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Service Level Differentiation in Call Centers with Fully
Flexible Servers:

Technical Appendix

Itay Gurvich1 Mor Armony2 Avishai Mandelbaum3

In this technical appendix we provide proofs for the various results stated in the manuscript titled:

“Service Level Differentiation in Call Centers with Fully Flexible Servers”.

The notational convention is as follows: for any stochastic process B(·), B(t) corresponds to the

value of the process at time t. B(∞) and B denote interchangeably the process in steady-state,

and B(·) denote the entire process. To relate this appendix to the main body of the paper one

should note that Proposition 5.1 is a summary of Propositions 10.4 and 10.5. Proposition 5.2 is a

summary of Propositions 11.1 and 11.2.

We start with the proof of Theorem 6.1 which assumes that all of the propositions that were

stated in the body of the paper hold. These propositions, in turn, will be established in the subse-

quent sections.

9. Asymptotic Optimality

Proof of Theorem 6.1

Recall that for every fixed r, the problem formulation (16) is of the form

minimize N
subject to E[W r]≤ T r

P{W r
i > T r

i } ≤ αi, i = 1, ..., J − 1,
N ∈Z+, π ∈Π

(A1)

And consider the relaxed problem,
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minimize N
subject to E[W r]≤ T r

N ∈Z+, π ∈Π
(A2)

Let N r be the optimal solution for (A2) in the rth system. Letting N∗r be the optimal solution

for (A1) in the rth system, we clearly have that for all r ≥ 0, N r ≤N∗r. Now, consider a FCFS

M/M/N system with the same values of λr and µ, let W FCFS
λr,µ (N) be defined as before and consider

the single class optimization problem

minimize N
subject to E[W FCFS

λr,µ (N)]≤ T r

N ∈Z+

(A3)

Let N r be the solution to (A3). Then we claim that for all r≥ 0 N r = N r. To see that this is indeed

the case it suffices to note that by Little’s Law the problem given by equation (A2) is equivalent

to
minimize N
subject to E[Qr]≤ λrT r

N ∈Z+

(A4)

and by the same argument the problem given in equation (A3) is equivalent to

minimize N
subject to E[QFCFS

λr,µ (N)]≤ λrT r

N ∈Z+

(A5)

Now, since we have a common service rate µ it is straightforward to show that the overall queue

length is minimized by any work conserving policy and in particular by FCFS, so that the two

problems (A4) and (A5) are equivalent and so are, in turn, the problems (A2) and (A3).

Overall, we have shown that N r ≤ N∗r, so that the M/M/N staffing problem constitutes a

lower bound on the optimal staffing level in (A1). The argument would be complete if we can

show that N r is asymptotically feasible, and thus, since it is also a lower bound, it is necessarily

asymptotically optimal. To establish asymptotic feasibility, note that by Proposition 5.2

E[W r]
E

[
W FCFS

λr,µ (N r)
] → 1, (A6)

so that the global constraint is asymptotically satisfied using ITP and SCS. This however, does

not guarantee the asymptotic feasibility of N r and ITP since we have to show that the individual
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SL constraints for classes i = 1, ..., J − 1 are satisfied. Note, however, that by Propositions 5.1 and

5.2

P{W r
i > T r

i } ≈ P{W FCFS
λr,µ (N r) > 0}

J−1∏
j=1

(σr
j )

Kr
j+1−Kr

j F̄ (N rT r
i ;σr

i , σ
r
i−1) (A7)

In particular, by choosing the thresholds through (18) the constraints are asymptotically satisfied.

To see that the solution suggested in Remark 2.1 is also asymptotically feasible, it suffices to note

that by Markov’s inequality

P{W r
i > T r

i } ≤ P{W r
i > 0}E[W r

i |W r
i > 0]

T r
i

. (A8)

Using the convergence of N∗rE[W r
i |W r

i > 0] that is given in Proposition 5.2 then shows that the

thresholds determined by 2.1 are asymptotically feasible using the lower bound staffing level and

in turn asymptotically optimal. ¥

10. Performance Analysis of ITP and SCS

For simplicity of presentation, we chose to prove most of the results for γ = 1/2. The proofs for

γ ∈ (0,1/2) are given in Section 12. The results for arbitrary γ > 1/2 are substantially simpler

to establish and the proofs are omitted. The analysis consists of several steps. The limits of the

steady state performance measures for the ITP scheduling policy are obtained by first examining

the diffusion limits for the entire stochastic process. Then, using tightness arguments we deduce

the convergence of the steady state distributions. Consequently, the anslysis is presented in two

subsections: Subsection 10.1 below establishes a functional central limit theorem (FCLT) for the

overall number of customers in system under the ITP scheduling policy. As corollaries we obtain

convergence for the queue lengths and waiting times of the different classes.

Section 10.2 focuses on steady state analysis. In subsection 10.2.1 we give a simple set of necessary

conditions and a set of sufficient conditions for existence of steady state under the ITP policy.

These conditions are less tight than the conditions of [15] but they are much simpler to check and

provide insight on the system behavior under the ITP policy. Then, based on the diffusion limits

and using some tightness arguments we prove the convergence of the steady state overall number
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of customers in system. As corollaries we obtain convergence of the probability of delay for the

lowest priority class J . Proposition 10.5 then gives asymptotic expressions for the probabilities of

delay of the higher priority classes 1, ..., J − 1.

Before we proceed with the proof of our main results we need the following lemma which is a

summary of some of the results in Section 9 of Borst et. al. [3]. To this end, let

ρr =
λr

N rµ
.

Lemma 10.1Consider the sequence λr and the sequence of staffing levels N r determined through

SCS. Then, N r −R≈ βr
√

R, where βr is the unique solution to

αγ(βr)
1

βrµ
√

R
= T r, (A9)

with αγ(·) as given in (34). Hence, one may write

√
N r(1− ρr)≈ βr > 0, (A10)

and in particular, if γ = 1/2, we have that

√
N r(1− ρr)→ β > 0. (A11)

In addition to ρr we define ρr
C := λr

µ(Nr−Kr
J
)
. Note that whenever Kr

J ¿
√

r,
√

N r(1− ρr)→ β > 0

if and only if
√

N r(1− ρr
C)→ β > 0.

10.1. Diffusion Limits

Consider a sequence of M/M/N r/{Kr
i } systems indexed by r = R. Let Ar

j(t) : j = 1, ..., J be the

total number of arrivals into class j up to time t (i.e. a Poisson(λj) process). Due to Functional

Strong Law of Large Numbers (FSLLN) and FCLT we have

1
N r

Ar
j(t)⇒ λ̂jt, (A12)
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where λ̂j = limr→∞
λr

j

Nr , j = 1, ..., J , and

1√
N r

(Ar
j(t)−λr

jt)⇒BM(0, λ̂j), (A13)

where BM(0, λ̂j) is Brownian motion with drift 0 and infinitesimal variance λ̂j. Also, let Zr(t)

and Qr
i (t), i = 1, ..., J be, respectively, the overall number of busy agents and the number of class i

(i = 1, ..., J) customers in queue at time t in the rth system. Then,

Y r(t) = Zr(t)+
J∑

i=1

Qr
j(t) (A14)

is the total number of customers in the rth system at time t. Finally, for r = 1,2, .... define the

centered and scaled process

Xr(t) =
Y r(t)− (N r −Kr)√

N r
. (A15)

Proposition 10.1Assume (15),
√

N r(1− ρr
C)→ β > 0, and Xr(0)⇒X(0), where ⇒ stands for

weak convergence. Then

Xr(·)⇒X(·), (A16)

where X is a diffusion process with infinitesimal drift given by

m(x) =
{−βµ x≥ 0
−(β +x)µ x≤ 0 (A17)

and state independent infinitesimal variance σ2 = 2µ.

Remark 10.1By [7] the same limit is obtained for a sequence of M/M/N r −Kr
J systems with

N r = R + β
√

R. Hence, the process of the overall number of customers in the M/M/N r/{Kr}

system is approximately equal in law to the number of customers in the associated M/M/N r−Kr
J

system. In particular, if Kr
J ¿

√
r, the overall number of customers in system is approximately

equal in probability law to the number of customers in the associated M/M/N r system.

Proof: For simplicity we prove the proposition for a system with J = 2. The proof is similar for

arbitrary number of classes as will be explained at the end. The proof consists of two steps: In the
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first step we introduce another system (denoted by (B)) which is equivalent in law to the original

M/M/N/{Ki} system (denoted by (A)). In the second step we use a coupling argument and the

convergence together theorem (Theorem 11.4.7 in [16]) to conclude the proof.

Definition of systems B and C:

Consider the original server pool of N servers. Split the server pool into two distinct pools: one

with N r −Kr servers and the other with Kr servers, where Kr = Kr
J . Throughout the proof we

will denote these two pools by “the N −K Pool” and “the K pool” respectively.

In system B the following routing policy is used: as long as the total number in system is below

N −K route all customers to the N −K pool. When there are more than N −K busy servers

route any arriving high priority customer to the K pool. Upon a service completion, if there are

any customers in service in the K pool, preempt one of these customers and assign him/her to the

server that was just released in the N −K pool. Since we have a common µ for all priority classes,

systems (A) and (B) can be coupled so that the total number in system process will have the same

sample paths and the same probability law. Thus, proving the weak convergence of (B) will result

in the desired weak convergence for (A).

Finally, let us further introduce a System C which is an M/M/m queue with the same arrival

and service rates as System B and with m = N −K servers.

Denote by Y r
B(t) the total number in system process for system (B) and by Y r

C(t) the total

number in system for system C. Also, denote by Zr
K,B(t) the number of busy servers from the K

pool in system B. As before, define

Xr
B(t) =

Y r
B(t)− (N r −Kr)√

N r
(A18)

and

Xr
C(t) =

Y r
C(t)− (N r −Kr)√

N r
(A19)

By our assumption that limr→∞
√

N r(1 − ρr
C) = β , 0 < β < ∞ we have from [7] that Xr

C ⇒ X.

Coupling:

Next we discuss the coupling of systems
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(B) and (C). We will show that these two systems can be coupled so that the distance (in the

sup norm) between them is bounded by an expression that converges to zero as r →∞. Having

that, the proposition will follow by the convergence together theorem. In the following paragraphs

we fix r > 0 and eliminate the superscript from the notation.

The coupled sample paths are described as follows: We use the same sample path of arrivals for

both systems. For simplicity let us assume that both systems are initiated with N−K busy servers

and an arrival of a customer. As long as YB(t) > N −K and YC(t) > N −K we can generate the

departures for system C and for the N −K pool of system B from a common Poisson process with

rate (N −K)µ. System B will also have departures from the K pool generated by an independent

Poisson process. During the time that both system are above N −K the difference between them

can be at most as the number of departures due to service completions (and not preemption) from

the K pool.

Now, assume that system B goes below N −K. We will continue to generate the departures for

system C and for the N −K pool from the same Poisson process but with a thinning (as in [19]).

i.e. If system B has a customer count of j at a departure epoch and system C has l customers,

than the candidate departure event generated from the Poisson process with rate lµ, is an actual

departure for system B with probability j/l (recall that j ≤ l). During the epoch in which system

B is below N −K the distance between the two systems in consideration can only decrease. If the

two systems meet they will proceed together until they hit N −K for the first time.

Denote by Dr
K(T ) the departures from the K pool up to time T . Then, we can write (see for

example [9])

Dk(T ) =N
(∫ T

0

Zr
Kr,B(τ)µdτ

)
(A20)

Where, N is a Poisson process with rate 1.

By the construction of the sample paths we have that for all T ≥ 0 the distance between the

two systems can be bounded by the number of departures from the K pool up to that time. More

formally, for the rth system we have
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sup
0≤t≤T

‖Y r
B(t)−Y r

C(t)‖ ≤N
(∫ T

0

Zr
Kr,B(τ)µdτ

)
(A21)

or,

sup
0≤t≤T

‖Xr
B(t)−Xr

C(t)‖ ≤ 1√
N r

N
(∫ T

0

Zr
Kr,B(τ)µdτ

)
(A22)

Provided that

1√
N r

N
(∫ T

0

Zr
Kr,B(τ)µdτ

)
⇒ 0 , (A23)

and applying the convergence together theorem the proposition follows.

To establish (A23) it is enough to show that for each r, ZKr,B(t)+Qr
1(t) can be path wise bounded

by an M/M/1 queue with arrival rate λr = λr
1 and with service rate (N r−Kr)µ. This is shown in

the following way: Assume we initiate both systems by zero. Every jump up in Zr
Kr(t) + Qr

1(t) is

necessarily a jump up in the associated M/M/1. The opposite is not correct since if more then Kr

servers are idle an arrival of high priority will not result in an increase in Zr
Kr,B(t)+Qr

1(t). Assume

that at time t≥ 0 both systems are not empty (in particular assume that ZKr,B(t)+Qr
1(t) = j > 0.

In particular, the time until the next departure is exponential with rate (N r−Kr + j)µ. Then, as

before, we will use thinning - every service completion in Zr
Kr,B(t) + Qr

1(t) will result in a service

completion in the M/M/1 with probability Nr−Kr

Nr−Kr+j
. Thus we have proved that for all t ≥ 0,

Zr
Kr(t)+Qr

1(t) can be path wise bounded by the associated M/M/1.

By (15) this M/M/1 is under-loaded and by Theorems 4.1 and 4.2 of [9]

1√
N r

∫ T

0

Zr
Kr,B(τ)µdτ ⇒ 0. (A24)

Since the Poisson process N
(∫ T

0
Zr

Kr,B(τ)µdτ
)

admits the decomposition (see for example [14])

N
(∫ T

0

Zr
Kr,B(τ)µdτ

)
=

∫ T

0

Zr
Kr,B(τ)µdτ +M r(T ) (A25)

where M r is a martingale with quadratic variation function that is bounded by Krt, we have the

desired result. Thus, we have established the convergence (A16). To prove the result for a general

number of classes one would proceed in a similar way to the two class case. Particularly, the K

pool will only serve higher priority customers (this time with thresholds). Finally, one would need
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to show that Zr
Kr,B(t)+

∑J−1

i=1 Qr
i (t) can be bounded by an under-loaded M/M/1 queue and hence

the proof follows.

¥

Corollary 10.1Let X(·) be the diffusion process described in Proposition 10.1. Then the steady-

state distribution of X(∞) has a density f(·) which satisfies:

f(x) =





exp{−βx}α(β), x≥ 0

φ(β+x)

Φ(β)
(1−α(β)), x < 0

(A26)

where P{X(∞) > 0}= α(β).

Proof: This result follows directly from [7]. ¥

A consequence of Proposition is that Xr(t) (the scaled and normalized process of the overall num-

ber of customers in system) becomes approximately sufficient to describe the asymptotic behavior

of the J dimensional process (Z(·) + Q1(·),Q2(·), ...,QJ(·)). This state space collapse property of

the M/M/N/{Ki} model is summarized by the following corollary where we set Kr ≡Kr
J .

Corollary 10.2(State Space Collapse) Denote by Er(t) the number of busy servers above the

level of N r −Kr, i.e. Er(t) = [Zr(t)− (N r −Kr)]+. Then

1√
Nr Er(·)⇒ 0

1√
Nr Qr

i (·)⇒ 0, ∀i≤ J − 1

1√
Nr Qr

J(·)⇒X+(·)

(A27)

Proof: Note that Er(t)+Qr
1(t) is just Zr

K(t)+
∑J−1

i=1 Qr
i (t), hence the result follows from the proof

of Proposition 10.1. ¥

The next corollary shows how to obtain the limit of the virtual waiting time for class J as a

function of the limit queue length process X, where ξJ is as defined in (15).

Corollary 10.3Let W r
i (·) be the virtual waiting time process for class i. Then, if there exists

−∞< c <∞, such that
√

N(
λr

J

N r
− ξJµ)→ c , (A28)
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then
√

N rW r
J (·)⇒ 1

ξJµ
[X]+(·). (A29)

Proof: By the FCLT for the arrivals and by (A28) we have the convergence

V r(t) =
√

N r(
Ar

J(t)
N r

− ξJµt)⇒ V (t), (A30)

where V (t) = Â(t)+ ct and Â is a BM(0, λ̂J). Define Q̂r(·) = 1√
Nr Qr

J(·). Then, by corollary 10.2 we

have that Q̂r(·)⇒ [X]+(·).

The convergence of V r(·) and Q̂r(·) does not necessarily imply the joint convergence of

(V r(·), Q̂r(·)). However, we claim that this component-wise convergence is sufficient for our pur-

poses.

By Theorem 11.6.7 in [16], and by the convergence of V r(·) and Q̂r(·) we have the tightness of

the sequence (V r(·), Q̂r(·)). Hence, by Prohorov’s Theorem (Theorem 11.6.1 in [16]) we have that

there exists a convergent subsequence {rk} for which

(V rk(·), Q̂rk(·))⇒ (V̂ (·), Q̂(·)), (A31)

for some process (V̂ (·), Q̂(·)). Define U r(t) =
√

N rk(D
rk
J

(t)

Nrk
− ξJµt). Then, using the relation

Q
rk
J (t) = Q

rk
J (0)+A

rk
J (t)−D

rk
J (t), (A32)

or, alternatively,

U rk(t) = V rk(t)+Q
rk
J (0)−Q

rk
J (t), (A33)

and applying the continuous mapping theorem we have the convergence

(U rk(·), V rk(·))⇒ (Û(·), V̂ (·)), (A34)

where Û(·) = V̂ (·) − Q̂(·). Since U(·) and V (·) are continuous with U(0) = 0 we can apply the

corollary of [13] to obtain for the subsequence

√
N rkW rk(·)⇒W (·), (A35)

where W (t) = Q̂(t)

ξJµ
. Since the limit Q̂(·) is independent of the subsequence chosen (and equal to

[X]+(·)) we have the desired result. ¥
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10.2. Steady State Analysis

10.2.1. Stability Conditions To discuss steady state convergence, we first must address the

question of stability, i.e. what are the conditions under which a steady state distribution exists as a

proper random variable. For fixed parameters these conditions can be explicitly calculated using the

formulae in [15]. However, these formulae are very complicated for calculation even for a simple two

class system. Therefore we find the following theorem useful. In the theorem we use the notation

λr
Jc for the arrival rate of the “super class” consisting of classes 1, ..., J−1, i.e λr

Jc =
∑J−1

i=1 λJ . Also,

we denote by δr the probability of abandonment given wait in an M/M/1+M system with arrival

rate λr
Jc , service rate (N r −Kr)µ and abandonment rate µ. We denote by ρr

C,<J the nominal load

in this single server queue. i.e. ρr
C,<J = λr

Jc

(Nr−Kr)µ
.

For the second part of the stability Proposition 10.2 we assume some regularity conditions on

the threshold level Kr. In particular we assume that there exists a number a∈ [0,∞), such that

λr

Rr −Kr
→ a. (A36)

This condition is guaranteed to hold if Kr = O(
√

N r). We say that a system is stable if there exists

a unique stationary distribution.

Proposition 10.2Under assumption (15) we have that:

1. Fix r and assume Kr > 0. Then:

(a) The threshold system is stable if λr < (N r −Kr)µ.

(b) The system is unstable whenever λr
J > (N r −Kr)µ−λr

Jc · δr.

2. Assume that N r = Rr +∆r where ∆r = o(Rr). Also, assume (A36). Then,

(a) If Kr 6= o(N r), there exists r1 > 0 such that ∀r > r1 the system is unstable .

(b) Otherwise, if Kr = o(N r), let r1 = max{r > 0 : ρr
C,<J ≥ 1}. Then, for all r > r1, δr ≤

1
(Nr−Kr)(1−ρr

C,<J
)
, and in particular stability requires that Kr ≤∆r +O(1).

If Kr ≡ 0 (static priority), Condition 1.(a) is necessary and sufficient.
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Remark: The advantage of writing stability conditions using δr is that δr has a known formula

which can be also computed using existing software such as [20].

Proof: Y r(t) is not a Markovian process. However, proving that the state N r−Kr of Y r is positive

recurrent implies that the state (Zr +Qr
1 = N r−Kr,Qr

i = 0 : i = 2, ..., J) of the underlying Markov

process is positive recurrent. Also, the underlying Markov process is clearly irreducible and hence

proving the positive recurrence of this state is sufficient for stability (see for example chapter 10

of [12]).

First, note that if Kr ≡ 0 then the result is straightforward. In this case the policy is work

conserving policy and the sum process is the same Birth and Death process that describes the

regular M/M/N system.

Assume Kr > 0. For the sufficient conditions it is enough to use the coupling used for (10.1). It is

clear that if the M/M/N r−Kr is stable then so is the threshold system which, by the construction

in Proposition 10.1, is path wise dominated by the M/M/N r −Kr system.

For the necessary conditions we build a static priority system with abandonment and show that

if it is unstable then the corresponding M/M/N/{Ki} system is also unstable. Denote by S a

static priority system with N r −Kr servers. All classes except for the lowest priority class J have

a finite exponential patience with rate µ and class J has an infinite patience. Denote by Y r
S (t) the

total number of customers in this system. Note that a system in which none of the customers of

priorities 1, ..., J−1 wait before entering service (i.e. there is an infinite number of servers available

to serve priorities 1, ..., J , and only N −K are available to server class J) is equal in law to system

S. Clearly the latter system outperforms the original system, and hence one can easily construct

both systems from the same sample paths and have that for all t ≥ 0, Y r(t) ≥ Y r
S (t). Hence, if

Y r
S (t)→∞as t→∞ then Y r(t)→∞ as t→∞. Hence, in the remaining of the proof we focus on

the stability of system S.

System S can be modelled as a multi-dimensional Markov process with the coordinates (Zr +

Qr
1,Q

r
i = 0 : i = 2, ..., J) where the notations have the same meaning as before. Let us look at this

multidimensional when it is restricted to the states in which all N r −Kr servers are busy. The
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restriction is formally obtained via a time-change argument, as customary in Markov Processes.

See, for example, Chapter VII of [2]). Under this restriction the number of customers from the

super class (1, ..., J − 1) in this restricted process can be modelled by a Markov process, with the

same law as an M/M/1+M queue. Hence, it has a unique stationary distribution.

Let δr to be the steady state probability of abandonment in this restricted process. This, in turn

is equal to the probability of abandonment given wait in an M/M/1 + M queue with arrival rate

λc
J , service rate (N r−Kr)µ and abandonment rate µ. The latter has a known formulae. As before,

proving positive recurrence of Y r
S is sufficient for the stability of the underlying multi-dimensional

Markov process.

Thus, a trivial necessary condition for stability of system S is that

λr
J +λr

Jc(1− δr)≤ (N r −Kr)µ (A37)

Assume now that Kr = o(N r). Then, by (15) we have that there exists r1 such that ρr
C,<J < 1

for all r > r1. Then, using the identity λr
JcP{Ab} = µE[Qr

<J(∞)] (where Qr
<J(∞) stands for the

steady state queue length of the super class 1, ..., J − 1), we have that

δr =
µ

λ
E[Qr

<J(∞)|Zr(∞) > N r −Kr]. (A38)

But notice that

E[Qr
<J(∞)|Zr(∞) > N r −Kr]≤ (ρr

C,<J)2

1− ρr
C,<J

. (A39)

The latter is straightforward noting that the right side is average queue length of a non-

abandonment M/M/1 with arrival rate λr
Jc and service rate (N r−Kr)µ. After some simplification,

we have that

δr ≤ ρr
C,<J

(N r −Kr)(1− ρr
C,<J)

(A40)

This expression converges to zero as fast as 1/N r by assumptions (15), (A36) and assuming

that Kr = o(N r). Plugging this upper bound into (A37) results in the necessary condition: Kr ≤

∆r +O(1).
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It is now only left to consider the case in which N r = Rr + ∆r, ∆r = o(Rr) and Kr 6= o(N r).

Assume there is a subsequence {rk} such that system S is stable for all k ≥ 1. Then, we would

necessarily have that

λ
rk
J +λ

rk
Jc(1− δr)≤ (N rk −Krk)µ

Consider two cases:

Case 1: λr
Jc/(N r −Kr)µ → γ > 1. In this case, δr converges asymptotically to 1 − 1

ρC,<J
where

ρC,<J = limr→∞ ρr
C,<J (see for example [18]). By our assumption that Kr 6= o(N r), there exists a

subsequence rkj
and 0 < c < 1 such that limrkj

→∞
(N

rkj−K
rkj )

Nr = c. For the subsequence rkj
we have

that

lim
j→∞

1
N

rkj
(λ

rkj

J +λ
rkj

Jc (1− δ
rkj )≤ lim

j→∞
(N rkj −K

rkj )µ
N

rkj
(A41)

On this subsequence the limiting equation is

λ̂J + cµ≤ cµ (A42)

Which is a contradiction to the non-negligibility of class J assumption (15).

Case 2: λr
Jc/(N r−Kr)µ→ γ ≤ 1. By [18] the probability of abandonment converges to 0 as rk →∞.

Hence we would have that for the sequence rk the stability equation (A37) can be written as

λr
J +λr

Jc − o(λr
Jc)≤ (N r −Kr)µ (A43)

or after dividing by µ this can be written as

Kr ≤∆r + o(Rr), (A44)

which clearly contradicts the assumption on the size of Kr. ¥

Define

Sr 4= Xr(∞) =
Y r(∞)− (N r −Kr)√

N r
(A45)
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where Y r(∞) is the steady state distribution of the sum process in the rth system.

One would expect that the steady state distribution of the diffusion process X of Theorem 10.1

would coincide with the limit of the sequence Sr. This is not immediate since an interchange of

limits is involved. More formally, we want to show that

P{X(∞)≤ x} 4= lim
t→∞

lim
r→∞

P{Xr(t)≤ x}= lim
r→∞

lim
t→∞

P{Xr(t)≤ x} 4= lim
r→∞

P{Sr ≤ x} (A46)

We will show this in the following proposition where we again let ρr
C = λr

(Nr−Kr)µ
.

Proposition 10.3(Steady State Convergence) Under the notation above and assuming that

lim
r→∞

√
N r(1− ρr

C) = β , 0 < β <∞, (A47)

the following is true:

Sr ⇒X(∞), (A48)

where X(∞) is the steady state of the diffusion process spelled out in Proposition 10.1. Its distri-

bution is given in Corollary 10.1.

Remark 10.2In analogy to Remark 10.1, whenever Kr
J ¿

√
r, Proposition 10.3 shows that the

steady state number of customers in the M/M/N/{Ki} system is approximately the same as in the

associated M/M/N .

Proof: Note that Y r(∞) exists as a proper random variable according to Proposition 10.2 and

under our choice of the parameters. Following the proof of Theorem 4 in [7] all we have to prove

is the tightness of the sequence Sr. Recall systems (B) and (C) from the proof of Proposition

10.1. Then, since M/M/N/{Ki} and (B) have the same law, it is enough to prove the tightness

of the sequence Sr
B

4=
Y r

B(∞)− (N r −Kr)√
N r

. In addition, we create another coupling of Xr with an

M/M/N r system (denoted by D) for which we define:

Xr
D(t) =

Y r
D(t)− (N r −Kr)√

N r
(A49)
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System (D) has the same total arrival rate as the M/M/N/{Ki} system. We construct it in the

same way as the threshold system by splitting the servers into two distinct pools and using the

same preemption procedure as in the construction of System (B): For the three N r−Kr (of systems

(B), (C) and (D)) create the departures from the same Poisson processes with thinning. Also for

the K pools (in system (B) and (D)) create the departures from the same poisson process with

thinning. Define

Xr
D(t) =

Y r
D(t)− (N r −Kr)√

N r
(A50)

Clearly, by the same coupling arguments as in the proof of Proposition 10.1 we have path-wise

domination Xr
D(t)≤Xr

C(t). And on the whole we have the path wise ordering

Xr
D(t)≤Xr

B(t)≤Xr
C(t) ∀t≥ 0 (A51)

Define Sr
C = Xr

C(∞) and Sr
D = Xr

D(∞), where Xr
C(∞) and Xr

D(∞) are the steady state of Xr
C

and Xr
D, respectively. We will compare the stationary threshold system with threshold Kr to both

single class multi server stationary systems.

Note that since the constructed coupling preserves (A51) for every finite t it does so also for

t→∞. Also, since under the conditions of the proposition both sequences Sr
C and Sr

D converge as

r→∞, they are tight. The tightness of Sr
C implies that

∀ε > 0, ∃n1 : P{Sr
C ∈ [−n1, n1]}> 1− ε

2
. (A52)

The tightness of Sr
D implies that

∀ε > 0, ∃n2 : P{Sr
D ∈ [−n2, n2]}> 1− ε

2
. (A53)

Hence, by the ordering (A51) we have that

∀ε > 0∃n1, n2 : P{Sr ∈ [−n2, n1]}> 1− ε (A54)

With the tightness of Sr = Xr(∞) we have actually established the proposition. Here is why:

Since Xr(∞) is tight, by Prohorov’s Theorem it has a convergent subsequence Xrk(∞). If we let
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(Zrk(0) + Q
rk
1 (0),Qrk

i (0) : i = 2, ..., J) be distributed as (Zrk(∞) + Q
rk
1 (∞),Qrk

i (∞) : i = 2, ..., J),

then (Zrk(t) + Q
rk
1 (t),Qrk

i (t) : i = 2, ..., J) is a strictly stationary stochastic process. In particular

{Xrk(t), t≥ 0} (which is a function of the multidimensional Markov process) is a strictly stationary

stochastic process and by Proposition 10.1 we have Xrk(·) ⇒ X̂(·), where X̂(·) is the limiting

diffusion process with X̂(0) having the stationary distribution of the limit of Xrk(0). However,

since Xrk(·) is stationary for each rk so is the limit X̂(·). Hence the limit of Xrk(∞) must be

the unique stationary distribution of X̂(·). Since every subsequence of Xrk(·) that converges must

converge to this same limit, the sequence Xr(∞) itself must converge to this limit. ¥

Corollary 10.4Under (15) if β ≤ 0, there is no convergence of the sequence Sr.

Proof: Let us assume that Sr does converge to a unique and finite limit S and that we start the

rth system with its stationary distribution Sr. Xr(·) is thus a stationary process with Xr(t) having

the stationary distribution for all t≥ 0. By the same arguments as above, and since we assume the

convergence of Sr, we should have that Xr(·) converges to a limit X(·) as r→∞, and that Xr(t)

converges to the stationary distribution of X as r→∞.

First let us examine the case where β < 0 : Then, for all M , there exists a subsequence {rk}, rk >

M such that ρ
rk
C > 1, and by the coupling used in the proof of Proposition (10.1) there is no limit

for Xrk(t) (since there is no limit for the corresponding sequence of single class C systems) and

the process clearly diverges, contradicting the assumption on the convergence. Otherwise, if β = 0,

we have a limit which is a diffusion process with infinitesimal drift function

m(x) =
{

0 x≥ 0
−µx x < 0 (A55)

See for example Theorem 4.2 of [9]. This is clearly a non-stationary process which leads to a

contradiction to the assumption on the convergence of Sr.

¥

For a sequence of M/M/N single class queues, Halfin and Whitt showed the equivalence between
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between a square root safety staffing rule and the convergence of the delay probabilities to a non-

trivial limit. The following proposition is an analogous version of this equivalence for a sequence

of M/M/N r/{Kr} systems.

Proposition 10.4(Halfin-Whitt Analog) Consider a sequence of M/M/N r/{Kr
i } systems

indexed by r = 1,2, ..., with service rate µ for all classes and arrival rate λr
i for class i, i = 1, ..., J ,

such that (15) holds. Then,

P{W r
J (∞) > 0}→ αJ , 0 < αJ < 1, (A56)

if and only if
√

N r(1− ρr
C)→ β , 0 < β <∞, (A57)

where λr =
J∑

i=1

λr
i , ρr

C =
λr

(N r −Kr)µ
. In which case αJ =

[
1+ βΦ(β)

φ(β)

]−1

, where Φ(·) and φ(·) are

the standard normal distribution and density functions respectively.

Proof: The ‘if’ part is a direct result of the steady state convergence already proved. For the ‘only

if’ part note the following: Since the threshold system is pathwise dominated from above by an

M/M/N r −Kr system we have that, if β =∞ then P{W r
J (∞) > 0}→ 0.

For the case in which β = 0, let us assume that steady state exists and P{W r
J (∞) > 0}→ α < 1.

Then by the continuity of the function α(·) there exists β′ > 0 such that

α < α(β′) < 1. (A58)

We can then construct a threshold system with the same thresholds but with a total number of

servers M r > N r, or more specifically take M r = N r + β′
√

N r to have
√

M r(1 − ρr
C) → β′. For

the new system the ‘if’ direction applies and hence we will have the inequality (A58). Denote by

YMr(t) the total number of customers in the system with M r servers. Then, we can easily construct

the sample paths such that YMr(t)− (M r −Kr)≤ YNr(t)− (N r −Kr), ∀t≥ 0. Hence, we have a

contradiction.
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There is another case to consider in the ‘only if’ part. It is possible that the sequence
√

N r(1−ρr
C)

will fail to converge. In that case we would have at least two convergent subsequences converg-

ing to two different limits β1 6= β2 (one of which might be ∞). But since the function α(·) is

strictly decreasing in its argument we would also have that α(β1) 6= α(β2) and thus the sequence

P{W r
J (∞) > 0} would fail to converge. ¥

Having the convergence of the probability of delay of class J , it remains to analyze the prob-

abilities of delay for higher classes. In particular we would like to know what can be said about

P{W r
i (∞) > 0}, i = 1, ..., J − 1. The answer is given in the following proposition.

Proposition 10.5For every r > 0 such that ρr
C < 1.

1≤ P{W r
i (∞) > 0}

P{W r
J (∞) > 0} ·∏J−1

j=i (ρr
≤j)

Kr
j+1−Kr

j
≤

(
N r

N r −Kr

)Kr

, i = 1, ..., J − 1, (A59)

where ρr
≤j =

∑j

i=1

λr
i

Nrµ
.

In particular, for Kr = o(
√

N r) and assuming that α(β) > 0 we have

P{W r
i (∞) > 0} ∼ α(β) ·

J−1∏
j=i

(ρr
≤j)

Kr
j+1−Kr

j , (A60)

where an ∼ bn if limn→∞
an
bn

= 1.

Remark 10.3In the case of Kr = Θ(
√

N r) the right bound converges by simple calculus to ed2

where d = limr→∞
Kr√
Nr .

Remark 10.4Note that the above implies that for any polynomially decreasing probability of delay

for classes i = 1, ..., J − 1 and using the condition (15), it suffices to use thresholds logarithmically

in r. In particular, since we will show that given wait, the waiting time of classes i = 1, ...J −1 if of

order 1/r, we have that for the formulation (16), it is sufficient to establish all our previous results

for the case Kr
J ¿

√
r and in general with Kr

J ¿ rγ.
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Remark 10.5(Intuitive Explanation of Propositions 10.4 and 10.5) It is easy to understand

the results by looking at the dynamics of the suggested policy in a simple two class case, where we

let K := K2. To explain (A56) we claim that the probability of delay for the low priority class 2 is

approximately the same as the delay probability for a single class M/M/N −K system. Then, it

would remain to show that the probability of delay in the M/M/N and M/M/N −K systems are

approximately equal. Indeed, one can show that under ITP the threshold K increases at most as

a logarithmic function of R while the staffing level N obeys the relation N = R + βRγ . By Halfin

and Whitt [7] the probability of delay in the M/M/N and M/M/N r −Kr
J will be approximately

equal as long as Kr
J is orders of magnitude smaller than Rγ and hence (A56). To see why the delay

probability of class J is approximately the same as for a single class M/M/N−K system, we argue

that the threshold priority policy is designed to leave almost only low-priority customers in the

queue. These customers, in turn, have only N−K servers available to serve them. More specifically,

note that whenever less than N −K of the servers are busy the total number of customers in

system behaves like a single class M/M/N −K queue. In contrast, whenever more than N −K

of the servers are busy, customers of the high priority class are served almost as if they are the

only class in a single server queue with service capacity (N −K)µ. By the comparability of the

low priority class, this implies that the high priority class faces a light-traffic queue, for which the

number of “customers in queue” in this single server queue will be of order O(1) (to be precise, it is

Θ(1/(1−ρ1))). In particular, for the original system, the number of busy servers is N −K +O(1).

Hence, we expect the original system to operate approximately like a system with N −K servers

and no thresholds. In particular, we expect that the probability of finding more than N −K busy

servers would be approximately the same.

To understand (A60), note again that in the event that more than N −K servers are busy, the

high priority in the two class example will be served almost as if they are in a single server queue

with capacity (N −K)µ. In turn, their probability of delay (the probability that there are N busy

servers) given at least N −K busy servers is approximately equal to the probability of more than

K customers waiting in the corresponding single server queue.
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Proof: For the two-class case this can be proved by direct approximations of the formulae in [15].

However, we can exploit the structure of the model to prove the desired asymptotic equivalence.

The result is almost immediate using upper and lower bounds.

Let us look at priority class j. Given that class j +1 has to wait (i.e. the number of idle servers is

smaller or equal to Kj+1) - the conditional probability of delay for class j equals to the probability

that there would be additional Kj+1−Kj busy servers or more.

Now, Let us look at the Markov process of the model restricted to the states in which more

than N r−Kr
j+1 servers are busy. Define a new process Ỹ r(·) = {Z̃r

j (·), Q̃r
1(·), ..., Q̃r

j(·)}, where Z̃r
j (·)

describes the number of busy servers above the level of N r−Kr
j+1, and Q̃r

i (·) is the number of class

i customers in queue. Under our restriction Ỹ r(·) is also a Markov process. Denote its steady state

by Ỹ r(∞) = {Z̃r
j (∞), Q̃r

1(∞), ..., Q̃r
j(∞)}. Also, because of the model structure, the probability in

question for can be computed by

P{W r
j (∞) > 0}= P{W r

j+1(∞) > 0} ·P{Z̃r
j (∞)+

j∑
i=1

Q̃r
i (∞)≥Kr

j+1}

To justify this, see, for example, Section 10.4 of [12] and the results therein.

Define

πs =
∑

z,q1,..,qj :z+
∑j

i=1 qi=s

πz,q1,...,qj
, s = N −K, ...,N, ...

to be the probability that the sum of the components of the restricted chain equals s, under its

stationary distribution. Then, the cuts method implies for s∈N −K, ...:

πs

∑j

i=1 λi ≥ πs+1(N −Kj+1)µ≥ πs+1(N r −Kr)µ

πs

∑j

i=1 λi ≤ πs+1Nµ

(A61)

or alternatively

P{Z̃r
j (∞)+

∑j

i=1 Q̃r
i (∞)≥Kj+1} ≤

( ∑j
i=1 λi

(N−K)µ

)Kj−Kj+1

P{Z̃r
j (∞)+

∑j

i=1 Q̃r
i (∞)≥Kj+1} ≥

(∑j
i=1 λi

Nµ

)Kj−Kj+1

(A62)

By induction, we have proved the desired result. By simple Taylor expansion the upper bound in

(A59) converges to 1 if and only if Kr is o(
√

N r). ¥
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11. Asymptotic Waiting Time Distribution

In this section we consider the prove of Proposition 5.2, which gives expression for steady state

waiting time distributions. The result will follow the next two propositions. Proposition 11.1 below

gives the asymptotic distribution for the waiting time of class J . Then, Proposition 11.2 deals with

convergence of normalized version of the waiting times of classes 1, .., j− 1. Corollary 5.1, in turn,

is a direct result of 11.2 applying Little’s Law.

Proposition 11.1
√

N rW r
J (∞)⇒WJ , as r→∞ (B1)

where

WJ ∼
{

exp(ξJµβ) w.p.α(β)
0 otherwise

(B2)

Proof: Having the convergence of Xr(∞) we can repeat the proof of (A29) with Qr(0) = Qr(∞)

to obtain the desired result. ¥

Proposition 11.2Assume (15), then, for all i = 1, ..., J − 1,

N r · [W r
i (∞)|W r

i (∞) > 0]⇒ [Wi|Wi > 0], (B3)

where [Wi|Wi > 0] has the Laplace transform:



µ(1−σ1)

s+µ(1−σ1)
, i = 1,

µ(1−σi)(1−γ̃i(s))

s−λ̂i+λ̂iγ̃i(s)
, i = 2, ..., J − 1,

(B4)

with σi = ρ≤i = limr→∞
∑i

j=1

λr
i

Nrµ
, σ0 = 0, λ̂i = limr→∞

λr
i

Nr , and

γ̃i(s) =
s+µ

2biµ
+

1
2
−

√(
s+µ

2biµ
+

1
2

)2

− 1
bi

, (B5)

for bi = lim
r→∞

∑i−1

j=1 λr
j

N r
. Also, the limits of the first and second moments of the conditional waiting

time satisfy:

N rE[W r
i (∞)|W r

i (∞) > 0]→ [µ(1−σi)(1−σi−1)]
−1

, and

(N r)2E[(W r
i (∞))2|W r

i (∞) > 0]→ 2(1−σiσi−1) [(µ)2(1−σi)2(1−σi−1)3]−1
.

(B6)
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Remark 11.1Propositions 11.1 and 11.2 imply together that E[W r] =
∑J

i=1

λr
i

λr E[W r
i ]≈ λr

J
λr E[W r

J ]≈

α(β) 1
β
√

rµ
which is approximately the waiting time in a single class M/M/N−Kr

J queue with arrival

rate λr service rate µ and N r agents. In particular, if Kr
J ¿

√
r it is approximately the waiting

time in an M/M/N queue.

Remark 11.2(Intuitive Explanation of Proposition 11.2) This result is based on an intuition

similar to the one that explains Theorem 3.1; Consider the two class example. Then, the high

priority customers experience light traffic and, given that they are delayed, they have a queue that

is of order which is at most O(1), and waiting time that is Θ(1/N). This is because, given that there

are at least N −K busy servers, the number of high priority customers behaves approximately like

a single server queue with rate (N −K)µ and load that is strictly less than 1.

Proposition 5.2 states exactly that; in order to obtain a meaningful limit for the waiting time of

the high priority this waiting time should be multiplied by at least N . The fact that, given that

they are delayed, the high priority customers wait is analogous to a single server queue explains

how the Laplace transforms can be easily derived from known Laplace transforms of the M/G/1

queue.

Proof: Let us focus on class i,1≤ i < J . We will prove the result through the M/G/1 reduction

that was applied in both [15] and [8].

Step 1 (Limit for the M/M/1 Busy Period): Let us look at an M/M/1 queue with arrival rate

λ−i =
∑i−1

j=1 λr
j and service rate N rµ. Then, by known results (see for example [8]), γ̃r

i (s) - the

Laplace transform of the busy period is given by:

γ̃r
i (s) =

N rµ+ s+λ−i −
√

N rµ+ s+λ−i − 4λ−i N rµ

sλ−i
. (B7)

By simple algebra we can prove that

γ̃r
i (s)→ γ̃i(s), as r→∞, (B8)
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where γ̃i(s) = limr→∞ γ̃r
i (s) and γ̃i(s) is given by (B5). Note that the convergence above is still

valid if the service rate of the relevant M/M/1 is (N r −Kr)µ where Kr = o(N r).

Step 2 (bounding): Following [15], note that given wait of class k their queue behaves like an

M/G/1 queue with the G being the distribution of the busy period beginning with a class j : j < i

arriving to a system with N−Ki busy servers and ends with a completion of service when there are

N −Ki− 1 busy servers. The Laplace transform of this distribution G is denoted in [15] by B∗
i (s),

and its expectation is denoted by E[Bi]. Denote by φr
i (s) the Laplace transform of Wi|Wi > 0 in

the rth system. Then, by formula (17) in [15] we have that

φr
i (s) =

1−B∗
i (s)

(s−λr
i +λr

i B
∗
i (s))

1−λiE[Bi]
E[Bi]

(B9)

G can be sample wise bounded from above by Gi,Nr−Kr and from below by Gi,Nr . Hence we have

by the previous step that

B∗
i (N

rs)→ γ̃i(s), as r→∞ (B10)

and the convergence of the moments follows. Hence:

N rE[B∗
i ]→

1
µ(1−σi−1)

, as r→∞ (B11)

Now, by simple calculus, and since by (15) σi < 1 we have that

φr
i (N

rs)→ µ(1−σi)(1− γ̃i(s))
s− λ̂i + λ̂iγ̃i(s)

. (B12)

The limiting transform is similar to the one obtained for the static priority case. Moments for the

static priority case are given in [8] and their limits are easily calculated. ¥

12. Performance Anslysis For γ < 1/2

This part includes performance measures for the M/M/N/{Ki} model under the Efficiency Driven

Regime, i.e. for 0 < γ < 1/2. The Efficiency Driven (ED) cab be characterized as follows: Consider

a sequence of N -server queues, indexed by r = 1,2, . . .. Define the offered load by Rr = λr

µ
, where

λr is the arrival-rate and µ the service-rate. Without loss of generality, let r = Rr. The ED regime

is achieved by letting (N r)1−γ(1− ρr)→ β, as r ↑∞, for some finite β.
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We define the ED regime for a sequence of M/M/N r/{Kr
i } queues as follows: There exist γ ∈

[0,1/2) and 0 < β <∞, such that

lim
r→∞

(N r)1−γ(1− ρr
C) = β. (C1)

For purposes of optimization we will need to adapt some of the results of the previous sections to the

case of the ED M/M/N r/{Kr
i } model. As before we assume (15), i.e. that class J is non-negligible.

12.1. Diffusion Limits

Since, by [7], the probability of delay in this regime converges to 1, we expect that the diffusion

limit to be a reflected brownian motion as is the case with the conventional heavy traffic for multi-

server queues. However, differently from conventional heavy traffic, this regime requires different

scaling for different values of γ in order to obtain a non-degenerate limit.

Note that having ED limits for the relevant M/M/N queue immediately translates into limits

for our model using the same procedures as used in the proof of Proposition 10.1. The ED limits

for a sequence of M/M/N queues were not proved for a general γ > 1/2. In section 14 we adapt

methods that were used in [5], to prove the desired results. In particular we prove the following:

Proposition 12.1Consider a sequence of M/M/N system indexed by N = 1,2, ..., such that

N 1−γ(1− ρN)→ β, as N →∞, 0 < β <∞. (C2)

for some γ ∈ [0,1/2). Let Y N(t) be the normalized total number of customers in the N th system at

time t. Assume Y N (0)−N

N1−γ ⇒X(0), where X(0)≥ 0, a.s. Then,

Y N(N 2γ−1·)−N

N 1−γ
⇒RBM(−βµ,2µ), as N →∞, (C3)

where RBM(−βµ,2µ) is a Reflected Brownian Motion with infinitesimal drift −βµ and infinites-

imal variance 2µ.

The following proposition summarizes the diffusion limit results for the ED M/M/N/{Ki}. Its

proof is omitted since once the convergence of an ED sequence of M/M/N queues is established,

the proof for the M/M/N/{Ki} model is analogous to that of the QED case.
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Proposition 12.2Define

Xr(t) =
Y r((N r)1−2γt)− (N r −Kr)

(N r)1−γ
. (C4)

Assume that there exists 0≤ γ < 1/2 such that:

lim
r→∞

(N r)1−γ(1− ρr
C)→ β, 0 < β <∞. (C5)

Also assume that Xr(0)⇒X(0), as r→∞, where X(0)≥ 0. Then,

Xr(·)⇒X(·), (C6)

where X(·) is an RBM(−βµ,2µ). Finally,

1
(N r)1−γ

Qr
i ((N

r)1−2γ ·)⇒ 0, as r→∞, i = 1, ..., J − 1. (C7)

Remark 12.1The state space collapse in this case follows in the same manner as in the QED

setting, using a bounding M/M/1 queue. The fact that this M/M/1 is not only scaled in space

but also in time does not change the result.

12.2. Steady State

In the following proposition we adapt the steady state results of subsection 10.2 to the ED regime.

Here we limit our discussion to thresholds Kr = o((N r)γ). As will be shown in the next section

(Asymptotic Optimality) we only need threshold that are logarithmic and this is clearly covered

by Kr = o((N r)γ) since γ > 0. Moreover, taking Kr = o((N r)γ) simplifies the proof of the tightness

that we need for convergence of the steady state distributions. The proof, being similar to the

proofs of Propositions 10.3-10.5, is omitted.

Proposition 12.3Assume that there exists 0≤ γ < 1/2 such that

(N r)1−γ(1− ρr
C)→ β, 0 < β <∞, as r→∞, (C8)

and Kr = o((N r)γ). Then,

Xr(∞)⇒X(∞), as r→∞, (C9)
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where X(∞)∼ exp(β). Also,

P{W r
J (∞) > 0}→ 1, as r→∞, (C10)

and,

P{W r
i (∞) > 0} ∼

J−1∏
j=i

(ρr
j)

Kr
j+1−Kr

j . (C11)

Finally,

(N r)−(1−γ)Qr
i (∞)⇒ 0, i = 1, ..., J − 1, as r→∞, and

(N r)−(1−γ)Qr
J(∞)⇒X+(∞), as r→∞.

(C12)

Remark 12.2Recall that for the proof of convergence of the steady state distribution in the QED

case we had to prove first the tightness for the sequence Xr(∞). We achieved that by bounding

our system from above and from below by two systems for which the tightness was known. By

the same path-wise construction used before we can bound our system from above by an M/M/m

queue with N r−Kr servers and from below by an M/M/m queue with N r servers. Provided that

Kr = o((N r)γ) the tightness for both systems under our scaling is known, and the result follows

by the same manner as before.

Remark 12.3Having all the above, one can repeat the arguments given for γ = 1/2 to conclude

that for γ < 1/2 we also have under ITP and SCS that

E[W r]
E[W FCFS

λr,µ (N r)]
→ 1. (C13)

Regarding the waiting times of classes i = 1, ..., J−1, Proposition 11.2 and its proof are not changed

for the case γ < 1/2.

13. Adding Abandonment

In this section we prove the asymptotic optimality results for the model which includes abandon-

ment as given in section 7. As in the non-abandonment case, we start with performance analysis of

the ITP and SCS rules, first in the transient diffusion level and then in steady state. We end the
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section with the proof of asymptotic optimality. Before proceeding we give the scaled versions of

the optimization problem and the ITP and SCS rules. The formulation we consider here is given

by

minimize N
subject to P{Ab} ≤ αr,

P{Wi > T r
i } ≤ αi, i = 1, ..., J − 1,

N ∈Z+, π ∈Π

(F1)

To simplify the presentation of this case we restrict ourselves to the following assumption:

Assumption 13.1αr = α̂/
√

r and T r
i = T̂i/rγi, where γi > 1/2 for all i = 1, ..., J − 1.

To simplify the presentation of the results in this setting, we do not consider the general case with

αr = α̂/rγ for arbitrary γ, but rather limit ourselves to γ = 1/2. The transition from γ = 1/2 to

arbitrary γ however is as simple as in the non-abandonment case and the structure of the optimal

policy does not change when changing γ.

As before, we assume w.l.o.g that classes 1, ..., J − 1 are ordered in increasing order of T r
i and

that class J is the Best Effort class.

The ITP and SCS rule are given in the following definition:

Definition 13.2ITP and SCS for Abandonment Model

• Staffing: Find the staffing level through the single class M/M/N + M (or Erlang-A) model

with arrival rate λr, service rate µ, abandonment rate θJ and FCFS service. Specifically, let

N∗r = Min{N ∈Z+ : P{Ab}FCFS
λr,µ,θJ

(N)≤ αr}. (F2)

• Control: Use the TP rule with the differences {Kr
j+1−Kr

j }j≤J−1 chosen recursively for j =

J − 1, ...,1 in the following manner::

—Compute

Kr
j+1−Kr

j =

⌈
ln

(
αjT

r
j /

[
P{W r

j+1 > 0}ŵ (
N∗r, σr

j , σ
r
j−1

)])

ln(σr
j )

⌉∨
0 j = J − 1, . . . ,1 (F3)

where ŵ(N∗r, σr
j , σ

r
j−1) = [N∗rµ(1−σr

j )(1−σr
j−1]−1.
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—Set

P{W r
j > 0}= P{W r

j+1 > 0}(σr
j )

Kr
j+1−Kr

j . (F4)

In the above we set P{W r
J > 0}= P{W FCFS

λr,µ,θJ
(N∗r) > 0}, and for two real numbers x and y, x∨y =:

max{x, y}. The actual threshold values are then determined by setting Kr
1 = 0.

Analogously to the non-abandonment case, we have the following lemma which is adapted from

Zeltyn and Mandelbaum [10].

Lemma 13.3Consider the sequence λr and the sequence of staffing levels N r determined through

SCS. Then, N r −R≈ β
√

R, for some −∞< β <∞. In particular, under SCS

√
N r(1− ρr)→ β. (F5)

13.1. Diffusion Limits

First we quote Theorem 2 from [6] for a sequence of M/M/N +M queues. Denote by {Y r(t), t≥ 0}

the total number in system in an M/M/N r +M system. Let

Xr(t) =
Y r(t)−N r

√
N r

,

then we have the following:

Theorem 13.4([6], Theorem 2) Consider a sequence of M/M/N r + M queues indexed by the

superscript r = 1,2, .... Let λr be the arrival rate in the rth system. The service rate µ and the

individual abandonment rate θ are independent of the index r. Let ρr = λr/(N rµ), and assume that

lim
r→∞

√
N r(1− ρr)→ β , −∞< β <∞. (F6)

Then, if Xr(0)⇒X(0), then Xr(·)⇒X(·) where X(·) is a diffusion process with drift

m(x) =
{−(β +(θ/µ)x)µ x≥ 0
−(β +x)µ x≤ 0

and infinitesimal variance σ2 = 2µ.
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Analogously to our previous notation let M/M/N/{Ki}+M represent a system with N servers,

thresholds {Ki} with the addition of exponential patience. In the next two propositions we will show

that the normalized and scaled overall number of customers in systems in the M/M/N/{Ki}+M

model converges to the same limit as in Theorem 13.4, with θ = θJ (which is the impatience rate

of the lowest priority).

We consider a sequence of M/M/N/{Ki}+M systems indexed by r = 1,2, .... The policy is the

same policy as in the non-abandonment case. A class i customer is served only if there are no

customers of a higher priority j (j < i) waiting and the number of idle servers is greater than Kr
i .

As before, we use the notation Kr to stand for the threshold of the lowest priority (i.e. Kr = Kr
J),

and define a“nominal” load: ρr
C = λr

Nr−Kr .

As before, let Qr
i (t) stand for the queue length of class i at time t in the rth system, Zr(t) stands

for the number of busy servers at time t in the rth system, and Y r(t) is the overall number of

customers in system, i.e. Y r(t) = Zr(t)+
∑J

i=1 Qr
i (t).

Proposition 13.1(State Space Collapse) Assume (15) and that

lim
r→∞

√
N r(1− ρr

C)→ β, −∞< β <∞. (F7)

Then, as r→∞,
1√
Nr Qr

i (·)⇒ 0, i = 1, ..., J − 1,

1√
Nr [(N r −Kr)−Zr(·)]−⇒ 0, and

1
Nr [(N r −Kr)−Zr(·)]+ ⇒ 0.

(F8)

Proof: for the first two limits the proof is omitted since it is similar to the proof in the no-

abandonment case. To Show that the third limit applies we will use bounding as before. Assume

we start [(N r −Kr)−Zr]+ from zero. Then, this process can be bounded from above by a birth

and death process with birth rates λi = (N−K− i)µ, i = 0, ...,N−K and death rates µi = λ. By [9]

the fluid limit of the bounding process is zero and hence the result. ¥
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Proposition 13.2Assume (15) and

lim
r→∞

√
N r(1− ρr

C)→ β, −∞< β <∞. (F9)

If Xr(0)⇒X(0), then,

Xr(·) =
Y r(·)− (N r −Kr)√

N r
⇒X(·), as r→∞, (F10)

where X is a diffusion process with infinitesimal drift given by

m(x) =
{−(β +(θJ/µ)x)µ x≥ 0
−(β +x)µ x≤ 0

and infinitesimal variance σ2 = 2µ.

Proof: In this proof we employ the same approach that was used in [1] for the proof of the diffusion

limit. We write the proof for the two-class case. The proof is similar for arbitrary number of classes

as will be explained at the end of the proof.

First, like in the proof of Proposition 10.1, we define a system with two server pools: The N −K

pool and The K pool. For simplicity of notation we will call them from now on pools 1 and 2,

respectively. Whenever a server in pool 1 completes service and there are any customers in service

in pool 2 we preempt a customer from pool 2 and pass it to pool 1. This system has the same

law as the original system. Denote by Ir
k(t) and Zr

k(t) the number of idle servers and the number

of busy servers respectively in pool k (k = 1,2) at time t. Also, let Qr(t) be the total number of

customers in queue (i.e. Qr(t) = Qr
1(t)+Qr

2(t)).

Consider a Poisson process with rate (N −K)µ, and create the service completions using this

Poisson process in the following manner: A jump in this Poisson process creates a departure from

pool 1 with probability Zr
1 (t)

Nr−Kr , and does not result in a departure, otherwise.

Then, the total number of customers in the system Y r(t) admits the following dynamics:

Y r(t) := Qr(t)+Zr
1(t)+Zr

2(t)

= Y r(0)+Ar(t)−N1(µ(N −K))+N1

(
µ

∫ t

0

Ir
1 (s)ds

)
−N2

(
µ

∫ t

0

Zr
2(s)ds

)

−
2∑

l=1

N a
l

(
θl

∫ t

0

Ql(s)ds

)
,

(F11)
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where Nk, k = 1,2 and N a
l , l = 1,2 are independent Poisson processes with rate 1, and Ar(t) is a

poisson process with rate λr independent of all the other processes.

Define Fr(t) to be the following σ−algebra:

Fr(t) = σ {Qr
k(0);Zr

k(0),Ar
k(t),N a

l (t),Nj(t); k = 1,2, l = 1,2, j = 1,2}∨N ,

where N denotes the family of P−null sets, and introduce the filtration Fr = (Fr(t), t≥ 0). Clearly,

the processes Qr(·), Zr
k(·) and Ir

k(·), k = 1,2, are Fr adapted. Then, Y r(t) admits the following

decomposition:

Y r(t) = Y r(0)+λrt−µ(N −K)t+µ

∫ t

0

Ir
1 (s)ds−µ

∫ t

0

Zr
2(s)ds−

2∑
l=1

θl

∫ t

0

Qr
l (s)ds+M r(t), (F12)

where M r = (M r(t), t≥ 0) is an Fr−locally square-integrable martingale, that satisfies M r = M r
A−

M r
1 + M r

I1
−M r

Z2
−∑2

l=1 M r
Ql

, where all the above are Fr−locally square-integrable martingales

with respective predictable quadratic variations:

〈M r
A〉 (t) = λrt, (F13)

〈M r
1 〉 (t) = (N r −Kr)µt, (F14)

〈
M r

I1

〉
(t) = µ

∫ t

0

Ir
1 (s)ds, (F15)

〈
M r

Z2

〉
(t) = µ

∫ t

0

Zr
2(s)ds, and (F16)

〈
M r

Ql

〉
(t) = θl

∫ t

0

Qr
l (s)ds, l = 1,2. (F17)

Note that (F12) can be rewritten as

Y r(t) =Y r(0)+λrt−µ(N −K)t+µ

∫ t

0

Ir
1 (s)ds−µ

∫ t

0

Zr
2(s)ds−

+ θ2

∫ t

0

Qr
1(s)+Qr

2(s)+Zr
2(s)ds+

∫ t

0

(θ2− θ1)Qr
1(s)+ θ2Z

r
2(s)ds+M r(t).

(F18)

Also, by definition,

Qr
1(t)+Qr

2(t)+Zr
2(t) = [Y r(t)− (N r −Kr)]+

Ir
1 (t) = [Y r(t)− (N r −Kr)]−

(F19)
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Finally, note that Zr
2(t) = [N r −Kr −Zr(t)]+. Hence, by Proposition (13.1),

1√
N r

Qr
1(·)⇒ 0,

1√
N r

Zr
2(·)⇒ 0,

(F20)

as r→∞. After normalizing and scaling we have that

Xr(t) = Xr(0)−βµt+µ

∫ t

0

[Xr(s)]− ds+ θ2

∫ t

0

[Xr(s)]+ ds

+ εr(t)+
M r(t)√

N r
+ o(1),

(F21)

where supt≤T |εr(t)| p→ 0. We claim that
{
M r

A/
√

N r,M r
1 /
√

N r,M r
I1

/
√

N r,M r
Z2

/
√

N r,M r
Q1

/
√

N r,M r
Q2

/
√

N r

}

⇒{√µba,
√

µb1,0,0,0,0},
(F22)

where ba and b1 are independent standard Brownian motions. By the continuous mapping theorem,

the latter would imply that M r/
√

N r converges to
√

µba − √µb1, which is a Brownian motion

with zero drift and variance 2µ. Since [·]+ and [·]− are Lipschitz continuous functions we have by

Gronwall’s inequality that Xr(t) is a continuous function of Xr(0)−βµt+ εr(t)+ Mr(t)√
Nr +o(1). The

result now follows from the continuous mapping theorem.

It is still left to establish (F22). First note that by the Functional Law of Large Numbers (FLLN),

as r→∞,

〈
M r

A√
N r

〉
(t)⇒ µt, as (F23)

〈
M r

1√
N r

〉
(t)⇒ µt. (F24)

By Proposition, 13.1 we have that, as r→∞
〈

1√
N r

M r
Z2

〉
(t)⇒ 0, (F25)

〈
1√
N r

M r
Ql

〉
(t)⇒ 0, l = 1,2. (F26)

Also,
〈

1√
N r

M r
I1

〉
(t)⇒ 0. (F27)
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The latter follow from the argument that Ir
1 (t) can be pathwise bounded from below by the number

of idle servers in an M/M/N −K/N −K loss system, for which the result can be easily proved

using [9].

Note that the independence of M r
A and M r

1 together with the inequality 〈M,N〉 ≤
√
〈M〉〈N〉

imply that all covariations converge to zero. Also, note that since the jumps of all the above

martingales are bounded by 1 we have also that for each T > 0,

lim
r→∞

E

[
sup
t≤T

∣∣∣∣
1

N r
M r(t)− 1

N r
M r(t−)

∣∣∣∣
]

= 0 (F28)

Hence, we can apply Theorem 7.1.4 from [4] to obtain the result. To prove the result for an arbitrary

number of classes it is enough to construct the decomposition of Y r (F12). The rest readily follows.

¥

13.1.1. Steady State By [6], the process X defined in Proposition 13.2 has a unique station-

ary distribution whose density is given by:

f(x) =





√
θJ/µ ·h(β

√
µ/θJ) ·w(−β,

√
µ/θJ)φ(x+β)

φ(β)
x≤ 0

√
θJ/µ ·h(β

√
µ/θJ) ·w(−β,

√
µ/θJ)φ(x

√
θJ/µ+β

√
µ/θJ )

φ(β
√

µ/θ)
x > 0

where the hazard function h is defined by

h(x) =
φ(x)

1−Φ(x)

and

w(x,y) =
[
1+

h(−xy)
yh(x)

]−1

. (F29)

Proposition 13.3Assume (15) and

lim
r→∞

√
N r(1− ρr

C)→ β, −∞< β <∞. (F30)

Then

Xr(∞)⇒X(∞), as r→∞. (F31)

where Xr(∞) and X(∞) are the steady state of Xr and X as defined in Proposition 13.2.
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Proof: In this case there is no problem of stability since the abandonments stabilize the system.

Hence, Xr(∞), exists for all r = 1,2, .... Having the tightness of the sequence Y r, the proof follows

in the same manner as the proof of Theorem 10.3. To prove the tightness we will again construct

two systems that will constitute stochastic lower and upper bounds on our system. Define U r to be

an M/M/(N r −Kr)+M system with arrival rate λr =
∑J

i=1 λr
i , service rate µ and abandonment

rate θ = mini∈1,...,J θi. Define Lr to be an M/M/N r−Kr/N r−Kr loss system. We denote by Y r
U (t)

and Y r
L (t) the total number of customers in systems U r and Lr respectively. Let Or stand for

an M/M/N r/{Kr
i }+ M system with the server pool decomposed into two pools of sizes N −K

and K and with the same preemption scheme used in the construction of system B in the proof

of Proposition 10.1. By the same argument used in the non-abandonment case, Or has the same

probability law as the original M/M/N r/{Kr
i }+M system. Let Y r(t) stand for the total number

of customers in system Or at time t.

In the following, we fix r and hence omit the superscript for simplicity of notation. We will show

that:

YL(t)≤st Y (t)≤st YU(t), t≥ 0. (F32)

To show (F32), we use sample path coupling. For systems U and L and for the N −K pool

of system O, we create the departures from the same Poisson process with thinning, as we did

in the proof of Proposition 10.1. The abandonments for systems O and U are also created from

a joint same Poisson process with thinning: i.e. whenever there are i customers in system U and

jk, k = 1, ..., J customers from class k in queue in system O, we create the next abandonment from a

Poisson process with rate max{i ·θ,∑J

k=1 jkθk}. Then, we create an abandonment in system U with

probability iθ

max{i·θ,
∑J

k=1 jkθk}
and an abandonment in system O with probability

∑J
k=1 jkθk

max{i·θ,
∑J

k=1 jkθk}
.

Note that whenever
∑J

k=1 jk ≥ i, the next abandoning event will be an abandonment from system

O with probability 1.

For simplicity, suppose that all 3 systems are initialized with N −K customers in service and

none in queue. An arrival will not alter the state of system L while it will increase the total number
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of customers in both systems O and U . So, the ordering is still preserved. Now, if there are no

customers in the K pool of system O the creation of the service completions from the same Poisson

process will preserve the order. Otherwise, if there are any customers in service at the K pool, the

next service completion is more likely to happen in system O, but this will not violate inequality

F32.

Assume that there are i customers in queue in system O and j = i in system U . Then, by our

construction, any abandonment in the U system will cause an abandonment in O and the ordering

is preserved.

By [6] we have the tightness of the normalized and scaled sequence Y r
U (∞). By [11] we have

the tightness of the normalized and scaled sequence Y r
L (∞). The rest follows as in the proof of

Theorem 10.3. ¥

Corollary 13.1Assume (15) and

lim
r→∞

√
N r(1− ρr

C)→ β, −∞< β <∞. (F33)

Then,

P{W r
J (∞) > 0}= P{Zr(∞)≥N r −Kr}→w(−β,

√
µ/θJ), as r→∞, (F34)

where w(x,y) is defined according to (F29). In particular,

P{W r
J > 0} ≈ P{W FCFS

λ,µ,θJ
(N r −Kr

J) > 0}. (F35)

The next proposition is analogous to Proposition 10.5 for the non-abandonment case. However,

in the context of abandonments we have a result that is somewhat weaker in the sense that we do

not find an exact asymptotic expression for the probability of delay of the high priority, but rather

an asymptotic upper bound.
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Proposition 13.4(Probability of Delay) For every r > 0

P{W r
i (∞) > 0}

P{W r
J (∞) > 0} ·∏J−1

k=i (ρr
k)

Kr
k+1

−Kr
k
≤

(
N r

N r −Kr

)Kr

. (F36)

In particular for Kr = o(
√

N r) and assuming w(−β,
√

µ/θ) > 0 we have

P{W r
i (∞) > 0}= O

(
w(−β,

√
µ/θ) ·

J−1∏
k=i

(ρr
k)

Kr
k+1−Kr

k

)
, (F37)

where ρr
≤k =

∑k

i=1

λr
i

Nrµ
.

Proof: By the same considerations as in the non-abandonment case we have that

P{W r
i (∞)≥ 0|W r

i+1(∞)≥ 0} ≤
( ∑i

j=1 λr
j

(N r −Kr)µ

)Ki+1−Ki

(F38)

The proof is completed as in the case without abandonment. ¥

Proposition 13.5(Waiting Time for Classes i=1,...,J-1) Under the conditions of Proposi-

tion 13.1 we have that

limsup
r→∞

N rE[W r
i |W r

i > 0]≤ [µ(1−σi)(1−σi−1]−1,∀i = 1, ..., J − 1, (F39)

where, as before, σi = limr→∞
∑i

k=1 λr
i

Nrµ
.

The proof uses the same argument used in the proof of Proposition 11.2 and is hence omitted.

Essentially, the idea is to bound this system by a related system where we have the same aban-

donment rate for class J but with θi = 0 for i = 1, ..., J − 1. Then, one can repeat the arguments

used in the proof of Proposition 11.2.

Corollary 13.2(Probability of Abandonment) Denote by P r
k {Ab} the probability of abandon-

ment for class k. Then,

lim
r→∞

√
N rP r

k {Ab}= ∆k ,0≤∆k <∞, (F40)

where ∆k is given by

∆k =
{

ξ−1
k [

√
θk/µ ·h(β

√
µ/θk)−β] ·w(−β,

√
µ/θk) k = J

0 Otherwise.
(F41)
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Here ak is equal to lim
r→∞

λr

λr
k

. In particular,

lim
r→∞

P r{Ab}
P r{Ab}FCFS

λ,µ,θJ
(N r −Kr

J)
= 1, (F42)

where P r{Ab} is the overall probability of abandonment.

Proof: The proof follows from the identity λJP r
J{Ab}= θJE[Qr

J(∞)]. We claim that there exists

M and r0 such that for all r > r0 the sequence E[ 1√
Nr Qr

J(∞)] can be uniformly bounded by M .

This follows from the construction of the bounding system U r in the proof of Proposition 13.3 and

[6]. By the dominant convergence theorem we have the convergence

E[Qr
J(∞)]→E[X(∞)+]. (F43)

The proof is completed by taking E[X(∞)] from [6]. Equation (F42) follows also from [6] where

the expression for the limiting probability of abandonment for the

M/M/N +M model are given. ¥

We are now in position to prove the asymptotic optimality of ITP and SCS for the model with

abandonment. First, the scaled version of ITP and SCS is given as follows:

Proposition 13.6Asymptotic Optimality of ITP and SCS for the Abandonment Case

Consider the problem (F1). Then, ITP and SCS as given in definition 13.2 are asymptotically

optimal.

Proof:

First, we establish a lower bound for the overall number of abandonments. We can restrict our

attention to preemptive policies. Since all random variables involved here are exponential, allowing

preemption cannot damage the performance when looking at the overall abandonment rate. Denote

by A, a system with the arrival, service and abandonment parameters as defined in section 5 (In

this stage A is not equipped with any routing policy). Denote by B a system with the same arrival
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and service parameters but such that the patience parameters are the same for all classes and are

equal to

θ = min
i=1,...,J

θi.

Under any non-idling policy, system B behaves (in the sense of the overall abandonment) as a

single class M/M/N + M . We wish to show that system B with a non-idling policy is a lower

bound for any preemptive policy in system A.

Now, note that for any non-idling policy, the average length of the excursions, for the total

number of customers in system, below the level of N is equal for systems A and B. Now, let us

focus on the excursions above N (the positive excursions): it is clear (and can be proved by simple

coupling arguments), that the positive excursions in system B are stochastically larger than the

positive excursions in system A. Furthermore, when visiting state N , the probability of starting a

positive excursion is the same for both systems.

Denote by Yi the stead state overall number of customers in system i, i ∈ {A,B}, by Zi the

steady state number of busy servers, and Pi{Ab} the steady state probability of abandonment in

system i. Then, for any non-idling policy

P{YA ≥N} ≤ P{YB ≥N} (F44)

Moreover, since the negative excursions have the same law, we have that

E[ZA|YA < N ] = E[ZB|YB < N ] (F45)

Hence, we have that

E[ZA] = E[ZA|YA < N ]P{YA < N}+NP{YA ≥N}
≤ E[ZB|YB < N ]P{YB < N}+NP{YB ≥N} = E[ZB]. (F46)

But, by Little’s Law

E[Zi] =
λ

µ
(1−Pi{Ab}),

and hence we have that

PA{Ab} ≥ PB{Ab}. (F47)
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So, system B with non-idling policy constitutes a lower bound for system A under any policy.

In particular it constitutes a lower bound for our system with respect to the overall probability of

abandonment.

Hence, a lower bound staffing level is given exactly by let

N∗ = Min{N ∈Z+ : P{Ab}FCFS
λ,µ,θJ

(N)≤ αr}. (F48)

By corollary 13.2 the global abandonment rate is asymptotically achieved using ITP. Note that by

Markov’s inequality

P{W r
i > T r

i } ≤ P{W r
i > 0}E[W r

i |W r
i > 0]

T r
i

. (F49)

The threshold defined by the ITP rule grow at most as a logarithm of r so that the ITP rule, Propo-

sition 13.5 and corollary 13.1 imply that the bounds for the individual waiting time constraints are

asymptotically achieved.

¥

14. Efficiency Driven M/M/N

In Section 12, we introduced the diffusion limit for the Efficiency Driven M/M/N/{Ki} model.

The result there is heavily based on having an Efficiency Driven limit for the single class M/M/N

queue.

In the next proposition we consider a sequence of M/M/N queues where, for simplicity of

notation, we use the number of servers as the index. We wish to examine the limits obtained in

the Efficiency Driven regime. In particular, we explore the limit when i.e. we fix δ, 1/2 < δ ≤ 1 is

fixed and when λN grow with N in the following manner:

N δ(1− ρN)→ β, 0 < β <∞, as N →∞. (G1)

Our aim is to prove convergence of the process QN(t) (which stands for the total number of

customers in system N at time t) to a Reflected Brownian Motion. This result was proved in [17]

for the particular case in which δ = 1. Essentially, the limit we obtain here is the same as would
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be obtained in the conventional heavy traffic regime where the number of servers, N , is held fixed

and the load is increases to one.

Essentially, in order to obtain convergence, it suffices to prove that the time that the process QN

spends below N becomes negligible as N grows indefinitely. Since the positive part is clearly the

same as in the case of an M/M/1 queue with fast arrivals and fast services, the result will follow

by a time change argument.

The proof of the next proposition is an adaptation of a proof used in [5] (see the proof of part

3 of Theorem 6.2 there. A brief version of the proof can be also found in Garnett et al. [6], where

most of the details are omitted).

Let XN(t) be the scaled process, i.e.

XN(t) =
QN((N2δ−1t)−N

N δ
(G2)

Remark 14.1The condition X(0)≥ 0 is necessary for the limit process to be continuous on [0,∞).

Otherwise, we would have a limit process that is continuous only on the open interval (0,∞). See

[5] and the references therein for more details on this kind of limits.

Proof of Proposition 12.1: The time changed process, when restricting the process to be positive,

is the same as an M/M/1 queue with fast arrivals and fast service and converges by known results

(see for example [9]) to the desired limit. Formally, denote by τN
+ (t) and τN

− (t) the time the process

spends above zero and below zero respectively, i.e.

τN
+ (t) =

∫ t

0

1{XN (s)≥0}ds, (G3)

τN
− (t) =

∫ t

0

1{XN (s)<0}ds, (G4)

Then,

XN ◦ τN
+ ⇒RBM(−βµ,2µ), (G5)
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where f ◦ g is the composition map (i.e. f ◦ g(t) = f(g(t))). By the random time change theorem

(see for example section 13.2 in [16]) all that is left to prove is that

τN
− (t)⇒ 0. (G6)

Let us examine the process QN(N 2δ−1t). Let AN
i be the length of the ith period in which there

is no queue (i.e. QN ≤ 0). Also let BN
i be the length of the ith busy period (i.e. QN > 0 during

this times). Let CN
i = AN

i + BN
i , i = 1,2, ... be the length of the ith cycle, where a cycle consists

of a busy period and a non-busy period. By the Markovian structure of the process {CN
i }∞i=1 is a

sequence of I.I.D random variables.

Let σN(T ) be the number of cycles that begin until time T , or formally

σN(T ) = min{n :
n∑

i=1

CN
i > T} (G7)

Then, σN(T ) is a stopping time with respect to the sequence {CN
i }. What we are seeking to prove

is that

lim
N→∞

P{
σN (T )∑

i=1

AN
i > ε}= 0. (G8)

We will prove the convergence of
∑σN (T )

i=1 AN
i to zero in L1, which in turn implies convergence in

probability. We will assume for now that QN(0) = 0, so that CN
1 will have the same distribution

as any other CN
i . We will relax this assumption later. Note that N δ(1 − ρN) → β implies that

Nµ− λ∼N 1−δ. Now, BN
i is just a busy period in an M/M/1 queue with accelerated time scale.

Hence,

E[BN
i ] =

1
N 2δ−1(Nµ−λ)

∼ 1
βN δ

. (G9)

N δ(1− ρN)→ β also implies that
√

N(1− ρN)→ 0 and hence, following [5] and due to the time

acceleration, we also have that

E[AN
i ] = O

(
1

N 2δ−1/2h(0)

)
= o

(
1

N δ

)
,
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where h is the hazard rate function of a standard normal r.v (i.e. h(x) = φ(x)/(1−Φ(x)). Hence,

we have that E[CN
i ]∼ 1

βNδ . From here, following exactly pages (64-67) of [5], with
√

N replaced

by N δ, h(−β) replaced by β and BN
i replaced by AN

i , we can conclude that

lim
N→∞

E




σN (T )∑
i=1

AN
i


 = 0.

It is only left to remove the assumption that QN(0) = 0: If X(0) > 0 a.s. the result clearly holds

with a limit that is continuous on [0,∞). So, let us assume that X(0) = 0. Whenever QN(0) > 0

the result clearly holds since the time spent below zero would be stochastically smaller than in

the case with QN(0) = 0. The only problem is when QN(0) < 0 (remember that we are still dealing

with the case in which X(0) = 0 which means that QN(0) = o(N−δ)).

We will prove that if QN(0) < 0 and X(0) = 0

lim
N→∞

E[AN
1 ] = 0, (G10)

and hence the negative part still disappears in the limit. In particular, denote by V N−k
N the expected

time it takes for the process to arrive from N − k to N . Then

V N−k
N ≤E[AN

i ]
1−

(
λN

λN+(N−k+1)µ

)k

1−
(

λN

λN+(N−k+1)µ

) . (G11)

The above is obtained by a simple adaptation of pages (67-68) in [5]. Now, E[AN
i ] = o( 1

Nδ ) and the

result follows. ¥
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