 41776
fotal (8.6) | (7.7) | (8.7) | (83) | (8:9) | (9.1) | (9.0) | (88) | (9.2) | (9.3) | (6.3) | (6.2) || (11.9)
) 729 675 57 692 729 748 764 838 780 780 789 | 773 || 9054
200 (8.1) | (7.5) | (84) | (7.6) | (81) | (83) | (84) | (9.3) | (8.6) | (86) | (8.7) | (8:5) || (24.7)
768 683 828 764 813 800 782 805 814 T 745 763 9342
2008 (82) | (7.3) | (8.9) | (82) | (87) | (8.6) | (8.4) | (86) | (87) | (8.3) | (8.0) | (8.2) | (25.5)
827 765 813 783 830 806 658 633 874 830 797 | 773 || 9389
55-64 | 2006
(8.8) | (81) | (8.7) | (83) | (8:8) | (86) | (7.0) | (6.7) | (93) | (8.8) | (8.5) | (8:2) || (25.6)
) 889 862 825 805 851 908 949 933 914 970 0 0 8906
207 (10.0) | (9.7) | (9.3) | (9.0) | (9.6) | (10.2) | (10.7) | (10.5) | (10.3) | (10.9) | (-) | () | (24.3)
3213 2985 3223 3044 3223 3262 3153 3209 3382 3357 | 2331 | 2309 || 36691
fotal (8.8) | (81) | (8:8) | (83) | (8:8) | (89) | (8:6) | (87) | (9.2) | (9.1) | (6.4) | (6.3) || (10.4)
716 748 736 739 722 723 747 759 721 805 727 | 778 || 8921
200 (8.0) | (84) | (83) | (83) | (81) | (81) | (84) | (85) | (8:1) | (9.0) | (81) | (8.7) || (26.1)
833 605 808 758 759 782 759 713 766 741 734 | 697 || 8955
2008 9.3) | (6.8) | (9.0) | (85) | (85) | (87) | (8:5) | (8.0) | (86) | (8.3) | (8.2) | (7.8) | (26.2)
785 722 768 771 799 769 615 594 705 739 713 | 775 || 8755
65-74 | 2006
(9.0) | (82) | (8:8) | (88) | (9.1) | (88) | (7.0) | (6.8) | (8.1) | (84) | (8.1) | (8.9) || (25.6)
881 728 721 702 749 689 770 738 750 79 0 0 7507
2001 (1L7) | (9.7) | (9.6) | (94) | (10.0) | (9:2) | (10.3) | (9.8) | (10.0) | (10.4) | () | () || (22.0)
3215 2803 3033 2970 3029 2963 2891 2804 2942 3064 | 2174 | 2250 || 34138
fotal (9.4) (8.2) (8.9) (8.7) (8.9) (8.7) (8.5) (8.2) (8.6) (9.0) | (6.4) | (6.6) (9.7)
730 675 743 678 698 638 665 676 644 698 | 625 | 780 || 8250
2o (8-8) | (82) | (9.0) | (82) | (85) | (7.7) | (81) | (82) | (7.8) | (85) | (7.6) | (9-5) || (25.9)
738 622 723 716 715 697 642 706 644 634 | 690 | 662 || 8189
200 (9.0) | (7.6) | (8:8) | (87) | (87) | (85) | (7.8) | (8.6) | (7.9) | (7.7) | (8.4) | (8.1) || (25.7)
753 682 742 718 771 708 570 511 699 715 686 Tt 8332
75-84 | 2006
(9.0) | (82) | (8:9) | (86) | (93) | (85) | (6.8) | (6.1) | (8.4) | (8.6) | (8:2) | (9:3) || (26.1)
) 853 679 655 646 741 657 726 746 693 732 0 0 7128
2007 (12.0) | (9.5) | (9.2) | (9.1) | (10.4) | (92) | (10.2) | (10.5) | (9.7) | (10.3) | () | () || (22.3)
3074 2658 2863 2758 2925 2700 2603 2639 2680 2779 | 2001 | 2219 || 31899
fotal 9.6) | (8.3) | (9.0) | (86) | (92) | (85) | (8.2) | (83) | (84) | (8.7) | (6.3) | (7.0) | (9.1)
257 245 285 228 243 217 235 253 221 247 | 247 | 278 || 2956
20 (8.7) | (83) | (96) | (7.7) | (82) | (7.3) | (7.9) | (86) | (7.5) | (8.4) | (8.4) | (94) || (24.3)
336 249 270 255 243 255 230 241 248 255 224 | 220 || 3026
200 (11.1) | (82) | (8.9) | (84) | (8.0) | (84) | (7.6) | (8.0) | (82) | (8.4) | (7.4) | (7.3) | (24.9)
320 256 282 299 268 261 221 183 247 244 259 310 3150
85+ | 2006
(10.2) | (8.1) | (9.0) | (9.5) | (85) | (8:3) | (7.0) | (5.8) | (7.8) | (7.7) | (8.2) | (9.8) || (25.9)
394 318 350 304 273 264 280 307 259 275 0 0 3024
2007 (13.0) | (10.5) | (11.6) | (10.1) | (9.0) | (8.7) | (9.3) | (10.2) | (8.6) | (9.1) -) (=) || (24.9)
Total 1307 | 1068 | 1187 | 1086 | 1027 | 997 966 984 975 1021 | 730 | 808 || 12156
(10.8) | (8.8) | (9.8) | (8.9) | (84) | (82) | (7.9) | (8.1) | (8.0) | (8.4) | (6.0) | (6:6) | (3.5)
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Table 24: Monthly patient arrival counts (% out of total) for each patient age group by year part3

H Age ‘ Year ‘ Jan ‘ Feb ‘ Mar ‘ Apr ‘ May Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
35 23 19 13 22 20 18 26 16 22 28 11 253
200 (13.8) | (9.1) | (7.5) | (5.1) | (8.7) | (7.9) | (7.1) | (10.3) | (6.3) | (8.7) | (11.1) | (4.3) (27.2)
22 13 16 24 21 22 23 17 19 22 16 15 230
200 (9.6) | (5.7) | (7.0) | (10.4) | (9.1) | (9.6) | (10.0) | (7.4) | (83) | (9.6) | (7.0) | (6.5) (24.8)
22 9 21 16 30 14 32 25 18 18 15 14 234
unknown | 2006
(9.4) | (3.8) | (9.0) | (6.8) | (12.8) | (6.0) | (13.7) | (10.7) | (7.7) | (7.7) | (6.4) | (6.0) (25.2)
12 8 19 15 18 20 39 36 19 26 0 0 212
2007 (5.7) | (3.8) | (9.0) | (7.1) | (85) | (9.4) | (18.4) | (17.0) | (9.0) | (12.3) (-) (-) (22.8)
91 53 5 68 91 76 112 104 72 88 59 40 929
fotal (9.8) | (5.7) | (81) | (7.3) | (9.8) | (82) | (12.1) | (11.2) | (7.8) | (9.5) | (6.4) | (4.3) (=)
Total 30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
(8.7) | (79) | (8.8) | (85) | (89) | (9.0) | (8.9) | (88) | (9.0) | (9.0) | (6.2) | (6.3) | (100.0)

Table 25: Monthly patient arrival counts (% out of total) for each patient ‘Entry Reason’

H Entry Reason H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H

9434 | 8561 | 9731 | 9910 | 13232 | 13427 | 13527 | 13390 | 13196 | 13193 | 7110 | 6855 || 131566
(7.2) | (65) | (7.4) | (7.5) | (10.1) | (10.2) | (10.3) | (10.2) | (10.0) | (10.0) | (5.4) | (5.2) || (37.4)
21119 | 19108 | 21230 | 19987 | 18173 | 18275 | 17708 | 17632 | 18393 | 18356 | 14837 | 15243 || 220061

External Reasons

Tllness
(9.6) | (8.7) (9.6) | (9.1) (8.3) (8.3) (8.0) (8.0) (8.4) (8.3) (6.7) | (6.9) (62.6)
10 20 12 14 20 9 15 18 24 7 7 11 167
Parturient
(6.0) | (12.0) | (7.2) | (84) | (12.0) | (5.4) (9.0) | (10.8) | (14.4) | (4.2) (4.2) | (6.6) (=)
Total 30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
otal

®7) | (7.9) | (88) | (85) | (8.9) | (9.0) | (8.9) | (88) | (9.0) | (9.0) | (6.2) | (6.3) | (100.0)

119



Table 26: Monthly patient arrival counts (% out of total) for each patient ‘Entry Reason’ by year

H Entry Reason ‘Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H

2369 | 2383 | 2504 | 2461 | 2578 | 2476 | 2639 | 2693 | 2528 | 2507 | 2428 | 2248 29814
2004
(7.9) | (8.0) | (84) | (83) | (86) | (8.3) | (89) | (9.0) | (8:5) | (84) | (8.1) (7.5) (22.7)
2349 | 2071 2462 | 2536 | 2668 | 2778 | 2818 | 2676 | 2646 | 2429 | 2345 | 2329 30107
2005
(7.8) | (6.9) | (82) | (84) | (89) | (9.2) | (94) | (89) | (8.8) | (8.1) | (7.8) (7.7) (22.9)
2401 | 2099 | 2442 | 2485 | 2564 | 2655 | 2160 | 2239 | 2666 | 2651 | 2337 | 2278 28977
External Reasons | 2006
(83) | (7.2) | (8.4) | (86) | (88) | (9.2) | (7.5) | (7.7) | (9.2) | (9.1) | (8.1) (7.9) (22.0)
2315 | 2008 | 2323 | 2428 | 5422 | 5518 | 5910 | 5782 | 5356 | 5606 0 0 42668
2007
(5.4) | (4.7) | (5.4) | (5.7) | (12.7) | (12.9) | (13.9) | (13.6) | (12.6) | (13.1) ) -) (32.4)
9434 | 8561 | 9731 | 9910 | 13232 | 13427 | 13527 | 13390 | 13196 | 13193 | 7110 | 6855 | 131566
Total
(7.2) | (6.5) | (7.4) | (7.5) | (10.1) | (10.2) | (10.3) | (10.2) | (10.0) | (10.0) | (5.4) (5.2) (37.4)
4499 | 4584 | 4932 | 4783 | 4944 | 4969 | 5230 | 5354 | 5017 | 5353 | 4918 | 5059 59642
2004
(7.5) | (7.7) | (8.3) | (8.0) | (83) | (8:3) | (88) | (9.0) | (8.4) | (9.0) | (8.2) (8.5) (27.1)
5494 | 4540 | 5523 | 5060 | 5402 | 5549 | 5611 | 5614 | 5477 | 5046 | 4983 | 4897 63196
2005
(8.7) | (7.2) | (87) | (8.0) | (85) | (8.8) | (89) | (8.9) | (87) | (80) | (7.9) (7.7) (28.7)
5317 | 4926 | 5491 | 5160 | 5386 | 5275 | 4199 | 4012 | 5419 | 5395 | 4936 | 5287 60803
Illness 2006
(8.7) | (81) | (9.0) | (85) | (8.9) | (8.7) | (6.9) | (6.6) | (8.9) | (8.9) | (81) (8.7) (27.6)
5809 | 5058 | 5284 | 4984 | 2441 | 2482 | 2668 | 2652 | 2480 | 2562 0 0 36420
2007
(16.0) | (13.9) | (14.5) | (13.7) | (6.7) | (6.8) | (7.3) | (7.3) | (6.8) | (7.0) -) -) (16.5)
21119 | 19108 | 21230 | 19987 | 18173 | 18275 | 17708 | 17632 | 18393 | 18356 | 14837 | 15243 || 220061
Total
(9.6) | (87) | (9.6) | (9.1) | (83) | (83) | (8.0) | (8.0) | (8.4) | (83) | (6.7) (6.9) (62.6)
4 5 4 8 6 2 4 5 10 0 2 8 58
2004
(6.9) | (8.6) | (6.9) | (13.8) | (10.3) | (3.4) | (6.9) | (8.6) | (17.2) (-) (3.4) | (13.8) || (34.7)
1 3 3 3 1 3 6 4 3 2 1 3 33
2005
(3.0) | (9.1) | (9.1) | (9:1) | (3.0) | (9-1) | (18.2) | (12.1) | (9-1) | (6.1) | (3.0) (9.1) (19.8)
2 5 2 1 11 2 1 4 4 3 4 0 39
Parturient 2006
(5.1) | (12.8) | (5.1) | (2.6) | (28.2) | (5.1) | (2.6) | (10.3) | (10.3) | (7.7) | (10.3) -) (23.4)
3 7 3 2 2 2 4 5 7 2 0 0 37
2007
(8.1) | (18.9) | (8.1) | (5.4) | (5.4) | (5.4) | (10.8) | (13.5) | (18.9) | (5.4) ) -) (22.2)
10 20 12 14 20 9 15 18 24 7 7 11 167
Total
(6.0) | (12.0) | (7.2) | (8.4) | (12.0) | (5.4) | (9.0) | (10.8) | (14.4) | (4.2) | (4.2) (6.6) -)
| 30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
Tota
(8.7) | (7.9) | (8.8) | (85) | (89) | (9.0) | (8.9) | (8.8) | (9.0) | (9.0) (6.2) (6.3) || (100.0)

Table 27: Monthly patient arrival counts (% out of total) for each patient gender

H Gender H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
13898 | 12396 | 13928 | 13280 | 13913 | 14043 | 13795 | 13613 | 14045 | 14141 | 9730 | 10070 || 156852
F (8.9) | (79) | (89) | (85) | (89) | (9.0) | (8.8) | (8.7) | (9.0) | (9.0) | (6.2) | (6.4) (44.6)
’ 16663 | 15292 | 17044 | 16630 | 17512 | 17668 | 17452 | 17425 | 17568 | 17415 | 12224 | 12038 || 194931
M (8.5) | (7.8) | (87) | (8:5) | (9.0) | (9.1) | (9.0) | (8.9) | (9.0) | (8.9) | (6.3) | (6.2) (55.4)
2 1 1 1 0 0 3 2 0 0 0 1 11
unknown
w2 o |[ey]on] o | o eyl o] o] 6 o] oy
30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
total (87) | (79) | (88) | (85) | (89) | (9.0) | (89) | (88) | (9.0) | (9.0) | (6.2) | (6.3) || (100.0)
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Table 28: Monthly patient arrival counts (% out of total) for each patient gender by year

H Gender ‘Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug

Sep ‘ Oct ‘ Nov ‘ Dec H Total H

2004 3158 3053 3317 3241 3327 3401 3576 3517 3311 3644 3262 3360 40167
(7.9) | (7.6) | (8.3) | 81) | (83) | 85) | (89) | 88) | (82) | 9.1) | (81) | (8.4) || (25.6)
9005 3537 2908 3640 3365 3585 3612 3730 3668 3603 3380 3215 3202 41445
®5) | (7.0) | 88) | &1) | 87 | 87 | (9.0) | (89) | 87 | 82) | (7.8) | (7.7) | (26.4)
P 2006 3459 3196 3573 3431 3589 3539 2781 2680 3579 3557 3253 3508 40145
(86) | (80) | (8.9) | (85) | (89) | (88) | (6.9) | (6.7) | (89) | (89) | (81) | (87) | (25.6)
2007 3744 3239 3398 3243 3412 3491 3708 3748 3552 3560 0 0 35095
17| 02 | 07 02 | 00| 09 |6 | ]|y o | o [ @
Total 13898 | 12396 | 13928 | 13280 | 13913 | 14043 | 13795 | 13613 | 14045 | 14141 9730 10070 156852
s |79 | 69 | 5 | 39 | ©00) | 8 | &7 | ©00) | ©0) | 62) | 64) | (446)
2004 3713 3919 4123 4010 4201 4046 4297 4535 4244 4216 4086 3955 49345
@5) | 79 | 84 | 61 | 65) | 62 | 67 | 02 | 56 | 35 | 63) | 50) | 253)
9005 4307 3705 4348 4234 4486 4718 4705 4626 4523 4097 4114 4026 51889
s [ 7y | e | 62 | s6 | 00 | 00| 89 | 87 | 79 | 7.9 | 78 || 266)
N 2006 4260 3834 4361 4215 4372 4393 3576 3573 4510 4492 4024 4057 49667
86) | 7.7 | 88) | 35 | 88) | 38 | 72) | 72 | 01) | 0.0) | 51 | 82) | 255)
9007 4383 3834 4212 4171 4453 4511 4874 4691 4291 4610 0 0 44030
10.0) | 87 | (9.6) | (95) | (10.1) | (102) | (11.1) | (107 | 0.7 | 05| © | © || 226
Total 16663 | 15292 | 17044 | 16630 | 17512 | 17668 | 17452 | 17425 | 17568 | 17415 | 12224 | 12038 194931

ota
®5) | (7.8) | &7) | 85 | 0.0) | (90.1) | (9.0) | (8.9) | (9.0) | (89) | (6.3) | (6.2) || (55.4)
1 0 0 1 0 0 0 0 0 0 0 0 2

2004
(50.0) | (-) () | (50.0) | (-) ) ) ) ) ) -) -) (18.2)
0 1 0 0 0 0 0 0 0 0 0 1 2

2005
() | (50.0) | () ) “) ) ) “) ) ) () | (50.0) || (18.2)
1 0 1 0 0 0 3 2 0 0 0 0 7

unknown | 2006
(14.3) | (-) | (143) | () ) () | (42.9) | (286) | () ) ) -) (63.6)
0 0 0 0 0 0 0 0 0 0 0 0 0

2007
) (-) ) -) -) ) ) ) ) ) -) ) (-)
2 1 1 1 0 0 3 2 0 0 0 1 11

Total
(18.2) | (9.1) | (9.1) | (9.1 “) () | (273) | (182) | () -) ) 9.1) )
Total 30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794

ota.

®7) | (79 | ®8) | 85 | (89) | 9.0) | (89) | (88) | 9.0) | 9.0) | (6.2) | (6.3) | (100.0)
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Table 29: Monthly patient arrival counts (% out of total) for each patient’s ‘Send By’

H Send By H Jan ‘ Feb Mar Apr May ‘ Jun ‘ Jul Aug ‘ Sep ‘ Oct Nov Dec H Total H
4685 4005 4513 4169 4226 4189 4150 4097 | 4445 4392 3137 3288 49296
Ambulance
(9.5) | (81) | (9.2) | (8.5) | (8.6) | (85) | (84) | (83) | (9.0) | (8.9) | (6.4) | (6.7) (14.0)
10685 | 9455 | 10802 | 11044 | 11313 | 11680 | 11677 | 11605 | 11558 | 11823 | 7825 | 7808 || 127275
Independently
(8.4) | (74) | (85) | (87) | (89) | (9.2) | (92) | (9.1) | (9-1) | (9:3) | (6.1) | (6.1) (36.2)
L 15193 | 14229 | 15658 | 14698 | 15886 | 15842 | 15423 | 15338 | 15610 | 15341 | 10992 | 11013 || 175223
Physician
(8.7) | (8.1) | (8.9) | (84) | (9.1) | (9.0) | (8.8) | (8.8) | (8.9) | (8.8) | (6.3) | (6.3) || (49.8)
30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
Total
(8.7) | (7.9) | (8.8) | (85) | (89) | (9.0) | (8.9) | (88) | (9.0) | (9.0) | (6.2) | (6.3) || (100.0)
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Table 30: Monthly patient arrival counts (% out of total) for each patient’s ‘Send By’ by year

H SendBy ‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total ‘
1169 | 1068 | 1128 | 1045 | 1079 | 1028 | 1147 | 1126 | 1080 | 1078 | 1047 | 1097 13092
200 (8.9) | (82) | (86) | (8.0) | (8:2) | (7.9) | (88) | (8:6) | (82) | (8.2) | (8.0) | (8.4) | (26.6)
r 1125 925 1139 | 1072 | 1018 | 1078 | 1022 | 1082 | 1074 | 1032 943 1063 12573
2005 (8.9) | (74) | (9.1) | (8.5) | (81) | (86) | (81) | (86) | (85) | (8.2) | (7.5) | (8.5) (25.5)
1156 992 1114 | 1043 | 1080 | 1057 853 761 1143 | 1158 | 1147 | 1128 12632
Ambulance 2006
(9.2) | (79) | (8:8) | (83) | (85) | (84) | (6.8) | (6.0) | (9.0) | (9-2) | (9.1) | (8.9) (25.6)
1235 1020 1132 1009 1049 1026 1128 1128 1148 1124 0 0 10999
2007 (11.2) | (9.3) | (10.3) | (92) | (9:5) | (9.3) | (10.3) | (10.3) | (10.4) | (10.2) (-) (=) (22.3)
4685 | 4005 4513 | 4169 4226 4189 4150 4097 | 4445 4392 3137 | 3288 49296
fotal (9.5) | (8:1) | (92) | (85) | (86) | (85) | (8.4) | (83) | (9.0) | (8.9) | (6.4) | (6.7) (14.0)
2583 | 2622 | 2722 | 2905 | 2915 | 2808 | 3062 | 3044 | 2824 | 2972 | 2620 | 2460 33537
200 (7.7) | (7.8) | (8.1) | (8.7) | (87) | (84) | (91) | (9.1) | (84) | (8.9) | (7.8) | (7.3) (26.4)
. 2757 | 2294 | 2755 | 2747 | 2993 | 3202 | 3368 | 3310 | 2952 | 2982 | 2732 | 2663 34755
200 (7.9) | (6.6) | (7.9) | (7.9) | (8.6) | (92) | (9.7) | (9.5) | (85) | (8.6) | (7.9) | (7.7) (27.3)
2660 | 2307 | 2741 | 2723 | 2678 | 2850 | 2280 | 2262 | 3027 | 3048 | 2473 | 2685 31734
Independently | 2006
(8.4) | (7.3) | (8:6) | (8.6) | (84) | (9.0) | (7.2) | (7.1) | (9.5) | (9.6) | (7.8) | (8.5) (24.9)
2685 | 2232 | 2584 | 2669 | 2727 | 2820 | 2967 | 2989 | 2755 | 2821 0 0 27249
2007 (9.9) | (8:2) | (9.5) | (9.8) | (10.0) | (10.3) | (10.9) | (11.0) | (10.1) | (10.4) | (-) G | e
10685 | 9455 | 10802 | 11044 | 11313 | 11680 | 11677 | 11605 | 11558 | 11823 | 7825 | 7808 || 127275
T s [ | 69 | 61 | 69 | 02 | 02 | 00 | 00 | @3 | 61 | 61 | (62
3120 | 3282 | 3590 | 3302 | 3534 | 3611 | 3664 | 3882 | 3651 | 3810 | 3681 | 3758 42885
200 (7.3) | (7.7) | (84) | (7.7) | (8.2) | (84) | (85) | (9.1) | (85) | (8.9) | (8.6) | (8.8) (24.5)
3962 | 3395 | 4094 | 3780 | 4060 | 4050 | 4045 | 3902 | 4100 | 3463 | 3654 | 3503 46008
200 (8.6) | (74) | (89) | (82) | (88) | (88) | (8.8) | (85) | (89) | (7.5) | (7.9) | (7.6) (26.3)
Physician 2006 3904 | 3731 | 4080 | 3880 | 4203 | 4025 | 3227 | 3232 | 3919 | 3843 | 3657 | 3752 45453
(8.6) | (8.2) | (9.0) | (8.5) | (9.2) | (8.9) | (7.1) | (7.1) | (86) | (8.5) | (8.0) | (8.3) (25.9)
4207 | 3821 | 3894 | 3736 | 4089 | 4156 | 4487 | 4322 | 3940 | 4225 0 0 40877
2007 (10.3) | (9.3) | (9-5) | (9.1) | (10.0) | (10.2) | (11.0) | (10.6) | (9.6) | (10.3) (-) (-) (100.0)
15193 | 14229 | 15658 | 14698 | 15886 | 15842 | 15423 | 15338 | 15610 | 15341 | 10992 | 11013 || 175223
fotal (8.7) | (81) | (89) | (84) | (9.1) | (9.0) | (8.8) | (88) | (89) | (8.8) | (6.3) | (6.3) (49.8)
30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
total (8.7) | (7.9) | (8.8) | (8.5) | (89) | (9.0) | (8.9) | (88) | (9.0) | (9.0) | (6.2) | (6.3) || (100.0)
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Table 31: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’

H Left Reason H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
Rel . 18852 | 16983 | 19386 | 18623 | 19398 | 19764 | 19255 | 18989 | 19669 | 19602 | 13660 | 13566 || 217747
eleasec
(87) | (7.8) | (89) | (86) | (89) | (9.1) | (88) | (87) | (9.0) | (9.0) | (6.3) | (6.2) (64.0)
9286 | 8518 | 9283 | 9016 | 9724 | 9518 | 9511 | 9683 | 9507 | 9521 | 6622 | 6854 || 107043
Hospitalized
(87) | (8.0) | (87) | (84) | (91) | (89) | (89) | (9.0) | (89) | (89) | (6.2) | (6.4) (31.5)
g 1312 1145 1235 1295 1300 1437 1507 1419 1444 1441 982 891 15408
LWB
(8.5) | (74) | (8.0) | (84) | (8.4) | (9:3) | (9.8) | (9.2) | (94) | (94) | (6.4) | (5.8) (4.5)
598 554 539 482 483 436 439 405 455 482 346 429 5648
Deceased

(10.6) | (9.8) | (9.5) | (85) | (8:6) | (7.7) | (7.8) | (72) | (81) | (85) | (6.1) | (7.6) | (1.7)
223 | 219 | 235 | 247 | 260 | 2092 | 282 | 266 | 281 | 249 | 165 | 179 | 2898
(77) | (7.6) | (81) | (85) | (9.0) | (10.1) | (9.7) | (9.2) | (9.7) | (86) | (5.7) | (6.2) || (0.9)
226 | 189 | 195 | 187 | 212 | 198 | 201 | 218 | 197 | 217 | 140 | 143 | 2323
9.7) | (81) | (84) | (8.0) | (9.1) | (85) | (8.7) | (9.4) | (85) | (9.3) | (6.0) | (6.2) || (0.7)

66 81 | 100 | 61 48 66 55 60 60 44 39 a7 727
(9.1) | (11.1) | (13.8) | (8.4) | (6.6) | (9.1) | (7.6) | (8.3) | (8:3) | (6.1) | (5.4) | (6.5) )

30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794

(8.7) | (7.9) | (8.8) | (85) | (8.9) | (9.0) | (8.9) | (88) | (9.0) | (9.0) | (6.2) | (6.3) || (100.0)

Refuse Treatment

Other Institute

Other

Total
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Table 32: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’ by year

part 1
H Left Reason | Year Jan ‘ Feb ‘ Mar Apr ‘ May ‘ Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
132 117 116 113 111 101 105 91 96 120 95 162 1359
2o (9.7) | (8.6) | (8.5) | (83) | (82) | (7.4) | (7.71) | (6.7) | (7.1) | (88) | (7.0) | (11.9) || (24.1)
2005 148 145 126 137 112 118 109 116 114 109 113 111 1458

(10.2) | (9.9) | (86) | (9.4) | (7.7) | (81) | (7.5) | (8.0) | (7.8) | (7.5) | (7.8) | (7.6) || (25.8)
148 | 115 | 157 | 95 | 121 | 111 | 104 | 90 | 119 | 121 | 138 | 156 | 1475
(10.0) | (7.8) | (10.6) | (6.4) | (8.2) | (7.5) | (7.1) | (6.1) | (8.1) | (8.2) | (9.4) | (10.6) || (26.1)
170 | 177 | 140 | 137 | 139 | 106 | 121 | 108 | 126 | 132 0 0 1356
(12.5) | (13.1) | (10.3) | (10.1) | (10.3) | (7.8) | (8.9) | (8.0) | (9.3) | (9.7) | (-) () | (24.0)
598 | 554 | 539 | 482 | 483 | 436 | 439 | 405 | 455 | 482 | 346 | 429 | 5648

Deceased 2006

2007

fotal (10.6) | (9.8) | (9-5) | (85) | (8.6) | (7.7) | (7.8) | (7.2) | (81) | (85) | (6.1) | (7.6) (1.6)

2021 | 2064 | 2281 | 2175 | 2274 | 2306 | 2385 | 2552 | 2363 | 2361 | 2254 | 2338 || 27374
2o (74) | (75) | (83) | (7.9) | (83) | (84) | 87) | (9.3) | (8.6) | (86) | (82) | (85) || (25.6)
"5 2401 | 2067 | 2462 | 2276 | 2398 | 2435 | 2398 | 2435 | 2296 | 2120 | 2123 | 2164 | 27575

(87) | (75) | (89) | (83) | 87) | (88) | 87) | (88) | (83) | (7.7) | (7.7) | (7.8) || (25.8)
2201 | 2183 | 2200 | 2252 | 2456 | 2222 | 1985 | 2010 | 2290 | 2323 | 2245 | 2352 | 26899
(85) | (8.1) | (85) | (84) | (9.1) | (83) | (7.4) | (7.5) | (8:5) | (86) | (83) | (87) || (25.1)
2573 | 2204 | 2250 | 2313 | 2596 | 2555 | 2743 | 2686 | 2558 | 2717 | 0 0 25195
(10.2) | (8.7) | (89) | (9.2) | (10.3) | (10.1) | (10.9) | (10.7) | (10.2) | (10.8) | (-) () || (235)
9286 | 8518 | 9283 | 9016 | 9724 | 9518 | 9511 | 9683 | 9507 | 9521 | 6622 | 6854 | 107043

Hospitalized | 2006

2007

fotal 87 | (80) | 87 | 84) | 0.1) | (89) | (89) | 9.0) | (8.9 | (89) | (62) | (6.4) | (30.4)

284 | 309 | 256 | 204 | 293 | 360 | 395 | 395 | 400 | 366 | 330 | 284 | 3966
2o (7.2) | (7.8) | (6.5) | (7.4) | (74) | (9.1) | (10.0) | (10.0) | (10.1) | (9.2) | (83) | (7.2) || (25.7)
oo 382 | 308 | 320 | 375 | 399 | 419 | 500 | 400 | 409 | 391 | 360 | 336 | 4608

(83) | 6.7) | (7.1) | 81) | 87) | (9.1) | (10.9) | (87) | (8.9) | (85) | (7.8) | (7.3) || (29.9)
335 | 247 | 337 | 308 | 208 | 317 | 266 | 263 | 333 | 326 | 292 | 271 | 3593
(9.3) | (6.9) | (94) | (86) | (83) | (88) | (7.4) | (7.3) | (9.3) | (9.1) | (8.1) | (7.5) || (23.3)
311 | 281 | 313 | 318 | 310 | 341 | 346 | 361 | 302 | 358 0 0 3241

LWBS 2006

2007 (9.6) | (87) | (9.7) | (9.8) | (9.6) | (10.5) | (10.7) | (11.1) | (9.3) | (11.0) -) -) (21.0)

1312 | 1145 | 1235 | 1295 | 1300 | 1437 | 1507 | 1419 | 1444 | 1441 982 891 15408

fotal (85) | (7.4) | (8.0) | (84) | (84) | (93) | (98) | (9.2) | (94) | (94) | (6.4) | (5.8 (4.4)
35 44 55 29 20 30 16 22 20 24 14 25 334

20 (10.5) | (13.2) | (16.5) | (8.7) | (6.0) | (9.0) | (4.8) | (6.6) | (6.0) | (7.2) | (4.2) | (7.5) (45.9)
13 16 10 10 7 11 12 9 11 8 15 10 132

200 (9.8) | (12.1) | (7.6) | (7.6) | (5.3) | (8.3) | (9.1) | (6.8) | (8.3) | (6.1) | (11.4) | (7.6) (18.2)
7 10 19 17 9 15 8 15 17 4 10 12 143

Other 2006

(4.9) | (7.0) | (13.3) | (11.9) | (6.3) | (10.5) | (5.6) | (10.5) | (11.9) | (2.8) | (7.0) | (8.4) (19.7)

11 11 16 5 12 10 19 14 12 8 0 0 118

20T (9.3) | (9.3) | (13.6) | (4.2) | (10.2) | (8.5) | (16.1) | (11.9) | (10.2) | (6.8) -) -) (16.2)
Total 66 81 100 61 48 66 55 60 60 44 39 47 27

(9.1) | (11.1) | (13.8) | (84) | (6.6) | (9.1) | (7.6) | (83) | (8.3) | (6.1) | (5.4) | (6.5) )

125



Table 33: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’ by year

part 2
H Left Reason ‘ Year H Jan ‘ Feb ‘ Mar ‘ Apr ‘ May Jun ‘ Jul ‘ Aug ‘ Sep ‘ Oct ‘ Nov ‘ Dec H Total H
62 47 38 38 39 48 60 58 41 61 39 37 568
2o (10.9) | (83) | (6.7) | (6.7) | (6.9) | (85) | (10.6) | (10.2) | (7.2) | (10.7) | (6.9) | (6.5) || (24.5)
49 52 41 49 54 46 52 46 42 48 44 58 581
200 (8.4) | (9.0) | (7.1) | (84) | (93) | (7.9) | (9.0) | (7.9) | (7.2) | (83) | (7.6) | (10.0) || (25.0)
64 35 45 52 62 39 33 43 61 53 57 48 592
Other Institute 2006
(10.8) | (5.9) | (7.6) | (8.8) | (10.5) | (6.6) | (5.6) | (7-3) | (10.3) | (9.0) | (9-6) | (8.1) (25.5)
51 55 71 43 57 65 56 71 53 55 0 0 582
2007 (8.8) | (95) | (12.2) | (8.2) | (9.8) | (11.2) | (9.6) | (12.2) | (9.1) | (9.5) -) -) (25.1)
226 189 195 187 212 198 201 218 197 217 140 143 2323
fotl (9.7) | (8:1) | (84) | (8.0) | (9.1) | (8.5) | (87) | (94) | (85) | (9.3) | (6.0) | (6.2) (.7)
60 44 41 65 45 59 62 56 68 67 54 68 689
200 (8.7) | (64) | (6.0) | (9.4) | (65) | (86) | (9.0) | (81) | (9.9) | (9.7) | (7.8) | (9.9) || (23.8)
49 55 44 52 67 63 7 72 64 46 58 48 695
200 (71) | (7.9) | (63) | (7.5) | (9.6) | (9.1) | (11.1) | (10.4) | (9.2) | (6.6) | (83) | (6.9) || (24.0)
Refuse Troatment | 2006 56 57 68 62 64 75 55 35 59 58 53 63 705
(7.9) | (8:1) | (96) | (88) | (9.1) | (10.6) | (7.8) | (5.0) | (84) | (8.2) | (7.5) | (8.9) (24.3)
58 63 82 68 84 95 88 103 90 78 0 0 809
2007 (7.2) | (7.8) | (10.1) | (8.4) | (10.4) | (11.7) | (10.9) | (12.7) | (11.1) | (9.6) -) -) (27.9)
223 219 235 247 260 292 282 266 281 249 165 179 2898
fotel (7.7) | (7.6) | (8:1) | (85) | (9.0) | (10.1) | (9.7) | (9:2) | (9.7) | (8:6) | (5.7) | (6.2) (.8)
4278 | 4347 | 4653 | 4538 | 4746 4543 4850 4878 4567 4861 4562 | 4401 55224
200 (7.7) | (79) | (84) | (82) | (86) | (8.2) | (88) | (88) | (83) | (88) | (83) | (8.0) (25.4)
4802 | 3971 | 4976 | 4700 | 5034 | 5238 | 5287 | 5216 | 5190 | 4755 | 4616 | 4502 || 58287
200 (8.2) | (6.8) | (85) | (81) | (86) | (9.0) | (9.1) | (89) | (89) | (82) | (7.9) | (7.7) (26.8)
Reloasad 2006 4819 | 4383 | 5019 | 4860 | 4951 | 5153 | 3909 | 3799 | 5210 | 5164 | 4482 | 4663 | 56412
(8.5) | (7.8) | (8.9) | (86) | (88) | (9.1) | (6.9) | (6.7) | (92) | (9.2) | (7.9) | (8.3) (25.9)
4953 | 4282 | 4738 | 4525 | 4667 | 4830 | 5209 | 5096 | 4702 | 4822 0 0 47824
2007 (10.4) | (9.0) | (9.9) | (9.5) | (9.8) | (10.1) | (10.9) | (10.7) | (9.8) | (10.1) -) -) (22.0)
Total 18852 | 16983 | 19386 | 18623 | 19398 | 19764 | 19255 | 18989 | 19669 | 19602 | 13660 | 13566 || 217747

®7) | (78) | 89) | 86) | 89) | (0.1) | 88) | (87) | (9.0) | (9.0) | (6.3) | (6.2) | (61.9)

30563 | 27689 | 30973 | 29911 | 31425 | 31711 | 31250 | 31040 | 31613 | 31556 | 21954 | 22109 || 351794
B7) | (79 | 88) | (85) | 89) | (9.0) | 3.9) | (88) | 9.0) | (9.0) | (62) | (6.3) | (100.0)

Total
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B Count by Patients’ Profile

B.1 Patients’ profile, counts: types and priorities

It is interesting to analyze the distribution of patient arrivals according to the different types of
treatments and patients’ severity. We have done that in the present section.

For analyzing the arrival pattern during the year for each patient treatment type, we have
excluded December 2008 because it was not fully represented and July and August 2006 because
it was a war time. From Figure 59, we see that the arrival pattern is different for each patient
type. Internal patients arrive less during the main two periods of holidays (April and September)
while Orthopedic patients arrive mostly during the pupil vacation time in the summer. Surgical and

Trauma patients do not manifest sensitivity to seasonal changes.
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0 +—1 = -» (2ol W w e w s alis- 8 8- e 8 AL S ol L i ; Tra, 2007
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Figure 59: Number of patients per month according to types for each year

For staffing support reasons, it is important to plot also the number of patients according to
type, since physicians are trained to provide specific types of treatments (although, in recent years,
there is a change towards a new emergency profession to the ED physician). Along these lines,
Figure 60 is similar to Figure 4 but is split according to types. One can see clearly that at night
and around 4pm—5pm there is a valley in most patient types, while ‘Int’ patients reached an extra

peak at 1lam—12pm.
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Figure 60: Average number of patients per hour according to types (Jan 2005, weekdays)

In Figure 61 the patients are characterized according to their severity. It seems that most of
the patients are regular ones and they arrive as in Figure 4, while ICU and V patients, which need

closer attention, arrive sparsely during the morning and afternoon shifts.

B.2 Patients profile, counts: administrations’ categories

In Figure 62 the patients are characterized according to their gender. It seems that there are more
male patients than female. The interesting issue is the peak in the afternoon which is obvious in the
female arrival but not in the male arrival pattern. A reasonable explanation that we have found,
was that the peak is due to mothers which wait for their kids to return from school and for their
spouse to return from work.

In Figure 63 the patients are characterized according to their age. It seems that age group 15-24
is the dominant group.

In Figure 64 the patients are characterized according to their transferrer factor (sender). It
seems that patients transferred by a physician is the dominant group and the most fluctuant during
the day, while patients arriving by ambulance or independently are more moderate.

In Figure 65 the patients are characterized according to their departure reason. It seems that
the two dominant groups, ‘Released’ and ‘Hospitalized’ patients, have a very close arrival pattern

during the day, but released patients have more clearer peak at 7pm than the hospitalized patients.
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Figure 61: Average number of patients per hour according to severity (Jan 2005, weekdays)
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Figure 62: Average number of patients per hour according to gender (Jan 2005, weekdays)
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Figure 63: Average number of patients per hour according to age (Jan 2005, weekdays)
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Figure 64: Average number of patients per hour according to their sender (Jan 2005, weekdays)
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Figure 65: Average number of patients per hour according to age (Jan 2005, weekdays)
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C Emergency Department Process - Additional Materials

In the following figures, we depict the overall patient’s process within the ED, from some varying
points of view: a precedence diagram of activities (Figure 67), patients’ flow among the resources

(Figure 66), and information flow (Figure 68).
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Figure 66: Resources flow chart in the ED
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Figure 67: Activities flow chart in the ED
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Figure 68: Information flow chart in the ED
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D Length of Stay (LOS) Analysis by Patient Characteristics - Ad-

ditional Materials

We continue to investigate, what was influencing the patient’s LOS. We looked at the influence
of the type of patient (Figures 69 for the LOS distribution, and Figure 70 for the LOS survival
distribution), patient severity (Figures 71 for distribution of LOS and Figure 72 for the LOS survival
distribution), patient gender (Figures 73 for distribution of LOS and Figure 74 for the LOS survival
distribution), patient age (Figures 75 for distribution of LOS and Figure 76 for the LOS survival
distribution), patient entry reason (Figures 77 for distribution of LOS and Figure 78 for the LOS
survival distribution), patient references (sent by Physician / on their own) type (Figures 79 for
distribution of LOS and Figure 80 for the LOS survival distribution), and by patient left reason
(Figures 81 for distribution of LOS and Figure 82 for the LOS survival distribution).

20%
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= ort 109,721 153 190
10%
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Figure 69: LOS frequency by patient type
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Figure 70: LOS survival by patient type
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Figure 71: LOS frequency by patient severity
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Figure 72: LOS survival by patient severity
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Figure 73: LOS frequency by patient gender
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Figure 75: LOS frequency by patient age
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Figure 76: LOS survival by patient age
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Figure 77: LOS frequency by entry reason

140



Survival

Frequency

100%

90%

—o—External Reasons

—&~lliness
80% -
Entry Reason N ALOS | Std (LOS)
70% -
? External Reasons 136,879 225 723
60% | lliness 238,159 399 2133
50% -
40% 4
N \& \
20%
10% -
S S
0% T T T T T T T T T T T T T T T
N o o Q Q N N I\ Q Q N o o Qo Q N Q
- S A T - AN R U ST A CON
LOS
Figure 78: LOS survival by patient entry reason
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Figure 79: LOS frequency by send by
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Figure 80: LOS survival by patient send by
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Figure 81: LOS frequency by left reason
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Figure 82: LOS survival by patient left reason
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E Bed Occupancy Analysis - Additional Materials

E.1 Bed occupancy - per Type

It seems that the non-ordinary shape of L distribution needs further investigation. We try to see
if the shape of the distribution is due to a combination of different distributions. We start with
analyzing the distribution by patient type. In Figures 83, 84, 85, and 86 we see that the distribution
of the occupied beds for the different patient types is very different. We also see from Figure 87
that the statistical order of the cumulative distributions of each type (‘F(type)’) are kept so that
F(Tra) > F(Sur) > F(Ort) > F(Int) is true for any L of the relevant type.
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Figure 83: Distribution P(Int) of the time ED was with number of Internal occupied beds (L)
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Figure 84: Distribution P(S) of the time ED was with number of Surgical occupied beds (L)
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Figure 85: Distribution P(O) of the time ED was with number of Orthopedic occupied beds (L)
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Figure 86: Distribution P(Tra) of the time ED was with number of Trauma occupied beds (L)
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Figure 87: cumulative distribution F(L) of the time ED was with number of occupied beds (L) per
type
E.2 Bed occupancy - per patient characteristics

We also checked the distribution and the cumulative distribution of L by outcome of the treatment
- Releasing home or Hospitalizing at the hospital (Figure 88 and Figure 89), or by Severity of the
patient (Figure 90 and 91).
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Figure 88: The distribution P(L) of the time ED was with number of occupied beds (L) per outcome
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Figure 89: Cumulative distribution F(L) of the time ED was with number of occupied beds (L) per

outcome of the treatment
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Figure 90: The distribution P(L) of the time ED was with number of occupied beds (L) per Severity
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Figure 91: Cumulative distribution F(L) of the time ED was with number of occupied beds (L) per

Severity
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F Comparing Theoretical Models with the Empirical Analysis -
Additional Materials

We tried to refine the ‘M/M /oo Model’ by looking just at fragments of the empirical data and
comparing that to the M /M /oo model (we named it ‘Fragmental M /M /oo Model’). We started
with looking at each shift separately, and then at each group of hours that we found in Figure 15.
The data we used for both is summarized in Table 34 (where the ALOS is E(S) = 1/u calculated

for each fragment).

Table 34: Parameters for the Fragmental M /M /oo Model

A %

Shiftl || 0.23402 | 0.00516

Shift2 0.2156 | 0.00512
Shift3 || 0.06843 | 0.00467
Groupl || 0.06195 | 0.00484

Group2 || 0.17399 | 0.00504

Group3 || 0.23788 | 0.00514

From the comparison of the Fragmental M /M /oo Model with the empirical data in Figures 92

to 97, it is clear that this model is not modeling well the number of occupied beds in the ED.
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Figure 92: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - shiftl
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Figure 93: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - shift2

150



—— Empiric(Shift3)
-= Theoretic(Shift3)

Probability

0 10 20 30 40 50 60 70 80 90 100 110
L (Number of Occupied Beds)

Figure 94: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - shift3
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Figure 95: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - groupl
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Figure 96: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - group2

—— Empiric(Group3)
-= Theoretic(Group3)

o

BN ol
! !

Probability
w

0 10 20 30 40 50 60 70 80 90 100 110
L (Number of Occupied Beds)

Figure 97: Comparison of the steady-state distribution of Fragmental M /M /oo model to the em-

pirical data - group3
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G Simulation Adjustment Process

In this section we describe the process of adjusting the simulation staff schedule to meet the distri-
bution of the number of occupied beds in the ED.

We started by looking at the average number of occupied beds per hour (avgL). We see in
Figure 98 that at the beginning of the day the theoretical averages starting to fall faster than the
actual (empirical) averages. After that there is a change in pace during the lunch break and after
the beginning of the second shift. It implies that at night the actual use of staff is less effective.
Moreover, we know from interviewing the staff that the senior physicians are not always available
(sleep near by). That gives us the motivation to adjust our schedule to fit better the number of

occupied beds (L) distribution.
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Figure 98: Comparison of average number of occupied beds per hour of simulation model (Arena)

to the empirical data

We start by gradually reducing the number of available staff (physicians) during the night shift
from the middle of the shift until the morning (3-8). The results are presented in Figures 99 and
100.

We can now see that the morning hours need a reduction of resources. For that we used the
knowledge that staff spend mornings on meetings, eating, and arrangements until patients start to
arrive. We therefore adjust the number of physicians from 8 to 13. The results are presented in

Figures 101 and 102.
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Figure 99: Comparison of average number of occupied beds per hour of adjusted simulation model

(Arena) during night shift to the empirical data
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Figure 100: Comparison of distribution of occupied beds of adjusted simulation model (Arena)

during night shift to the empirical data
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Figure 101: Comparison of average number of occupied beds per hour of adjusted simulation model

(Arena) during morning shift to the empirical data
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Figure 102: Comparison of distribution of occupied beds of adjusted simulation model (Arena)

during morning shift to the empirical data
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We can see that some small adjustment now needs to be done in order to get a reasonable match,

as we see in Figures 103 and 21.
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Figure 103: Comparison of average number of occupied beds per hour of adjusted Simulation Model

(Arena) during all shifts to the empirical data
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