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Service Level Differentiation in Call Centers with Fully
Flexible Servers:

Technical Appendix

Itay Gurvich! Mor Armony? Avishai Mandelbaum?
In this technical appendix we provide proofs for the various results stated in the manuscript titled:
“Service Level Differentiation in Call Centers with Fully Flexible Servers”.

The notational convention is as follows: for any stochastic process B(-), B(t) corresponds to the
value of the process at time t. B(co) and B denote interchangeably the process in steady-state,
and B(-) denote the entire process. To relate this appendix to the main body of the paper one
should note that Proposition 5.1 is a summary of Propositions 10.4 and 10.5. Proposition 5.2 is a
summary of Propositions 11.1 and 11.2.

We start with the proof of Theorem 6.1 which assumes that all of the propositions that were
stated in the body of the paper hold. These propositions, in turn, will be established in the subse-

quent sections.

9. Asymptotic Optimality

Proof of Theorem 6.1

Recall that for every fixed r, the problem formulation (16) is of the form
minimize N
subject to E[W"] <T"

P{W;>T/}<oyi=1,...0 -1,
NeZ, el

(A1)

And consider the relaxed problem,
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minimize N
subject to E[W"] <T" (A2)
NeZ,  nell

Let N" be the optimal solution for (A2) in the r** system. Letting N*" be the optimal solution
for (A1) in the 7" system, we clearly have that for all » >0, N" < N*". Now, consider a FCFS
M/M/N system with the same values of A" and p, let W{,“FS (V) be defined as before and consider

the single class optimization problem

minimize N

subject to E[WECFS(N) <T" (A3)

m

NeZ,
Let N be the solution to (A3). Then we claim that for all » >0 N" = N". To see that this is indeed
the case it suffices to note that by Little’s Law the problem given by equation (A2) is equivalent
to
minimize N
subject to E[Q"] < \N'T" (A4)
NeZ,

and by the same argument the problem given in equation (A3) is equivalent to

minimize N
subject to E[QYCFS(N)] < N'T” (A5)
NeZ,

Now, since we have a common service rate pu it is straightforward to show that the overall queue
length is minimized by any work conserving policy and in particular by FCFS, so that the two
problems (A4) and (A5) are equivalent and so are, in turn, the problems (A2) and (A3).

Overall, we have shown that N" < N*", so that the M/M/N staffing problem constitutes a
lower bound on the optimal staffing level in (A1l). The argument would be complete if we can
show that N is asymptotically feasible, and thus, since it is also a lower bound, it is necessarily

asymptotically optimal. To establish asymptotic feasibility, note that by Proposition 5.2

BW
E[WHSS@Qn]

(A6)

so that the global constraint is asymptotically satisfied using ITP and SCS. This however, does

not guarantee the asymptotic feasibility of N" and ITP since we have to show that the individual
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SL constraints for classes ¢ =1, ...,J — 1 are satisfied. Note, however, that by Propositions 5.1 and
5.2

P{W! > T7'} = P{WLCTS(N7) >0}H K=K F(NTTT 5070 y) (A7)

7

In particular, by choosing the thresholds through (18) the constraints are asymptotically satisfied.
To see that the solution suggested in Remark 2.1 is also asymptotically feasible, it suffices to note

that by Markov’s inequality

EW! W] >0]
Tr ’

2

P{W] >T7} < P{W/ >0} (A8)

Using the convergence of N*"E[W]|W/! > 0] that is given in Proposition 5.2 then shows that the
thresholds determined by 2.1 are asymptotically feasible using the lower bound staffing level and

in turn asymptotically optimal. |

10. Performance Analysis of ITP and SCS

For simplicity of presentation, we chose to prove most of the results for v =1/2. The proofs for
~v € (0,1/2) are given in Section 12. The results for arbitrary + > 1/2 are substantially simpler
to establish and the proofs are omitted. The analysis consists of several steps. The limits of the
steady state performance measures for the ITP scheduling policy are obtained by first examining
the diffusion limits for the entire stochastic process. Then, using tightness arguments we deduce
the convergence of the steady state distributions. Consequently, the anslysis is presented in two
subsections: Subsection 10.1 below establishes a functional central limit theorem (FCLT) for the
overall number of customers in system under the I'TP scheduling policy. As corollaries we obtain
convergence for the queue lengths and waiting times of the different classes.

Section 10.2 focuses on steady state analysis. In subsection 10.2.1 we give a simple set of necessary
conditions and a set of sufficient conditions for existence of steady state under the ITP policy.
These conditions are less tight than the conditions of [15] but they are much simpler to check and
provide insight on the system behavior under the ITP policy. Then, based on the diffusion limits

and using some tightness arguments we prove the convergence of the steady state overall number
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of customers in system. As corollaries we obtain convergence of the probability of delay for the
lowest priority class J. Proposition 10.5 then gives asymptotic expressions for the probabilities of
delay of the higher priority classes 1,...,J — 1.

Before we proceed with the proof of our main results we need the following lemma which is a

summary of some of the results in Section 9 of Borst et. al. [3]. To this end, let

)\T
Ny’

T

p:

Lemma 10.1Consider the sequence X" and the sequence of staffing levels N” determined through

SCS. Then, N" — R~ 3"V/R, where 3" is the unique solution to

T 1 — T
() g =T (49)

with o, () as given in (34). Hence, one may write
VN (1=p") =~ 3" >0, (A10)

and in particular, if v=1/2, we have that

VN (1—p")— 3>0. (A11)
In addition to p” we define pf, := #(Nfiiw) Note that whenever K} < /7, VN7(1—p") — (>0
J

if and only if vV N7(1 - p}) — 3> 0.

10.1. Diffusion Limits

Consider a sequence of M/M/N"/{K}} systems indexed by r = R. Let Aj(t): j=1,...,J be the
total number of arrivals into class j up to time t (i.e. a Poisson();) process). Due to Functional

Strong Law of Large Numbers (FSLLN) and FCLT we have

1
NT

AL(t) = Mt (A12)
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T

. . AT
where \; =lim, . 7,7 =1,...,J, and

1
1/]\]7‘

(AZ(t) — Ait) = BM(0, ), (A13)

where BM (O,;\j) is Brownian motion with drift 0 and infinitesimal variance 5\j. Also, let Z"(t)
and Q! (t),i=1,...,J be, respectively, the overall number of busy agents and the number of class i

(i=1,...,J) customers in queue at time ¢ in the r** system. Then,

J
YT(t)=2"(t)+ Y Q) (A14)

i=1
is the total number of customers in the r* system at time t. Finally, for r = 1,2,.... define the

centered and scaled process

X(t)= : (A15)

Proposition 10.1A4ssume (15), VN"(1 — pg) — >0, and X" (0) = X (0), where = stands for
weak convergence. Then

X7() = X(), (A16)

where X is a diffusion process with infinitesimal drift given by

m(w)—{:€g+x)uiig (A7)

and state independent infinitesimal variance o® = 2.

Remark 10.1By [7] the same limit is obtained for a sequence of M/M/N" — K", systems with
N" = R+ B3VR. Hence, the process of the overall number of customers in the M/M/N"/{K"}
system is approzimately equal in law to the number of customers in the associated M/M/N" — K",
system. In particular, if K’ < \/r, the overall number of customers in system is approximately

equal in probability law to the number of customers in the associated M/M/N" system.

Proof: For simplicity we prove the proposition for a system with J = 2. The proof is similar for

arbitrary number of classes as will be explained at the end. The proof consists of two steps: In the
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first step we introduce another system (denoted by (B)) which is equivalent in law to the original
M/M/N/{K;} system (denoted by (A)). In the second step we use a coupling argument and the
convergence together theorem (Theorem 11.4.7 in [16]) to conclude the proof.

Definition of systems B and C:

Consider the original server pool of N servers. Split the server pool into two distinct pools: one
with N” — K" servers and the other with K" servers, where K" = K’;. Throughout the proof we
will denote these two pools by “the N — K Pool” and “the K pool” respectively.

In system B the following routing policy is used: as long as the total number in system is below
N — K route all customers to the N — K pool. When there are more than N — K busy servers
route any arriving high priority customer to the K pool. Upon a service completion, if there are
any customers in service in the K pool, preempt one of these customers and assign him /her to the
server that was just released in the N — K pool. Since we have a common g for all priority classes,
systems (A) and (B) can be coupled so that the total number in system process will have the same
sample paths and the same probability law. Thus, proving the weak convergence of (B) will result
in the desired weak convergence for (A).

Finally, let us further introduce a System C which is an M /M /m queue with the same arrival
and service rates as System B and with m = N — K servers.

Denote by Y}(t) the total number in system process for system (B) and by Y/(¢) the total
number in system for system C. Also, denote by Zj 5(t) the number of busy servers from the K
pool in system B. As before, define

_ Yp() - (N" = K7)

and

xp(1) = el ‘% —X7) (A19)

By our assumption that lim, .., VN"(1 —pg) = 5,0 < < oo we have from [7] that X[ = X.

Coupling:

Next we discuss the coupling of systems
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(B) and (C). We will show that these two systems can be coupled so that the distance (in the
sup norm) between them is bounded by an expression that converges to zero as r — co. Having
that, the proposition will follow by the convergence together theorem. In the following paragraphs
we fix r > 0 and eliminate the superscript from the notation.

The coupled sample paths are described as follows: We use the same sample path of arrivals for
both systems. For simplicity let us assume that both systems are initiated with N — K busy servers
and an arrival of a customer. As long as Yp(t) > N — K and Yo (t) > N — K we can generate the
departures for system C and for the N — K pool of system B from a common Poisson process with
rate (N — K)u. System B will also have departures from the K pool generated by an independent
Poisson process. During the time that both system are above N — K the difference between them
can be at most as the number of departures due to service completions (and not preemption) from
the K pool.

Now, assume that system B goes below N — K. We will continue to generate the departures for
system C' and for the N — K pool from the same Poisson process but with a thinning (as in [19]).
i.e. If system B has a customer count of j at a departure epoch and system C has [ customers,
than the candidate departure event generated from the Poisson process with rate [u, is an actual
departure for system B with probability j/I (recall that j <[). During the epoch in which system
B is below N — K the distance between the two systems in consideration can only decrease. If the
two systems meet they will proceed together until they hit N — K for the first time.

Denote by D% (T) the departures from the K pool up to time 7. Then, we can write (see for

example [9])

Du(T) = N ( /0 ) ,m) (A20)

Where, N is a Poisson process with rate 1.
By the construction of the sample paths we have that for all T'> 0 the distance between the
two systems can be bounded by the number of departures from the K pool up to that time. More

formally, for the rt" system we have
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T
sup [V5(0) = Y20 <A ([ Zho ol (A21)
0<t<T 0
or,
1 T
sup || X5(t) — XL < —=N / Zer (T d7'> A22
s 1500 - Xe] < o ([ Zistom (422)

Provided that

\/%N </OT Z;(T’B(T)/M,“h') -0, (A23)

and applying the convergence together theorem the proposition follows.

To establish (A23) it is enough to show that for each r, Zxr 5(t) + Q7 (t) can be path wise bounded
by an M /M /1 queue with arrival rate A" = A} and with service rate (N" — K")u. This is shown in
the following way: Assume we initiate both systems by zero. Every jump up in Zy.(t) + Q’(t) is
necessarily a jump up in the associated M /M /1. The opposite is not correct since if more then K"
servers are idle an arrival of high priority will not result in an increase in Z, (t)+ Q7 (t). Assume
that at time ¢ > 0 both systems are not empty (in particular assume that Zxr p(t) + Q5 (t) =7 > 0.
In particular, the time until the next departure is exponential with rate (N” — K" + j)u. Then, as
before, we will use thinning - every service completion in Z%. 5(t) + Q7(t) will result in a service
completion in the M/M/1 with probability % Thus we have proved that for all ¢ > 0,
Z5r(t) + Q7 (t) can be path wise bounded by the associated M /M /1.

By (15) this M/M/1 is under-loaded and by Theorems 4.1 and 4.2 of [9]

1
,/NT

T
/ Zier p(T)pdT = 0. (A24)
0

Since the Poisson process N ( fOT Zier p(T) ,udT) admits the decomposition (see for example [14])

N ( /0 ) ,m) _ /0 e (Fudr 4 MY(T) (A25)

where M" is a martingale with quadratic variation function that is bounded by K"t, we have the
desired result. Thus, we have established the convergence (A16). To prove the result for a general
number of classes one would proceed in a similar way to the two class case. Particularly, the K

pool will only serve higher priority customers (this time with thresholds). Finally, one would need
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to show that Zg.. 5(t)+ S/ Q7 (t) can be bounded by an under-loaded M/M/1 queue and hence
the proof follows.

Corollary 10.1Let X (-) be the diffusion process described in Proposition 10.1. Then the steady-

state distribution of X (00) has a density f(-) which satisfies:

exp{—pz}ta(B), >0
f(z) = (A26)

2040 (1 — a(B)), 2 <0

where P{X (c0) >0} = a(f).

Proof: This result follows directly from [7]. |

A consequence of Proposition is that X" (t) (the scaled and normalized process of the overall num-
ber of customers in system) becomes approximately sufficient to describe the asymptotic behavior
of the J dimensional process (Z(-) + Q1(:),Q2(+),...,Q,(:)). This state space collapse property of

the M/M/N/{K,} model is summarized by the following corollary where we set K" = K7.

Corollary 10.2(State Space Collapse) Denote by E"(t) the number of busy servers above the
level of NT— K", i.e. E(t)=[Z"(t) — (N" — K")|". Then

=€) =0

Q)= 0, vis 1 (a27)

Q5 ()= X*()
L J-1
Proof: Note that £"(t) + Q' (¢) is just Zj(t)+ > ;_, Qi(t), hence the result follows from the proof
of Proposition 10.1. |
The next corollary shows how to obtain the limit of the virtual waiting time for class J as a

function of the limit queue length process X, where £; is as defined in (15).

Corollary 10.3Let W/ (-) be the virtual waiting time process for class i. Then, if there exists
—o0 < c< 00, such that

\/N(]A\,z — &) —e, (A28)
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then
VNTWI() = ;M[xw-). (A29)

Proof: By the FCLT for the arrivals and by (A28) we have the convergence

A5()

Vi) = VN (o -

§opt) =V (1), (A30)

where V(t) = A(t) +ct and A is a BM(0, ;). Define Q"(-) = 7+=@75(-). Then, by corollary 10.2 we

have that Q"(-) = [X]*(.).

The convergence of V'(-) and QT() does not necessarily imply the joint convergence of
(V"(-),Q"(-)). However, we claim that this component-wise convergence is sufficient for our pur-
poses.

By Theorem 11.6.7 in [16], and by the convergence of V" (-) and Q"(-) we have the tightness of
the sequence (V7 (-),Q"(-)). Hence, by Prohorov’s Theorem (Theorem 11.6.1 in [16]) we have that

there exists a convergent subsequence {ry} for which

~

(V)™ () = (V(),Q0)), (A31)

A ~ Tk
for some process (V(-),Q(+)). Define U"(t) = v/ Nrk(DI\J,,«,(:) —&yut). Then, using the relation

7 (1) = Q7 (0) + A () = D (1), (A32)
or, alternatively,
U (t) = V(1) + Q7 (0) — @ (1), (A33)
and applying the continuous mapping theorem we have the convergence
(U (), V() = (U(), V() (A34)
where U(-) = V(-) — Q(-). Since U(-) and V(-) are continuous with U(0) =0 we can apply the
corollary of [13] to obtain for the subsequence
VNEWTE () = W (), (A35)

where W(t) = % Since the limit Q(-) is independent of the subsequence chosen (and equal to

[X]7(-)) we have the desired result. [ ]
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10.2. Steady State Analysis

10.2.1. Stability Conditions To discuss steady state convergence, we first must address the
question of stability, i.e. what are the conditions under which a steady state distribution exists as a
proper random variable. For fixed parameters these conditions can be explicitly calculated using the
formulae in [15]. However, these formulae are very complicated for calculation even for a simple two
class system. Therefore we find the following theorem useful. In the theorem we use the notation
e for the arrival rate of the “super class” consisting of classes 1,...,J —1,i.e X} = Z;.Iz_ll Az. Also,
we denote by " the probability of abandonment given wait in an M /M /1+ M system with arrival
rate \l., service rate (N" — K" )u and abandonment rate . We denote by pg, _; the nominal load

e

in this single server queue. i.e. pg, _; = AT

For the second part of the stability Proposition 10.2 we assume some regularity conditions on

the threshold level K". In particular we assume that there exists a number a € [0,00), such that

)\7"

This condition is guaranteed to hold if K" = O(v/N"). We say that a system is stable if there exists

a unique stationary distribution.

Proposition 10.2 Under assumption (15) we have that:
1. Fiz r and assume K™ >0. Then:
(a) The threshold system is stable if \" < (N"— K")u.
(b) The system is unstable whenever Xy > (N" — K" )y — X - 0"
2. Assume that N" = R" + A" where A" =o(R"). Also, assume (A36). Then,
(a) If K" #0(N"), there exists vy >0 such that ¥r > ry the system is unstable .
(b) Otherwise, if K" =o(N"), let 1y = max{r >0: pg _; > 1}. Then, for all r >ry, 6" <

1 : : 1 . r T
TR0 ) and in particular stability requires that K™ < A"+ O(1).

If K" =0 (static priority), Condition 1.(a) is necessary and sufficient.
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Remark: The advantage of writing stability conditions using 6" is that " has a known formula
which can be also computed using existing software such as [20].

Proof: Y7 (t) is not a Markovian process. However, proving that the state N™— K" of Y is positive
recurrent implies that the state (Z"+Q]=N"—K",Q =0:1=2,...,J) of the underlying Markov
process is positive recurrent. Also, the underlying Markov process is clearly irreducible and hence
proving the positive recurrence of this state is sufficient for stability (see for example chapter 10
of [12]).

First, note that if K" =0 then the result is straightforward. In this case the policy is work
conserving policy and the sum process is the same Birth and Death process that describes the
regular M /M /N system.

Assume K" > 0. For the sufficient conditions it is enough to use the coupling used for (10.1). It is
clear that if the M /M/N"™— K" is stable then so is the threshold system which, by the construction
in Proposition 10.1, is path wise dominated by the M/M/N" — K" system.

For the necessary conditions we build a static priority system with abandonment and show that
if it is unstable then the corresponding M /M/N/{K;} system is also unstable. Denote by S a
static priority system with N™ — K" servers. All classes except for the lowest priority class J have
a finite exponential patience with rate p and class J has an infinite patience. Denote by Y (¢) the
total number of customers in this system. Note that a system in which none of the customers of
priorities 1, ..., J — 1 wait before entering service (i.e. there is an infinite number of servers available
to serve priorities 1,...,J, and only N — K are available to server class J) is equal in law to system
S. Clearly the latter system outperforms the original system, and hence one can easily construct
both systems from the same sample paths and have that for all ¢ >0, Y"(¢) > YZ(¢). Hence, if
Y (t) — ocoast — oo then Y7 () — oo as t — co. Hence, in the remaining of the proof we focus on
the stability of system S.

System S can be modelled as a multi-dimensional Markov process with the coordinates (Z” +
Q7,Qr=0:i=2,...,J) where the notations have the same meaning as before. Let us look at this

multidimensional when it is restricted to the states in which all N™ — K" servers are busy. The
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restriction is formally obtained via a time-change argument, as customary in Markov Processes.
See, for example, Chapter VII of [2]). Under this restriction the number of customers from the
super class (1,...,J — 1) in this restricted process can be modelled by a Markov process, with the
same law as an M/M/1+ M queue. Hence, it has a unique stationary distribution.

Let 6" to be the steady state probability of abandonment in this restricted process. This, in turn
is equal to the probability of abandonment given wait in an M/M/1+ M queue with arrival rate
A5, service rate (N” — K")u and abandonment rate p. The latter has a known formulae. As before,
proving positive recurrence of Y{ is sufficient for the stability of the underlying multi-dimensional
Markov process.

Thus, a trivial necessary condition for stability of system S is that

N+ N (1—6") < (N" — K" (A37)

Assume now that K" =o(N"). Then, by (15) we have that there exists r; such that pp, _; <1
for all r > ry. Then, using the identity \}.P{Ab} = pE[Q"~ ;(c0)] (where Q- ;(c0) stands for the

steady state queue length of the super class 1,...,J — 1), we have that

™ /'1’ ‘s T T T
5 :XE[ L (00)]Z"(00) > N" — K"]. (A38)
But notice that
Is T T r (pTC,<J)2
E[ <J(oo)\Z (00)>N"— K" < ———=— (A39)

1_prC,<J.
The latter is straightforward noting that the right side is average queue length of a non-

abandonment M /M /1 with arrival rate A", and service rate (N” — K")u. After some simplification,

we have that

PC.<g
5 < 7 A40
N =K1 — i) (A40)

This expression converges to zero as fast as 1/N" by assumptions (15), (A36) and assuming

that K" = o(N"). Plugging this upper bound into (A37) results in the necessary condition: K" <

A" +0(1).
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It is now only left to consider the case in which N" = R"+ A", A" =0o(R") and K" # o(N").
Assume there is a subsequence {r;} such that system S is stable for all k¥ > 1. Then, we would

necessarily have that

AS A AL (=07 < (N = K™)u

Consider two cases:

1
pC,<J

Case 1: X /(N" — K")u — v > 1. In this case, ¢" converges asymptotically to 1 — where

po,<s =lim,_o p, - ; (see for example [18]). By our assumption that K" # o(N"), there exists a
R D)

subsequence Tk, and 0 < ¢ <1 such that lim,, _. 57— = c. For the subsequence Tk, We have
J

that

N — K™

. Tkj T'kj . Tk < . (
jlggo N A7+ (1 —=6"%) _leIgo N (A41)
On this subsequence the limiting equation is
Ay +ep<cu (A42)

Which is a contradiction to the non-negligibility of class J assumption (15).
Case 2: N} /(N"— K")u — « < 1. By [18] the probability of abandonment converges to 0 as 7, — 0.

Hence we would have that for the sequence r* the stability equation (A37) can be written as
TN —0(Nhe) < (N" — K"\ (A43)
or after dividing by p this can be written as
K" <A"+4o0(R"), (A44)

which clearly contradicts the assumption on the size of K". |

Define

gre X7 (c0) = (A45)
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where Y7 (00) is the steady state distribution of the sum process in the r* system.
One would expect that the steady state distribution of the diffusion process X of Theorem 10.1
would coincide with the limit of the sequence S”. This is not immediate since an interchange of

limits is involved. More formally, we want to show that

P{X(c) <z} 2 lim lim P{X"(t) <@} = lim lim P{X"(t) <z} = lim P{S" <z}  (A46)

X0 T—00

AT

We will show this in the following proposition where we again let pf, = AT

Proposition 10.3(Steady State Convergence) Under the notation above and assuming that

lim VN7 (1—ph) =08, 0<p<oo, (A47)

T™—00

the following is true:

S = X (c0), (A48)

where X (00) is the steady state of the diffusion process spelled out in Proposition 10.1. Its distri-

bution is given in Corollary 10.1.

Remark 10.21n analogy to Remark 10.1, whenever K, < +/r, Proposition 10.3 shows that the
steady state number of customers in the M/M/N/{K;} system is approximately the same as in the

associated M /M /N .

Proof: Note that Y"(oo) exists as a proper random variable according to Proposition 10.2 and
under our choice of the parameters. Following the proof of Theorem 4 in [7] all we have to prove
is the tightness of the sequence S”. Recall systems (B) and (C) from the proof of Proposition

10.1. Then, since M/M/N/{K,} and (B) have the same law, it is enough to prove the tightness

Yr —_(N" - K"
of the sequence S% 275 (00) ) In addition, we create another coupling of X" with an

v IN"
M/M/N" system (denoted by D) for which we define:

X (1) = 220 _J(%: = (Ad9)
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System (D) has the same total arrival rate as the M/M/N/{K;} system. We construct it in the
same way as the threshold system by splitting the servers into two distinct pools and using the
same preemption procedure as in the construction of System (B): For the three N” — K" (of systems
(B), (C) and (D)) create the departures from the same Poisson processes with thinning. Also for
the K pools (in system (B) and (D)) create the departures from the same poisson process with

thinning. Define
X7 Ypt) - (N" — K")

Clearly, by the same coupling arguments as in the proof of Proposition 10.1 we have path-wise

(A50)

domination X7, (¢) < X7(t). And on the whole we have the path wise ordering

X1(8) < X5(t) < X5(t) ¥ >0 (A51)

Define S7. = X[, (o0) and S}, = X},(00), where X[, (00) and X} (c0) are the steady state of X7,
and X7, respectively. We will compare the stationary threshold system with threshold K" to both
single class multi server stationary systems.

Note that since the constructed coupling preserves (A51) for every finite ¢ it does so also for
t — 00. Also, since under the conditions of the proposition both sequences S¢. and S}, converge as

r — oo, they are tight. The tightness of S;. implies that

Ve >0, Ing : P{S{ € [-n1,m]} >1— g (A52)

The tightness of ST, implies that

Ve >0, 3Iny: P{S}, € [—ng,nol} >1— % (A53)

Hence, by the ordering (A51) we have that

Ve>0§|n1,n2:P{ST€[—ng,nl]}>1—6 (A54)

With the tightness of S™ = X"(o0) we have actually established the proposition. Here is why:

Since X" (00) is tight, by Prohorov’s Theorem it has a convergent subsequence X" (oc0). If we let
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(Z7:(0) + Q7*(0),Q;*(0) : i = 2,...,J) be distributed as (Z7+(c0) + Q1*(00), Qi*(00) 1 i =2,....J),
then (Z7(t) + Q1% (¢),Q:*(t) :i=2,...,J) is a strictly stationary stochastic process. In particular
{X7*(t),t >0} (which is a function of the multidimensional Markov process) is a strictly stationary
stochastic process and by Proposition 10.1 we have X"#(-) = X(-), where X(-) is the limiting
diffusion process with X (0) having the stationary distribution of the limit of X"*(0). However,
since X"(-) is stationary for each 7, so is the limit X(-). Hence the limit of X"*(co) must be
the unique stationary distribution of X (+). Since every subsequence of X"#(-) that converges must

converge to this same limit, the sequence X" (o0) itself must converge to this limit. |

Corollary 10.4Under (15) if 5 <0, there is no convergence of the sequence S™.

Proof: Let us assume that S” does converge to a unique and finite limit .S and that we start the
rt" system with its stationary distribution S™. X" (-) is thus a stationary process with X" (¢) having
the stationary distribution for all ¢ > 0. By the same arguments as above, and since we assume the
convergence of S”, we should have that X" (-) converges to a limit X (-) as r — oo, and that X" (¢)
converges to the stationary distribution of X as r — oc.

First let us examine the case where 5 < 0 : Then, for all M, there exists a subsequence {ry}, ry >
M such that p# > 1, and by the coupling used in the proof of Proposition (10.1) there is no limit
for X" (t) (since there is no limit for the corresponding sequence of single class C' systems) and
the process clearly diverges, contradicting the assumption on the convergence. Otherwise, if =0,

we have a limit which is a diffusion process with infinitesimal drift function

0 x>0
m(x) = { <0 (A55)

See for example Theorem 4.2 of [9]. This is clearly a non-stationary process which leads to a
contradiction to the assumption on the convergence of S”.

For a sequence of M /M /N single class queues, Halfin and Whitt showed the equivalence between
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between a square root safety staffing rule and the convergence of the delay probabilities to a non-
trivial limit. The following proposition is an analogous version of this equivalence for a sequence

of M/M/N"/{K"} systems.

Proposition 10.4 (Halfin- Whitt Analog) Consider a sequence of M/M/N"/{K]} systems
indexed by r=1,2, ..., with service rate p for all classes and arrival rate A} for class i, i=1,...,J,

such that (15) holds. Then,

P{Wj(c0) >0} —ay;, 0<a;<l1, (A56)
if and only if
VN (1=pg)—B,0<B <00, (A5T)
A’I”

—1
In which case oy = [1—1— B2(5) ] , where ®(-) and ¢(-) are

where A" —Z)\Z, Po = 7[@“) 309)

the standard normal distribution and density functions respectively.

Proof: The ‘if’ part is a direct result of the steady state convergence already proved. For the ‘only
if” part note the following: Since the threshold system is pathwise dominated from above by an
M/M/N" — K" system we have that, if § = oo then P{IW}(c0) >0} — 0.

For the case in which §=0, let us assume that steady state exists and P{W7(c0) >0} - a < 1.

Then by the continuity of the function «(-) there exists 3 > 0 such that
a<alf) <l (A58)

We can then construct a threshold system with the same thresholds but with a total number of
servers M” > N”, or more specifically take M" = N” + /N7 to have VM~ (1 — p},) — . For
the new system the ‘if” direction applies and hence we will have the inequality (A58). Denote by
Y- (t) the total number of customers in the system with M" servers. Then, we can easily construct
the sample paths such that Yy (t) — (M" — K™) < Yyr(t) — (N" — K"), ¥Vt > 0. Hence, we have a

contradiction.



Gurvich, Armony and and Mandelbaum: Service Level Differentiation
Article submitted to Management Science; manuscript no. MS-01040-2004 19

There is another case to consider in the ‘only if’ part. It is possible that the sequence v N7 (1 — p.)
will fail to converge. In that case we would have at least two convergent subsequences converg-
ing to two different limits 5, # (2 (one of which might be oc). But since the function «f(-) is
strictly decreasing in its argument we would also have that «(f8;) # a(/52) and thus the sequence
P{W7(c0) >0} would fail to converge. [

Having the convergence of the probability of delay of class J, it remains to analyze the prob-
abilities of delay for higher classes. In particular we would like to know what can be said about

P{W/(c0) >0},i=1,...,J — 1. The answer is given in the following proposition.

Proposition 10.5For every r >0 such that py. < 1.

P{w; NT\Y
1§ . {WZ (OOJ)—? O} K" . —K! — < T T») 7i:17"'7j_17 (A59)
P{Wj(00) >0} - TT; 2 (p%;) e — ANT = K
where p_; = le 1\;\’;;1
In particular, for K" =o(V/N7) and assuming that a(3) > 0 we have
J-1
P{W] (00) > 0} ~a(B) - [J (o)1=, (A60)
=i

where a, ~ b, if lim, . 3* =
n

Remark 10.3In the case of K" = ©(v/N7) the right bound converges by simple calculus to ed’

. ”
where d =lim,_, \/%

Remark 10.4Note that the above implies that for any polynomially decreasing probability of delay
for classes i =1,...,J — 1 and using the condition (15), it suffices to use thresholds logarithmically
in 7. In particular, since we will show that given wait, the waiting time of classes i =1,...J — 1 if of
order 1/r, we have that for the formulation (16), it is sufficient to establish all our previous results

for the case K, < /r and in general with K, < r7.
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Remark 10.5(Intuitive Explanation of Propositions 10.4 and 10.5) It is easy to understand
the results by looking at the dynamics of the suggested policy in a simple two class case, where we
let K := K. To explain (A56) we claim that the probability of delay for the low priority class 2 is
approximately the same as the delay probability for a single class M /M /N — K system. Then, it
would remain to show that the probability of delay in the M/M/N and M/M/N — K systems are
approximately equal. Indeed, one can show that under ITP the threshold K increases at most as
a logarithmic function of R while the staffing level N obeys the relation N = R+ GR”. By Halfin
and Whitt [7] the probability of delay in the M /M /N and M/M/N" — K’ will be approximately
equal as long as K7} is orders of magnitude smaller than R” and hence (A56). To see why the delay
probability of class J is approximately the same as for a single class M /M /N — K system, we argue
that the threshold priority policy is designed to leave almost only low-priority customers in the
queue. These customers, in turn, have only N — K servers available to serve them. More specifically,
note that whenever less than N — K of the servers are busy the total number of customers in
system behaves like a single class M/M/N — K queue. In contrast, whenever more than N — K
of the servers are busy, customers of the high priority class are served almost as if they are the
only class in a single server queue with service capacity (N — K)u. By the comparability of the
low priority class, this implies that the high priority class faces a light-traffic queue, for which the
number of “customers in queue” in this single server queue will be of order O(1) (to be precise, it is
©(1/(1—p1))). In particular, for the original system, the number of busy servers is N — K + O(1).
Hence, we expect the original system to operate approximately like a system with N — K servers
and no thresholds. In particular, we expect that the probability of finding more than N — K busy
servers would be approximately the same.

To understand (A60), note again that in the event that more than N — K servers are busy, the
high priority in the two class example will be served almost as if they are in a single server queue
with capacity (N — K)u. In turn, their probability of delay (the probability that there are N busy
servers) given at least N — K busy servers is approximately equal to the probability of more than

K customers waiting in the corresponding single server queue.
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Proof: For the two-class case this can be proved by direct approximations of the formulae in [15].
However, we can exploit the structure of the model to prove the desired asymptotic equivalence.
The result is almost immediate using upper and lower bounds.

Let us look at priority class j. Given that class j+ 1 has to wait (i.e. the number of idle servers is
smaller or equal to K1) - the conditional probability of delay for class j equals to the probability
that there would be additional K;,; — K; busy servers or more.

Now, Let us look at the Markov process of the model restricted to the states in which more
than N" — K7, servers are busy. Define a new process Yr() = {Z]T(),Q{(), s Q;()}, where Z;()
describes the number of busy servers above the level of N" — K7, |, and Q:() is the number of class
¢ customers in queue. Under our restriction f”() is also a Markov process. Denote its steady state
by Y7 (00) = {Z}"(oo),@{(oo), ,Q;(oo)} Also, because of the model structure, the probability in

question for can be computed by
P{W}(00) >0} = P{W},,(00) > 0} - P{Z1(00) + 3. Qi(00) = K7, }
i=1

To justify this, see, for example, Section 10.4 of [12] and the results therein.
Define

Ts = Z UERTRNNT T s=N-K,..,N,...
2,q1,45:2+ 2 ] g 4=

to be the probability that the sum of the components of the restricted chain equals s, under its

stationary distribution. Then, the cuts method implies for se N — K ...:

TS N 2 Tt (N = Ky )p > mo(N" = K"
| (A61)
Ts ?:1 >\i S 7Ts+1NM

or alternatively

- R $ia, Kj=Kj+
PAZ(00) + S0, G1(00) 2 Ky} < ((Nz—;{);>
(A62)
. Kj—Ki41
- . - ng A iR+
PUZ(o0) + 5L, Qilo0) 2 Ky} 2 ()
By induction, we have proved the desired result. By simple Taylor expansion the upper bound in

(A59) converges to 1 if and only if K" is o(vVN™). [ ]
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11. Asymptotic Waiting Time Distribution

In this section we consider the prove of Proposition 5.2, which gives expression for steady state
waiting time distributions. The result will follow the next two propositions. Proposition 11.1 below
gives the asymptotic distribution for the waiting time of class J. Then, Proposition 11.2 deals with
convergence of normalized version of the waiting times of classes 1,..,5 — 1. Corollary 5.1, in turn,

is a direct result of 11.2 applying Little’s Law.

Proposition 11.1

VN'W(o00) =W, asr— oo (B1)
where
exp(§suB) w.p. a(B)
Wi~ { 0 otherwise (B2)

Proof: Having the convergence of X" (0co) we can repeat the proof of (A29) with Q"(0) = Q" (c0)

to obtain the desired result. [ |

Proposition 11.2Assume (15), then, for alli=1,...,J — 1,
N" - [W] (00)|[Wi (00) > 0] = [W;|W; > 0], (B3)

where [W;|W; > 0] has the Laplace transform:

n(d—o1) -
stp(l—o1)’ i=1,

p(=0)(1=5(s))  _ -
s=Xi+AiVi(s) 1=2,..,J -1,

r

. . i AT 3 . Al
with 0; = p<; =lim, ijl 0 00 =0, A =lim, o 35, and

sy Stp L (ke 1V 1
) = o 4 \/(m+2> . (B5)

. Also, the limits of the first and second moments of the conditional waiting

i—1 \p
Zj:l )‘j
Nr

for b; = lim

time satisfy:

N"E[W(00)|W] (00) > 0] = [u(1 = o3) (L = 0,-1)] ", and

(NT)2E[(W (00))*[W; (00) > 0] = 2(1 = 030-1) [(1)*(1 = 05)*(1 = 0i-1)]
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Remark 11.1Propositions 11.1 and 11.2 imply together that E[W"| = 25:1 i—;E[Wz’“] A :\\—QE[W}] ~
a(ﬁ)ﬁ which is approzimately the waiting time in a single class M /M /N — K} queue with arrival
rate X" service rate p and N” agents. In particular, if K, < \/r it is approzimately the waiting

time in an M/M/N queue.

Remark 11.2(Intuitive Explanation of Proposition 11.2) This result is based on an intuition
similar to the one that explains Theorem 3.1; Consider the two class example. Then, the high
priority customers experience light traffic and, given that they are delayed, they have a queue that
is of order which is at most O(1), and waiting time that is ©(1/N). This is because, given that there
are at least NV — K busy servers, the number of high priority customers behaves approximately like
a single server queue with rate (N — K)u and load that is strictly less than 1.

Proposition 5.2 states exactly that; in order to obtain a meaningful limit for the waiting time of
the high priority this waiting time should be multiplied by at least N. The fact that, given that
they are delayed, the high priority customers wait is analogous to a single server queue explains
how the Laplace transforms can be easily derived from known Laplace transforms of the M/G/1

queue.

Proof: Let us focus on class 4,1 <i < J. We will prove the result through the M/G/1 reduction
that was applied in both [15] and [8].

Step 1 (Limit for the M/M/1 Busy Period): Let us look at an M/M/1 queue with arrival rate
A= Zj;ll A7 and service rate N"pu. Then, by known results (see for example [8]), ¥/ (s) - the

(3

Laplace transform of the busy period is given by:

Np+s+A —/Nrp+s+ A —4\ Ny
SA; '

i (s) = (B7)

By simple algebra we can prove that

i (8) = Ails), as r— o0, (B8)
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where 7;(s) = lim, .. 37 (s) and 7;(s) is given by (B5). Note that the convergence above is still
valid if the service rate of the relevant M /M /1 is (N" — K")u where K" = o(N").

Step 2 (bounding): Following [15], note that given wait of class k their queue behaves like an
M/G/1 queue with the G being the distribution of the busy period beginning with a class j:j <1
arriving to a system with N — K; busy servers and ends with a completion of service when there are
N — K; — 1 busy servers. The Laplace transform of this distribution G is denoted in [15] by B} (s),
and its expectation is denoted by E[B;]. Denote by ¢! (s) the Laplace transform of W;|W; >0 in

the r'" system. Then, by formula (17) in [15] we have that

1— B (s) 1 - \E[B)]
(s=AI+AiBi(s)) E[BI]

¢; (s) = (B9)

G can be sample wise bounded from above by G; yr_gr and from below by G; y-. Hence we have
by the previous step that

B! (N"s) —:(s), as r — 00 (B10)

and the convergence of the moments follows. Hence:

1

N'EB]— —
{ 7,] ILL(]. _0-7;_1)

as r — 0o (B11)
Now, by simple calculus, and since by (15) 0; <1 we have that

A R 0),
BN7s) = S (B12)

The limiting transform is similar to the one obtained for the static priority case. Moments for the

static priority case are given in [8] and their limits are easily calculated. |

12. Performance Anslysis For v<1/2

This part includes performance measures for the M /M /N/{K,} model under the Efficiency Driven
Regime, i.e. for 0 <~ < 1/2. The Efficiency Driven (ED) cab be characterized as follows: Consider
a sequence of N-server queues, indexed by r =1,2,.... Define the offered load by R" = A—;, where
A" is the arrival-rate and p the service-rate. Without loss of generality, let » = R". The ED regime

is achieved by letting (N")'=7(1—p") — 3, as r | oo, for some finite 3.
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We define the ED regime for a sequence of M/M/N"/{K!} queues as follows: There exist v €

[0,1/2) and 0 < 3 < o0, such that

lim (N")"™7(1 = pp) = 5. (C1)

T™—00

For purposes of optimization we will need to adapt some of the results of the previous sections to the
case of the ED M /M /N"/{ K} model. As before we assume (15), i.e. that class J is non-negligible.
12.1. Diffusion Limits
Since, by [7], the probability of delay in this regime converges to 1, we expect that the diffusion
limit to be a reflected brownian motion as is the case with the conventional heavy traffic for multi-
server queues. However, differently from conventional heavy traffic, this regime requires different
scaling for different values of + in order to obtain a non-degenerate limit.

Note that having ED limits for the relevant M /M /N queue immediately translates into limits
for our model using the same procedures as used in the proof of Proposition 10.1. The ED limits
for a sequence of M/M/N queues were not proved for a general v > 1/2. In section 14 we adapt

methods that were used in [5], to prove the desired results. In particular we prove the following:

Proposition 12.1Consider a sequence of M/M/N system indexed by N =1,2,..., such that
N7 (1 —pN)— 8, as N — 00, 0< 3 < oo. (C2)

for some v €1[0,1/2). Let YN (t) be the normalized total number of customers in the N'" system at

N

time t. Assume Y]Vl# = X (0), where X(0) >0, a.s. Then,

YN(N?L) — N
N1

= RBM(—fu,2u), as N — oo, (C3)

where RBM (—fu,2u) is a Reflected Brownian Motion with infinitesimal drift —Gu and infinites-

1mal variance 2.

The following proposition summarizes the diffusion limit results for the ED M/M/N/{K;}. Its
proof is omitted since once the convergence of an ED sequence of M/M/N queues is established,

the proof for the M/M/N/{K;} model is analogous to that of the QED case.
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Proposition 12.2Define
Yr((Nr)172'y.t) —(NT™ — Kr)

X"(t)= OES (C4)
Assume that there exists 0 <~y <1/2 such that:
i (V) (1= ) = B, 0< < oc, (©5)
Also assume that X" (0) = X(0), as r — oo, where X(0) > 0. Then,
X7()=X(), (C6)
where X (+) is an RBM (—fu,2u). Finally,
W@f((NT)12V~):O, asr— 00, i=1,.J—1. ()

Remark 12.1The state space collapse in this case follows in the same manner as in the QED
setting, using a bounding M /M /1 queue. The fact that this M/M/1 is not only scaled in space
but also in time does not change the result.

12.2. Steady State

In the following proposition we adapt the steady state results of subsection 10.2 to the ED regime.
Here we limit our discussion to thresholds K" = o((/N")7). As will be shown in the next section
(Asymptotic Optimality) we only need threshold that are logarithmic and this is clearly covered
by K" =0((N")7) since v > 0. Moreover, taking K" = o((N")") simplifies the proof of the tightness
that we need for convergence of the steady state distributions. The proof, being similar to the

proofs of Propositions 10.3-10.5, is omitted.
Proposition 12.3Assume that there exists 0 <~y <1/2 such that
(N1 —pl)— B, 0<B<o0, asr— oo, (C8)

and K" =0((N")"). Then,

X" (00) = X(00), as r— oo, (C9)
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where X (00) ~ exp(F). Also,

P{W73(c0) >0} —1, as r— oo, (C10)
and,
J-1
P{W{ (c0) >0} ~ [T (o) 51755 (C11)
j=i
Finally,

(Nr)*(lf"/)@;“(oo) =0,i=1,....J -1, as r — oo, and

(NT)=0=1Q"(00) = X+ (00), as r — oo. (C12)

Remark 12.2Recall that for the proof of convergence of the steady state distribution in the QED
case we had to prove first the tightness for the sequence X" (o0). We achieved that by bounding
our system from above and from below by two systems for which the tightness was known. By
the same path-wise construction used before we can bound our system from above by an M /M /m
queue with N” — K" servers and from below by an M /M /m queue with N” servers. Provided that
K" =0((N")") the tightness for both systems under our scaling is known, and the result follows

by the same manner as before.

Remark 12.3Having all the above, one can repeat the arguments given for v=1/2 to conclude

that for v <1/2 we also have under ITP and SCS that

E[WT]
EWS5(NT)]

— 1. (C13)

Regarding the waiting times of classesi=1,...,J —1, Proposition 11.2 and its proof are not changed

for the case v <1/2.

13. Adding Abandonment
In this section we prove the asymptotic optimality results for the model which includes abandon-
ment as given in section 7. As in the non-abandonment case, we start with performance analysis of

the ITP and SCS rules, first in the transient diffusion level and then in steady state. We end the
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section with the proof of asymptotic optimality. Before proceeding we give the scaled versions of
the optimization problem and the ITP and SCS rules. The formulation we consider here is given

by

minimize N

subject to P{Ab} <a’,
PAW,>T'Y<ay, i=1,..,J—1,
NeZ,  rell

To simplify the presentation of this case we restrict ourselves to the following assumption:

(F1)

Assumption 13.1a” = &/\/r and T =T}/, where v; >1/2 for all i=1,...,J —1.

To simplify the presentation of the results in this setting, we do not consider the general case with
a” = &/r7 for arbitrary «y, but rather limit ourselves to v =1/2. The transition from v=1/2 to
arbitrary v however is as simple as in the non-abandonment case and the structure of the optimal
policy does not change when changing ~.

As before, we assume w.l.o.g that classes 1,...,J — 1 are ordered in increasing order of 7, and
that class J is the Best Effort class.

The ITP and SCS rule are given in the following definition:

Definition 13.2ITP and SCS for Abandonment Model
e Staffing: Find the staffing level through the single class M /M /N + M (or Erlang-A) model

with arrival rate \", service rate u, abandonment rate 0; and FCFS service. Specifically, let
N*"=Min{N € Z, : P{Ab} S5 (N) <a'}. (F2)

e Control: Use the TP rule with the differences {Kj,, — KJ};<;_1 chosen recursively for j =

J—1,...,1 in the following manner::

— Compute
| a7/ |\ P 4 bD(N*" o, 0"
K;+1_K;: n(Oéj ]/[ {Wj+1>0}w( 7O-j7o-j—1):|) \/0 j:J_177]. (F3)

In(o7)

where w(N*", 07,07 ) =[N*"pu(l—-0of)(1—-0j_,]7".
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— Set

P{W; > O} = P{W;-H > 0}(0_;")1(;41*}(;. (F4)

In the above we set P{W >0} = P{WECES (N*") > 0}, and for two real numbers x and y, xVy =:

"m0 g

max{x,y}. The actual threshold values are then determined by setting K7 =0.

Analogously to the non-abandonment case, we have the following lemma which is adapted from

Zeltyn and Mandelbaum [10].

Lemma 13.3 Consider the sequence X" and the sequence of staffing levels N” determined through

SCS. Then, N" — R~ VR, for some —oo < 8 < 0o. In particular, under SCS

VNT(1=p") = 5. (F5)
13.1. Diffusion Limits
First we quote Theorem 2 from [6] for a sequence of M /M /N + M queues. Denote by {Y"(t),t >0}

the total number in system in an M/M/N"+ M system. Let

then we have the following:

Theorem 13.4(/6], Theorem 2) Consider a sequence of M/M/N" + M queues indexed by the
superscript r = 1,2,.... Let X" be the arrival rate in the r'" system. The service rate p and the

individual abandonment rate 6 are independent of the index r. Let p" = X" /(N" ), and assume that

lim VN7 (1—p") — 3, —00 < < 0. (Fo6)

Then, if X" (0) = X (0), then X"(-) = X () where X(-) is a diffusion process with drift

m(z) = { -B+O/p)x)p x>0
~(B+x)p x<0

and infinitesimal variance o = 2.
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Analogously to our previous notation let M/M/N/{K;} + M represent a system with N servers,
thresholds { K;} with the addition of exponential patience. In the next two propositions we will show
that the normalized and scaled overall number of customers in systems in the M/M/N/{K,;} + M
model converges to the same limit as in Theorem 13.4, with § = 6; (which is the impatience rate
of the lowest priority).

We consider a sequence of M/M/N/{K;} + M systems indexed by r=1,2,.... The policy is the
same policy as in the non-abandonment case. A class i customer is served only if there are no
customers of a higher priority j (j <) waiting and the number of idle servers is greater than K.
As before, we use the notation K" to stand for the threshold of the lowest priority (i.e. K" = K7),

r

and define a“nominal” load: pg; = -
As before, let Q7 (t) stand for the queue length of class i at time ¢ in the 7" system, Z"(¢) stands

for the number of busy servers at time ¢ in the r** system, and Y”(t) is the overall number of

customers in system, i.e. Y7(t) = Z"(t) + 327, Q7 (t).

Proposition 13.1(State Space Collapse) Assume (15) and that

lim VN™(1—pg) — 08, —oo<f<o0. (F7)
Then, as r — 00,
Qi) =0,i=1,...,J -1,
\/jlw[(NT—KT)—ZT(-)}‘ﬁO, and (F8)

= (NT=K")—=Z"(-)]" = 0.
Proof: for the first two limits the proof is omitted since it is similar to the proof in the no-
abandonment case. To Show that the third limit applies we will use bounding as before. Assume
we start [(N" — K") — Z"]* from zero. Then, this process can be bounded from above by a birth

and death process with birth rates A; = (N — K —i)p,i =0, ..., N — K and death rates p; = A. By [9]

the fluid limit of the bounding process is zero and hence the result. |
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Proposition 13.2Assume (15) and

lim VN™(1 - pl) — 3, —00 < 8 < 00. (F9)

r—00

If X"(0) = X(0), then,

X'()=— = X(), as r— oo, (F10)

where X s a diffusion process with infinitesimal drift given by

m(z) = { —(B+(0,/pw)z)p x>0
—(B+a)n <0

and infinitesimal variance o = 2.

Proof: In this proof we employ the same approach that was used in [1] for the proof of the diffusion
limit. We write the proof for the two-class case. The proof is similar for arbitrary number of classes
as will be explained at the end of the proof.

First, like in the proof of Proposition 10.1, we define a system with two server pools: The N — K
pool and The K pool. For simplicity of notation we will call them from now on pools 1 and 2,
respectively. Whenever a server in pool 1 completes service and there are any customers in service
in pool 2 we preempt a customer from pool 2 and pass it to pool 1. This system has the same
law as the original system. Denote by I} (t) and Zj(t) the number of idle servers and the number
of busy servers respectively in pool k (k=1,2) at time t. Also, let Q"(¢) be the total number of
customers in queue (i.e. Q"(t) = Q7 (t) + Q5(t)).

Consider a Poisson process with rate (N — K)u, and create the service completions using this

Poisson process in the following manner: A jump in this Poisson process creates a departure from

Z1(®)
NT KT

pool 1 with probability and does not result in a departure, otherwise.

Then, the total number of customers in the system Y (¢) admits the following dynamics:

Y7(t):=Q"(t) + () + Z3(t)

—Y7(0) + A7(t) = N3 (u(N — K)) + A, (u/ot I{(S)dS) AL (ﬂ/ot Zg@dS) (F11)
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where NV, k=1,2 and N, [ =1,2 are independent Poisson processes with rate 1, and A"(¢) is a
poisson process with rate A" independent of all the other processes.

Define F"(t) to be the following o—algebra:
F(t) = o {Q5(0); Z£(0), AL (), N (1), Nj(t); k=1,2, 1=1,2, j=1,2} VN,

where N denotes the family of P—null sets, and introduce the filtration F” = (F"(¢),t > 0). Clearly,
the processes Q"(+), Z;(-) and I;(-), k = 1,2, are F" adapted. Then, Y"(¢) admits the following
decomposition:

t

Y"(t)=Y"(0) —i—)\rt—,u,(N—K)t—i—,u,/

0

If(s)ds—,u/o Z;(s)ds—zt%/o Q; (s)ds+M"(t), (F12)

where M" = (M"(t),t > 0) is an F"—locally square-integrable martingale, that satisfies M" = M} —
M7 + My, — My, — 252:1 My, where all the above are F"—locally square-integrable martingales

with respective predictable quadratic variations:
(M) (8) =A"t, (F13)
(M) (t) = (N" = K")put, (F14)
t
Oty (0 =n [ Ti(s)ds, (F15)
0
t
(M) (t) = u/ Z5(s)ds, and (F16)
0
t
(M) (t) = 01/0 Q;(s)ds, 1=1,2. (F17)
Note that (F12) can be rewritten as

YOO NN K t fioyts i | Zy(5)ds .
+92/0 Q;(s)+Q£(s)+Z;(s)ds+/O (03— 0,)Q%(s) + 0575 (s)ds + M (t).
Also, by definition,
Qi)+ Q1)+ Z5(6) = [Y"(t) — (N" — K]

(F19)
L=y ) - (N"-K")]"
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Finally, note that Zj(t) = [N" — K" — Z"(t)]". Hence, by Proposition (13.1),
Qi()=0
VN ’ (F20)
szr ()=0,

as r — 0o. After normalizing and scaling we have that

t

X () = X(0) = ut + [ (X9 ds +0, / [X7(s)]* ds

0 (F21)
M(t)
+e(t) + +o(1),
(0)+ T+ of1)
where sup, . [€"(t)| 0. We claim that
{ M VNT M VN MG VN M, VN M, VN, M, [V o)

= {\/ﬁbm \//jbla 07 07070}7

where b, and b; are independent standard Brownian motions. By the continuous mapping theorem,
the latter would imply that M"/+/N" converges to ,/ub, — \/itby, which is a Brownian motion
with zero drift and variance 2u. Since [-]* and [-]~ are Lipschitz continuous functions we have by

Gronwall’s inequality that X" (¢) is a continuous function of X" (0) — Sut + €"(t) + 1\\4/7]\%) +0(1). The

result now follows from the continuous mapping theorem.
It is still left to establish (F22). First note that by the Functional Law of Large Numbers (FLLN),

as r — 00,

< \]/”Ni> (1) = ut, as (F23)

< \/A%> (t) = put. (F24)

By Proposition, 13.1 we have that, as r — co

<1M§2> () =0, (F25)

1
<Mgl>(t):>0, [=1,2. (F26)
Also,

LV =o. (F27)
(7
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The latter follow from the argument that I7(¢) can be pathwise bounded from below by the number
of idle servers in an M/M/N — K/N — K loss system, for which the result can be easily proved
using [9].

Note that the independence of M’ and M7 together with the inequality (M, N) < /(M){(N)
imply that all covariations converge to zero. Also, note that since the jumps of all the above

martingales are bounded by 1 we have also that for each T' > 0,

1 1
lim F |su M7 (t) —
T—00 |:t§'1¥3 N7 ( ) N7

Afwf—)H::o (F28)

Hence, we can apply Theorem 7.1.4 from [4] to obtain the result. To prove the result for an arbitrary

number of classes it is enough to construct the decomposition of Y (F12). The rest readily follows.

13.1.1. Steady State By [6], the process X defined in Proposition 13.2 has a unique station-

ary distribution whose density is given by:

VO hB f05) - w0(=B\ 1]02) 45 z<0
PO VT G aT8s) (=, ) SV B

where the hazard function h is defined by

¢(x)
M) =15

and

w(z,y) = [1 + hy(f:(::lg)} _ . (F29)
Proposition 13.3Assume (15) and

711120\/W(1_pg)_>5, —o0 < ff < 0. (F30)

Then

X" (00) = X(00), asr— oc. (F31)

where X" (00) and X (c0) are the steady state of X” and X as defined in Proposition 13.2.
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Proof: In this case there is no problem of stability since the abandonments stabilize the system.
Hence, X" (00), exists for all r=1,2,.... Having the tightness of the sequence Y, the proof follows
in the same manner as the proof of Theorem 10.3. To prove the tightness we will again construct
two systems that will constitute stochastic lower and upper bounds on our system. Define U” to be
an M/M/(N"— K")+ M system with arrival rate A" = Zile Al service rate p and abandonment
rate @ =min,cq, s 60,. Define L" to be an M/M/N"— K" /N" — K" loss system. We denote by Y/} (t)
and Y/ (t) the total number of customers in systems U” and L" respectively. Let O" stand for
an M/M/N"/{K!}+ M system with the server pool decomposed into two pools of sizes N — K
and K and with the same preemption scheme used in the construction of system B in the proof
of Proposition 10.1. By the same argument used in the non-abandonment case, O" has the same
probability law as the original M/M/N"/{K]} + M system. Let Y"(¢) stand for the total number
of customers in system O" at time t.

In the following, we fix  and hence omit the superscript for simplicity of notation. We will show
that:

Yi(t) <ot V(1) <a0 Yur(t), £ > 0. (F32)

To show (F32), we use sample path coupling. For systems U and L and for the N — K pool
of system O, we create the departures from the same Poisson process with thinning, as we did
in the proof of Proposition 10.1. The abandonments for systems O and U are also created from
a joint same Poisson process with thinning: i.e. whenever there are ¢ customers in system U and
i, k=1, ..., J customers from class k in queue in system O, we create the next abandonment from a

Poisson process with rate maz{i-0, > _, jx0i}. Then, we create an abandonment in system U with

PRI
max{i-0,5{_, i}

0
m,am{ilﬁ,zg:l JrOk}

probability and an abandonment in system O with probability
Note that whenever Zizl Jr = 1, the next abandoning event will be an abandonment from system
O with probability 1.

For simplicity, suppose that all 3 systems are initialized with N — K customers in service and

none in queue. An arrival will not alter the state of system L while it will increase the total number
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of customers in both systems O and U. So, the ordering is still preserved. Now, if there are no
customers in the K pool of system O the creation of the service completions from the same Poisson
process will preserve the order. Otherwise, if there are any customers in service at the K pool, the
next service completion is more likely to happen in system O, but this will not violate inequality
F32.
Assume that there are ¢ customers in queue in system O and j =i in system U. Then, by our
construction, any abandonment in the U system will cause an abandonment in O and the ordering
is preserved.

By [6] we have the tightness of the normalized and scaled sequence Yj;(cc). By [11] we have
the tightness of the normalized and scaled sequence Y[ (c0). The rest follows as in the proof of

Theorem 10.3. n

Corollary 13.1Assume (15) and

Tlir&\/ﬁ(l—pg)ﬁﬁ, —00 < 3 < 00. (F33)
Then,
P{W73(c0) >0} =P{Z"(c0) > N"— K"} mw(—0,/11/0;), as r— oo, (F34)

where w(z,y) is defined according to (F29). In particular,

P{W7 >0}~ P{W[YTS(N" - K) > 0}. (F35)

A0 5

The next proposition is analogous to Proposition 10.5 for the non-abandonment case. However,
in the context of abandonments we have a result that is somewhat weaker in the sense that we do
not find an exact asymptotic expression for the probability of delay of the high priority, but rather

an asymptotic upper bound.
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Proposition 13.4(Probability of Delay) For every r >0

P{Wi (o) >0} Nt \E
P{W7}(c0)>0}- Hk z(pk) fb1 ™ ES (Nr_Kr> : (F36)

In particular for K™ =o(vV'N7) and assuming w(—0,/p/0) >0 we have

P{W/(c0)>0}=0 (w 1:[ ) K1 = k) , (F37)

k=i

kAT
‘s J—
where pL, =, N

Proof: By the same considerations as in the non-abandonment case we have that

Zi- AT Kip1—-K;
P{W{ (c0) > 0| z+1( 00) >0} < ((Nrj__lKj)lu) (F'38)
The proof is completed as in the case without abandonment. |

Proposition 13.5(Waiting Time for Classes i=1,...,J-1) Under the conditions of Proposi-

tion 13.1 we have that

limsup N"E[W] W/ >0] < [u(l—0;)(1—0; 4] " Vi=1,...,J — 1, (F39)

T—00

T A

where, as before, o; =lim, _ o e

The proof uses the same argument used in the proof of Proposition 11.2 and is hence omitted.
Essentially, the idea is to bound this system by a related system where we have the same aban-
donment rate for class J but with 6, =0 for 1 =1,...,J — 1. Then, one can repeat the arguments

used in the proof of Proposition 11.2.

Corollary 13.2(Probability of Abandonment) Denote by P[{Ab} the probability of abandon-
ment for class k. Then,

lim VNP {Ab} = A, ,0 < A, < 0, (F40)

where Ay, is given by

A { ggl[\/ek/u (B 1/0) = Bl w(=B,\/1u/0) k=T (F41)

Otherwise.
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T

Here ay, 1s equal to lim SV In particular,
T—00 k)
i Pr{Ab}
1 =1 F42
oo Pr{AB[CES(NT— K7) (F42)

where P"{Ab} is the overall probability of abandonment.

Proof: The proof follows from the identity \;P7{Ab} =6,;E[Q"(c0)]. We claim that there exists

M and ry such that for all r > rq the sequence E| \/ZIV—TQS(OO)] can be uniformly bounded by M.
This follows from the construction of the bounding system U” in the proof of Proposition 13.3 and

[6]. By the dominant convergence theorem we have the convergence
E[Q(00)] — E[X (c0)]. (F43)

The proof is completed by taking E[X (co)] from [6]. Equation (F42) follows also from [6] where
the expression for the limiting probability of abandonment for the
M/M/N + M model are given. [ ]
We are now in position to prove the asymptotic optimality of ITP and SCS for the model with

abandonment. First, the scaled version of ITP and SCS is given as follows:

Proposition 13.6 Asymptotic Optimality of ITP and SCS for the Abandonment Case
Consider the problem (F1). Then, ITP and SCS as given in definition 15.2 are asymptotically

optimal.

Proof:

First, we establish a lower bound for the overall number of abandonments. We can restrict our
attention to preemptive policies. Since all random variables involved here are exponential, allowing
preemption cannot damage the performance when looking at the overall abandonment rate. Denote
by A, a system with the arrival, service and abandonment parameters as defined in section 5 (In

this stage A is not equipped with any routing policy). Denote by B a system with the same arrival
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and service parameters but such that the patience parameters are the same for all classes and are

equal to

Under any non-idling policy, system B behaves (in the sense of the overall abandonment) as a
single class M/M/N + M. We wish to show that system B with a non-idling policy is a lower
bound for any preemptive policy in system A.

Now, note that for any non-idling policy, the average length of the excursions, for the total
number of customers in system, below the level of N is equal for systems A and B. Now, let us
focus on the excursions above N (the positive excursions): it is clear (and can be proved by simple
coupling arguments), that the positive excursions in system B are stochastically larger than the
positive excursions in system A. Furthermore, when visiting state N, the probability of starting a
positive excursion is the same for both systems.

Denote by Y; the stead state overall number of customers in system i, € {A, B}, by Z; the
steady state number of busy servers, and P;{Ab} the steady state probability of abandonment in

system ¢. Then, for any non-idling policy
P{Ys >N} <P{Yp >N} (F44)
Moreover, since the negative excursions have the same law, we have that
E[ZA|lYAa< N]=E|[Zp|Ys < N] (F45)

Hence, we have that

< E[Zn|Ys < N|P{Ys < N} + NP{Y > N} = E[Zs]. (F46)

But, by Little’s Law

E[Z] = :(1 — Pi{Ab}),

and hence we have that

P1{Ab} > Pp{Ab}. (F47)
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So, system B with non-idling policy constitutes a lower bound for system A under any policy.
In particular it constitutes a lower bound for our system with respect to the overall probability of
abandonment.

Hence, a lower bound staffing level is given exactly by let

N*=Min{N €Z, : P{Ab}5E5(N) < a'}. (F48)

A, 50 5

By corollary 13.2 the global abandonment rate is asymptotically achieved using I'TP. Note that by

Markov’s inequality
EW! W >0]
Tr

2

P{W? > T} < P{W/ >0} . (F49)

The threshold defined by the ITP rule grow at most as a logarithm of r so that the ITP rule, Propo-
sition 13.5 and corollary 13.1 imply that the bounds for the individual waiting time constraints are

asymptotically achieved.

14. Efficiency Driven M /M /N
In Section 12, we introduced the diffusion limit for the Efficiency Driven M/M/N/{K;} model.
The result there is heavily based on having an Efficiency Driven limit for the single class M/M/N
queue.

In the next proposition we consider a sequence of M/M/N queues where, for simplicity of
notation, we use the number of servers as the index. We wish to examine the limits obtained in
the Efficiency Driven regime. In particular, we explore the limit when i.e. we fix 6, 1/2 <6 <1 is

fixed and when AN grow with N in the following manner:
N°(1—p")—B,0<B3< 00, as N — oc. (G1)

Our aim is to prove convergence of the process QY (t) (which stands for the total number of
customers in system N at time t) to a Reflected Brownian Motion. This result was proved in [17]

for the particular case in which § = 1. Essentially, the limit we obtain here is the same as would
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be obtained in the conventional heavy traffic regime where the number of servers, IV, is held fixed
and the load is increases to one.

Essentially, in order to obtain convergence, it suffices to prove that the time that the process Q~
spends below N becomes negligible as N grows indefinitely. Since the positive part is clearly the
same as in the case of an M/M/1 queue with fast arrivals and fast services, the result will follow
by a time change argument.

The proof of the next proposition is an adaptation of a proof used in [5] (see the proof of part
3 of Theorem 6.2 there. A brief version of the proof can be also found in Garnett et al. [6], where
most of the details are omitted).

Let XN (t) be the scaled process, i.e.

N 26—14) _

Remark 14.1The condition X (0) > 0 is necessary for the limit process to be continuous on [0, 00).
Otherwise, we would have a limit process that is continuous only on the open interval (0,00). See

[5] and the references therein for more details on this kind of limits.

Proof of Proposition 12.1: The time changed process, when restricting the process to be positive,
is the same as an M /M /1 queue with fast arrivals and fast service and converges by known results
(see for example [9]) to the desired limit. Formally, denote by 71 (¢) and 7 (t) the time the process

spends above zero and below zero respectively, i.e.

t
T (1) = / Lixn (52035, (G3)
0

t
) = / 1 (o 0y 5, (G4)
0

Then,

XN o7l = RBM(~fjs,2p), (G5)
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where fog is the composition map (i.e. fog(t) = f(g(t))). By the random time change theorem

(see for example section 13.2 in [16]) all that is left to prove is that
™ (t) = 0. (G6)

Let us examine the process Q~(N?°~1t). Let AY be the length of the i*" period in which there
is no queue (i.e. @V <0). Also let BN be the length of the ' busy period (i.e. @~ > 0 during
this times). Let CN = AN + BN i=1,2,... be the length of the " cycle, where a cycle consists
of a busy period and a non-busy period. By the Markovian structure of the process {CN}2, is a
sequence of I.LI.D random variables.

et o e the number of cycles that begin until time 7', or formally
L N(T) be th b f les that begi il ti T f 1
oN(T)=min{n:» _ CY>T} (G7)
i=1

Then, o™ (T) is a stopping time with respect to the sequence {C} }. What we are seeking to prove

is that
o (1)
. N o
]\}LII;OP{ E_l A > e} =0. (G8)

We will prove the convergence of ijl(T) AN to zero in £, which in turn implies convergence in
probability. We will assume for now that Q~(0) =0, so that C}¥ will have the same distribution
as any other CN. We will relax this assumption later. Note that N°(1 — p") — 3 implies that
Np— A~ N'=° Now, BY is just a busy period in an M/M/1 queue with accelerated time scale.

Hence,

N1 1 1
E[Bi]_N%_l(N,u,—)\)NIBN‘S' (Gg)

N%(1— pN) — 3 also implies that v N(1 — p") — 0 and hence, following [5] and due to the time

acceleration, we also have that

11 =0 (i) = ()
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where h is the hazard rate function of a standard normal r.v (i.e. h(z) = ¢(x)/(1 — ®(zx)). Hence,
we have that F[C]] ~ ﬁ From here, following exactly pages (64-67) of [5], with /N replaced

by N°, h(—p3) replaced by 8 and BY replaced by AN, we can conclude that

N (1)
lim E| > AN| =0.
=1

N —o00

It is only left to remove the assumption that @~ (0) =0: If X(0) > 0 a.s. the result clearly holds
with a limit that is continuous on [0,00). So, let us assume that X (0) = 0. Whenever Q" (0) >0
the result clearly holds since the time spent below zero would be stochastically smaller than in
the case with @~ (0) =0. The only problem is when Q™ (0) < 0 (remember that we are still dealing
with the case in which X (0) =0 which means that Q~(0) = o(N~?)).

We will prove that if @~ (0) <0 and X(0)=0

lim E[AN] =0, (G10)

N—o0

and hence the negative part still disappears in the limit. In particular, denote by VY " the expected

time it takes for the process to arrive from N — k to N. Then
(ot
ANV H(N—k+1)p

1= (i)
AN H(N—Ek+1)p

The above is obtained by a simple adaptation of pages (67-68) in [5]. Now, E[A)] = o({5) and the

Vit < E[A]] (G11)

result follows. [
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