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Urban mobility impacts urban life to a great extent. To enhance urban mobility, much
research was invested in traveling time prediction: given an origin and destination, pro-
vide a passenger with an accurate estimation of how long a journey lasts. In this work, we
investigate a novel combination of methods from Queueing Theory and Machine Learning
in the prediction process. We propose a prediction engine that, given a scheduled bus
journey (route) and a ‘source/destination’ pair, provides an estimate for the traveling time,
while considering both historical data and real-time streams of information that are
transmitted by buses. We propose a model that uses natural segmentation of the data
according to bus stops and a set of predictors, some use learning while others are
learning-free, to compute traveling time. Our empirical evaluation, using bus data that
comes from the bus network in the city of Dublin, demonstrates that the snapshot prin-
ciple, taken from Queueing Theory, works well yet suffers from outliers. To overcome the
outliers problem, we use Machine Learning techniques as a regulator that assists in
identifying outliers and propose prediction based on historical data.
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1. Introduction bender at an urban highway may wrack havoc the sche-

dule of numerous people.

Urban mobility impacts urban life to a great extent.
People, living in cities, plan their daily schedule around
anticipated traffic patterns. Some wake-up early to “beat”
rush hour. Others stay at home and work during days
when a convention comes to town. The pleasure of a night
in the city may be hampered by the unexpected traffic jam
in a theater vicinity and sometimes, even a minor fender
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To enhance urban mobility, much research was inves-
ted in traveling time prediction (cf. [1] and the references
within). That is, given an origin and destination, provide a
passenger with an accurate estimation of how long a
journey lasts. In particular, the ability to predict traveling
time in scheduled transportation, e.g., buses, was shown to
be feasible [2,3].

In this work, we investigate a novel use of methods
from Queueing Theory and Machine Learning in the pre-
diction process. We propose a prediction engine that,
given a scheduled bus journey (route) and a ‘source/des-
tination’ pair, provides an estimate for the traveling time,
while considering both historical data and real-time
streams of information that are transmitted by buses. To
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do so, we model buses as clients that go through a journey
of segments that are interpreted as a network of queues.
We propose a model that uses natural segmentation of the
data according to intermediate stops. Using this model,
common prediction methods that are either based solely
on current snapshot data or that only exploit historic data
are instantiated. We further present a novel set of pre-
dictors that combine the information gained from snap-
shot data with learning from historic data.

We test the proposed predictors using bus data that
comes from the bus network in the city of Dublin. Our
empirical analysis shows that the snapshot principle,
taken from Queueing Theory, works well yet suffers from
outliers. To overcome the outliers problem, we use
Machine Learning techniques that are based on historical
data as boosting methods for the non-learning snapshot
principle. To summarize, this work provides the following
contributions:

® On a conceptual level, we propose a segmented model
for traveling time prediction that enables exploitation of
data about journey patterns in a fine-granular manner.
We also show how this model is constructed from a log
of recorded journeys.

® We outline how common prediction methods are
instantiated for the traveling time problem and also
develop a set of novel predictors that combine current
snapshot data and learning from historic data.

® We present a comparative assessment of the developed
prediction method using real-world data of the city of
Dublin.

The rest of the paper is organized as follows. Section 2
develops the notion of a journey log to capture events of
journeys. A definition of the addressed prediction problem
is given in Section 3. Section 4 proposes the model of
segmented journeys, followed by two prediction methods
(Section 5). An empirical evaluation is given in Section 6.
Section 7 discusses related work, followed by concluding
remarks and future work (Section 8).

2. The journey log

Prediction of traveling time may exploit historical data
on scheduled journeys or real-time streams of information
on recent movements of vehicles. This section defines a
common model for these types of information by means of
the notion of a journey log (J-Log). A J-Log is a set of
sequences of recorded journey events of scheduled bus
trips, each sequence being partially ordered by the time-
stamp that indicates the occurrence time of an event. A J-
Log is a particular type of an event log, as they are known,
for instance, in the field of business process mining, see
[15, Chapter 4].

The presented notion of a J-Log refers to buses that
emit journey events. Then, a journey is characterized as a
sequence of journey events, which, for instance, signal that
a particular bus reached a bus stop.

Definition 1 (Journey event, Journey). Let £ denote a set of
journey events. The set of all possible journeys is given as the
set of finite sequences of journey events, denoted by £*.

In the remainder, for a specific journey j = (e, ..., ep) € £,
neN™, we overload set notation and denote by eecj an
event e that is an element of the sequence (eq, ...,es). We
will also refer to the i-th event of a specific journey j by €.

Journey events are associated with attributes, e.g.,
timestamps, journey patterns, and bus stops. We model such
an attribute as a function that assigns an attribute value to
a journey event. A set of such attribute functions, in turn,
defines the schema (aka structure or event type) over the
set of journey events.

Definition 2 (Attribute function, Event schema). Let A be
the domain of an event attribute. Then, an attribute
function a: £~ A assigns values of this domain to journey
events. A finite set {ay,...,a} of attribute functions is
called a schema.

A journey log comprises observed journeys, such that
each journey is formed of observed journey events emitted
by a particular bus. Here, a function ¢ in the schema cap-
tures the timestamp of a journey event and the time in
which the event e € £ occurred is denoted by z(e). Further,
journey events indicate the progress of a bus in its route;
they represent the points in time that a bus reaches a
specific bus stop. Such bus stops are modeled as a set
S < N™. Finally, journeys shall follow a predefined sche-
dule, referred to as a journey pattern. It is modeled as a
sequence of bus stops at which a bus should stop. For-
mally, a journey pattern belongs to the set of finite
sequences over S, which we denote by S*.

Generalizing the functional definition of an event log as
presented in [16], a J-Log is defined as follows:

Definition 3 (J-Log). A journey log is a tuple (J, #)), con-
sisting of a set of journeys | = &*, which are defined by
journey events of schema a; = {, £, x}, such that

® :£-NT assigns timestamps to journey events,
® £ £ S assigns bus stops to journey events,
® 7:£-S* assigns journey patterns to journey events,

and it holds that z(e;) < «(ey) for all journeys ey, ...,en) €]
and 1<i<i <n.

An overview of the introduced notations, along with
notations for concepts introduced later, can be found in
Table 1.

Example 1. We illustrate the notion of a J-Log using data
of the bus network in the city of Dublin.! Here, location of
buses is sampled in intervals of 5-300 s (20 s on average),
depending on the current location of the bus. For each
event the following data is submitted to a monitoring
system:

e A timestamp of the event.
e A vehicle identifier for the bus.

1 See also http://www.dublinked.ie/ and http://www.insight-ict.eu/.
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® A bus stop relating the bus to the stop on its journey
with maximal proximity. Hence, every event has a bus
stop identifier, even when the bus is not at the stop.

® A journey pattern that defines the sequence of bus stops
for a journey.

Based on this input data, the construction of a J-Log as
defined above is trivial; timestamps, bus stops and journey
patterns are given directly in the input. To partition the
events into journeys, a combination of the vehicle identi-
fier and the journey pattern is used. An excerpt of the J-Log
for the bus data from the city of Dublin is presented in
Table 2. It features intuitive values for the attributes (e.g.,
stop “Parnell Square”) as well as their numeric representa-
tion according to our formal model (e.g., 264 identifies the
stop “Parnell Square”).

3. Traveling time prediction: problem and approach

Traveling time prediction is an essential tool for pro-
viding integrated solutions for urban mobility, reaching
from the creation of individual journey itineraries over
capacity planning to car lift sharing [7]. In general, given a
source and a destination, travel time prediction answers
the question of how long the respective journey lasts.
However, in most scenarios, traveling times vary greatly
over time, e.g., due to different levels of traffic load. Con-
sequently, prediction is inherently time dependent, so that

Table 1
Notations for J-Log and the Online Traveling-Time Prediction Problem.

Notation Meaning

EcN Set of all journey events

&* Set of all sequences of journey events

je& A journey, i.e., a sequence of journey events

SN Set of bus stops

S* Set of all journey patterns, i.e., sequences of bus
stops

E->NT Function assigning timestamps to journey
events

EESS Function assigning bus stops to journey events

7 E-S* Function assigning journey patterns to journey
events

T(w1, ...,on), t,,) Random variable for the traveling time from stop
w1 € S to stop wy € S via the sequence of stops
(w1, ...,wn)y € S, departing at time t,, e N™

Table 2

Example J-Log from buses in Dublin.

a specific predictor is a function of the source, the desti-
nation, and the time at which the prediction is made.

In this work, we address the problem of online travel
time prediction in the context of a bus journey. That is, a
journey may be ongoing in the sense that journey events
already indicated the progress of the bus on its route. For
such an ongoing journey, we are interested in the current
prediction of the traveling time from the current bus stop
to some destination via a particular sequence of stops,
which is defined by the respective journey pattern. Using
the model introduced in Section 2 for journeys and bus
stops, we represent this traveling time, from stop w; € S to
stop w, € S via the sequence of stops (w1, ...,op) € S* and
departing at time ¢, eN* by a random variable
T(w1, ..., wn), twl)-

The traveling time prediction problem relates to the
identification of a precise predictor for T({(w1, ..., @n), te,)-

Problem 1 (Online traveling-time prediction). For a ran-
dom variable T((®1,...,on),t,,) representing a traveling
time, the online traveling-time prediction problem is to find
a precise predictor 0 for T({(w1, ..., wn), te,)-

Various measures that quantify the precision of pre-
diction have been presented in the literature. In this work,
we measure prediction precision by the root-mean
squared error (RMSE), the mean absolute relative error
(MARE), and the median absolute relative error (MdARE),
to be defined in Section 6.1.

To solve the problem of online traveling-time predic-
tion, we follow a two step approach. As illustrated in Fig. 1,
a first step prepares the input data in terms of a journey
log by constructing a model that is based on the segments
of journey patterns, referred to as segmented journey log.
The second step exploits this model for the actual online
traveling-time prediction. That is, given a prediction
request that is characterized by a sequence of stops and a
time for the departure, we rely on prediction methods to
estimate the respective traveling-time. The prediction is
based on the segmented journey log, but may use only the
most recent information (i.e., the current snapshot), only
historic data, or a combination thereof.

4. A segmented journey model
In order to use data about journeys for traveling-time

prediction, we construct a model that establishes a rela-
tionship between different journeys by means of visited

Event id Journey id Timestamp Bus stop Journey pattern
1 36006 1415687360 Leeson Street Lower (846) 046A0001
2 36012 1415687365 North Circular Road (813) 046A0001
3 36009 1415687366 Parnell Square (264) 046A0001
4 36006 1415687381 Leeson Street Lower (846) 046A0001
5 36009 1415687386 O'Connell St (6059) 046A0001
6 36012 1415687386 North Circular Road (814) 046A0001
7 36006 1415687401 Leeson Street Upper (847) 046A0001
8 36009 1415687406 O'Connell St (6059) 046A0001
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Fig. 1. Our approach to traveling-time prediction.

w_1 w_i w_{i+1} w_n

Fig. 2. A segmented model of traveling times.

bus stops. To this end, journeys are modeled as segments of
stops.

A trip between two stops consists of segments, with
each segment being represented by a ‘start’ stop and an
‘end’ stop, see Fig. 2. Given the first stop of a trip w; € S
and the last stop of a trip wy € S, the intermediate stops are
known in advance since each bus follows a predefined
journey pattern. Therefore, a trip can be described by
segments that are characterized by a pair of stops of the
form (w;,wi.1) (Fig. 2). This segmented model, in turn,
allows for fine-granular grounding of the prediction of
traveling time T({w1,...,wn),t,,): instead of considering
only journeys that follow the same sequence of stops
(w1, ..., wp), all journeys that share some segments can be
used for prediction.

Below, we first describe the segmented model for
journeys (Section 4.1). Subsequently, we show how to
transform a J-Log into a Segmented ]-Log, a log that con-
tains information on segments (Section 4.2).

4.1. The segment model

While the benefit of segmentation of journeys for the
purpose of time prediction has been widely acknowledged
[8], various approaches may be applied to identify seg-
ments. Our work defines segments based on information
about the bus stops of a journey pattern. Such segmenta-
tion is naturally derived from the structure of the data
commonly available in traveling time prediction for bus
networks. Moreover, such segmentation makes for effec-
tive prediction computation, where segments shared by
more than one line can benefit from the frequent visitation
of a segment by different bus lines. Our empirical analysis

supports this claim. Finally, we note that such a segmen-
tation is closely related to time prediction queries, where
passengers identify their start and end stops thus allowing
a straightforward translation of queries into our segment
model. Such translation is the basis of our methods of
learning and caching earlier computations for more effi-
cient online computation.

Using information on bus stops, the prediction of the
journey traveling time T((1, ..., wn), t,,) is traced back to
the sum of traveling times per segment. The traveling time
per segment, in turn, is assumed to be independent of a
specific journey pattern (and, thus, also independent of a
specific journey):

T(w1,...,0n), tw,) = T(w1, 02), o)+ +T(@n—1, 0n), tw,_,)

where

tw,,,1 = twl +T(<wl,wn—l>5 t(z)])‘

4.2. Deriving segments from a journey log

A journey log (J-Log) is built of multiple journeys,
where a journey is a sequences of events that are emitted
by a bus as part of a particular trip. We rely on the
aforementioned segment model as the basis for the tra-
veling time predictors, and as a first step, we transform the
J-Log into a Segmented J-Log that is built of timing infor-
mation for segments.

A Segmented J-Log is a sequence of segment events that
capture information on the start and end bus stop of the
segment, the journey from which the segment event was
derived, the respective journey pattern, and the start and
end timestamps observed for the segment. The last two
elements are computed using the earliest time the parti-
cular journey reached the start and end bus stop.

Definition 4 (Segment events, Segmented J-Log). Let G be a
set of segment events and let G* be the set of all possible
sequences of segment events. A Segmented ]-Log is a tuple

Please cite this article as: A. Gal, et al., Traveling time prediction in scheduled transportation with journey segments,
Information Systems (2015), http://dx.doi.org/10.1016/j.i5.2015.12.001



http://dx.doi.org/10.1016/j.is.2015.12.001
http://dx.doi.org/10.1016/j.is.2015.12.001
http://dx.doi.org/10.1016/j.is.2015.12.001

A. Gal et al. / Information Systems § (RNEN) ERE-EEE 5

(G,ac) where Ge G* is a sequence of segment events of
schema ac = {Estart> Eend» € TG Tstart» Tend } -

® £.:G—S and &.,4: G— S assign start and end stops to
segment events,

® ¢:G—£&* assigns a journey to segment events,

7g:G—S* assigns journey patterns to segment events,

® Toare: G—N* and 7.,9: G— N* assign start and end time-
stamps to segment events,

A Segmented J-Log is constructed from the journey
events of all journeys in a J-Log. That is, a segment event is
derived from two journey events of the same journey, such
that (1) the journey events refer to two successive bus
stops of the journey pattern, and (2) the journey events are
the earliest events referring to these two bus stops.
Appendix A consists of the details of constructing the
segmented J-Log.

5. Prediction methods and algorithms

The prediction methods we present can be divided into
two categories. The first category does not generalize
prediction from historical events, but rather uses recent
events to predict future traveling times. As an example we
present a method that comes from Queueing Theory and
approximates systems in heavy-traffic. The second cate-
gory is based on Machine Learning's decision trees. One
feature of the feature space uses the method of the first
category. Both prediction methods make use of the seg-
mented model of journeys (Section 4.1) and the Seg-
mented J-Log (Section 4.2).

5.1. Predicting traveling time using the snapshot principle

We now introduce the snapshot principle for traveling
time prediction. Section 5.1.1 provides an overview of the
method. The algorithm is detailed in Section 5.1.2.

5.1.1. Method

The snapshot principle [17, p. 187] is a heavy-traffic
approximation that refers to the behavior of a queueing
model under limits of its parameters, as the workload
converges to capacity. In our context it means that a bus
that passes through a segment, e.g., (w;, w; 1) € S x S, will
experience the same traveling time as another bus that has
just passed through that segment (not necessarily of the
same type, line, etc.). Based on the above, we define a
single-segment snapshot predictor, Last-Bus-to-Travel-
Segment (LBTS), denoted by 0;p1s({wi, @i 1), tw,)-

In real-life settings, the heavy-traffic approximation is
not always plausible and thus the applicability of the
snapshot principle predictors should be tested ad hoc,
when working with real-world datasets. Results of syn-
thetic simulation runs [18] show that snapshot-based
predictors are indeed appropriate for predicting delays.
Moreover, it was shown that the snapshot principle pre-
dict delays well when the system is not under heavy load
and for a multi-class scenario [11,12].

In our case, however, the LBTS predictor needs to be
lifted to a network setting. In [19], it is stated that the
snapshot principle holds for networks of queues, when the
routing through this network is known in advance. Clearly,
in scheduled transportation such as buses this is the case
as the order of stops (and segments) is predefined.
Therefore, we define a multi-segment (network) snapshot
predictor that we refer to as the Last-Bus-to-Travel-Net-
work or dgrn({w1, ..., wn), tw,), given a sequence of stops
(with w; being the start stop and o, being the end stop).
According to the snapshot principle in networks we get
that

n
OBINC@15 - 00t ) = > Ousrs(@i, @4 1), b, )-
i=1
We hypothesize that the snapshot predictor performs
better whenever recent buses are in time proximity to the
current journey. We test this hypothesis in Section 6.

5.1.2. Algorithm

We shall now demonstrate the algorithm to obtain the
LBTS and thus the LBTN from the Segmented J-Log. Following
the snapshot principle for networks, a bus that is currently at
w1 is to travel the sum of past traveling times of the last
buses that traveled through each of the segments (w;, w; 1),
prior to time t,,. Therefore, for each pair (w;, ;1) we are to
search (in the Segmented J-Log) for the previous bus that
passed through that segment (prior to time t,, ) and use its
traveling time as an estimate for T({(w;, w1 1), t,). Hence, the
algorithm for extracting the snapshot predictor per segment
(LBTS) is as follows. First, given a Segmented J-Log, (G, ag),
we obtain the segmented event that was last to travel
through (w;, ;1) prior to time t,, :

LB
S (Lwy) = ATGMAXs ¢ Gt1,(5) = wiena(5) = 011 1,7ena(5) < Ly Fend (S)-
€]

Then, we calculate the estimator as
Ou1s = Tend (51> (t, ) — Tstart (S (£, ).

This definition characterizes 6,55 as a non-learning predictor
—it only requires the traveling times of the last buses that
went through particular segments.

5.2. Predicting traveling time using regression trees

In this section we describe the use of regression tech-
niques to predict the bus traveling time T({(w1, ...@n), tw,).
Unlike the snapshot method, regression trees exploit past
journey logs to learn a prediction model, and then use this
model to make a prediction on new instances of the pro-
blem, in our case, traveling times as part of current
journeys.

Below, we first formalize the traveling times prediction
problem as a regression problem and discuss the features
we use. Then, we briefly describe the generic regression
algorithms that we apply to solve the problem. Finally,
we integrate the snapshot predictor with the regression
algorithms.
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5.2.1. Formalization and features
Exploiting the introduced model of segmented jour-
neys, we construct a predictor, @y,

Orm (@i, i 1), 6 T0) 1 Sx Sx NT x NT - R*,

for every traveled segment (w;, w; 1) along the route. The
predictors take as input the prediction time t =t,, and the
estimated time the bus enters the segment, EW,.. Based on
these predictors, a travel time T((w1, wn), t,,) is estimated
by

n-1

Orm (@1, @n)s toy) = D OL(@i, @41 Ly L) )
i=1

fa), = tw] +€ML(<(U] 5 e -(Ui>a tm‘ 5 tm]) (3)

The predictor is formalized in two steps. First, we
define a feature constructor ¢:S x S x N* x N* —F where
Fis the feature space. The features are used as input for the
second step, which is the construction of a regression
model y: F—R* that outputs a traveling time prediction.
The same ¢ is used for every segment while a model y is
learned for each segment, anew. The features we consider
are

(1) Oers({wi, wi1 1), tw, ), the travel time of the last bus that
used that segment (see Eq. (1));

(2) tu; —7ena(st8(t.,)), the interval between the time the
last bus left the segment, and £,,;

(3) d(.,), the day of the week; and

(4) hms(i,,), the time of the day (hours, minutes, seconds)
corresponding to £,,.

The first two features are computed from the Segmented
J-Log and therefore depend on the information available
when the prediction is made, at time t.

5.2.2. Generic algorithms

A regression tree [20] is a tree where each internal
node is a test on the value of a feature, and where each leaf
corresponds to a value of the target variable, in our case
traveling time. An instance goes down from the root to a
leaf by selecting at each internal node the branch corre-
sponding to the result of the test of that node. The pre-
dicted value for that instance is the value associated with
the leaf it reaches. In this section, we present the regres-
sion algorithms applied to the aforementioned features.
These algorithms all output ensembles ¥y = {y,,}M _; of
M regression trees. The value predicted by the ensemble is
the weighted average of the values predicted by each tree
of the ensemble:

M
PO = Y A,
m=1

where 1, is the weight of tree y;,.

We selected ensembles of regression trees as the basis
to our prediction methods due to their ability to auto-
matically partition the feature space. Given categorical
features, e.g. time-of-day, the resulting models will pro-
vide a clear breakdown into the different categories. Using
an ensemble rather than a single model typically leads to

an improvement in accuracy [21]. We briefly describe
below the methods we considered to build ensembles.

A random forest (RF) [22] is an ensemble built by
learning each tree on a different bootstrap replica of the
original learning set. A bootstrap replica is obtained by
randomly drawing (with replacement) original samples
and copying them into the replica. Each tree is learned by
starting with a single leaf and greedily extending the tree.
An extension consists of considering all possible tests
(features and values) at all leafs and splitting the leaf using
the test that maximizes the reduction in quadratic error.
The tree weights are all equal 1, =1/M.

Extremely randomized trees (ET) [23] is an ensemble
where each tree was learned by randomizing the test
considered during greedy construction. Instead of con-
sidering all values of the features for the split test, only a
value selected at random is considered for each feature
(and leaf). The tree weights are all equal A, = 1/M.

AdaBoost (AB) [24] builds an ensemble iteratively by
reweighting the learning samples based on how well their
target variable is predicted by the current ensemble. The
worse the prediction is, the higher the weight becomes.
Therefore, the next tree constructed focuses on the most
‘difficult’ samples. Given the mth model y,,: ¥ - Y learned
from a learning set {x;,y,}¥_, with weights w{, the next
weights w{"+! are computed as follows:

L = 0= ym(X0))* /Max(y; —yim(x))?

L= "Lw)> w"
k J

pm=L/A-L)
witt =wip

The value predicted is the weighted median of the predic-
tions of the trees, where the weight of each tree s, is
—log p,,. Initial weights are all equal to 1/N. AdaBoost is
typically used with weak models, which do not model the
data well outside an ensemble. For this reason, the depth
(number of tests before reaching a leaf) of regression trees is
typically limited when they are combined using AdaBoost. In
our experiments, we tried both a depth of 1 and 3. The latter
was almost always better, so we will only report the corre-
sponding results. Except for this limitation, trees are learned
greedily on the re-weighted learning sets.

Gradient tree boosting (GB) [25] is another boosting
algorithm. Instead of weighting the samples, GB modifies
the target variable value for learning each tree. The values
used to learn the mth tree are given by

Ve =Yk—¥m-_1xp). 4)

The new tree is trained on the prediction error y,. In this
algorithm, the model weights are replaced by leaf weights
Aim where [ is a leaf index. The leaf weight is given by
Am=vyl,. v is a regularization term (equal to 0.1 in our
experiments). y[m is optimized by line search:

yh, = arg min >

r k:reach(xy,yrm,l)

0k =m0 +rymx)])’

where reach(xy, v, D) is true if x; reaches leaf I in the tree
wm. This ensemble is initialized by a tree learned on the
unweighted learning set. We also considered a more
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robust version of this algorithm, denoted GBLAD, which
optimizes the absolute deviation error instead of the mean
quadratic error. The most important changes are that each
tree is constructed on a learning set {x, sign(y,)}, and the
value of each leaf is the median of the prediction errors of
the training samples that reach it.

5.2.3. Combining snapshot and regression trees

The snapshot method stems from Queueing Theory and
was demonstrated to perform well in practice, for delay
prediction in various settings where heavy traffic (resource
queues) produces these delays [12,11]. Since bus delays are
often induced by car traffic, it is tempting to use it as a
baseline and try to improve over it. Boosting algorithms
appear particularly suited for that task, since they con-
struct ensembles of models sequentially, based on the
results of the previous models in the ensemble. Following
this line of reasoning, we modify the three boosting
algorithms discussed above (AB, GB and GBLAD) to use the
snapshot model as the initial model. We respectively
denote the three resulting algorithms S+AB, S+GB and
S+GBLAD.

6. Evaluation

In this section, we empirically evaluate the methods we
proposed in Section 5. The main results of our experiments
are:

e Prediction methods that combine the snapshot principle
and regression tree techniques are superior, in terms of
prediction quality, to performing separately either
snapshot predictors or regression tress methods.

e Prediction error increases with the number of bus stops
per journey. However, relative error is stable over trip
lengths. As a result, prediction does not deteriorate
proportionally to length of the journey (in stops).

® Somewhat surprisingly, the snapshot predictor perfor-
mance does not deteriorate for longer trips, therefore
contradicting the hypothesis that the snapshot predictor
would be more precise for journeys with higher tem-
poral proximity to the current journey.

® Prediction accuracy is negatively correlated with the
number of buses traveling through the city (load proxy).

We first describe our experimental setup (Section 6.1),
including controlled variables that were selected for mea-
suring accuracy (prediction error). Then, we introduce the
dataset used for our experiments (Section 6.2) by first
going over the training set and then introducing the test
set. Lastly, Section 6.3 reports on our main results.

6.1. Experimental setup

For the regression trees methods, we used the scikit-
learn [26] implementation to create ensembles of regres-
sion trees. Also, we relied on ensembles of M=100 trees,
unless otherwise stated. The algorithms that combine the
snapshot method (S+AD, S+GB and S+GBLAD) contain
99 trees in addition to the snapshot model.

We consider several measures for the quality of the
predictor 4. The Root Mean Squared Error (RMSE) measure
is based on the squared difference between the real tra-
veling time and the predicted value. Note that the measure
can be calculated with respect to an entire trip, e.g. for
Orpn Or for a single segment as in #;rs. Formally, the RMSE
is defined as follows:

RMSE() = \/ E[0—T7,

where [ is the expectation of a random variable, T the real
traveling time and ¢ the predictor for T. The RMSE quan-
tifies the error in the time units of the original measure-
ments, i.e., in our case trips are measured in seconds and
therefore the error will also be returned in seconds. The
theoretical measure of RMSE can be approximated from
the test set as follows:

_ 1 &
RMSE(©) = | 5 > (te—=po)’.
k=1

where N is the number of trips (or segments), t; the real
travel times through the trip (or segment) and py the travel
times predicted by ¢ for the corresponding trip.

The RMSE presents two major issues that require
additional performance measures. First, it is sensitive to
outliers [27], and second it is not normalized with respect
to the traveling time. To deal with the latter problem we
consider the relative error, normalizing the error with
respect to the real traveling time T. To accommodate for
the first problem, we swap the squared error with the
absolute error, which is known to be more robust to out-
liers [27]. Hence, we use the mean absolute relative error
(MARE) and the median of absolute relative error
(MdARE):

|0—T]

MARE(6) = E {T} ,

MdAARE(9) = median{ 9 ; Ll } (5)

For the empirical approximation of the MARE and the
MdARE we use the following measures based on the test
set:

oo 1SN (= Do)
MARE(6) _N,;T’

Md@(m:median{@,k:l,...,N}, (6)
k

with N, ty, py, defined as before and the median being
calculated as the empirical 50th quantile.

6.2. Datasets

We shall now describe the construction of datasets
used for training the regression trees and testing the
proposed prediction methods. For a first set of experi-
ments, we constructed training data using a single bus
line, 046A, which has a frequent and lengthy journey
pattern. Then, the test set is given by a single day, for
which we predict the traveling time for every possible pair
of stations on the route.
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A second set of experiments focuses on generality and
stability of our prediction methods. Here, we constructed
training data using four bus lines and test the prediction
for single segments for a single day.

Training set: The first training set consists of 8 days of
bus data, between September and October of 2014. Each
day contains approximately 11 500 traveled segments.
Essentially, the learning set is a Segmented Journey Log for
those 8 days. Clearly, the first trip of each day does not
have information of the last bus to go through a segment
during that day. The data comes from all buses that share
segments with line 046A. The second training set consists
of 25 days worth of bus data, between September 1st and
September 25th, for year 2014. The training set contains
approximately 1,085,000 traveled segments (10 times
more than in the first training set). Essentially, the learning
set is a Segmented Journey Log for those 25 days. The data
comes from four journey patterns (that correspond to bus
lines) that are frequent and lengthy (046A0001, 046A1001,
400001, and 401001), and consists of all traveling times of
bus lines that share segments with these journey patterns.

For each segment, we construct a discrete learning set:

LS({wi, @i 1+1)) = {p(wi, @i 1), L, tw,), T@i, 0i41), L)},

where t,, € {zstart(S)}sc g, 1S the start time of a segment
event and

Gi ={se G: Estart(5) = wi} (7)

is the set of segment events related to the segment
{wj,wj,1). To construct this learning set, we should not
only consider the case where t=t,,. Indeed, this corre-
sponds to a prediction made when the bus enters the
segment. With the exception of the first segment of the
line, predictions can be required earlier than ¢, if the
segment is not the first of the trip. A different prediction
time may change the features, and it is important to have a
learning set representative of the instances the predictor
will process. Hence, we need to consider additional pre-
diction times. Note that the features (see Section 5.2.1)
only depend on ¢t through sté(t) e G, the segment event
associated to the last bus that used (w;,w;, ) before t.
Considering additional prediction times is therefore
equivalent to considering the LBTS available at different
prediction times.

There are multiple methods to generate such a learning
set from a Segmented J-Log. We chose to estimate an
upper bound A((w;,w;j;1)) on the maximal interval
between the time the last bus has left the segment and t:

A({wi, ©i41)) = rsneaé( (Tend(s) - Tstart(sf"B(t))) . €))

It is worth noting that although A({(w;, w; 1)) is a bound on
Tstar(S) — Teng(SEE(t)), We estimate it based on larger inter-
vals, obtained by respectively replacing the two terms by
Tena(S) and 7t (SHE(t)). We believe this increase will make a
model learned on the resulting learning still relevant even
if ¢, is overestimated.

We then build, for each s € G;, one learning instance for
each segment event s’ related to the same segment and

that finished less than A((w;, ;4 1)) before s starts:

Gi¥(s) = {5 € Gi: tend(S)) € [zstare(s) — AW @i, i1 1)), Tstare(5)] }

LSS((wi, ®i+1) = {45((601', @i 1), Tend(s/), Tstart(s)) 5
T(<wi= ®i41), Tstart(s)) }S, < GH(s)

LS(wi, wi 1)) = UGLSS(<wi>wi+l>)-

seG;
While this dataset construction method introduces
dependencies between learning instances, it also gen-
erates more instances to learn from.

Test set: For the first part of the evaluation, the test set
comprises of bus data from a single day, September 22nd,
2014. We considered actual trips of line 0464, which is one
of the lengthiest lines in the city of Dublin (58 stops). First,
the line travels through city center, where traffic can
become extremely hectic and a large number of passen-
gers may cause stopping delays. Then, it goes through a
highway section and lastly it visits a suburban area where
the delays are mostly due to frequent get-offs of passen-
gers [8]. During that day, the line has traveled through 111
journeys, all of which were included in our test set.

For example, a single journey of line 046A travels
through (w1, ..., wsg), and emits the following sequences:
{{w1, 02), (w1, 3),{w1, ®4), ...,{w2,w3), ...}. FOr every source-
destination (e.g., (w1, w3)), the test set contains: (1) the
source (wq) of the trip, (2) the destination (ws3), (3) the
traveling time between source and destination, (4) the
time of entry to segment, (5) the number of segments
between source and destination, and (6) a set of tuples
that represent all segments between source and destina-
tion, including the entry time into each segment, and the
duration of traveling through the segment.

Therefore, for our running example of trip (w1, ws), our
test set contains the following tuple:

(01,03, T(w1, 3), toy), £, 2, {01, TCw1, 02), Tstare (S (L0, ),
Tstart (S (L X2, T(@2, @3, Tstart (S5 () Tstart (S5 (L )OI,

with the traveling time between the two stops, the entry
time, the fact that the trip contains two segments, with w,
being the next stop after wq, the traveling time through
and the entry time into first (w1, w>) and then (w;, ws) of
the last bus that went through each segment. For the
second stage of our evaluation, we consider September
26th, 2014 as our test set. We considered all single-
segment trips of four journey patterns, including of
046A. These four patterns pass through Dublin city center,
and are thus susceptible to time-of-day load variability.

6.3. Results

The results are divided into two experimental parts.
The first considers whole trips with limited training set,
and an extended test set, while the second builds upon an
extensive training set, and a test set that consists of single-
segment trips in the test set. This follows the paradigm of
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Table 3

Accuracy of the prediction of the trip length, for the different methods tested over all trips.

Measure S RF ET AB GB GBLAD S+AB S+GB S+GBLAD
RMSE 539 539 519 512 508 520 504 494 514
MARE (%) 23.37 2411 22.05 27.08 20.46 19.38 26.32 19.95 19.06
MdARE (%) 16.15 16.37 15.23 18.05 13.84 13.86 16.84 13.53 13.65

the segmented model we promote in this work, where
improvement of single-segment prediction entails the
entire model prediction improvement. We use the second
part of the evaluation to show stability and generality by
learning based on more data from four different bus lines.
Moreover, we use the second part to test for time-of-day
and load effects on the accuracy of prediction.

6.3.1. Part 1: whole trips

The first set of controlled variables that we present in
the results are the prediction methods, including snapshot
predictor (S), random forest (RF), extremely randomized trees
(ET), etc. As additional covariate we consider the length of
trip, that may vary between a single segment (length of 1)
and a whole trip (e.g. for 046A, 58 stops). Moreover, we
performed an extensive analysis of the position of a seg-
ment in a trip.

Table 3 presents the accuracy of the different methods
tested over all trips. In terms of root-mean square error,
the snapshot method (S) is the least accurate, together
with the random forest (RF) method. The square error of
the combination of the snapshot principle and gradient
tree boosting (S+GB) with respect to the square error of S
is illustrated in Fig. 3. There is a high density of trips whose
S square prediction error is higher than the square pre-
diction error of S+ GB, showing once again that combining
the snapshot method with random tree methods can lead
to better predictions. In addition, it is interesting to note
that the improvement is not restricted to large traveling
times, which is likely to indicate the existence of outliers.
As a side note, the vertical stripes visible for small pre-
diction errors are due to the typical measurement acqui-
sition frequency of 20 s. Indeed, the snapshot prediction
typically results in an estimation error that is a multiple of
20, leading to these patterns.

Influence of trip length: Figs. 4 and 5 present the RMSE
and MARE as a function of trip length (number of stops on
the route), respectively. For all methods, the RMSE
increases as the trip length increases (from [83,96] to
[1070,1296]). In contrast, the MARE decreases as trip-
length increases, indicating that the error remains pro-
portionally constant, regardless of the increase in trip-
length. Moreover, methods that optimize the absolute
error (GBLAD and S+ GBLAD) perform better, as expected.

When observing Fig. 4, we notice that the MARE of the
snapshot predictor decreases at the same rate as the error
of the rest of the methods. In other words, the last bus that
traveled through a segment at the end of a long trip pre-
dicts the travel time as well as the last bus that traveled
through an earlier segment, relatively to the accuracy of
other methods. Again, this seems to contradict our
hypothesis from Section 4. Lastly, we observe that random

tree methods combined with the snapshot predictor gen-
erally improve over the same methods without the snap-
shot predictor.

Segment position: Figs. 6 and 7 show the evolution of
the root-mean square error and of the relative absolute
prediction error (respectively) on the duration of a single
segment as a function of the order of segments in the trip.
In other words, a trip that goes between stops @y and w,
with [ >k, index=1 is the segment (wy, wy ). Therefore,
these figures present the evolution of the incremental
estimation error as the segment index increases.

According to Fig. 6, the relative prediction error for all
methods remains unchanged as the segment index
increases, except for the latest segments where the value
of the error grows significantly. We suspect that this
occurs either due to the small test set size for trips of these
lengths (only 111 samples for trips of 58 stops) or due to a
deterioration of the prediction accuracy for lengthier trips.
It can be observed that S+ GBLAD, which is the combina-
tion between the snapshot predictor and the GBLAD
learning algorithm, is the most accurate method
per segment, as well as per trip (Fig. 4).

Fig. 7 presents surprising sharp decreases in the RMSE
for some segment indexes (further segments have lower
errors), with an increase towards the end. Intuitively, one
may expect the accuracy of the snapshot principle, and
maybe other regression methods, to decrease with the
segment index (far segments). Indeed, segments further
away in the trips have a larger time interval between the
moment the journey we consider will enter the segment
and the time the bus whose travel time is used as a pre-
diction went through it.

This phenomenon does not occur due to a difference
between the nature of segments, but due to outliers, as can
be seen in Fig. 8. The figure contrasts box plots of the
square estimation error (left) and the root mean square
estimation error (right) for the snapshot method and for
all segments at a given index in a trip. The drops in the
curve of the RMSE correspond to the disappearance of
outliers. Outliers are arranged in horizontal lines, because
a single outlier in the journey log may affect several trips,
i.e. an outlier in the segment (w;, w;, 1) Will affect the first
segment of the trip whose source is w;, the second seg-
ment of the trip whose source is w;_1, etc.

Fig. 7 does not allow analyzing the effect of the segment
index on the precision of the snapshot method. However,
Fig. 8 contains the median of the square estimation error for
this method, which is presented in the box-plots (at the
lower part of the figure). One may observe that the median is
stable with little variation in its values. Hence, the index of
the segment does not influence the median of the square
estimation error for the snapshot-based methods. This
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Fig. 3. The density of test trips as a function of the square prediction
error of S and S+ GB shows that the prediction error of S on many trips is
above 10° while smaller than 10° for S+GB. All scales are logarithmic,
and square errors have been increased by 1000 for plotting purposes.
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decreases with the trip length. S+GBLAD is the best method for all trips
length except for trips of length 1, where GBLAD is more accurate, and
trips of length 52 and [55,58], where S+GB is more accurate.

implies yet again that the performance of the snapshot
predictor (and its combination with Machine Learning
techniques) does not deteriorate (in proportion to the
traveling time).

6.3.2. Part 2: single-segment analysis

We start by comparing the results for single-segment
predictions of the first stage across methods (Table 4).
Unsurprisingly, we observe that additional data in the
training set slightly improves the predictive power of all
techniques, except for the snapshot prediction, which is a
non-learning method. Further, Table 4 shows that going from
a single bus line to four bus lines does not deteriorate the
performance of our methods, thus demonstrating the gen-
erality and stability of our results. The snapshot predictor
performs worse for the second part. Moreover, we observe
that all gradient boosting techniques (GB, S+GB, GBLAD,
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Fig. 5. The root mean square error on the duration of the whole trip
increases with the trip length. S+GB is the best method for all trip
lengths except for length [2,3], [44,54] and [55,58] where respectively
S+GBLAD, S+AB and AB are more accurate.
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S+GBLAD) coincide, as well as the two non-boosting
learning techniques (ET, RF). We verified that for time-
varying accuracy measures, these methods yield similar
values. However, the two AdaBoost techniques (AB, S+ AB)
deteriorate between the first and second parts. Therefore,
when analyze additional effects (time-of-day and load), we
shall demonstrate the effects on the snapshot predictor (S),
gradient boosting method (GB), and random forests (RF).

We start with the time-of-day effect, which is expected
to be influential in transportation systems. Fig. 9 corre-
sponds to prediction error (measured in RMSE), as a
function of time-of-day, over the entire test set. The hor-
izontal axis corresponds to half-hour intervals. We observe
that the three learning methods that we present (GB and
RF) coincide, and have an increasingly improving and
stable performance in the afternoon. The snapshot pre-
dictor performs worse for almost all half-hour intervals,
except for 10:00AM.

Next, we present the system load (number of traveling
buses), as a function of time of day in half-hours (Fig. 10).
We observe that the peak is in the morning, with a
monotone decrease toward the evening that starts at
5:30PM. Note that the number of traveling buses is only a
proxy to system load, since we do not observe the number
of cars on the streets, nor the number of passengers
waiting for the bus.

Lastly, we correlate the performance of our predictors
(RMSE) to the load, which we define as the number of
buses traveling at a certain time of the day (Fig. 11). We
present three linear regression lines fitted to the RMSE as a
function of the load (per half-hour). The results show that
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Fig. 8. Comparing the boxplots of sample errors (left) to the MSE (right)
of the snapshot method as a function of the index of the segment shows
that the big drops in the MSE curve are due to the largest outliers dis-
appearing. In particular, look at indexes 30, 38 and 15 to 18.

Table 4

the snapshot predictor is most correlated with our proxy
of the load (R?> = 0.35), while Random Forests that are not
combined with the snapshot principle present the lowest
correlation (R? =0.27). Overall, we conclude that the load
has a negative effect on the prediction power of our
methods. We believe that this is due to the fact that the
assumed additive (and uncorrelated) structure of the
segmented model is less accurate for high load. For
example, the snapshot principle would work better in a
stable system, where previous bus rides resemble the
current one (evening trips).

7. Related work

Over the past decade, the problem of predicting tra-
veling times of vehicles, and in particular of buses in urban
areas, has received a significant attention in the literature.
Most of the work on the subject includes applying various
Machine Learning techniques such as Artificial Neural
Networks [2], Support Vector Machines [1,4], Kalman Fil-
ter models [5], and Non-Parametric Regression models [6].
A thorough literature review of the above techniques can
be found in [3].

In recent work, some of the Machine Learning methods
were applied to the bus data that we used for the current
work, cf. [7,8]. Specifically, in [8], Kernel Regression was
used on the Dublin bus data in order to predict the tra-
veling time for bus line number 046A, the same line that
we have used for our evaluation. Due to the non-
continuous nature of this data (see Section 2), a spatial
segmentation of the route into 100-meter segments was
proposed. Localizing the bus (with an associated time-
stamp) is based on GPS measurements that commonly
contain large outliers [7], leading for example to many
incomplete trips. Such problematic trips are removed from
the experiments conducted. In contrast to [8], the seg-
mentation proposed in the current work corresponds to
line segments between physical bus stops. Associating
timestamps to these stops exploits a data field that relates
each record of the Dublin bus data to a certain stop.
Moreover, to better accommodate for the non-continuous
structure of the data, and in alignment with our proposed
segmentation, we applied advance learning techniques,
e.g., regression trees and boosting.

Traditionally, most state-of-the-art approaches to bus
arrival-time prediction consider a single bus line at a time.
In [3], Machine Learning models were applied to predict
the traveling time of buses to given stops, by using data

Accuracy of the prediction of the trip length, for the different methods tested over all trips.

Measure S RF ET AB GB GBLAD S+AB S+GB S+GBLAD
RMSE (Part 1) 96 83 83 84 85 85 88 83 84

MARE (Part 1) 61.94 49.45 50.83 60.36 48.88 43.57 69.16 49.30 43.95
MdARE (Part 1) 40.00 30.02 30.85 32.70 29.39 30.23 40.00 29.48 29.45
RMSE (Part 2) 101 74 73 96 75 74 102 75 77

MARE (Part 2) 77.30 62.42 64.56 123.44 62.77 50.85 97.01 63.40 53.00
MdARE (Part 2) 40.00 28.51 29.89 42.86 28.44 28.23 35.59 28.75 28.14
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Fig. 10. Number of buses traveling (load) as a function of the time-of-day.

from multiple lines that travel through that same stop.
Results show that further information regarding similar
bus routes adds value to prediction. In our work, such a
multi-line approach is enabled via our model of seg-
mented journeys. Specifically, we take into consideration
all bus lines that share bus stops with the journey whose
time we aim to predict. To empirically demonstrate the
value of the multi-line approach, our evaluation combines
traveling times of several bus lines that share stops with
line 046A.

Another contribution of the current paper is the non-
learning prediction method based on Queueing Theory.
The general application of Queueing Theory to solve
transportation problems has been outlined in [9,10].
However, in most of the works the traffic-flow (e.g., flow of
cars) is considered, with traffic modeled as ‘customers’ in a
queueing system. In our work most customers are ‘unob-
served’, while data recordings contain only information on
bus travels (i.e. we do not have information regarding cars
and other types of transportation). Nonetheless, we apply
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Fig. 11. RMSE as a function of the number of traveling buses. The corresponding R? is presented in proximity to each prediction method.

the snapshot predictor, which is a non-learning prediction
method that relies on the travel time of the last bus to go
through a segment. The motivation for the applications is
derived from queue mining [11,12], techniques that come
from the domain of business process management,
applying Queueing Theory to event data that stems from
business processes. The value of these techniques was
demonstrated in single-and-multi class queueing systems.
Therefore, when considering buses as a class of transpor-
tation (that share routes with other classes, e.g., cars),
queue mining techniques and specifically, the snapshot
predictor, are applicable.

A line of work that combines Queueing Theory and
Machine Learning [13,14] approximates the structure of
Web services via queueing networks. Then, the parameters
of these networks are estimated from transactional data in
low-traffic via Machine Learning techniques such as
Monte-Carlo Markov-Chains. Lastly, the results are extra-
polated into heavy-traffic scenarios, and are used to assess
performance via e.g., response-time analysis. Following
this spirit, we propose predictors that integrate the snap-
shot approach into the regression tree model to create a
more accurate prediction method.

8. Conclusion

In this work, we presented a novel approach towards
predicting travel time in urban public transportation. Our
approach is based on segmenting the travel time into stop-
based segments, and combining the use of Machine
Learning and Queueing Theory predictors to model tra-
veling time in each segment. Our empirical analysis con-
firms that the combination of methods indeed improves
performance. Moreover, we observe that the snapshot
predictor is, counter-intuitively, unaffected by the length
of a journey. This leads to positive evidence in favor of

applying mixed Queue and Machine Learning predictors in
similar settings.

In future work, we intend to extend our methods to
support prediction for multi-modal transportation. Also,
the mutual support of methods from Queueing Theory and
Machine Learning require further investigation to unlock
its full potential.

Furthermore, to check the appropriateness of the
snapshot predictors as a function of car traffic, we intend
to add data that comes from a real-time coordinated
adaptive traffic system (SCATS) of Dublin [28]. The system,
along with many other functionalities, counts traffic
intensity through junctions (in real-time), and records
these counts in an event log. We believe that the combi-
nation of the two datasets will enable an improvement of
prediction, and lead to a better understanding of the root-
cause for the errors in our methods.

Moreover, we aim at validating the influence of the
hour-of-day and day-of-week effects that are likely to
influence any transportation system. Lastly, we intend to
use other data sources (similarly to our use of geographical
distances between stops), such as bus-schedules, in order
to add valuable features to the Machine Learning techni-
ques, thus reducing prediction error.
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Appendix A. Creating a segmented journey log

We capture the construction of a segmented journey

log as follows. Let (J, o)) be a J-Log with oy = {7, &, 7). Let je ]
be a journey serving journey pattern z(e) ={w1, ..., wn), for
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all eej. For a stop w;, 1 <i<n, let
€ =argmin, . j ;¢ — ,,, 7(€)

be the earliest event for stop w; of this journey. Then, for
each pair of successive stops w;, w1, 1 <i<n, a segment
event s of schema ac = {&sare» Eends €5 G- Tstart» Tend} 1S Cre-
ated, such that

® Eiare(S) = o and Epg(S) = w1,

® «(s)=}],

® 7yare(S) = 7(€;) and zenq(s) = (€4 1)-

A Segmented J-Log (G,ac) for (J,a)) is constructed as a
sequence G =(s1,...,Sm) € G* over all segment events of all
journeys jeJ, such that zsar(sk) < zsare(Sy) for 1<k<
kK <n.

A Segmented J-Log can be trivially constructed from a J-
Log. However, in many real-world applications, the recor-
ded data is incomplete due to data loss, unavailability of
data recording devices, or data sampling. Then, it may be
impossible to construct a segment event for each pair of
successive bus stops of all journeys. For instance, for the
data of the bus network in the city of Dublin described in
Example 1, due to data sampling, the raw data does not
necessarily contain a journey event for each bus stop of the
respective journey pattern.

In the remainder of this section, therefore, we outline
how to use complementary information on the geo-
graphical distances between bus stops and principles of
kinematics (relating distances to velocity and time) to
impute missing journey events and their corresponding
timestamps. We assume such distances to be given as a
function 6: S x S—»R* assigning distance values to pairs of
bus stops.

For a journey pattern and a journey recorded in the
J-Log, we consider the following three cases of missing
sequences:

(I) Events missing between two consecutive recorded
journey events.
(II) Events missing, including the first bus stop.
(II1) Events missing, including the last bus stop.

We shall first demonstrate the approach to construct
the missing journey events for case I and then demon-
strate its refinement for the other two cases.

Let j=<eq,...,ey,Myq,...,My, €y,...,en) be a journey with
my, ..., My representing missing journey events, events that
according to the journey pattern z(e;) must exist between
the stops &(ey) and &(ey). To reconstruct the journey events
my,...,M,, we need to estimate their timestamps, since
information on their route pattern and the respective bus
stops are known.

We estimate the timestamps for missing events based
on the average velocity v:S x S—R™ of the respective bus
between two stops. It is derived from the events that
signal that a bus has been at a certain stop and the dis-
tance between the stops:

Sw, @)
z(e’)—1z(e)
e=argmin; ) - ,7(é)

V(w, ') =

€ =argming . jgs) = o 7(é)

For journey j=<(ey,...,ey,Mq,...,My,€y,...,ey) with
missing journey events my,...,m,, we then assume that
the bus travels at a constant velocity through every seg-
ment on the way between &(e,) and &(ey), which gives rise
to the following recursive approximation of the time-
stamps of the journey events:

8(&(ey), £(my))

v(&(ew), &(ev))’

S(&(m;_q), &(my))
v(&(ew), &ev))

Next, we target cases Il and III, in which the sequence of
missing journey events includes the first bus stop, or the
last bus stop, respectively. In both cases, we adapt the
approach presented above and calculate the velocity of the
bus at the segment that still appears in the J-Log after
(case II) or before (case III) the recorded journey events,
and, as before, assume constant speed of travel throughout
the unobserved traveling time. We detail this approach for
case II. Case III is handled analogously.

Let j=(my,...,my, ey, ey, ...,ey) be a journey with miss-
ing events my, ..., m;. Then, the timestamps of the missing
events are determined by the following recursive
approximation:

8(&(my), &(ew))

V(&(ey), E(ey))’

8(&(my), E(M; 1))
v(&(ew), E(ev))

o(my) = =(ew) +

(M) = tm,_, + 1<i<k.

w(my) =(eu) —

(M) =tm,,, — 1<i<k
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