Service Engineering & Science: Data-Based Research, Teaching, Practice

Avi Mandelbaum Sergey Zeltyn

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

Wharton Empirical OM, September 2006

Main Messages

- Simple Models at the Service of Complex Realities.
 Supported by a Panorama of Empirical and Theoretical Models.
- 2. Data-Based Analysis is a Must & Fun (after tenure?).
 Supported by DataMOCCA = Data MOdels for Call Center Analysis, initiated at Wharton, currently developed at Technion and available for adoption.
- **3. Back to the Basic-Research Paradigm** (Physics, Biology, ...): **Measure, Model, Experiment, Validate, Refine, etc.**
- 4. Ancestors & Practitioners often knew/apply the "right answer": simply did/do not have our tools/desire/need to prove it so.
- **Supported** by Erlang (1915), Palm (1945),..., seasoned & thoughtful managers.

Background Material (Downloadable)

► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng

Background Material (Downloadable)

- ► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng
- Gans (U.S.A.), Koole (Europe), and M. (Israel):
 "Telephone Call Centers: Tutorial, Review and Research Prospects." MSOM, 2003.
- Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." JASA, 2005.
- Trofimov, Feigin, M., Ishay, Nadjharov:
 "DataMOCCA: Models for Call/Contact Center Analysis."
 Technion Report, 2004-2006.
- ► M. "Call Centers: Research Bibliography with Abstracts." Version 7, December 2006.

Present Focus: Call Centers, but Expanding

Call Centers: Business-Frontiers & Sweat-Shops of 21st Century U.S. Statistics (Relevant Elsewhere)

- Over 60% of annual business volume via the telephone
- ▶ 70,000 200,000 call centers
- ► 3 6.5 million employees (3% 6% workforce)
- 20% annual growth rate
- ▶ \$100 \$300 billion annual expenditures
- 1000's agents in a "single" call center.

Present Focus: Call Centers, but Expanding

Call Centers: Business-Frontiers & Sweat-Shops of 21st Century U.S. Statistics (Relevant Elsewhere)

- Over 60% of annual business volume via the telephone
- ▶ 70,000 200,000 call centers
- ► 3 6.5 million employees (3% 6% workforce)
- 20% annual growth rate
- \$100 \$300 billion annual expenditures
- 1000's agents in a "single" call center.

Expanding, eg. Healthcare:

- Similar Challenges: Scarce transactional data, natural queueing-network view, human-operations interface (7% LWBS), nurse-staffing (several millions), . . .
- ▶ Unique Challenges: More risk, less scale-economies, more synchronization gaps, . . .

The First Prerequisite: Data & Measurements

Empirical "Axiom": The data one needs is never there for one to use – always problems with historical data.

Data at the level of **Individual-Transactions**: Time-Stamps of Events

The First Prerequisite: Data & Measurements

Empirical "Axiom": The data one needs is never there for one to use – always problems with historical data.

Data at the level of Individual-Transactions: Time-Stamps of Events

Current Databases: Operations (vs. Marketing, Surveys, ...)

- ► Face-to-Face data (bank bar-code readers): Recitations
- ► Telephone data (small cc 350K calls/year): Homework
- ▶ DataMOCCA (large cc's 350K call/week): Research

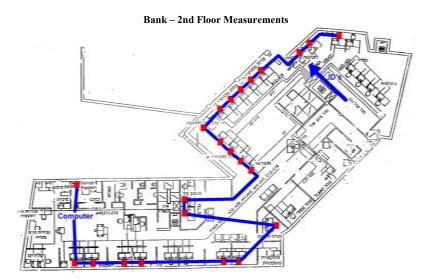
The First Prerequisite: Data & Measurements

Empirical "Axiom": The data one needs is never there for one to use – always problems with historical data.

Data at the level of Individual-Transactions: Time-Stamps of Events

Current Databases: Operations (vs. Marketing, Surveys, ...)

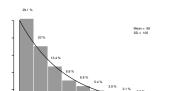
- ► Face-to-Face data (bank bar-code readers): Recitations
- ► Telephone data (small cc 350K calls/year): Homework
- DataMOCCA (large cc's 350K call/week): Research


Future Research: - experience anyone?

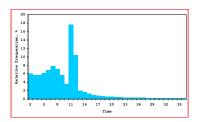
- Healthcare (via RFID)
- Multimedia: Telephone + email + Internet (log-files)
- Field-Support
- Operation + Marketing (ACD + CRM)

Measurements: Face-to-Face Services

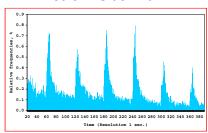
23 Bar-Code Readers at a Bank Branch



Measurements: Telephone Call-by-Call Data (Log-File)

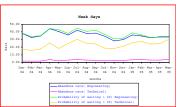

		customer id		_	date	YOU CORRY	vru exit	vru time		a exit		outcome	ser start	ser exit	ser time	server
veuvine	Z Z		penority	type			_	vru_time	q_sear	-	q_ume		_		_	
AA0101		27644400	4	PS	990901		11:45:39	6	11:45:39	11:46:58	79	AGENT			243	DORIT
AA0101	44750 44967	12887816	1	PS	990905	14:49:00	14.49.06	6	14:49:06	14.53:00	234	AGENT	14.52.59	14:54:29	90	ROTH
AA0101		58660291	4		990905			6								
AA0101	44968	0	0	NW	990905	15:10:17	15:10:26	9		15:13:19		HANG	20,021,03		0	NO_SERVER
AA0101	44969	63193346	2	PS	990905	15:22:07	15:22:13	6	15:22:13	15:23:21	68	AGENT	15:23:20	15:25:25	125	STEREN
AA0101	44970	0	0	NW	990905	15:31:33	15:31:47	14	00.00.00	00:00:00	0	AGENT	15:31:45	15:34:16	151	STEREN
AA0101	44971	41630443	2	PS	990905	15:37:29	15:37:34	5	15:37:34	15:38:20	46	AGENT	15:38:18	15:40:56	158	TOVA
AA0101	44972	64185333	2	PS	990905	15:44:32	15:44:37	5	15:44:37	15:47:57	200	AGENT	15:47:56	15:49:02	66	TOVA
AA0101	44973	3.06E+08	1	PS	990905	15:53:05	15:53:11	6	15:53:11	15:56:39	208	AGENT	15:56:38	15:56:47	9	MORIAH
AA0101	44974	74780917	2	NE	990905	15:59:34	15:59:40	6	15:59:40	16:02:33	173	AGENT	16:02:33	16:26:04	1411	ELI
AA0101	44975	55920755	2	PS	990905	16.07.46	16:07:51	5	16:07:51	16:08:01	10	HANG	00.00.00	00:00:00	0	NO SERVER
AA0101	44976	0	0	NW	990905	16:11:38	16:11:48	10	16:11:48	16:11:90	2	HANG	00 00 00	00:00:00	0	NO SERVER
A A0101		13689787	,	PS		16:14:27		6	16:14:22	16 14 54	21	HANG			0	NO SERVER
AA0101		23817067		PS	990905	16 19 11	16:19:17		16:19:17	16 19 39	22	AGENT	20,021,03		139	TOVA
		23817007	-					0								
AA0101	44764	9	v	PS	990901	15:03:26	15:03:36	10	00.00.00	00.00.00	0	AGENT	15:03:35	15:06:36	181	ZOHARI
	44765	25219700	4	PS	990901			4	15:14:51	15:15:10		AGENT				
AA0101 AA0101	44766 44767	0 50059757	0	PS	990901	15:25:48	15:26:00	12		15:35:14	0	AGENT	15:25:59	15:28:15	136	ANAT MORIAH
AA0101	44768	38839132	-	PS		15:46:30	15:35:05	D	00 00 00		0	AGENT			113	ANAT
		0	0					9			-					
		78191137	2	PS	990901		15:56:09	6			19	AGENT	.,		154	MORIAH
AA0101	44770	0	0	PS	990901	16:14:31	16:14:46	15	00.00.00	00.00.00	0	AGENT	16:14:44	16:16:02	78	BENSION
AA0101	44771	0	0	PS	990901	16:38:59	16:39:12	13	00.00.00	00:00:00	0	AGENT	16:39:11	16:43:35	264	VICKY
AA0101	44772	0	0	PS	990901	16:51:40	16:51:50	10	00.00.00	00:00:00	0	AGENT	16:51:49	16:53:52	123	ANAT
AA0101	44773	0	0	PS	990901	17.02:19	17:02:28	9	00.00.00	00:00:00	0	AGENT	17.02:28	17:07:42	314	VICKY
AA0101	44774	32387482	1	PS	990901	17:18:18	17:18:24	6	17:18:24	17:19:01	37	AGENT	17:19:00	17:19:35	35	VICKY
AA0101	44775	0	0	PS	990901	17:38:53	17:39:05	12	00.00.00	00:00:00	0	AGENT	17:39:04	17:40:43	99	TOVA
AA0101	44776	0	0	PS	990901	17:52:59	17:53:09	10	00.00.00	00.00.00	0	AGENT	17:53:08	17:53:09		NO_SERVER
AA0101	44777	37635950	2	PS	990901	18:15:47	18:15:52	S	18:15:52	18:16:57	65	AGENT	18:16:56	18:18:48	112	ANAT
AA0101	44778	0	0	NE	990901	18:30:43	18:30:52	9	00 00 00	00:00:00	0	AGENT	18:30:51	18 30 54	1	MORIAH
AA0101	44779	0	0	PS	990901	18.51:47	18:52:02	15	00.00.00	00.00.00	0	AGENT	18:52:02	18:55:30	208	TOVA
A A0101	44780			PS	990901	19 19 04	19 19 17	13	00 00 00	00 00 00	0	AGENT	19 19 15	19/20/20	65	MEIR
AA0101	44781	,		PS	990901	19:39:19	19:39:30	11	00.00.00	00.00.00	0	AGENT	19 39 79	19:41:42	133	BENSION
AA0101	44787	0	0	rs NW	990901	20.08:13		12		00.00.00		AGENT			133	NO SERVER
A A0101	44783	0	0	PS	990901	20 23 51	20 24 05	14	00.00.00	00 00 00	0	AGENT	20 24 04	20/24/33	29	RENSION
AA0101	44784	0	0	NW	990901	20 36 54		20	00.00.00	00 00 00	0	AGENT		20:38:07	54	BENSION
AA0101	44785			PS	990901	20.50.07	20.57.14		00.00.00	00.00.00	0	AGENT	20.59.15	20.50.07	22	RENSION
AA0101	44785		v	PS			-	10	00.00.00			AGENT		20:51:32	69	TOVA
		0	0													
AA0101	44787	,	U	PS			21:25:13	13		00.00.00	0	AGENT			170	AVI
AA0101	44788	0	0	PS	.,,		21:50:54	14		00.00:00	0	AGENT			61	AVI
AA0101	44789	9103060	2	NE	990901	22:05:40	22:05:46	6	22:05:46	22:09:52	246	AGENT	22.09.51	22:13:41	230	AVI
AA0101		14558621	2	PS	990901	22:24:11	22:24:17	6	22:24:17	22:26:16	119	AGENT	22:26:15	22:27:28	73	VICKY
AA0101	44791	0	0	PS	990901	22:46:27	22:46:37	10	00:00:00	00:00:00	0	AGENT	22:46:36	22:47:03	27	AVI
AA0101	44792	67158097	2	PS	990901	23:05:07	23:05:13	6	23:05:13	23:05:30	17	AGENT	23:05:29	23:06:49	80	VICKY
AA0101	44793	15317126	2	PS	990901	23:28:52	23:28:58	6	23:28:58	23:30:08	70	AGENT	23:30:07	23:35:03	296	DARMON
AA0101	44794	0	0	PS	990902	00:10:47	00:12:05	78	00.00.00	00.00:00	0	HANG	00.00.00	00:00:00	0	NO SERVER
AA0101	44795	0	0	PS	990902	07:16:52	07:17:01	9	00:00:00	00:00:00	0	AGENT	07:17:01	07:17:44	43	ANAT
	44796	0	0	PS	990902		07:50:16	11		00.00.00		AGENT			167	STEREN
0.00101	**/56	*	~	. 3	,,J/02	07.30.03	0.10			30.00	1	CHOENI	07.30.16	073.03	107	

Beyond Averages: Waiting Times in a Call Center

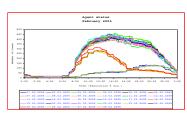

Small Israeli Bank

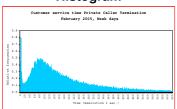
Large U.S. Bank

Medium Israeli Bank



DataMOCCA = MOdels for Call Center Analysis


Daily Report


Time Series

Cross Tabulation

Histogram

The Second Prerequisite: (Operational) Models

Through **Examples** Only.

Each example starts with a **Complex Reality** and ends with a **useful** insight due to a **Simple Model**.

The Second Prerequisite: (Operational) Models

Through **Examples** Only.

Each example starts with a **Complex Reality** and ends with a **useful** insight due to a **Simple Model**.

"Theorem": A useful model must be simple (yet not too simple).

Models in decreasing simplicity-levels:

- Conceptual: Service Networks = Queueing Networks
- ▶ Descriptive: Averages, Histograms
- Explanatory: Comparative, Regression
- Analytical/Mathematical: Little's Law, Fluid Models, Queueing Models, Diffusion Approximations.

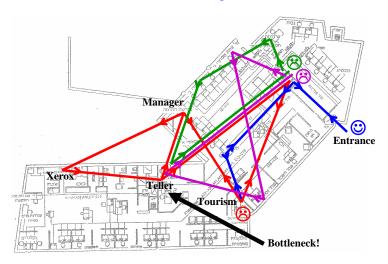
The Second Prerequisite: (Operational) Models

Through **Examples** Only.

Each example starts with a **Complex Reality** and ends with a **useful** insight due to a **Simple Model**.

"Theorem": A useful model must be simple (yet not too simple).

Models in decreasing simplicity-levels:


- Conceptual: Service Networks = Queueing Networks
- Descriptive: Averages, Histograms
- Explanatory: Comparative, Regression
- Analytical/Mathematical: Little's Law, Fluid Models, Queueing Models, Diffusion Approximations.

[&]quot;Corollary": To be useful, a simple model sometimes requires deep analysis.

Conceptual Model: Face-to-Face Services

Bank Branch = Queueing Network

Descriptive Model: Transition Probabilities (Averages)

Transition Frequencies Between Units in The Private and Business Sections:

		Private Banking				Business				
	To Unit From Unit	Bankers	Authorized Personal	Compens - - ations	Tellers	Tellers	Overdrafts	Authorized Personal	Full Service	Exit
	Bankers		1%	1%	4%	4%	0%	0%	0%	90%
Private	Authorized Personal	12%		5%	4%	6%	0%	0%	0%	73%
Banking	Compensations	7%	4%		18%	6%	0%	0%	1%	64%
	Tellers	6%	0%	1%		1%	0%	0%	0%	90%
	Tellers	1%	0%	0%	0%		1%	0%	2%	94%
Services	Overdrafts	2%	0%	1%	1%	19%		5%	8%	64%
	Authorized Personal	2%	1%	0%	1%	11%	5%		11%	69%
	Full Service	1%	0%	0%	0%	8%	1%	2%		88%
	Entrance	13%	0%	3%	10%	58%	2%	0%	14%	0%

Legend:

0%-5% 5%-10% 10%-15% >15%

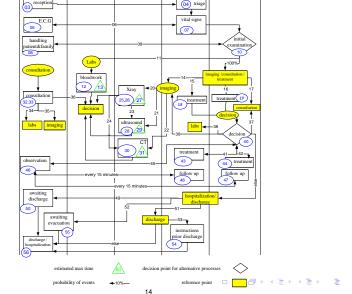
Dominant Paths - Business:

Unit Parameter	Station 1 Tourism	Station 2 Teller	Total Dominant Path
Service Time	12.7	4.8	17.5
Waiting Time	8.2	6.9	15.1
Total Time	20.9	11.7	32.6
Comico Indon	0.61	0.41	0.53

Mapping the Offered Load (Bank Branch)

Department	Busi	ness	Private	Banking		
	Serv	ices	Banking	Services		
Time	Tourism	Teller	Teller	Teller	Comprehensive	
8:30 - 9:00						
9:00 - 9:30						
9:30 - 10:00						
10:00 - 10:30						
10:30 - 11:00						
11:00 - 11:30						
11:30 - 12:00						
12:00 - 12:30						
Break						
16:00 - 16:30						
16:30 - 17:00						
17:00 - 17:30						
17:30 - 18:00						

Legend:

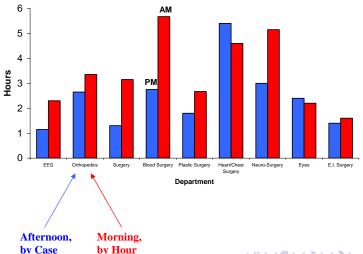

Conceptual Model: Hospital (ED) Network (Sinreich)

Imaging

proportion of patients

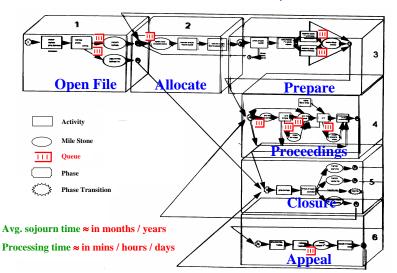
reception

Lab

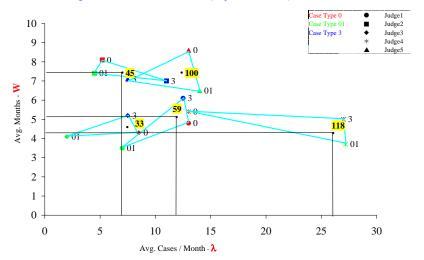

process requires bed

Physician

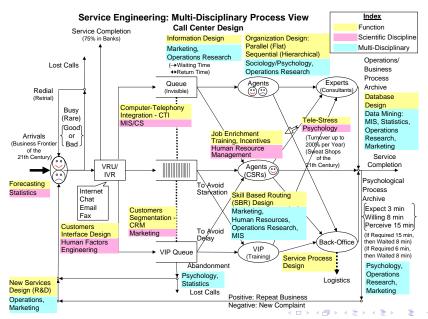
Nurse


Descriptive Model: Service Times (Averages) or, Even "Doctors" Can Manage

Operations Time - Morning (by Hour) vs. Afternoon (by Case):

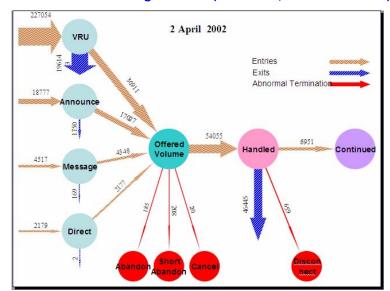

Conceptual Model: The "Production of Justice"

The Labor-Court Process in Haifa, Israel

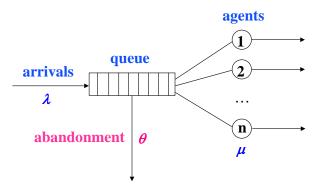


Analytical Model: Little's Law in Court (still Averages)

Judges: The Best/Worst (Operational) Performer



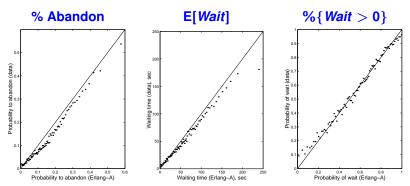
Call-Center Network: Flow, Functions, Disciplines



Conceptual Model: Telephone Service

Call-Center = Queueing-Network (U.S. Bank, via DataMOCCA)

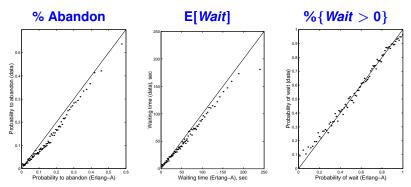
The Basic Staffing Model: Erlang-A (M/M/n +M)



Erlang-A Parameters:

- λ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential)
- \bullet θ Impatience rate (Exponential)
- ▶ n Number of Service-Agents.

Erlang-A: Fitting a Simple Model to a Complex Reality


Hourly Performance vs. Erlang-A Predictions

- Small Israeli bank (10 agents)
- ▶ Empirically-Based Estimation of Patience $(P\{Ab\}/E[W_a])$

Erlang-A: Fitting a Simple Model to a Complex Reality

Hourly Performance vs. Erlang-A Predictions

- Small Israeli bank (10 agents)
- ▶ Empirically-Based Estimation of Patience $(P\{Ab\}/E[W_q])$
- Asymptotic formulae fit even better:
 Theory Why so Robust wrt size, features? Boundaries?
 Practice eg. few-server time-varying systems (Healthcare, . . .)

Erlang-A: Simple, but Not Too Simple

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not exponential (typically close to lognormal)
- ▶ Patience times **not exponential** (various patterns observed).
- Customers and Servers not homogeneous (classes, skills)

Erlang-A: Simple, but Not Too Simple

Experience:

- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not exponential (typically close to lognormal)
- ▶ Patience times **not exponential** (various patterns observed).
- Customers and Servers not homogeneous (classes, skills)

Questions naturally arise:

- 1. Why Erlang-A practically work? Robustness.
- 2. Why Stochastic-Ignorant staffing work? Special-Case.
- 3. How to Accommodate Generalizations? Time-Varying, SBR, ...

Erlang-A: Simple, but Not Too Simple

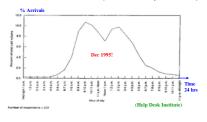
Experience:

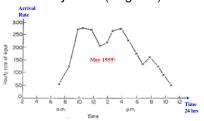
- ► Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not exponential (typically close to lognormal)
- ▶ Patience times **not exponential** (various patterns observed).
- Customers and Servers not homogeneous (classes, skills)

Questions naturally arise:

- 1. Why Erlang-A practically work? Robustness.
- 2. Why Stochastic-Ignorant staffing work? Special-Case.
- 3. How to Accommodate Generalizations? Time-Varying, SBR, ...

Answers via Asymptotic Analysis, as load- and staffing-levels ↑:


The QED Regime, where QED = Quality & Efficiency Driven. Erlang (1915-25), Halfin-Whitt (1981); recent surge of research.

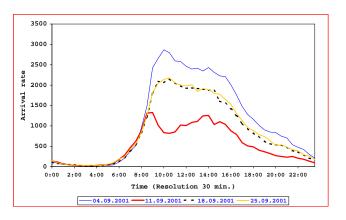

Arrivals to Service: Poisson-Related

Arrival Rate to Three Call Centers

December 1995 (U.S. Helpdesks)

May 1959 (England)

November 1999 (Israel)

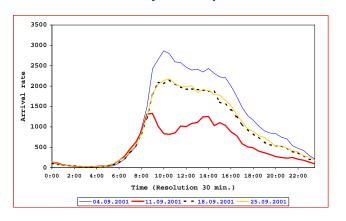


Observation:

Peak Loads at 10:00 & 15:00

Arrivals: Still Poisson-Related, but

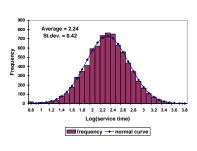
Arrival Rates on Tuesdays in a September - U.S. Bank



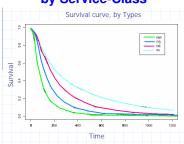
- ► Tuesday, September 4th: Heavy, following Labor Day.
- ▶ Tuesdays, September 18, 25: Normal.

Arrivals: Still Poisson-Related, but

Arrival Rates on Tuesdays in a September - U.S. Bank



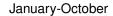
- ► Tuesday, September 4th: Heavy, following Labor Day.
- ► Tuesdays, September 18, 25: Normal.
- Tuesday, September 11th, 2001



Service Durations: LogNormal Prevalent

Israeli Bank Log-Histogram

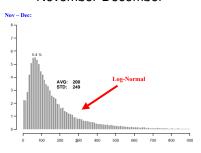
Survival-Functions by Service-Class


- New Customers: 2 min (NW);
- ► Regulars: 3 min (PS);

- Stock: 4.5 min (NE);
- Tech-Support: 6.5 min (IN).

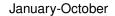
Observation: VIP require longer service times.

Service Durations: Still LogNormal, but ...

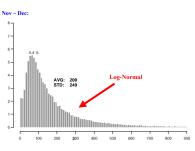

Service Times in a Typical (?) Call Center

Jan - Oct:

7.2 % AVG: 185 STD: 238 0 100 200 300 4t0 500 600 700 800 800


November-December

▶ Lognormal service times are prevalent in call centers.

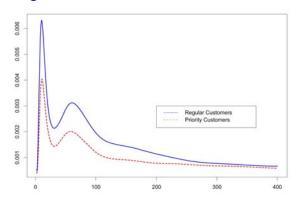

Service Durations: Still LogNormal, but ...

Service Times in a Typical (?) Call Center

Jan - Oct: 1 7.2 % ANG: 195 STD: 238 0 100 200 300 400 500 600 700 800 900

November-December

- Lognormal service times are prevalent in call centers.
- ▶ 7.2% Short-Services: Agents "abandon" (improve bonus,rest).
- Distributions, not only averages, must be measured.


(Im)Patience while Waiting (Palm 1943-53)

Irritation ∝ Hazard Rate of (Im)Patience Distribution Regular over VIP Customers – Israeli Bank

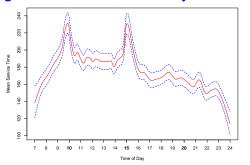
(Im)Patience while Waiting (Palm 1943-53)

Irritation Hazard Rate of (Im)Patience Distribution Regular over VIP Customers − Israeli Bank

- Peaks of abandonment at times of Announcements
- Call-by-Call Data (DataMOCCA) required (+Censoring).

Observation: VIP are more patient (Needy)

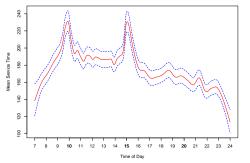
Erlang-A: Simple, Useful, Robust, Insightful, Optimal


- ► Simple: 4CallCenters calculator (download in our Website)
- Useful: Is replacing Erlang-C as the WFM standard
- Robust: QED asymptotics (moderate-to-large systems)
- Insightful: Square-Root Staffing rules; EOS
- Optimal: Could save significant \$'s

Erlang-A: Simple, Useful, Robust, Insightful, Optimal

- Simple: 4CallCenters calculator (download in our Website)
- Useful: Is replacing Erlang-C as the WFM standard
- Robust: QED asymptotics (moderate-to-large systems)
- Insightful: Square-Root Staffing rules; EOS
- Optimal: Could save significant \$'s
- and Generalizable: Time-Varying, CRM/SBR, ..., still has its Boundaries, both Theoretical and Practical:
 - **⇒** Current Research

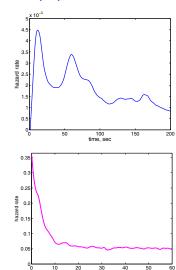
A "Service-Time" Puzzle at a Small Israeli Bank Inter-related Building Blocks


Average Service Time over the Day – Israeli Bank

Prevalent: Longest services at peak-loads (10:00, 15:00). Why?

A "Service-Time" Puzzle at a Small Israeli Bank Inter-related Building Blocks

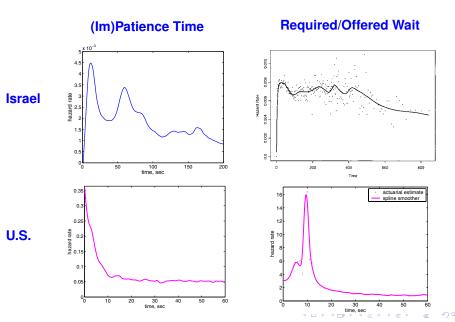
Average Service Time over the Day – Israeli Bank


Prevalent: Longest services at peak-loads (10:00, 15:00). Why? Explanations:

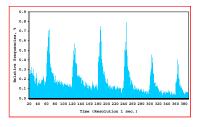
- ▶ Prevalent: Service protocol different (longer) at congestion.
- Operational: The needy abandon less during peak loads; hence the VIP remain on line, with their longer service times.

Call Center Data: Hazard Rates (Un-Censored)

(Im)Patience Time

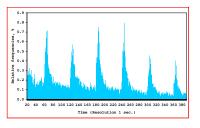


time, sec


Israel

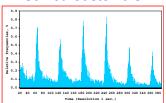
U.S.

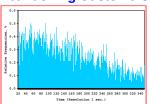
Call Center Data: Hazard Rates (Un-Censored)


A "Waiting-Times" Puzzle at a Medium Israeli Bank

Peaks Every 60 Seconds. Why?

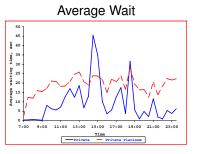
- ► Human: Voice-announcement every 60 seconds.
- System: Priority-upgrade (unrevealed) every 60 seconds.


A "Waiting-Times" Puzzle at a Medium Israeli Bank


Peaks Every 60 Seconds. Why?

- ► Human: Voice-announcement every 60 seconds.
- System: Priority-upgrade (unrevealed) every 60 seconds.

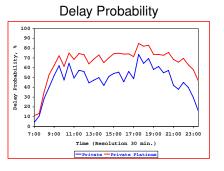
Served Customers

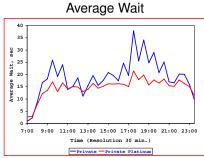


Abandoning Customers

Priorities and Economies-of-Scale

Regular vs. VIP Customers: Cellular – March 23, 2004

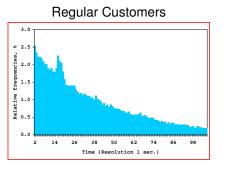


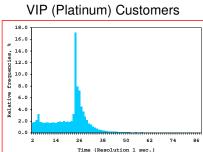


- Design: VIP-dedicated agents, Regular-dedicated Agents.
- VIP's are not served better than Regular's
- ▶ **Solutions:** Add VIP agents (costly), or Change Design.

Priorities and Routing Protocols I

Regular vs. VIP Customers: Cellular – October 2004




More VIP's delayed than Regular's, yet their average wait is shorter.

What changed since last March?

Priorities and Routing Protocols II

Waiting-Time Histograms: Cellular – October 2004

After **25 seconds** of wait, **VIP** customers are **routed** with **high priority** to Regular agents. Hence, almost **no long waiting times** for VIP's.

Main Challenges for Research & Practice

- Uncertainty: in Reality, Model Parameters; Forecasting.
- Skills-Based Routing: Convergence of Practice and Theory.
- ► Time-Varying Queues: Time-Stable Performance.
- ► General Service-Times: Theory.
- Economic Models: Operations (Dimensioning), Marketing. Refine, etc.

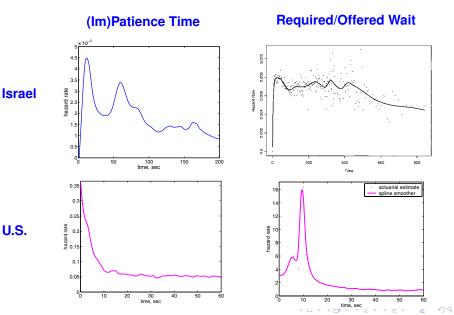
All of the above in a **Network** of distributed call centers.

But there is much more: The **Psychology-Operations** Interface.

Consider, as only one example, the "Phases of Waiting" for Service.

The "Phases of Waiting" for Service

Common Experience:


- Expected to wait 5 minutes, Required to 10
- ► Felt like 20, Actually waited 10 (hence Willing ≥ 10)

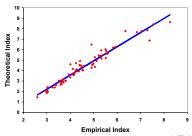
An attempt at "Modeling the Experience":

```
Experienced customers ⇒ Expected = Required Rational customers ⇒ Perceived = Actual.
```

Then left with (τ, V) .

Call Center Data: Hazard Rates (Un-Censored)

A Patience Index


How to quantify (Im)Patience?

Theoretical Patience Index
$$\stackrel{\triangle}{=} \frac{\text{Willing to wait}}{\text{Expected to wait}} = \frac{\text{E}[\tau]}{\text{E}[V]}$$

the last = if Experienced: then calculable but complex, error-prone. Simple (but not too simple) model suggests the easily-measurable:

Empirical Patience Index
$$\stackrel{\triangle}{=} \frac{\% \text{ Served}}{\% \text{ Abandoning}}$$

Patience Index – Empirical vs. Theoretical (Brown)

Predicting Performance

Model Primitives:

- Arrivals to service
- (Im)Patience while waiting τ
- Service times
- Number of Agents.

Model Output: Offered-Wait V

Operational Performance Measure calculable in terms of (τ, V) .

- ▶ eg. Average Wait = E[min{\(\tau\), \(V\)}]
- eg. % Abandonment = $P\{\tau < V\}$

..., and we are back to Erlang-A and relatives, but with lots that's left to do,

which is comforting.

DataMOCCA = Data MOdel for Call Center Analysis

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-Data**.

System Components:

- Clean Databases: operational-data of individual calls, agents and operations.
- Friendly yet powerful Online Interface: enables convenient fast access to (mostly) operational and (some) administrative data (but no marketing/business data).

Current Databases:

- Medium-sized U.S. Bank (2.5 years; 220M calls, 40M via agents; 800 agents at peaks) – Completed.
- Israeli Cell-Phone Company (2 years; 110M calls, 25M via agents; 700 agents at peaks) – Ongoing.
- Large Israeli Bank Pilot.

