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The demand for medical treatment of casualties in mass casualty events (MCEs) exceeds resource supply. A key requirement
in the management of such tragic but frequent events is thus the efficient allocation of scarce resources. This article develops a
mathematical fluid model that captures the operational performance of a hospital during an MCE. The problem is how to allocate the
surgeons—the scarcest of resources—between two treatment stations in order to minimize mortality. A focus is placed on casualties
in need of immediate care. To this end, optimization problems are developed that are solved by combining theory with numerical
analysis. This approach yields structural results that create optimal or near-optimal resource allocation policies. The results give
rise to two types of policies, one that prioritizes a single treatment station throughout the MCE and a second policy in which the
allocation priority changes. The approach can be implemented when preparing for MCEs and also during their real-time management
when future decisions are based on current available information. The results of experiments, based on the outline of real MCEs,
demonstrate that the proposed approach provides decision support tools, which are both useful and implementable.
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1. Introduction

Mass Casualty Events (MCEs) occur quickly and sud-
denly. They produce a relatively large number of casual-
ties who need immediate care and thus overwhelm hospital
resources. They frequently occur due to terror attacks, ac-
cidents, or natural disasters. For example, on the morning
of July 7, 2005, terrorists launched a series of attacks across
London that left 56 people dead and 775 injured (Aylwin
et al., 2006); a Buenos Aires train crashed in 2012, resulting
in more than 700 injuries (BBC News, 2012); and our part-
ner hospital has, unfortunately, gathered ample experience
in catering to MCEs after terror events—an experience that
will guide us later on in our examples.

The environment of an Emergency Department (ED) in
a hospital during an MCE is stressful. People run around
frantically, casualties’ cries emanate from the treatment
rooms, and worried relatives hope for encouraging news.
During this time it is imperative to deliberately manage the
event and make, as far as possible, the right clinical and
operational decisions. Figure 1 illustrates the flow of ca-
sualties through a hospital after an MCE. (Our showpiece
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for this article is a large Israeli hospital that has become
experienced in handling emergencies; our modeling frame-
work nevertheless is general and can be easily modified to
accommodate other hospitals.)

On arrival, casualties are triaged and prioritized for treat-
ment according to their medical situation (Mehta, 2006).
There are several triage systems that distinguish between
several classes of casualties (e.g., Lerner et al. (2008)). Our
hospital uses a simple in-hospital triage system that classi-
fies arriving casualties according to one of two categories:
Immediate or Not Immediate. We focus on the former cat-
egory: it concerns casualties who are in danger of dying
unless provided with prompt medical treatment; this en-
tails stabilizing life-saving treatment and for some also an
immediate operation, which underscores the significance of
appropriately managing medical resources.

After an MCE, there is a mounting demand for medical
treatment, typically far in excess of the existing capacity
to administer it. Consequently, the medical staff, and es-
pecially the surgeons who are most frequently the bottle-
neck resource (Hirshberg et al., 1999; Einav et al., 2006),
cannot provide prompt treatment to all casualties. Casu-
alties classified as Immediates are prioritized for prompt
treatment. However, it may turn out to be impossible
to attend promptly to all the Immediates; therefore, the
main objective of MCE management is to minimize their
mortality.
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Fig. 1. An illustration of the flow of casualties through an ED during an MCE. The tilted arrows mark the two stations upon which
we focused.

In this article we develop allocation policies of surgeons
to two treatment stations (marked by the tilted arrows in
Fig. 1), which seek to minimize the overall mortality of
immediate casualties during an MCE.

Our model can be used during preparations for MCEs,
as well as for supporting their real-time management. For
preparations, the resource allocation policies are based on
estimates of reference scenario parameters, such as treat-
ment and mortality rates at a station. For real-time MCE
management the proposed model exploits data that are
continuously being updated as the event unfolds, such as
changes in the initial forecast given for the arrival of casu-
alties. It then solves a rolling horizon resource allocation
problem.

Our work can be considered as the analysis of a two-stage
tandem queueing system with flexible servers, customer
abandonments, and time-varying arrivals; the literature
on tandem queueing systems, however, is mostly focused

on steady-state without abandonments (Ahn et al., 2002;
Andradottir and Ayhan, 2005). Our approach also dif-
fers from most operations management research on MCEs,
which commonly uses simulations for modeling and evalu-
ation of alternative management policies (Hirshberg et al.,
1999; Sinreich and Marmor, 2004; Paul et al., 2006). Al-
though the benefit of complex systems simulation cannot be
underestimated, it provides limited structural insights, and
conceivably cannot (yet) support real-time management of
MCEs. We follow the emerging stream of research whereby
fluid models support healthcare operations management
(Yom-Tov, 2007; Argon et al., 2008). We thus propose a
fluid modeling framework that is suitable for capturing the
transient finite-horizon evolution (as opposed to steady-
state) of MCEs. This framework calls for a focus on time-
inhomogeneous predictable variability, which fluid models
ideally capture. Thereafter, we use our framework to iden-
tify structural properties of stylized fluid models. These
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structural properties yield management policies that min-
imize the number of fatalities. The suggested policies are
both insightful and implementable.

The article is organized as follows. We review the rele-
vant literature in the next section. Section 3 describes MCE
environments, modeling assumptions, and the model for-
mulation. Section 4 contains an analysis of optimal re-
source allocation policies and provides managerial insights
for applying them. In Section 5, we apply and test our
results against the outline of two MCEs. Section 6 ex-
tends the model to cases where resource allocation deci-
sions are made periodically and to real-time management of
MCEs. The final section offers worthy directions for further
research.

2. Literature review

Our approach follows two streams of research: MCEs and
fluid models. In this section we briefly review the relevant
literature from both streams and the one example we found
that combines the two. The MCE-related literature is di-
verse: it analyzes clinical (Hirshberg et al., 2001; Hirshberg
et al., 2005; Aylwin et al., 2006), social science (Hughes,
1991; Altay and Green, 2007; Merin et al., 2010), and op-
erational aspects. We focus on operational aspects for which
the relevant research is limited (Altay et al., 2007) and the
problems are challenging, even when compared with the
clinical aspects (Waeckerle, 1991).

When an MCE occurs the Immediates are treated first
(Lerner, 2008). The main objective is then to reduce the
mortality of its treated casualties by providing them with
a “level of care that approximates the care given to simi-
lar casualties under normal conditions” (Hirshberg et al.,
2001; Hirshberg et al., 2005, p. 647).

With that in mind, we seek to develop resource manage-
ment policies that minimize the mortality of Immediates
during an MCE. The need for such policies becomes clear
from their in-practice application: one example is the Is-
raeli field hospital in Haiti that was established after the
January 2010 earthquake; it treated approximately 100 ca-
sualties per day and had a capacity of 60 beds that was
later increased to 72 beds. Kreiss et al. (2010) and Merin
et al. (2010) reported that dynamic resource allocation and
staffing enhanced the efficiency of that hospital.

Several researchers have dealt with resource alloca-
tion during MCEs. Argon et al. (2008) developed state-
dependent heuristic prioritization policies for casualties
being treated by a single-server clearing system. Casual-
ties who are not treated within their “lifetime” die and
the objective is to maximize the expected number of sur-
vivors. Jacobson et al. (2012) extended the latter research
to consider different mortality probabilities for different
types of casualties and multiple resources. Both these mod-
els assume that all casualties are available at the outset
of the MCE, triaged to different priority categories, and

that there is a single station. Mills et al. (2013) examined a
possible scenario for these models—the evacuation by am-
bulances of casualties from an MCE arena to a hospital.
They developed prioritization policies for different casu-
alty classes that were triaged in situ. Our model’s focus is
on the ED arena where casualties arrive continuously, and
the surgeons are required to be in two different places “at
once” in order to take care of a single type of casualties (i.e.,
Immediates). Our choice of surgeons as the scarce resource
is supported by the experience of our hospital partners, as
well as by Einav et al. (2006). The latter collected their data
at trauma centers in Israel from 32 MCEs caused by sui-
cide bombings. Their analysis indicates that the surgeons
represent a scarce resource that is needed in the ED and the
operating rooms simultaneously.

Our model also contributes to the almost non-existent
literature about designing the surge capacity of a hospital.
Hick et al. (2004, p. 254) defined surge capacity as the “abil-
ity to manage a sudden, unexpected increase in patient vol-
ume (i.e., number of patients) that would otherwise severely
challenge or exceed the current capacity of the health care
system.” Examples of fundamental questions that must be
addressed when designing surge capacity are: how many
casualties are expected at the different treatment stations
concurrently, and what is the estimated time from the start
of the event until the peak demand at these stations. The
definition of what constitutes surge capacity varies; it typ-
ically follows rules of thumb such as, when determining
surge capacity by the percentage of the hospital’s bed ca-
pacity (e.g., the Israeli Ministry of Health sets a hospital’s
surge capacity at 20% of its beds). At other times, surge
capacity is set according to a fixed number of casualties
based on past events (Kosashvili et al., 2009), simulations
of performance as a function of the casualties arrival rate
(Hirshberg et al., 2005), or the time between the start of
an MCE until the trauma teams reach their full capacity
(Hirshberg et al., 2010). As a by-product of our approach,
which finds the best resource allocation policies to mini-
mize mortality, we forecast the time and magnitude of the
peak demand at the treatment stations. Our model can thus
be used to support decisions for designing surge capacity by
performing a sensitivity analysis on the level of resources,
consequently estimating the allowed time from the start of
an event to when an increase in capacity is needed (e.g.,
recruit surgeons from the hospital or, alternatively, direct
casualties to other hospitals).

Simulation is widely accepted as an effective method for
assisting management in healthcare decision making. The
simulation model of Sinreich and Marmor (2004) is an
excellent example of this approach. It was developed for
short-term operational planning in EDs. Based on data
from 12 urban terrorist bombing events, Hirshberg et al.
(1999) developed a simulation model of an ED during such
events. They concluded that the surge capacity of a hospi-
tal depends primarily on the number of available surgeons;
they then defined an optimal staff profile for surgeons and
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trauma nurses that arise as the scarce resources. Paul et al.
(2006) used simulations for predicting casualties’ waiting
times, and for estimating hospitals’ capacities within a dis-
aster region.

We use fluid models that account for the transient nature
of MCEs. We adopt this approach because of its analytical
tractability, which leads to optimal policies for simple, yet
realistic, MCE scenarios. In such models, the entities that
move through the system (e.g., casualties) are assumed to
be fluid and so the flow can be described through differ-
ential equations. The literature indicates that fluid models
(or approximations) are accurate for heavily loaded ser-
vice systems. For example, Mandelbaum, Massey, Reiman,
and Rider (1999) and Mandelbaum, Massey, Reiman, and
Stolyer (1999) developed fluid approximations for a multi-
server single queue with abandonment and retrials. The
model was proven accurate both in its steady state and in
its transient state; the latter was caused by a sudden peak
in the casualties’ arrival rate, as is typical during an MCE.
Mandelbaum, Massey, Reiman, and Stolyer (1999) showed
that waiting time approximations are asymptotically exact
as the size of the system increases. Our model exploits per-
formance measures, such as the time-varying number of
people in the system and the number at each station, which
allow one to develop resource allocation policies. Fluid
models of service systems have been extended to include
state-dependent arrival rates and general arrival and ser-
vice rates (Whitt, 2005, 2006).

Fluid models have been successfully implemented in
different types of service systems. These cover the early
applications for post offices, claims processing in a Social
Security office (Oliver and Samuel, 1962; Vandergraft,
1983), and more recently a financial service call center
(Green et al., 2005).

The research setting of Yom-Tov (2007) is perhaps the
closest to ours. She developed fluid and diffusion limits for
the Erlang-R model, which accommodates returns of cus-
tomers to service. These limits lead to fluid approximations
that are not only useful in analyzing time-varying systems,
but they also help understand their transient behavior. Her
model was used to analyze MCEs in which the arrival rate
changes rapidly during a short period of time. A numeri-
cal example in which the arrival rate is multiplied fivefold
over 2 hours was simulated and compared with its fluid and
diffusion approximations. The comparison demonstrated a
high degree of accuracy.

Our model differs from the existing literature in two fun-
damental ways: first, it deals with a situation in which the
casualties arrive at a hospital according to a general arrival
rate and, second, we explicitly consider two stations, in
tandem, where medical treatment is delivered by the same
scarce resource.

Our primary focus is to minimize the number of mor-
talities, and so we seek resource allocation solutions and
policies for planning and real-time management of MCEs.
Note that prior research, which dealt with our problem

specification, presents results of simulations and numerical
analysis that can be computationally intensive and provides
limited general insight.

3. The model

This section starts with a discussion of the environment,
the assumptions that we make, and the dynamics during
an MCE. In subsection 3.2 we introduce notations and
formulate the problem.

3.1. The model’s environment, assumptions, and dynamics

We model part of an ED in a hospital during an MCE.
As explained, we presume that surgeons are the bottleneck
resource during MCEs.

Our fluid model approximates ED dynamics during an
MCE. Casualties arrive at the ED continuously (e.g., a
given reference scenario). If there are enough resources,
then casualties are admitted for treatment, which is either
life-saving (Station 1) or an operation (Station 2). These
are performed at a known service rate. Casualties may die
either during treatment or while waiting for it. The mor-
tality rates can be different at different stations. Mortality
rates can be interpreted as either fatality rates of casual-
ties or as operational constraints. In the latter case, they
are the reciprocals of the average maximum allowable time
for a casualty to complete treatment, in order to avoid fa-
tality (Paul et al., 2006). We assume that mortality rate is
constant for each station, which enables explicit analytical
solutions and structural insights and, equally important,
it is reasonable since it does in fact capture the underly-
ing stochastic death times—some long, others short. Our
models can nevertheless accommodate differing rates, or
merely constraints on waiting times, albeit at the cost of
insight and tractability. One could also argue in favor of
stochastic dependence of death times across stations, but
this would lead to far more complicated models (Pang and
Whitt, 2012), which we leave for future research.

As common in practice, we assume that one surgeon
treats a single casualty at either one of the stations
(Hirshberg et al., 1999; Aylwin et al., 2006). It is worth
noting that one surgeon may treat several mortal-risk ca-
sualties at the same time in response to a specific real-time
crisis. However, this is undesirable and does not change the
medical policies; therefore, we do not take such an option
into account. We believe that the preparation for an MCE
should be based on a model that takes the standard medi-
cal practices into consideration. Moreover, our belief is that
real-time emergency decision making may relax some of the
assumptions that we made during the preparation phase,
as a prompt solution to a local crisis. There is also a tech-
nical reason for assuming the constant casualty–surgeon
ratio—it facilitates the model’s formulation; changing it
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Fig. 2. Casualties flow in a two-station network.

will significantly complicate the model and the structural
results that we achieve.

The routing probabilities and the duration of treatments
in Fig. 1 were estimated by expert trauma doctors. Never-
theless, our modeling framework is general and we analyze
different scenarios. The tilted arrows in Fig. 1 mark the
two stations on which we focus, while Fig. 2 introduces
the corresponding basic stylized model, which captures the
conflict of surgeon allocation.

The sequence of events for Fig. 2 is as follows:

1. Immediate casualties arrive at Station 1 after being
triaged. We assume that all Immediates share similar
(severe) clinical assessment. Their flow through the net-
work would therefore be according to first-come first-
served priority.

2. An Immediate who enters Station 1 at time t receives
life-saving treatment if at least one of the N1(t) surgeons
is available; if not, she or he waits for treatment.

3. With probability p12, the casualty who finished treat-
ment at Station 1 is directed to Station 2, where N2(t)
surgeons are allocated. An available surgeon starts treat-
ment immediately; alternatively, the casualty must wait
for a surgeon who is in the middle of treatment.

4. Treatment rates are μ1 and μ2 for Stations 1 and 2,
respectively.

5. Casualties may die either while waiting for or receiving
treatment. The mortality rates are θ1 and θ2 for Sta-
tions 1 and 2, respectively. A reasonable assumption is
that θ1, θ2 � 1 (time units throughout the article are in
minutes).

6. The “effective” treatment time for a casualty treated at
a station includes the duration of the treatment and any
time delay caused by unavailable surgeons.

Treatment may take place at a station only if the necessary
resources (e.g., surgeons, operating rooms, and medical
equipment) are available. We assume that the only con-
straining resources are the N surgeons who are available
at the hospital, or formally N1(t) + N2(t) ≤ N, at all times
t ≥ 0 during the MCE.

Our key technique is to prepare for an MCE by assum-
ing a reference scenario and finding the best decisions for

the surgeon allocations. These decisions impact the wait-
ing times of casualties, their flow through the network,
and their likelihood of survival. Our fluid model approach
captures the dynamic nature of an MCE and suggests dy-
namic policies; these may be ignored if we either assume
time-homogenous parameters (e.g., constant arrival rate)
or use a steady-state model (e.g., steady-state simulation or
queueing theory approximations).

The fluid model serves as an approximation of the un-
derlying stochastic environment in which arrivals, mortal-
ity, treatment times, and the other parameters are random
variables. Therefore, in addition to the support from the
literature that fluid models should provide good approxi-
mations of their corresponding stochastic environment, we
conducted experiments to validate the accuracy of our fluid
model when used to capture our specification of the prob-
lem as presented in Fig. 2. These experiments, each using
500 simulation replications, compared the fluid model re-
sults against a discrete-event stochastic simulation in which
casualties arrive according to a non-homogenous Pois-
son process that was used to represent a general, time-
dependent arrival rate; treatment durations were randomly
generated from exponential distributions. In all cases, the
fluid model forecasted, rather accurately, the stochastic be-
havior of the corresponding simulation in that its results
were nearly always within the bounds of the 95% simu-
lation confidence interval and always within the (wider)
bounds of a 99% confidence interval (Fig. 3 is a represen-
tative example).

3.2. Model formulation

Table 1 includes the notations used throughout the arti-
cle. Whenever possible we suppress subscripts to improve
readability.

We assume that by the time the first casualty arrives
at the hospital all prior casualties will have been cleared.
We then choose T to be large enough to ensure that
the last casualty has completed treatment by time T ;
[0, T] is hence the time interval over which our model is
formulated.
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Fig. 3. The number of casualties in Stations 1 and 2 (Q1 and Q2)
as a function of time—simulation and fluid model results. The
upper and lower dotted lines are, for each station, the upper and
lower limits of a 95% confidence interval respectively, and the
solid lines correspond to the fluid model.

First we introduce a continuous optimization problem
with its objective to minimize total mortality:

min
N1(·),N2(·)

∫ T

0
[θ1 Q1(t) + θ2 Q2(t)]dt,

such that for all t ∈ [0, T] :
•

Q1(t) = λ(t) − μ1(Q1(t) ∧ N1(t)) − θ1 Q1(t),
•

Q2(t) = p12μ1(Q1(t) ∧ N1(t)) − μ2(Q2(t) ∧ N2(t))
− θ2 Q2(t),

N1(t) + N2(t) ≤ N,

N1(t), N2(t), Q1(t), Q2(t) ≥ 0,

Q1(0) = 0, Q2(0) = 0.

Next we approximate the above problem by discretizing
time. The discrete-time formulation has two advantages.
The problem can be transformed, as we show in the follow-
ing, into a standard Linear Program (LP), which is easy to
solve even for a large number of variables and constraints.

Table 1. Notation

Variable Definition

i Identifies a treatment station
λ(t) Arrival rate at Station 1 at time t
Ni (t) Number of surgeons at Station i at time t
N Number of available surgeons
S Minimal time window for changing resource

allocations
μi Treatment rate at Station i per surgeon
θi Mortality rate at Station i
Qi (t) Number of casualties at Station i (in queues

and in treatment) at time t

The second advantage is that the discrete-time formulation
can naturally accommodate constraints, which are linked
to discrete time points (e.g., change resource allocations
only every 30 minutes). Naturally, as the discrete time step
gets smaller the approximation gets better:

(P1):

min
N1(·),N2(·)

T∑
t=0

[θ1 Q1(t) + θ2 Q2(t)],

such that for t = 0, 1, . . . , T − 1 :
Q1(t + 1) = Q1(t) + λ(t) − μ1(Q1(t) ∧ N1(t))

− θ1 Q1(t),
Q2(t + 1) = Q2(t) + p12μ1(Q1(t) ∧ N1(t))

− μ2(Q2(t) ∧ N2(t)) − θ2 Q2(t),
N1(t) + N2(t) ≤ N,

N1(t), N2(t), Q1(t), Q2(t) ≥ 0,

Q1(0) = 0, Q2(0) = 0.

For concreteness, we assume that the length of a time in-
terval is 1 minute.

Problem (P1) is not linear due to the minimum between
the number of casualties at a station and the number of
surgeons who treat them. We propose an equivalent con-
straint formulation that is linear. The new formulation of
Problem (P2) forces the number of surgeons at a station
to be smaller or equal to the number of casualties at that
station and avoids redundant allocations.

Proposition 1. The optimal solutions for Problem (P1) are
the same as those for the following Problem (P2):

(P2):

min
N1(·),N2(·)

T∑
t=0

[θ1 Q1(t) + θ2 Q2(t)],

such that for t = 0, 1, . . . , T − 1:
Q1(t + 1) = Q1(t) + λ(t) − μ1 N1(t) − θ1 Q1(t),
Q2(t + 1) = Q2(t) + p12μ1 N1(t) − μ2 N2(t) − θ2 Q2(t),
N1(t) ≤ Q1(t),
N2(t) ≤ Q2(t),
N1(t) + N2(t) ≤ N,

N1(t), N2(t), Q1(t), Q2(t) ≥ 0,

Q1(0) = 0, Q2(0) = 0.

(Proofs for the propositions are provided in the Online
Supplement.)

Proposition 1 not only helps mathematically by turning
the formulation linear but it also frees up any redundant
resources by forcing the allocations to be tight, which in-
creases the operational flexibility of the decision maker.

Some additional mathematical manipulations yield LP
(P3), which is more amenable for analysis. Note that in
all of our formulations, there is an underlying assumption
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that resource allocations of surgeons can be changed at any
time, thus preempting treatments. This assumption is rea-
sonable for MCEs that operate under heavy traffic regimes
for which it has been proved (e.g., Atar et al., (2004)) that
a non-preemptive policy is asymptotically equivalent to its
preemptive counterpart. In reality it is common that allo-
cation updates follow periodic assessments (e.g., every 30
minutes). In Section 6 we deal with such constraints and
analyze their impact.

Proposition 2. The formulation of Problem (P2) is equiva-
lent to the following formulation (P3):

(P3):

min
N1(·),N2(·)

T−1∑
t=1

{
N1(t)μ1

[
(1 − θ1)T−t − 1

− p12
[
(1 − θ2)T−t − 1

]] + N2(t)μ2
[
(1 − θ2)T−t − 1

]}
,

subject to
N1(1) = 0,

μ1 N1(1) + N1(2) ≤ λ(1),
(1 − θ1)μ1 N1(1) + μ1 N1(2) + N1(3) ≤ (1−θ1)λ(1) + λ(2),
...
(1 − θ1)T−3μ1 N1(1) + (1 − θ1)T−4μ1 N1(2) + · · ·

+ N1(T − 1) ≤ (1 − θ1)T−3λ(1) + (1 − θ1)T−4λ(2) + · · ·
+ λ(T − 1),

N2(1) = 0,

μ2 N2(1) − p12μ1 N1(1) + N2(2) ≤ 0,

(1 − θ2)μ2 N2(1) − (1 − θ2)p12μ1 N1(1)
+ μ2 N2(2) − p12μ1 N1(2) + N2(3) ≤ 0,

...
(1 − θ2)T−3μ2 N2(1) + (1 − θ2)T−3p12μ1 N1(1)

+ (1 − θ2)T−4μ2 N2(2) − (1 − θ2)T−4p12μ1 N1(2) + · · ·
· · · + μ2 N2(T − 2) − p12μ1 N1(T − 2) + N2(T − 1) ≤ 0,

N1(t) + N2(t) ≤ N, t = 0, 1, . . . , T − 1,

N1(t), N2(t) ≥ 0, t = 0, 1, . . . , T − 1.

Problem (P3) is solved by standard LP techniques (we used
Matlab and Mosek toolbox; www.mosek.com) to find op-
timal dynamic surgeon allocations. In the next section we
analyze the problem to identify structural properties of op-
timal policies.

4. Problem analysis

When surgeons are overloaded, the decision maker must
prioritize them to either Station 1 or Station 2. The opti-
mal allocation policy can be dynamic, in which priorities
change (e.g., first prioritize Station 1 and at some later time

prioritize Station 2), or static, in which priorities are kept
fixed throughout the event.

In this section we characterize optimal priority settings
for various scenarios, which are then followed by an analysis
of each scenario. We start by introducing a greedy formula-
tion for the optimization problem. This greedy formulation
identifies, at each discrete time point t = 0, 1, . . . ,T − 1
(t is the starting time of interval t + 1), the surgeon allo-
cations N1(t), N2(t) that minimizes mortality over interval
t + 1 only. To this end, we formulate a sequence of contin-
uous Knapsack problems (Kellerer et al., 2004, pp. 17–20),
indexed by t = 0, 1, . . . ,T − 1. Problem t corresponds to
time interval t, and it uses the quantities λ(t), Q1(t), Q2(t)
that are known at the end of interval t − 1. Formally, for
t = 0, 1, . . . ,T−1, the problem is
(P4):

max
N1(t),N2(t)

N1(t)μ1[θ1 − p12θ2] + N2(t)μ2θ2,

subject to
N1(t) ≤ Q1(t),
N2(t) ≤ Q2(t),
N1(t) + N2(t) ≤ N,

N1(t), N2(t), Q1(t), Q2(t) ≥ 0.

Proposition 3 characterizes the optimal allocation policy
for the greedy Problem (P4). (Its proof is provided in the
Online Supplement.)

Proposition 3. An optimal policy for the greedy problem
(P4) is to allocate to Station i∗ all of the surgeons it requires
from the N available, where i∗ = 1 if μ1 (θ1 − p12θ2) ≥ μ2θ2
and i∗ = 2 otherwise; if there are still available surgeons left
then allocate them to the other station.

In other words, the prioritized (higher priority) Station i
is allocated all its needed resources, to the extent possi-
ble: min(Qi (t), N) surgeons; any remaining surgeons are
assigned to the other station.

Note that for equal mortality rates, Proposition 3 de-
termines station priorities according to the relative values
of μ1 (1 − p12) and μ2. The greedy policy plays an impor-
tant role in solving our original problem, as formulated
in Problems (P1) to (P3). This role emerges by identifying
nine cases, according to all possible combinations between
μ1 (1 − p12) and μ2, θ1 and θ2.

In the first three cases, mortality rates are equal. Case
1: θ1 = θ2 and μ1 (1 − p12) = μ2; Case 2: θ1 = θ2 and
μ1 (1 − p12) > μ2; Case 3: θ1 = θ2 and μ1 (1 − p12) < μ2.
For the next three cases the mortality rate is higher at
Station 1. Case 4: θ1 > θ2 and μ1 (1 − p12) = μ2; Case
5: θ1 > θ2 and μ1 (1 − p12) > μ2; Case 6: θ1 > θ2 and
μ1 (1 − p12) < μ2. For the last three cases Station 2 has
a higher mortality rate, Case 7: θ1 < θ2 and μ1 (1 − p12) =
μ2; Case 8: θ1 < θ2 and μ1 (1 − p12) > μ2; Case 9: θ1 < θ2
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Table 2. Summary of suggested priority settings of surgeon allocations

Conditions θ1 = θ2 θ1 > θ2 θ1 < θ2

μ1 (1 − p12) = μ2 Station 1 or 2—equal
performance (Case 1)

Station 1 (Case 4) Station 2 (Case 7)

μ1 (1 − p12) > μ2 Station 1 (Case 2) Station 1 (Case 5) Prioritize Station 1 and switch
priorities at some t (Case 8)

μ1 (1 − p12) < μ2 Station 2 (Case 3) Prioritize Station 2 and switch
priorities at some t (Case 6)

Station 2 (Case 9)

and μ1 (1 − p12) < μ2 (Table 2 lists these cases and their
suggested priority settings, which we develop in the follow-
ing discussions).

It turns out that the sequence of greedy solutions, via
Problem (P4), in fact solves Problem (P3) when the mor-
tality rates at both stations are equal (i.e., Cases 1 to3).
Formally:

Proposition 4. Assume that θ = θ1 = θ2. Then an optimal
solution of Problem (P3) is given by any sequence of greedy
solutions for Problem (P4).

The proof of this last proposition is rather tedious; hence,
it is placed in the Online Supplement. The proof yields a
static priority rule for an optimal surgeons’ allocation.

We now extend Proposition 4 to some cases of unequal
mortality rates, which we formalize as Proposition 5.

Proposition 5. If Station i gets priority when θi = θ j , then it
will get priority when θi > θ j .

The details of the induction-based proof appear in the On-
line Supplement. The proposition explicitly identifies opti-
mal allocation policies for Cases 4, 5, 7, and 9.

We are left with two more cases to consider—Cases 6 and
8. For these two cases, we have no closed-form analytical
solution for the optimal policy. However, extensive numer-
ical experiments suggest that, in these cases, the optimal
policy switches station priority at some point in time, and
in all experiments there was only a single such switch time.
For Case 6, priority is first given to Station 2 and at some
time switches to Station 1. Case 8 is the opposite: Station 1
is prioritized first, and at some later time priority is given
to Station 2. Note that, in both cases, the priority switch
point can be found by merely solving an LP optimization
problem. Nevertheless, it is of interest to provide insights
about the differences between greedy non-switching poli-
cies and the optimal policies for Cases 6 and 8. Obviously,
the simpler non-switching priority setting would be attrac-
tive if the difference between its solution value (e.g., the
number of mortalities) and the solution value of Problem
(P3) is small.

To quantify the advantage of optimal over greedy (non-
switching) policies, we sought parameter values that lead

to the largest difference. (We restricted attention to param-
eter ranges that are practically realistic.) The full details
are presented in the Online Supplement (noted as Cases
6 and 8—analysis results). Based on our numerical anal-
ysis, we expect that when the greedy solution prioritizes
the same station that the optimal solution prioritizes first,
the incremental cost of using the greedy policy will be very
small—less than 0.1% for the worst case. When the greedy
solution prioritizes a station that is different from what
the optimal solution prioritizes first, then the cost of us-
ing the greedy solution may be higher (e.g., 10%) in the
worst case. For these cases, which can be identified in ad-
vance by comparing the characteristics of Cases 6 and 8
(e.g., for Case 6 priority is first given to Station 2) with
the corresponding greedy solution, our recommendation is
to solve Problem (P3) and identify explicitly the priority
switch time.

The suggested allocation policies to Problem (P1) are
listed in Table 2; similar to above, they are classified by the
relationships between μ1 (1 − p12), μ2, θ1, and θ2.

The entries in the table indicate which station enjoys the
higher priority: this high-priority station enjoys all of the
surgeons it needs, to the extent possible, while the other
station gets the rest, if any. Table 2 covers all of our nine
cases, according to the relations between μ1 (1 − p12), μ2,
θ1, and θ2. It can be used to determine an allocation policy
for environments that resemble our model of two serial sta-
tions, as well as for other possible types of MCEs, such as
road or railroad accidents, radiation or chemical materials
leakage, and terrorist bombings. Although it seems difficult
to match an MCE type to its optimal allocation policy, the
expert trauma doctors with whom we consulted suggested
that most accidents and terrorist bombing events could be
classified as Case 5. In such events, it is expected that the
mortality rate at Station 1 will be higher than in Station
2; the average time of life-saving treatment is estimated at
30 minutes, and about 25% of the casualties will need an
operation that lasts about 100 minutes on average. Under
such conditions (or similar), Table 2 suggests that an opti-
mal policy would be to prioritize Station 1 throughout the
event. It was reassuring to learn from experienced trauma
doctors, who had not been exposed to Table 2, that given
an additional surgeon during such an event, they would
intuitively allocate that surgeon to Station 1.
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5. An analysis of two MCE scenarios

In this section we demonstrate the application of Table 2
results to reference MCE scenarios. To be as realistic as
possible, we used two scenarios that are based on actual
terror attacks. Specifically, we analyzed the results with the
medical overseer of the events and found that our model
provides logical and coherent management policies.

In both scenarios, the ambulances that were sent to
transport the Immediates to the hospital had to return
to the MCE scene for remaining casualties. One of the
events occurred relatively far from the hospital and the
other was close by, which gave rise to differing demand
patterns for medical treatment (two waves of arrivals). For
the more distant event, the waves of arrivals are twice the
life-saving treatment duration from each other; for the close
event it takes only half life-saving treatment time from the
last first-wave arrival until the first second-wave arrival.
The two scenarios (1 and 2) have the following parame-
ters: μ1 = 1/30, μ2 = 1/90, θ2 = 1/300, θ2 = 1/900, p12 =
0.33, N = 10.

Table 2 indicates that, in both events, the optimal policy
is to prioritize life-saving treatments over operations. The
optimal policy for the more distant event is presented in
Fig. 4(a): upon the arrival of the first wave of casualties,
all surgeons are allocated to life-saving treatments; then in
anticipation of the second wave, some surgeons continue
with their patients to surgery but, within an hour or so, all
are again reallocated to life-saving treatments, and so on. In
contrast, for the event that occurred near the hospital, the
surgeons are allocated to the life-saving treatment policy
and move gradually into the operating rooms only when
the number of Station 1 casualties gets lower than N. The

information gained from allocating surgeons to treatment
stations (life-saving versus operating) provides recommen-
dations for management policies that can be used to pre-
pare for similar MCEs. Furthermore, these insights also
help resolve clinical/operational tradeoffs (e.g., will a sur-
geon who performed a life-saving treatment on a casualty
also perform the corresponding operation?).

6. Real-time MCE management

In the previous sections we developed a model for planning
preparedness for MCEs. It uses reference scenarios (e.g.,
known casualties’ arrival rates) and finds optimal resource
allocation policies. The decision makers can draw insights
and prepare their staff according to corresponding guide-
lines. If, for example, according to the relevant reference
scenarios, priority should be given to Station 2, then this
should be exercised and backed up by appropriate routines.
An example of a routine that gives priority to Station 2 and
also has clinical advantages is one that guides surgeons, who
performed life-saving treatment on a casualty that turns out
to need an operation, to continue this casualty’s treatment
and perform the operation.

In this section we turn to real-time decisions. Specifi-
cally, we extend the approach that was developed in the
previous sections to support real-time allocation decisions
in MCEs. In order to ultimately make wise decisions,
the common practice in crisis events, such as an MCE,
is to perform periodic assessments to review the current
status and future forecasts. The information about fore-
casted arrivals, current load of casualties, and available re-
sources is constantly updated and verified. Standard data
analyses of the ongoing event can reveal that parameters

Fig. 4. A dynamic allocation of surgeons to two treatment stations, life-saving followed by operating, so as to minimize mortality
during an MCE. (a) This plot represents an event that took place far from the hospital; hence, the arrival waves are 60 minutes apart,
and (b) represent an event at closer proximity where the arrival waves are 15 minutes apart. N1 and N2 are the optimal surgeon
allocations to Stations 1 and 2. Lambda, Q1, Q2 are casualties’ arrival rates and the number of casualties at Stations 1 and 2; N is
the total number of allocated surgeons and the maximal number of surgeons is limited to 10 (N ≤ 10).
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such as the arrival rates, actual mortality rates, and treat-
ment times are different than assumed in the reference
scenarios (e.g., due to the nature of injuries or misinfor-
mation), which may change the resource allocations and
sometimes the priorities between the treatment stations.
It is important in these cases to take an approach that
bases decision making on the most current information.
We adopt such an approach. Based on current estimates
of the situation, we take a rolling horizon approach that
solves the optimization problem (P5) to optimality, at each
status assessment, to find the optimal resource allocations
from that point onwards. These allocations, as well as the
station priorities, may turn out different from those that
resulted from the planning models. In this section, we as-
sume that allocations must follow periodic situation assess-
ments that take place every S minutes, where S is the min-
imal time window in which allocations can be practically
changed.

To recapitulate, the main two differences between the
planning models introduced earlier and the one presented
in the sequel are: first, for real-time management, we use
the most updated information about the event, which is
constantly being updated and may be different from the in-
formation used for the planning models; and second, unlike
prior models, we allow the resource allocations to change
only after status assessments.

In the formulation of Problem (P2) and Proposition 1, we
introduced constraints that force the number of surgeons to
be smaller or equal to the number of casualties at a station.
Clearly, these constraints are not feasible under the new
assumption of periodic allocations. We thus develop a lin-
ear formulation, Problem (P5), which includes constraints
to ensure that allocations are set periodically and enables
a solution to be reached by means of commercial software
packages. The details of developing the formulation are
presented as Proposition 6 in the Online Supplement.

(P5):

min
N1(·),N2(·)

T∑
t=0

[θ1 Q1(t) + θ2 Q2(t)],

such that for t = 0, 1, . . . , T − 1:
Q1(t + 1) = Q1(t) + λ1(t) − μ1 Z1(t) − θ1 Q1(t),
Q2(t + 1) = Q2(t) + p12 × μ1 Z1(t) − μ2 Z2(t) − θ2 Q2(t),
N1(t) + N2(t) ≤ N,

Zi (t) ≤ Ni (t), Zi (t) ≤ Qi (t) i = 1, 2,

Zi (t) ≥ 0,Ni (t) ≥ 0, Qi (t) ≥, Qi (0) = 0 i = 1, 2,

and
Ni (u) = Ni (u + 1) = ... = Ni (u + S − 1)

i = 1, 2; u = 0, S, 2S... 	T/S
 S.

Variables Zi (·) are added to formulate the problem
as a linear one. Formulation (P5) is updated as time
progresses: for example, at the first time assessment

the original constraints Q1(0) = Q2(0) = 0 are replaced
by Q1(S) = Q1,s and Q2(S) = Q2,s . The latter values,
Q1,s and Q2,s , are determined according to the actual num-
ber of people observed at each station at time S, and so the
problem is solved from time S onwards (T can be updated
and should be long enough to ensure that the last casualty
is treated) using the most updated information regarding
casualty arrivals, mortality rates, treatment rates, the total
number of surgeons, etc.

To make things concrete, we provide two illustrative ex-
amples. Their parameters were fit to the outlines of a terror
attack that happened in Israel in 2003; parameters such as
mortality rates and treatment times were estimated by the
event’s manager (an M.D.). We manipulated the original
arrival rate of the event and assumed that it is a quadratic
function to illustrate an event that lasts for several hours.
The specific details are as follows:

μ1 = 1/30, μ2 = 1/100, θ1 = 1/300, θ2 = 1/900,

p12 = 0.25, N = 10,

λ(t) = −1 × 10−5t2 + 0.0044t, 0 ≤ t ≤ 440.

A status assessment takes place every hour (S = 60) in
which new information is revealed and new allocations can
be made. For the first example, our reconstruction of the
status assessments assumes that in the first three assess-
ments the situation appears worse than originally thought,
and the forecast for the arrival rate is 10% higher; from that
point forward the arrival forecasts do not deviate anymore
from the original forecasts. This example fits a common sit-
uation whereby in the early stages of an event there is ample
uncertainty and confusion as to how it will develop; after
some time, however (e.g., after all the casualties have been
triaged at the scene, waiting for transport to the hospital),
the forecasts prove to be somewhat accurate. Figure 5 de-
scribes subsequent solutions of Problem (P5) at four time
points (t = 0, 60, 120, and 180) and the resulting resource
allocation policies. The t = 0 solution can be considered
as the reference scenario solution and the next solutions at
each of the following status assessments take into consider-
ation updated information and allocate to Station 1 more
resources for longer time periods. The event’s manager can
prepare for these changes in the original reference scenario
solutions. For this scenario, it is preferable to apply the real-
time management solutions over the initial allocation that
was found at t = 0. The benefit amounts to 24%, whereby
reducing the mortality of the Immediates from 35.5
to 27%.

The second example demonstrates a switch in priorities
during the MCE due to a change in the event’s parameters.
Merin et al. (2010), who operated a field hospital after the
massive earthquake in Haiti, provide evidence of changes
in the types of injuries and mortality rates between casual-
ties who arrive first and those who arrive later. For the sake
of our example, we assume that during the fourth situation
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Fig. 5. Optimal resource allocation solutions for different time points 0, 60, 120, 180, corresponding to (a), (b), (c), and (d), respectively.
The dotted lines in (b), (c), and (d) represent the resource allocations that were found at t = 0 and the solid lines represent the optimal
allocations based on updated information.

assessment, 240 minutes after the start of the event, data
evaluations revealed that mortality rates are equal at both
treatment stations and that more casualties are in need of
operations: θ1 = θ2 = 1/300 and p12 = 0.58. Here, the re-
source allocation priority that was given so far to Station
1 switches to Station 2. Figure 6 illustrates this situation:
the optimal policy from 240 minutes onwards allocates to
Station 2 all the resources it needs and the rest go to Sta-
tion 1. The switch in priorities reduced the mortality by
10.7% compared with the original policy that prioritizes
resources to Station 1. This example demonstrates the im-
portance of the real-time management model that alerts
the decision maker to possible changes in the allocation
policy.

The real-time model considers changes in the envi-
ronment and informs the decision maker about recom-
mended resource allocation policies. It is adapted to the
common practice in crisis events, which calls for pe-
riodic status assessments for structured decision mak-
ing. As is usual for models that support management
decisions, here also there are many factors that affect
actual decisions, which are not accommodated by our

model—for example, capacity utilization at the differ-
ent stations, waiting times, availability of other resource
types, and the specific medical situation of individual
casualties.

Fig. 6. Optimal resource allocation solutions for time point 0
(dotted line) and 240 (solid line).
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7. Summary

Traditional MCE models are based on simulation experi-
ments. Although simulation is a valid modeling tool, it only
provides limited structural insights into optimal manage-
ment policies. We have developed a problem formulation
based on fluid models for MCEs. We discretize time and
formulate the problem as a LP that enables finding resource
allocations for different scenarios as well as structural in-
sights and policies.

We model two stations where surgeons provide medical
treatment: a life-saving treatment at the first station and
an operation at the second. Based on the relative values of
service rates, routing probabilities, and mortality rates, our
analysis has identified two types of optimal allocation poli-
cies that can be used. One is a static policy that prioritizes
one station over the other, and the second is a mixed policy
in which priority is first given to one station and at some
future time switches to the second.

When a mixed policy is optimal there is no closed-form
analytical solution for the priority switch time, but this is
easily identified by solving a linear optimization problem.
Our proposed policies can be easily applied to prepare an
emergency plan for reference scenarios. The resulting allo-
cations represent guidelines that could be used by a man-
ager either in a real-time context or as guidelines on how
to prioritize the resources. We developed a rolling horizon
approach for the real-time management of MCEs. This ap-
proach, which is based on our fluid modeling framework
and on management practices for emergency situations, ex-
ploits new information about the MCE to create optimal
resource allocations. The LP formulation ensures fast solu-
tion times—thus, it is practical for use in real-time settings.
In MCEs when the uncertainty is high regarding the num-
ber of arriving casualties, their treatment rates and other
parameters that are changing over time, the real-time ap-
proach is in fact essential.

Our model formulation is consistent with the tactical use
of fluid models to approximate transient and loaded service
networks. We note that our stylized model serves as a proof
of concept under our specific assumptions and limitations;
for example, constant mortality rates at each of the stations
and the surgeons as the only limiting resource. To the best
of our knowledge we are introducing mortality rates at a
two-station setting for the first time. However, it is impor-
tant to note that the model does not discriminate between
individual casualties based on their specific parameters.
Moreover, real-time allocation decisions associated with a
specific casualty could be affected by a variety of factors
that are not considered in our model; e.g., capacity utiliza-
tion at the different stations, waiting times, availability of
other resources, individual casualties’ medical condition,
etc. Therefore, other and possibly more refined models can
be developed via our approach, sometimes inevitably at the
cost of tractable analytical solutions.

Our analysis of numerical examples (based on data ex-
tracted from the literature and expert opinions) indicates
that our approach can lead to optimal or near-optimal so-
lutions for minimizing the mortality of casualties.

The stylized model introduced in this article has led to
the development of structural results and also has pro-
vided managerial insights into allocation policies. Its pri-
mary message concerns guidelines and quantification of the
value of dynamic resource allocation for the management of
MCEs. The results presented here provide a starting point
for future research that could be based on expanding our
modeling scope and testing our policy implications in real-
world situations. Analytical extensions can focus on finding
the optimal time in which there are priority changes and
on the development of bounds on the differences between
greedy and optimal policies. Another natural extension is
to enhance the model to include other types of MCEs,
such as non-conventional MCEs (biological, chemical, nu-
clear and radiation), where there are different medical pro-
cesses and resources. Finally, we note that we expect our
insights for the optimal non-switching policies to hold for
infinite horizon, heavy traffic, two-stage tandem systems,
with abandonments and flexible servers. Therefore, this re-
search provides strong motivation for future research on
using fluid models to support control of management poli-
cies for transient queueing networks in heavy traffic.
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