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Abstract

The Emergency Department (ED) of a modern hospital is a highly complex system. Indeed, it

gives rise to numerous managerial challenges from the Service Engineering area, spanning the full

spectrum of operational, clinical and financial perspectives, over varying horizons: operational -

few hours or days ahead, tactical - weeks or a few months ahead, or strategically - months to years

ahead. Since realistic ED models are often intractable analytically, one resorts to simulation for

an appropriate framework to address these challenges, which is what we do here. We start with

short-term prediction and operational planning (physicians and nurse staffing) over several hours

or days ahead. To this end, we implement a novel simulation-based technique that utilizes the

concept of offered-load and discover that it performs better than a prevalent alternative. Next,

we evaluate ED staff scheduling that adjusts for mid-term changes (tactical horizon), and then

we analyze the long-term benefits of using real-time tracking in the ED (strategical horizon).

We also search for “best” ED operational models, via simulation and based on real data, where

DEA (Data envelopment Analysis) is the tool used to identify models that are efficient in a given

operational environment. Finally, we present a methodology that enables the creation of complex

simulations by reusing existing simulation submodels.
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1 Introduction

1.1 Service-Engineering

Service can be perceived as the pursuit of positively changing the state of a service seeker (customer).

Although this definition implies that service cannot be accumulated as opposed to manufacturing

(and it perishes instantly), to deliver a service one does need resources and a service-channel of some

sort (e.g., telephone lines in a call center) (Shimomura and Tomiyama [2002]).

Service engineering is a scientific area that has been developed in the past two decades, starting

in Germany and in Israel (Bullinger et al. [2003]). It can be described as the “design, analysis

and management of services, fusing ingredients from Operations Research, Statistics, Industrial

Engineering, Game Theory, Economics, Sociology, Psychology, Management Information Systems,

Computer Science, and even more” (Mandelbaum [2007]).

The scope of services in our life extends from financial services (e.g., banking, insurance, real-

estate, and trades), to transportation services (e.g., public transportation, or shipping), social (e.g.,

health-care, education, or government), entertainment, and more. Service interfaces may include

face-to-face (e.g., a teller in a bank), quasi-face-to-face (e.g., telephone, Internet, chat, fax, and

snail-mail) and some are done automatically by machines (e.g., seeing a movie, or checking the

balance in one’s bank account) (Mandelbaum [2007]).

In this work, we focus on the health-care system, specifically on the services given in Emergency

Departments (EDs).

1.2 Health-care system

The rising cost of health-care services has been a subject of mounting importance and much discus-

sion worldwide. Ample explanations have been proposed. Yet, regardless of their cause, rising costs

impose, and rightly so, pressures on health-care providers to improve the management of quality,

efficiency, and economics of their organizations.

Hospitals play a central role in the provision of health services and, within hospitals, ED over-

crowding has been perhaps the most urgent operational problem (Sinreich and Marmor [2005], Hall

[2006], Green [2008]). Overcrowding in the ED leads to excessive waiting times and repelling en-

vironments which, in turn, cause: (1) Poor service quality (clinical, operational, perceived); (2)

Patients in unnecessary pain and anxiety; (3) Negative emotion (of patients and escorts), up to vio-

lence against staff; (4) Increased risk of clinical deterioration; (5) Ambulance diversion; (6) Patients’

LWBS (Leave Without Being Seen); (7) Inflated staff workload; and more (e.g., Derlet and Richards

2



[2000]).

Dealing with over-crowding in the ED starts from Staff (re)scheduling using simulation (e.g.,

Sinreich and Jabali [2007] by maintaining a steady utilization, or Badri and Hollingsworth [1993]

and Beaulieu et al. [2000] focus on reducing Average Length of Stay (ALOS)), looking for alternative

operational ED designs (e.g., King et al. [2006], or Liyanage and Gale [1995] which aim mostly

at reducing ALOS), to raising the patients’ view (Quality of care) by reducing waiting times (in

particularly the time to first encounter with a physician) (e.g., Green [2008]).

1.3 Research objectives and the structure of the work

We start with empirical analysis of an ED, to learn about the ED environment. We then develop

simple descriptive and mathematical models (mainly of ED occupancy), and compare them to our

data (Chapter 2). We aim at discovering how far these simple models can take us in describing

the ED reality - our conclusion motivates the use of simulation, which is the main tool use here.

We then introduce a new intra-day staffing principle that is both fast and service oriented, It can

be used on-line as a command-and-control solution for the ED (for short-term periods), or as a

tool to rearrange the workforce of the ED to overcome crises such as those of flu epidemic periods

(Chapter 3). We then take a broader view of the ED and propose a strategic methodology, based

on analyzing the impact of operational environmental factors, for choosing the most efficient ED

operating model (Chapter 4). We continue with developing a methodology that applies simulation

to compare the long-term benefits of using real-time patients’ tracking devices in the ED (Chapter

5). Before summarizing the work on Chapter 7, we present a methodology for the reuse of simulation

components (Chapter 6); it is motivated by the increasing interest in discrete-time simulation for

achieving service engineering goals.
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2 Empirical Model of the ED: Analysis and Comparisons to The-

oretical Models

2.1 Introduction

The rising cost of health-care services has been a subject of mounting importance and much dis-

cussion worldwide. Ample explanations have been proposed, yet regardless of their cause, rising

costs impose pressures on health-care providers to improve the management of quality, efficiency,

and economics of their organizations.

Hospitals play a central role in the provision of health services and, within hospitals, ED over-

crowding has been perhaps the most urgent operational problem (Sinreich and Marmor [2005], Hall

[2006], Green [2008]). Overcrowding in the ED leads to excessive waiting times and repelling en-

vironments which, in turn, cause: (1) Poor service quality (clinical, operational); (2) Patients in

unnecessary pain and anxiety; (3) Negative emotions (of patients and escorts), which sometimes lead

to aggression and even violence (e.g. against staff); (4) Increased risk of clinical deterioration; (5)

Ambulance diversion; (6) Patients’ LWBS (Leave Without Being Seen); (7) Inflated staff workload;

and more (e.g., Derlet and Richards [2000]).

A hospital is an institution for health care, which is able to provide complex treatments and

long-term patient stays. Hospitals include numerous medical units specializing each in a different

area of medicine, such as internal, surgery, intensive care, obstetrics, and so forth. In most of the

large hospitals there are several similar medical units operating in parallel. In our research we focus

on an Emergency Department (ED) with its six sub-departments in “Anonymous” Hospital (see

Section 2.1.1).

The first goal of this chapter is to introduce the ED world empirically and to describe our data-

base of the ED. We then try to fit a “black-box” stochastic model to the number of patients in the

ED. Failing to do so motivates our simulation approach.

2.1.1 “Anonymous” hospital

“Anonymous” hospital is a large Israeli hospital with about 1000 beds and 45 medical units. About

1,000 patients can be hospitalized simultaneously and 75,000 patients are hospitalized annually. We

focus on the ED - which is the gate and the window to the hospital, and which must operate in a

mass-customized mode - i.e., follow a structured care process while providing each individual the

customized care required.

4



The ED of “Anonymous” hospital attends to about 250-300 patients daily, with 58% classified

as Internal patients (their admission reason is mostly illness and treated by internists) and 42%

classified as Surgical or Orthopedic patients (their admission reason is mostly injury and treated

by surgical and orthopedic physicians accordingly). The ED contains three major areas (the chart

of the physicial area can be found in Figure 1): (1) Internal acute: waiting and treatment room

for acute internal patients treated by dedicated internists physicians and nurses; (2) Trauma acute:

waiting and treatment room for surgical and orthopedic patients treated by dedicated nurses, but

shared with orthopedic and surgical physicians; (3) Walking: area for Walking patients (patients

that do not need a bed and use chairs, usually with mild problems) contains waiting lobby and unique

treatment rooms for internal (dedicated for the walking area), surgical, and orthopedic physicians

(the last two shared with the Trauma acute area). In the walking area, there is also a Gynecology

unit, where patients with gynecology problems get help. There are other emergency room (ER)

locations, detached from the main one we are focusing on (which we refer to as the ED), which are

dedicated to special issues such as pediatrics ER, and Ophthalmology ER. “Anonymous” hospital

does not implement a fast-track process for non-emergency patients. Mean sojourn time of patients

in the ED (ALOS) equals 4:38 hours, with a large variance over individual patients. For more basic

counts, see Appendix A.

2.1.2 Data description

This documentation describes patient-level data at the Emergency Department of “Anonymous”

Hospital in Israel. The data was recorded over the following periods: 1/1/2004 – 1/12/2008. a

sample from the data can be found in Table 1.

There is a record (line in the file) for each patient’s visit. The following are the fields for each

record:

• Key - a unique number identifies each patient. The hospitals replaced the patients ID numbers

with a unique generate number.

• AdmissionNo - Patients in “Anonymous ED” are identified by a serial number starting with

the year and continued by a sequential 6-digit number (e.g., 1999000001)

• AdmissionDate - The patient’s arrival time and date. It is recorded when the admission

secretary types the patient into the system. The format is “dd/mm/yyyy hh:mm”.
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Figure 1: “Anonymous” ED physical layout chart

• Discharge - The patient’s departure time and date. It is recorded when the admission secretary

types the patient into the system. The format is “dd/mm/yyyy hh:mm”.

• SubUnitID - The code type of ward where the patients are admitted in the ED (as typed by

the admission secretary). The explanations of the codes are given in the sequential column (5

digits).

• BirthDate - The patient’s day of birth.

• Gender - The gender of the patient (“M” for male and “F” for female).

• AdmissionCode - The code describing the patients’ general cause of admitting (as typed by

the admission secretary). The description of the code is listed in the sequential column.

• SendByCode - The code describing the authority that sends the patients to the ED (as typed

by the admission secretary). The description of the code is listed in the next column.

• SendLetter - The presence / absence of an application letter from the authority that sent the

patients to the ED (“Y” for presence and “N” for absence).
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• ComplainRsnCode - The code describing the patient’s complaint at the time of her or his

arrival to the ED (as typed by the admission secretary). The description of the code is listed

in the sequential column.

• BodyPartCode - The code describing the patient’s body parts on which she or he complained

for admitting (as typed by the admission secretary). The description of the code is listed in

the sequential column.

• ArrivalStateCode - The status code of the patient arrivals (as typed by the admission secre-

tary). The description of the code is listed in the sequential column.

• ReleaseStatCode - The status code of the patient departure from the ED (as typed by the

admission secretary). The description of the code is listed in the sequential column.

• Ward - The ward where the patient is hospitalized.

2.2 Empirical analysis

This section provides an empirical analysis of ED visits in “Anonymous” hospital. Using individual

patient level hospital data for the years 2004–2008, we analyzed the arrival process (Section 2.2.1)

from strategic to tactical point of view, the ED process (Section 2.2.2), the Length Of Stay (LOS)

distribution (Section 2.2.3), and the ED load as manifested by the number of patients in the ED

(Section 2.2.4).

2.2.1 Arrival process

The arrival process records the time each patient is registered to the ED. It can be described at

different levels of details, and from various points of view. In this paper we provide only deter-

ministic “fluid-like” descriptions of arrivals, which arise from averaging out stochastic variability.

We leave the statistical characterization of arrivals for future research (for example: does a time-

inhomogeneous Poisson model fit the daily arrival process? if so, how accurate is the fit, and if

not, what does fit?) (Some work has already been done in Maman [2009], which does support an

over-dispersed Poisson process.)

The first subsection provides an arrival description hierarchy, which differs in its resolution:

yearly, monthly/weekly, daily, and hourly. In the second subsection, arrivals are stratified according

to customer types and acuteness.
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The arrival process will now be described at four levels of representation, which differ by their

time-scale as in Buffa et al. [1976]. The three top levels also correspond to the classical hierarchical

levels of decision making, proposed by Anthony [1965]: Figure 2 is a top-level yearly picture, with

month as the time unit, that supports strategic decisions; Figure 3 is a middle-level monthly picture

with day as unit, that supports tactical decisions; and Figure 4 is a daily picture, with unit hours,

that supports operational decisions. In typical ED, all three figures would exhibit predictable vari-

ables, in the sense that, for example, repeating Figure 3 for each month, as done in Figure 6, yields

a predictable pattern. In contrast, Figure 5 is an hourly picture, with minutes as a time unit, that

predicts stochastic or random variability. We shall provide momentarily a more detailed description

of the figures, then continue with several segmentations of the arrival process.

Hierarchical decision making is required, for example, to support the complex task of staffing

an ED. At the top level, one must decide on how many staff members (physicians and nurses) are

needed, perhaps by season which affects vocation planning. At a lower level one determines a shift

structure over a month, which is determined in turn by daily and hourly staffing levels. Hourly

staffing levels, or FTE’s (full-time-equivalent) are commonly determined via queuing models that

trade off service-quality against staff’s efficiency. In their simplest form, staffing algorithms are

described well already in Anthony [1965]. The needs of the modern ED, however, go far beyond

Anthony [1965], in fact beyond state-of-the-art research, as described in Garnett and Mandelbaum

[2000].

Figure 2 shows the number of patients per month during the years 2004–2008. Responding to

changes in it at a specific ED would require strategic decisions. Note the decrease in the number of

patients in June and July 2006 due to a war in the Middle-East.

The next level displays the number of patients per day over a month, specifically January 2005

in Figure 3. The “valleys” occur during weekends, where the ED operates in a special framework.

The picture for other months is similar (Figure 6). This is a tactical-level figure: weekends/holidays.

To this end, it is also useful to add a tactical weekly picture.

At the operational level, staffing should fit peaks (“rush hours”) and valleys. Figure 4 shows the

average number of patients per hour during weekdays in January 2005. Clearly the system is mostly

visited around 11am (the common assumption is that people are coming from the home-clinics),

then the number of arriving patients decreases gradually till around afternoon, and increases again

till about 7pm (again, the common assumption is that people are returning from work or feeding

the kids).

Finally, when looking at individual hour, patients seems to arrive randomly. Figure 5, which
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Figure 2: Strategic levels. Number of patients per month
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Figure 3: Tactical level. Number of patients per day (Jan 2005)
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Figure 4: Operational level. Average number of patients per hour (Jan 2005, weekdays)

manifests the stochastic variability, illustrate the number of patients arrives per minute at Sunday

(weekday) in January 2005. It is now clear that arrival prediction emerges from stochastic variability

by averaging the latter out.

2.2.2 Emergency department process

Below we describe the operating models of an ED using flow chart, such as Activities-Resources-Flow

chart (7). Additional ways to describe the operational model can be found in Appendix C.

When patients arrive to the ED, either walking or assisted by a stretcher or wheelchair, the first

step is assessment, which is typically followed by directing the patients to an appropriate bay where

they wait for their next stage of treatment. This stage of the medical-assessment is called ‘Triage’ if

it is performed by the medical staff (a nurse or a physician). There are possibly procedures prior to

the Triage, which include an initial assessment, by medical and non-medical personnel, such as clerks

and ambulance officers (Brentnall [1997]), and/or the initiation of diagnostic tests, by a (registered)

nurse (Cheung et al. [2002]). Such pre-Triage steps aim at accelerating the patient flow.

2.2.3 Length of Stay (LOS)

In this section we analyze the patient’s Length of Stay (LOS). For each patient category we have

found the average, the standard deviation (STD), the distribution curve (aggregated by 30 minutes),
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Figure 5: Stochastic level. Number of patients per minute (Jan 9th 2005)
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Figure 8: Percentage of number of patient departures from the ED by time of day

and the survival curve of the patient’s LOS.

One reason for analyzing the LOS was to evaluate the load of the ED measured by the number

of patients in the ED or occupied beds. We started not just by looking at the Arrivals rates, but

also at the discharges. For that we look on the percentage of the number of patient departures from

the ED by time of day (resolution of one minute). It seems in Figure 8 that we have three times in a

day that people exit the ED in an extreme volume. After consultation with the IT department, we

came to the conclusion that people who left with their medical sheet (about 5-9% of each patient

type) are registered in those times arbitrarily. The answer to this aberration is to assign a different

exit time to those patients according to their patient type LOS distribution (we didn’t want to use

the average length of stay because the distribution seems to be more accurate for our purpose).

We first tried to see the data for those patients that left in other times, e.g. what influenced

their LOS. We started to look on the LOS by departure hour. In Figure 9 we see three group types

of distributions of LOS: (1) Similar LOS distributions for patient departures during the second shift

and at the beginning of the third one (from 15:00 until 05:00); (2) High LOS distributions for patient

departures at the end of the third shift and the beginning of the first shift (from 05:00 until 11:00);

and (3) Group of LOW or mixed LOS distributions at the end of the first shift. The problem with

the analysis result is that we do not know when the patients should have left, so we cannot use it

to predict the departures of the patients for which we lack that data. We also analyzed the LOS

cumulative distribution by hour of arrival (Figure 10), where it seems that the LOS is the smallest

when patients arrived at the beginning of the first shift, and it is higher at the third shift.

We continue to investigate what was influencing the patient’s LOS in Appendix D. Since patient

type and Hour of arrival looks promising from the analysis, and this data is the most available in
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Figure 9: LOS cumulative distribution by hour of departure (F(hour) average, stdv)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440

LOS [30 minutes]

F

F(0){202,206} F(1){212,216}
F(2){226,207} F(3){223,186}
F(4){227,195} F(5){229,176}
F(6){224,171} F(7){201,171}
F(8){181,174} F(9){188,177}
F(10){193,180} F(11){194,175}
F(12){199,183} F(13){198,180}
F(14){198,178} F(15){191,182}
F(16){188,193} F(17){191,179}
F(18){193,189} F(19){192,193}
F(20){193,196} F(21){199,215}
F(22){202,218} F(23){203,218}

Figure 10: LOS cumulative distribution by hour of arrival (F(hour) average, stdv)

15



100

120

140

160

180

200

220

240

260

280

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Arrival Hour

A
LO

S

Int Ort

Sur Tra

Figure 11: Average Length of Stay (ALOS) by hour of arrival per patient type

our database, we have tried to look on the effect of combining those two. In Figure 11 we see how

arrival hour has an affect on ALOS of Internal, Surgical, Orthopedic, and Trauma patients. It seems

that the effect of hour is different for each patient and we need to use them both when completing

the data of departure for the patients which lack this information.

2.2.4 Bed occupancy

Now, after we analyzed the basic empirical data, we can continue with calculating the Load in the

ED, which is manifested as the number of occupied beds. We would then have the opportunity to

compare it to theoretical methods in the following sections.

We start by evaluating the number of occupied beds (L) at time (t), considering the arrivals

to the ED until time t which have not departed yet. In Figure 12 we note that the number of

patients in the ED varies from 0 to 106. The distribution also reveals that most of the time (80%)

the number of patients in the ED changes from 21 to 59, and 50% of the time if changes from 29 to

50.

We believe that this kind of analysis of load is less relevant, since the proportion of time that

the ED is staying in each state is what is important, and not the number of visits in each state

(as in Figure 12). For that we calculate the distribution once more but now we are calculating

the percentage of time that the ED was in each state L. In Figure 13 we see that the distribution

is skewed to the left values and has a small tail in the right, as apposed to the previous way of
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Figure 12: Distribution of the number of occupied beds in the ED (L)

calculating L.

It seems that the non-ordinary shape of L distribution needs further investigation. We try

to look if the shape of the distribution is due to a combination of different distributions. We

start by analyzing the distribution of patient type (see Appendix E.1 for more details). We found

that the statistical order of the cumulative distributions of each type (‘F(type)’) are kept so that

F (Tra) > F (S) > F (O) > F (Int) is true for any L of the relevant type.

We also checked the distribution and the cumulative distribution of L by outcome of the treat-

ment - Releasing home, Hospitalization, or by Severity of the patient (see Appendix E.2).

After all the searchers we have done, the most influential factor on the distributions of the

number of occupied beds (See Figure 13) was the hour of the day. In Figure 14, we see the amount

of time, over all data, that the system was in each state (occupied beds) per each hour of the day (the

phenomena of the distribution by hour looks like the findings of Edie [1954] about the distribution

of the traffic arrivals, but in our case we could not find it to be Poisson). We also see the average L

per hour of the day in Figure 15. From both figures we can identify three main distributions that

compose the L distribution: (1) From 02:00 until 09:00, where the average number of occupied beds

(avgL) is about 20 and changes from 0 to 40; (2) From 12:00 until 22:00, where avgL is about 45

and it changes from 0 to 80; and (3) The rest of the hours, the average distribution moves from one

group to the other.
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Figure 13: Distribution of the time ED was with number of occupied beds (L)
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2.3 Fitting a theoretical model

In this section we wished to fit a theoretical model to the empirical distribution of the number of

occupied beds. We started on Section 2.3.1 by using the stationary queueing models, such as model

M/M/∞.

We continued in Section 2.3.2 to use time-varying queueing models, such as model Mt/Mt/∞

using simulation.

In Section 2.3.3 we have tried to look on the problem from a different angle, meaning to see if

the arrival and departure rates are influenced by the number of occupied beds. If so, we want to see

if the models of Birth-and-Death process would do better than the simple models.

In Section 2.3.4 we introduce some advanced models, such as Erlang-R (Yom-Tov [2009]) and

Simulation to compare with the empirical data.

2.3.1 Stationary models

M/M/∞ is the basic model we have checked. The model parameters are: (1) Poisson arrivals

with λ rate; (2) Infinite number of exponential servers, which work at µ rate (where the ALOS is

E(S) = 1/µ). The Steady-state distribution (πi, for state i) is from a Poisson process and can be
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calculated from Equation (2.1), Where R = λ/µ.

πi = e−R · R
i

i!
, i ≥ 0; (2.1)

From the comparison of the M/M/∞ with µ = 0.005 (ALOS is about 197 minutes) and λ =

0.138, to the empirical data in Figure 16, it is clear that the M/M/∞ model is not modeling well

the number of occupied beds in the ED.
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Figure 16: Comparison of the steady-state distribution of M/M/∞ to the empirical Data

We tried to refine the model by looking just on fragments of the empirical data and compare

that to the M/M/∞ model (we named it ‘Fragmental M/M/∞ Model’). We started with looking

on each shift separately, and then on each group of hours that we found in Figure 15. From the

comparison of the ‘Fragmental M/M/∞ Model’ with the empirical data in Appendix F, it is clear

that this model is not modeling well the number of occupied beds in the ED.

2.3.2 Time-varying models

Mt/Mt/∞ is the the model we checked for the time varying models. The model parameters we used

was (1) Poisson arrivals, rate λt (t for each hour of the day); (2) Infinite number of exponential

servers, processing at rate µt (where the ALOSt is E(S) = 1/µt). The time-varying distribution
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(πi, for state i) was found using simulation with the data in Table 2. From Figure 17, we see that

the time-varying model got good results in until 15 beds, but it got worse in a greater number of

beds.
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Figure 17: Comparison of the distribution of the time-varying model to the empirical data

2.3.3 Birth-and-Death processes

We continued to check the Birth and Death models. For that we calculated first the arrival and

departure rates for each state of bed occupancy L. The way we calculated those parameters was

to calculate first the average time the system was in each state before moving to the next one (tL),

and the percentage of the changes to a higher state (Pl(L)) and to a lower state (lm(L)). From that

we could easily calculate the λ(L) (Pl(L)
tL

), and the µ(L) (Pl(L)
tL·L ). The parameters of the model we

used are presented in Figure 18 (where we neglected to present the edge which was heavily noised).

The results for comparing the Birth and Death models with empirical data in Figure 19 looks

promising, especially when looking on the edges, where most of the operational decisions are made

(e.g., ‘how many beds to use in the ED?’).
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Table 2: Parameters for the time-varying model

t λt µt

0 0.12892 0.00531

1 0.09375 0.00502

2 0.07016 0.00482

3 0.0576 0.00478

4 0.04788 0.00454

5 0.04064 0.00398

6 0.0443 0.00348

7 0.0642 0.00306

8 0.11707 0.00322

9 0.20304 0.00389

10 0.26176 0.00451

11 0.28211 0.0053

12 0.27188 0.00584

13 0.25655 0.00596

14 0.24875 0.00606

15 0.22996 0.00562

16 0.21198 0.00531

17 0.21486 0.00521

18 0.23929 0.00515

19 0.2456 0.00517

20 0.23642 0.00527

21 0.22354 0.00537

22 0.18916 0.00551

23 0.16302 0.00513
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Figure 18: Birth-and-Death model parameters - λ(L)/L and µ(L)
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Figure 19: Comparison of the distribution of the Birth-and-Death model to the empirical data
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2.3.4 Advanced models: Erlang-R and simulation

We have checked two additional types of models: one that is a descriptive model, a simulation model

using the data gathered in Sinreich and Marmor [2005]; the other a theoretical model, Erlang-R

(Yom-Tov [2009]), which is a model that uses simulation for finding its parameters and to calculate

the L distribution.

We first compared the simulation model and the empirical model using the official number of

resources per hour (Figure 20) which looks promising in the tails of the distribution, but less in

the lower volumes. We then refined the model by making some reasonable assumptions on the

number of resources, for example, that from 03:00 until the morning shift the ED physicians are

called to examine patients just in urgent cases; otherwise the patient waits for the next shift.

Another consideration was to used less staff during lunch breaks. The process we use to search for

those anomalies is described in Appendix G. The results of the comparison between the empirical

distribution and the adjusted simulation in Figure 21 looks much more promising. It is definitely

an encouraging finding for the use of simulation in the ED. (See Jacobson et al. [2006] for a list of

steps for successfully implementing simulation in healthcare; and Barone et al. [1999], and Kao and

Tung [1981] for the use of simulation to complement the results obtained by queuing theory.)
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Figure 20: Comparison of the distribution of the simulation model (Arena) to the empirical data

The comparison between the Erlang-R model (with the parameters P = 0.77427, δ = 0.01617,

n = 6, µ = 0.22166, and λt which is the λt in Table 2) and the empirical model (Figure 22) looks
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Figure 21: Comparison of the distribution of the adjusted simulation model (Arena) to the empirical

data

promising in the right tail of the distribution, but less in the rest of the distribution.

2.4 Conclusion and future research

The goal in this chapter was two-fold: One - to present some empirical analyses on the ED, and

second - to try and match theoretical models to the data. For the first part we presented the data we

have in hierarchical profiles: strategic, tactical, and operational. We also presented the data by the

patients’ characterization such as type and severity, and the administration’s categories (e.g., age,

gender and so on). We presented the process in the ED by simple types of charts, and investigated

the factors that influence the patient’s LOS and Bed occupancy.

For the second part we compared simple theoretical models with the empirical analysis, focusing

on the bed occupancy. We found out that the stationary, and time-varying models were not close

to the empirical data. The most promising model that was found was the Birth and Death model

(Section 2.3.3). The next reasonable model was the Simulation model 2.3.4. The Birth and Death

model and simulation models failed to predict the middle of the distribution, while they were both

very good at predicting the tails of the distribution. It means that when a decision is needed for

the tails, those models can be useful.

Of course, more work can be done. First, we could have used more sophisticated models or

tried to adjust one just for our use. Second, more attention could be given to the fact that the
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Figure 22: Comparison of the distribution of the Erlang-R model to the empirical data

distribution of bed occupancy for each hour looks from Poisson model (see Figure 14). It could infer

that there is a potential of finding a model for each hour (which we failed to do since we used just

simple analysis). Third, when tracking devices or electronic patient sheets will be introduced to the

ED, we could then use the data to further investigate the queues in the ED and not just the overall

occupancy.
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3 Simulation-Based Models of Emergency Departments: Opera-

tional and Tactical Staffing

Abstract

The Emergency Department (ED) of a modern hospital is a highly complex system that gives rise

to numerous managerial challenges. It spans the full spectrum of operational, clinical and financial

perspectives, over varying horizons: operational - few hours or days ahead; tactical - weeks or a few

months ahead; and strategic - which involves planning on monthly and yearly scales. Since realistic

ED models are intractable analytically, one resorts to simulation for an appropriate framework to

address these challenges, which is what we do here. Specifically, we apply a general and flexible

ED simulator to address several central wide-scope problems that arose in a large Israeli hospital.

The chapter focuses mainly, but not exclusively, on workforce staffing problems over the operational

and tactical time horizons. First, we demonstrate that our simulation model can support real-time

control, which enables short-term prediction and operational planning (physician and nurse staffing)

for several hours or days ahead. To this end, we implement a novel simulation-based technique that

utilizes the concept of offered-load and discover that it performs better than a common alternative.

Finally, we evaluate ED staff scheduling that adjusts for midterm changes (tactical horizon, several

weeks or months ahead).

3.1 Introduction

3.1.1 Operations management in Emergency Departments: main challenges and simulation-

based modeling

The rising cost of healthcare services has been a subject of mounting importance and much discussion

worldwide. Ample reasons have been proposed, for example, increasing life spans and the availability

of an ever-increasing number of costly diagnostic and therapeutic modalities Hall [2006]. Yet,

regardless of their cause, rising costs impose, and rightly so, pressures on healthcare providers to

improve the management of quality, efficiency and economics in their organizations.

A critical healthcare organization, widely recognized in need of urgent enhancements, is the large

hospital; and its complexity is well represented by the microcosm of its Emergency Department (ED).

The latter is our focus here - for being the window through which a hospital is judged for better or

worse, and for amplifying a variety of problems that arise also elsewhere, specifically intertwining

clinical, operational and financial dimensions. In this chapter, we focus on a somewhat operationally
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biased (business process) view, which is then expanded to accommodate interactions with the other

clinical and financial aspects.

From an operational view, overcrowding and consequent excessive delays are the most urgent

ED problems (Sinreich and Marmor [2005]), having clear interactions also with ED clinical and

financial dimensions. Citing Green [2008], “arguably, the most critical delays for healthcare are

the ones associated with healthcare emergencies”. Overcrowding in the ED can and does cause

numerous negative consequences, including poor service quality from the clinical point of view;

extended waiting times that inflate staff workload and lead to negative emotions of patients and

their families; ambulance diversion; patients who Leave Without Being Seen (LWBS); and so on.

See, for example, Derlet and Richards [2000], who provide a detailed analysis of causes and negative

effects of ED overcrowding.

One can identify various reasons for ED overcrowding. Our experience suggests that its key

driver is inadequate staffing resources, but other causes have been also identified (for example,

Tseytlin [2009] studied problems in the process of hospitalizing ED patients, which call for a tradeoff

between ED delays of patients vs. fair workloads on medical staff). Thus, tools and methods exist

to help alleviate overcrowding and excessive waiting times. These call for careful planning of the ED

processes, in concert with appropriate staffing and scheduling techniques for ED personnel (nurses,

physicians, X-Ray technicians and others). In the present research, we mainly emphasize simulation-

based solutions of staffing problems, over time horizons that vary from several hours to months and

beyond.

The first staffing problem that we consider in this chapter is the problem of short-term (oper-

ational) planning over a future horizon of several hours to a few days. Several challenges must be

addressed for effective operational planning. As a start, accurate data on the current state of the ED

is a prerequisite. Practically, however, a significant part of this data turns out inaccessible or unreli-

able (for example, since hospital personnel do not have time for online updates of IT systems). The

need thus arises for ED-state inference, which we address through online simulation (Section 3.5.1).

Next, one should implement an adequate forecasting model that predicts the number of exogenous

arrivals to the ED. Finally, a model that combines the forecasts of external arrivals with the internal

dynamics of the ED is to be developed. Such a model would support operational decision making

throughout the ED and, furthermore, it can be integrated into an ED decision support system.

While short-term planning deals with scheduling changes over several hours or a shift ahead,

midterm tactical planning is concerned with baseline schedules. These must accommodate seasonal

effects of patient arrivals, which could change from month to month (e.g., increase in arrival volume

28



during flu period in the winter). We are thus concerned with a time horizon that spans one week

to several months - a challenge that can be addressed off-line, since there is no need for real-time

data updates.

All the staffing challenges formulated above require a trustworthy model of the ED. Analytical

models have been found unable to capture the complexity of ED operations, over the wide spectrum

that we require here. Hence, a major component of our solution is an ED simulation model (as

reported in Sinreich and Marmor [2005] and Sinreich and Marmor [2004], and discussed in Section

3.4). It turns out that our simulation-based model is general and flexible enough to address all the

above challenges.

3.1.2 Contribution and structure of the chapter

In subsequent sections, we continue with a brief survey of related work (Section 3.2) and describe

the ED of an Israeli hospital where our models have been applied (Section 3.3). Section 3.4 pro-

vides a detailed discussion of our universal simulation model. Then we proceed to the core of the

chapter, describing simulation-based staffing techniques for varying planning horizons. Section 3.5

introduces a new approach to staffing, based on the concept of offered-load, which is then com-

pared advantageously over the well-known method of Rough Cut Capacity Planning (RCCP); in

that section, we also study the problem of completing missing ED data via simulation. Section 3.6

discusses midterm tactical planning, where the approaches of offered-load and RCCP are applied

and again compared. We continue with a brief description of the overall decision support system

into which the simulation-based modeling is integrated in Section 3.7. Finally, Section 3.8 lists the

main conclusions of our chapter and discusses possible future research.

Contribution of the Chapter. Our chapter demonstrates that a single well-designed simulation

model of an Emergency Department can be instrumental in the solution of ED staffing problems,

across several different time domains: online decision support, short-term operational planning, and

middle-term tactical planning. In addition, we introduce a new offered-load approach to staffing

problems that yields very promising results over varying time domains. Finally, our simulation

framework is flexible and universal. Indeed, our ED model is based on a field research, carried out

in nine Israeli Emergency Departments. It can thus be easily tuned and customized to almost every

Israeli ED and, very likely, to most EDs worldwide.
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3.2 Related work

3.2.1 Simulation in support of ED operations

The application of simulation has been instrumental in addressing the multi-faceted challenges that

the healthcare domain is presenting (Kuljis et al. [2007]). A wide spectrum of ED problems have

also received significant attention in this line of research.

It is quite common to use simulation, mostly by researchers, to compare operational models or

to assess a model that addresses a specific research question. For example, Medeiros et al. [2008],

present a simulation-based validation of a novel approach to a change in ED processes, placing an

emergency care physician at triage. Kolb et al. [2008], study different policies of patient transfer

from ED to internal wards, in order to decrease the resulting overcrowding and delays (Tseytlin

[2009] addresses a similar problem for our hospital, but it uses an analytical approach, based on

queueing models).

For some reviews on a simulation-based approach in support of health care operations, see Jun

et al. [1999], White [2005] and Jacobson et al. [2006].

Improvement of patient experiences in EDs via application of simulation and lean manufacturing

tools was considered in Khurma et al. [2008].

The prevalent approach for addressing ED overcrowding is staff (re)scheduling (Sinreich and

Jabali [2007]; Badri and Hollingsworth [1993]), namely adding or shifting in time staff resources

so as to uniformly maintain acceptable ED performance (e.g., time to the first encounter with a

doctor, or FED time). Most such works focus on off-line steady-state decision making, as opposed

to on-line operational and tactical control. Other researchers analyze alter-native operational ED

designs (Garćıa et al. [1995]; King et al. [2006]; Liyanage and Gale [1995]) - for example, compar-

ing acuteness-driven models (e.g., triage) against operations-driven models (e.g., fast-track, which

assigns high priority to patients with low resource requirements).

A widespread approach is to “divide and conquer” a complex problem by focusing only on one

type of resource associated with it. An example is an effort to schedule nurses while ignoring the

scheduling of other resources (Draeger [1992]); or scheduling physicians and nurses hierarchically

(Sinreich and Jabali [2007]). These attempts, based on simulation models, predict performances

of the ED as a function of staffing and scheduling decisions. The simulation models require input

in the usual form of patient arrivals and service durations, for each patient by each resource type,

exactly as in the simulation that we are using here.

We are, however, unaware of any uses of simulation in a hospital setting for online decision
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support, nor are we aware of any work in which simulation has been used to complete missing data

regarding the current operational state. These research directions are pursued in Section 3.5.

Over a broader perspective, our research gives rise to a multitude of practical and theoretical

challenges, many of which touch on active simulation-driven research. For example, input modeling

(Biller and Nelson [2002]) and historical (trace-driven, resampling) simulation (Asmussen and Glynn

[2007]; Mcneil et al. [2005]) are both related to the problem of properly incorporating actual ED

data into our simulator.

Deserving of an expanded attention is symbiotic simulation (Fujimoto et al. [2002]; Huang et al.

[2006]), defined as “one that interacts with the physical system in a mutually beneficial way”, “driven

by real time data collected from a physical system under control and needs to meet the real-time

requirements of the physical system” (Huang et al. [2006]). Additionally (Fujimoto et al. [2002]),

symbiotic simulation is “highly adaptive, in that the simulation system not only performs ‘what-if’

experiments that are used to control the physical system, but also accepts and responds to data

from the physical system”. In some of our ED implementations, however, the interaction between

the simulator and its underlying physical system must go beyond the common symbiotic simulation

framework (see Section 3.5). Specifically, we obtain real-time data regarding current state, then

complete the data when necessary via simulation, next predict short-term evolution and workload,

and finally proceed with simulation and mathematical models as decision support tools, all this in

real-time or close to real-time.

3.2.2 Alleviating overcrowding: analytical approaches to staff scheduling

Although a simulation-based approach is the focus of our research, we emphasize that an optimiza-

tion approach to real-life ED problems should combine simulation and analytical insights. These

insights can be especially valuable when staff scheduling problems must be solved. In general, both

deterministic and stochastic mathematical methods can be applied.

For example, Beaulieu et al. [2000] present a deterministic mathematical programming approach

to staff scheduling. The RCCP approach, demonstrated in Section 3.5 (Vollmann et al. [1993]), is

also based on deterministic considerations.

However, in our opinion, stochastic models, based on queueing theory, are more appropriate for

capturing the volatile and inherently nondeterministic ED reality. Although it is hard to design a

tractable comprehensive queueing model for the ED, it is possible to develop simpler models and

combine them with simulation. The research on the offered-load concept, presented in Section 3.5

provides an example of this approach. Using the offered-load technique, applied to time-varying
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queueing systems in Feldman et al. [2008], we develop a novel staff scheduling algorithm which

jointly uses simulation and analytical staffing formulae. Readers are referred to Green [2008] for

further references on these and related issues.

3.3 Research framework

This research is a part of an Open Collaborative Research program, a combined research effort of

three organizations partnered together: the Faculty of Industrial Engineering & Management at

the Technion Institute, IBM’s Haifa Research Laboratory and the government-affiliated Rambam

hospital - which is Israel’s largest northern medical center, catering to over 2 million citizens (about

one-third of Israel’s population). The hospital comprises 36 wards; around 1,000 patients can be

hospitalized simultaneously and 75,000 patients are hospitalized yearly. In this research project, we

focus on several hospital units including the ED - which is the gate and the window to the hospital,

and which must operate in a mass-customized mode - i.e., follow a structured care process while

providing to each individual the specific care required.

The ED of Rambam Hospital accepts 82,000 patients per year, with 58% classified as internal

patients (their admission reason is mostly illness and treated by internists) and 42% as surgical or

orthopedic patients (their admission reason is mostly injury and cared for by surgical and orthope-

dic physicians accordingly). The ED contains three major areas: (1) internal acute: waiting and

treatment room for acute internal patients treated by dedicated internists physicians and nurses;

(2) trauma acute: waiting and treatment room for surgical and orthopedic patients treated by

dedicated nurses, but shared by orthopedic and surgical physicians; (3) walking: area for walking

patients (patients that do not need a bed and use chairs, usually with mild problems) contains

waiting lobby and unique treatment rooms for internal (dedicated for the walking area), surgical,

and orthopedic physicians (shared with the trauma acute area). In the walking area, there is also

a psychiatric unit, where patients with mental problems get help. There are other emergency room

(ER) locations, detached from the main one we are focusing on (which we refer to as the ED), which

are dedicated to special issues such as pediatrics ER, and ophthalmology ER. Rambam hospital

does not implement a fast-track process for nonemergency patients. Mean sojourn time of patients

in the ED, conventionally referred to as average length of stay (ALOS), equals 4:38 hours, with a

large variance over individual patients.
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3.4 Basic simulation model of the Emergency Department

In Figure 23, we depict two perspectives of the care process that patients undergo at the ED: the

resource (i.e. physicians, nurses, etc.) perspective, and the process (activities) perspective. In this

figure, two types of queues correspond to two types of delays encountered by patients: the first are

resource queues (rectangular), which are due to limited resources (e.g. nurses, imaging equipment);

the second are synchronization queues (triangular), which arise when one process activity awaits

another one (e.g. a patient waiting for results of blood tests and X-Ray, in order to proceed with

the doctor’s examination). Note that Figure 23 presents a somewhat simplified model of the care

process. A more complete model is presented in Sinreich and Marmor [2005]; see Figure 2 in that

reference, for example.

The care process in an ED was captured in a simulation model, created with the generic sim-

ulation tool of Sinreich and Marmor [2005]. This model is based on field studies, performed in

Emergency Departments of nine Israeli hospitals. The required data was gathered either from the

IT systems of these hospitals or via field measurements. In addition to the care process, the simula-

tion model requires patient arrival processes, for each patient type, and staffing levels of the medical

staff, with their respective skills. Service times in our model were assumed exponentially distributed

(Statistical analysis validated this fit for most data types).

Remark. Due to lack of space and our focus on staffing (vs. tool-oriented) issues, we do not

provide the detailed description of the tool. For the latter, readers are referred to Sinreich and

Marmor [2005] and Sinreich and Marmor [2004].

In this research, the model was configured to the ED specifications of the Rambam hospital, as

follows. There are six types of patients, which also require different skills from the caring physicians.

Patient types 1 and 2, which are internal acute and internal walking respectively, are treated by

internal physicians. Patient types 3 and 4, which are surgical acute and surgical walking respectively,

require treatment by surgical physicians. Finally, patient types 5 and 6, orthopedic acute and

orthopedic walking respectively, require an orthopedic physician. Acute patients need a bed while

walking patients use chairs. In addition, patient types differ by the arrival process (e.g., number of

arrivals per hour and by day-of-week; see Figures 24–25), and by the decisions made in the patient

care process (e.g., the percentage of patients sent to X-Ray).

The actual simulation tool is comprised of the following three modules:

1. The first module is a Graphical User Interface (GUI) that describes the general unified process,

partially presented in Figure 23. Through the GUI, the user can input data and customize
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the general process to fit the specific ED modeled and receive operational results from the ED

after the simulation run. (See the detailed GUI description with screen shots, in Section 2.1

of Sinreich and Marmor [2004].)

2. The second module includes two mathematical models used to estimate patient arrivals and

staff walking time. The simulation tool uses the models for patient arrival estimation that

were developed in Sinreich and Marmor [2005].

3. The third and final module is the simulation model itself. This model receives data from

both the GUI and the mathematical models. The simulation is updated and customized

automatically to fit a specific ED based on data and information the user passes on to the

GUI. The simulation model is transparent to the user who is only required to interact with a

user friendly GUI without the need to learn a simulation language syntax.

Figure 23: ED resource-process chart
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3.5 Operational horizon: simulation-based modeling for online decision support

and operations planning in the ED

In this section, we start to apply our simulation-based modeling approach to real-life ED problems.

We show that this approach can help ED managers to infer the missing information on the current

ED state, provide a reliable forecast of the ED state in the short-term and perform operational staff

scheduling decisions.

3.5.1 Simulation-based validation of the current ED state

As discussed in Section 3.1.1, reliable information on the current state of ED is crucial for online

decision support and operational planning. Typically, only partial data of the current ED state is

maintained and available from the hospital’s electronic data systems. For example, in our case, no

data exists regarding the queue (number of patients) waiting to be seen by a physician. One expects

the amount and quality of usable data to constantly improve over time, due to the introduction

of additional data-entry systems or new technologies (e.g. sensor technologies, such as RFID and

ultrasound, for accurate location tracking of patients, staff and equipment). However, within the

chaotic ED environment, it is reasonable to expect that some data will always remain unavailable

or too costly to acquire.

We now discuss how to infer missing data, using the simulation model described above. Such

simulation-based inference must deal with several issues. The first is consistency: how to generate

simulation paths that are consistent with available ED data. Another important issue is data

inaccuracy (note that inaccurate data adds complexity to generation of simulation realizations that

are consistent with the provided data). A third challenge, arising due to the availability of only

incomplete data, is the identification of an appropriate initial state for the simulation. The way we

overcome this last hurdle is to feed in actual arrival data for a long enough period of time (we used

three weeks) that ensures that the simulation warm-up period is over (it usually takes three days to

get stable ALOS), prior to estimating the missing data.

Coping with consistency and inaccuracy raises interesting research questions. Here we content

ourselves with two ED-specific practical examples of accommodating actual ED data – accurate and

inaccurate.

Accurate data - taking actual arrivals into account : In our partner ED, receptionists enter data

into the IT systems, in particular regarding patient arrivals, as a part of the admittance process.

The medical state of the majority of arriving patients is such that they actively participate in the

35



registration process, as the first step upon arrival. Acute patients, incapable of self-registration, are

registered shortly after arrival by the paramedics bringing them in. Therefore, arrival data accurately

captures actual patients’ arrival times - it can be thus fed as is into the simulator. (For acute patients

this time can be slightly inaccurate if a single paramedic is entering the patient and just afterwards

performs registration. If two paramedics enter the patient, the time would be accurate since the

first one registers the patient while the other one brings the patient in.) Receptionists also record

patient type (internal, surgical, or orthopedic) upon arrival. To this end, we modified, in an obvious

manner, our generic simulator, which originally generates arrivals as a stochastic process (Poisson

or its relatives, such as normal approximation to Poisson; see Sinreich and Marmor [2005]). It can

now generate realizations consistent with the arrival data (e.g., time and patient type), when the

latter is fed to the simulation package as a link from an external database (e.g., a text file generated

by the hospital IT from time to time).

Inaccurate data - taking discharges into account : Data about patients’ discharge (departure)

times, in our partner hospital, may be inaccurate. Specifically, each departure time is registered by

the receptionist upon completion of the ED treatments - the patient is then ready to leave, for either

home or to other hospital wards. In the (common) case when there is no ward immediately available

to accept the patient, inaccurate data arises. Then, patients spend additional time waiting in the

ED, which not only goes unrecorded but it also influences subsequent beds/chairs occupancy and ED

staff utilization (due to time spent on catering to these delayed patients). Additional inaccuracies

occur due to patients’ leaving without being seen (Green [2008]), with or without their medical files,

and some other accounting-related reasons.

We found no efficient way for generating simulation realizations that are consistent with our

discharge data, except for discarding inconsistent simulation paths. Note, however, that the proba-

bility of generating a realization in which the simulated departure times correspond exactly to the

provided departure times is negligible. To this end, and to overcome both inaccuracy issues, we

validate the current state simulation by conditioning it on the number of patients of each type that

were discharged from the ED according to the data. Namely, we considered a (short-term) simu-

lation realization to be consistent if, at the end of the simulation run, the number of patients that

were discharged (of each type) equals, within some accuracy constant, the number of patients of

this type that were discharged according to the data. In our case, we used 1.96-standard-deviation

accuracy and accepted around 42% of the simulations results.

See Section 3.5.5.1 for an application of the described techniques to the actual ED data.
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3.5.2 Forecasting ED arrivals

For simulating an ED future evolution, one must simulate patient arrivals to the ED. Figures 24–25,

based on IT data from the Rambam hospital, demonstrates that ED arrival rates strongly depend

on day-of-week and hour-of-day. In addition, holidays and days after holidays have unusual patterns

as well (holidays are lightly loaded and days after holidays are, as a rule, very heavily loaded). For a

reference on forecasting and modeling of ED arrivals, leading also to related literature, see Channouf

et al. [2007].

Figure 24: Hourly arrival rates for internal patients (averaged over 4 years)

Arrivals in our simulation model are nonhomogeneous Poisson processes, with hourly rates that

are forecasted for each future hour in question (say a shift, or a day) and each patient type. The

nonhomogeneous Poisson assumption was validated in Maman [2009], using the test developed in

Brown et al. [2005]. Sinreich and Marmor [2005] demonstrated approximately normal distribution

of square root of the arrival volumes, which is also consistent with the Poisson assumption (again,

see Brown et al. [2005]). We assume that arrival rates are constant on an hourly scale. Long-

term moving average (MA) was used in order to predict hourly arrival rates. For example, in

order to predict the arrival rate (assumed constant) on Tuesday during 11–12am, we average the

corresponding arrival rates during the last 50 “Tuesdays 11–12am”, excluding those that are holidays

or days after holidays. We can also see that arrival patterns of internal and trauma patients are

not similar-internal peak at about 8pm is much smaller than the one at noon. In contrast, the
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Figure 25: Hourly arrival rates for surgical and orthopedic patients (averaged over 4 years)

corresponding peaks of the trauma intraday arrival rate are of similar height. In particular, it

means that we cannot predict the total number of arrivals and assign fixed probabilities to patient

types.

The reason for choosing long-term MA is that we found it to provide essentially the same

goodness-of-fit as more complicated time-series techniques. (Indeed, long-term MA, applied to the

overall arrival rate over a test period of 60 weeks, gave rise to a Mean Square Error (MSE) equal to

3.56, while two methods, based on Holt-Winters exponential smoothing, provide a MSE=3.55 and

3.54.) Another argument in favor of the use of long-term MA stems from the level of stochastic

variability in historical samples, calculated for each hour-of-week, which fits that of a Poisson process

(Maman [2009]); then, the historical mean (or MA) is a natural (Maximum Likelihood) estimate for

the Poisson parameter, namely the arrival rate.

3.5.3 Staff scheduling approaches

With the present ED state assumed given (following Section 3.5.1), simulation is now to be used for

predicting ED evolution, say several hours (a shift, a day) into the future; the goal is to determine

appropriate staffing levels of resources - nurses, physicians and support staff, as a function of time.

Staffing the ED is a complex multi-objective problem. It must trade off conflicting objectives such
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as (i) Minimizing costs, (ii) Maximizing resource utilization, (iii) minimizing waiting time of patients,

(iv) Maximizing quality of care. In this chapter, we concentrate on the control of operational

performance measures-utilization and waiting time. The complexity of theoretical analysis in a

large complicated service network, more so in a stochastic environment (e.g. randomness with

respect to patient arrivals, routing, service durations, resources availability, and more) renders the

optimization problem intractable analytically. This has thus led researchers to simulation-based

heuristic solutions.

A prerequisite for staffing is accurate forecasting of patient arrivals, as described in Section

3.5.2. We then continue with predicting resource utilization; this leads to a staffing method, based

on prespecified goals for resource utilizations (Section 3.5.3.1). However, the resources’ view cannot

accommodate the experience of patients – for example, controlling the time until the first encounter

with a physician (Section 3.5.3.2). To control the latter, we calculate, for each resource type, its

offered load as a function of time; then a classical staffing principle (square-root safety-staffing),

in conjunction with the appropriate queueing model, yields our recommended time-varying staffing

levels. In Section 3.5.4, a summary of our methodology is presented.

3.5.3.1 Staff scheduling via Rough Cut Capacity Planning: Rough Cut Capacity Plan-

ning (RCCP) is a technique for projecting resource requirements in a manufacturing or a service

facility. As such, RCCP supports decisions regarding the acquisition and use of resources. Proce-

dures for RCCP are listed in Vollmann et al. [1993]. These procedures are based on the estimated

processing time of each product or service unit, and the allocation of the total time among the

different resource types. The goal is to match offered capacity with the forecasted demand for

the capacity of each resource type. Thus, RCCP algorithms translate forecasts into an aggregate

capacity plan, taking into account the time each resource type spends on each type of product or

service.

We are proposing to apply RCCP in the ED environment, as follows:

• For each patient type i, calculate its average total time required from each resource type r

(e.g. physician, nurse), dir.

• For each forecasted hour t, calculate the average number of external arrivals of patients of

type i, Ai(t). Deduce the expected processing time required from each resource type r at time

t:

RCCPr(t) =
∑
i

Ai(t)dir (3.1)
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• The recommended number of units of resource r at time t, nr(RCCP, t), is equal to the load

RCCPr(t), amplified by safety factor, or fs. fs is the maximum utilization we are targeting.

In other words, the RCCP staffing recommendation is given by nr(RCCP, t) = RCCPr(t)/fs.

We expect RCCP to achieve preplanned resource utilization levels; its shortcoming, however, is

that it ignores the time lag between arrival times of patients and actual times when these patients

receive service or treatment from ED resources. Since patients spend, on average, several hours in

ED this time lag can be significant: the patient arrival rate frequently reaches maximum before the

workload for a specific resource reaches maximum. This problem is remedied by our next approach.

3.5.3.2 The Offered Load approach: The concept of offered-load is central for the analysis

of operational performance. It is a refinement of RCCP in the sense that it spreads workload

more accurately over time. For example, suppose that a nurse is required twice by a patient, once

for injecting a medicine (10 minutes) and then, 3 hours later (in order to let the medicine take

its effect), for testing the results (also 10 minutes). RCCP would “load” 20 minutes of nurse-

work upon a patient’s arrival; the offered-load approach, in contrast, would acknowledge the 3-

hours separation between the two 10-minute requirements. Such time-sensitivity enables one to

accommodate time-based performance measures, notably those reflecting the quality of care from

the patients’ viewpoint.

In the simplest time-homogeneous steady-state case, when the system is characterized by a

constant arrival rate λ and a constant service rate µ, the offered load is simply R = λ/µ = λE(S)

where E(S) is the average service time. The quantity R represents the amount of work, measured

in time-units of service, which arrives to the system per the same time-unit (say, hours of work that

arrive per hour). Staffing rules can be naturally expressed in terms of the offered load: for example,

the well-known “square-root staffing rule” (Halfin and Whitt [1981]; Borst et al. [2004]) postulates

staffing according to

n = R+ β
√
R, (3.2)

where β > 0 is a service-level parameter, which is set according to some Service Level Agreement

(SLA) or goal. This rule gives rise to Quality and Efficiency-Driven (QED) operational performance,

in the sense that it carefully balances high service quality with high utilization levels of resources.

Arrival rates to an ED are, however, manifestly nonhomogeneous and depend on the day-of-week and

hour-of-day. Piecewise stationary approximations (such as SIPP - Stationary Independent Period
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by Period; Green et al. [2001]) work fine if the arrival rate is slowly varying with respect to the

durations of services. This, however, does not happen in the ED case.

Assume that exogenous arrivals to a service system can be modeled by a nonhomogeneous Poisson

with arrival rate λ(t), t ≥ 0. In this case, our definition of the offered load is based on the number of

busy servers (equivalently served-customers), in a corresponding system with an infinite number of

servers (Feldman et al. [2008]). Specifically, any one of the following four representations gives it:

R(t) = E[A(t)−A(t−S)] = E[λ(t−Se)]E[S] = E[
∫ t

t−S
λ(u)du] =

∫ t

−∞
λ(u)P (S > t−u)du, (3.3)

where A(t) is the cumulative number of arrivals up to time t, S is a (generic) service time, and Se

is its so-called excess service time. (See the review paper by Green et al. [2007] for more details,

as well as for useful approximations of Equation (3.3).) Then, for calculating the time-varying

performance in the case of a single service station, we recommend to substitute Equation (3.3) into

the corresponding steady-state model. In our case, the classical M/M/n queue, or Erlang-C, is used.

To be concrete, assume that our service goal specifies a lower bound α, to the fraction of patients

that start service within T time units. The QED approximation, based on Halfin and Whitt [1981]

then gives rise to

1− α = P{Wq > T} = P{Wq > 0}P{Wq > T |Wq > 0} ≈ h(βt)e−Tµβt

√
Rt+βt

√
Rt , (3.4)

where h(βt) is the Halfin-Whitt function (Halfin and Whitt [1981]). Specifically, h(β) approximates

the delay probability P{Wq > 0} in the Erlang-C queue given staffing level (3.2). Equation (3.4)

can now be solved numerically with respect to βt, and the staffing rule Equation (3.2) is replaced

by the time-varying staffing function:

n(OL, t) = R(t) + βt
√
R(t) (3.5)

The above procedure has been called the “modified offered load approximations” – readers are

referred to Feldman et al. [2008] for additional details and further references.

Square-root staffing are mathematically justified by asymptotic analysis, as workload (and hence

the number of servers) increases indefinitely. (Large telephone call centers provided initial practical

motivation.) However, ample experience (as well as recent research; e.g. Janssen et al. [2008])

demonstrates useful levels of accuracy, already for single-digit staffing levels. This renders the above

staffing rule relevant for EDs, as well as other healthcare systems, where the number of servers is

indeed single-digit. (For small systems, one could always apply exact Erlang-C formula. Indeed, we

tested these exact calculations against the QED approximations in our experiments below, and the

results were essentially unaltered.)
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Now we extend the above framework from a single service station to a service network, in order

to apply it in the ED. We proceed via the following steps::

• First, the simulation model is run with infinitely many resources (e.g. physiciansand nurses).

• Second, for each resource r (e.g. physician or nurse) and each hour t, we calculate the number

of busy resources (equals the total work required), and use this value as our estimate for the

offered load R(t) for resource r at time t. (The final value of R(t) is calculated by averaging

over simulation runs.)

• Finally, for each hour t we deduce a recommended staffing level nr(OL, t) ,via formula (3.4)

and (3.5).

3.5.4 Methodology for short-term forecasting and staffing

In the following section, we set short-term staffing levels for eight hours into the future. Our

simulation-based methodology for short-term forecasting of the ED state is as follows:

1. Initialize with the simulation-based estimate of the current ED state

2. Use the average arrival rate, calculated from the long term MA, to generate stochastic arrivals

in the simulation.

3. Simulate and collect data every hour, for eight future hours, using infinite resources (nurses,

physicians).

4. From step 3, calculate staffing recommendations, both nr(RCCP, t) and nr(OL, t) using RCCP

and Offered Load (OL) methods, described in Sections 3.5.3.1 and 3.5.3.2, respectively.

5. Run the simulation from the current ED state with the recommended staffing.

6. Calculate performance measures. The above can be repeated with the actual staffing (in Step

5), which makes it possible to compare it against RCCP and OL staffing.

3.5.5 Simulation experiments

We now apply methodology from the previous section in simulation experiments. First, we demon-

strate the ability of our simulation-based tool to estimate the current ED state, using a database

from Rambam hospital (Section 3.5.5.1). For that, we randomly chose a month (August 2007) in the

database, for comparing the known number of patients in the system with the simulation’s outcome.
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In the second experiment (Section 3.5.5.2), we use the ED state at a specific time (September 2nd,

2007, 16:00) to predict 1–7 hours ahead. (The chosen day is a Sunday, which, in Israel, is a busy

day of the week, being the first day following the weekend.) We continue, in Section 3.5.5.3, with

a comparison of some ED performance measures, using two alternative staffing methods (follow-

ing methodology developed in Section 3.5.3). Finally, in Section 3.5.5.4 we compare our two main

staffing techniques (RCCP and OL) given the same number of resources is used.

3.5.5.1 Current state: We ran 100 one-month long replications of each scenario, in order to

compare our simulation results with the data from the hospital’s database. For each date and hour,

we calculated the average number of patients over the simulation replication (Avg series in Figure

26), and the corresponding standard deviation (SD), an Upper Bound (UB = Avg + 1.96SD),

and a Lower Bound (LB = Avg − 1.96SD). In Figure 26, we depict 4 days, chosen to test our

methodology against the (actual) number of patients from the database (Wip-Work in progress).

We chose two periods that are two days long, the last day of the weekend (Saturday in Israel) and

the first working day of the next week (Sunday). (For example, DOW 7 4 at time axis stands for

4am on Saturday and DOW 1 16 denotes 4pm on Sunday.)

These days are typically the calmest and busiest in the week, respectively. Note that the night

and early morning shifts (hours 1–10 in Figure 26) are not overloaded (see, for example, the utiliza-

tion profiles during 09–10, in Table 3), and performance measures are then less accurate. However,

once the ED becomes congested, the simulation does yield an accurate prediction of the number of

patients in the ED. At all times, though, the accuracy of prediction varies from reasonable to good.

Remark. A probable explanation for a somewhat worse fit of the simulation during lightly

loaded hours is the following. When the load is low, the staff has more time for activities that

are not incorporated into our simulation (e.g. department meetings). In contrast, during heavily

loaded periods, there is virtually no time for such activities and reality becomes consistent with the

simulation.

3.5.5.2 Calculation of short-term staffing recommendations: Next, we simulated the sys-

tem in the near future using methodology from Section 3.5.4, to see if there is a way to improve ED

operations via an appropriate staffing technique. We calculated the offered load of all the relevant

resources: internal physician (Ip), surgical physician (Sp), orthopedic physician (Op) and nurses

(Nu). For this experiment, we used ED data until 16:00 and then applied simulation to forecast

each succeeding hour, until the end of the day. Here and in the experiments described below, 100
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Table 3: Simulation performance measures - current and forecasted (actual staffing)

Hour Ip Sp Op Nu #Beds #Chairs %(W > T )

09-10 73% 1% 23% 55% 15.7 8.6 7%

10-11 93% 25% 59% 68% 23.5 17.0 33%

11-12 94% 59% 67% 72% 29.3 22.8 51%

12-13 90% 45% 81% 58% 33.2 30.3 53%

13-14 95% 68% 94% 71% 36.2 34.7 77%

14-15 90% 62% 76% 63% 34.2 33.3 70%

15-16 91% 51% 46% 51% 34.4 30.5 77%

16-17 100% 43% 41% 53% 34.6 27.6 69%

17-18 95% 58% 46% 57% 33.4 23.6 52%

18-19 90% 46% 52% 50% 32.4 23.9 31%

19-20 89% 64% 70% 58% 29.3 25.3 40%

20-21 79% 64% 75% 56% 26.5 20.6 39%

21-22 84% 46% 60% 45% 23.4 17.0 23%

22-23 66% 38% 51% 46% 20.2 13.9 20%
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simulations were performed. In Table 3, we display the ED state until 16:00, and then continue with

the simulation-based forecast; the staffing levels used in the simulation are the one exercised in our

partner ED - we refer to it as “the actual staffing”. Columns Ip, Sp, Op, and Nu list utilization levels

of the respective staff. (For nurses, this accounts for the time devoted to patients’ care, excluding

administrative duties; physicians are exempted from the latter.) The column headings #Beds and

#Chairs represent the average number of occupied beds and chairs, respectively; %(W > T ) is the

fraction of patients that are exposed to unsatisfactory care, which here is taken to be “physician’s

first encounter occurs later than T minutes after arrival to the ED”. In our research, the value of T

is equal to 30 minutes.

Figure 26: Comparing the database with the simulated ED current-state (weekdays and weekends)

In Table 4, we display the following characteristics:

• ED actual staffing is denoted by n(Current),

• the offered load level (as explained in Section 3.5.3.2) in Offered Load column,

• recommended staffing level based on the offered load (aiming to achieve %(W > T ) < 0.25) –

n(OL),

• the RCCP level (as explained in Section 3.5.3.1) – RCCP Load columns,

• RCCP staffing recommendations aiming at less than 90% staff utilization - n(RCCP ).
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Table 4: Staffing levels (actual and recommended)
n (Current) Offered Load n (OL) RCCP Load n (RCCP)

Hour Ip Sp Op Nu Ip Sp Op Nu Ip Sp Op Nu Ip Sp Op Nu Ip Sp Op Nu

16-17 4 1 2 5 7.8 0.8 0.8 4.1 9 2 2 5 3 0.5 0.6 2.4 4 1 1 3

17-18 4 1 2 5 3.7 0.4 0.9 2.5 5 1 2 3 3.3 0.4 0.7 1.3 4 1 1 2

18-19 4 1 2 5 3.2 0.4 1.1 2.7 4 1 2 4 2.3 0.4 0.4 1.3 3 1 1 2

19-20 4 1 2 5 2.3 0.5 1.2 2.5 3 1 2 3 2.4 0.5 0.6 1 3 1 1 2

20-21 4 1 2 5 2.7 0.6 1.5 2.7 4 1 2 4 2.3 0.5 0.4 1 3 1 1 2

21-22 4 1 2 5 2.4 0.4 1.3 2.4 3 1 2 3 2.8 0.5 0.4 1.1 4 1 1 2

22-23 4 1 2 5 2.3 0.2 0.9 2 3 1 2 3 2.4 0.3 0.2 1 3 1 1 2

3.5.5.3 Short-term staffing recommendations - performance forecasting: In Table 5, we

record simulated performance, under staffing levels calculated via the OL and RCCP methods. As

anticipated, the offered-load method achieved good service quality: indeed, the fraction of patients

getting to see a physician within their first half hour at the ED is typically less than half of those

under RCCP, the latter being also more influenced by the changes in the arrival rate. RCCP of

course yields good performance at the resource utilization column, all being near the 90% target

(for the resources with staffing levels in larger than of 1–2).

It is interesting to compare Table 5 (recommended staffing) with Table 4 (levels of actual staffing

and the corresponding performance): the latter has obvious hours of under- and over-staffing while

the former’s performance is relatively stable. (For example, n(Current) implies under-staffing during

16–17 and over-staffing for 22–23 period.) Preplanned staffing, either for resource utilization (RCCP)

or, better yet, patients’ service level (OL), clearly has its merit.

Table 5: Simulation performance measures (using OL and RCCP)
Performance measures using Performance measures using

OL recommendation RCCP recommendation

Resource Utilization
#Beds #Chair %(W > T )

Resource Utilization
#Beds #Chair %(W > T )

Hour Ip Sp Op Nu Ip Sp Op Nu

16-17 62% 38% 40% 58% 36 29 56% 90% 54% 60% 59% 38.3 35.3 78%

17-18 59% 33% 35% 67% 34.8 31.6 36% 82% 47% 65% 81% 39.3 40.2 82%

18-19 75% 49% 53% 76% 32.2 29.9 46% 80% 45% 69% 92% 40.6 46.2 86%

19-20 84% 48% 57% 80% 31.5 31.1 38% 72% 43% 79% 97% 42.3 52.2 90%

20-21 76% 52% 65% 71% 28.7 28.4 38% 68% 46% 85% 99% 43.4 57.7 91%

21-22 83% 49% 59% 75% 27.8 27.9 42% 55% 45% 89% 99% 44.7 62.4 91%

22-23 85% 45% 50% 73% 25.7 25.4 50% 63% 39% 87% 99% 45.9 64.9 91%
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Table 6 presents the standard deviations of performance measures calculated in Table 5. We

observe that these values are relatively small (the standard deviations in the other numerical exper-

iments are of the same order).

Table 6: Standard deviation of performance measures (using OL and RCCP)
Performance measures using Performance measures using

OL recommendation RCCP recommendation

Resource Utilization
#Beds #Chair %(W > T )

Resource Utilization
#Beds #Chair %(W > T )

Hour Ip Sp Op Nu Ip Sp Op Nu

16-17 1.7% 3% 2.9% 2.2% 0.8 1 2.8% 1.5% 3.4% 3.8% 2.6% 0.7 0.9 3.1%

17-18 2.1% 3% 4.1% 2.8% 0.8 1.2 3.5% 2% 3.3% 23% 3% 0.7 1.1 3.6%

18-19 1.9% 2.7% 2.1% 2.4% 0.9 1.3 3.8% 2.3% 3% 2.6% 2.5% 0.8 1.2 3.7%

19-20 2% 2.8% 2% 2.3% 1 1.4 3.9% 2.2% 2.8% 4.4% 2.4% 0.9 1.3 4%

20-21 2% 3% 2.2% 2.7% 1 1.4 3.7% 1.6% 2.6% 2.9% 1.3% 0.9 1.4 3.5%

21-22 1.9% 2.9% 2.2% 2.1% 1.1 1.5 3.5% 1.4% 2.6% 2.5% 1.1% 1 1.6 3.4%

22-23 1.8% 3.5% 5.3% 3.7% 1.1 1.6 3.4% 1.8% 2.5% 2.3% 1.4% 1.1 1.8 3.2%

3.5.5.4 Comparing RCCP and OL given the same average number of resources: In

this section, we provide a “fair comparison” between RCCP and OL staffing techniques. The same

simulation model for the same time period, as in Sections 3.5.5.2 and 3.5.5.3, was used. However,

in the previous sections, we allowed a different amount of resources for the two methods, obtaining

better results for OL with more resources. Here we targeted the two staffing methods to use the

same average number of resources (Ip, Sp, Op, and Nu) per hour. We used the following algorithm

to reach this goal. First, different values of the targeted service level α = %(W > T ) were used

to get recommendations on the number of resources per hour via the OL method (recall Equations

(3.4), and (3.5)). The overall average utilization was computed for each case. Then we modified

the overall number of resources in the RCCP formula (Equation (3.1)), in order to target the same

values of the overall average utilization.

Finally, simulations were run in order to compare the quality of service %(W < T ) for the two

methods; the results are presented in Figure 27. The simulation results are conclusive – the OL is

the superior method, which implies the higher quality of service with the same number of resources

for all values of α.

Remark. We are aware that it is not always feasible to schedule an additional workforce in a

hospital on short notice. This can pose a serious limitation for a practical application of our method.

However, “load balancing” might be possible, by transferring physicians and nurses from less loaded

positions to “bottlenecks”. In our hospital, such a solution is feasible mostly in the afternoon, when
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Figure 27: Quality of service of RCCP and OL with the same number of resources per hour

the ED and the internal wards can potentially share their staff (as opposed to the morning shift

when each department must adhere to rigid staff allocations). Even if workforce levels are inflexible,

operational forecasting exposes potential problem areas in advance, which provides ED managers

with some time to prepare for functioning in a high-load regime.

3.6 Tactical horizon: simulation-based modeling for the control of seasonal load

effects in ED

Although the patient intra-week arrival pattern does not change over time, there are midterm load

effects (e.g. flu epidemic months) that must be addressed when one plans and schedules the ED

resources. Assume that we have an arrival load forecast for a certain time period. (It can be obtained

either via formal forecasting methods or via expert assessments.) Our goal is to calculate hourly

staffing recommendations. For this goal, we do not need an on-line simulation, and we can look

on the average effects of a model, which uses the OL number of resources per hour, and a model,

which uses RCCP recommendations. For a fair comparison, we forced the total number of resource-

hours (aggregated staffing levels of nurses and the pooled physicians) of both methods to be the

same. The same technique as in Section 3.5.5.4 was used for this purpose (one hundred simulations
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for each special case with a three-day warm-up period were performed). The only difference with

respect to the on-line-simulation was that here we used a simulation model with shared physicians

instead of specific ones for simplicity reasons. We compared the two staffing methods with respect

to the following performance measures: %(W > T ); Average Length of Stay (ALOS), and number

of average occupied chairs and beds. We fixed ten values of the targeted service level α (from 0.1

to 1.0 with a step 0.1), got OL recommendations for the number of resources and, then, calculated

RCCP recommendations with the same overall utilization. We ran the simulation again to receive

the quality of service for comparison. The results are presented in Table 7.

Table 7: Simulation performance measures using OL and RCCP (Off-line)
α 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Hourly average %(W > T )(OL) 6.3% 10.4% 13.9% 16.9% 20.5% 21.3% 24.6% 26.0% 27.8% 31.0%

Hourly stdev %(W > T )(OL) 17.4% 23.0% 26.7% 29.6% 32.3% 33.2% 34.8% 35.6% 36.5% 38.4%

Hourly average %(W > T )(RCCP) 15.7% 21.6% 23.9% 26.5% 29.4% 30.9% 35.6% 36.3% 39.1% 42.3%

Hourly stdev %(W > T )(RCCP) 30.9% 35.6% 36.9% 38.4% 39.7% 40.2% 41.9% 42.1% 42.9% 43.6%

average %(W > T )(OL) 6.4% 10.5% 14.4% 17.3% 21.1% 21.8% 25.9% 27.0% 28.7% 31.5%

average %(W > T )(RCCP) 11.2% 16.5% 18.4% 21.1% 23.0% 24.8% 29.1% 30.5% 32.9% 36.1%

ALOS(OL) 200.9 211.2 221.5 227.6 232.5 237.7 241.1 245.8 253.0 254.7

ALOS(RCCP) 211.2 226.2 238.9 244.6 251.8 256.6 267.7 270.6 279.4 291.4

Average Beds(OL) 13.4 14.0 14.4 14.9 15.2 15.1 15.7 15.9 16.0 16.4

Average Chairs(OL) 9.7 10.7 11.5 11.9 12.5 12.3 13.0 13.3 13.4 14.1

Average Beds(RCCP) 14.2 14.9 15.4 15.9 16.3 16.3 17.5 17.4 18.1 18.3

Average Chairs(RCCP) 10.6 11.6 12.2 12.7 13.1 13.2 14.4 14.4 15.0 15.4

In Figure 28 we observe that if the comparison is done over %(W > T ), OL is dominating RCCP

by 5% approximately if averages over all patients are compared, and by 10% if hourly averages are

compared. (In the latter case, we first calculate performance for each hour and then average the

results.) The superiority of the OL approach is also clear for ALOS, and for the average occupied

beds and chairs indices. If the performance is analyzed on an hourly basis, we observe that the

OL approach is not always dominant. It can be shown that the number of resources per hour

is not too different for the two methods. For example, see Figure 29 for α = 0.3 on an average

day, where aR(OL,Dr) and aR(OL,Nu) mean the offered load (3.3) for physicians and nurses,

respectively; aR(RCCP,Dr) and aR(RCCP,Nu) denote the expected processing time per resource

(3.1); and, finally, n(Dr,OL), n(Nu,OL), n(Dr,RCCP ) and n(Nu,RCCP ) denote staffing levels

for a corresponding method and resource type.

In Figure 30 (α = 0.3), we observe that OL maintains a steady quality of service during the week,
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Figure 28: Quality of service of RCCP and OL by using a similar number of resources per hour

(off-line)

while RCCP is gaining better (though not significantly better) results during increasing arrival rate

periods and fails when the arrival rate declines. The reason is the economies-of-scale phenomenon,

which is well-known in queueing theory. RCCP targets the utilization level, but a system with a

larger number of servers provides a better performance given the same utilization.

Summarizing, the OL method provides better and more stable performance. Since tactical

planning is per-formed weeks or months in advance, it is much easier to schedule the needed workforce

for the tactical horizon than in the case of operational planning. A possible limitation of tactical

planning is related to forecast reliability. Say, if load forecasting quality for flu epidemic periods is

low, the staffing recommendations will be far from optimal.

3.7 InEDvance: a support system for recording, predicting, and displaying ED

events

Input to our system originates from numerous data sources. For example, the ED current state

is based on information from a multitude of hospital IT systems, such as the Admit Discharge

Transfer (ADT) system, the Picture Archiving and Communication System (PACS), the Lab Order

Reservation system and the Electronic Medical Records system. Yet these systems provide only
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n and R per Hour by Method in an Average Week (α=0.3)
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Figure 29: n and R per average hour of a day (α = 0.3) (off-line)outputChart
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minimal operational information such as start and end of an activity. In particular, no information

on queue lengths or waiting times is available (and here our simulation-based capabilities of ED

state completion and prediction comes handy). The hospital IT system collects its information

and presents it to the user as a set of indicators and parameters. To inter-act with this hospital

system, we have designed InEDvance (Wasserkrug et al. [2009]): a decision support system that

can record, process, simulate, and present event data that hospital IT systems record and send,

along with current (as in Section 3.5.5.1) and future performance measures (as in Sections 3.5.5.2

and 3.5.5.3). The InEDvance system comprises algorithms that assist the ED manager in planning

resource allocation for the next several hours for handling forecasted resource scarcity. In particular,

InEDvance has, at its core, a simulation-based module that is fed (in real-time) data from the

hospital IT systems and then, through simulation (as described above), identifies and presents

patient flow bottlenecks (e.g. excessive lines at the X-Ray) and consequently alerts ED management.

The information arriving from the various IT systems generates a dashboard of past, present and

predicted activities within the ED. We sample-demonstrate the use of such a dashboard by combining

it with our ED simulator, and graphically presenting (potentially in real-time) information on the

dashboard, using a graphical user interface. Figure 31 below shows a snapshot of the dashboard that

presents, in various ways, past, current, and future occupancy of the different ED rooms. Figure

32 demonstrates a dashboard that could alert, based on calculated forecasting indicators, against

predicted congestion and resource shortage.

Figure 31: Dashboard snapshot showing room occupancy
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Figure 32: Predicted arrivals and physicians load

3.8 Conclusions and worthy future research

In this chapter, we applied a simulation model of an emergency department to staff scheduling

problems in several different time horizons. The results turn out to be very promising. We introduced

a simulation-based offered-load staffing technique that seems to be superior to existing alternatives.

This combination of a flexible simulation model and of an advanced staffing technique can be (and

we hope, will be) used in other hospitals. In order to enhance our approach, it would be helpful

to design IT systems that integrate these tools with real-time decision support systems and RFID

technology.

Below we briefly describe our main research conclusions for each of the two staffing horizons

within which we worked.

Online Decision Support, Short-term Forecasting and Operational Planning. In Section 3.5, we

have shown how the algorithm setup problems are solved in this case, emphasizing simulation-based

inference of the current state and, especially, the problem of inferring patient discharge times, which

constitute a specific and, probably, wide-spread example of incomplete data.

We believe that the main theoretical contribution of the chapter is the introduction of the offered-

load framework for staffing problems. This method is not restricted to operational planning and

can be used for all planning horizons considered in the chapter. It uses simulation with infinite

resources and generalizes the single-station approach of Feldman et al. [2008] to a complicated ED

service network. We compared the offered-load method with the prevalent RCCP (Rough Cut

Capacity Planning) technique in several different setups and, overall, the staffing based on the
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offered load turns out to imply better performance given similar resources. The main reason for this

phenomenon is that the offered load concept refines RCCP in the sense that it allocates workload

accurately over time (while RCCP, on the other hand, accounts for all the workload brought in by

a patient right at the arrival time of that patient).

Simulation-based Staffing for a Tactical Horizon. In Section 3.6, we considered the problem

of middle-term staffing (weeks or months ahead). Two simulation-based staffing methods, OL

and RCCP were compared, again assuming the same average staffing level. For all considered

performance measures (ALOS, probability of a long wait for the first physician encounter, average

number of occupied beds and chairs), the OL approach turned out to be preferable.

Since this research covers several heterogeneous topics, many future research directions can arise

out of it. Here we briefly characterize some of these research issues.

• Enhancing Forecasting Algorithms. In this chapter, a simple MA technique is used for arrival

volume forecasting since we did not succeed in improving its goodness-of-fit via more elab-

orated approaches. However, this issue deserves additional research effort. For example, an

alternative approach to arrival load forecasting is presented in Kuhl et al. [2006], Kuhl and

Wilson [1999], Kuhl et al. [1997], where the authors estimate the parametric rate function of a

non-homogeneous Poisson process. Verifying if these methods provide a better goodness-of-fit

to our data than long-term MA is an interesting research topic.

• Integration between ED Simulators and Hospital Data Repositories. The Service Engineering

Enterprise (SEE) Center at the Faculty of Industrial Engineering and Management in the

Technion has created and maintained data repositories from service systems. These are all

based on the DataMOCCA model (Data Model for Call Centers Analysis, see Trofimov et al.

[2004]). The model provides a uniform presentation of (mainly operational) data from vari-

ous sources for statistical analysis, operations research and simulation. Initially designed for

call center data storage and processing, DataMOCCA was generalized to accommodate other

sources and types of data, including healthcare data in general, and ED in particular. Indeed,

SEE repositories now contain data from ED and internal wards of several hospitals. Remark.

http://ie.technion.ac.il/Labs/Serveng/ is the website of the SEE Center.

In order to increase processing speed, SEE databases are designed in two levels, containing as

the second level precompiled summary tables, which are created once and are efficient enough to

support online (few-seconds) processing. This provides an environment that is suitable for real-time

statistical analysis and simulations. In addition, software for statistical algorithms (including fitting
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of parametric and mixture distributions, survival analysis, etc.) has been developed and connected

to the databases.

Data from any hospital, in particular SEE data, can be used by our simulation model. More-

over, the statistical capabilities of DataMOCCA could be integrated into the simulator. Note that

enhancement of data-collection methods (using RFID, for example) will increase the benefits of such

an integration. For example, estimates of service times for nurses and physicians will be derived

from the database, while field studies are now required in order to in-corporate them into the model.

55



4 ED Design: via Data Envelopment Analysis (DEA)

Abstract

The health care industry is constantly being challenged by new regulation, new technology, and

structural changes due to public policy. Priority queues in EDs, are based on patients’ urgency

and illness, which implies that operational aspects, such as Average Length of Stay (ALOS), are

rarely taken into account, for example in determining staffing levels on ED operating strategies. To

this end, we are proposing the EDD methodology, which identifies an operating model that would

be the most efficient in a given environment. More specifically, we use Data Envelopment Analysis

(DEA), coupled with real data from eight hospitals and simulation, to compare efficiency of different

operating models, as we vary operational environmental parameters. It turns out that there is no

dominant operating model, but we did find that different operating models have weaknesses and

strengths over distinctive environmental parameters: For example, hospitals that get a high volume

of elderly patients per month, are most likely to require a separate lane for high (clinical) priority

patients (fast track) in order to be efficient, while others can use a priority rule (triage) without the

need for a distinguished space for high priority patients.

4.1 Introduction

The health care industry is constantly being challenged by new regulations (such as standard

LD.3.15, which the Joint Commission on Accreditation of Hospital Organizations (JCAHO) set

in early 2005 for patient flow leadership), new technology (e.g., introducing Picture Archiving and

Communication System (PACS) which replaced the old X-ray films), and structural changes due

to public policy. For example, when reimbursements from Medicare patients in the US started to

decrease in 1983, the health care industry found itself first in a retrenchment stage, but later on

it was realized that improving performance is the only way to reach a viable financial condition.

Therefore, DEA found its way as a benchmark tool to achieve health care institutional goals (Ozcan

[2008]).

4.1.1 The ED design problem

Priority queues in EDs are based on patients’ urgency and illness (Garćıa et al. [1995]). This

implies that operational aspects, such as Average Length of Stay (ALOS), are rarely accounted for

when determining operating policies. Therefore, hospital management has come up with various

ways to incorporate the operational point of view through the ED structure and its operational
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models. We focus here on the most prevalent operational models that are being used in ED’s:

Triage (Section 4.1.1.1), Fast-Track (Section 4.1.1.2), Walking-Acute (Section 4.1.1.3), Illness-based

approach (section 4.1.1.4), and Output-based approach (Section 4.1.1.5). The models are graphically

summarized in Figure 33.

4.1.1.1 Triage: Triage is an operational model originally focused on assuring that patients are

receiving appropriate attention at the right location with the right degree of urgency (George et al.

[1993]), thus triage was originally meant to be a clinically-based approach. In the illustration of this

operating model shown in Figure 33(a), we note that in the Triage model patient arrivals to the ED

are immediately classified by the Triage function before entering the ED areas. When used just as

a prioritizing tool, the benefits of triage are not clear because adding queues for a staff member to

prioritize the patients is adding a staff member and could increase the original waiting times (see

George et al. [1993] for more details). Others found that triage helps reduce ALOS when used as

a hospital gatekeeper (e.g. Derlet et al. [1992], and Badri and Hollingsworth [1993], who suggest

referring non-urgent patients to clinics), or when triage nurses are empowered to initiate lab tests

(e.g. blood or urine) or X-rays so that the results arrive when a physician is ready to evaluate

the patient (e.g. Macleod and Freeland [1992]). Of course, identifying appropriate staffing levels of

physicians (Wong et al. [1994]) can reduce unnecessary queues and therefore reduce ALOS as well.

4.1.1.2 Fast Track: “A Fast Track (FT) lane is a lane dedicated to serve a particular type of

patient with the sole intent of reducing their waiting time; thus, reducing their total time in the

system” (Garćıa et al. [1995]). An example of this type of patient, who uses a special lane, is an

acute patient (e.g. myocardial infarction at Pell et al. [1992], or evolving STEMI at Heath et al.

[2003]). Fast-Track is a mixture of a clinical and operational-based approach, since it aims both at

saving lives and at reducing ALOS for those who really need it. In the chart in Figure 33(b), we

see that the Triage model and the FT model are very similar except for the special Fast-Track lane,

which gave this model its name.

4.1.1.3 Walking-Acute: Another common meaning for the use of “Fast Track” in the literature,

is directed at shortening patients ALOS by dedicating a separate lane for patients with minor illnesses

or injuries (e.g. Docimo et al. [2000]). Since those Fast-Track patients are commonly called “Walking

Patients” (Falvo et al. [2007]), we shall use the term Walking-Acute (WA) for this approach instead

of FT. Another difference between the WA and the FT model is in the use in the latter of the Triage

function after patients enter the ED (see Figure 33(d) and Figure 33(b)). Being admitted without
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Triage could lead to miss-classifications and, hence, later in the process patients moving from one

area to another in the ED, or finding after a while that a patient’s problem is not relevant to the

ED, for example when the patient should have been admitted directly to one of the hospital’s wards.

4.1.1.4 Illness-based: This is another characteristic of an operating model, which is based on

the type of ED physician involved. ED physicians can be specialists in ED medicine, denoted here-

after as ED physicians, or specialists in specific disciplines such as Internal, Surgical or Orthopedic

(ISO) medicine, denoted hereafter as professional physicians (Sinreich and Marmor [2005]). When

an ED is operating with a special lane for each specialist, we call this approach “ISO”, an abbre-

viation of its specialist physicians. From Figure 33(a), and Figure 33(c), we notice that the main

difference between the Triage and the ISO model is the use of a Triage function, which could lead,

as in the WA model, for miss-classifications and for patients moving unnecessarily among areas in

the ED, or out of the ED to a hospital ward. The operational advantages of the ISO model over the

Triage model could be the use of fewer staff members (the one that was used in the Triage function).

4.1.1.5 Output-based: An interesting approach, based on lean manufacturing, employs a sep-

arate lane for patients who probably would be released after treatment in the ED, and another lane

for those who the triage nurse suspects would eventually be admitted to a hospital ward after ED

examination (King et al. [2006]). We call this approach the “output-based approach” since it is

based on the clinical outcome-state of the patient.

4.1.2 DEA - basic principles

DEA is a mathematical technique dealing with performance evaluation, namely the efficiency of

organizations, e.g. hospitals, government agencies, and of course business firms. An example of

measuring efficiency would be the cost (output) per unit (input), profit (output) per unit (input),

and so on, which is manifested by the ratio Output
Input (Cooper et al. [2000]). Charnes et al. [1978]

introduced the basic model they called CCR (an abbreviation of the authors names), which finds

the efficiency of a complex system with several outputs and several inputs for the Decision Making

Units (DMU’s):

max h0 =

s∑
r=1

uryr0

m∑
i=1

υrxi0

; s.t.

s∑
r=1

uryrj

m∑
i=1

υixij

≤ 1, ur, υi > 0 , (4.1)
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Figure 33: ED (simplified) design of the common operating models
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where xij represents the amount of input i utilized by DMUj , while yrj > 0 represents the amount

of output r produced by DMUj ; υi is the weight given to output i, and ui is the weight given to

input r. The optimal solution ensured that optimal h∗0 = maxh0 will always satisfy 0 ≤ h∗0 ≤ 1.

For solving Equation (4.1) we use linear programing with the following formulation:

max z0 =
s∑
r=1

uryr0

s.t.
m∑
i=1

υixi0 = 1,
s∑
r=1

uryrj −
m∑
i=1

υixij ≤ 0

j = 1, ...n, ur, υi ≥ ε, ∀r, i.

(4.2)

4.1.3 DEA - including uncontrollable elements

It is often the case that some parameters are uncontrollable (for example, the weather condition,

or the inflation level), so there is the need to extend (4.1) to include uncontrollable inputs (Banker

and Morey [1986]):

max θ0 =

s∑
j=1

wjyj0 −
t∑

k=1

ukzk0

r∑
i=1

υixio

s.t. 1 ≥

s∑
j=1

wjyjm −
t∑

k=1

ukzkm

r∑
i=1

υixim

, m = 1, ...n,

wj > 0, j = 1, ...s,

υi > 0, i = 1, ...r (weights for controllable inputs),

uk > 0, k = 1, ...t (weights for uncontrollable inputs).

(4.3)

The benefit of this model is that we are not just getting the impact of controllable inputs, but

also the effect of the uncontrollable parameters over the model as well.

4.1.4 DEA - comparing different operating methods

The reasons for using DEA are broad. One use is to identify the sources and the extent of relative

inefficiency in each of the compared DMUs (for more reasons see Golany and Roll [1989]). Brockett

and Golany [1996] introduced a new approach that analyzes data by groups rather than by individual
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DMUs. If the DMUs are grouped by their operational characteristics, this approach can assist

management in evaluating what the best action or policy is from the available options. Their

suggested procedure is as follows (originally k=2):

I. Split the group of all DMUs (j = 1, ...., n) into k programs consisting of n1, ..., nk DMUs

(n1 + n2 + ....+ nk = n). Run DEA separately (e.g. Equation 4.3).

II. In each of the k groups separately, adjust inefficient DMUs to their “level of efficiency”

value by projecting each DMU onto the efficiency frontier of its group (e.g. by changing

the controllable inputs in Equation 4.3).

III. Run a pooled (or “inter-enveloped”) DEA with all the n DMUs at their adjusted efficient

level (again like in Equation 4.3).

IV. Apply a statistical test to the results of III to determine if the k groups have the same

distribution of efficiency values within the pooled DEA set (or does it vary according to

different uncontrollable parameters).

4.1.5 DEA - use in the health care industry

In the last two decades, DEA has often been used to measure performance efficiency in the health

care industry (Hollingsworth et al. [1999]). For example (see Hollingsworth et al. [1999] for an exten-

sive review), DEA was used to evaluate efficiency of hospitals (e.g. Ozcan et al. [1992]), physicians

(e.g. Chilingerian [1995]), and health maintenance organizations (e.g. Draper et al. [2000]). Al-

though many articles used quantitative outcomes as outputs, a few have tried to incorporate quality

measures as well (Nayar and Ozcan [2008]).

4.2 Objectives

Our work focuses on analyzing Emergency Department (ED) efficiency. In Section 4.1.1 we saw that

ED managers can choose from several operating models. Also, we obtained an extensive database

from eight hospitals, which work in different operating models. What we have asked ourselves is the

question - can we find out why each hospital from the eight chose to work with its particular operating

model rather than another? In other words - can we find out which uncontrollable parameters

influence the operating model that ED managers should choose from?

61



4.3 Structure of the chapter

The rest of the chapter is structured as follows: First we introduce a methodology to identify which

operating model should be used to operate the ED, and we implement the methodology on several

real hospital data (Section 4.4); then we display the results (Sections 4.5). We conclude, in Section

4.6, with a summary and a description of some planned future work.

4.4 Methodology

The EDD (ED Design) methodology, for recommending an efficient ED operating method, consists

of the following steps (based mainly on Golany and Roll [1989] and Brockett and Golany [1996])):

• Prepare the model data:

– Select DMUs to be compared.

– List relevant efficient measurements, operational elements, and uncontrollable elements

influencing ED performance.

– Choose the measurements and elements that would enter the DEA model by:

∗ Judgmental approach (I).

∗ Statistical (correlation) approach (II).

• Evaluate the model:

– Use the methodology in Section 4.1.4 to compare the different methods.

– Find which uncontrollable elements compel changing operating methods to reach an ef-

ficient system.

4.4.1 Available data

Our data came from the EDs of eight hospitals, of various sizes and employing different operating

models (see Table 8). Hospitals 2, 6, and 7 have small ED’s (around 4000 patient arrivals per

month). Hospitals 1, 3, 4, and 8 have medium-size EDs (around 6000 patient arrivals per month)

and Hospital 5 is a Level 1 Trauma hospital, which is the largest ED we had (above 7000 arrivals

per month).

Hospital 2 uses separate locations in the ED for Internal, Surgical, and Orthopedic patients. In

each location, a different physician type treats the patients. We call this method after the patient

types and locations (ISO). Hospitals 1, 3 and 6 adopted the Fast-Track (FT) operating model, which
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uses a dedicated area, physician, and nurse (who functions also as a Triage nurse) for treatment

of Internal patients considered to be less resource consuming (fast diagnosis process, no treatment

needed - somewhat like a clinic) while the rest of the ED operates as ISO (see Garćıa et al. [1995],

Kraitsik and Bossmeyer [1992], and Samaha et al. [2003] for more details). Hospital 4 uses the ISO

method, separating the sites into a Walking area (where the patients use chairs), and an Acute area

(where the patients use beds). The last two hospitals (7 and 8) use a Triage nurse to route out

unrelated patients (those who need a specialist who is not available in the ED) and give priorities

to acute patients (e.g. Badri and Hollingsworth [1993]).

Table 8: Overview of hospital data

Hospital
Start Date

[Month-Year]

End Date

[Month-Year]
Operating Model

Average Monthly

Patient Arrivals
ED Scope

1(B) Apr-1999 Nov-2000 Fast-Track 5700 Medium

2(C) Apr-1999 Sep-2001 ISO 4200 Small

3(H) Apr-1999 Jun-2003 Fast-Track 6400 Medium

4(K) Jan-2000 Dec-2002 WA 6100 Medium

5(R) Jan-2004 Oct-2007 WA 7600 Big

6(BZ) Mar-2004 Feb-2005 Fast-Track 3200 Small

7(S) Apr-1999 Sep-2001 Triage 3400 Small

8(HY) Aug-2003 Mar-2005 Triage 5500 Medium

4.4.2 Enriching the data with simulation

As can be seen from Table 9, we do not have a representation of each operating model in each

size. We thus used the simulation model of Sinreich and Marmor [2005] to extend our scope of

models. The simulation enriched our data, by using different arrival volumes, with the same types

of patients. For example, Hospital 1 is a medium hospital which gets an average of 5,700 patients

per month. We use Hospital 1 simulation in order to get the results of applying the same procedures

(e.g. patient flow), but with different volumes of arrivals. For Hospital 1 we use 0.64*5700 patient

arrivals per month (and 64% of the original staff) in order to simulate the hospital working as a

small hospital, and 1.34*5700 patient arrivals per month (and 134% of the original staff) in order

to get the hospital to work as a large hospital.
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Table 9: Overview of hospital’s ratio and operating model
Ratio for each unrepresented magnitude Represented Operating model

Hospital Monthly Arrivals 3000− 5000 5000− 7000 7000+ FT Triage WA ISO

1(B) 5700 0.64 ∗ 1.34 ∗

2(C) 4200 ∗ 1.45 1.81 ∗

3(H) 6400 0.57 ∗ 1.19 ∗

4(K) 6100 0.6 ∗ 1.25 ∗

5(R) 7600 0.48 0.8 ∗ ∗

6(BZ) 3200 ∗ − − ∗

7(S) 3400 ∗ 1.79 2.24 ∗

8(HY) 5500 0.66 ∗ 1.39 ∗

Average 3600 6066.67 7600

4.4.3 Choosing DMUs and parameters to enter the model

We have chosen to take the period of a month as the base of the DMUs. The reason for that was the

need to control the variations influencing the ED performance (e.g. the impact of the day of week

and mass casualties episodes on patient arrival patterns and staff load). From Table 8 we see that

we have 245 DMUs from the eight hospitals. We use the simulation to add 4 DMUs (for months

with 28, 29, 30 and 31 days) for each ratio in Table 9. That adds up to 325 DMUs. (For Hospital

6 we did not have a simulation model in Sinreich and Marmor [2005].)

The parameters we obtained from the databases of each Hospital were limited. We narrowed it

down to the ones we thought would influence efficiency. Some of the parameters should be further

eliminated since they comprised complementary information (e.g. number of arrivals by ambulance,

and the number of arrivals not by ambulance). The parameters were divided into uncontrollable

input parameters (considered to be uncontrollable), controllable inputs, and output parameters. In

the brackets we put the min, max, and average of each parameter value (min - max; average).

• Outputs:

– Countable1W: Number of patients which exit the ED without abandoning, who do

not die, or do not return to the ED after less than one week. This parameter is the

equivalent to “good” parts that exit from a factory line (2,699 - 7,576; 5,091).

– Countable2W: Number of patients which exit the ED without abandoning, who do

not die, or do not return to the ED after less than two weeks. This parameter is the
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equivalent to “good” parts that exit from a factory line (2,586 - 7,306; 4,906).

– Q LOS Less6Hours: Total number of patients whose length of stay is reasonable (less

than 6 hours) (2,684 - 8,579; 5,580).

– Q ALOS P Minus1: Average length of stay (ALOS). Since we wish to get a high level

of output for high efficiency, we have taken ALOS to the power of −1, multiplied by the

average number of hours in a month: 30 ∗ 24 ∗ALOS−1 (119 - 445; 276).

– Q notOverCrowded: Total number of patients who arrived to the ED when the ED

was not overcrowded (more patients than beds and chairs) (2,388 - 8,368; 5,290).

• Controllable inputs:

– Beds: Number of bed hours available per month (e.g. if ED has 10 available beds, and

the month consists of 30 days, the total number of beds should be 10 ∗ 24 ∗ 30 = 7200)

(840 - 2,573; 1669).

– WorkForce: Number of “cost hours”. An hour of a physician costs the hospitals 2.5

times the hour of a nurse. We then summarized the number of hours nurses worked in

a month and added the number of hours spent by physicians multiplied by 2.5 (10,900 -

35,914; 18,447).

– PatientsIn: Total number of patient arrivals to the General ED. This parameter is

considered to be a controllable one because hospitals can block patients from entering

the ED once the place is overloaded (though it is used rarely) (2,976 - 8,579; 5,717).

– Hospitalized: Total number of patients hospitalized after being admitted to the ED. We

know that some hospitals use hospitalization as a way to relieve ED congestion by moving

patients to the hospital wards unnecessarily. The main reason is that more patients can

be then admitted to the ED. Another reason could be a deliberate continues approach

for shortening the ALOS of ED patients (541 - 2,709; 1,496).

– Imaging: Total Imaging “cost” examination ordered for ED patients per month. Imaging

is a costly examination in the ED. The three main examination are X-Ray, CT, and

ultrasound (US), and rarely there are patients from the ED who are sent for an MRI

(since this is an expensive test, and ED tests are not necessarily all covered by insurance).

We weighted the different examinations by their relative cost (see Grisi et al. [2000]) as

follows: US = 1.8∗X-Ray, CT = 4.4∗X-Ray and MRI = 6.1∗X-Ray (1,312 - 14,860;

2,709).
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• Uncontrollable inputs:

– Age:

∗ Child: Number of patients under the age of 18 who arrive at the ED during a month

(95 - 1,742; 611).

∗ Adult: Number of patients under the age of 55 and over 18 who arrive at the ED

during a month (1,429 - 5,728; 3,178).

∗ Elderly: Number of patients over the age of 55 who arrive at the ED during a month

(728 - 3,598; 1,914).

– Admission reason:

∗ Illness: Number of patients with admission reason related to illness who arrive at

the ED during a month (1,853 - 6,153; 3,775).

∗ Injury: Number of patients with admission reason related to injury who arrive at

the ED during a month (779 - 3,438; 1,849).

∗ Pregnancy: Number of patients with admission reason related to pregnancy who

arrive at the ED in a month (most patients with pregnancy reasons are directed to

the relevant wards without entering the ED) (0 - 16; 3).

– Arrivals mode:

∗ Ambulance: Number of patients arriving at the ED during a month by ambulance

(157 - 1,887; 795).

∗ WithoutAmbulance: Number of patients arriving at the ED during a month with-

out an ambulance (2,679 - 7,416; 4,921).

– Additional information:

∗ WithLetter: Number of patients arriving at the ED during a month with a letter

from their physician explaining the problem (1,624 - 6,536; 3,741).

∗ WithoutLetter: Number of patients arriving at the ED during a month without

a letter from their physician explaining the problem (803 - 3,651; 1,976).

∗ OnTheirOwn: Number of patients arriving at the ED during a month on their

own (786 - 3,579; 1,952).

∗ notOnTheirOwn: Number of patients arriving at the ED during a month not on

their own (1,744 - 6,576; 3,765).
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– Type of treatment:

∗ Int: Number of patients arriving at the ED during a month needing Internal type

of treatment (1,431 - 5,176; 3,062).

∗ Trauma: Number of patients arriving at the ED during a month needing Trauma

type of treatment (378 - 4,490; 2,655).

Our next step is to identify which of those initial parameters will participate in our DEA model.

4.4.4 Choosing the parameters to enter the DEA model by correlation

Table 10: Correlation between each two parameters
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Beds 1

WorkForce 0.73 1

PatientsIn 0.95 0.78 1

Hospitalized 0.8 0.63 0.78 1

Imaging 0.82 0.64 0.88 0.7 1

Child 0.56 0.26 0.57 0.14 0.4 1

Adult 0.89 0.67 0.95 0.78 0.88 0.52 1

Elderly 0.59 0.73 0.61 0.6 0.52 −0.02 0.39 1

Disease 0.85 0.78 0.89 0.74 0.73 0.37 0.78 0.75 1

Sabotage 0.84 0.58 0.87 0.53 0.69 0.85 0.85 0.25 0.71 1

Pregnancy −0.04 0.11 −0.04 0.21 −0.05 −0.34 −0.13 0.35 0.11 −0.29 1

Ambulance 0.62 0.5 0.69 0.68 0.61 0.28 0.65 0.51 0.65 0.52 0.31 1

WithoutAmbulance 0.94 0.77 0.98 0.74 0.87 0.59 0.93 0.58 0.87 0.87 −0.12 0.55 1

WithoutLetter 0.74 0.65 0.74 0.7 0.69 0.28 0.72 0.5 0.7 0.59 −0.03 0.24 0.8 1

WithLetter 0.88 0.7 0.94 0.68 0.81 0.61 0.88 0.56 0.82 0.84 −0.04 0.78 0.9 0.48 1

OnHisOwn 0.78 0.62 0.78 0.75 0.74 0.3 0.81 0.44 0.72 0.63 −0.02 0.33 0.82 0.97 0.55 1

notOnHisOwn 0.86 0.72 0.94 0.66 0.8 0.62 0.85 0.6 0.82 0.84 −0.05 0.77 0.89 0.47 0.99 0.51 1

Int 0.9 0.75 0.93 0.86 0.88 0.32 0.93 0.59 0.85 0.7 0.02 0.59 0.93 0.82 0.81 0.87 0.79 1

Trauma 0.84 0.68 0.91 0.57 0.74 0.75 0.81 0.53 0.78 0.9 −0.1 0.68 0.89 0.54 0.93 0.56 0.94 0.7 1

Countable1W 0.95 0.79 0.99 0.77 0.86 0.61 0.92 0.63 0.89 0.88 −0.05 0.68 0.98 0.75 0.93 0.78 0.93 0.91 0.93 1

Countable2W 0.95 0.79 0.99 0.77 0.86 0.61 0.93 0.62 0.89 0.88 −0.04 0.68 0.98 0.75 0.93 0.78 0.93 0.91 0.92 1.0 1

Q LOS Less6Hours 0.93 0.72 0.98 0.78 0.87 0.55 0.94 0.58 0.86 0.85 −0.01 0.74 0.95 0.66 0.96 0.72 0.95 0.91 0.9 0.97 0.97 1

Q notOverCrowded 0.82 0.68 0.82 0.6 0.66 0.68 0.73 0.49 0.65 0.82 −0.09 0.56 0.81 0.59 0.79 0.58 0.81 0.68 0.85 0.85 0.85 0.79 1

Q ALOS P Minus1 0.19 0.05 0.16 −0.01 −0.03 0.56 0.18 −0.25 0.02 0.46 −0.27 0.28 0.12 −0.14 0.29 −0.14 0.31 −0.05 0.37 0.2 0.2 0.21 0.4

In Table 10 we see the correlation between every two parameters. Then we erased those param-

eters with a correlation higher than 0.9. We are left with the following parameters (see Table 11 for

their correlation):

• Outputs: Countable1W, Q notOverCrowded, and Q ALOS P Minus1 .

• Controllable inputs: WorkForce, Hospitalized, and Imaging.
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• Uncontrollable inputs: Child, Elderly, Illness, Injury, Ambulance, WithoutLetter. We

see that although Pregnancy has a low correlation with other parameters, we have chosen to

remove it from the model. The reason for that was pregnancy arrival to the ED is a rare event

(Hospitals have a distinct location for pregnancy cases).

Table 11: Correlation between model parameters
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WorkForce 1

Hospitalized 0.63 1

Imaging 0.64 0.7 1

Child 0.26 0.14 0.4 1

Elderly 0.73 0.6 0.52 −0.02 1

Disease 0.78 0.74 0.73 0.37 0.75 1

Sabotage 0.58 0.53 0.69 0.85 0.25 0.71 1

Ambulance 0.5 0.68 0.61 0.28 0.51 0.65 0.52 1

WithoutLetter 0.65 0.7 0.69 0.28 0.5 0.7 0.59 0.24 1

Countable1W 0.79 0.77 0.86 0.61 0.63 0.89 0.88 0.68 0.75 1

Q notOverCrowded 0.68 0.6 0.66 0.68 0.49 0.65 0.82 0.56 0.59 0.85 1

Q ALOS P Minus1 0.05 −0.01 −0.03 0.56 −0.25 0.02 0.46 0.28 −0.14 0.2 0.4

In Table 12, we see the chosen parameters for each hospital, where each parameter is divided by

the number of arrivals (PatientIn) (e.g., WorkForce Ratio means the average number of weighted

staff hours per patient, and Imaging Ratio means the number of weighted imaging examination per

patient. We omitted the parameter focus on length of stay (Q ALOS P Minus1), because dividing

it by the number of patients would not give us an intuitively graspable parameter value). In Figure

34, we see the hospitals efficiency using the original data after “normalization”. The least efficient

hospital by far is number ‘2’; its parameters are not so extreme compared to others, although its

output (%Q notOverCrowded) is quite low (which can explain the second least effective hospital

‘5’, which has the same low parameter). It is good to see that there is no single ratio that effects

the efficiency of all hospitals.
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Table 12: Hospital’s parameters ratio (from the database without simulation)
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1 (B) FT 3.37 1.06 29% 8% 41% 69% 31% 6% 42% 91% 98% 98%

2 (C) ISO 3.53 1.20 22% 10% 45% 74% 26% 13% 39% 90% 75% 92%

3 (H) FT 2.91 1.14 18% 18% 25% 60% 40% 12% 27% 90% 100% 98%

4 (K) WA 2.98 1.13 30% 11% 38% 68% 32% 20% 29% 91% 100% 97%

5 (R) WA 2.83 1.38 29% 7% 28% 63% 30% 15% 33% 85% 76% 95%

6 (BZ) FT 4.67 0.56 41% 10% 37% 71% 29% 8% 41% 93% 100% 97%

7 (S) Triage 4.47 0.93 29% 4% 46% 74% 26% 15% 40% 92% 97% 98%

8 (HY) Triage 2.79 1.36 26% 14% 27% 62% 38% 11% 44% 92% 100% 97%
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Figure 34: Efficiency by hospital for the original data (without simulation)
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4.4.5 “Normalizing” the data, and adding constraints on the weights

After choosing which of the parameters would participate in our model, we had to do two things

(Roll and Golany [1993]): (1) “Normalizing” the data so that the magnitude of the parameter would

not influence the model (see Equation (4.4)); (2) Putting restrictions on the weights of the model

(see Equation (4.5)).

P̃ij =
100 ∗ Pij
Pi.

P̃ij − Normalized parameter i of DMU j

Pij − Parameter i of DMU j

Pi. − Average of parameter i over all DMUs

i = 1, ...,m ; m − number of parameters

j = 1, ..., n ; n − number of DMUs

(4.4)

The rationale behind the following bounded constraints is to try and maintain reasonable weights.

We find it unreasonable to exclude input or output parameters from the model, so we forced them

to not differ by more than one order of magnitude from each other. For the uncontrollable inputs,

we just wanted the total of them to have a representation as one fifth of the total controllable inputs

(as recommended in Roll and Golany [1993]):

wi/wj > 0.1 ∀ i, j ; wi, wj − weight of controllable parameters

wk/wl > 0.1 ∀ k, l ; wk, wl − weight of output parameters∑
15 ∗ wi∑
wf

> 1 ∀ i, f ; wf − weight of uncontrollable parameters

(4.5)

4.5 Results

We used the EMS software (Scheel [2000]) to run the data and get the efficiency of each DMU. We

present the results in the following two subsections. In Section 4.5.1 we present the efficiency by

operating model over all DMUs, while in Section 4.5.2 we present the influence of uncontrolled data

on efficiency and we identify the leading operating models.

4.5.1 Results over all DMUs

Firstly we wish to see if there is a dominant operating model over the whole data. For that we used

the Mann-Whitney rank test (as suggested by Brockett and Golany [1996]). Table 13 represents
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Figure 35: Efficiency by rank for each operating model

the P-Value for comparison of each two methods. It seems that FT and Triage are the dominant

operational methods at a significance level of 0.01. From Figure 35, which represents the efficiency

of each method ranked (the order of efficiency from the smallest to the highest), we see that there

are segments in which different operating models are taking the lead over others (though Triage and

FT are switching the role for the best operating model throughout the whole data). The same result

is attained when we compare the efficiency quantiles (percentile starting from the smallest results)

of the different models (Figure 36).

Table 13: Mann-Whitney rank test P-Value between every two operating methods

FT ISO Triage

ISO < .0001 - -

Triage 0.506 < .0001 -

WA < .0001 < .0001 < .0001

4.5.2 Results by uncontrolled parameters

At first, we plotted the average efficiency vs. each High (more than the average) and Low (less

than the average) value for each uncontrolled parameter, by the operating models. Our uncontrolled

data were the monthly children arrivals (Figure 37), monthly elderly arrivals (Figure 38), monthly
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Figure 36: Efficiency by quantiles for each operating model

arrivals with illness (Figure 39), monthly arrivals with injury (Figure 40), monthly arrivals with

ambulance (Figure 41), and number of arrivals without letter (Figure 42).

From Figure 37 to Figure 42 we cannot identify an operating model that is superior over the

entire range of parameters. What we do see from those figures is that the FT and Triage method

efficiency is being influenced greatly by the parameters’ magnitude. FT increases while uncontrol-

lable parameters increase, while Triage decreases at the same time. That influenced us to try and

analyze the impact of the parameters (after stepwise choosing) on the efficiency of each operating

model (Linear Regression):

• FT: R2 = 0.66, P −V alue < .0001 where the parameters Illness and Injury, and the interac-

tions Elderly ∗ Injury, Child ∗Ambulance, Child ∗WithoutLetter, Elderly ∗WithoutLetter

and Illness ∗ Ambulance have positive statistical-significance influence on the efficiency, and

the parameters Elderly and Ambulance, and the interactions Child∗Illness, Elderly∗Injury,

Injury ∗WithoutLetter and Injury ∗Ambulance have negative statistical-significance influ-

ence.

• ISO: R2 = 0.75, P − V alue < .0001 where the parameter Illness, and the interaction

Elderly ∗Ambulance have positive statistical-significance influence on the efficiency, while the

parameters Child, Elderly and Ambulance have negative statistical-significance influence.
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Figure 37: Average efficiency by monthly child arrivals
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Figure 38: Average efficiency by monthly elderly arrivals
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Figure 39: Average efficiency by monthly illness arrivals
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Figure 40: Average efficiency by monthly injury arrivals
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Figure 41: Average efficiency by monthly arrivals by ambulance
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Figure 42: Average efficiency by monthly arrivals without letter
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• Triage: R2 = 0.85, P − V alue < .0001 where the interactions Child ∗ Illness and Elderly ∗

Illness have positive statistical-significance influence on the efficiency while the parameters

Elderly and Injury have negative statistical-significance influence.

• WA: R2 = 0.91, P − V alue < .0001 where parameters Elderly and Illness, and the in-

teractions Child ∗ Ambulance and Illness ∗ Ambulance have positive statistical-significance

influence on the efficiency, and the parameter Child and the interaction Elderly∗Illness have

negative statistical-significance influence.

Another approach that we used to find in which environment there is a dominant operating

model, is CART (Breiman et al. [1984]) as implemented in JMP (SAS Institute Staff [1996]). The

tree can be found in Figure 43.

The outcome of this analysis is as follows: FT and Triage are the preferable operational models

for the ED (P − V alue < 0.0001). When the number of Elderly arrivals is higher than average,

choose FT (P − V alue < 0.001), while when Elderly arrivals is less than average choosing Triage

over FT is not significant (P − V alue = 0.42). When Triage and FT are not feasible, choose WA

(P−V alue = 0.02) when the number of Elderly arrivals is higher than average, but when the number

of Elderly arrivals is low, there is no significant difference between the models (P − V alue = 0.26).

4.6 Conclusions and future research

We presented the EDD methodology, which identifies a dominant operating model in an ED. Al-

though we did not find a uniformly dominant operating model, we did discover that different op-

erating models have weaknesses and strengths over various uncontrollable parameters. Hospitals

which get a High volume of elderly patients are most likely to need a separate lane for high priority

patients (FT model), while others can use a priority rule without the need for a distinguished space

for high priority patients (Triage model). When Triage and FT are not a feasible option, using a

different lane for Acute and Walking patients (WA) is the most effective operating model (mostly

when the number of elderly arrivals to the ED is high).

What our research did not do, and can be further investigated, is whether there is room to

choose an Output-based approach (we lacked the database and operating details for this), as well

as to answer what would happen if hospitals would be more and more specialized so they will admit

and care for only one type (or very few types) of patient (e.g. Internal, Surgical, or Orthopedic).
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Figure 43: Efficiency tree by uncontrollable parameters and operating model
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5 RFID-Based Business Process Transformation: Value Assess-

ment in Hospital Emergency Departments

Abstract

Many enterprises, in a variety of industry domains, are evaluating RFID technology as an in-

frastructure for process improvement. A central domain where this technology promises significant

process improvements is health-care, and more specifically hospital emergency departments (EDs).

Indeed, EDs serve as the gateways to and showcases of hospitals and they host a myriad of complex

patient care processes, often under severe time-constraints. However, incorporating RFID technol-

ogy into the ED environment is both challenging and costly - in monetary terms and organizational

efforts. It is therefore necessary to evaluate the potential benefits of introducing RFID technology.

In the present work, we present a multi-stage methodology for carrying out such an evaluation,

supported by examples of its application (operational, clinical, financial). Our evaluation utilizes

a self-developed generic ED simulator which, for the current research, was adapted to the ED of a

partner-hospital. Our experience indicates that the proposed methodology is not restricted to EDs

and it is applicable to a wide variety of environments and domains.

5.1 Introduction

The modern hospital is a highly complex system in which uncertainty, in many forms, plays a

dominant role. One manifestation of this is the intricate paths of patients within the system. Thus,

most hospitals have patient-tracking systems that are capable of identifying the location of patients,

which is important to record and maintain even on-line. However, the data in these systems turn out

mostly unreliable as it is fed by humans, who tend to circumvent or ignore procedures and thus fail

to provide updates in real time (Ash et al. [2003]). (We hasten to add that in the hospital setting,

such failures are often the outcome of clinical emergencies taking their well-deserved priorities.) The

complexity of a large hospital is well represented by the micro-cosmos of its Emergence Department

(ED). The latter is our focus here - for being the window through which a hospital is judged for

better or worse, and for amplifying many problem that arise also elsewhere. More specifically, we

are concerned with assessing the ED from its clinical, operational and financial aspects. This is a

challenging undertaking, one that can be only partially supported by existing hospital IT systems.

The challenge is further exacerbated, in fact bordering on the impossible, if one is to assess, as is

often required, these aspects in real-time. Here, we believe, is where RFID systems can come to

the rescue, by depicting real-time reliable state snapshots and status evolutions. It is too much to
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encompass the ED clinical, operational and financial dimensions all within a single paper. We thus

content ourselves with taking a somewhat operationally-biased (business process) view, which is

then expanded to accommodate interactions with the other clinical and financial aspects. This bias

is also consistent with the fact that operational aspects are the most amenable to direct integration

with and into RFID systems.

5.1.1 Typical problems in the ED

The rising cost of health-care services has been a subject of mounting importance, and much dis-

cussion, worldwide. Ample reasons have been proposed, for example increasing life spans and

the availability of an ever-increasing number of costly diagnostic and therapeutic modalities (Hall

[2006]). Yet, regardless of their cause, rising costs impose, and rightly so, pressures on health-care

providers to improve the management of quality, efficiency and the economics in their organizations.

From an operational view, ED overcrowding is its most urging problem (Sinreich and Marmor

[2005]), having clear interactions also with ED clinical and financial dimensions. Overcrowding in

the ED can and does cause, among other things, the following (Derlet and Richards [2000]):

• Poor service (clinical) quality: Patients with a severe problem (e.g. undiagnosed myocardial

infraction) can wait for hours until physician meet them for first diagnostics (which could

become life threatening). Other patients are getting treatment that is inferior to the one they

would have gotten after being properly diagnosed and hospitalized in the appropriate wards.

• Patient in unnecessary pain: When ED staff is too busy, patients are often neglected to

experience unnecessary pain or discomfort - there could simply be no one able to approach

them, for example when all staff is catering to more urgent cases.

• Negative emotions, all the way to violence against staff: Extended waiting times, combined

with an overcrowded environment and psychological pressures, is a recipe for agitation and

violent behavior.

• Ambulance diversion: Over-congested EDs could turn incapable of accepting newly arriving

ambulances, which gives rise to ambulance diversion and its ripple effects.

• Patients’ LWBS (Leave Without Being Seen): Some patients, being exhausted by waiting,

abandon the ED at different stages of their process (often to be returning in later times and

worsened conditions).
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• Inflating staff workload: The longer the ED sojourn the longer the ED effort required (for

example, if procedures call for a nurse-visit every 15-minutes of a patients ED stay).

• Increased vulnerability: Long sojourns increase the likelihood of clinical deterioration, conta-

gion of additional maladies and, all in all, the occurrence of adverse events.

There exists research, such as Sinreich and Jabali [2007], Badri and Hollingsworth [1993],

Beaulieu et al. [2000], that addresses ED overcrowding by staff rescheduling, or by changing the

operational model that the ED adheres to (Garćıa et al. [1995], King et al. [2006], Liyanage and

Gale [1995]) - for example, trading off triage against fast-track; see Green [2008] for further refer-

ences. And there is some work that proposes to resolve the problem of ED overcrowding on-line,

with the help of RFID systems. We take on this subject in our next section.

5.1.2 Some RFID background

Significant R&D efforts have been devoted to the search after efficient and accurate Indoor Location

Tracking (ILT) systems. While the Global Positioning System (GPS) has become the de-facto stan-

dard for outdoor tracking, and it serves as the foundation for many location tracking applications,

GPS has yet no equivalent leading technology which is suitable for indoor tracking (Lee et al. [2006]).

ILT systems are occasionally referred to as RFID, after the technology of Radio Frequency

IDentification. RFID technology has recently become widespread due to its many merits. Basically,

RFID provides unique identifications to objects, hence it can be used as the foundation for objects

tracking, monitoring and control (Hightower and Borriello [2001], Hightower et al. [2000]). RFID has

traditionally been used for tracking passive entities such as consumer package goods, medications

and medical equipment. Yet this same technology can be used for uniquely identifying humans e.g.

patients and care personnel in hospitals. Applying RFID for indoor location tracking requires an

additional layer, which associates the RFID tag with a specific location. This association can be

implemented via two conceptually different approaches (Saha et al. [2002]):

• Cell-based location tracking - location identified through the location of the reader of the

RFID tag.

• Triangulation - location calculated from radio frequencies, used in the communication between

the RFID tag and scattered RFID readers (Bahl and Padmanabhan [2000]).

RFID-based ILT systems have been recently developed for addressing specific needs that arise

in patients’ care. For example, MASCAL (Fry and Lenert [2005]) is an integrated solution for
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tracking patients and equipment during events of mass causality; MASCAL is based on the 802.11

communication network, and it is integrated with the hospital’s clinical database. As another

example, an RFID-based system was deployed in Taiwan (Wang et al. [2006]), for identification and

tracking of potential SARS cases; the system provides active patient-location tracking information

as well as body temperature indication. In this present work, RFID it the technology behind our

proposed ILT systems, which are the enablers of data-based business process management - in

particular transformation towards improvement.

5.1.3 Process improvement techniques

A process is an ordered set of related, structured activities, linked by precedence relationships, all

expressing the way that work is executed within an organization, through time and across space. A

process has a beginning and an end, clearly defined inputs and outputs, and it comprises three main

components: actions, decisions and controls. Process Improvement is a systematic approach to help

organizations make significant changes by defining the organization’s strategic goals and purposes,

determining the organization’s customers and aligning the processes to realize the organization’s

goals (how do we do it better?).

Frameworks for process improvement are designed to help the process designer in identifying

the issues that should be addressed, throughout the improvement process, and how these issues are

related (Alter [1999], Reijers and Mansar [2005]). Four measures are considered by most frameworks

as being central to an improved process (Reijers and Mansar [2005], Hammer and Champy [1994],

Florian [2006]): time, quality, cost and flexibility.

Improvement of a process is achieved by a manipulation or change/transformation of the com-

ponents constituting the process. These components are organized into: process (actions, decisions,

controls); objects (inputs received and outputs provided); organization (performers, customers); in-

formatics (data, information and knowledge support); IT application (computerized support); and

environment (process-process). Combining “what to change” with “how to change” results in a set

of patterns that can be applied in order to effect an improvement in or of a process.

A generic process management philosophy, originally developed by Toyota, is Lean Manufactur-

ing. The philosophy focuses on “waste” reduction (e.g. in waiting, inventory, defects,). With roots

in manufacturing, its main principles have been also successfully applied to service organizations, in

particular hospitals (see George [2003]). A fundamental aspect of process improvement, according

to the Lean methodology, is that process improvement is to be based on measurable results/data;

to this end, RFID systems are natural enablers.
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5.1.4 The rest of the chapter

The rest of the chapter is structured as follows: First we introduce a methodology for assessing the

value of an RFID system (Section 5.2), then we use a case study to demonstrate an implementation

of the methodology in a (simulated) hospital ED (Sections 5.3-5.5). We then conclude, in Section

5.6, with a summary and a description of some planned future work.

5.2 Methodology

The purpose of our methodology is to estimate the value of introducing an RFID system (possibly

as part of a more comprehensive process improvement effort). Our methodology consists of four

main stages, as depicted in Figure 44. Recalling the discussion in Section 5.1.3, improvement of

a process can result from the transformation of several of its components, specifically: process,

objects, organization, informatics and IT applications. Of these components, the introduction of

RFID technology will support change in the informatics component, i.e., it will provide new data

that is currently unavailable, which may enable and trigger improvements of the other components

of the process. Therefore, in the first step of our methodology, Define Required Process Change(s),

it is necessary to define how the other (non-informatics) components of the process will change

given the new data. In addition, it is necessary to define which measures, or metrics, are expected

to improve due to the process change(s). The reason that it is important to specify the metrics that

are expected to improve is that only through these quantitative metrics, can the value of the RFID

system be estimated (or the values of several RFID alternatives be compared) - see Section 5.5 for

examples.

To concertize the concept of metrics in our ED setting - there are three different types of metrics:

clinical metrics, operational metrics, and financial metrics. Clinical metrics belong to the category

of quality measures described in Section 5.1.3, namely they are metrics that measure directly the

quality of care. Examples of such metrics are the duration of time a patient waits before being

first examined by a physician, the fraction of admitted patients whose clinical status deteriorates

(e.g. requiring intensive-care), and return-visits ratio (the fraction of patients, during a given time

window, that were released but then readmitted within some time-horizon, e.g. 2 weeks).

Operational metrics measure the operational efficiency of the ED. The time measures described

in Section 5.1.3 are a subset of such measures. Example of operational metrics are bed occupancy

(that can be measured in various ways) and Average Length of Stay (ALOS) - the amount of time

a patient spends in the ED before either being released from the hospital or being admitted to a
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Figure 44: Methodology steps

ward; one could account separately for patients who “left” due to other reasons, for example death

or those who Left Without Being Seen (LWBS - see Fernandes et al. [1997]). Another operational

metric is workload - the average amount of work-time required from the staff, or a subset of it

(nurses, physicians), quantified as a function of time.

Finally, Financial, or cost measures (again, see Section 5.1.3), include direct costs that the

hospital incurs due to the treatment of a specific patient, the income generated by treating the

patient. These costs should also include opportunity costs, for example due to adverse events (e.g.

ambulance diversion in Falvo et al. [2007])

Note that the above three types of metrics are interdependent. For example, if a patient waits for

a long time before first examination by a physician, this may adversely affect an operational outcome

such as ALOS which, in turn, could result in clinical deterioration, hence increased workload (more

care required by the staff), and additional costs.

Our second methodology step is exact specification of the data required from the RFID system,

in other words, what are the changes to the informatics component of a process that are directly

attributed to the RFID system. For example, it is necessary to specify whether it suffices to identify

only the room in the ED where a patient is residing or, alternatively, it is in fact necessary to

distinguish between two patients in adjacent beds within the same room. Exact specifications

are required since increased accuracy typically comes at a cost - different types of data may require

different RFID implementations or technologies, with potentially significant differing implementation

costs.

The third step in our methodology is to specify which additional changes to the informatics

component of the process (i.e., changes not provided by the RFID system), are prerequisites for the

required process change. It is also necessary to specify what level of integration is required between

this additional data and the data provided by the RFID system. For example, in the ED, it may

be necessary to integrate the location information provided by the RFID system with some clinical

information system. It is important to specify this additional information, as it could give rise to

additional investments for updating and integrating existing systems. It is also possible that new
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information systems will have to be designed and deployed.

In the fourth and final step of the methodology, the benefits of the process transformation are

estimated by calculating the potential impact of the process change (defined at the first phase) on

the metrics (defined at the first phase as well). This estimation requires a model that connects

the process change to the metrics. Such a model would be most likely simulation-based, as is the

case in the present paper. Indeed, the overall ED is too complex for capturing analytically; parts

of it, however, could me mathematically tractable, enough to capture some restricted dimension of

process transformation. (See, for example, Green [2008] for a survey of some Operations-Research

models that capture the operational reality of the ED.)

Given the above four steps, both the costs and the potential benefits of introducing a specific

RFID system can be estimated. The costs can be estimated by summing up the costs of potential

process changes, the total costs of introducing the RFID system, and the costs required to obtain the

additional data. The potential benefits are provided directly by the final phase, in which the changes

to the metrics are quantitatively estimated. Our methodology thus provides a promising measurable

basis for supporting decisions regarding the introduction of an RFID-based ILT system. As described

in Section 5.1.3, decision-making based on data is one of the most fundamental principles of lean

process improvement.

A noteworthy advantage of our methodology is that it does not explicitly mention the RFID

system. More specifically, it decouples the RFID system (the implementation technology) from the

data that we expect such a system to provide. This decoupling enables one to consider alterna-

tive ways for obtaining the required data, thereby potentially reducing substantially the required

investment. This decoupling is enabled by the core observation that what is required for process

improvement is a new type of data (e.g., location information), and that as long as the required

data is provided, its implementation technology is irrelevant. An important comment to make is

that while the methodology depicted in Figure 44 enables to estimate the benefits of introducing a

single type of RFID system, it can also be used to compare benefits from alternative RFID imple-

mentations (e.g. alternative technologies, or data-requirements). We do so in Section 5.5 where, in

one example, we compare three alternative RFID technologies.

5.3 Evaluation of the first step: required processes changes

The first step of the methodology is to identify processes that require change and in what way. To this

end, we established a team of physicians, operations managers, and IT experts, at the university

medical center Rambam, in Haifa, Israel. In concert with our proposed metric groups (Section
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5.2), we sorted the requirements into three categories: operational, clinical, and economical. The

operational aspect targets the reduction of patients’ average length of stay (ALOS) and on reducing

staff overload. The clinical aspect aims to improve patients’ clinical and nursing quality of care. The

economy aspect looks at total hospital profit, but accounting for the fact that the ED is the gate

and display window to the hospital - it is thus typically loosing money yet it generating a significant

fraction of income through other hospital operations.

5.3.1 Operational aspect

Our operational goal is a reduction in both length of stay (LOS) and staff overload - the two are

clearly interrelated since overloading is a major trigger of long delays. For reducing LOS, one

must identify: (1) When patients are waiting (2) How long are they wait (3) Whom or what they

are waiting for. To reduce staffing overload, one must first identify the staff and their activities.

Both identifications are preferable in real time. Implementation of an alerting ILT system that

helps reduce unnecessary waiting times (identifying when they occur and exposing their causes):

Extensive observations in nine Israeli hospitals (Sinreich and Marmor [2005]) revealed that about

80% of the time which patients spend in the ED is in waiting (80% for acute internal patients,

85% for surgical patients, 78% for walking patients, and 48% for orthopedic ones). Some waiting

occurs when staff is busy or for a medicine to take its effect. But ILT systems can reduce waits that

occur when patients return from examinations (e.g. imaging) without a notification; or staff is not

present in the ED when needed; or the staff is unaware of the patients’ whereabouts (e.g. restroom,

wandered to the shopping mall).

On-line identification of overloading, using this information to summon additional staff to help

reduce loads and clear the path for new patients to arrive: Nowadays, it is common that the system

is oblivious to a patients’ queue that is turning long. (A prevalent example is the physical queue for

the orthopedic physician, who attends to walk-in patients.) An ILT system can alert or even foresee

such congestion, for the benefit of both over-loaded staff and over-waiting patients.

Continuous reliable tracking of patients, staff, and equipment would identify, systematically,

process steps that cause most delays, and react to enhance control over waiting times. In fact,

online identification of bottlenecks is unavailable in the traditional ED. Using ILT systems would

also identify the parts of the load due to flawed design (e.g. a medication cabinet that is located

too far from the patients forces staff over-walking), and thus help modify an ED’s physical layout

accordingly.
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5.3.2 Clinical/Nursing aspect

The clinical and nursing aspect addresses the need to maintain and improve clinical and nursing

quality of care.

On-line alert of the completion of lab tests, integrated with patient ILT’s, reduces waiting times:

For example, the time wasted from the return of an irregular lab test until the staff reacts to it by

giving the patient an urgent treatment according to the lab result. Indeed, the Rambam medical

staff rank fast response time as a crucial factor in good medical care, especially when emergency

occurs.

Using tracking equipment system, can save lives: Different departments in the hospital commonly

share equipment. Finding those pieces of equipments quickly is essential when patient reach a critical

state. Also having the proper safety level of available equipment in the ED will improve quality

treatment in events of crises.

ILT of both patients and staff, in mass-casualty-incidents (MCIs), is crucial for providing timely

life-saving treatment. There is the need for efficient location of patients because this allows for

fast treatment of unstable patients, whose state can deteriorate rapidly if untreated. Locating staff

members is crucial because every second dearly counts in those MCIs. Enhancing staff security by

using smart tags: This would allow staff to open doors automatically or, more significantly, use their

tags as distress-buttons. Such practice will eventually relieve some pressure from the staff and allow

them to concentrate more on patients care.

5.3.3 Financial aspect

The financial aspect is focused on hospital’s profit and the ED’s, as the hospital’s gate and showcase,

contribution to it.

Using patients ILT will prevent the abandonment of unregistered patients and consequently

enhance the hospital payment collection: A direct way to improve ED profit is to identify patients’

who Leave Without Being Seen (Falvo et al. [2007]) or during their treatment (Leave On Their Own).

In Israel, about 4% of ED patients avoid payment by avoiding completion of their treatment. Having

a patients’ ILT system installed would alert security and prevent such departures from happening.

Using location-tracking technology will enable walking patients and visitors freely visit hospital

malls and increases its potential income: When patients or visitors become needed, a signal would

alert them to return. The contribution of hospital malls and commercial services has been increasing,

hence the financial potential of this kind implementation is high. On-line monitoring of service
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quality will reduce the risk of neglect lawsuits: Continuous patients and staff ILT systems will

measure and enforce response times, and will support priorities change when called for. This will

allow the ED to maintain high standard quality of care, and defend it in court if necessary.

Implementing on-line equipment ILT systems: Attaching tags to equipment will reduce thefts and

losses in the ED, and better the routines of equipment maintenance. ILT system that acknowledges

the interactions of patient-staff-equipment will generate reliable information that is a prerequisite

for implementing the “lean” methodology in EDs (see Section 5.1.3): learning from the experience

in manufacturing, one expects that lean methodologies will significantly reduce ED costs in the long

run. To implement lean methodologies, however, one must start with a good information system

that focuses on operational aspect.

Patients in most urban locations have alternatives EDs to choose from: It is clear, and especially

so when patient’s costs are equal (as is the case in Israel), perceived quality of service will determine

an ED’s choice. Improving perceived quality of service can be achieved by involving patients in their

treatment process and informing their relatives of its progress. We envision such an implementation

that updates current status via a mobile phone or to on a publicly available (yet privately secured)

dashboard.

5.3.4 Choosing process improvements for analysis

For concreteness and demonstration purposes, we have chosen three ED processes for assessing the

value of their improvements:

• Operational: Implementing an alerting ILT system, which will help reduce unnecessary waiting

times. We focus on patients who are “forgotten” in imagine areas: (a) in a remote CT area

after completing their scan. Based on practice, we are assuming that 25% of such patients

experience an average of one hour waiting before returning to the ED, when compared against

an average of 10 minutes for regular waits. (b) as above but now the patients are waiting

after an X-Ray scan. Here “forgotten” patients wait just half an hour instead of the regular

10 minutes. (The X-Ray is relatively close to the ED and easier to locate “forgotten” patients

at.)

• Financial: Using patients ILT that prevents the abandonments of unregistered patients, and

thus increases ED’s turnover rate which, in turn, will enhance hospital income.

• Clinical: Using staff (nurses, physicians) ILT that exposes physical layout problems, such as

poor placement of rooms or equipment in the ED, which have adverse clinical consequences.

86



For quantifying the value of the above, we use the metrics of ALOS, profit, and staff workload.

5.4 Evaluation of the second and third steps: data needs and RFID technological

options

This step of the methodology seeks to identify the data needed from the RFID system and from

the hospital information system, based on the process improvements (Section 5.3.4) that have been

chosen for analysis. We continue this step by choosing two RFID systems to demonstrate the

evaluation on. We conclude the section with data requirements from the hospital information

systems.

5.4.1 Data needed from the RFID system

Before comparing RFID systems, we introduce the data needs for each of our process improvements.

Some of the data is available from the hospital information systems, but other must come from the

RFID system.

• CT: Implementing an alerting ILT system that helps reduce unnecessary waiting times, after

a CT scan: (1) the time a patient completes his/her CT scan, (2) the time the patient has the

CT scan results, (3) the patient’s waiting time in excess of 10 minutes. (same with X-Ray)

• Using patients’ ILT that prevents unregistered patient’s abandonments, thus enhancing the

hospital payment collection: (1) patient tag is near the hospital gate, (2) tag removed by

non-approved personal.

• Using staff ILT for exposing physical layout problems: (1) identifying staff location, (2) time

the staff relocates to another area in the ED, (3) distance between previous and current

location.

5.4.2 Choosing two technologies to compare from

For the present paper, we chose to compare two existing Indoor Location Tracking systems: WiFi

(802.11) and short range passive RFID.

WiFi is currently the most standardized and usable indoor wireless communication technology.

Simple location tracking mechanisms can be built on top of an existing WiFi infrastructure. WiFi is

designed to cover wide areas such as the overall hospital campus; hence it can provide wide location

tracking capabilities. The location tracking precision of WiFi, on the other hand, is poor. Näıve
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implementation uses the tag only for access point (AP) association and hence provides only room

level resolution. Such installations may have also difficulties in distinguishing locations within two

adjacent hospital floors. WiFi is based on active tag communication hence provides continuous

location tracking.

Passive RFID systems, on the other hand, offer very accurate location tracking, as tags can be

identified only within short distances from the reader. The limited coverage issue can be resolved

via additional readers, and by placing readers in designated frequently-accessed spots such as doors,

pathways, mobile medical equipments (e.g. ECG machine) and patient beds. A significant advantage

of passive RFID system is low tag cost. Passive RFID tags are disposable and require little to no

maintenance. Thus, wide spread deployment is more likely because tags can be given to patients,

caregivers, families and visitors with little significant additional cost. Tags within a Passive RFID

tags can be identified only during the reading transaction itself, hence they do not render continuous

location tracking and monitoring.

5.4.3 Comparing data quality of RFID technologies and the data needed from the

hospital information system

WiFi technology provides continuous tag tracking; hence, patients and care personnel can be con-

tinuously monitored. It is simple to trigger an alert once a tag leaves the coverage range. WiFi

can provide room level location tracking, hence enables to track patient movement from say the

ED room to the CT and back. The continuous tag tracking allows for simple counting of patients

and care personnel within rooms or gathering areas. But WiFi can not provide in-room location

resolution e.g. for tracking the exact bed in which a patient resides. For our applications, this means

that we can identify 100% of the patients trying to abandon. On the other side, we cannot identify

the time that a patient is leaving the CT room and waits nearby for relocation to the ED, though

one can often infer this time from the hospital’s information system.

In contrast, Passive RFID requires the tag to be placed close to the reader, hence can provide

a very accurate location during the reading transaction. But reading transactions constitute a

discrete-time process - indeed, Passive RFID systems are incapable of providing continuous location

information. In our examples, this means that we would not know where and when patients remove

their tags before abandonment, but we can identify those who try to leave the hospital with their

tags. We can also infer the exact time that patients leave the CT room, and how long they waited,

before and after the CT.

88



5.5 Evaluation of the fourth step: benefits and comparing options

In this section, we are presenting two outcomes of our work: first (Section 5.5.1) - comparing

WiFi against Passive RFID, and second (Section 5.5.2) - conceptually designing on-line and off-line

dashboards that accompany RFID ED implementation.

5.5.1 Examination of operational benefits via simulation

To evaluate the benefits of using an RFID system for our three example processes, we have used an

ED simulation model, based on Sinreich and Marmor [2005] and programmed to process six types

of patients: Orthopedic, Surgical, and Internal patients, each in two acute conditions - walking and

those in need of a bed. Additionally, we made changes to the simulation in order to accommodate

the two RFID technologies that we are testing.

For the process improvement, based on tracking abandonment, we made the following assump-

tions:

• As data of actual abandonment times is presently unavailable, we distributed 4% abandon-

ment over five process steps: (1) waiting for a nurse to take patients anamnesis; (2) waiting for

a physician’s initial diagnosis; (3) after the physician’s first examination and before sending

additional tests; (4) while waiting for a physician to collect all the relevant data for further

evaluation; (5) after further evaluation, while waiting to be released, hospitalized or for addi-

tional intensive tests.

• WiFi technology identifies 100% of the abandonments and feeds those patients back into

the process. Passive RFID, on the other hand, succeeds in only 50% of the cases. The

difference arises because some patients would not abandon with their tags, while others might

use vehicles, just as an example, to circumvent the passive sensors near the gates, which

otherwise would detect them.

• Abandoning patients are not included in calculating lengths of stay, and they are naturally

excluded from those who contribute to hospital profit.

For the process improvement, dealing with reducing waiting times in the Imaging (CT or X-Ray)

wards, we made the following assumptions and modifications:

• CT patients are waiting to return to the ED. Return timed is within 10 minutes for 75% of

the patients and an hour for the rest.
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• Passive technology is more effective than WiFi in this case: Passive technology accurately

tracks room relocations hence it gives rise to 100% reduction of the waiting time to 10 minutes.

WiFi, on the other hand, reduces waiting times of only 50% of those who are expecting

prolonged 60 minutes waiting.

• Of the delayed X-Ray patients, an average of 20% are waiting 10 minutes and the others 30

minutes.

The Passive and WiFi systems were compared against two additional scenarios: an “ideal RFID

system”, namely perfect process improvements, and the prevailing situation without RFID. We used

five week for simulation warm-up and 70 weeks of data for analysis. The simulations generated am-

ple information but, for space limitations, only the essentials are described here. From Table 14 we

see that, prior to any process improvement, the number of patients contributing to hospital income

was the least. This is of course due to the abandonments, who relieve congestion hence let remaining

patients move more quickly through the ED (Garnet et al. [2002] analyzes such operational conse-

quences of abandonments). We also see in Table 14 that although in WiFi system (and in “ideal

RFID system”) the contributing patients to the hospital income is the highest, the quality of service

measured as the average length of stay (ALOS) is the lowest, although the other quality measure-

ment, time to first encounter with physician from arrival (avgWDr1), has no sugnificant difference

between the methods. From the operational point of view, meaning the congestion (avgLoad) that

measured the number of busy physician and nurses per patient type, WiFi gets the highest load on

the staff, while it seems not very significant difference.

From an economic point of view (more paying patients), the Ideal and WiFi systems are having

the same impact, when compared against Passive RFID.

The operational aspect is captured by the intra-day staff workload in Figure 45. We observe

that Passive RFID is the technology that yields, at its peak, the lowest workload, when compared

to the other RFID options. This is, most likely, due to the moderate number of patients treated

(more than without RFID but less than with Ideal RFID) and improvements in waiting times due

to the proposed process improvements. As a result of the peak of load at the afternoon, which is

near the upper limits of one physician, Passive RFID is the only RFID-based ED that can employs

less than two physicians on average (though its average load is being very high).

Another dimension that we checked is the physical layout of the ED. From the simulation, we

found that orthopedic physicians are walking about 2 kilometers per shift, between the walking-

patients area and the acute area (most times, there is just one orthopedic physician available for
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Table 14: The simulation results: comparing of different RFID systems
With Passive RFID With WiFi Without RFID With Ideal RFID

Number of Patients 120,741 121,177 120,926 120,612

LWBS 2,440 0 4,842 0

ALSO 199.7 215.4 209.8 208.8

STDV(LOS) 174.7 182.8 184.6 181.1

STDV(ALSO) 2.0 2.6 2.8 2.3

Patient Type N ALOS stdv avgWDr1 N ALOS stdv avgWDr1 N ALOS stdv avgWDr1 N ALOS stdv avgWDr1

Internal Acute 1 18,755 274 178 13.9 18,952 294 186 13.9 18,592 284 187 14.1 18,474 284 182 13.7

Surgical Acute 6,777 129 101 7.7 6,620 139 100 7.5 6,761 142 105 7.7 6,677 131 94 7.5

Orthopedic Acute 7,672 181 122 7.8 7,678 195 121 7.6 7,860 198 130 7.3 7,801 187 120 7.6

Internal Walking 35,290 146 144 13.0 35,156 155 150 13.1 35,216 151 152 12.9 35,048 151 147 13.0

Surgical Walking 11,724 123 119 8.5 11,900 130 125 8.3 12,013 130 124 8.4 11,725 125 119 8.1

Orthopedic Walking 21,980 234 212 8.4 22,209 262 225 8.5 21,953 254 228 8.4 22,092 252 222 8.4

Internal Acute 2 18,543 275 180 13.9 18,662 291 180 13.8 18,531 284 190 13.9 18,795 288 188 14.0

ResourceType avgLoad (per Hour) avgLoad (per Hour) avgLoad (per Hour) avgLoad (per Hour)

Internal Dr 1.76 1.80 1.73 1.78

Internal Walking Dr 0.88 0.89 0.87 0.89

Surgical Dr 0.44 0.44 0.44 0.44

Orthopedic Dr 0.69 0.71 0.69 0.70

Walking Nurse 1.23 1.25 1.22 1.23

Internal Nurse 1.05 1.06 1.04 1.04

Trauma Nurse 0.33 0.32 0.32 0.32
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Figure 45: Orthopedic physician (O Dr for short) workload
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both locations. A second one would join from the orthopedic ward, when needed).

Further investigation revealed that the distance between the two locations was excessive (about

100 meters) and the hospital managers had to take this into account in a redesigned ED. With

the distance being that long, both WiFi and Passive systems identified (and could quantify) this

problem easily. (WiFi, however, would be at a disadvantage with short distances, that could still

lead to excessive walking.)

Considering all three aspects (clinical, economical, operational), one is lead to prefer the Passive

RFID technology which, in our context, yields the best overall performance (smaller ALOS, and

less orthopedic physician needed). Other hospitals might choose differently depending on specific

preferences (for example, extra income from non-abandonments could be higher that the cost of

adding physicians).

5.5.2 RFID-based control views

The contribution of an RFID system to a hospital’s environment should encompass two main aspects.

The first inspects RFID’s impact on daily routine and hospital staff; the second should inspect long-

term impact for planning. We have designed and implemented these two aspects on an IBM Cognos

BI platform (COGOS), which is to be implemented on an active dashboard within the ED.

Examples of interfaces with the processes in Section 5.3.4 will be now demonstrated. The first

“Online View” supports real-time decisions by hospital staff and executives, hence it depicts detailed

events of hospital processes. These events must contain information about specific patients, staff

and services provided by the hospital. For our demonstration, we used again the discrete-event

simulator, based on Sinreich and Marmor [2005]. Figure 46 demonstrates how such an “online

view” alerts on extreme waiting times of patients after CT services (process 1 in Section 5.3.4).

Figure 47 demonstrates how the view alerts the presence of patients who attempt to abandon the

ED (process 2 in Section 5.3.4), together with detailing the process they have undergone until their

abandonment attempt.

The second “Offline View” should be used for supporting long term planning and therefore shows

higher level details, aggregated over a pre-specified horizon. This view is to be used for high-level

understanding and analysis of hospital processes, wordload on staff, quality and impact of decision

making and planning etc. Figure 48 and Figure 49 display patterns of patients arrivals rate over

hours of a day and along days of week. It also highlights the magnitude of the gradient, thus pointing

at the times of day when pattern-changes is the most significant. In such a view, we display averages

over a year, which are to be used for planning and assessment of strategic and longer run tactical
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Figure 46: Online view showing patients waiting time for CT services

PatientID Operation Operation Type Hour Minute
R1 in 14 0

Nurse in 14 0
Nurse out 14 7

Dr in 15 52
Dr out 16 0
Dr in 17 2
Dr out 17 5

Blood in 17 5
Dr in 17 26

17 28

131

Abandoned

Figure 47: Online view showing patient abandonment
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Figure 48: Offline view showing changes in averaged patient arrival during daytime and day of week

decisions. Figure 50 depicts workload on physicians at the hospital, through the analysis of patients

waiting time for service - excessive waits could trigger an alert.

5.6 Summary and future work

In this chapter, we introduce a methodology for estimating the value of an RFID-based indoor

location tracking (ILT) system, as part of a process transformation effort. Our methodology enables

to quantify the costs and benefits associated with such process change. In addition, the methodology

supports a quantitative comparison of alternative types of RFID implementations, which may require

different levels of investment. As was demonstrated by our results, the lack of such quantitative

analysis renders difficult informed decisions. This could give rise to a significant investment in such

a technology yet without obtaining any significant benefits from it, or in unnecessarily investing

more than required to obtain the benefits.

There is room for important future research in this area. Validation is first and foremost: the

benefits resulting from an actual RFID implementation must be compared against those predicted

by our methodology - we are planning such an experiment in a large partnering hospital in Israel.

An additional avenue for future research is expanding the methodology to account for additional

aspects of process improvement. For example, the methodology could accommodate a more detailed

mapping of the changes required from the IT system and its applications, this in order to achieve a

more complete process improvement.
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Figure 49: Offline view showing averaged patient arrival during daytime and day of week

Figure 50: Offline view showing averaged patient wait time for physician [minutes]
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6 Semi-Automatic Simulation Component Reuse

Abstract

Discrete Event Simulation (DES) is the most prevalent technology used for system design mainly

because of the flexibility of its use for modeling complex systems and dynamic operations. There is

an increasing interest in implementing model re-use within the simulation community. Simulation

reuse is a special case of code reuse, where a developer writes a component once and can then reuse

it. However, two main characteristics differentiate it from other types of code reuse: 1) simulation

code, in many cases, is built by non-expert developers. These are not completely novice users, yet

they do not develop code on a regular basis. 2) by the very nature of simulation, it may be used

in many completely different application areas, if only the similarity of simulation components can

be recognized. Recognition of simulation component similarity cannot rely on syntactical means

such as similar name parameters, similar function names, or similar documentations. On the con-

trary, simulation code of a production floor can be easily reused to support emergency department

simulation, a thing that cannot be easily observed by looking at the code. In this work, we offer

a methodology for semi-automatic support for the process of simulation component reuse. Our

methodology is based on a table-based modeling of simulation components, hierarchical clustering

of existing components and then a careful walk-through of a designer through the hierarchy for the

identification of relevant components. To illustrate our approach, we shall make use of three real-

world case studies involving resource scheduling. The main contribution of this paper is twofold.

First, we provide a methodology to assist designers in a semi-automatic way to reuse simulation

components. Second, we use a detailed case study to illustrate the feasibility of our approach.

6.1 Introduction

Discrete Event Simulation (DES) is the most prevalent technology used for system design mainly

because of the flexibility of its use for modeling complex systems and dynamic operations (e.g.,

Grabau et al. [1997]). Simulation enables engineers to understand the complexity of a system being

developed and at the same time to examine how strategic decisions influence the overall performance

of a system Baldwin et al. [2000]. Acquiring knowledge about the relationship between variables in

complex systems is most likely the main reason for using simulation today Robinson et al. [2004].

There is an increasing interest in implementing model re-use within the simulation community.

The issue is not new, but it has been gaining importance due to the development of High Level

Architecture (HLA) DMSO and the intensive use of the Web. It is appealing to save time and
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costs by reusing one’s own simulation’s components or those created by others, and the appropriate

technology seems to be almost here Robinson et al. [2004].

Simulation reuse is a special case of code reuse, where a developer writes a component once and

can then reuse it. Code reuse promises the benefit of rapid application development with increased

quality in a distributed setting. Simulation code, in many cases, is built by non-expert developers.

These are not completely novice users, yet they do not develop code on a regular basis. Therefore,

reuse carries even a greater promise for them. In addition, by the very nature of simulation, it may be

used in many completely different application areas, if only the similarity of simulation components

can be recognized. Unlike regular code reuse, recognition of simulation component similarity cannot

rely on syntactical means such as similar name parameters, similar function names, or similar

documentations. On the contrary, as we will show in a detailed example in this work, simulation

code of a production floor can be easily reused to support emergency department simulation, a thing

that cannot be easily detected just by looking at the code.

The possibility of shortening the time needed to develop a simulation was discussed in DMSO,

Fernandez-Chamizo et al. [1996], Gu et al. [2004], Robinson et al. [2004], Xia [1994]. One possibility

is importing and modifying similar models to match the required needs by CBR Gu et al. [2004]

or by Reuse Robinson et al. [2004]. The other is to develop a generic simulation Xia [1994]. The

most up-to-date approach concerning simulation is the HLA DMSO. Parr Parr [2003] presents a

tool that stores and catalogues HLA components in a way that simplify their retrieval. Fernandez-

Chamzio et al. Fernandez-Chamizo et al. [1996] present a way to help software reuse through CBR.

The basic assumption behind these work is that simulations differ by their theme (e.g., Hospital

simulation differs from Call-Center simulation), therefore neglect the possibility of one theme to

reuse in another theme, which we demonstrate its applicability.

In this work, we offer a methodology for semi-automatic support of the process of simulation

component reuse. Such a methodology is motivated by the two observations above, namely lack

of programming experience and difficulty in similarity recognition. Our methodology utilizes a

table-based modeling of simulation components, hierarchical clustering of existing components and

then a careful walk-through of a designer through the hierarchy for the identification of relevant

components.

To illustrate our approach, we shall make use of three real-world case studies involving resource

scheduling. The first case focuses on improving productivity and profit in a production line of a

Sweden factory Johansson and Kaiser [2002]. The second case evaluates a personnel schedule in an

emergency department of a Louisville, Kentucky hospital Evans et al. [1996]. Finally, the third case
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study involves an example of a call center dealing with agent scheduling Mehrotra and Fama [2003].

The main contribution of this paper is twofold. First, we provide a methodology to assist

designers in a semi-automatic way to reuse simulation components. Second, we use a detailed case

study to illustrate the feasibility of our approach.

The rest of the paper is organized as follows. In Section 6.2 we provide the table-based repre-

sentation of simulations, extending the work in Marmor and Sinreich [2008] and discuss the main

challenges of reuse. In Section 6.3 we provide our proposed methodology. We conclude with a

summary and directions of future work (Section 6.4).

6.2 Model

In Marmor and Sinreich [2008], a simulation is specified using three constructs, abbreviated as POD

(Processes, Operations, and Data). Processes define the order in which different operations are

activated. Processes can be static, for instance, in a single linear product line with machines lined

up in a fixed order. A flow can also be dynamic if routing is random and no fixed order is needed,

e.g., in a hospital emergency department Sinreich and Marmor [2005]. Operations are steps, either

simple or complex, that an entity needs to follow while in the system. A complex operation is built

from simpler operation (see sub-models next). Finally, data parameters represent various aspect of

the simulation itself (e.g., processing time) and not the application data needs (e.g., product price).

These parameters are therefore shared by all simulation, regardless of the underlying application

they represent. Data parameters can relate solely to an entity or a group of entities and describe

their relevant characteristics. Data can be associated with entities, processes and operations in the

model. Data can be a number or an expression (e.g., product time is derived from an exponential

distribution with a different parameter for each entity type).

Simulations are typically built in hierarchies of sub-models. A sub-model helps the designer to

write modular code, nesting sub-models inside sub-models in a way that grabbing just few code

segments of a model can be done without the need to import the whole simulation. Sub-models are

therefore perfect for code duplication or reuse.

The three constructs can interact in various ways. Table 15 provides a classification of possible

pairwise interactions, along with a binary encoding of these relationships, to be used later in this

work. The influence interaction indicates the ability (degree) of one construct to change the value of

another. For example, the datum that contains the next step to activate can influence, if changed,

the course of the process. The include interaction represents a composition relationship (such as

between a model and its sub-model).
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Figure 51: POD tables of the Production Flow case study

Figure 52: POD tables of the Emergency Department case study
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O does not influences D O influences D

δ (D,O) D does not influence O 00 10

D influences O 01 11

O does not influence P O influences P

π (P,O) P does not include O 00 10

P includes O 01 11

D does not influence P D influences P

∆ (D,P ) P does not influence D 00 10

P influences D 01 11

Table 15: POD relationships

We use a simplified version of the production line case study Johansson and Kaiser [2002] as

presented in Figure 51. The simulation model (Production line Model) consist of three sequences

representing the two parts flow (S1 and S2) and one line of packaging (S3). In the first flow (S1), a

part part1 goes through two consecutive operations: creating the part (module L11), assigning the

parts with information (module L13), and matching them to the appropriate sequence (module L14)

as part of sub-model represented by B1 (module “Enter” as L12 and “Out” as L15, are breakpoints

for the sequence process to start and continue respectively). Then, measuring the part (module

L22) and deciding if more measurements are needed (module L23) as part of sub-model represented

by B2 (The other process were omitted from the example: grinding, polishing, and cleaning). In

the second flow, represented by the second sequence (S2), a part part2 is processed using the only

sub-model, represented by (B3). Therefore, π(B1, L11) = 01 since L11 is part of B1 and has no

impact on part1 course in B1 sub-model. Also, π(S1, B3) = 00 since B3 sub-model is not part of the

sequence part1 need to processed through. Finally, π(B2, L23) = 11 since L23 is the place where a

decision is made that could affect the next process step (to continue to B4 or to return to B2 after

finishing the measurements).

In the simplified process flow of the ED Evans et al. [1996] case study, as presented in Figure 52,

we will focus on explaining the data-operation and data-process relationships. Example of data

parameters are D1, which represents the maximum number of batches (as in creating an entity)

and D3, a common parameter representing a value in operations. The examination result (B2), for

instance, influences the status of the patient (D3). The status of the patient, in turn, determines

from which of the following processes to choose, either trauma flow (Which we have not modeled

in the example) or non-cardiac flow (S1). Therefore, ∆(D3, B2) = 10 leads to ∆(D3, S1) = 10, but
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Figure 53: Summarization of the POD tables of the Emergency Department and Production Flow

examples

because ∆(D3, B1) = 11 it will result in a relationship with the highest rank - ∆(D3, S1) = 11.

Figure 51 and Figure 52 provide the table-based representation of a simulation using in a flatted

three dimensional table. In the center of the table we can see the δ relationship between data and

operations, the ∆ relationship between data and process is presented as a vertical vector on the

right of the POD table and the π relationship between process and operations is presented as the

horizontal vector at the bottom of the POD table.

The POD tables handles sub-models as follows: first, a sequence is considered to be the process

on the model level, but when drilling down, sub-models become processes for their own sub-models.

In this way, we can choose the level of abstraction to analyze the simulation model. The lowest level

one can get is the lowest level of abstraction of the code (called modules in Arena).

Creating the POD is done automatically Marmor and Sinreich [2008] starting at the basic mod-

ule level. Creating POD for sub-models, which contains sub-models of modules, is performed by

summarizing the data from the POD tables of the lower levels. Each horizontal vector, in the higher

level, is a representative of a single table in its “children” tables. The summarization process takes

the highest rank of the relationship in the “children” tables. For example, in the δ relationship in

B3 POD table in Figure 52, the highest rank in each horizontal vector is “00” or “01”. Therefore,

the POD tables of S1 and S2 processes contain only “00” and “01” for B3.

The only exception is when “01” and “10” are the relationships in the same POD table. Then,

we shall use “11” as the representative.

Finally, we introduce a compressed representation of the table representation discussed earlier.

An example is given in Figure 53. This compressions simply provides a vector representation of the
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table. We shall use this representation later in the paper, when we need to cluster sub-models.

Reusing code, and simulation is no exception, is not an easy task. Deciding if a known set of

sub-Models meet a declared set of objectives is NP-complete Page and Opper [1999]. The validation

and verification of reused component is not easy, either. The time it takes a designer to understand

what a component does and if it fits her needs leads Project manager to avoid the extra work

needed for making the project reusable Robinson et al. [2004]. Therefore, in what follows, we aim at

proposing a methodology for simulation code re-use that we believe removes some of the obstacles

mentioned above.

6.3 Simulation reuse

In Section 6.2 we introduced a table-based representation of simulation components. Such a rep-

resentation, in addition to its ability to stripe a component from its application-specific semantics,

leaving only the necessary parts for simulation reuse, can be now used to assist the designer in her

attempt of simulation reuse. Our main observation is that, given such a table-based representation,

one can come up with a distance measure between each two components that will be used to generate

a distance or similarity matrix. Then, we create a dendrogram for clustering. Lastly, we provide a

method for traversing the dendrogram for helping the designer to find the appropriate components

for her needs.

6.3.1 Creating distance matrix

To illustrate the creation of a distance matrix consider the table in Figure 53. When comparing

the Emergency Department model (M ED) to the Production Flow model (M PF) we notice that

they differ just in one entry - δ(D3,M ED) = 10 while δ(D3,M PF ) = 11. This means that the

production model can be easily modified to serve ED models while the other way around should

require more effort. The reason is that δ(D3,M PF ) = 11 means that the data (D3) is influencing

and influenced by the process of the model, while δ(D3,M ED) = 10 implies of influence the data

has on the model but not the other way around. Changes among models are asymmetric and

we should consider giving each change a different penalty, representing the impact it has on the

designer. In Figure 54 we provide a suggested penalty table. We used a non-linear penalty metric

to emphasize the difference effort in overcoming difference changes. Other penalty tables can be

used as well. In Figure 55 we can see the outcome (Sij) of calculating the penalty needed for using

POD’s vector Mi instead of using the POD’s vector Mj for each pairs of vectors, using the formula:
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Figure 54: Penalty table

Figure 55: Similarity matrix

Sij =
K∑
k=0

Penalty(Mi,k →Mj,k) ∀i 6= j (6.1)

6.3.2 Creating hierarchical clustering

Once a distance measure is given, components can be clustered according to their relative distance.

We propose to use hierarchical clustering (dendrogram) for this purpose. Such clustering involves

the use of a hierarchical tree. In the tree leaves, each component forms a separate cluster. Then,

we repeatedly merge the closest clusters until reaching a single root of the tree. Once clusters are

formed, we need to determine a representative component for each cluster. As we will show later,

this representative is offered to the designer to be used in her simulation. Therefore, we cannot be

satisfied with selecting a centroid, since it may not have any parallel in the component repository.

The representative is chosen as the cluster member with the smallest accumulated distance to all

other members. For creating the dendrogram we can use various methods. For demonstration

purpose, we used the sequential hierarchical clustering algorithm with a median metrics Olson

[1993] modified by the asymmetric approach of Hubert [1973] to support the asymmetric measure

we adopt.
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Figure 56: Dendrogram the hierarchical clustering

For using the dendrogram as a searching tool we have changed its appearance as follows: Each

representative (median) of a merged cluster, in each step, is written on its conjunction and placed

as the rightmost child. In the dendrogram in Figure 56 we can see, for example, that B1 ED is

the representative of B1 PF , B3 PF , and B1 ED. We can also observe that once the three PODs

clusters with S2 PF , the representative of the merged clusters is changed to be S2 PF . It means

that S2 PF is easier to modify to fit the other PODs in its group than any other POD.

6.3.3 Reuse walkthrough methodology

Figure 57 illustrates the use of hierarchical clustering in guiding the user through the reuse of

simulation components. Rectangles represent activities and diamonds represent decision points.

Circles are “jump points” to other parts of the diagram. We have marked in grey the circles and the

activities to where control is transferred. We used reference-points ‘1’-‘6’ in Figure 57 to use in the

explanation .The process starts at the root of the cluster tree. If the designer finds the component

suitable (reference point ‘1’), it can run the simulation (‘2’) and determine whether changes are

needed and if so, whether it is worth the bother. If not, the designer is asked whether the last POD

table looks promising for further investigation (‘3’). If the answer is yes, we can look through the
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Figure 57: Simulation reuse methodology

same cluster for a more suitable version of the same simulation (‘4’). Alternatively, we can delete

unnecessary modules or sub-models. If the answer is no, we are directed to search in another cluster

(‘5’ and maybe ‘6’). Our search is done in a Depth-First form.

We will use the third case study Mehrotra and Fama [2003], presented in Figure 58(a), to

illustrate the use of the suggested tool. Circles represent agents, rectangles represent arrivals of calls

to the call center, while arrows directed from the calls to the suitable agents serving them (broken

arrow means that the connection is conditional). The first step will be to start with the root of

the dendrogram M PF (Figure 51) which is the whole model of the Production Line simulation.

When we run the simulation (‘2’), after deciding it can fit our needs (‘1’), and look at the processing

of the parts, we can see that there are two sequences, which merge into one consecutive sequence.
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In the Call Center, we have two arrivals, one of the inbound calls and one of the outbound calls.

The first sequence (arrival) splits into three (abandonment, agent group #1, and agent group #2).

Therefore, we will answer “no” for the question “Dose it fit” and “yes” for trying to fix it, because

we need to remove most of the operations in the production model. Now, as we can see in Figure

58(b), we have part of the model that is working and we need to look for another part that split the

arrival for three possibilities (see Figure 58(c)).

Figure 58: Queues, agents groups, and routing logic for Call Center (Mehrotra and Fama [2003])

The next step, after understanding that we cannot fix the missing part with the POD that we

have, is to choose whether to look in similar PODs or to look for a different one. Let us assume

we decide that the POD we have so promising (‘3’), the next step will be to look for a higher new

cluster, which is S2 PF we cannot get any higher and the right cluster is not ”new”. Let us assume

the POD looks promising for replacing the missing component for the designer (‘5’) and we will add

the component to the simulation and run (‘2’) (Figure 58(d)). We will find that we cannot fix it so

we return to the last best result and look up to the nearest cluster, B2 ED (distance of about 0.05

compares to 0.07 of B4 PF and distance of 0.1 of M ED). We add it the simulation. We get a

better result once we modify the logic of the route to fit the needs of the Call Center requirements,

so we finish. It is worth noting that if we would have found the first POD promising (3), we could

have kept looking (‘4’) to find the missing part easier. Changing and deleting elements in the reuse
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tool will lead to a feasible simulation ( Marmor and Sinreich [2008]).

6.4 Conclusions

In this work we presented a methodology for the reuse of simulation component. Our work is

motivated by the increasing interest in discrete-time simulation and the need in a rapid methodology

for developing such simulations. Our proposed methodology is based on a table-based representation

of simulation components, clustering a library of components and then a walkthrough procedure

that is based on distances in a hierarchical tree of clustered components, to reach the most suitable

component to be reused.

The contribution of our work is in the methodology and in the particular implementation of

asymmetric distance metrics to model the designer effort in component modifications. We have

developed a prototype of our methodology and we intend to import a massive amount of simulation

components to test the scalability of this methodology.
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7 Discussion and Conclusions

We started the work with empirical analysis of an ED, and compared the number of occupied beds

to common mathematical and descriptive models (Chapter 2) - finding the gaps between theory

and empirical data. We then introduced a new intra-day staffing principal that is both fast and

service-oriented, so it can be used on-line as a command-and-control solution for the ED (for short-

term periods), or as a tool to rearrange the workforce of the ED to overcome crises as those of

flu epidemic periods (Chapter 3). We then took a wider view of the ED problem and suggested a

strategic methodology based on analyzing the impact of operational environment factors on choosing

the most efficient ED operating model (Chapter 4). We also proposed a methodology that uses

simulation to compare the long-term benefits of using real-time patient tracking devices in the ED

(Chapter 5). We concluded with presenting a methodology for the reuse of simulation components

(Chapter 6). We hope this work contributes to the increasing interest in discrete-time simulation

for achieving service engineering goals in general, and in health care engineering in particular.

Our contribution covers several areas of interest:

First, we presented, a thorough empirical analysis of an ED, which can be easily used by others

to learn more about the ED and to use it for further research. Second, we match a Birth and

Death model to bed occupancy distribution (Section 2.3.3) that will allow researchers working on

ambulance diversion problems to fit more realistic models. Although the match was not perfect, the

benefit of using this model is its simplicity compared to the simulation model (Section 2.3.4).

Third, the Offered-Load (OL) staffing methodology we developed, is an easy and fast way to

help ED managers and researchers to carefully balance service quality with operational efficiency.

The OL method opens up ample opportunities for future research directions, such as continuing

the limited pilot experiments in Section 3.5.5, and expanding to compare it against actual ED

measurements. The simulation tool should also be refined, for example to account for patients who

leave without being seen (LWBS), or ambulance diversions (see Green [2008]) - both phenomena

reduce effective ED workload (see Reich [2007] for estimating OL of LWBS). Simulation accuracy

also calls for a better understanding (note the varying levels of accuracy in Figure 26). Related to

that is the need for improved calibration with analytical models that generate the staffing schedule.

Here one could also incorporate into the simulation optimization and staffing constraint capabilities

- indeed, ED staff availability is severely limited, as it is restricted by hospital needs beyond the ED

as well as HR laws.

Next, we presented the EDD methodology, which finds a dominant operating model in an ED.
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Our main contribution was to explain that there is no one dominant operating model that fits all

hospitals. It could be a warning sign for hospitals that seek new operating models for their EDs by

imitating the best ED around - they should look first for EDs that work under similar environmental

parameters. What our research did not do, and can be further investigated, is to see if there is room

to choose an Output-based approach (e.g., King et al. [2006] which reported this method which

dedicates separate lanes for patients who expected to depart, and for patients who would most

likely be hospitalized. For our needs their work lacks the data and the operating details), and to

answer what would happen if hospitals would be more and more specialized so they will extract

only one type of patient (e.g. Internal, Surgical, or Orthopedic).

We also introduced a methodology for estimating the value of an RFID-based indoor location

tracking (ILT) system, as part of a process transformation effort. Our methodology enables one to

quantify the costs and benefits associated with such a process change. In addition, the methodol-

ogy supports a quantitative comparison of alternative types of RFID implementations, which may

require different levels of investment. As was demonstrated by our results, the lack of such quanti-

tative analysis renders it difficult to make informed decisions. This could give rise to a significant

investment in such a technology yet without obtaining any substantial benefits from it, or in unnec-

essarily investing more than required to obtain the benefits. Our main contribution is the fact that

although RFID systems look promising on paper, their contribution is not clear cut, and people

should take the opportunity to analyze first their worthiness in investing in such systems. The fact

that we found very low contribution for the use of RFID should not weaken researchers’ motiva-

tion, but it should make them more realistic about what can be gained and what is unreachable.

Still, there is room for important future research in this area. Validation is first and foremost: the

benefits resulting from an actual RFID implementation must be compared against those predicted

by our methodology - we are planning such an experiment in a large partnering hospital in Israel.

An additional avenue for future research is expanding the methodology to account for additional

aspects of process improvement. For example, the methodology could accommodate a more detailed

mapping of the changes required from the IT system and its applications, this in order to achieve a

more complete process improvement.

Last, we presented a methodology for the reuse of simulation components. Our work was moti-

vated by the increasing interest in discrete-event simulation and the need for a rapid methodology

to develop such simulations. Our proposed methodology was based on a table-based representation

of simulation components, clustering a library of components and then a walk-through procedure

that is based on distances in a hierarchical tree of clustered components, to reach the most suitable
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component to be reused. The contribution of our work is in the methodology and in the particular

implementation of asymmetric distance metrics to model the designer effort in component modifi-

cations. We developed a prototype of our methodology and we intend to import a massive amount

of simulation components to test the scalability of this methodology.
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A Counts

We start with basic counts of patients, segmented by different covariates: Patient type, and Admin-

istration data.

A.1 Data per type

Patients can be characterized by their care-physician, for example: Internal (Int), Surgical (Surg),

Orthopedic (Ort), and Trauma (Tra). We also know from the hospitalization data, which of the

patients were sent to ICU (Intensive Care Unit), and which of the patients were sent to semi-intensive

care units. We marked those patients by their future severity classes as ‘ICU’ and ‘V’ respectively.

Those not belonging to ICU or to V classes, were marked as Regular patients (R).

For Tables 16 – 20, we used a database stretching from the beginning of 2004 until almost the

end of 2008, where the numbers in parenthesis are the percentages out of the column total; (-)

represents a percentage smaller than 0.05. This database did not contain the administration data

(such as birthday, admission reason and so).

Table 16: Monthly patient arrival counts (% out of yearly total) for each year

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

2004
6860 6962 7432 7247 7520 7445 7869 8053 7554 7860 7345 7314 89461

(7.7) (7.8) (8.3) (8.1) (8.4) (8.3) (8.8) (9.0) (8.4) (8.8) (8.2) (8.2) (19.9)

2005
7844 6613 7988 7599 8070 8332 8434 8293 8127 7477 7328 7228 93333

(8.4) (7.1) (8.6) (8.1) (8.6) (8.9) (9.0) (8.9) (8.7) (8.0) (7.9) (7.7) (20.8)

2006
7713 7029 7936 7642 7961 7929 6360 6252 8086 8047 7275 7565 89795

(8.6) (7.8) (8.8) (8.5) (8.9) (8.8) (7.1) (7.0) (9.0) (9.0) (8.1) (8.4) (20)

2007
8125 7070 7606 7413 7864 7999 8579 8434 7842 8168 7311 7356 93767

(8.7) (7.5) (8.1) (7.9) (8.4) (8.5) (9.1) (9.0) (8.4) (8.7) (7.8) (7.8) (20.9)

2008
7466 7292 7630 7209 7380 7452 7321 7552 7034 7325 6832 2038 82531

(9.0) (8.8) (9.2) (8.7) (8.9) (9.0) (8.9) (9.2) (8.5) (8.9) (8.3) (2.5) (18.4)

Total
38008 34966 38592 37110 38795 39157 38563 38584 38643 38877 36091 31501 448887

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (100)

A.2 Administration data

ED’s patients were also being characterized by additional data:

• ‘Age’ - the age of the patient on arrival (for few patients there was no available age).
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Table 17: Monthly patient arrival counts (% out of total) for each patient type

Patient Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Int
23293 21247 23163 21735 22694 22706 22801 22728 22651 23132 21413 18842 266405

(8.7) (8.0) (8.7) (8.2) (8.5) (8.5) (8.6) (8.5) (8.5) (8.7) (8.0) (7.1) (59.3)

Ort
8784 8230 9236 9290 9838 10033 9517 9479 9771 9479 8873 7672 110202

(8.0) (7.5) (8.4) (8.4) (8.9) (9.1) (8.6) (8.6) (8.9) (8.6) (8.1) (7.0) (24.6)

Surg
5640 5271 5884 5776 5937 6094 5817 5828 5949 5926 5491 4691 68304

(8.3) (7.7) (8.6) (8.5) (8.7) (8.9) (8.5) (8.5) (8.7) (8.7) (8.0) (6.9) (15.2)

Tra
291 218 309 309 326 324 428 549 272 340 314 296 3976

(7.3) (5.5) (7.8) (7.8) (8.2) (8.1) (10.8) (13.8) (6.8) (8.6) (7.9) (7.4) (0.9)

Total
38008 34966 38592 37110 38795 39157 38563 38584 38643 38877 36091 31501 448887

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (100)

• ‘Entry Reason’ - the main reason for the patient to enter the ED (for example - Illness,

expecting to give birth and so on).

• ‘Gender’ - the patient’s gender orientation. Except for Females (F) and Males (M), there

were rarely patients without gender, or that their gender was switched during hospitalization

(unknown).

• ‘Send By’ - the transferral status to the ED, if Independently, by Ambulance of by the home-

clinic Physician.

• ‘Left Reason’- The state in which the patient left the ED: Released home, Hospitalized in one

of the hospitals wards, found that abandonment is the best choice (LWBS), Deceased during

the stay in the ED, Refuse treatment, departure for other institutes. Few patients left the ED

with the reason “other” written in their medical sheet.

For Tables 21 – 33 we used the database stretching from the beginning of 2004 until September

2007, where the numbers in parenthesis are the percentages out of the column total; (-) represents

a percentage smaller than 0.05.
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Table 18: Monthly patient arrival counts (% out of total) for each patient type for each year
Patient Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Int

2004
3952 3985 4286 4186 4327 4346 4577 4647 4365 4681 4250 4350 51952

(7.6) (7.7) (8.2) (8.1) (8.3) (8.4) (8.8) (8.9) (8.4) (9.0) (8.2) (8.4) (19.5)

2005
4815 3945 4809 4389 4652 4773 4932 4832 4726 4374 4341 4209 54797

(8.8) (7.2) (8.8) (8.0) (8.5) (8.7) (9.0) (8.8) (8.6) (8.0) (7.9) (7.7) (20.6)

2006
4600 4297 4848 4503 4691 4516 3796 3689 4756 4676 4261 4619 53252

(8.6) (8.1) (9.1) (8.5) (8.8) (8.5) (7.1) (6.9) (8.9) (8.8) (8.0) (8.7) (20.0)

2007
5176 4425 4551 4292 4607 4597 4991 4915 4554 4873 4296 4390 55667

(9.3) (7.9) (8.2) (7.7) (8.3) (8.3) (9.0) (8.8) (8.2) (8.8) (7.7) (7.9) (20.9)

2008
4750 4595 4669 4365 4417 4474 4505 4645 4250 4528 4265 1274 50737

(9.4) (9.1) (9.2) (8.6) (8.7) (8.8) (8.9) (9.2) (8.4) (8.9) (8.4) (2.5) (19.0)

Total
23293 21247 23163 21735 22694 22706 22801 22728 22651 23132 21413 18842 266405

(8.7) (8.0) (8.7) (8.2) (8.5) (8.5) (8.6) (8.5) (8.5) (8.7) (8.0) (7.1) (59.3)

Ort

2004
1661 1760 1780 1793 1897 1874 2002 2008 1897 1897 1871 1743 22183

(7.5) (7.9) (8.0) (8.1) (8.6) (8.4) (9.0) (9.1) (8.6) (8.6) (8.4) (7.9) (20.1)

2005
1812 1597 1863 1951 2011 2172 2179 2145 2085 1936 1821 1846 23418

(7.7) (6.8) (8.0) (8.3) (8.6) (9.3) (9.3) (9.2) (8.9) (8.3) (7.8) (7.9) (21.3)

2006
1865 1609 1867 1946 1920 2100 1447 1424 2028 1982 1827 1761 21776

(8.6) (7.4) (8.6) (8.9) (8.8) (9.6) (6.6) (6.5) (9.3) (9.1) (8.4) (8.1) (19.8)

2007
1812 1667 1953 1928 2110 2099 2218 2195 2034 1976 1838 1863 23693

(7.6) (7.0) (8.2) (8.1) (8.9) (8.9) (9.4) (9.3) (8.6) (8.3) (7.8) (7.9) (21.5)

2008
1634 1597 1773 1672 1900 1788 1671 1707 1727 1688 1516 459 19132

(8.5) (8.3) (9.3) (8.7) (9.9) (9.3) (8.7) (8.9) (9.0) (8.8) (7.9) (2.4) (4.3)

Total
8784 8230 9236 9290 9838 10033 9517 9479 9771 9479 8873 7672 110202

(8.0) (7.5) (8.4) (8.4) (8.9) (9.1) (8.6) (8.6) (8.9) (8.6) (8.1) (7.0) (24.6)

Surg

2004
1189 1184 1304 1233 1250 1185 1240 1339 1248 1239 1159 1149 14719

(8.1) (8.0) (8.9) (8.4) (8.5) (8.1) (8.4) (9.1) (8.5) (8.4) (7.9) (7.8) (21.5)

2005
1173 1024 1239 1192 1332 1311 1227 1237 1259 1107 1097 1110 14308

(8.2) (7.2) (8.7) (8.3) (9.3) (9.2) (8.6) (8.6) (8.8) (7.7) (7.7) (7.8) (20.9)

2006
1185 1081 1159 1132 1292 1246 977 886 1256 1306 1132 1116 13768

(8.6) (7.9) (8.4) (8.2) (9.4) (9.0) (7.1) (6.4) (9.1) (9.5) (8.2) (8.1) (20.2)

2007
1082 931 1054 1135 1071 1239 1289 1247 1200 1247 1122 1035 13652

(7.9) (6.8) (7.7) (8.3) (7.8) (9.1) (9.4) (9.1) (8.8) (9.1) (8.2) (7.6) (20.0)

2008
1011 1051 1128 1084 992 1113 1084 1119 986 1027 981 281 11857

(8.5) (8.9) (9.5) (9.1) (8.4) (9.4) (9.1) (9.4) (8.3) (8.7) (8.3) (2.4) (17.4)

Total
5640 5271 5884 5776 5937 6094 5817 5828 5949 5926 5491 4691 68304

(8.3) (7.7) (8.6) (8.5) (8.7) (8.9) (8.5) (8.5) (8.7) (8.7) (8.0) (6.9) (15.2)

Tra

2004
58 33 62 35 46 40 50 59 44 43 65 72 607

(9.6) (5.4) (10.2) (5.8) (7.6) (6.6) (8.2) (9.7) (7.2) (7.1) (10.7) (11.9) (15.3)

2005
44 47 77 67 75 76 96 79 57 60 69 63 810

(5.4) (5.8) (9.5) (8.3) (9.3) (9.4) (11.9) (9.8) (7.0) (7.4) (8.5) (7.8) (20.4)

2006
63 42 62 61 58 67 140 253 46 83 55 69 999

(6.3) (4.2) (6.2) (6.1) (5.8) (6.7) (14.0) (25.3) (4.6) (8.3) (5.5) (6.9) (25.1)

2007
55 47 48 58 76 64 81 77 54 72 55 68 755

(7.3) (6.2) (6.4) (7.7) (10.1) (8.5) (10.7) (10.2) (7.2) (9.5) (7.3) (9.0) (19.0)

2008
71 49 60 88 71 77 61 81 71 82 70 24 805

(8.8) (6.1) (7.5) (10.9) (8.8) (9.6) (7.6) (10.1) (8.8) (10.2) (8.7) (3.0) (20.2)

Total
291 218 309 309 326 324 428 549 272 340 314 296 3976

(7.3) (5.5) (7.8) (7.8) (8.2) (8.1) (10.8) (13.8) (6.8) (8.6) (7.9) (7.4) (0.9)

Total
38008 34966 38592 37110 38795 39157 38563 38584 38643 38877 36091 31501 448887

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (100.0)
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Table 19: Monthly patients arrival counts (% out of total) for each patient severity

Severity Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

R
37006 34083 37673 36114 37756 38166 37468 37528 37677 37825 35004 30631 436931

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (97.3)

ICU
774 703 746 755 812 765 815 760 702 765 777 634 9008

(8.6) (7.8) (8.3) (8.4) (9.0) (8.5) (9.0) (8.4) (7.8) (8.5) (8.6) (7.0) (2.0)

V
228 180 173 241 227 226 280 296 264 287 310 236 2948

(7.7) (6.1) (5.9) (8.2) (7.7) (7.7) (9.5) (10.0) (9.0) (9.7) (10.5) (8.0) (0.7)

Total
38008 34966 38592 37110 38795 39157 38563 38584 38643 38877 36091 31501 448887

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (100)
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Table 20: Monthly patient arrival counts (% out of total) for each patient severity per year
Severity Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

R

2004
6740 6821 7296 7105 7371 7302 7721 7910 7422 7727 7190 7168 87773

(7.7) (7.8) (8.3) (8.1) (8.4) (8.3) (8.8) (9.0) (8.5) (8.8) (8.2) (8.2) (20.1)

2005
7699 6468 7840 7364 7854 8112 8216 8100 7927 7259 7118 7025 90982

(8.5) (7.1) (8.6) (8.1) (8.6) (8.9) (9.0) (8.9) (8.7) (8.0) (7.8) (7.7) (20.8)

2006
7489 6827 7744 7457 7747 7741 6126 6004 7859 7784 7041 7345 87164

(8.6) (7.8) (8.9) (8.6) (8.9) (8.9) (7.0) (6.9) (9.0) (8.9) (8.1) (8.4) (19.9)

2007
7863 6885 7414 7212 7620 7782 8325 8206 7638 7947 7081 7119 91092

(8.6) (7.6) (8.1) (7.9) (8.4) (8.5) (9.1) (9.0) (8.4) (8.7) (7.8) (7.8) (20.8)

2008
7215 7082 7379 6976 7164 7229 7080 7308 6831 7108 6574 1974 79920

(9.0) (8.9) (9.2) (8.7) (9.0) (9.0) (8.9) (9.1) (8.5) (8.9) (8.2) (2.5) (18.3)

Total
37006 34083 37673 36114 37756 38166 37468 37528 37677 37825 35004 30631 436931

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (97.3)

ICU

2004
120 141 136 142 149 143 148 143 132 133 155 146 1688

(7.1) (8.4) (8.1) (8.4) (8.8) (8.5) (8.8) (8.5) (7.8) (7.9) (9.2) (8.6) (18.7)

2005
144 141 142 159 168 156 167 144 135 149 137 153 1795

(8.0) (7.9) (7.9) (8.9) (9.4) (8.7) (9.3) (8.0) (7.5) (8.3) (7.6) (8.5) (19.9)

2006
150 144 141 146 165 146 169 178 154 190 156 148 1887

(7.9) (7.6) (7.5) (7.7) (8.7) (7.7) (9.0) (9.4) (8.2) (10.1) (8.3) (7.8) (20.9)

2007
182 133 141 131 167 153 162 145 139 139 160 143 1795

(10.1) (7.4) (7.9) (7.3) (9.3) (8.5) (9.0) (8.1) (7.7) (7.7) (8.9) (8.0) (19.9)

2008
178 144 186 177 163 167 169 150 142 154 169 44 1843

(9.7) (7.8) (10.1) (9.6) (8.8) (9.1) (9.2) (8.1) (7.7) (8.4) (9.2) (2.4) (20.5)

Total
774 703 746 755 812 765 815 760 702 765 777 634 9008

(8.6) (7.8) (8.3) (8.4) (9.0) (8.5) (9.0) (8.4) (7.8) (8.5) (8.6) (7.0) (2.0)

V

2005
1 4 6 76 48 64 51 49 65 69 73 50 556

(.2) (.7) (1.1) (13.7) (8.6) (11.5) (9.2) (8.8) (11.7) (12.4) (13.1) (9.0) (18.9)

2006
74 58 51 39 49 42 65 70 73 73 78 72 744

(9.9) (7.8) (6.9) (5.2) (6.6) (5.6) (8.7) (9.4) (9.8) (9.8) (10.5) (9.7) (25.2)

2007
80 52 51 70 77 64 92 83 65 82 70 94 880

(9.1) (5.9) (5.8) (8.0) (8.8) (7.3) (10.5) (9.4) (7.4) (9.3) (8.0) (10.7) (29.9)

2008
73 66 65 56 53 56 72 94 61 63 89 20 768

(9.5) (8.6) (8.5) (7.3) (6.9) (7.3) (9.4) (12.2) (7.9) (8.2) (11.6) (2.6) (26.1)

Total
228 180 173 241 227 226 280 296 264 287 310 236 2948

(7.7) (6.1) (5.9) (8.2) (7.7) (7.7) (9.5) (10.0) (9.0) (9.7) (10.5) (8.0) (0.7)

Total
38008 34966 38592 37110 38795 39157 38563 38584 38643 38877 36091 31501 448887

(8.5) (7.8) (8.6) (8.3) (8.6) (8.7) (8.6) (8.6) (8.6) (8.7) (8.0) (7.0) (100.0)
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Table 21: Monthly patient arrival counts (% out of total) for each patient age group
Age Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

0-4
413 399 457 581 538 561 558 583 576 595 357 359 5977

(6.9) (6.7) (7.6) (9.7) (9.0) (9.4) (9.3) (9.8) (9.6) (10.0) (6.0) (6.0) (1.7)

5-14
839 857 1095 1221 1336 1200 1112 1026 1140 1265 754 605 12450

(6.7) (6.9) (8.8) (9.8) (10.7) (9.6) (8.9) (8.2) (9.2) (10.2) (6.1) (4.9) (3.5)

15-24
6714 6106 7024 6567 6963 7360 7540 7455 7409 7169 5200 5121 80628

(8.3) (7.6) (8.7) (8.1) (8.6) (9.1) (9.4) (9.2) (9.2) (8.9) (6.4) (6.4) (22.9)

25-34
4561 4227 4772 4664 4887 4969 4902 4895 4789 4750 3303 3261 53980

(8.4) (7.8) (8.8) (8.6) (9.1) (9.2) (9.1) (9.1) (8.9) (8.8) (6.1) (6.0) (15.3)

35-44
3536 3304 3610 3495 3685 3810 3665 3681 3805 3602 2426 2551 41170

(8.6) (8.0) (8.8) (8.5) (9.0) (9.3) (8.9) (8.9) (9.2) (8.7) (5.9) (6.2) (11.7)

45-54
3600 3229 3634 3457 3721 3813 3748 3660 3843 3866 2619 2586 41776

(8.6) (7.7) (8.7) (8.3) (8.9) (9.1) (9.0) (8.8) (9.2) (9.3) (6.3) (6.2) (11.9)

55-64
3213 2985 3223 3044 3223 3262 3153 3209 3382 3357 2331 2309 36691

(8.8) (8.1) (8.8) (8.3) (8.8) (8.9) (8.6) (8.7) (9.2) (9.1) (6.4) (6.3) (10.4)

65-74
3215 2803 3033 2970 3029 2963 2891 2804 2942 3064 2174 2250 34138

(9.4) (8.2) (8.9) (8.7) (8.9) (8.7) (8.5) (8.2) (8.6) (9.0) (6.4) (6.6) (9.7)

74-85
3074 2658 2863 2758 2925 2700 2603 2639 2680 2779 2001 2219 31899

(9.6) (8.3) (9.0) (8.6) (9.2) (8.5) (8.2) (8.3) (8.4) (8.7) (6.3) (7.0) (9.1)

85+
1307 1068 1187 1086 1027 997 966 984 975 1021 730 808 12156

(10.8) (8.8) (9.8) (8.9) (8.4) (8.2) (7.9) (8.1) (8.0) (8.4) (6.0) (6.6) (3.5)

unknown
91 53 75 68 91 76 112 104 72 88 59 40 929

(9.8) (5.7) (8.1) (7.3) (9.8) (8.2) (12.1) (11.2) (7.8) (9.5) (6.4) (4.3) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)

116



Table 22: Monthly patient arrival counts (% out of total) for each patient age group by year part1
Age Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

0-4

2004
132 129 149 183 149 139 190 175 143 152 142 121 1804

(7.3) (7.2) (8.3) (10.1) (8.3) (7.7) (10.5) (9.7) (7.9) (8.4) (7.9) (6.7) (30.2)

2005
100 103 110 148 156 149 127 184 146 148 97 127 1595

(6.3) (6.5) (6.9) (9.3) (9.8) (9.3) (8.0) (11.5) (9.2) (9.3) (6.1) (8.0) (26.7)

2006
91 96 110 126 125 145 104 105 141 148 118 111 1420

(6.4) (6.8) (7.7) (8.9) (8.8) (10.2) (7.3) (7.4) (9.9) (10.4) (8.3) (7.8) (23.8)

2007
90 71 88 124 108 128 137 119 146 147 0 0 1158

(7.8) (6.1) (7.6) (10.7) (9.3) (11.1) (11.8) (10.3) (12.6) (12.7) (-) (-) (19.4)

Total
413 399 457 581 538 561 558 583 576 595 357 359 5977

(6.9) (6.7) (7.6) (9.7) (9.0) (9.4) (9.3) (9.8) (9.6) (10.0) (6.0) (6.0) (1.7)

05-14

2004
240 262 319 316 351 264 300 275 338 343 256 186 3450

(7.0) (7.6) (9.2) (9.2) (10.2) (7.7) (8.7) (8.0) (9.8) (9.9) (7.4) (5.4) (27.7)

2005
203 201 279 344 341 304 321 259 267 302 252 219 3292

(6.2) (6.1) (8.5) (10.4) (10.4) (9.2) (9.8) (7.9) (8.1) (9.2) (7.7) (6.7) (26.4)

2006
202 198 245 265 328 324 207 174 263 321 246 200 2973

(6.8) (6.7) (8.2) (8.9) (11.0) (10.9) (7.0) (5.9) (8.8) (10.8) (8.3) (6.7) (23.9)

2007
194 196 252 296 316 308 284 318 272 299 0 0 2735

(7.1) (7.2) (9.2) (10.8) (11.6) (11.3) (10.4) (11.6) (9.9) (10.9) (-) (-) (22.0)

Total
839 857 1095 1221 1336 1200 1112 1026 1140 1265 754 605 12450

(6.7) (6.9) (8.8) (9.8) (10.7) (9.6) (8.9) (8.2) (9.2) (10.2) (6.1) (4.9) (3.5)

15-24

2004
1378 1504 1534 1533 1592 1694 1794 1829 1654 1651 1697 1588 19448

(7.1) (7.7) (7.9) (7.9) (8.2) (8.7) (9.2) (9.4) (8.5) (8.5) (8.7) (8.2) (24.1)

2005
1806 1533 1878 1684 1948 2107 2290 2209 2145 1831 1875 1758 23064

(7.8) (6.6) (8.1) (7.3) (8.4) (9.1) (9.9) (9.6) (9.3) (7.9) (8.1) (7.6) (28.6)

2006
1779 1541 1856 1710 1726 1751 1488 1498 1915 1952 1628 1775 20619

(8.6) (7.5) (9.0) (8.3) (8.4) (8.5) (7.2) (7.3) (9.3) (9.5) (7.9) (8.6) (25.6)

2007
1751 1528 1756 1640 1697 1808 1968 1919 1695 1735 0 0 17497

(10.0) (8.7) (10.0) (9.4) (9.7) (10.3) (11.2) (11.0) (9.7) (9.9) (-) (-) (21.7)

Total
6714 6106 7024 6567 6963 7360 7540 7455 7409 7169 5200 5121 80628

(8.3) (7.6) (8.7) (8.1) (8.6) (9.1) (9.4) (9.2) (9.2) (8.9) (6.4) (6.4) (22.9)

25-34

2004
1033 1082 1135 1211 1245 1165 1254 1287 1167 1229 1120 1081 14009

(7.4) (7.7) (8.1) (8.6) (8.9) (8.3) (9.0) (9.2) (8.3) (8.8) (8.0) (7.7) (26.0)

2005
1191 1056 1235 1121 1228 1320 1347 1254 1185 1070 1075 1038 14120

(8.4) (7.5) (8.7) (7.9) (8.7) (9.3) (9.5) (8.9) (8.4) (7.6) (7.6) (7.4) (26.2)

2006
1096 1050 1232 1177 1182 1233 968 1044 1254 1237 1108 1142 13723

(8.0) (7.7) (9.0) (8.6) (8.6) (9.0) (7.1) (7.6) (9.1) (9.0) (8.1) (8.3) (25.4)

2007
1241 1039 1170 1155 1232 1251 1333 1310 1183 1214 0 0 12128

(10.2) (8.6) (9.6) (9.5) (10.2) (10.3) (11.0) (10.8) (9.8) (10.0) (-) (-) (22.5)

Total
4561 4227 4772 4664 4887 4969 4902 4895 4789 4750 3303 3261 53980

(8.4) (7.8) (8.8) (8.6) (9.1) (9.2) (9.1) (9.1) (8.9) (8.8) (6.1) (6.0) (15.3)

35-44

2004
779 821 887 826 874 920 945 949 913 910 813 839 10476

(7.4) (7.8) (8.5) (7.9) (8.3) (8.8) (9.0) (9.1) (8.7) (8.7) (7.8) (8.0) (25.4)

2005
910 774 909 936 921 937 946 937 934 783 784 878 10649

(8.5) (7.3) (8.5) (8.8) (8.6) (8.8) (8.9) (8.8) (8.8) (7.4) (7.4) (8.2) (25.9)

2006
942 853 916 893 938 990 719 776 990 927 829 834 10607

(8.9) (8.0) (8.6) (8.4) (8.8) (9.3) (6.8) (7.3) (9.3) (8.7) (7.8) (7.9) (25.8)

2007
905 856 898 840 952 963 1055 1019 968 982 0 0 9438

(9.6) (9.1) (9.5) (8.9) (10.1) (10.2) (11.2) (10.8) (10.3) (10.4) (-) (-) (22.9)

Total
3536 3304 3610 3495 3685 3810 3665 3681 3805 3602 2426 2551 41170

(8.6) (8.0) (8.8) (8.5) (9.0) (9.3) (8.9) (8.9) (9.2) (8.7) (5.9) (6.2) (11.7)
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Table 23: Monthly patient arrival counts (% out of total) for each patient age group by year part2
Age Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

45-54

2004
843 808 876 833 903 919 961 985 958 1023 904 880 10893

(7.7) (7.4) (8.0) (7.6) (8.3) (8.4) (8.8) (9.0) (8.8) (9.4) (8.3) (8.1) (26.1)

2005
937 775 932 849 926 957 968 969 958 914 837 852 10874

(8.6) (7.1) (8.6) (7.8) (8.5) (8.8) (8.9) (8.9) (8.8) (8.4) (7.7) (7.8) (26.0)

2006
903 858 950 888 964 931 778 712 983 918 878 854 10617

(8.5) (8.1) (8.9) (8.4) (9.1) (8.8) (7.3) (6.7) (9.3) (8.6) (8.3) (8.0) (25.4)

2007
917 788 876 887 928 1006 1041 994 944 1011 0 0 9392

(9.8) (8.4) (9.3) (9.4) (9.9) (10.7) (11.1) (10.6) (10.1) (10.8) (-) (-) (22.5)

Total
3600 3229 3634 3457 3721 3813 3748 3660 3843 3866 2619 2586 41776

(8.6) (7.7) (8.7) (8.3) (8.9) (9.1) (9.0) (8.8) (9.2) (9.3) (6.3) (6.2) (11.9)

55-64

2004
729 675 757 692 729 748 764 838 780 780 789 773 9054

(8.1) (7.5) (8.4) (7.6) (8.1) (8.3) (8.4) (9.3) (8.6) (8.6) (8.7) (8.5) (24.7)

2005
768 683 828 764 813 800 782 805 814 777 745 763 9342

(8.2) (7.3) (8.9) (8.2) (8.7) (8.6) (8.4) (8.6) (8.7) (8.3) (8.0) (8.2) (25.5)

2006
827 765 813 783 830 806 658 633 874 830 797 773 9389

(8.8) (8.1) (8.7) (8.3) (8.8) (8.6) (7.0) (6.7) (9.3) (8.8) (8.5) (8.2) (25.6)

2007
889 862 825 805 851 908 949 933 914 970 0 0 8906

(10.0) (9.7) (9.3) (9.0) (9.6) (10.2) (10.7) (10.5) (10.3) (10.9) (-) (-) (24.3)

Total
3213 2985 3223 3044 3223 3262 3153 3209 3382 3357 2331 2309 36691

(8.8) (8.1) (8.8) (8.3) (8.8) (8.9) (8.6) (8.7) (9.2) (9.1) (6.4) (6.3) (10.4)

65-74

2004
716 748 736 739 722 723 747 759 721 805 727 778 8921

(8.0) (8.4) (8.3) (8.3) (8.1) (8.1) (8.4) (8.5) (8.1) (9.0) (8.1) (8.7) (26.1)

2005
833 605 808 758 759 782 759 713 766 741 734 697 8955

(9.3) (6.8) (9.0) (8.5) (8.5) (8.7) (8.5) (8.0) (8.6) (8.3) (8.2) (7.8) (26.2)

2006
785 722 768 771 799 769 615 594 705 739 713 775 8755

(9.0) (8.2) (8.8) (8.8) (9.1) (8.8) (7.0) (6.8) (8.1) (8.4) (8.1) (8.9) (25.6)

2007
881 728 721 702 749 689 770 738 750 779 0 0 7507

(11.7) (9.7) (9.6) (9.4) (10.0) (9.2) (10.3) (9.8) (10.0) (10.4) (-) (-) (22.0)

Total
3215 2803 3033 2970 3029 2963 2891 2804 2942 3064 2174 2250 34138

(9.4) (8.2) (8.9) (8.7) (8.9) (8.7) (8.5) (8.2) (8.6) (9.0) (6.4) (6.6) (9.7)

75-84

2004
730 675 743 678 698 638 665 676 644 698 625 780 8250

(8.8) (8.2) (9.0) (8.2) (8.5) (7.7) (8.1) (8.2) (7.8) (8.5) (7.6) (9.5) (25.9)

2005
738 622 723 716 715 697 642 706 644 634 690 662 8189

(9.0) (7.6) (8.8) (8.7) (8.7) (8.5) (7.8) (8.6) (7.9) (7.7) (8.4) (8.1) (25.7)

2006
753 682 742 718 771 708 570 511 699 715 686 777 8332

(9.0) (8.2) (8.9) (8.6) (9.3) (8.5) (6.8) (6.1) (8.4) (8.6) (8.2) (9.3) (26.1)

2007
853 679 655 646 741 657 726 746 693 732 0 0 7128

(12.0) (9.5) (9.2) (9.1) (10.4) (9.2) (10.2) (10.5) (9.7) (10.3) (-) (-) (22.3)

Total
3074 2658 2863 2758 2925 2700 2603 2639 2680 2779 2001 2219 31899

(9.6) (8.3) (9.0) (8.6) (9.2) (8.5) (8.2) (8.3) (8.4) (8.7) (6.3) (7.0) (9.1)

85+

2004
257 245 285 228 243 217 235 253 221 247 247 278 2956

(8.7) (8.3) (9.6) (7.7) (8.2) (7.3) (7.9) (8.6) (7.5) (8.4) (8.4) (9.4) (24.3)

2005
336 249 270 255 243 255 230 241 248 255 224 220 3026

(11.1) (8.2) (8.9) (8.4) (8.0) (8.4) (7.6) (8.0) (8.2) (8.4) (7.4) (7.3) (24.9)

2006
320 256 282 299 268 261 221 183 247 244 259 310 3150

(10.2) (8.1) (9.0) (9.5) (8.5) (8.3) (7.0) (5.8) (7.8) (7.7) (8.2) (9.8) (25.9)

2007
394 318 350 304 273 264 280 307 259 275 0 0 3024

(13.0) (10.5) (11.6) (10.1) (9.0) (8.7) (9.3) (10.2) (8.6) (9.1) (-) (-) (24.9)

Total
1307 1068 1187 1086 1027 997 966 984 975 1021 730 808 12156

(10.8) (8.8) (9.8) (8.9) (8.4) (8.2) (7.9) (8.1) (8.0) (8.4) (6.0) (6.6) (3.5)
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Table 24: Monthly patient arrival counts (% out of total) for each patient age group by year part3
Age Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

unknown

2004
35 23 19 13 22 20 18 26 16 22 28 11 253

(13.8) (9.1) (7.5) (5.1) (8.7) (7.9) (7.1) (10.3) (6.3) (8.7) (11.1) (4.3) (27.2)

2005
22 13 16 24 21 22 23 17 19 22 16 15 230

(9.6) (5.7) (7.0) (10.4) (9.1) (9.6) (10.0) (7.4) (8.3) (9.6) (7.0) (6.5) (24.8)

2006
22 9 21 16 30 14 32 25 18 18 15 14 234

(9.4) (3.8) (9.0) (6.8) (12.8) (6.0) (13.7) (10.7) (7.7) (7.7) (6.4) (6.0) (25.2)

2007
12 8 19 15 18 20 39 36 19 26 0 0 212

(5.7) (3.8) (9.0) (7.1) (8.5) (9.4) (18.4) (17.0) (9.0) (12.3) (-) (-) (22.8)

Total
91 53 75 68 91 76 112 104 72 88 59 40 929

(9.8) (5.7) (8.1) (7.3) (9.8) (8.2) (12.1) (11.2) (7.8) (9.5) (6.4) (4.3) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)

Table 25: Monthly patient arrival counts (% out of total) for each patient ‘Entry Reason’
Entry Reason Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

External Reasons
9434 8561 9731 9910 13232 13427 13527 13390 13196 13193 7110 6855 131566

(7.2) (6.5) (7.4) (7.5) (10.1) (10.2) (10.3) (10.2) (10.0) (10.0) (5.4) (5.2) (37.4)

Illness
21119 19108 21230 19987 18173 18275 17708 17632 18393 18356 14837 15243 220061

(9.6) (8.7) (9.6) (9.1) (8.3) (8.3) (8.0) (8.0) (8.4) (8.3) (6.7) (6.9) (62.6)

Parturient
10 20 12 14 20 9 15 18 24 7 7 11 167

(6.0) (12.0) (7.2) (8.4) (12.0) (5.4) (9.0) (10.8) (14.4) (4.2) (4.2) (6.6) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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Table 26: Monthly patient arrival counts (% out of total) for each patient ‘Entry Reason’ by year
Entry Reason Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

External Reasons

2004
2369 2383 2504 2461 2578 2476 2639 2693 2528 2507 2428 2248 29814

(7.9) (8.0) (8.4) (8.3) (8.6) (8.3) (8.9) (9.0) (8.5) (8.4) (8.1) (7.5) (22.7)

2005
2349 2071 2462 2536 2668 2778 2818 2676 2646 2429 2345 2329 30107

(7.8) (6.9) (8.2) (8.4) (8.9) (9.2) (9.4) (8.9) (8.8) (8.1) (7.8) (7.7) (22.9)

2006
2401 2099 2442 2485 2564 2655 2160 2239 2666 2651 2337 2278 28977

(8.3) (7.2) (8.4) (8.6) (8.8) (9.2) (7.5) (7.7) (9.2) (9.1) (8.1) (7.9) (22.0)

2007
2315 2008 2323 2428 5422 5518 5910 5782 5356 5606 0 0 42668

(5.4) (4.7) (5.4) (5.7) (12.7) (12.9) (13.9) (13.6) (12.6) (13.1) (-) (-) (32.4)

Total
9434 8561 9731 9910 13232 13427 13527 13390 13196 13193 7110 6855 131566

(7.2) (6.5) (7.4) (7.5) (10.1) (10.2) (10.3) (10.2) (10.0) (10.0) (5.4) (5.2) (37.4)

Illness

2004
4499 4584 4932 4783 4944 4969 5230 5354 5017 5353 4918 5059 59642

(7.5) (7.7) (8.3) (8.0) (8.3) (8.3) (8.8) (9.0) (8.4) (9.0) (8.2) (8.5) (27.1)

2005
5494 4540 5523 5060 5402 5549 5611 5614 5477 5046 4983 4897 63196

(8.7) (7.2) (8.7) (8.0) (8.5) (8.8) (8.9) (8.9) (8.7) (8.0) (7.9) (7.7) (28.7)

2006
5317 4926 5491 5160 5386 5275 4199 4012 5419 5395 4936 5287 60803

(8.7) (8.1) (9.0) (8.5) (8.9) (8.7) (6.9) (6.6) (8.9) (8.9) (8.1) (8.7) (27.6)

2007
5809 5058 5284 4984 2441 2482 2668 2652 2480 2562 0 0 36420

(16.0) (13.9) (14.5) (13.7) (6.7) (6.8) (7.3) (7.3) (6.8) (7.0) (-) (-) (16.5)

Total
21119 19108 21230 19987 18173 18275 17708 17632 18393 18356 14837 15243 220061

(9.6) (8.7) (9.6) (9.1) (8.3) (8.3) (8.0) (8.0) (8.4) (8.3) (6.7) (6.9) (62.6)

Parturient

2004
4 5 4 8 6 2 4 5 10 0 2 8 58

(6.9) (8.6) (6.9) (13.8) (10.3) (3.4) (6.9) (8.6) (17.2) (-) (3.4) (13.8) (34.7)

2005
1 3 3 3 1 3 6 4 3 2 1 3 33

(3.0) (9.1) (9.1) (9.1) (3.0) (9.1) (18.2) (12.1) (9.1) (6.1) (3.0) (9.1) (19.8)

2006
2 5 2 1 11 2 1 4 4 3 4 0 39

(5.1) (12.8) (5.1) (2.6) (28.2) (5.1) (2.6) (10.3) (10.3) (7.7) (10.3) (-) (23.4)

2007
3 7 3 2 2 2 4 5 7 2 0 0 37

(8.1) (18.9) (8.1) (5.4) (5.4) (5.4) (10.8) (13.5) (18.9) (5.4) (-) (-) (22.2)

Total
10 20 12 14 20 9 15 18 24 7 7 11 167

(6.0) (12.0) (7.2) (8.4) (12.0) (5.4) (9.0) (10.8) (14.4) (4.2) (4.2) (6.6) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)

Table 27: Monthly patient arrival counts (% out of total) for each patient gender
Gender Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

F
13898 12396 13928 13280 13913 14043 13795 13613 14045 14141 9730 10070 156852

(8.9) (7.9) (8.9) (8.5) (8.9) (9.0) (8.8) (8.7) (9.0) (9.0) (6.2) (6.4) (44.6)

M
16663 15292 17044 16630 17512 17668 17452 17425 17568 17415 12224 12038 194931

(8.5) (7.8) (8.7) (8.5) (9.0) (9.1) (9.0) (8.9) (9.0) (8.9) (6.3) (6.2) (55.4)

unknown
2 1 1 1 0 0 3 2 0 0 0 1 11

(18.2) (9.1) (9.1) (9.1) (-) (-) (27.3) (18.2) (-) (-) (-) (9.1) (0.0)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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Table 28: Monthly patient arrival counts (% out of total) for each patient gender by year
Gender Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

F

2004
3158 3053 3317 3241 3327 3401 3576 3517 3311 3644 3262 3360 40167

(7.9) (7.6) (8.3) (8.1) (8.3) (8.5) (8.9) (8.8) (8.2) (9.1) (8.1) (8.4) (25.6)

2005
3537 2908 3640 3365 3585 3612 3730 3668 3603 3380 3215 3202 41445

(8.5) (7.0) (8.8) (8.1) (8.7) (8.7) (9.0) (8.9) (8.7) (8.2) (7.8) (7.7) (26.4)

2006
3459 3196 3573 3431 3589 3539 2781 2680 3579 3557 3253 3508 40145

(8.6) (8.0) (8.9) (8.5) (8.9) (8.8) (6.9) (6.7) (8.9) (8.9) (8.1) (8.7) (25.6)

2007
3744 3239 3398 3243 3412 3491 3708 3748 3552 3560 0 0 35095

(10.7) (9.2) (9.7) (9.2) (9.7) (9.9) (10.6) (10.7) (10.1) (10.1) (-) (-) (22.4)

Total
13898 12396 13928 13280 13913 14043 13795 13613 14045 14141 9730 10070 156852

(8.9) (7.9) (8.9) (8.5) (8.9) (9.0) (8.8) (8.7) (9.0) (9.0) (6.2) (6.4) (44.6)

M

2004
3713 3919 4123 4010 4201 4046 4297 4535 4244 4216 4086 3955 49345

(7.5) (7.9) (8.4) (8.1) (8.5) (8.2) (8.7) (9.2) (8.6) (8.5) (8.3) (8.0) (25.3)

2005
4307 3705 4348 4234 4486 4718 4705 4626 4523 4097 4114 4026 51889

(8.3) (7.1) (8.4) (8.2) (8.6) (9.1) (9.1) (8.9) (8.7) (7.9) (7.9) (7.8) (26.6)

2006
4260 3834 4361 4215 4372 4393 3576 3573 4510 4492 4024 4057 49667

(8.6) (7.7) (8.8) (8.5) (8.8) (8.8) (7.2) (7.2) (9.1) (9.0) (8.1) (8.2) (25.5)

2007
4383 3834 4212 4171 4453 4511 4874 4691 4291 4610 0 0 44030

(10.0) (8.7) (9.6) (9.5) (10.1) (10.2) (11.1) (10.7) (9.7) (10.5) (-) (-) (22.6)

Total
16663 15292 17044 16630 17512 17668 17452 17425 17568 17415 12224 12038 194931

(8.5) (7.8) (8.7) (8.5) (9.0) (9.1) (9.0) (8.9) (9.0) (8.9) (6.3) (6.2) (55.4)

unknown

2004
1 0 0 1 0 0 0 0 0 0 0 0 2

(50.0) (-) (-) (50.0) (-) (-) (-) (-) (-) (-) (-) (-) (18.2)

2005
0 1 0 0 0 0 0 0 0 0 0 1 2

(-) (50.0) (-) (-) (-) (-) (-) (-) (-) (-) (-) (50.0) (18.2)

2006
1 0 1 0 0 0 3 2 0 0 0 0 7

(14.3) (-) (14.3) (-) (-) (-) (42.9) (28.6) (-) (-) (-) (-) (63.6)

2007
0 0 0 0 0 0 0 0 0 0 0 0 0

(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Total
2 1 1 1 0 0 3 2 0 0 0 1 11

(18.2) (9.1) (9.1) (9.1) (-) (-) (27.3) (18.2) (-) (-) (-) (9.1) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)

121



Table 29: Monthly patient arrival counts (% out of total) for each patient’s ‘Send By’
Send By Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Ambulance
4685 4005 4513 4169 4226 4189 4150 4097 4445 4392 3137 3288 49296

(9.5) (8.1) (9.2) (8.5) (8.6) (8.5) (8.4) (8.3) (9.0) (8.9) (6.4) (6.7) (14.0)

Independently
10685 9455 10802 11044 11313 11680 11677 11605 11558 11823 7825 7808 127275

(8.4) (7.4) (8.5) (8.7) (8.9) (9.2) (9.2) (9.1) (9.1) (9.3) (6.1) (6.1) (36.2)

Physician
15193 14229 15658 14698 15886 15842 15423 15338 15610 15341 10992 11013 175223

(8.7) (8.1) (8.9) (8.4) (9.1) (9.0) (8.8) (8.8) (8.9) (8.8) (6.3) (6.3) (49.8)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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Table 30: Monthly patient arrival counts (% out of total) for each patient’s ‘Send By’ by year
SendBy Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Ambulance

2004
1169 1068 1128 1045 1079 1028 1147 1126 1080 1078 1047 1097 13092

(8.9) (8.2) (8.6) (8.0) (8.2) (7.9) (8.8) (8.6) (8.2) (8.2) (8.0) (8.4) (26.6)

2005
1125 925 1139 1072 1018 1078 1022 1082 1074 1032 943 1063 12573

(8.9) (7.4) (9.1) (8.5) (8.1) (8.6) (8.1) (8.6) (8.5) (8.2) (7.5) (8.5) (25.5)

2006
1156 992 1114 1043 1080 1057 853 761 1143 1158 1147 1128 12632

(9.2) (7.9) (8.8) (8.3) (8.5) (8.4) (6.8) (6.0) (9.0) (9.2) (9.1) (8.9) (25.6)

2007
1235 1020 1132 1009 1049 1026 1128 1128 1148 1124 0 0 10999

(11.2) (9.3) (10.3) (9.2) (9.5) (9.3) (10.3) (10.3) (10.4) (10.2) (-) (-) (22.3)

Total
4685 4005 4513 4169 4226 4189 4150 4097 4445 4392 3137 3288 49296

(9.5) (8.1) (9.2) (8.5) (8.6) (8.5) (8.4) (8.3) (9.0) (8.9) (6.4) (6.7) (14.0)

Independently

2004
2583 2622 2722 2905 2915 2808 3062 3044 2824 2972 2620 2460 33537

(7.7) (7.8) (8.1) (8.7) (8.7) (8.4) (9.1) (9.1) (8.4) (8.9) (7.8) (7.3) (26.4)

2005
2757 2294 2755 2747 2993 3202 3368 3310 2952 2982 2732 2663 34755

(7.9) (6.6) (7.9) (7.9) (8.6) (9.2) (9.7) (9.5) (8.5) (8.6) (7.9) (7.7) (27.3)

2006
2660 2307 2741 2723 2678 2850 2280 2262 3027 3048 2473 2685 31734

(8.4) (7.3) (8.6) (8.6) (8.4) (9.0) (7.2) (7.1) (9.5) (9.6) (7.8) (8.5) (24.9)

2007
2685 2232 2584 2669 2727 2820 2967 2989 2755 2821 0 0 27249

(9.9) (8.2) (9.5) (9.8) (10.0) (10.3) (10.9) (11.0) (10.1) (10.4) (-) (-) (21.4)

Total
10685 9455 10802 11044 11313 11680 11677 11605 11558 11823 7825 7808 127275

(8.4) (7.4) (8.5) (8.7) (8.9) (9.2) (9.2) (9.1) (9.1) (9.3) (6.1) (6.1) (36.2)

Physician

2004
3120 3282 3590 3302 3534 3611 3664 3882 3651 3810 3681 3758 42885

(7.3) (7.7) (8.4) (7.7) (8.2) (8.4) (8.5) (9.1) (8.5) (8.9) (8.6) (8.8) (24.5)

2005
3962 3395 4094 3780 4060 4050 4045 3902 4100 3463 3654 3503 46008

(8.6) (7.4) (8.9) (8.2) (8.8) (8.8) (8.8) (8.5) (8.9) (7.5) (7.9) (7.6) (26.3)

2006
3904 3731 4080 3880 4203 4025 3227 3232 3919 3843 3657 3752 45453

(8.6) (8.2) (9.0) (8.5) (9.2) (8.9) (7.1) (7.1) (8.6) (8.5) (8.0) (8.3) (25.9)

2007
4207 3821 3894 3736 4089 4156 4487 4322 3940 4225 0 0 40877

(10.3) (9.3) (9.5) (9.1) (10.0) (10.2) (11.0) (10.6) (9.6) (10.3) (-) (-) (100.0)

Total
15193 14229 15658 14698 15886 15842 15423 15338 15610 15341 10992 11013 175223

(8.7) (8.1) (8.9) (8.4) (9.1) (9.0) (8.8) (8.8) (8.9) (8.8) (6.3) (6.3) (49.8)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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Table 31: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’
Left Reason Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Released
18852 16983 19386 18623 19398 19764 19255 18989 19669 19602 13660 13566 217747

(8.7) (7.8) (8.9) (8.6) (8.9) (9.1) (8.8) (8.7) (9.0) (9.0) (6.3) (6.2) (64.0)

Hospitalized
9286 8518 9283 9016 9724 9518 9511 9683 9507 9521 6622 6854 107043

(8.7) (8.0) (8.7) (8.4) (9.1) (8.9) (8.9) (9.0) (8.9) (8.9) (6.2) (6.4) (31.5)

LWBS
1312 1145 1235 1295 1300 1437 1507 1419 1444 1441 982 891 15408

(8.5) (7.4) (8.0) (8.4) (8.4) (9.3) (9.8) (9.2) (9.4) (9.4) (6.4) (5.8) (4.5)

Deceased
598 554 539 482 483 436 439 405 455 482 346 429 5648

(10.6) (9.8) (9.5) (8.5) (8.6) (7.7) (7.8) (7.2) (8.1) (8.5) (6.1) (7.6) (1.7)

Refuse Treatment
223 219 235 247 260 292 282 266 281 249 165 179 2898

(7.7) (7.6) (8.1) (8.5) (9.0) (10.1) (9.7) (9.2) (9.7) (8.6) (5.7) (6.2) (0.9)

Other Institute
226 189 195 187 212 198 201 218 197 217 140 143 2323

(9.7) (8.1) (8.4) (8.0) (9.1) (8.5) (8.7) (9.4) (8.5) (9.3) (6.0) (6.2) (0.7)

Other
66 81 100 61 48 66 55 60 60 44 39 47 727

(9.1) (11.1) (13.8) (8.4) (6.6) (9.1) (7.6) (8.3) (8.3) (6.1) (5.4) (6.5) (-)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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Table 32: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’ by year

part 1
Left Reason Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Deceased

2004
132 117 116 113 111 101 105 91 96 120 95 162 1359

(9.7) (8.6) (8.5) (8.3) (8.2) (7.4) (7.7) (6.7) (7.1) (8.8) (7.0) (11.9) (24.1)

2005
148 145 126 137 112 118 109 116 114 109 113 111 1458

(10.2) (9.9) (8.6) (9.4) (7.7) (8.1) (7.5) (8.0) (7.8) (7.5) (7.8) (7.6) (25.8)

2006
148 115 157 95 121 111 104 90 119 121 138 156 1475

(10.0) (7.8) (10.6) (6.4) (8.2) (7.5) (7.1) (6.1) (8.1) (8.2) (9.4) (10.6) (26.1)

2007
170 177 140 137 139 106 121 108 126 132 0 0 1356

(12.5) (13.1) (10.3) (10.1) (10.3) (7.8) (8.9) (8.0) (9.3) (9.7) (-) (-) (24.0)

Total
598 554 539 482 483 436 439 405 455 482 346 429 5648

(10.6) (9.8) (9.5) (8.5) (8.6) (7.7) (7.8) (7.2) (8.1) (8.5) (6.1) (7.6) (1.6)

Hospitalized

2004
2021 2064 2281 2175 2274 2306 2385 2552 2363 2361 2254 2338 27374

(7.4) (7.5) (8.3) (7.9) (8.3) (8.4) (8.7) (9.3) (8.6) (8.6) (8.2) (8.5) (25.6)

2005
2401 2067 2462 2276 2398 2435 2398 2435 2296 2120 2123 2164 27575

(8.7) (7.5) (8.9) (8.3) (8.7) (8.8) (8.7) (8.8) (8.3) (7.7) (7.7) (7.8) (25.8)

2006
2291 2183 2290 2252 2456 2222 1985 2010 2290 2323 2245 2352 26899

(8.5) (8.1) (8.5) (8.4) (9.1) (8.3) (7.4) (7.5) (8.5) (8.6) (8.3) (8.7) (25.1)

2007
2573 2204 2250 2313 2596 2555 2743 2686 2558 2717 0 0 25195

(10.2) (8.7) (8.9) (9.2) (10.3) (10.1) (10.9) (10.7) (10.2) (10.8) (-) (-) (23.5)

Total
9286 8518 9283 9016 9724 9518 9511 9683 9507 9521 6622 6854 107043

(8.7) (8.0) (8.7) (8.4) (9.1) (8.9) (8.9) (9.0) (8.9) (8.9) (6.2) (6.4) (30.4)

LWBS

2004
284 309 256 294 293 360 395 395 400 366 330 284 3966

(7.2) (7.8) (6.5) (7.4) (7.4) (9.1) (10.0) (10.0) (10.1) (9.2) (8.3) (7.2) (25.7)

2005
382 308 329 375 399 419 500 400 409 391 360 336 4608

(8.3) (6.7) (7.1) (8.1) (8.7) (9.1) (10.9) (8.7) (8.9) (8.5) (7.8) (7.3) (29.9)

2006
335 247 337 308 298 317 266 263 333 326 292 271 3593

(9.3) (6.9) (9.4) (8.6) (8.3) (8.8) (7.4) (7.3) (9.3) (9.1) (8.1) (7.5) (23.3)

2007
311 281 313 318 310 341 346 361 302 358 0 0 3241

(9.6) (8.7) (9.7) (9.8) (9.6) (10.5) (10.7) (11.1) (9.3) (11.0) (-) (-) (21.0)

Total
1312 1145 1235 1295 1300 1437 1507 1419 1444 1441 982 891 15408

(8.5) (7.4) (8.0) (8.4) (8.4) (9.3) (9.8) (9.2) (9.4) (9.4) (6.4) (5.8) (4.4)

Other

2004
35 44 55 29 20 30 16 22 20 24 14 25 334

(10.5) (13.2) (16.5) (8.7) (6.0) (9.0) (4.8) (6.6) (6.0) (7.2) (4.2) (7.5) (45.9)

2005
13 16 10 10 7 11 12 9 11 8 15 10 132

(9.8) (12.1) (7.6) (7.6) (5.3) (8.3) (9.1) (6.8) (8.3) (6.1) (11.4) (7.6) (18.2)

2006
7 10 19 17 9 15 8 15 17 4 10 12 143

(4.9) (7.0) (13.3) (11.9) (6.3) (10.5) (5.6) (10.5) (11.9) (2.8) (7.0) (8.4) (19.7)

2007
11 11 16 5 12 10 19 14 12 8 0 0 118

(9.3) (9.3) (13.6) (4.2) (10.2) (8.5) (16.1) (11.9) (10.2) (6.8) (-) (-) (16.2)

Total
66 81 100 61 48 66 55 60 60 44 39 47 727

(9.1) (11.1) (13.8) (8.4) (6.6) (9.1) (7.6) (8.3) (8.3) (6.1) (5.4) (6.5) (-)
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Table 33: Monthly patient arrival counts (% out of total) for each patient’s ‘Left Reason’ by year

part 2
Left Reason Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Other Institute

2004
62 47 38 38 39 48 60 58 41 61 39 37 568

(10.9) (8.3) (6.7) (6.7) (6.9) (8.5) (10.6) (10.2) (7.2) (10.7) (6.9) (6.5) (24.5)

2005
49 52 41 49 54 46 52 46 42 48 44 58 581

(8.4) (9.0) (7.1) (8.4) (9.3) (7.9) (9.0) (7.9) (7.2) (8.3) (7.6) (10.0) (25.0)

2006
64 35 45 52 62 39 33 43 61 53 57 48 592

(10.8) (5.9) (7.6) (8.8) (10.5) (6.6) (5.6) (7.3) (10.3) (9.0) (9.6) (8.1) (25.5)

2007
51 55 71 48 57 65 56 71 53 55 0 0 582

(8.8) (9.5) (12.2) (8.2) (9.8) (11.2) (9.6) (12.2) (9.1) (9.5) (-) (-) (25.1)

Total
226 189 195 187 212 198 201 218 197 217 140 143 2323

(9.7) (8.1) (8.4) (8.0) (9.1) (8.5) (8.7) (9.4) (8.5) (9.3) (6.0) (6.2) (.7)

Refuse Treatment

2004
60 44 41 65 45 59 62 56 68 67 54 68 689

(8.7) (6.4) (6.0) (9.4) (6.5) (8.6) (9.0) (8.1) (9.9) (9.7) (7.8) (9.9) (23.8)

2005
49 55 44 52 67 63 77 72 64 46 58 48 695

(7.1) (7.9) (6.3) (7.5) (9.6) (9.1) (11.1) (10.4) (9.2) (6.6) (8.3) (6.9) (24.0)

2006
56 57 68 62 64 75 55 35 59 58 53 63 705

(7.9) (8.1) (9.6) (8.8) (9.1) (10.6) (7.8) (5.0) (8.4) (8.2) (7.5) (8.9) (24.3)

2007
58 63 82 68 84 95 88 103 90 78 0 0 809

(7.2) (7.8) (10.1) (8.4) (10.4) (11.7) (10.9) (12.7) (11.1) (9.6) (-) (-) (27.9)

Total
223 219 235 247 260 292 282 266 281 249 165 179 2898

(7.7) (7.6) (8.1) (8.5) (9.0) (10.1) (9.7) (9.2) (9.7) (8.6) (5.7) (6.2) (.8)

Released

2004
4278 4347 4653 4538 4746 4543 4850 4878 4567 4861 4562 4401 55224

(7.7) (7.9) (8.4) (8.2) (8.6) (8.2) (8.8) (8.8) (8.3) (8.8) (8.3) (8.0) (25.4)

2005
4802 3971 4976 4700 5034 5238 5287 5216 5190 4755 4616 4502 58287

(8.2) (6.8) (8.5) (8.1) (8.6) (9.0) (9.1) (8.9) (8.9) (8.2) (7.9) (7.7) (26.8)

2006
4819 4383 5019 4860 4951 5153 3909 3799 5210 5164 4482 4663 56412

(8.5) (7.8) (8.9) (8.6) (8.8) (9.1) (6.9) (6.7) (9.2) (9.2) (7.9) (8.3) (25.9)

2007
4953 4282 4738 4525 4667 4830 5209 5096 4702 4822 0 0 47824

(10.4) (9.0) (9.9) (9.5) (9.8) (10.1) (10.9) (10.7) (9.8) (10.1) (-) (-) (22.0)

Total
18852 16983 19386 18623 19398 19764 19255 18989 19669 19602 13660 13566 217747

(8.7) (7.8) (8.9) (8.6) (8.9) (9.1) (8.8) (8.7) (9.0) (9.0) (6.3) (6.2) (61.9)

Total
30563 27689 30973 29911 31425 31711 31250 31040 31613 31556 21954 22109 351794

(8.7) (7.9) (8.8) (8.5) (8.9) (9.0) (8.9) (8.8) (9.0) (9.0) (6.2) (6.3) (100.0)
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B Count by Patients’ Profile

B.1 Patients’ profile, counts: types and priorities

It is interesting to analyze the distribution of patient arrivals according to the different types of

treatments and patients’ severity. We have done that in the present section.

For analyzing the arrival pattern during the year for each patient treatment type, we have

excluded December 2008 because it was not fully represented and July and August 2006 because

it was a war time. From Figure 59, we see that the arrival pattern is different for each patient

type. Internal patients arrive less during the main two periods of holidays (April and September)

while Orthopedic patients arrive mostly during the pupil vacation time in the summer. Surgical and

Trauma patients do not manifest sensitivity to seasonal changes.
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Figure 59: Number of patients per month according to types for each year

For staffing support reasons, it is important to plot also the number of patients according to

type, since physicians are trained to provide specific types of treatments (although, in recent years,

there is a change towards a new emergency profession to the ED physician). Along these lines,

Figure 60 is similar to Figure 4 but is split according to types. One can see clearly that at night

and around 4pm–5pm there is a valley in most patient types, while ‘Int’ patients reached an extra

peak at 11am–12pm.
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Figure 60: Average number of patients per hour according to types (Jan 2005, weekdays)

In Figure 61 the patients are characterized according to their severity. It seems that most of

the patients are regular ones and they arrive as in Figure 4, while ICU and V patients, which need

closer attention, arrive sparsely during the morning and afternoon shifts.

B.2 Patients profile, counts: administrations’ categories

In Figure 62 the patients are characterized according to their gender. It seems that there are more

male patients than female. The interesting issue is the peak in the afternoon which is obvious in the

female arrival but not in the male arrival pattern. A reasonable explanation that we have found,

was that the peak is due to mothers which wait for their kids to return from school and for their

spouse to return from work.

In Figure 63 the patients are characterized according to their age. It seems that age group 15-24

is the dominant group.

In Figure 64 the patients are characterized according to their transferrer factor (sender). It

seems that patients transferred by a physician is the dominant group and the most fluctuant during

the day, while patients arriving by ambulance or independently are more moderate.

In Figure 65 the patients are characterized according to their departure reason. It seems that

the two dominant groups, ‘Released’ and ‘Hospitalized’ patients, have a very close arrival pattern

during the day, but released patients have more clearer peak at 7pm than the hospitalized patients.
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Figure 61: Average number of patients per hour according to severity (Jan 2005, weekdays)

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

A
ve

ra
ge

 n
um

be
r o

f p
at

ie
nt

s

 Female
 Male

Figure 62: Average number of patients per hour according to gender (Jan 2005, weekdays)
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Figure 63: Average number of patients per hour according to age (Jan 2005, weekdays)
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Figure 64: Average number of patients per hour according to their sender (Jan 2005, weekdays)

130



0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour

A
ve

ra
ge

 n
um

be
r o

f p
at

ie
nt

s

 Deceased

 Hospitalized

 LWBS

 Other

 Other Institute

 Refuse Treatment

 Released

Figure 65: Average number of patients per hour according to age (Jan 2005, weekdays)
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C Emergency Department Process - Additional Materials

In the following figures, we depict the overall patient’s process within the ED, from some varying

points of view: a precedence diagram of activities (Figure 67), patients’ flow among the resources

(Figure 66), and information flow (Figure 68).
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D Length of Stay (LOS) Analysis by Patient Characteristics - Ad-

ditional Materials

We continue to investigate, what was influencing the patient’s LOS. We looked at the influence

of the type of patient (Figures 69 for the LOS distribution, and Figure 70 for the LOS survival

distribution), patient severity (Figures 71 for distribution of LOS and Figure 72 for the LOS survival

distribution), patient gender (Figures 73 for distribution of LOS and Figure 74 for the LOS survival

distribution), patient age (Figures 75 for distribution of LOS and Figure 76 for the LOS survival

distribution), patient entry reason (Figures 77 for distribution of LOS and Figure 78 for the LOS

survival distribution), patient references (sent by Physician / on their own) type (Figures 79 for

distribution of LOS and Figure 80 for the LOS survival distribution), and by patient left reason

(Figures 81 for distribution of LOS and Figure 82 for the LOS survival distribution).
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Figure 69: LOS frequency by patient type
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Figure 70: LOS survival by patient type
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Figure 71: LOS frequency by patient severity
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Figure 72: LOS survival by patient severity
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Figure 73: LOS frequency by patient gender
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Figure 74: LOS survival by patient gender
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Figure 75: LOS frequency by patient age
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Figure 76: LOS survival by patient age
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Figure 77: LOS frequency by entry reason
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Figure 78: LOS survival by patient entry reason
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Figure 79: LOS frequency by send by
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Figure 80: LOS survival by patient send by
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Figure 81: LOS frequency by left reason
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Figure 82: LOS survival by patient left reason
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E Bed Occupancy Analysis - Additional Materials

E.1 Bed occupancy - per Type

It seems that the non-ordinary shape of L distribution needs further investigation. We try to see

if the shape of the distribution is due to a combination of different distributions. We start with

analyzing the distribution by patient type. In Figures 83, 84, 85, and 86 we see that the distribution

of the occupied beds for the different patient types is very different. We also see from Figure 87

that the statistical order of the cumulative distributions of each type (‘F(type)’) are kept so that

F (Tra) > F (Sur) > F (Ort) > F (Int) is true for any L of the relevant type.
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Figure 83: Distribution P(Int) of the time ED was with number of Internal occupied beds (L)
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Figure 84: Distribution P(S) of the time ED was with number of Surgical occupied beds (L)
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Figure 85: Distribution P(O) of the time ED was with number of Orthopedic occupied beds (L)
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Figure 86: Distribution P(Tra) of the time ED was with number of Trauma occupied beds (L)
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Figure 87: cumulative distribution F(L) of the time ED was with number of occupied beds (L) per

type

E.2 Bed occupancy - per patient characteristics

We also checked the distribution and the cumulative distribution of L by outcome of the treatment

- Releasing home or Hospitalizing at the hospital (Figure 88 and Figure 89), or by Severity of the

patient (Figure 90 and 91).
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Figure 88: The distribution P(L) of the time ED was with number of occupied beds (L) per outcome

of the treatment
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Figure 89: Cumulative distribution F(L) of the time ED was with number of occupied beds (L) per

outcome of the treatment
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Figure 90: The distribution P(L) of the time ED was with number of occupied beds (L) per Severity
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Figure 91: Cumulative distribution F(L) of the time ED was with number of occupied beds (L) per
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F Comparing Theoretical Models with the Empirical Analysis -

Additional Materials

We tried to refine the ‘M/M/∞ Model’ by looking just at fragments of the empirical data and

comparing that to the M/M/∞ model (we named it ‘Fragmental M/M/∞ Model’). We started

with looking at each shift separately, and then at each group of hours that we found in Figure 15.

The data we used for both is summarized in Table 34 (where the ALOS is E(S) = 1/µ calculated

for each fragment).

Table 34: Parameters for the Fragmental M/M/∞ Model

λ µ

Shift1 0.23402 0.00516

Shift2 0.2156 0.00512

Shift3 0.06843 0.00467

Group1 0.06195 0.00484

Group2 0.17399 0.00504

Group3 0.23788 0.00514

From the comparison of the Fragmental M/M/∞ Model with the empirical data in Figures 92

to 97, it is clear that this model is not modeling well the number of occupied beds in the ED.
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Figure 92: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - shift1
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Figure 93: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - shift2
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Figure 94: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - shift3
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Figure 95: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - group1
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Figure 96: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - group2
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Figure 97: Comparison of the steady-state distribution of Fragmental M/M/∞ model to the em-

pirical data - group3
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G Simulation Adjustment Process

In this section we describe the process of adjusting the simulation staff schedule to meet the distri-

bution of the number of occupied beds in the ED.

We started by looking at the average number of occupied beds per hour (avgL). We see in

Figure 98 that at the beginning of the day the theoretical averages starting to fall faster than the

actual (empirical) averages. After that there is a change in pace during the lunch break and after

the beginning of the second shift. It implies that at night the actual use of staff is less effective.

Moreover, we know from interviewing the staff that the senior physicians are not always available

(sleep near by). That gives us the motivation to adjust our schedule to fit better the number of

occupied beds (L) distribution.
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Figure 98: Comparison of average number of occupied beds per hour of simulation model (Arena)

to the empirical data

We start by gradually reducing the number of available staff (physicians) during the night shift

from the middle of the shift until the morning (3-8). The results are presented in Figures 99 and

100.

We can now see that the morning hours need a reduction of resources. For that we used the

knowledge that staff spend mornings on meetings, eating, and arrangements until patients start to

arrive. We therefore adjust the number of physicians from 8 to 13. The results are presented in

Figures 101 and 102.
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Figure 99: Comparison of average number of occupied beds per hour of adjusted simulation model

(Arena) during night shift to the empirical data
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Figure 100: Comparison of distribution of occupied beds of adjusted simulation model (Arena)

during night shift to the empirical data
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Figure 101: Comparison of average number of occupied beds per hour of adjusted simulation model

(Arena) during morning shift to the empirical data
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Figure 102: Comparison of distribution of occupied beds of adjusted simulation model (Arena)

during morning shift to the empirical data
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We can see that some small adjustment now needs to be done in order to get a reasonable match,

as we see in Figures 103 and 21.
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Figure 103: Comparison of average number of occupied beds per hour of adjusted Simulation Model

(Arena) during all shifts to the empirical data
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 III

לא מצאנו מודל , כצפוי .)WA – Walking Acute(למיטה וחולים אשר יכולים להסתפק בכיסא 

 י בעליםד"המודל שנמצא עדיף במלר. בכל תנאי סביבהעדיפה אשר היעילות היחסית שלו הפעלה 

אילו ו, )FT( חולים להאצתהוא מודל שבו יש מסלול המוקדש ) מהממוצע( מופע קשישים גבוה

של מחסור ) או אילוצים(שיקולים  ).Triage( להשתמש במיון ראשוני נמצא שעדיףבמקרים אחרים 

 ה יכולים להביא את בתי החולים להחלט, או של שטח למיקום מיטות החולים,בכוח אדם

  . אך מחויבי מציאותפחות שהנם יעילים להשתמש במודלים אחרים

  מערכות עיקוב בזמן אמתהקלינית והתפעולית בישום האסטרטגי של, הכלכליתהתועלת ת ניבחל

 . ענו מתודולוגיה מבוססת סימולציההצ, )RFID - Radio Frequency IDentification מערכות ,לדוגמא(

פוטנציאל ולכן מהווה , תעשיות רבותמוכר בור תהליכים  לשיפRFIDשימוש בטכנולוגיה כגון 

שהיא מערכת שהטיפול בחולים בה מורכב ונמצא תחת אילוצי זמן , ד" גם עבור המלרמבטיח

).  טיפולהקבלת זיהוי הבעיה והצלת חיי חולים קריטיים תלויה רבות בזמן עד , לדוגמא (חמורים

 ארגונית ד הוא יקר גם מבחינה כלכלית וגם מבחינה" במלרRFIDשילוב של מערכות , מצד שני

שלבית שבוחנת את - רבהמתודולוגיה ה. את הפוטנציאל לפני מימושוהיטב ולכן קיים צורך לבחון 

יכולה להיות מותאמת גם , ד"מלר תוך הדגמתה באמצעות שימוש בסימולציה של ,הפוטנציאל

  . למערכות בריאות אחרות

טומטי של חלקי חצי אואחזור ב משתמשלתמיכה ב מתודולוגיה אנו מציגים ,האחרוןבשלב 

 הגבוה, קוד תוכנהאחזור לבדומה , המוטיבציה לשימוש מחדש בחלקי סימולציות. סימולציה

ההבדלים הבולטים בין אחזור .  בכתיבת מודלי סימולציה מהיסוד שישגבוהותלאור העלויות ה

 ם מומחישאינםמודל סימולציה נכתב לרוב על ידי מפתחים ) 1: ( הםקוד ואחזור חלקי סימולציה

מודל סימולציה שנכתב עבור תחום מסוים יכול ) 2(- ו; )במערכת הרפואיתובמיוחד (בכתיבת קוד 

 לפי השימוש חלקי הסימולציהאילו רק אפשר היה לזהות את , תחומים אחריםבבקלות לשמש 

מודל סימולציה שנכתב ,  לדוגמא.שלהם) םש, למשל(שלהם ולא על פי המשמעות התחבירית 

ל של מחלקה מומחה לשמש כבסיס עבור מידותכנת יכול בעזרת , צורשל פס יילשיפור ביצועים 

קיבוץ היררכי , לאחזור רכיבי סימולציה מבוססת על מידול טבלאיהמתודולוגיה . לרפואה דחופה

בעץ ההיררכי שנוצר על מנת לעזור למשתמש לבנות בצעד -של רכיבים קיימים ואז תמיכה צעד

 מקרהמבוססי בחרנו שלושה מודלי תזמון , מתודולוגיהשלבי ה לשם הדגמת .מודל חדש

  . שפותח במיוחדטיפוס-  והצגנו את התוצאה על אב,מתחומים שונים

) online(ד בזמן אמת " במלרההחלט-  למערכת תומכת)InEDvance ( פיתחנו ממשק משתמש,בנוסף

  מידעציג שתכך, ד"שיתוף עם מנהלי המלרב המערכת פותחה. )offline (ניתוח שלאחר מעשהול

  .ביצועיי המערכתשיפור מטרתו ואשר , ) עומס קיים וצפוי, לדוגמא( רלוונטי עבורם

 יכולה סימולציה מכוונת הנדסת שירות מקווים שהצלחנו בעבודה להראות כיצד ואנ, לסיכום

 ותזמון משאבים איושב:  במגוון תחומים,מחלקה לרפואה דחופהכגון  ,מערכת מורכבתלתרום ל

, ם בהתאם לתנאי הסביבה בהם הם פועליםהפעלה ניהוליבבחירת מודלי , )ואחיותרופאים (

אחזר רכיבי לבסוף לעזור למשתמש לו,  בזמן אמתעיקובבחינה של כדאיות שימוש במערכת ב

  . מודלי סימולציה מתאימים בקלות וביעילות בכדי לבנותסימולציה
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שבתהליך לידה ומוות זנב , עולה מן ההשוואה. בולט לעיןי לאמפירי התיאורטהתפלגות התפוסה 

למשל התפלגות המודל מתאים לנתונים האמפיריים ולפיכך מתאים לשימוש במחקרים שעוסקים 

מודל המתאים ביותר הסתמן כאך מודל הסימולציה , )Ambulance diversion(ד "בחסימת המלר

  .אתגרים בהם התמודדנו בהמשך המחקרל

שינויים כתגובה ללמשל , תפעולית :רופאים ואחיות של )staffing( איוש פנינו לבעיית ההשנילב בש

שינויים במופע כתגובה ל, לדוגמא - תטקטי ו;בטווח של עד משמרתבמופע ההגעות של החולים 

ך יישמנו מודל חדשני  לשם כ.שבועותמספר בטווח של משפיעה המגפת שפעת מהחולים כתוצאה 

, OLבמודל . )OL – Offered Load ('וצעמעומס 'המשתמש בעקרון של , סימולציה- ססויעיל מבו

וממוצע מספר המשאבים , )רופאים ואחיות(אין בה אילוצי משאבים  כאילומועמסת המערכת 

 Halfin and Whitt(לאיוש " כלל השורש"-תוך שימוש ב, העסוקים מהווה שלד לחישוב איוש רצוי
[1981]; Borst et al. [2004]; Feldman et al. [2008](. ) את הבמקרים בהם לא ניתן לחשב-OL אנליטית, 

עובד זה  גילינו כי מודל ). משאבים"אינסוף" יש אשר בהסימולציה  באמצעות אותוניתן למצוא 

  שמטרתה המקורית היא תכנון גס של קיבולות ייצור,בהשוואה לגישה חלופיתהיטבת בפרט 

)RCCP - Rough Cut Capacity Planning( . במודלRCCP , מועמסת המערכת ברגע הגעת החולה בכל

הופעתן  שמעמיס על המערכת את הפעולות ברגע OLבניגוד למודל , הפעולות העתידיות של החולה

 במהלך אם חולה צפוי להיפגש שלוש פעמים עם הרופא, לדוגמא (במערכת כשאין אילוצי קיבולות

 יעמיס את כל ארבעים וחמש הדקות ברגע RCCPמודל ; כל מפגש בן חמש עשרה דקות; ה/שהייתו

 על RCCPהיתרון של מודל .  יפרוס את המפגשים באופן ריאלי יותרOLבעוד מודל , הופעת החולה

OLביותר ם ולכן מתאי, הוא בזה שהוא לא דורש שימוש בסימולציה או חישובים מורכבים 

 הוא ביכולת RCCP על פני OLהיתרון של . הם מהנדסי תעשייה צמודיםלמערכות רפואיות שאין ב

ולט בשתי הבהיתרון . איכות שירות גבוהה יותר לאורך זמן,  באותה כמות משאבים,להשיג

 ולכן , הוא ביכולת לבצע את החישובים במהירות, קיימות על פני שיטות אחרותהשיטות הללו

  .זמן אמתאו קרוב ל, בזמן אמתאיוש לתת פתרונות 

 בחירת מודל ההפעלה עיקרה ש,האחת: שתי החלטות אסטרטגיותבחנו  והרביעיהשלישי בשלב 

שבחנה את התועלת , והשנייה; בהתחשב בפרמטרי סביבה שוניםד "עבור המלרביותר היעיל 

  .  בזמן אמתעיקובבהפעלת מערכות 

 המגובים , בתי חוליםבנתוני אמת של שמונההשתמשנו לשם בחירת מודל ההפעלה היעיל ביותר 

 )DEA – Data Envelopment Analysis(בכלי לניתוח מעטפת ביצועים  ו,במודלי סימולציה מתוקפים

משתנים התלויים , למשל(גם בהינתן משתנים לא נשלטים המחשב יעילות יחסית של מערכות 

דלי הפעלה ההשוואה בוצעה על ארבעה מו. )Banker and Morey [1986]בתנאי סביבה במודל של 

על ד "במלר החולים שיוצר הפרדה פיסית ותפעולית של) ISO(מודל מבוסס סיווג קליני ) א: (שונים

מודל המבוסס על מיון ) ב(; )אורטופדי/ כירורגי / פנימאי (פי תחום ההתמחות של הרופא המטפל 

לים לאתר בו החולים עוברים מייד עם הגעתם סיווג של אחות המפנה את החו) Triage(ראשוני 

,  שבנוסף למיון הראשוני,)FT- Fast Track(מודל עם מסלול מהיר ) ג(; ד"המתאים לטיפולם במלר

חולים קלים , למשל(ד "במלרשהות זמן קצר יחסית גם מקצה אתר לטיפול בחולים שצפויים ל

או חולים מורכבים שברור מלכתחילה ,  לביתם שחרורםבטרםמהיר ד "במלרשהטיפול בהם 

בין חולים הזקוקים פיסית ותפעולית מודל המפריד ) ד(, לבסוףו; )לאשפוז בבית החוליםשיעברו 
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  תקציר

למרות שהגדרה זו . מצבו של מקבל השירותחיובי בשירות ניתן להגדרה כחתירה אחר שינוי 

 שירות אנו זקוקים למשאבים להעניקבכדי עדיין , ומזת שלא ניתן לאגור שירות בדומה לייצורר

 ההנדסת השירות כמדע פותח). Shimomura and Tomiyama [2002](וערוצי תקשורת מסוג שהוא 

, וניתנת להגדרה כתיכון, )Bullinger et al. [2003] (בשני העשורים האחרונים בגרמניה ובישראל

, סטטיסטיקה, חקר ביצועיםתחומי רכיבים ממכילה  הנדסת השירות.  וניהול של שירותניתוח

ועוד , מדעי המחשב, ניהול מידע, פסיכולוגיה, כלכלה, תורת המשחקים, הנדסת תעשייה

)Mandelbaum [2007].(  

במערכת זו באים . מודרני היא מערכת מורכבת ביותרהבעידן ) ד"מלר(מחלקה לרפואה דחופה 

תפעוליות , ותמנקודות מבט כלכלי ביטוי אתגרים ניהולים רבים משטחי הנדסת השירות לידי

, )שעות ספורות(תפעוליים אופקי זמן אתגרים אילו מחייבים התמודדות על פני . וקליניות

  .) קדימהתרחישים של מספר חודשים ואף שנים( יםסטרטגיאו, )מספר שבועות(טקטיים 

 Sinreich and(ד "במלרהינה אולי הבעיה התפעולית הדחופה ביותר ) overcrowding(יתר -צפיפות

Marmor [2005], Hall [2006], Green [2008( .יתר מובילה לזמני המתנה ארוכים ולסביבת -צפיפות

 כאב וחרדה מיותרים לחולה) ב(; איכות שירות ירודה) א: (יתרהעבודה לא נעימה הגוררת בין 

המגיעים לעיתים עד כדי ביטויים אלימות , )לחולה ולמלווה(ים רגשות שלילי) ג(; ה/ולמשפחתו

ד להגעת "חסימת המלר) ה(; הגדלת הסיכון להתדרדרות קלינית של החולה) ד(; כלפי הצוות

עומסי עבודה ) ז(וכן ; )LWBS = Left Without Being Seen (נטישות) ו(; )ambulance diversion (חולים

  .)Derlet and Richards [2000]( גבוהים 

: אילו בהם אנו מתמקדים הם. במספר מישוריםוהכרחית  אפשרית היתר- התמודדות עם צפיפות

 Sinreich, לדוגמא(על מנת לאזן עומסי עבודה של הצוות תזמון משאבים באמצעות סימולציה ) א(

and Jabali [2007](; )למשל(חיפוש מודלי הפעלה חלופיים ) ב ,Badri and Hollingsworth [1993](; או 

 Fry and Lenert[, לדוגמא בעת אירוע רב נפגעים( לשליטהועלת מערכות מתוחכמות למעקב הפ) ג(

[2005(.  

התוקפים את בעיית צפיפות היתר בעבודה הנוכחית אנחנו מציגים פתרון בחמישה שלבים 

ה מהנדסת השירות ובראשם סימולצימגוונים  תוך שילוב כלים ,ד מכיוונים שונים"במלר

  .ממוחשבת

 ד על פני תקופה של כארבע שנים" ניתוח אמפירי של נתוני מלר מציגיםואנבמחקר  הראשוןבשלב 

תפעוליים , טקטיים,  בחתכי זמן אסטרטגיים לבית החוליםי החוליםבחנו את מופע. ) 2004-2008(

ות הצונקודות המפגש עם ,  שנוצריםהתורים,  עובריםתהליך שהחוליםה ;סטוכסטיים- קצריםו

ד בחתכים "במלרהתפוסה ו החולים זמני שהיית ;המועבר בתהליך הטיפול בחוליםהמידע כן ו

 ה/מצבו, ה/דרך ההגעה שלו, ד"ה בהגעה למלר/תלונתו, גיל החולה - לדוגמא (דמוגרפיים וקליניים 

 לבין מודלים ד" כמו כן בחנו את הפער בין תפוסת המיטות האמיתית במלר).הסיעודי וכדומה

 מודלים מעורבים וכן ) ∞/Mt/Mt,לדוגמא (זמן-תלויי ,)∞/M/M ,כגון( סטציונארייםיים סטוכסט

 .)ד"אך הפרמטרים שונים בין משמרות העבודה במלר, בהם בתוך כל משמרת המודל קבוע, למשל(

ין הפער ב, ממוצע תפוסת המיטותאת למרות שהמודלים הסטוכסטיים מזהים בצורה יפה 
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  .להנדסת תעשייה וניהול בפקולטה פרופסור אבישי מנדלבאום  בהנחייתה נעשרהמחק

 על התמיכה הכספית טכניון ולמכון הלאומי לחקר שירותי הבריאות בישראלאני מודה ל

  .הנדיבה בהשתלמותי
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