Staffing and Control of Large-Scale Service Systems with Multiple

Customer Classes and Fully Flexible Servers:

Technical Appendix

Itay Gurvich? Mor Armony? Avishai Mandelbaum?

In this technical appendix we provide proofs for the various results stated in the manuscript
titled: “Staffing and Control of Large-Scale Service Systems with Multiple Customer Classes and
Fully Flexible Servers”.

The notational convention is as follows: for any stochastic process B, B(t) corresponds to the
value of the process at time t. B(oo) denotes the process in steady-state, and both B amd B(-)
denote the entire process. Note that this is somewhat different from the notational convention used
in the body of the paper, but is convenient here due to some statements which connect transient

processes to their steady-state counterparts.

A Asymptotic Feasibility in the QED Regime

In this section, we prove Theorem 3.1 which states the asymptotic feasibility of SRS and TP in
the QED regime. The proof consists of several steps. The limits of the steady state performance
measures for the TP scheduling policy are obtained by first examining the diffusion limits for the
entire stochastic process. Then, using tightness arguments we deduce the convergence of the steady
state distributions. Consequently, the proof is presented in two subsections: Subsection A.1 below
establishes a functional central limit theorem (FCLT') for the overall number of customers in system
under the TP scheduling policy. As corollaries we obtain convergence for the queue lengths and
waiting times of the different classes.

Section A.2 focuses on steady state analysis. In subsection A.2.1 we give a simple set of necessary
conditions and a set of sufficient conditions for existence of steady state under the TP policy. These

conditions are less tight than the conditions of [28] but they are much simpler to check and provide
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insight on the system behavior under the TP policy. Then, based on the diffusion limits and using
some tightness arguments we prove the convergence of the steady state overall number of customers
in system. As corollaries we obtain convergence of the probability of delay for the lowest priority
class J. Proposition A.5 then gives asymptotic expressions for the probabilities of delay of the
higher priority classes 1,...,J — 1.

In what follows we only assume that K" = O(v/N") and the results apply immediately for
the case K" = o(v/N7). To deal with this more general case the heavy traffic condition (10) is
replaced by lim,_,. VNT(1 — pt:) = B,0 < B < oo, where pf, 2 m The results can
be easily generalized to include K" > O(v/NT) with the heavy traffic condition (10) replaced by
lim, 00 VNT — K7(1 — pr) = B,0 < < oo, and with the normalizing factor being VNT — K"
instead of v N”.

A.1 Diffusion Limits

Consider a sequence of M/M/N"/{K]} systems indexed by r = R. Let Aj(t): j =1,...,J be the
total number of arrivals into class j up to time t (i.e. a Poisson(};) process). Due to FSLLN and
FCLT we have

%A;(t) =t (A1)

2 . A
where \; = lim, 00 55,7 =1,...,J, and

1
VN7

where BM (0, 5\3) is Brownian motion with drift 0 and infinitesimal variance S\j. Also, recall that

(A5(t) — Njt) = BM (0, };), (A2)

J

Y'(t)=2"() + ) Q1) (A3)

i=1
is the total number of customers in the 7" system at time ¢.

Finally, for r = 1,2, .... define the centered and scaled process

xr(t) = L _\/(]%f - KD (A4)

Proposition A.1. Assume (9), (10) and that X" (0) = X (0), where = stands for weak conver-

gence. Then

X" = X, (A5)



where X is a diffusion process with infinitesimal drift given by

— x>0
m@) =] " . (A6)

—(B+z)p <0

and state independent infinitesimal variance o = 2.

Proof: For simplicity we prove the proposition for a system with J = 2. The proof is similar
for arbitrary number of classes as will be explained at the end of the proof. The proof consists of
two steps: In the first step we introduce another system (denoted by (B)) which is equivalent in
law to the original M /M /N/{K;} system (denoted by (A)). In the second step we use a coupling
argument and the convergence together theorem (Theorem 11.4.7 in [33]) to conclude the proof.
Definition of system B:
Consider the original server pool of N servers. Split the server pool into two distinct pools: one
with N" — K" servers and the other with K" servers, where K" = K. Throughout the proof we
will denote these two pools by “the N — K Pool” and ”the K pool” respectively.

In system B the following routing policy is used: as long as the total number in system is below
N — K route all customers to the N — K pool. When there are more than N — K busy servers
route any arriving high priority customer to the K pool. Upon a service completion, if there are
any customers in service in the K pool, preempt one of these customers and assign him/her to the
server that was just released in the N — K pool. Since we have a common g for all priority classes,
systems (A) and (B) can be coupled so that the total number in system process will have the same
sample paths and the same probability law. Thus, proving the weak convergence of (B) will result
in the desired weak convergence for (A).

Finally, let us further introduce a System C which is an M /M /m queue with the same arrival
and service rates as System B and with m = N — K servers.

Denote by Yj(t) the total number in system process for system (B) and by YA(t) the total
number in system for system C. Also, denote by Z- p(t) the number of busy servers from the K

pool in system B. As before, define

Yp(t) - (N" - K")

Xp(t) = I




and
xe(n = L= (49)

By our assumption that lim, ,. VN"(1 — p) = f, 0 < < oo we have from [15] that X[ = X.

Coupling:

Next we discuss the coupling of systems (B) and (C). We will show that these two systems can be
coupled so that the distance (in the sup norm) between them is bounded by an expression that
converges to zero as r — oo. Having that, the proposition will follow by the convergence together
theorem. In the following paragraphs we fix 7 > 0 and eliminate the superscript from the notation.

The coupled sample paths are described as follows: We use the same sample path of arrivals for
both systems. For simplicity let us assume that both systems are initiated with N — K busy servers
and an arrival of a customer. As long as Yg(t) > N — K and Yo (t) > N — K we can generate the
departures for system C and for the NV — K pool of system B from a common Poisson process with
rate (N — K)u. System B will also have departures from the K pool generated by an independent
Poisson process. During the time that both system are above N — K the difference between them
can be at most as the number of departures due to service completions (and not preemption) from
the K pool.

Now, assume that system B goes below N — K. We will continue to generate the departures for
system C and for the N — K pool from the same Poisson process but with a thinning (as in [34]).
i.e. If system B has a customer count of j at a departure epoch and system C has | customers,
than the candidate departure event generated from the Poisson process with rate [y, is an actual
departure for system B with probability j/I (recall that j < ). During the epoch in which system
B is below N — K the distance between the two systems in consideration can only decrease. If the
two systems meet they will proceed together until they hit N — K for the first time.

Denote by D% (T') the departures from the K pool up to time 7. Then, we can write (see for

example [20])

Dy(T) = N ( /0 ! Zrer 5(7) ;m) (A9)

Where, N is a Poisson process with rate 1.

By the construction of the sample paths we have that for all 7' > 0 the distance between the



two systems can be bounded by the number of departures from the K pool up to that time. More

formally, for the r** system we have

T
sup [YE(t) - Y0 < N ( / z;;r,B(T)udT) (A10)
0<t<T 0
or,
1 T
s X500 = Xe0)] < N ( / z;;r,B(T)udT) (A11)

Provided that

\/jv_rN ( /0 ' Z;(T,B(T)mh) -0, (A12)

and applying the convergence together theorem the proposition follows.

To establish (A12) it is enough to show that for each r, Zgr p(t) + Q](t) can be path wise
bounded by an M/M/1 queue with arrival rate A" = A] and with service rate (N — K")u. This
is shown in the following way: Assume we initiate both systems by zero. Every jump up in
Zper (t) + Q7 (t) is necessarily a jump up in the associated M/M/1. The opposite is not correct
since if more then K" servers are idle an arrival of high priority will not result in an increase in
Zer p(t)+Q7(t). Assume that at time ¢ > 0 both systems are not empty (in particular assume that
Zgr p(t) + Q1(t) = j > 0. In particular, the time until the next departure is exponential with rate
(N"—K"+j)p. Then, as before, we will use thinning - every service completion in Zg 5(t) +Q7(¢)
NT—K"

will result in a service completion in the M /M /1 with probability

w. Thus we have pI'OVGd

that for all t > 0, Z}., (t) + Q] (¢) can be path wise bounded by the associated M /M/1.
By (9) this M/M/1 is under-loaded and by Theorems 4.1 and 4.2 of [20]

1
VN7

T
/ Zier p(T)pdT = 0. (A13)
0

Since the Poisson process N ( fOT Zier () ,udT) admits the decomposition (see for example [25])

N < /0 ' z;(,,B(T)MdT> _ /0 " Liee plryudr + M7(T) (Al4)

where M" is a martingale with quadratic variation function that is bounded by K"t, we have the
desired result. Thus, we have established the convergence (A5). To prove the result for a general
number of classes one would proceed in a similar way to the two class case. Particularly, the K

pool will only server higher priority customers (this time with thresholds). Finally, one would need



to show that Zj. (t)+ Z;.];ll @} (t) can be bounded by an under-loaded M /M /1 queue and hence
the proof follows.
|

Corollary A.1. Let X(-) be the diffusion process described in Proposition A.1. Then the steady-

state distribution of X (c0) has a density f(-) which satisfies:

exp{—fz}a(f), =20

fz) = (A15)
(1 - (), =<0
where P{X (0c0) > 0} = a(f).
Proof: This result follows directly from [15]. [ |

A consequence of the last proof is that X" (¢) (the scaled and normalized process of the overall
number of customers in system) becomes sufficient in describing the asymptotic behavior of the
J dimensional process (Z1(-) + Q1(+), Q2(+),...,Qs(:)). This state space collapse property of the
M/M/N/{K;} model is summarized by the following corollary:

Corollary A.2. (State Space Collapse) Denote by E"(t) the number of busy servers above the
level of N* — K", i.e. E"(t) =[Z"(t) — (N" — K")]*. Then

1 r
mé’ =0

Q= 0,Vi< T -1 (A16)

ey x°

Proof: Note that 7 (¢) + Q] () is just Z%(t) + /7' Q% (t), hence the result follows from the proof

of Proposition A.1. [ ]
The next corollary shows how to obtain the limit of the virtual waiting time for class J as a

function of the limit queue length process X.

Corollary A.3. Let W] (t) be the virtual waiting time process for class i. Then, if there exists
—o0 < ¢ < 00, such that

)\7‘
\/N(# —asu) = c, (A17)



then

1
VN'W; = —[X]*. (A18)
ajh

Proof: By the FCLT for the arrivals and by (A17) we have the convergence

A0y = v, (A19)

VT(t) = VN ( <

where V (t) = A(t) + ¢t and A is BM(0,\;). Define Q" = \/}V_TQG Then, by corollary A.2 we have
that Q" = [X]T.
The convergence of V" and Q" does not necessarily imply the joint convergence of (V’",Q’").
However, following [34], we claim that the component-wise convergence is sufficient for our purposes.
By Theorem 11.6.7 in [33], and by the convergence of V" and Q" we have the tightness of the
sequence (V",Q"). Hence, by Prohorov’s Theorem (Theorem 11.6.1 in [33]) we have that there

exists a convergent subsequence {ry} for which

(V™. Q™) = (V,Q), (A20)
for some process (V, Q). Define U’ (t) = v N’"k(D]\J,Ii,(f) — aypt). Then, using the relation
7 (8) = Q7 (0) + AT () — D (1), (A21)
or, alternatively,
U™ (t) = V™ (t) + Q7 (0) — QF (B), (A22)

and applying the continuous mapping theorem we have the convergence
(U™, V) = (U, V), (A23)

where U = V — Q. Since U and V are continuous with U(0) = 0 we can apply the corollary of [24]

to obtain for the subsequence

VNTEWTE = W, (A24)
where W (t) = %2 Since the limit Q is independent of the subsequence chosen (and equal to [X]*)
we have the desired result. |



A.2 Steady State Analysis
A.2.1 Stability Conditions

To discuss steady state convergence, we first must address the question of stability, i.e. what are
the conditions under which a steady state distribution exists as a proper random variable. For
fixed parameters these conditions can be explicitly calculated using the formulae in [28]. However,
these formulae are very complicated for calculation even for a simple two class system. Therefore
we find the following theorem useful. In the theorem we use the notation A\, for the arrival rate
of the “super class” consisting of classes 1,...,J — 1, i.e . = Z{;ll Aj. Also, we denote by ¢" the
probability of abandonment given wait in an M /M /1+ M system with arrival rate \'j., service rate
(N" — K")p and abandonment rate . We denote by pf _; the nominal load in this single server
queue. ie. pp ;= ﬁ

For the second part of the stability Proposition A.2 we assume some regularity conditions on
the threshold level K. In particular we assume that there exists a number a € [0, 00), such that

)\’!‘

This condition is guaranteed to hold if K" = O(v/NT).

We say that a system is stable if there exists a unique stationary distribution.
Proposition A.2. Under assumption (9) we have that:
1. fix v and assume K" > 0. Then:

(a) The threshold system is stable if \" < (N" — K")u.

(b) The system is unstable whenever X'y > (N" — K" )y — X} - 0"
2. Assume that N" = R" + A" where A" = o(R"). Also, assume (A25). Then,

(a) If K" # o(NT), there exists r1 > 0 such that ¥r > 1 the system is unstable .

(b) Otherwise, if K" = o(N"), let r1 = max{r > 0: pi, _; > 1}. Then, for all r > 1,

r 1 . . ey . r r
0" < B )’ and in particular stability requires that K™ < A" 4+ O(1).

If K" =0 (static priority), Condition 1.(a) is necessary and sufficient.



Remark: The advantage of writing stability conditions using §" is that 6" has a known formula
which can be also computed using existing software such as [39].

Proof: Y7 (t) is not a Markovian process. However, proving that the state N™ — K" of Y is positive
recurrent implies that the state (Z"+ Q7 = N"—K",Q; =0:1 =2,..., J) of the underlying Markov
process is positive recurrent. Also, the underlying Markov process is clearly irreducible and hence
proving the positive recurrence of this state is sufficient for stability (see for example Theorem 5.5.3
in [27]).

First, note that if K" = 0 then the result is straightforward. In this case the policy is work
conserving policy and the sum process is the same Birth and Death process that describes the
regular M /M /N system.

Assume K" > 0. For the sufficient conditions it is enough to use the coupling used for (A.1). It
is clear that if the M /M /N"— K" is stable then so is the threshold system which, by the construction
in Proposition A.1, is path wise dominated by the M/M/N" — K" system.

For the necessary conditions we build a static priority system with abandonment and show that
if it is unstable then the corresponding M/M/N/{K;} system is also unstable. Denote by S a
static priority system with N™ — K" servers. All classes except for the lowest priority class J have
a finite exponential patience with rate p and class J has an infinite patience. Denote by Y (¢) the
total number of customers in this system. Note that a system in which none of the customers of
priorities 1, ..., J — 1 wait before entering service (i.e. there is an infinite number of servers available
to serve priorities 1,...,J, and only N — K are available to server class J) is equal in law to system
S. Clearly the latter system outperforms the original system, and hence one can easily construct
both systems from the same sample paths and have that for all ¢ > 0, Y"(¢) > YZ(¢). Hence, if
YZ(t) = coast — oo then Y7 (t) — co as t — oo. Hence, in the remaining of the proof we focus on
the stability of system S.

System S can be modelled as a multi-dimensional Markov process with the coordinates (Z" +

1,QF =0:i=2,...,J) where the notations have the same meaning as before. Let us look at this
multidimensional when it is restricted to the states in which all N™ — K" servers are busy. The
restriction is formally obtained via a time-change argument, as customary in Markov Processes.
See, for example, Chapter VII of [7]). Under this restriction the number of customers from the

super class (1,...,J — 1) in this restricted process can be modelled by a Markov process, with the



same law as an M /M /1 + M queue. Hence, it has a unique stationary distribution.

Let 0" to be the steady state probability of abandonment in this restricted process. This, in turn
is equal to the probability of abandonment given wait in an M/M/1 + M queue with arrival rate
A, service rate (N" — K" )y and abandonment rate p. The latter has a known formulae. As before,
proving positive recurrence of Y¢ is sufficient for the stability of the underlying multi-dimensional
Markov process.

Thus, a trivial necessary condition for stability of system S is that
A4+ MNe(1=6") <(N" = K" (A26)

Assume now that K" = o(N"). Then, by (9) we have that there exists ry such that pf, ., <1
for all 7 > r;. Then, using the identity A}. P{Ab} = pE[Q" ;(c0)] (where Q. ;(cc0) stands for the

steady state queue length of the super class 1,...,J — 1), we have that

5" = %E[ T (00)|Z7(00) > N” — K7]. (A27)

But notice that
(PT(:’,<J)2

ElQ% ;(00)[Z"(0) > N" = K'] < .
1L =pt <y

(A28)

The latter is straightforward noting that the right side is average queue length of a non-abandonment

M /M1 with arrival rate X’ and service rate (N" — K" )u. After some simplification, we have that

PC,<J
0" < ’ A29
S K ) (42

This expression converges to zero as fast as 1/N" by assumptions (9), (A25) and assuming
that K™ = o(N"). Plugging this upper bound into (A26) results in the necessary condition: K" <
A"+ O(1).

It is now only left to consider the case in which N™ = R" + A", A" = o(R") and K" # o(N").
Assume there is a subsequence {r} such that system S is stable for all £ > 1. Then, we would

necessarily have that

AT 4 ATE(L = 67) < (N — K"*)p

Consider two cases:

10



1
pc,<J

Case 1: A}./(N" — K")p — v > 1. In this case, 0" converges asymptotically to 1 — where

pe,<g = im0 iy 5 (see for example [35]). By our assumption that K" # o(N"), there exists a
Tk Tk,
subsequence ry; and 0 < ¢ < 1 such that limrkj oo (N]N;TKJ) = c. For the subsequence ry; we

have that

(N™5 — K™ )

. 1 Tk Tk .. .
]lifgo W()\JJ + >\ch (1 -9 k]) < ]lifgo T (A30)
On this subsequence the limiting equation is
A +ep<ep (A31)

Which is a contradiction to the non-negligibility of class J assumption (9).
Case 2: Xj./(N" — K")p — v < 1. By [35] the probability of abandonment converges to 0 as
rr — oo. Hence we would have that for the sequence 7% the stability equation (A26) can be written

as

7+ A —o(Aye) < (N" = K")p (A32)

or after dividing by p this can be written as
K" < A"+ 0o(R"), (A33)
which clearly contradicts the assumption on the size of K. |

Define
- Y"(o0) — (N" — K")
S" = it (A34)

where Y7 (oc0) is the steady state distribution of the sum process in the 7 system.

One would expect that the steady state distribution of the diffusion process X of Theorem A.1
would coincide with the limit of the sequence S”. This is not immediate since an interchange of

limits is involved. More formally, we want to show that
P{X(c0) < 2} £ lim lim P{X"(t) <z} = lim lim P{X"(t) <z} 2 lim P{S" <z} (A35)
r—00

t—00 1—00 r—00 {—00

We will show this in the following proposition.

11



Proposition A.3. (Steady State Convergence) Under the notation above and assuming that

lim VNT(1—pl) =8, 0<f< oo, (A36)

r—00

the following is true:

S = X (00), (A37)

where X (00) is the steady state of the diffusion process spelled out in Proposition A.1. Its distri-

bution is given in Corollary A.1.

Proof: Note that Y"(00) exists as a proper random variable according to Proposition A.2 and
under our choice of the parameters. Following the proof of Theorem 4 in [15] all we have to prove
is the tightness of the sequence S". Recall systems (B) and (C) from the proof of Proposition

A.1. Then, since M/M/N/{K;} and (B) have the same law, it is enough to prove the tightness of

A Yp(oo) = (N" = K" . : :
the sequence S = —& (00) = ( ) In addition, we create another coupling of X" with an

vV NT
M/M/N" system (denoted by D) for which we define:

xp(0) = 2= (A38)

System (D) has the same total arrival rate as the M/M/N/{K;} system. We construct it in the

same way as the threshold system by splitting the servers into two distinct pools and using the
same preemption procedure as in the construction of System (B): For the three N” — K" (of systems
(B), (C) and (D)) create the departures from the same Poisson processes with thinning. Also for
the K pools (in system (B) and (D)) create the departures from the same poisson process with
thinning. Define

_Yp(t) - (N" - K")

Clearly, by the same coupling arguments as in the proof of Proposition A.1 we have path-wise

domination X7,(t) < X{.(t). And on the whole we have the path wise ordering
XD () < Xp(t) < XE(t) Ve > 0 (A40)

Define S¢. = X((o0) and S}, = X7, (00), where X(.(c0) and X7,(oc0) are the steady state of X,
and X7, respectively. We will compare the stationary threshold system with threshold K" to both

single class multi server stationary systems.

12



Note that since the constructed coupling preserves (A40) for every finite ¢ it does so also for
t — o0. Also, since under the conditions of the proposition both sequences S;. and ST, converge as

r — 0o, they are tight. The tightness of S;, implies that

Ve >0, Iny : P{S¢ € [-n1,n1]} > 1— = (A41)
The tightness of ST, implies that

Ve > 0, dng : P{Sp € [-na,no]} >1— = (A42)
Hence, by the ordering (A40) we have that

Ve > 03ni,ng: P{S" € [-ng,mi]} >1—¢ (A43)

With the tightness of S™ = X"(o0) we have actually established the proposition. Here is why:
Since X" (o0) is tight, by Prohorov’s Theorem it has a convergent subsequence X"*(co). If we let
(Z™(0) + Q7%(0),Q;*(0) : i = 2,...,J) be distributed as (Z"*(c0) + Q7% (00), Q;* (c0) : i = 2,..., J),
then (Z"(t) + Q1% (), Q:*(t) : i = 2,...,J) is a strictly stationary stochastic process. In particular
{X"k(t),t > 0} (which is a function of the multidimensional Markov process) is a strictly stationary
stochastic process and by Proposition A.1 we have X" = X , where X is the limiting diffusion
process with X (0) having the stationary distribution of the limit of X"*(0). However, since X" is
stationary for each 7 so is the limit X. Hence the limit of X" (00) must be the unique stationary
distribution of X. Since every subsequence of X" that converges must converge to this same limit,

the sequence X" (00) itself must converge to this limit. [ |
Corollary A.4. Under (9) if B <0, there is no convergence of the sequence S”.

Proof. Let us assume that S does converge to a unique and finite limit S and that we start the
rth system with its stationary distribution S”. X7 is thus a stationary process with X" (¢) having
the stationary distribution for all ¢ > 0. By the same arguments as above, and since we assume
the convergence of S”, we should have that X" converges to a limit X as r — oo, and that X" (¢)
converges to the stationary distribution of X as r — oo.

First let us examine the case where that § < 0 : Then, for all M, there exists a subsequence

{re}, 7e > M such that p¥ > 1, and by the coupling used in the proof of Proposition (A.1) there is

13



no limit for X"*(¢) (since there is no limit for the corresponding sequence of single class C' systems)
and the process clearly diverges, contradicting the assumption on the convergence. Otherwise, if

B =0, we have a limit which is a diffusion process with infinitesimal drift function

0 x>0
m(z) = (A44)

—pxr x <0

See for example Theorem 4.2 of [20]. This is clearly a non-stationary process which leads to a

contradiction to the assumption on the convergence of S”.

The next two propositions (A.4 and A.5) prove Theorem 3.1.

Proposition A.4. (Halfin- Whitt Analog) Consider a sequence of M/M/N"/{K]} systems in-
dexed by r = 1,2, ..., with service rate p for all classes and arrival rate X} for class i, i =1,...,J,

such that (9) holds. Then,

P{Wj(c0) >0} = a5, 0<ay<l, (A45)
if and only if
VN™(1—pp) = B,0< B < oo, (A46)
where A" = Z)\ L In which case ay = [1 + 64)(’3)]71 where ®(-) and ¢(-) are
i pC’ Kr) : J = #(8) ’

the standard normal dzstmbutzon and density functions respectively.

Proof. The ‘if’ part is a direct result of the steady state convergence already proved. For the ‘only
if” part note the following: Since the threshold system is pathwise dominated from above by an
M/M/N" — K" system we have that, if 8 = oo then P{W7}(c0) > 0} — 0.

For the case in which # = 0, let us assume that steady state exists and P{W7}(c0) > 0} = a < 1.

Then by the continuity of the function a(-) there exists 8 > 0 such that
a<alf) <l (A47)

We can then construct a threshold system with the same thresholds but with a total number of
servers M" > N, or more specifically take M"™ = N" + '/ N" to have VM7 (1 — pf,) — . For

the new system the ‘if’ direction applies and hence we will have the inequality (A47). Denote by

14



Y (t) the total number of customers in the system with M" servers. Then, we can easily construct
the sample paths such that Yy (t) — (M"™ — K") < Ynr(t) — (N" — K"), Vt > 0. Hence, we have a
contradiction.

There is another case to consider in the ‘only if” part. It is possible that the sequence v/ N7 (1 —
p¢) will fail to converge. In that case we would have at least two convergent subsequences con-
verging to two different limits 5; # (2 (one of which might be c0). But since the function «(-) is
strictly decreasing in its argument we would also have that «(f1) # «(f2) and thus the sequence
P{W7}(o0) > 0} would fail to converge. [ |

Having the convergence of the probability of delay of class J, it remains to analyze the prob-
abilities of delay for higher classes. In particular we would like to know what can be said about

P{W/(o0) > 0},%=1,...,J — 1. The answer is given in the following proposition.

Proposition A.5. For every r > 0 such that pi, < 1.

P{W!(c0) >0} N"
< " S KT, —KT <
P{Wj(o0) > 0} - [Tj=; (p%;) 0+t

where pZ; = g:1 N/\—Eu
In particular, for K" = o(v/N7) and assuming that o(8) > 0 we have
J—1
P{W/(00) > 0} ~ a(B) - [] (o) 4155, (A49)
j=i

where a,, ~ by if lim;, , 7% = 1.
n

Remark A.1l. In the case of K" = ©(v/N7) the right bound converges by simple calculus to ed”

. r
where d = lim,_, \/%

Proof. For the two-class case this can be proved by direct approximations of the formulae in [28].
However, we can exploit the structure of the model to prove the desired asymptotic equivalence.
The result is almost immediate using upper and lower bounds.

Let us look at priority class j. Given that class j + 1 has to wait (i.e. the number of idle
servers is smaller or equal to K1) - the conditional probability of delay for class j equals to the

probability that there would be additional K;; — K busy servers or more.
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Let us look at the Markov process of the model restricted to the states in which more than

N"— K

; 41 servers are busy. Define a new process Y = {Z;-", Treeo Q;}, where Z; describes the

number of busy servers above the level of N" — K’ ;, and QZ is the number of class ¢ customers

J+b
in queue. Under our restriction Y7 is also a Markov process. Denote its steady state by f”’(oo) =
{Zj’f(oo), Q’l"(oo), ves Q;(oo)} Also, because of the model’s structure, the probability in question for

can be computed by
PAW} (00) > 0} = PAW],1(50) > 0} - P{Z}(00) + 3 Qf(00) > K} )}
i=1

To justify this, see, for example, Section 10.4 of [23] and the results therein.
Define

s = Z Teqiyngy s S=N—K, . ,N,..
2,q1 550532+ D1y 4i=5

to be the probability that the sum of the components of the restricted chain equals s, under its

stationary distribution. Then, the cuts method implies for s € N — K| ...:
ms 31 A 2 Mest (N = Ky > w1 (N7 = K"
(A50)
s Zle Ai <msiNp

or alternatively

) j Kj—Kj+1
7T r iz i
P{Zj(00) + 3271 @ (00) > Kji1} < <(12v_}()u>

(A51)

. A >y Ki=Kj+1
PIZ(00) + S Qi) > Ky} > (S

By induction we have proved the desired result. By simple Taylor expansion the upper bound in

(A48) converges to 1 if and only if K" is o(vV N"). [ ]

B Asymptotic Waiting Time Distribution (QED)

In this section we consider the prove of Proposition 3.1, which gives expression for steady state
waiting time distributions. The result will follow the next two propositions. Proposition B.1 below

gives the asymptotic distribution for the waiting time of class J. Then, Proposition B.2 deals with
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convergence of normalized version of the waiting times of classes 1,..,5 — 1. Corollary 3.1, in turn,

is a direct result of B.2 applying Little’s Law.

Proposition B.1.

VN™Wi(o0) = Wy, asr — o0 (B1)
where
explayufB) w.p.a(B
w, | et wp.ap) )
0 otherwise

Proof. Having the convergence of X" (oco) we can repeat the proof of (A18) with Q" (0) = Q"(c0)

to obtain the desired result. [ |

Proposition B.2. Assume (9), then, for alli=1,...,J — 1,
N - [Wi (00)|Wi (00) > 0] = [W;|W; > 0], (B3)

where [W;|W; > 0] has the Laplace transform:

p(l—o1)

SHA—o1)’ i=1

pA—0i)(1-%i(s)) , _ _
S RitA(s) 1=2,..,J—1,

r ”

. . P EN . Al
with 0; = p<; = lim, ijl s 00 = 0, Aj = lim, o0 3%, and

- s+p 1 s+p 1 S|
(e) — L ) -2 B5
i(s) = Sl \/(%iﬂ2 . (B5)
PV
N

- . Also, the limits of the first and second moments of the conditional waiting

for b= iy

time satisfy:

N"BIW (50)|W7 (50) > 0] > [u(1 — ) (1 = oy)] ™", and
(B6)
(N")2B[(W] (00))2[W] (00) > 0] = 2(1 = 0y01) [(1)*(1 = 03)2(1 = 05-1)] .
Proof: Let us focus on class i,1 <14 < J. We will prove the result through the M/G/1 reduction
that was applied in both [28] and [19].
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Step 1 (Limit for the M/M/1 Busy Period): Let us look at an M/M/1 queue with arrival rate

A= Z;;ll A7 and service rate N"u. Then, by known results (see for example [18]), ¥/ (s) - the

Laplace transform of the busy period is given by:

N’"u+s+)\;—\/Nru+s+>\;—4>\;N’"u

i) = e . (B7)

By simple algebra we can prove that

35 (s) = 7i(s), as r — oo, (B8)

where 7;(s) = lim, o 7} (s) and 7;(s) is given by (B5). Note that the convergence above is still
valid if the service rate of the relevant M/M/1 is (N" — K")u where K™ = o(N").

Step 2 (bounding): Following [28], note that given wait of class &k their queue behaves like an
M/G/1 queue with the G being the distribution of the busy period beginning with a class j : j < ¢
arriving to a system with N — K; busy servers and ends with a completion of service when there are
N — K; — 1 busy servers. The Laplace transform of this distribution G is denoted in [28] by B/ (s),
and its expectation is denoted by E[B;]. Denote by ¢7 (s) the Laplace transform of W;|W; > 0 in

the " system. Then, by formula (17) in [28] we have that

1—Bi(s) 11— NE[B]

(s =A\; +\/Bi(s))  E[Bi] (B9)

¢i(s) =

G can be sample wise bounded from above by G; yr_g» and from below by G; ny-. Hence we

have by the previous step that
B (N"s) = 7i(s), as r = oo (B10)

and the convergence of the moments follows. Hence:

1

N'E[BY] - ————,

as r — 00 (B11)

Now, by simple calculus, and since by (9) o; < 1 we have that

p(l = 0i) (1 = %i(s)) (B12)

"(N"s) — - -
HNTs) s =X+ Aiils)

The limiting transform is similar to the one obtained for the static priority case. Moments for

the static priority case are given in [19] and their limits are easily calculated. u
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C Asymptotic Feasibility in the Efficiency Driven Regime

This part includes performance measures for the M /M /N/{K;} model under the Efficiency Driven
Regime. The results are used in Remark 3.5 and are required for the asymptotic optimality results.
The Efficiency Driven (ED) cab be characterized as follows: Consider a sequence of N-server
queues, indexed by r = 1,2,.... Define the offered load by R" = /L—T, where A" is the arrival-rate
and p the service-rate. Without loss of generality, let » = R". The ED regime is achieved by letting
(N™Y(1 —p") — B, as r 1 oo, for some finite 8 and 1 > > 1/2.
Analogously to (10), we define the ED regime for a sequence of M/M/N"/{K]} queues as

follows: There exist 6 € (1/2,1] and 0 < 8 < oo, such that

lim (N")’(1 - ) = 6. (c1)

T—00

For purposes of optimization we will need to adapt some of the results of the previous sections to the

case of the ED M/M/N"/{K]} model. As before we assume (9), i.e. that class J is non-negligible.

C.1 Diffusion Limits

Since, by [15], the probability of delay in this regime converges to 1, we expect that the diffusion
limit to be a reflected brownian motion as is the case with the conventional heavy traffic for multi-
server queues. However, differently from conventional heavy traffic, this regime requires different
scaling for different values of § in order to obtain a non-degenerate limit.

Note that having ED limits for the relevant M /M /N queue immediately translates into limits
for our model using the same procedures as used in the proof of Proposition A.1. The ED limits
for a sequence of M/M/N queues were not proved for a general § > 1/2. In section G we adapt

methods that were used in [12], to prove the desired results. In particular we prove the following:

Proposition C.1. Consider a sequence of M/M/N system indexed by N = 1,2, ..., such that

N(1—=pN) =8, as N = 00, 0< 3 < . (C2)

Let QN (t) be total number of customers in the N system at time t. Assume Q:ﬂ(;o) = X(0), where
X(0) >0, a.s. Then,
XN = RBM(—pu,2u), as N — oo, (C3)
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where RBM (—fu,2u) is a Reflected Brownian Motion with infinitesimal drift —fBu and infinitesi-

mal variance 2.

The following proposition summarizes the diffusion limit results for the ED M /M /N/{K;}. Its
proof is omitted. Once the convergence of an ED sequence of M/M/N queues is established, the
proof for the M/M/N/{K;} model is analogous to that of the QED case.

Proposition C.2. Define

Yr((Nr)2671t) _ (Nr _ Kr)

X"(t) = 4
0 . (1)
Assume that there exists § > 1/2 such that:
lim (N")(1 = %) = B, 0< f < . ()
Also assume that X" (0) = X(0), as r — oo, where X(0) > 0. Then,
X" =X, (C6)
where X is an RBM (—pu,2u). Finally,
1 r ry26—1 .
WQZ((N ) t) =0, asr —o00, i=1,...,J—1. (C7)

Remark C.1. The state space collapse in this case follows in the same manner as in the QED
setting, using a bounding M /M /1 queue. The fact that this M/M/1 is not only scaled in space

but also in time does not change the result.

C.2 Steady State

In the following proposition we adapt the steady state results of subsection A.2 to the ED regime.
Here we limit our discussion to thresholds K™ = o((N")'~?). As will be shown in the next section
(Asymptotic Optimality) we only need threshold that are logarithmic and this is clearly covered
by K™ = o((N")'7%) since § < 1. Moreover, taking K" = o((N")'~?) simplifies the proof of the
tightness that we need for convergence of the steady state distributions. The proof, being similar

to the proofs of propositions A.3-A.5, is omitted.
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Proposition C.3. Assume that there exists 1 > § > 1/2 such that
(N (1—pp) =B, 0<pB<o0, asr — o0, (C8)

and K™ = o((N")'79). Then,

X" (o0) = X (00), asr — o0, (C9)
where X (00) ~ exp(fB). Also,
P{Wj(o0) >0} =1, asr — oo, (C10)
and,
J—1
P (00) > 0} ~ [ (o) 5155, (c11)
Finally, B

(N")70Qr(00) = 0,4 =1,...,J — 1, as T — oo, and (C12)
(N")79Q"(00) = X (c0), as T — .
Remark C.2. Recall that for the proof of convergence of the steady state distribution in the QED
case we had to prove first the tightness for the sequence X" (00). We achieved that by bounding
our system from above and from below by two systems for which the tightness was known. By
the same path-wise construction used before we can bound our system from above by an M /M /m
queue with N™ — K" servers and from below by an M /M /m queue with N” servers. Provided that

K™ = o((N")' 79 the tightness for both systems under our scaling is known, and the result follows

by the same manner as before.

D Constraint Satisfaction in the QED Regime

In this section we provide the proof of the asymptotic optimality of SRS and TP with respect to
the constraint satisfaction problem (1), as is stated in Theorem 4.1. First, below is Proposition D.1
which is an adaption of a result from [8]. This, together with Theorem 3.1, leads to a simple proof

of Theorem 4.1.
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Proposition D.1. (M/M/N Staffing.) Consider an M/M/N system with arrival rate X" and

fized service rate u. We are interested in finding
N* :=min{N : P{W"(c0) > 0} < a} (D1)

where 0 < a < 1. Assume that we have a sequence of arrival rates A". Then, the staffing sequence
N" = X'/u+ B/ /1 is asymptotically optimal with respect to (D1) in the sense of the previous
definition, where 8 = ().

Proof: From [15] and the monotonicity of the function P(-) it follows that { N"} is asymptotically

feasible if and only if
VNT(1—p") = f,asr =00, 0< B <p < oo. (D2)

So for each 8 > e > 0 and staffing sequence N" = X" /u + (8 — €)\/\" /i there exists ry such
that for all » > ro , P"{W" > 0} > a. Hence, we would necessarily have that for all » > rg,

(N™)* > X' /u+ (B — €)\/A" /. Therefore, for each 5 > € > 0 we have that

o BV 1 BV
(N RV UTE e U (o)

taking e to zero, and by the definition of asymptotic optimality the proof is concluded. |
Having Proposition D.1 we can proceed to defining the asymptotically optimal solution for (1).

Proof of Theorem 4.1: Define
M" = min{N : P{W/(o0) >0} < ay, Vi=1,..,J}. (D4)

Denote by (N*)" the optimal solution to (1) then clearly M™ < (N*)". Now, (D4) is equivalent to a
single class M /M /N constrained staffing problem. By Proposition D.1, the asymptotically optimal
staffing level is A" /u + B(cs) /N /.

For of,4 = 1,...,J — 1, that decrease polynomially with » we have by Proposition A.5 that
aj, i =1,..,J—1, are achieved by logarithmic thresholds. Proposition A.4 guarantees that staffing
the system with M servers and using logarithmic thresholds asymptotically achieves a;. Hence,

the lower bound is asymptotically achieved. |

22



E Cost Minimization (QED and ED)

In this section we provide a proof for the asymptotic optimality of SRS and TP to the cost mini-
mization problem (2), as is stated in Theorem 4.2 and Remark 4.4. Before presenting the solution
to (2) it is necessary to adapt an important theorem from [8] to our setting. In [8], the authors
show how different costs lead to the three different regimes: Efficiency Driven (or ED), QED and
Quality Driven. We omit from our discussion the Quality Driven regime and hence we will not use

the general results of [8], but rather their conclusions with respect to the ED and QED regimes.

Theorem E.1. (Theorems 6.1 and 7.1: Borst, Mandelbaum € Reiman 2002) Consider a sequence
of M/M/N" systems, indezxed by r = 1,2, ..., with arrival rate A" and fized service rate p. Assume
that the staffing cost per server per time unit is given by s". A customer waiting one unit of time

incurs a cost of c". We are interested in finding

(N")* := arg Nr;l/\i{l/u{s’"Nr + "E[W"(c0)]} (E1)

For a sequence a”, we say that " ~ a if lim,_, % =1.

Then:

o Assume s” ~ 1 and ¢ ~ c. Then, the staffing sequence N*™ = R" + (y")* (¢) V'R is asymp-
totically optimal, where

() (€) = 4" (¢) = arg ryn;g{y n #} (52)

o Assume s" ~ 1 and ¢ ~ ¢J" where J" = o(l). Then the staffing sequence N* = R" +

(y")* (c) VR" is asymptotically optimal, where
(4" (¢) = arg min {y + 3}} — VeI, (E3)

Proof of Theorem 4.2 and Remark 4.4:

Step 1 (Lower Bound): Since we have a common p, the long run average number of customers in
queue is minimized, for afixed N, by any work conserving policy. For all work conserving policies
the average number of customers in queue is equal. This gives us a lower bound on the target

function since

J

J J
Y GNEW] (00)] 2 ¢ Y AEW] (00)] =) - Y E[Qi(00)] 2 ¢ - B[Q"(c0)],  (B4)
=1 =1 =1
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where Q" (o0) is the steady state queue length in an M /M /N" system with A" = 2{21 A7. Then,

as a lower bound for the staffing problem we can take the solution of

minimize ¢JE[Q"(00)] + N”
subject to P{W"(c0) > 0} < ay (E5)
N" e Z

Let M| be the solution of the unconstrained problem

minimize ¢}E[Q"(c0)] + N

(E6)
N" e€Z
Let MJ be the solution of the constrained staffing problem:
minimize N
subject to P{W"(o0) > 0} < oy (E7)

N" e Z
By [8], the cost function is strictly convex and unimodal and the feasible region for (E5) is the

interval [MJ, oo) the solution (M) to the above problem (E5) will equal max{M7, MJ}.

Consider the following three cases:

Case 1: v; =0 = M" = X'/u+ B\/A"/p, where f = max{(y")*, B(as)} (where (y")*(ds) =

arg ming {y + %(y)}. For the lower bound we have that:
1 r r rl 1 r r ~ l
A [0(M7) = 1] = (e I o)) + Y/ [cm(ﬁ) L+ 5] S ®)

Under the proposed choice of the thresholds we have by propositions A.5 and 3.1 that

1
VM

A EQj (00)] — 0, as r — oo, (E9)

and

\/%E[Qf}(oo)] — a(ﬁ)%, as r — oo. (E10)

Hence, the lower bound is achieved, that is,

o iz G EQI(00)] + BVET
A T Qe VR (E11
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Case 2: 77 < 0,y < 1. In this case N" = R" + B(aj)V R". The lower bound cost is equivalent to

BV R" and under the given thresholds we again have that

1
G ElQi (00)] = 0, (E12)
and hence the lower bound is achieved.
Case 3: 75 <0, ag =1= M" = X/u+ (y)"\/A\"/pu where (y")* — 0, as r — oo. Due to
the restriction v; > —1, we have by Theorem (E.1) that there exists an 1 > § > 1/2 such that
Y/ A/ = O(N'9). In particular we have that § = 1/2(1 — v,). Staffing with M" and choosing

the appropriate logarithmic threshold would still lead to

lim (M7)°(1 — p") = lim (M")°(1 — p}f) — B, as r — oo, (E13)

7—00 r—00
and hence the overall lower bound for the normalized cost is 6 ((M " 2(HW)).

By the choice of o we have that, as r — oo,

1
mcgE[QQ(OO)] =0, (E14)
and
1 , , 1
WCJE[QJ(OO)] = dJB- (E15)

Again the lower bound is asymptotically achieved.
|
Corollary 4.1 follows immediately by noting that in Theorem 4.2 ;% = 1, and hence the staffing
problem reduces to the single class dimensioning problem, and the routing is a simple static priority

scheme.

F Adding Abandonment

In this section we prove the asymptotic optimality results for the model which includes aban-
donment. These results are stated in Theorem 5.1, Lemma F.1 and Theorem F.2. The proof
of optimality of the TP control follows the same steps as the non-abandonment case. First, in
subsection F.1 we prove convergence of the scaled and normalized process, describing the overall

number of customers in system, to a one-dimensional diffusion process. In subsection F.1.1 we
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deduce convergence of steady state distributions. In particular we have asymptotic expression for
the probabilities of delay and abandonment for all customers classes. Subsection F.2 concludes this
part by incorporating the two previous subsections to establish a proof for Theorem 5.1. Lemma

F.1 and Theorem F.2 are stated and proved in subsection F.2.1.

F.1 Diffusion Limits

First we quote Theorem 2 from [13] for a sequence of M /M /N+M queues. Denote by {Y"(¢),t > 0}

the total number in system in an M/M/N" 4+ M system. Let

then we have the following:

Theorem F.1. ([13], Theorem 2) Consider a sequence of M/M/N" + M queues indezed by the
superscript m = 1,2,.... Let A" be the arrival rate in the ' system. The service rate p and the
individual abandonment rate 0 are independent of the index r. Let p" = X'/(N"u), and assume
that

lim VN"(1—p") = 8, —00 < 8 < o0. (F1)

7—00

Then, if X" (0) = X (0), then X" = X where X is a diffusion process with drift

—(B+O/wz)p >0
—(B+z)p <0

m(x) =

and infinitesimal variance 0% = 2.

In analogy to our previous notation let M /M /N/{K;} + M represent a system with N servers,
thresholds { K;} with the addition of exponential patience. In the next two propositions we will show
that the normalized and scaled overall number of customers in systems in the M/M/N/{K;} + M
model converges to the same limit as in Theorem F.1, with # = 6; (which is the impatience rate of
the lowest priority).

We consider a sequence of M/M/N/{K;} + M systems indexed by r = 1,2,.... The policy is
the same policy as in the non-abandonment case. A class ¢ customer is served only if there are no

customers of a higher priority j (j < ¢) waiting and the number of idle servers is greater than K.

26



As before, we use the notation K" to stand for the threshold of the lowest priority (i.e. K" = K"),

. . _ A"
and define a“nominal” load: pf = w=%+-

As before, let Q7 (t) stand for the queue length of class i at time ¢ in the r'" system, Z"(t)
stands for the number of busy servers at time ¢ in the r’* system, and Y" () is the overall number

of customers in system, i.e. Y"(t) = Z"(¢) + Z;’Zl Q7 (t).
Proposition F.1. (State Space Collapse.) Assume (9) and that

lim VN"(1 — pl,) = 8, —o0 < f8 < 0. (F2)

r—00

Then, as r — o0,

AQr=0,i=1,.,J — 1,

L (N" - K")—2Z"]" =0, and (F3)

S

L [(N" = K") = Z"]* = 0.
Proof: for the first two limits the proof is omitted since it is similar to the proof in the no-
abandonment case. To Show that the third limit applies we will use bounding as before. Assume
we start [(N” — K") — Z"|* from zero. Then, this process can be bounded from above by a birth

and death process with birth rates A; = (N — K —i)u,i = 0,..., N — K and death rates p; = A.

By [20] the fluid limit of the bounding process is zero and hence the result. [ |

Proposition F.2. Assume (9) and

lim VN(L = pf) = B, =00 < < o0, (F4)
If X" (0) = X (0), then,
Y" — (N" - K")

X" = = X, asr — 00, (F5)
1/]\]7"

where X is a diffusion process with infinitesimal drift given by

—(B+Os/Wz)p =0
—(B+z)n <0

m(x) =

and infinitesimal variance 0% = 2.
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Proof: In this proof we employ the same approach that was used in [4] for the proof of the diffusion
limit. We write the proof for the two-class case. The proof is similar for arbitrary number of classes
as will be explained at the end of the proof.

First, like in the proof of Proposition A.1, we define a system with two server pools: The N — K
pool and The K pool. For simplicity of notation we will call them from now on pools 1 and 2,
respectively. Whenever a server in pool 1 completes service and there are any customers in service
in pool 2 we preempt a customer from pool 2 and pass it to pool 1. This system has the same
law as the original system. Denote by I} (¢) and Z](t) the number of idle servers and the number
of busy servers respectively in pool k£ (k = 1,2) at time ¢. Also, let Q" (¢) be the total number of
customers in queue (i.e. Q"(t) = QF(¢t) + Q5(1)).

Consider a Poisson process with rate (N — K)u, and create the service completions using this
Poisson process in the following manner: A jump in this Poisson process creates a departure from

Zi (1)
NT—KT>?

pool 1 with probability and does not result in a departure, otherwise.

Then, the total number of customers in the system Y7 (¢) admits the following dynamics:
Y7(t) == Q"(t) + Z1(t) + Z3(t)

=Y"(0) + A"(t) = My (u(N — K)) + N, (u /Ot I{(S)d8> ~ N (M /Ot Z5(3)d3> (F6)
- éN’zﬂ <9l /Ot Qz(s)d8> ;

where Nj, k = 1,2 and N, I = 1,2 are independent Poisson processes with rate 1, and A" (¢) is a

poisson process with rate A" independent of all the other processes.

Define F7(t) to be the following o—algebra:
F'(t) = 0 {Q}(0); Z(0), AL(t), N (t),N;(t); k=1,2, 1=1,2, j=1,2} VN,

where N denotes the family of P—null sets, and introduce the filtration F* = (F"(¢),t > 0).

Clearly, the processes Q", Z; and I}, k = 1,2, are F" adapted. Then, Y"(¢) admits the following

decomposition:
t t 2 t
YT () = Y7 (0) +)\’"t—u(N—K)t+u/ I (s)ds —M/ Z3(s)ds— 36, / Q} (s)ds + M" (£), (F7)
0 0 = Jo

where M" = (M"(t),t > 0) is an F" —locally square-integrable martingale, that satisfies M" =

My—-M{+Mj —My — 212:1 My, , where all the above are I —locally square-integrable martingales
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with respective predictable quadratic variations:
(M}) (t) = A't,
(M7) (t) = (N" — K")ut,
t
() () = s [ T,
t
(M3z,) (t) = u/o Zy(s)ds, and

t
<M(gl>(t):9l/0 Q) (s)ds, 1=1,2.

Note that (F7) can be rewritten as

Y"(t) =Y"(0) + Nt — u(N — K)t + ,u/o I{(s)ds — M/o Z5(s)ds—

+92/0 Q§(8)+Q5(8)+Z5(8)d8+/0 (02 — 01)Q1(s) + 6225 (s)ds + M"(2).

Also, by definition,

Q1 (1) + Q4(1) + Z5(1) = [Y"(t) — (N" = K")]"
() =[Y"(t) = (N" = K")]"

Finally, note that Z5(t) = [N" — K" — Z"]". Hence, by Proposition (F.1),

1
WCX =0,

1
/N7

as r — 0o. After normalizing and scaling we have that

Zy =0,

t

t
X0(8) = X70) =t +u [ X ds+0 [ (7G5 ds

M"(t)
VNT

where sup, < [€"(t)| 2 0. We claim that

+€'(t) +

+ o(1),

{ MV, M VNT, M, [VNT, My, [VNT, MY, VN, Mg, [VNT )
= {\/ﬁbav \/l_‘bla 07 07 07 0}7

(F8)

(F9)

(F10)

(F11)

(F12)

(F13)

(F14)

(F15)

(F16)

(F17)

where b, and b; are independent standard Brownian motions. By the continuous mapping theorem,

the latter would imply that M"/v/ N" converges to /b, — /b1, which is a Brownian motion with
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zero drift and variance 2u. Since []T and []” are Lipschitz continuous functions we have by

Gronwall’s inequality that X" (¢) is a continuous function of X" (0) — Sut + € (t) + %ﬁ) +0(1). The

result now follows from the continuous mapping theorem.

It is still left to establish (F17). First note that by the Functional Law of Large Numbers

(FLLN), as r — oo,

< \]/‘%> (t) = ut, as (F18)

< Mi >(t) = ut. (F19)

VNT

By Proposition, F.1 we have that, as r — o0

< \/}TMZ> (t) = 0, (F20)

<\/:]1V_TMC’"21>(t):>0, =12 (F21)
Also,

JNT N

The latter follow from the argument that I7(¢) can be pathwise bounded from below by the number

<LM’" > (t) = 0. (F22)

of idle servers in an M/M/N — K/N — K loss system, for which the result can be easily proved
using [20].

Note that the independence of M’ and M| together with the inequality (M, N) < \/(M)(N)
imply that all covariations converge to zero. Also, note that since the jumps of all the above

martingales are bounded by 1 we have also that for each T' > 0,

lim F

r—00

sup
t<T

1 r 1 r _
M (1) — M (t—)u =0 (F23)

Hence, we can apply Theorem 7.1.4 from [10] to obtain the result. To prove the result for an
arbitrary number of classes it is enough to construct the decomposition of Y” (F7). The rest

readily follows.
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F.1.1 Steady State

By [13], the process X defined in Proposition F.2 has a unique stationary distribution whose density

is given by:

iy = 4 VI BRI w5 0 2G5 r <0
VITi - WB/T07) - w(=B, /) KD 3 5 0

where the hazard function h is defined by

¢(z)
M) =150
and
-1

w(z,y) = [1 + hy(i;(:g)] . (F24)

Proposition F.3. Assume (9) and
Tim. VNT(1 = p}) = B, —0 < B < 0. (F25)

Then

X" (00) = X(00), asr — oo. (F26)

where X" (00) and X (oco) are the steady state of X" and X as defined in Proposition F.2.

Proof: In this case there is no problem of stability since the abandonments stabilize the system.
Hence, X" (00), exists for all » = 1,2, .... Having the tightness of the sequence Y, the proof follows
in the same manner as the proof of Theorem A.3. To prove the tightness we will again construct
two systems that will constitute stochastic lower and upper bounds on our system. Define U" to be
an M/M/(N" — K") + M system with arrival rate A" = Z;']:1 A;, service rate p and abandonment
rate § = min;e;, . j6;. Define L" to be an M/M/N" — K"/N" — K" loss system. We denote by
Y/ (t) and Y/ (t) the total number of customers in systems U” and L" respectively. Let O" stand
for an M/M/N" /{K]} + M system with the server pool decomposed into two pools of sizes N — K
and K and with the same preemption scheme used in the construction of system B in the proof
of Proposition A.1. By the same argument used in the non-abandonment case, O™ has the same
probability law as the original M /M/N"/{K]} + M system. Let Y7 (¢) stand for the total number

of customers in system O" at time ¢.
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In the following, we fix  and hence omit the superscript for simplicity of notation. We will
show that:

Yi(t) <a Y (1) <o Yu(t), t > 0. (F27)

To show (F27), we use sample path coupling. For systems U and L and for the N — K pool
of system O, we create the departures from the same Poisson process with thinning, as we did in
the proof of Proposition A.1. The abandonments for systems O and U are also created from a
joint same Poisson process with thinning: i.e. whenever there are ¢ customers in system U and
Jk, k=1, ..., J customers from class k in queue in system O, we create the next abandonment from a

Poisson process with rate maz{i-9, Zizl JkOk}. Then, we create an abandonment in system U with

0 ST kO
maz{i-0,5 7, ji0k} maz{i-0,5 7 _, jx0k}

Note that whenever Zizl jk > 1, the next abandoning event will be an abandonment from system

probability and an abandonment in system O with probability
O with probability 1.

For simplicity, suppose that all 3 systems are initialized with N — K customers in service and
none in queue. An arrival will not alter the state of system L while it will increase the total number
of customers in both systems O and U. So, the ordering is still preserved. Now, if there are no
customers in the K pool of system O the creation of the service completions from the same Poisson
process will preserve the order. Otherwise, if there are any customers in service at the K pool, the
next service completion is more likely to happen in system O, but this will not violate inequality
F27.

Assume that there are ¢ customers in queue in system O and j = ¢ in system U. Then, by our
construction, any abandonment in the U system will cause an abandonment in O and the ordering
is preserved.

By [13] we have the tightness of the normalized and scaled sequence Y}j(c0). By [22] we have
the tightness of the normalized and scaled sequence Y/ (c0). The rest follows as in the proof of

Theorem A.3. [ |

Corollary F.1. Assume (9) and

lim VNT(1 = pi) = B, —00 < B < 0. (F28)
Then,
P{Wj3(o00) >0} = P{Z"(0) > N" = K"} - w(—8,/1/0;), as r — oo, (F29)
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where w(x,y) is defined according to (F2/).

The next proposition is analogous to Proposition A.5 for the non-abandonment case. However,
in the context of abandonments we have a result that is somewhat weaker in the sense that we do
not find an exact asymptotic expression for the probability of delay of the high priority, but rather

an asymptotic upper bound.

Proposition F.4. (Probability of Delay) For every r > 0
P{W; 0 NT Y
{ . (OO?]?I } K!,  —KT S ( r r) ’ (F30)
P{Wj(00) > 0} - [Tj=; (pf) "1™k N - K
In particular for K™ = o(v/N") and assuming «(8) > 0 we have

J—1
P{W{ (00) > 0} = O (w(—ﬁ, Vi) H(pZ)K’CH_K’z) ; (F31)
k=i
where p, = Zle N)\—Eu

Proof: By the same considerations as in the non-abandonment case we have that

Zi' AT Kit1—K;
P{W/ (c0) > 0|W; >0 < | == F32
The proof is completed as in the case without abandonment. |

Corollary F.2. (Probability of Abandonment) Denote by P {Ab} the probability of abandon-
ment for class k. Then,
li)m VNTPL{Ab} = Ag,0 < Ag < 00, (F33)
r—00

where Ay, is given by

ap [0k /- W(B\/1[0k) = B - w(=B,\/ufOk) k=]

A = (F34)
0 Otherwise.

r

Here ay is equal to lim —.
r—00 k

Proof: The proof follows from the identity A;P7{Ab} = 6;E[Q"(c0)]. We claim that there exists
M and rg such that for all » > r¢ the sequence E[\/%Q’L}(oo)] can be uniformly bounded by M.
This follows from the construction of the bounding system U" in the proof of Proposition F.3 and

[13]. By the dominant convergence theorem we have the convergence
E[Q}(00)] = E[X(00)]. (F35)
The proof is completed by taking E[X (c0)] from [13]. |
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F.2 Asymptotic Optimality - Cost Minimization

Proof of Theorem 5.1: First, we establish a lower bound for the overall number of abandonments.
We can restrict our attention to preemptive policies. Since all random variables involved here are
exponential, allowing preemption cannot damage the performance when looking at the overall
abandonment rate. Denote by A, a system with the arrival, service and abandonment parameters
as defined in section 5 (In this stage A is not equipped with any routing policy). Denote by B a
system with the same arrival and service parameters but such that the patience parameters are the

same for all classes and are equal to

0= in 6;.
i=1,...,J

Under any non-idling policy, system B behaves (in the sense of the overall abandonment) as a single
class M/M/N + M. We wish to show that system B with a non-idling policy is a lower bound for
any preemptive policy in system A.

Now, note that for any non-idling policy, the average length of the excursions, for the total
number of customers in system, below the level of N is equal for systems A and B. Now, let us
focus on the excursions above N (the positive excursions): it is clear (and can be proved by simple
coupling arguments), that the positive excursions in system B are stochastically larger than the
positive excursions in system A. Furthermore, when visiting state N, the probability of starting a
positive excursion is the same for both systems.

Denote by Y; the stead state overall number of customers in system i, i € {4, B}, by Z; the
steady state number of busy servers, and P;{Ab} the steady state probability of abandonment in

system ¢. Then, for any non-idling policy
P{Ya > N} < P{Yp > N} (F36)
Moreover, since the negative excursions have the same law, we have that
E[Z4|Ya < N = E[Zp|Yp < N| (F37)

Hence, we have that

E[Z4] = E[Za|Ya < NJP{Y4 < N} + NP{Y4 > N} (F35)

IN

E[Zp|Yp < N|P{Yp < N} + NP{Yp > N} = E[Zp].
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But, by Little’s Law

Bz = 2(1 ~ P{AD),

and hence we have that

PA{Ab} > Pp{Ab}. (F39)

So, system B with non-idling policy constitutes a lower bound for system A under any policy.
In particular it constitutes a lower bound for our system with respect to the overall probability of
abandonment.

Having the lower bound, we can now proceed with the asymptotic optimality. By our condition
on the ¢;’s and 6;’s and by Proposition F.2, we have that the lower bound which is c;APg{Ab} is
asymptotically achieved, for any logarithmic threshold level. Finally, if the abandonment costs of
high priorities grow polynomially with r we can still obtain the lower bound by using thresholds

such that the probability of delay for class ¢ is an o(1/N7). [ |

F.2.1 Asymptotic Optimality - Constraint Satisfaction

Another problem of interest, in analogy to (1), is the problem of constraint satisfaction. Particularly,
this problem deals with determining the minimal staffing required to ensure that the probability of
abandonment for class i customers does not exceed a certain level 7;. More precisely, we consider
the following problem: Given 7y,...,n; in the open interval (0,1), find a staffing level N and a
policy 7 such that:
minimize N
subject to Pr(Ab;) <mi, i=1,...,J, (F40)
NeZy, mell
For this problem, attention is restricted to the case in which the bounds on abandonment
probabilities n;, 4 = 1, ..., J are fixed (independently of system size). Under this configuration, the
different classes are allowed to have different service rates (in particular we assume that the service
time of class 7 customers is exponentially distributed with rate ;). The optimal policy in this case
gives rise to a Pool Decomposition solution. That is, it is asymptotically optimal to decompose the
N servers into J groups of servers, such that class ¢ customers are served by group 4 servers only.

The case of n}s which scale with the system load is left for future research.
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In the following, we assume, without loss of generality, that the classes are ordered such that
n > 19 > ... > ny. Also, we assume that class J is non-negligible (condition (9)). Before stating the
asymptotic optimality of the pool decomposition policy we provide a lower bound on the staffing

cost, as stated in the following Lemma.

Lemma F.1. Consider a multi-class system where class i customers have exponential service times
and patience with rates p; and 0;, respectively. Additionally, class i arrival rate is \]. Denote by

(NT)* the optimal solution to (F40). Then,

(NT) *>Z l—m (F41)

Proof: For this proof, and since r is fixed, we omit the superscript for simplicity of notation.
Define T;(t) to be the cumulative time dedicated to service of class i customers up to time ¢.
Define R;(t) to be the number of abandonments from class ¢ until time ¢, A;(¢) to be the number
of arrivals to class ¢ until time ¢, Q;(t) to be the class i queue length at time ¢, and D;(¢) the
number of service completions from class 4 until time ¢. Also, define T'(t) = Z;-]:lTi(t),D(t) =
S D), Q) = XL, Qi(t), R(t) = Y0, Ri(t). Finally, P{Ab} is the overall probability of
abandonment: P{Ab} = ZZ 1 /\P{Ab}

Then, we have:

a; > P{Ab} = h B () = lim

ooA(t) t00 A;(t) e W Vi=1,..J. (F42)

To justify the last equality, note the following:

o A;(t) = oo, as t — 0o. Also A;(t) = N\i(t) + M a(t) where M 4(¢) is a locally square-integrable

martingale for which limy_, MA(%) — 0.

e Steady state exists and hence lim;_, %—Eg — 0.
e D;(t) = wTi(t) + Mp(t) where Mp(t) is a locally square-integrable martingale for which
limy 00 = (()) — 0.

e T;(t) — oo, as t — oo (otherwise limy_, P E ; — 1). Hence lim;_, 32—&? = limy_, %(’t()t)

Note that (F42) can be rewritten as

hml—,ul Ti(t) /it <
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or, alternatively, as

tgrgo T;(t)/t > Z 1 — o).
=1
|
Having the lower bound, we proceed to the definition of asymptotic optimality associated with
this problem:
Definition: Consider the problem (F40). Then, the sequence {N", 7"} is asymptotically opti-

mal with respect to A" if:

e it is asymptotically feasible: limsup,_,,, Prr{Ab;} < n;,Vi=1,...,.J, and,

\TT r

e any other asymptotically feasible sequence of policies { N, #"} satisfies lim inf — = > 1,
r—oo N7 — N"

where N* = 2, 35(1 — m).
The pool decomposition policy, stated in the following theorem is an immediate result of the

lower bound.

Theorem F.2. Consider a sequence of multi-class M/M/N" + M systems indezed by r. Suppose
that class © arrival rate is X\, their service rate is p; and their abandonment rate is 0;. Also,
suppose that the upper bound on class i abandonment probability is n;. Then, the following policy is
asymptotically optimal with respect to (F40): Let the total staffing level be N" = ZiJ:1 LZ: (L—m)],

and partition this server pool into distinct pools of sizes N} = L%(l -n)l, i=1,...J. Serve

class i customers only by servers of pool i (i.e. convert the system into J single class systems).

Proof: The proposed policy and staffing are clearly asymptotically feasible. Each class is now
served in a single class M/M/N + M with ED staffing, and, by the choice of the staffing, the
probability of abandonment for class i is «; (see for example [35]). The optimality is immediate

since the lower bound is approached from below. |

G Efficiency Driven M/M/N

In Section C, we introduced the diffusion limit for the Efficiency Driven M/M/N/{K;} model.
The result there is heavily based on having an Efficiency Driven limit for the single class M /M /N

queue.
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In the next proposition we consider a sequence of M/M/N queues where, for simplicity of
notation, we use the number of servers as the index. We wish to examine the limits obtained in
the Efficiency Driven regime. In particular, we explore the limit when i.e. we fix 6, 1/2 < <1 is

fixed and when AN grow with N in the following manner:
N(1—=pN) = B,0< B <00, as N = 0. (G1)

Our aim is to prove convergence of the process Q~ () (which stands for the total number of
customers in system N at time ¢) to a Reflected Brownian Motion. This result was proved in [36]
for the particular case in which 6 = 1. Essentially, the limit we obtain here is the same as would
be obtained in the conventional heavy traffic regime where the number of servers, N, is held fixed
and the load is increases to one.

Essentially, in order to obtain convergence, it suffices to prove that the time that the process
Q" spends below N becomes negligible as N grows indefinitely. Since the positive part is clearly
the same as in the case of an M/M/1 queue with fast arrivals and fast services, the result will
follow by a time change argument.

The proof of the next proposition is an adaptation of a proof used in [12] (see the proof of part
3 of Theorem 6.2 there. A brief version of the proof can be also found in Garnett et al. [13], where
most of the details are omitted).

Let XN (t) be the scaled process, i.e.

Q¥((N*"'t) - N
N

XN(t) = (G2)

Remark G.1. The condition X (0) > 0 is necessary for the limit process to be continuous on [0, 00).
Otherwise, we would have a limit process that is continuous only on the open interval (0, 00). See

[12] and the references therein for more details on this kind of limits.

Proof of Proposition C.1: The time changed process, when restricting the process to be positive,
is the same as an M /M /1 queue with fast arrivals and fast service and converges by known results
(see for example [20]) to the desired limit. Formally, denote by 7(¢) and 7V (t) the time the

process spends above zero and below zero respectively, i.e.
N ¢
Ty (t) = /0 Lixn(s)>01 45, (G3)
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t
() = / 1xw (o) <0y s, (a4)

Then,

XN o1l = RBM(~Bu,2p), (G5)

where f o g is the composition map (i.e. f o g(t) = f(g(t))). By the random time change theorem

(see for example section 13.2 in [33]) all that is left to prove is that

™ (t) = 0. (G6)

Let us examine the process Q™ (N?~1#). Let AN be the length of the i'* period in which there
is no queue (i.e. QY < 0). Also let BY be the length of the i'* busy period (i.e. QY > 0 during
this times). Let C)¥ = AN + BN, i = 1,2, ... be the length of the i'* cycle, where a cycle consists
of a busy period and a non-busy period. By the Markovian structure of the process {CN}2, is a
sequence of I.I.D random variables.

Let oV(T) be the number of cycles that begin until time 7', or formally
n
oM (T) = min{n : Z cN > T} (G7)
i=1

Then, oV (T) is a stopping time with respect to the sequence {CN'}. What we are seeking to prove
is that
aN(T)
lim P AN =0.
Jim_ {; Y >e=0 (G8)

T)

N
We will prove the convergence of 22;1( AN to zero in £!, which in turn implies convergence in

probability. We will assume for now that Q™ (0) = 0, so that C¥ will have the same distribution
as any other CN. We will relax this assumption later. Note that N°(1 — pV) — 3 implies that
Np— X~ N'79. Now, BY is just a busy period in an M/M/1 queue with accelerated time scale.
Hence,

1 1

E[BZ]V] = NZ=T(Ny — \) ~ BNS (G9)

N%(1 — pN) — B also implies that v/N(1 — p"V) — 0 and hence, following [12] and due to the time

acceleration, we also have that

#1421 =0 () = ().
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where h is the hazard rate function of a standard normal r.v (i.e. h(z) = ¢(x)/(1 — ®(x)). Hence,
we have that E[CN] ~ 6—11\75 From here, following exactly pages (64-67) of [12], with v/N replaced

by N°, h(—p) replaced by 8 and B} replaced by AY, we can conclude that

o™ (T)
lim E AN | =o.
Ngnoo z:zl t 0

It is only left to remove the assumption that Q@ (0) = 0: If X(0) > 0 a.s. the result clearly holds
with a limit that is continuous on [0,00). So, let us assume that X (0) = 0. Whenever Q¥ (0) > 0
the result clearly holds since the time spent below zero would be stochastically smaller than in the
case with @™V (0) = 0. The only problem is when Q" (0) < 0 (remember that we are still dealing
with the case in which X (0) = 0 which means that Q" (0) = o(N~%)).

We will prove that if QY (0) < 0 and X(0) =0

lim E[AY] =0, (G10)
N—o00

and hence the negative part still disappears in the limit. In particular, denote by ijfv ~* the expected

time it takes for the process to arrive from N — k to N. Then

1~ (o )
VN-k < plAN]— IR DR) (G11)

(o)
AN +(N—k+1)p
The above is obtained by a simple adaptation of pages (67-68) in [12]. Now, E[AN] = 0(%) and

the result follows. [ |
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