Emergency-Departments Simulation in Support of Service-Engineering: Staffing, Design, and Real-Time Tracking

Yariv N. Marmor

Advisor: Professor Mandelbaum Avishai

Faculty of Industrial Engineering and Management
Technion – Israel Institute of Technology

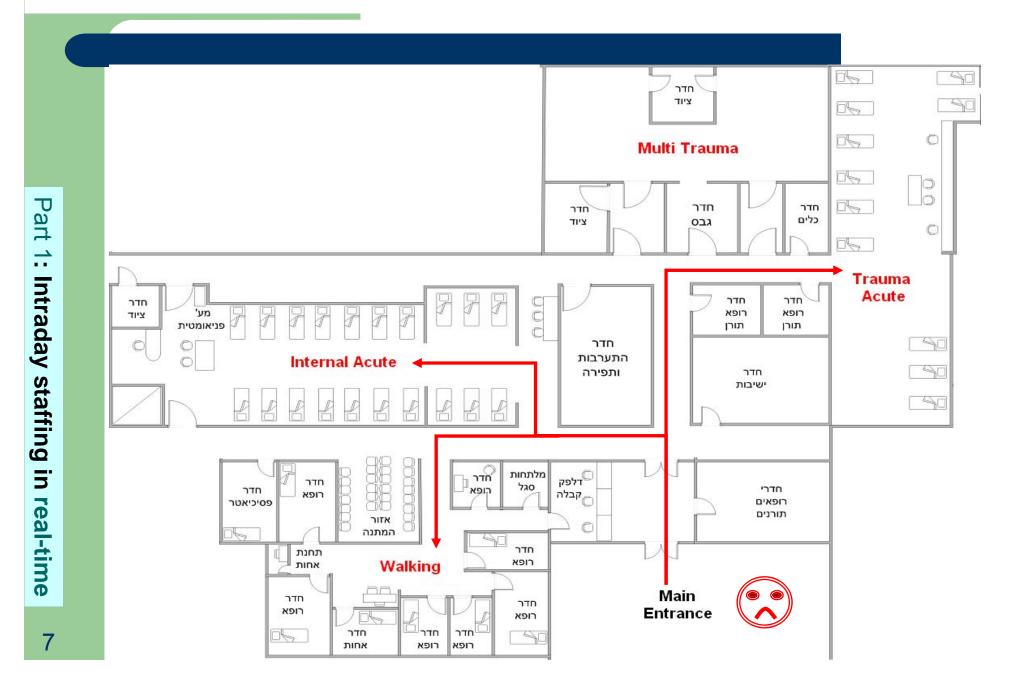
Original advisor: Late Dr. David Sinreich (02.02.2007)

Motivation - ED overcrowding

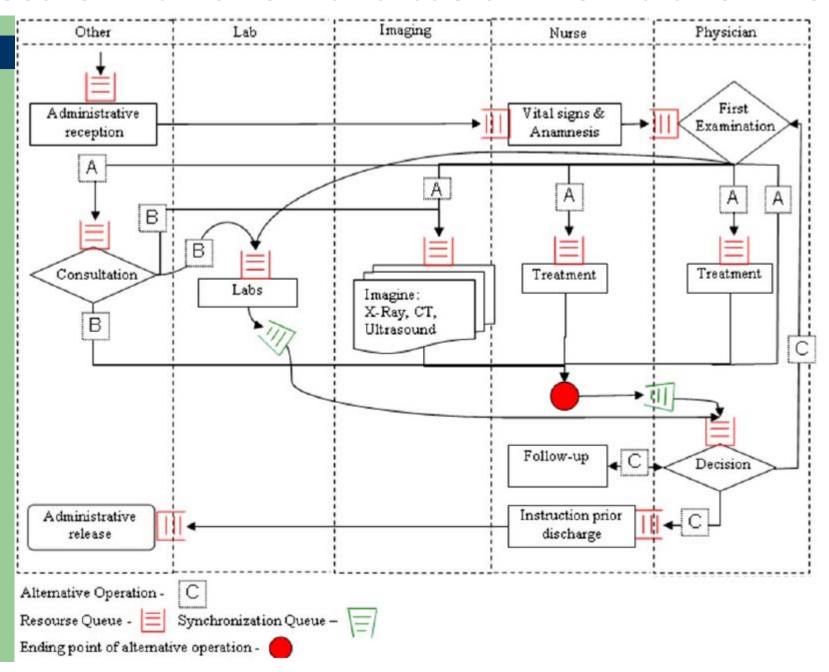
- Staff (re)scheduling (off-line) using simulation:
 - Sinreich and Jabali (2007) maintaining steady utilization.
 - Badri and Hollingsworth (1993), Beaulieu et al. (2000) – reducing Average Length of Stay (ALOS).
- Alternative operational ED designs:
 - King et al. (2006), Liyanage and Gale (1995) aiming mostly at reducing **ALOS**.
- Raising also the patients' view: Quality of care
 Green (2008) reducing waiting times (also the time to first encounter with a physician).

The rest of the presentation

- Part 1: Intraday staffing
 - a. In real-time.
 - b. Over mid-term.
- Part 2: Find an efficient operating model for an operational environment.
- Part 3: (if time permits) Long-term benefits of using real-time patients tracking (RFID) in the ED.


Part 1a: Intraday staffing in real-time

Special thanks: Prof. Shtub, Dr. Wasserkrug, Dr. Zeltyn


Objectives

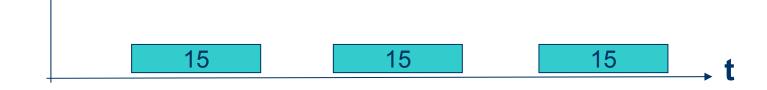
- [Obtain real data in real-time regarding current state.]
- Complete the data when necessary via simulation.
- Predict short-term evolution and workload.
- Proceed with simulation and mathematical models (Staffing) as decision support tools.
- All the above in real-time or close to real-time

- Rambam's ED admits over 80,000 patients per year:
 - 58% classified as Internal.
 - 42% classified as Surgical or Orthopedic.
- The ED has three major areas:
 - (1) Internal acute (2) Trauma acute (3) Walking.

- Generic simulation tool (Sinreich and Marmor ,2005).
- ED resource-process chart:

Estimation of current ED state

- Goal Estimate current ED state (using simulating):
 - Number of the different types of patients.
 - Patients' state in the ED process (e.g. X-ray, Lab, etc.)
 [cannot be extracted from most of currently installed IT systems]
- Data available (problem):
 - Accurate data taking actual arrivals into account.
 - Inaccurate data taking discharges into account:
 - Hospitalization (no ward immediately available).
- Method to estimate state at t=0:
 - Run ED simulation from "t=-∞"; keep replications that are consistent with the observed data (# of discharged)


Required staffing level – short-term prediction

Staffing models:

 RCCP (Rough Cut Capacity Planning) - Model aims at operational efficiency (resource utilization level).

 OL (Offered Load) - Model aims at operational and quality of service (time till first encounter with a physician).

RCCP - Rough Cut Capacity Planning (Vollmann et al., 1993)

$$|RCCP_r(t) = \sum_i A_i(t)d_{ir}|$$

 $RCCP_r(t)$ - total expected time required from each resource r at time t.

r – resource type ; t - forecasted hour ; i – patient type

 $A_i(t)$ - average number of external arrivals of patients of type i at hour t.

 d_{ir} - average total time required from each resource r for each patient

type i.

$$n_r(RCCP,t) = \frac{RCCP_r(t)}{f_s}$$

 $n_r(RCCP,t)$ - recommended number of units of resource r at time t, using RCCP method.

 f_s - safety staffing factor, e.g. f_s =0.9 (90%).

We expect RCCP to achieve utilization levels near f_s , but to fail in quality of service. This is remedied by our next OL approach

OL – Offered Load (theory)

In the simplest time-homogeneous steady - state case:

R - the offered load is:

$$R = \lambda * E(S)$$

 λ – arrival rate,

E(S) – expected service time,

The "Square-Root Safety Staffing" rule: (Halfin & Whitt ,1981):

$$n \approx R + \beta \sqrt{R}$$

 β > 0 is a tuning parameter.

This rule gives rise to **Quality and Efficiency-Driven** (**QED**) operational performance, in the sense that it carefully <u>balances</u> **high service quality** with **high utilization levels** of resources.

OL - Offered Load (theory) - time-inhomogeneous

Arrivals can be modeled by a **time-inhomogeneous** Poisson process, with arrival rate $\lambda(t)$; $t \ge 0$:

OL is calculated as the number of busy-servers (or served-customers), in a corresponding system with an **infinite** number of servers (Feldman *et al.* ,2008):

$$R(t) = E\left[\int_{t-S}^{t} \lambda(u)du\right] = \int_{-\infty}^{t} \lambda(u)P(S > t - u)du$$

S - a (generic) service time.

OL – Offered Load (theory) - time-inhomogeneous

QED approximation for achieving service goal α :

$$n_r(OL, t) = R_t + \beta_t \sqrt{R_t}$$

$$1 - \alpha = P(W_q > T) \approx h(\beta_t) e^{-T\mu\beta_t \sqrt{n_r(OL, t)}}$$

 $n_r(OL,t)$ - recommended number of units of resource r at time t, using OL method,

 α - fraction of patients that start service within T time units, W_q - patients waiting-time for service by resource r, $h(\beta_t)$ - the Halfin-Whitt function (Halfin and Whitt ,1981),

Offered Load methodology for ED staffing

- • servers: the simulation model is run with "infinitely-many" resources (e.g. physicians, or nurses, or both).
- Offered Load: for each resource r (e.g. physician or nurse) and each hour t, we calculate the number of busy resources (equals the total work required), and use this value as our estimate for the offered load R(t) for resource r at time t. (The final value of R(t) is calculated by averaging over simulation runs).
- Staffing: for each hour t we deduce a recommended staffing level $n_r(OL,t)$ via the formula:

$$n_r(OL, t) = R_t + \beta_t \sqrt{R_t}$$

$$1 - \alpha = P(W_q > T) \approx h(\beta_t) e^{-T\mu\beta_t \sqrt{n_r(OL, t)}}$$

Methodology for short-term forecasting and staffing

Our simulation-based methodology for short-term staffing levels, over 8 future hours :

- 1) Initialize the simulation with the **current ED state**.
- 2) Use the average arrival rate, to generate **stochastic arrivals** in the simulation.
- 3) Simulate and collect data every hour, over 8 future hours, using **infinite resources** (nurses, physicians).
- 4) From Step 3, calculate **staffing** recommendations, both $n_r(RCCP,t)$ and $n_r(OL,t)$.
- 5) Run the **simulation** from the current ED state with the **recommended staffing** (and existing staffing).
- 6) Calculate **performance** measures.

Simulation experiments – current state (# patients)

n=100 replications, Avg-simulation average, SD-simulation standard deviation, UB=Avg+1.96*SD, LB=Avg-1.96*SD, WIP-number of patients from the database 120 Comparing the Database ---- LB with the simulated ED $- \mathbf{u} \mathbf{B}$ current-state (Weekdays 100 Wip and Weekends) Avg Number of Patients 80 60 40 20

Day of Week (DOW) & Hour

Simulation experiments – current state (index)

Simulation performance measures - current staffing

Utilization:

 I_p - Internal physician

 S_p - Surgical physician

 O_p - Orthopedic physician

N₁₁ - Nurses.

Used Resources (avg.):

#Beds - Patient's beds,

#Chairs - Patient's chairs.

Service Quality:

%W - % of patients getting physician service within 0.5 hour from arrival (effective of α).

		Utiliza	ation				
Hour	Ιp	Sp	Ор	Nu	#Beds	#Chairs	%W
09-10	73%	1%	23%	55%	15.7	8.6	7%
10-11	93%	25%	59%	68%	23.5	17	33%
11-12	94%	59%	67%	72%	29.3	22.8	51%
12-13	90%	45%	81%	58%	33.2	30.3	53%
13-14	95%	68%	94%	71%	36.2	34.7	77%
14-15	90%	62%	76%	63%	34.2	33.3	70%
15-16	91%	51%	46%	51%	34.4	30.5	77%
16-17	100%	43%	41%	53%	34.6	27.6	69%
17-18	95%	58%	46%	57%	33.4	23.6	52%
18-19	90%	46%	52%	50%	32.4	23.9	31%
19-20	89%	64%	70%	58%	29.3	25.3	40%
20-21	79%	64%	75%	56%	26.5	20.6	39%
21-22	84%	46%	60%	45%	23.4	17	23%
22-23	66%	38%	51%	46%	20.2	13.9	20%

Simulation experiments – staffing recommendation

Staffing levels (present and recommended)

	n (Current)			Offered Load			n (OL)]	d	n (RCCP)							
Hour	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u	I_p	S_p	O_p	N_u
16-17	4	1	2	5	7.8	0.8	0.8	4.1	9	2	2	5	3	0.5	0.6	2.4	4	1	1	3
17-18	4	1	2	5	3.7	0.4	0.9	2.5	5	1	2	3	3.3	0.4	0.7	1.3	4	1	1	2
18-19	4	1	2	5	3.2	0.4	1.1	2.7	4	1	2	4	2.3	0.4	0.4	1.3	3	1	1	2
19-20	4	1	2	5	2.3	0.5	1.2	2.5	3	1	2	3	2.4	0.5	0.6	1	3	1	1	2
20-21	4	1	2	5	2.7	0.6	1.5	2.7	4	1	2	4	2.3	0.5	0.4	1	3	1	1	2
21-22	4	1	2	5	2.4	0.4	1.3	2.4	3	1	2	3	2.8	0.5	0.4	1.1	4	1	1	2
22-23	4	1	2	5	2.3	0.2	0.9	2	3	1	2	3	2.4	0.3	0.2	1	3	1	1	2

Simulation experiments – comparisons

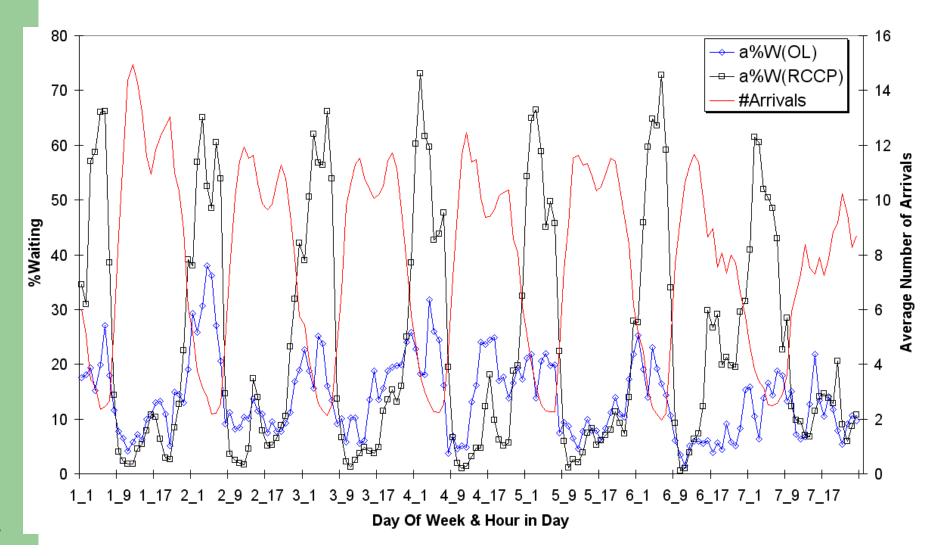

		Peı	forma	ance n	neasures	s using	Performance measures using									
			OL1	ecom	mendati	on	RCCP recommendation									
	Reso	ource	Utiliza	ation	#D a da	# <i>C</i> 1 :	0/337	Reso	ource	Utiliza	ation	4D - 4-	#61	0/337		
Hour	Ip	Sp	Ор	Nu	#Beds	#Chair	hair %W		Sp	Ор	Nu	#Beds	#Chair	%W		
16-17	62%	38%	40%	58%	36	29	56%	90%	54%	60%	59%	38.3	35.3	78%		
17-18	59%	33%	35%	67%	34.8	31.6	36%	82%	47%	65%	81%	39.3	40.2	82%		
18-19	75%	49%	53%	76%	32.2	29.9	46%	80%	45%	69%	92%	40.6	46.2	86%		
19-20	84%	48%	57%	80%	31.5	31.1	38%	72%	43%	79%	97%	42.3	52.2	90%		
20-21	76%	52%	65%	71%	28.7	28.4	38%	68%	46%	85%	99%	43.4	57.7	91%		
21-22	83%	49%	59%	75%	27.8	27.9	42%	55%	45%	89%	99%	44.7	62.4	91%		
22-23	85%	45%	50%	73%	25.7	25.4	50%	63%	39%	87%	99%	45.9	64.9	91%		

OL method achieved good service quality: %W is stable over time.

RCCP method yields good performance of resource utilization - near 90%.

Simulation experiments – comparisons

Comparing RCCP and OL given the same average number of resources


The simulation results are conclusive – OL is superior, implying higher quality of service, with the same number of resources, for all values of α .

Part 1b: Intraday staffing over the mid-term

Special thanks: Dr. S. Zeltyn

Mid-term staffing: Results

%W (and #Arrivals) per Hour by Method in an Average Week (α = 0.3)

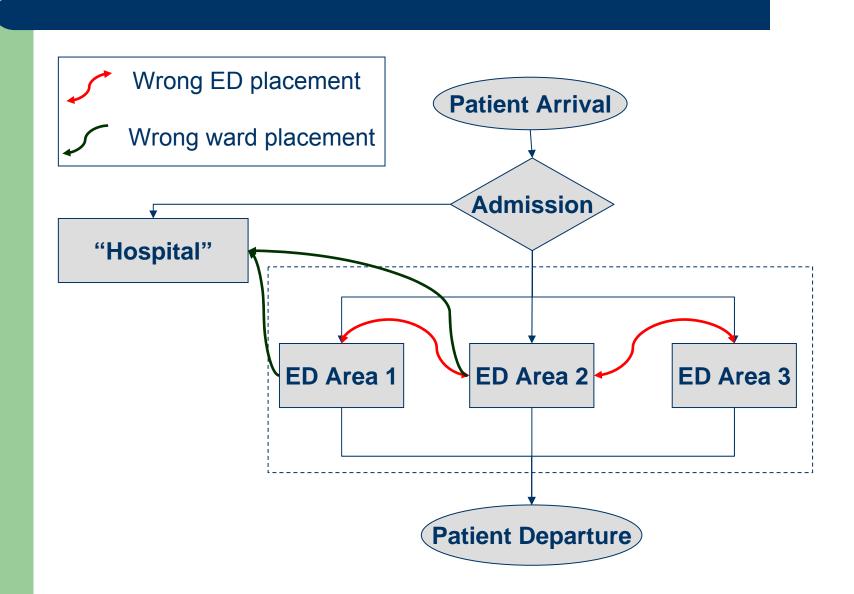
Conclusions and future research

- We develop a staffing methodology for achieving both high utilization and high service level, over both short- and mid-term horizons, in a highly complex environment.
- More work needed:
 - Refining the analytical methodology (now the α is close to target around α = 50%).
 - Introducing constrains into our staffing methodology.
 - Incorporate more detailed data (e.g. from RFID).

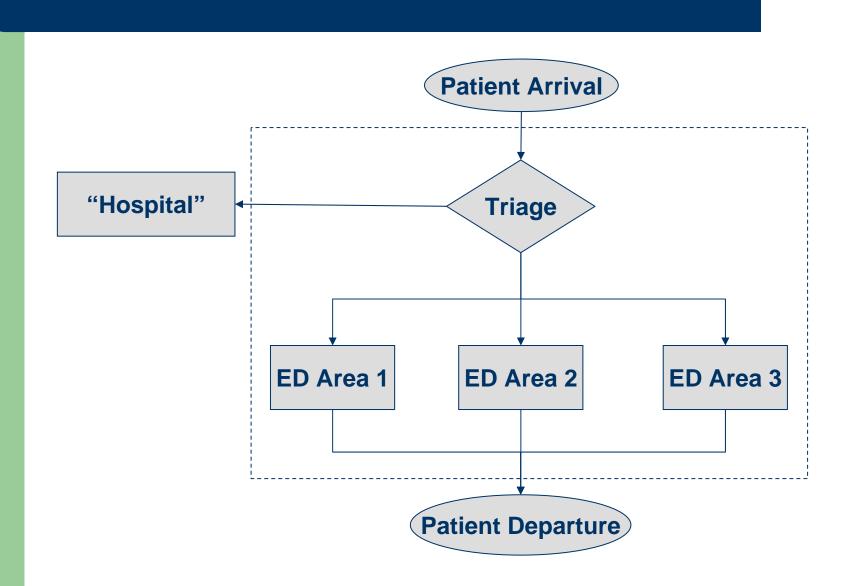
Part 2: Fitting an efficient operational model to a given ED environment

Special thanks: Prof. B. Golany

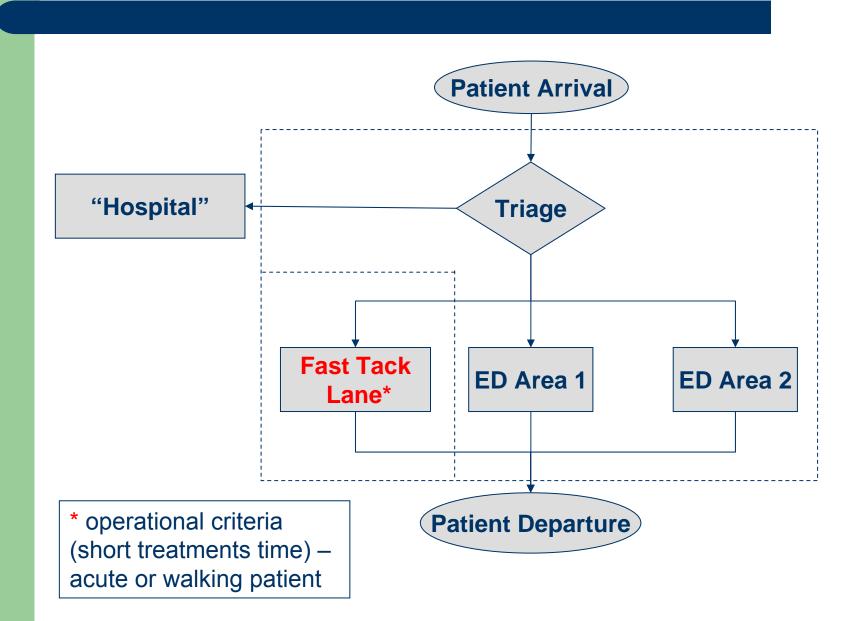
Research problem: matching design to environment (long rang)

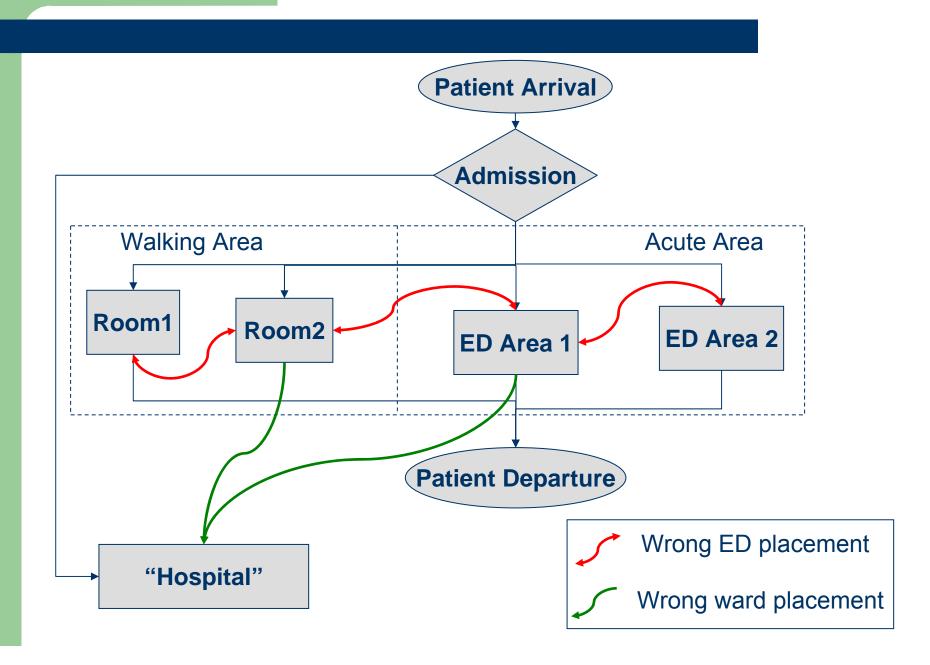

Current practice: Priority queues at the ED are based on patients' urgency and illness type (e.g. Garcia *et al.*, 1995).

Problem: No account of operational considerations, e.g. relieving over crowding by accelerating discharges (SPT).


Managerial solution: To use ED structure in order to enforce operational considerations:

- Illness-based (ISO)
- Triage
- Fast Track (FT)
- Walking-Acute (AC)


ED design - Illness-based (ISO)


ED design - Triage

ED design- Fast Track (FT)

ED design – Walking Acute (WA)

Data Envelopment Analysis (DEA)

- DEA is a mathematical technique for evaluating relative performance (efficiency).
- **CCR** is the basic model (by Charnes *et al.*,1978) that calculates relative efficiencies of complex systems with heterogeneous inputs and outputs.
- Decision Making Units (DMU's): compared systems / subsystems (e.g. Hospital X working in operating model Y at month Z).

Data Envelopment Analysis (DEA)

Including uncontrolled inputs (Banker and Morey, 1986), **Equation *:**

Equation *:
Outputs
$$\sum_{j=1}^{s} w_j y_{j0} - \sum_{k=1}^{t} u_k z_{k0}$$

$$\max \quad \theta_0 = \frac{\sum_{j=1}^{r} v_i x_{io}}{\sum_{i=1}^{r} v_i x_{io}}$$
Controllable inputs
$$\sum_{j=1}^{s} w_j y_{jm} - \sum_{k=1}^{t} u_k z_{km}$$
s.t.
$$1 \ge \frac{\sum_{j=1}^{s} w_j y_{jm} - \sum_{k=1}^{t} u_k z_{km}}{\sum_{i=1}^{r} v_i x_{im}}, \quad m = 1, ...n$$

s.t.
$$1 \ge \frac{\sum_{j=1}^{s} w_j y_{jm} - \sum_{k=1}^{t} u_k z_{km}}{\sum_{i=1}^{r} v_i x_{im}}, \quad m = 1, ...n$$

$$w_j > 0, \quad j = 1, ...s$$
 (weights for outputs)

$$v_i > 0, \quad i = 1, ...r$$
 (weights for controllable inputs)

$$u_k > 0$$
, $k = 1, ...t$ (weights for uncontrollable inputs)

Objectives and structure

- Goal: Identify the "best" (most efficient) ED operating strategy, via simulation and based on real data, to match an operational model with a given operational environment.
- Contents:
 - ED Design (EDD) methodology
 - Available Data
 - Parameters
 - Results

The EDD (ED Design) methodology

- 1. Prepare model data (Golany and Roll, 1989):
 - Select DMUs to be compared.
 - List relevant efficient measurements, operational elements, and uncontrollable elements influencing ED performance.
 - Choose the measurements and elements that would enter the DEA model by:
 - Judgmental approach (I).
 - Statistical (correlation) approach (II).
- 2. Evaluate the model:
 - Compare the methods (Brockett and Golany, 1996).
 - Identify the uncontrollable elements (Environment) that determine the operating methods to reach an efficient system.

Comparing different "programs" using DEA

- Identifying a preferred policy from available options (originally for 2, in Brockett and Golany, 1996):
 - I. Split the group of all DMUs (j = 1, ..., n) into k programs consisting of $n_1, ..., n_k$ DMUs $(n_1 + n_2 + + n_k = n)$. Run DEA separately (e.g. Equation *).
- II. In each of the k groups separately, adjust inefficient DMUs to their "level at efficiency" value by projecting each DMU onto the efficiency frontier of its group (e.g. by changing the controllable inputs at Equation *).
- III. Run a pooled (or "inter-enveloped") DEA with all the n DMUs at their adjusted efficient level (again like in Equation \star).
- IV. Apply a statistical test to the results of III to determine if the k groups have the same distribution of efficiency values within the pooled DEA set (or is it varies according to different uncontrollable parameters).

Available Data

Hospital	Start Date [Month-Year]	End Date [Month-Year]	Operating Model	Average Monthly Patient Arrivals	ED Scale		
1	Apr-1999	Nov-2000	Fast-Track	5700	Medium		
2	Apr-1999	Sep-2001	ISO	4200	Small		
3	Apr-1999	Jun-2003	Fast-Track	6400	Medium		
4 .	Jan-2000	Dec-2002	WA	6100	Medium		
5	Jan-2004	Oct-2007	WA	7600	Large		
6	Mar-2004	Feb-2005	Fast-Track	3200	Small		
7	Apr-1999	Sep-2001	Triage	3400	Small		
8	Aug-2003	Mar-2005	Triage	Medium			

Enriching data via simulation

		Ratio for each	h unrepresente	Rep	resented	Operat	ing model	
Hospital	Month Arrivals	3000 - 5000	5000 - 7000	7000+	FT	Triage	WA	ISO
1	5700	0.64	*	1.34	*			
2	4200	*	1.45	1.81				*
3	6400	0.57	*	1.19	*			
4	6100	0.6	*	1.25			*	
5	7600	0.48	0.8	*			*	
6	3200	*	_	_	*			
7	3400	*	1.79	2.24		*		
8	5500	0.66	*	1.39		*		
Average		3600	6066.67	7600				

Choosing parameters (output)

- Countable1W: Number of patients who exit the ED (excluding abandoning, deaths, ED returns after less than one week) (2,699-7,576; 5,091).
- Countable2W: Same as Countable1W but with two weeks (2,586-7,306; 4,906).
- Q_LOS_Less6Hours: Total number of patients whose length of stay is reasonable (2,684-8,579; 5,580).
- Q_ALOS_P_Minus1: Average length of stay (ALOS), to the power of -1, multiplied by the average number of hours in a month (119-445; 276).
- Q_notOverCrowded: Total number of patients who arrived to the ED when the ED was not overcrowded (more patients than beds and chairs) (2,388-8,368; 5,290).

Choosing parameters (Controllable inputs)

- Beds: Number of bed-hours available per month (840-2,573; 1669).
- WorkForce: Number of "cost-hours" per month (physician's hour costs 2.5 times nurse's hour) (10,900-35,914; 18,447).
- PatientsIn: Total number of patient arrivals to the ED per month (2,976-8,579; 5,717).
- **Hospitalized**: Total number of patients hospitalized after being admitted to the ED per month (541-2,709; 1,496).
- **Imaging**: Total "imaging-costs" ordered for ED patients per month (1,312-14,860; 2,709).

Choosing parameters (Uncontrollable inputs)

Age:

- Child: Number of patients under the age of 18, arriving to the ED during a month (95-1,742; 611).
- Adult: Ages 18-55 (1,429-5,728; 3,178).
- **Elderly**: Ages over 55 (728-3,598; 1,914).

Admission reason:

- Illness: Number of patients with admission reason related to illness, arriving to the ED during a month (1,853-6,153; 3,775).
- Injury: Reason related to injury (779-3,438; 1,849).
- **Pregnancy**: Reason related to pregnancy (0-16; 3).

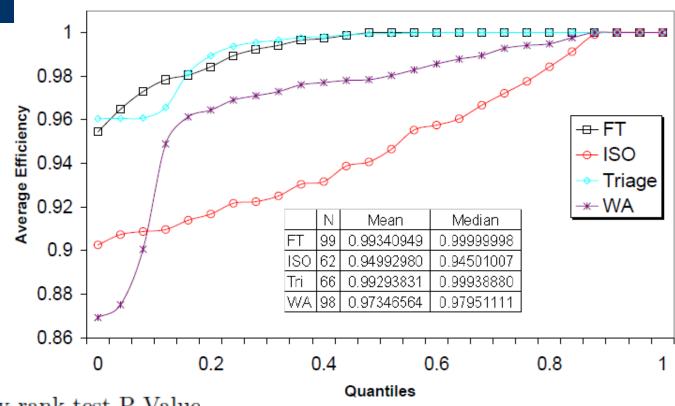
Choosing parameters (Uncontrollable inputs) con.

Arrivals mode:

- Ambulance (157-1,887; 795).
- WithoutAmbulance (2,679-7,416; 4,921).

Additional information:

- WithLetter (1,624-6,536; 3,741).
- WithoutLetter (803-3,651; 1,976).
- OnTheirOwn (786-3,579; 1,952).
- notOnTheirOwn (1,744 6,576; 3,765).

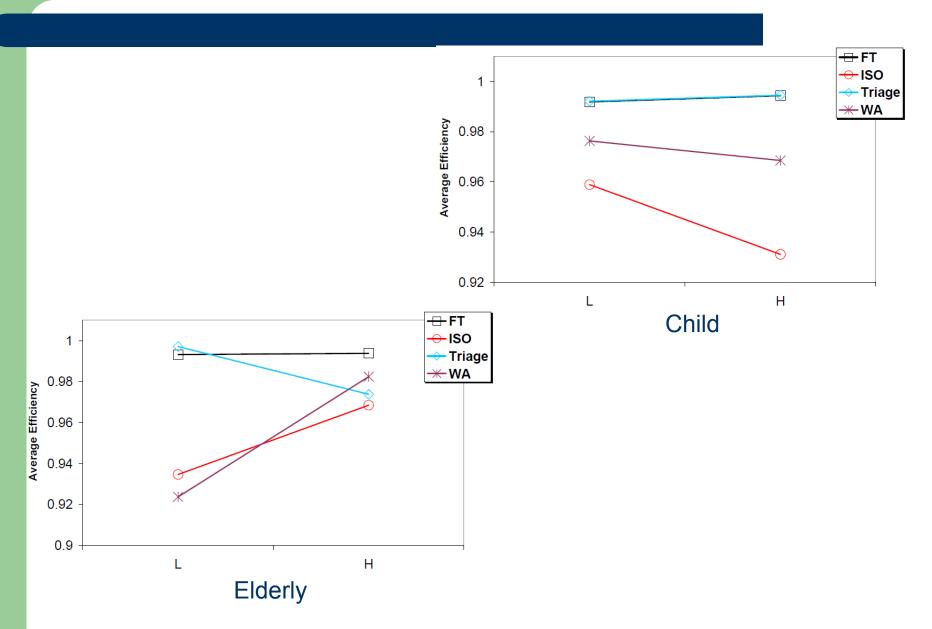

Type of treatment:

- **Int** (1,431 5,176 ; 3,062).
- **Trauma** (378 4,490 ; 2,655).

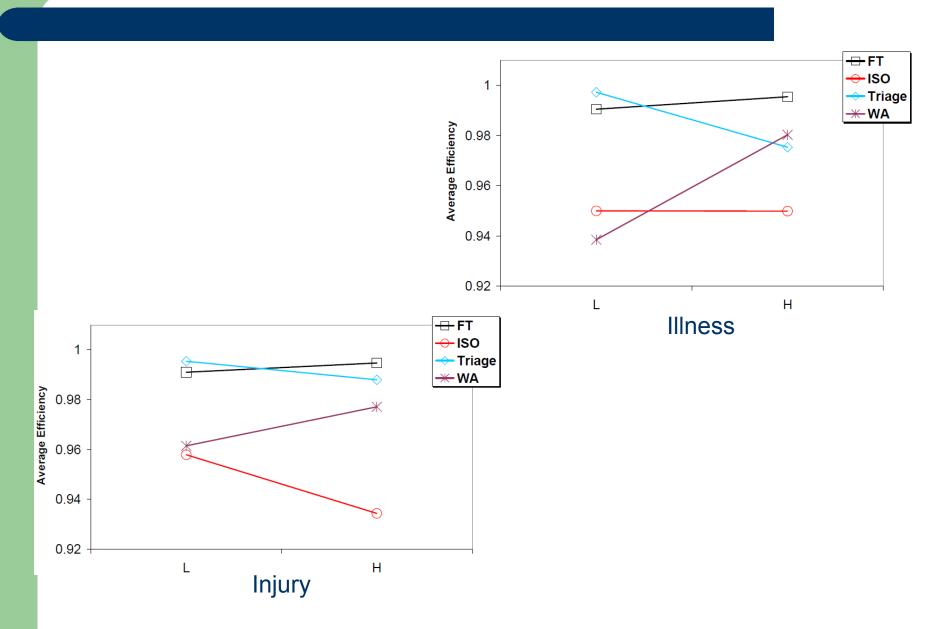
Choosing participating parameters via correlation

														1									
	Beds	WorkForce	PatientsIn	Hospitalized	Imaging	Child	Adult	Elderly	Ilhess	Injury	Pregnancy	Ambulance	WithoutAmbulance	WithoutLetter	WithLotter	OnHisOwn	notOnHisOwn	ht	Trauma	Countable1W	Countable 2W	Q_LOS_Less6Hours	Q.notOverCrowded
Beds	1																						П
WorkForce	0.73	1																					П
PatientsIn	0.95	0.78	1																				П
Hospitalized	0.8	0.63	0.78	1																			
Imaging	0.82	0.64	0.88	0.7	1																		П
Child	0.56	0.26	0.57	0.14	0.4	1																	
Adult	0.89	0.67	0.95	0.78	0.88	0.52	1																
Elderly	0.59	0.73	0.61	0.6	0.52	-0.02	0.39	1															
Illness	0.85	0.78	0.89	0.74	0.73	0.37	0.78	0.75	1														
Injury	0.84	0.58	0.87	0.53	0.69	0.85	0.85	0.25	0.71	1													
Pregnancy	-0.04	0.11	-0.04	0.21	-0.05	-0.34	-0.13	0.35	0.11	-0.29	1												Ш
Ambulance	0.62	0.5	0.69	0.68	0.61	0.28	0.65	0.51	0.65	0.52	0.31	1											Ш
WithoutAmbulance	0.94	0.77	0.98	0.74	0.87	0.59	0.93	0.58	0.87	0.87	-0.12	0.55	1										Ш
WithoutLetter	0.74	0.65	0.74	0.7	0.69	0.28	0.72	0.5	0.7	0.59	-0.03	0.24	0.8	1									Ш
WithLetter	0.88	0.7	0.94	0.68	0.81	0.61	0.88	0.56	0.82	0.84	-0.04	0.78	0.9	0.48	1								Ш
OnHisOwn	0.78	0.62	0.78	0.75	0.74	0.3	0.81	0.44	0.72	0.63	-0.02	0.33	0.82	0.97	0.55	1							Ш
notOnHisOwn	0.86	0.72	0.94	0.66	0.8	0.62	0.85	0.6	0.82	0.84	-0.05	0.77	0.89	0.47	0.99	0.51	1						Ш
Int	0.9	0.75	0.93	0.86	0.88	0.32	0.93	0.59	0.85	0.7	0.02	0.59	0.93	0.82	0.81	0.87	0.79	1					Ш
Trauma	0.84	0.68	0.91	0.57	0.74	0.75	0.81	0.53	0.78	0.9	-0.1	0.68	0.89	0.54	0.93	0.56	0.94	0.7	1				Ш
Countable1W	0.95	0.79	0.99	0.77	0.86	0.61	0.92	0.63	0.89	0.88	-0.05	0.68	0.98	0.75	0.93	0.78	0.93	0.91	0.93	1			Ш
Countable2W	0.95	0.79	0.99	0.77	0.86	0.61	0.93	0.62	0.89	0.88	-0.04	0.68	0.98	0.75	0.93	0.78	0.93	0.91	0.92	1.0	1		Ш
Q_LOS_Less6Hours	0.93	0.72	0.98	0.78	0.87	0.55	0.94	0.58	0.86	0.85	-0.01	0.74	0.95	0.66	0.96	0.72	0.95	0.91	0.9	0.97	0.97	1	Ш
Q_notOverCrowded	0.82	0.68	0.82	0.6	0.66	0.68	0.73	0.49	0.65	0.82	-0.09	0.56	0.81	0.59	0.79	0.58	0.81	0.68	0.85	0.85	0.85	0.79	1
Q_ALOS_P_Minus1	0.19	0.05	0.16	-0.01	-0.03	0.56	0.18	-0.25	0.02	0.46	-0.27	0.28	0.12	-0.14	0.29	-0.14	0.31	-0.05	0.37	0.2	0.2	0.21	0.4

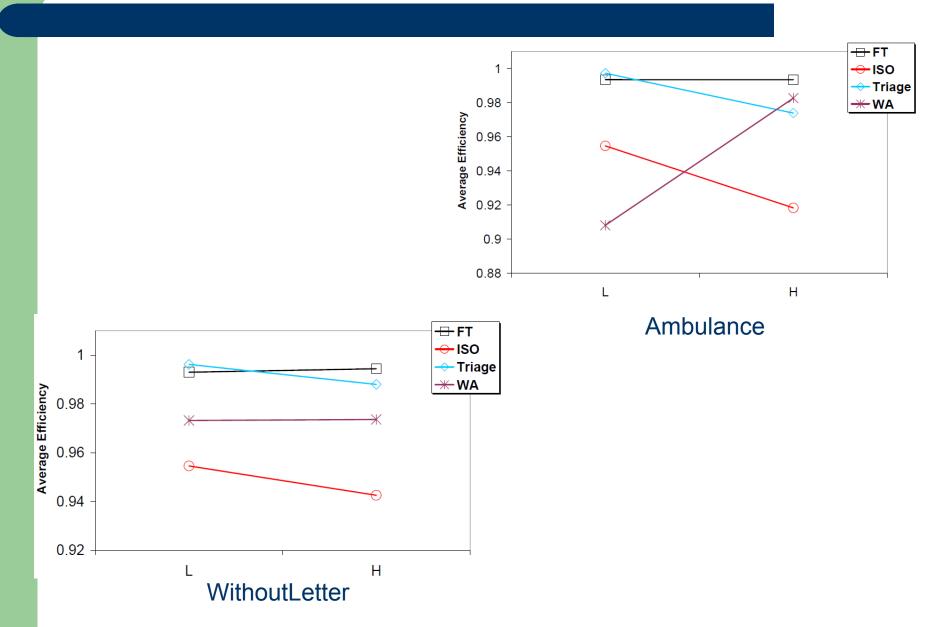
Results – comparing ED designs

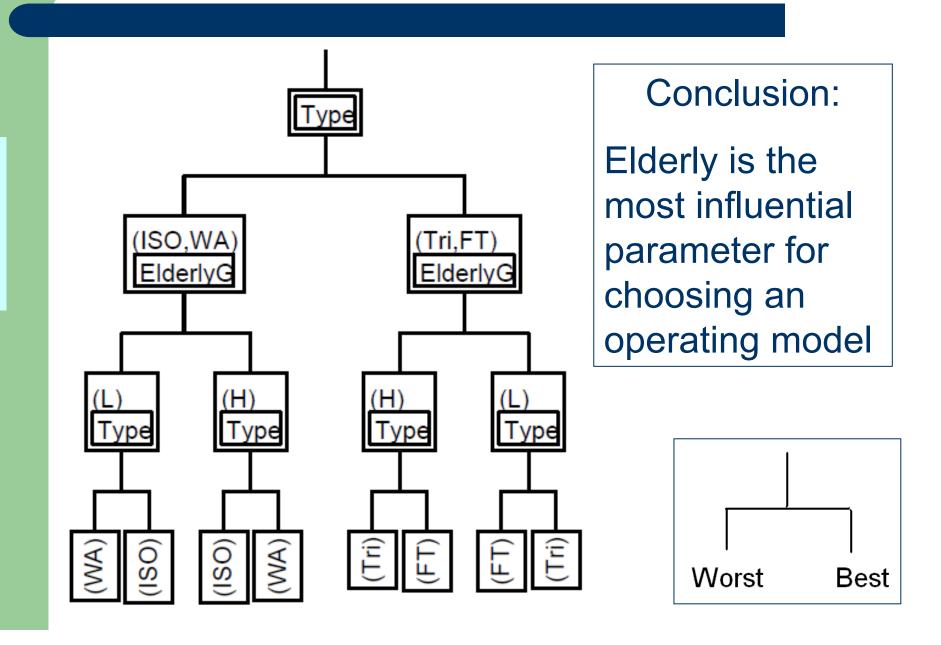


Mann-Whitney rank test P-Value


	FT	ISO	Triage
ISO	< .0001	-	-
Triage	0.506	< .0001	-
WA	< .0001	< .0001	< .0001

Conclusion: no dominant design across all data


Identifying models that are more efficient in a given operational environment (interactions)


Identifying models that are more efficient in a given operational environment (interactions)

Identifying models that are more efficient in a given operational environment (interactions)

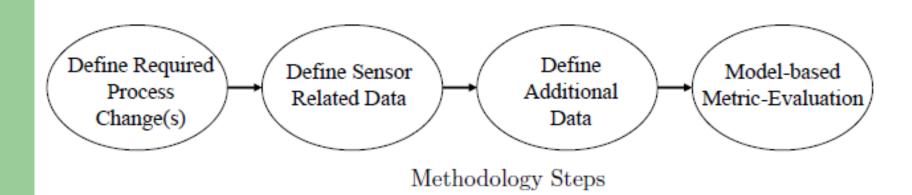
Identifying models that are more efficient in a given operational environment (CART)

Conclusion and future research

- There is no dominant operating model for all ED environments.
- EDs exposed to high volume of elderly patients, are most likely to need a different lane for high-priority patients (FT model).
- Other EDs (Low volume of elderly patients) can use a priority rule without the need for a distinguished space for high priority patients (Triage model).
- When Triage and FT are not feasible options (e.g. no extra nurse is available for Triage or place for FT), it is recommended to differentiate lanes for Acute and Walking patient (WA).

Future Research:

 Adding operational models (e.g. Output-based approach and Specialized-based approach).


Part 3: long-term benefits of using real-time tracking (RFID) in the ED

Special thanks:

Prof. Shtub, Dr. Wasserkrug, Dr. Zeltyn (M.D. Schwartz – ED Manager, Tzafrir – IT Head)

Goal

Present a multi-stage methodology to evaluate the potential benefits of introducing RFID technology, supported by examples of its application (operational, clinical, financial).

Step 1: Define required process changes

- We established a team of physicians, operations managers, and IT experts, at Rambam.
- We proposed requirements sorted into three categories: operational (reducing ALOS), clinical (high level of care), and economical (reducing abandonments without pay).
- We identify three process for evaluating the methodology:
 - 1. Left without being seen (/ pay).
 - 2. Long queues in the X-Ray.
 - 3. Long queues in the CT.

Step 2+3: Define Sensor's and Additional Data

- CT: Implementing an alerting RFID system that helps reduce unnecessary waiting times, after a CT scan:
 - the time a patient completes his/her CT scan,
 - the time the patient has the CT scan results,
 - the patient's waiting time in excess of 10 minutes.
 (same with X-Ray)
- Using patients' RFID that prevents unregistered patient's abandonments, thus enhancing the hospital payment collection:
 - patient tag is near the hospital gate,
 - tag removed by non-approved personal.
- Two technologies to compare: Passive and Active

Step 4: Model-based Metric-Evaluation (Results)

The simulation results: comparing of different RFID systems

	Number of Exit Patients	LWBS	ALOS	$\sigma(LOS)$	$\sigma(ALOS)$
Without RFID	24,037	945(3.9%)	178.9	128.4	0.9
With Ideal RFID	24,118	0	184.2	133.6	0.7
With WiFi	23,987	475(2.0%)	186.8	133.9	0.9
With Passive RFID	24,087	0	177.2	128.9	0.7

Considering all three aspects (clinical, economical, operational), one is lead to prefer the **Passive RFID technology** which, in our context, yields the best overall performance (smaller ALOS, and less physician needed). Other hospitals might choose differently depending on specific preferences (for example, extra income from non-abandonments could be higher that the cost of adding physicians).

Thank you for your attention!