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Abstract In this paper, we develop time-varying fluid models for tandem networks
with blocking. Beyond having their own intrinsic value, thesemathematicalmodels are
also limits of corresponding many-server stochastic systems. We begin by analyzing
a two-station tandem network with a general time-varying arrival rate, a finite waiting
room before the first station, and no waiting room between the stations. In this model,
customers that are referred from the first station to the second when the latter is
saturated (blocked) are forced to wait in the first stationwhile occupying a server there.
The finite waiting room before the first station causes customer loss and, therefore,
requires reflection analysis. We then specialize our model to a single station (many-
server fluid limit of theGt/M/N/(N+H) queue), generalize it to k stations in tandem,
and allow finite internal waiting rooms. Our models yield operational insights into
network performance, specifically on the effects of line length, bottleneck location,
waiting room size, and the interaction among these effects.
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1 Introduction

Blocking is an important phenomenon in service, computer, communication, andman-
ufacturing systems (for example, [10,62]). This has motivated our paper, in which we
analyze several stochastic models of time-varying tandem queues with blocking. For
each such model, we develop and prove its fluid limit in the many-server regime: Sys-
tem capacity (number of servers) increases indefinitely jointly with demand (arrival
rates). We adopt a fluid framework since it yields accurate approximations for time-
varying models, which are otherwise notoriously intractable. In fluid models, entities
that flow through the system are animated as continuous fluid, and hence the sys-
tem dynamics can be captured by differential equations. There is ample literature
justifying that fluid models accurately approximate heavily loaded service systems
[42,46,48,49,59,75,77].

The models we focus on (flow lines) have been researched for decades [5,6,41,53];
our research takes the analysis to the new territories of time-varying environments and
many-server stations. Such general models are also applicable in modeling healthcare
environments and the bed-blocking phenomenon [21,36,56,58,65,69,81] in partic-
ular. This phenomenon occurs when a patient remains hospitalized after treatment
completion due to lack of beds in a more appropriate facility (for example, a reha-
bilitation or geriatric ward). In that case, the patient occupies/blocks a hospital bed
and thus prevents the admittance of another patient from the Emergency Department
(ED); this may block the ED as well. Blocking in healthcare systems is pervasive (see
[14]) between surgery rooms, recovery rooms, and internal wards.

Our basicmodel (Sect. 2) is a networkwith two queues in tandem (Fig. 1), where the
arrivals follow a general time-varying counting process. There is a finite waiting room
before the first station and no waiting room between the two stations. There are two
types of blocking in this network. The first occurs when the first station is saturated (all
its servers are occupied and its waiting room is full), and therefore, arriving customers
must leave the system (are blocked); such customer loss is mathematically captured
by reflection. The second type of blocking occurs when the second station is saturated
(all its servers are busy); in this case, customers who complete their service at the first
station are forced to wait there while still occupying their server. Such a mechanism is
known as blocking after service (BAS) ormanufacturing blocking [10,15]; and here, as
it turns out (see [81]), an appropriate state representation renders reflectionunnecessary
for capturing this type of blocking. A real system that is naturally modeled by such
two queues in tandem is an ED feeding a hospital ward; servers here are hospital beds.

Using the Functional Strong Law of Large Numbers for all our stochastic models,
we establish the existence and uniqueness of fluid approximations/limits. These are
first characterized by differential equationswith reflection, which are then transformed
into differential equations with no reflection but rather with discontinuous right-hand
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side (RHS) [24]; the latter are easier to implement numerically. The accuracy of our
fluid models is validated against stochastic simulation, which amplifies the simplicity
and flexibility of fluidmodels in capturing the performance of time-varying overloaded
networks.

The two-station network is both specialized and extended. First, we derive a fluid
limit for the Gt/M/N/(N + H) queue that seems, to the best of our knowledge,
already new. Next, in Sect. 3, we analyze the more general network with k queues
in tandem and finite waiting rooms throughout—both before the first station and in-
between stations. It is worth noting that our models cover all waiting room options at
all locations: finite positive, infinite, or zero (no waiting allowed) and that reflection
arises only due to having a finite waiting room before the first station.

Finally, in Sect. 4, we provide operational insights regarding the performance of
time-varying tandem queues with finite buffers. Due to space considerations, in this
paper we chose to calculate performance measures from the customer viewpoint:
throughput, number of customers, waiting times, blocking times, and sojourn times;
performance is measured at each station separately as well as overall within the net-
work. (One could also easily accommodate server-orientedmetrics, such as occupancy
levels or starvation times.) Calculations of the above customer-driven measures pro-
vide insights into how network characteristics affect performance: We focus on line
length (number of queues in tandem), bottleneck location, size of waiting rooms, and
their joint effects.

1.1 Literature review

Despite the fact that time-varying parameters are common in production [38,55] and
service systems [23,29], such as in healthcare [4,17,80], research on time-varying
models with blocking is scarce. We now review the three research areas most relevant
to this work.

Tandem queueing models with blocking Previous research on tandem queueing
networks with blocking has focused on steady-state analysis for small networks [2,28,
37], steady-state approximations for larger networks [9,13,19,26,58,62,67,68,71],
and simulation models [14,18,21,34,54].

Several papers have analyzed tandem queueing networks with an unlimited wait-
ing room before the first station and a blocking-after-service mechanism between
the stations. In [7], the steady state of a single-server network with two stations
in tandem was analyzed. In this model, the arrival process was Poisson and there
was no waiting room between stations. The transient behavior of the same network
was analyzed in [63]. The model in [7] was extended in [5] to an ordered sequence
of single-server stations with a general arrival process, deterministic service times,
and finite waiting room between the stations. The author concluded that the order
of stations and the size of the intermediate waiting rooms do not affect the sojourn
time in the system. We extend the analysis in [5] to time-varying arrivals, a finite
waiting room before the first station, exponential service times, and a different num-
ber of servers in each station. We show how the order of stations does affect the
sojourn time and how it interacts with the waiting room capacity before the first sta-
tion.
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The system analyzed in [7] was generalized in [6] under blocking-before-service
(BBS) (or k-stage blocking mechanism) in which a customer enters a station only if
the next k stations are available. A tandem queueing network with a single server at
each station and no buffers between the stations was analyzed in [35]; the service times
for each customer are identical at each station. In [73], heuristics were developed for
ordering the stations in a tandem queueing network tominimize the sojourn time in the
system. In this setting, each station has a single server and an unlimited waiting room.
Simulationwas employed in [18] to analyzework in process (WIP) in serial production
lines, with and without buffers in balanced and unbalanced lines. The results of [27]
were extended in [52] for analyzing tandem queueing networks with finite capacity
queues and blocking. In that work, the author estimated the asymptotic behavior of the
time customer n finishes service at Station k, as n and k become large together. Single-
server flow lines with unlimited waiting rooms between the stations and exponential
service times were investigated in [53]. The authors derived formulas for the average
sojourn time (waiting and processing times). In our models, in addition to having
time-varying arrivals, many-server stations, and finite waiting rooms, the sojourn time
also includes blocking time at each station.

Fluid models with time-varying parameters Fluid models were successfully imple-
mented in modeling different types of service systems. These models cover the early
applications for post offices [57], claims processing in social security offices [70], call
centers [1,29], and healthcare systems [17,80,81]. Fluid models of service systems
were extended to include state-dependent arrival rates, and general arrival and ser-
vice rates [76,77]. Time-varying queueing models were analyzed for setting staffing
requirements in service systems with unlimited waiting rooms, by using the offered
load heuristics [29,78,79].
Time-varying heavy-traffic fluid limits were developed in [48,49] for queueing sys-

tems with exponential service, abandonment, and retrial rates. Accommodating these
models for general time-varying arrival rates and a general independent abandonment
rate was done in [42] for a single station, and for a network in [43]. These models
were extended to general service times in [44–46].
Heavy-traffic approximations for systems with blocking have focused on stationary

loss models [11,12,66]. An approximation for the steady-state blocking probability,
with service times being dependent and non-exponential, was developed in [39]. A
recent work in [40] focused on stabilizing blocking probabilities in time-varying loss
models. In our paper, we contribute to this research area by developing a heavy-traffic
fluid limit for time-varying models with blocking.

Queueing models with reflectionQueueing models with reflection were analyzed in
[30] for an assembly operation by developing limit theorems for the associated waiting
time process. There it was shown that this process cannot converge in distribution
and thus is inherently unstable. This model is generalized in [72] by assuming finite
capacities at all stations and developing a conventional heavy-traffic limit theorem for
a stochastic model of a production system. The reflection analysis detailed in [16,31]
for a single station and for a network is extended in [50,51] for state-dependent queues.
Loss systems for one station with reflection were analyzed in [25,74]. More recently,
[64] solved a generalized state-dependent drift Skorokhod problem in one dimension,
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which is used to approximate the transient distribution of the M/M/N/N queue in
the many-server heavy-traffic regime.

1.2 Contributions

As we see it, the main contributions of this paper are the following:

1. ModelingWe analyze a time-varying model for k many-server stations in tandem,
with finite waiting rooms before the first station and between the other stations.
This covers, in particular, the case of infinite or no waiting rooms, which includes
the Gt/M/N/(N + H) queue. For all these models, we derive a unified fluid
model/approximation, which is characterized by a set of differential equations
with a discontinuous right-hand side [24].

2. Analysis of the stochastic model We introduce a stochastic model for our family
of networks in which, as usual, the system state captures station occupancy (for
example, (4–5), for k = 2). It turns out, however, that a state description in terms
of non-utilized servers is more amenable to analysis (7–8). Indeed, it enables a
representation of the network in terms of reflection, which yields useful properties
of the network reflection operator (for example, Lipschitz continuity).

3. Analysis of the fluid model Through the Functional Strong Law of Large Numbers,
we derive a fluid limit for the stochastic model with reflection in the many-server
regime. Using properties of the reflection operator, we solve for the fluid limit,
which allows it to be written as a set of differential equations without reflection.
This fluid representation is flexible, accurate and effective, hence, easily imple-
mentable for a variety of networks.

4. Operational insights Our fluid model yields novel operational insights for time-
varying finite-buffer flow lines. Specifically (Sect. 4), via numerical experiments,
we analyze the effects on network performance of the following factors: line length,
bottleneck location, size of the waiting room, and the interaction among these
factors.

2 Two stations in tandem with finite waiting room

We now develop a fluid model with blocking for two stations in tandem, as illustrated
in Fig. 1. In Sect. 3, we further extend this model for a network with k stations in
tandem and finite internal waiting rooms between the stations.

Fig. 1 Two tandem stations
with a finite waiting room before
the first station
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This FCFS system is characterized, to a first order, by the following (deterministic)
parameters:

1. Arrival rate λ(t), t ≥ 0, to Station 1.
2. Service rate μi > 0, i = 1, 2.
3. Number of servers Ni , i = 1, 2.
4. Transfer probability p from Station 1 to Station 2, 0 ≤ p ≤ 1 (i.e., with prob-

ability p, a customer will be referred to Station 2 upon completion of service at
Station 1);

5. Finite waiting room H at Station 1; there is no waiting room at Station 2 (H = 0
is allowed; in this case, customers join the system only if there is an idle server in
Station 1).

The stochastic model is created from the following stochastic building blocks, all
of which are assumed to be independent:

1. External arrival process A = {A(t), t ≥ 0}; A is a counting process, in which A(t)
represents the external cumulative number of arrivals up to time t ; here

EA(t) =
∫ t

0
λ(u) du, t ≥ 0. (1)

A special case is the non-homogeneous Poisson process, for which

A(t) = A0

(∫ t

0
λ(u) du

)
, t ≥ 0,

where A0(·) is a standard Poisson process (unit arrival rate).
2. “Basic” nominal service processes Di = {Di (t), t ≥ 0}, i = 1, 2, 3, where Di (t)

are standard Poisson processes.
3. The stochastic process X1 = {X1(t), t ≥ 0}, which denotes the number of cus-

tomers present at Station 1 that have not completed their service at Station 1 at
time t .

4. The stochastic process X2 = {X2(t), t ≥ 0}, which denotes the number of cus-
tomers present at Station 1 or 2 that have completed service at Station 1, but not
at Station 2, at time t .

5. Initial number of customers in each state, denoted by X1(0) and X2(0).

A customer is forced to leave the system if Station 1 is saturated (the waiting room
is full, if a waiting room is allowed) upon its arrival. We assume that the blocking
mechanism between Station 1 and Station 2 is blocking after service (BAS) [10].
Thus, if upon service completion at Station 1, Station 2 is saturated, the customer
will be forced to stay in Station 1, occupying a server there until a server at Station 2
becomes available. This mechanismwasmodeled in [81] for a network with an infinite
waiting room before Station 1. In our case, however, to accommodate customer loss,
we must use reflection in our modeling and analysis.

Let Q = {Q1(t), Q2(t), t ≥ 0} denote a stochastic queueing process in which
Q1(t) represents the number of customers at Station 1 (including the waiting room)
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and Q2(t) represents the number of customers in service at Station 2 at time t . The
process Q is characterized by the following equations:

Q1(t) = X1(t) + B(t),

Q2(t) = X2(t) ∧ N2,

where B(t) = (X2(t)−N2)
+ represents the number of blocked customers in Station 1,

and

X1(t) = X1(0) +
∫ t

0
1{X1(u−)+(X2(u−)−N2)+< N1+H} dA(u)

− D1

(
pμ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)

− D3

(
(1 − p)μ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)
,

X2(t) = X2(0) + D1

(
pμ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)

− D2

(
μ2

∫ t

0
[X2(u) ∧ N2] du

)
; t ≥ 0. (2)

Here, 1{x} is an indicator function that equals 1 when x holds and 0 otherwise. The
second right-hand term in the first equation of (2) represents the number of arrivals that
entered service up to time t . As noted in [51], an inductive construction over time shows
that (2) uniquely determines the process X . Observe that X1(t) + (X2(t) − N2)

+ =
N1 + H implies that the first station is blocked until the next departure.

2.1 Representation in terms of reflection

First, we rewrite (2) by using the fact that

∫ t

0
1{X1(u−)+(X2(u−)−N2)+< N1+H} dA(u)

= A(t) −
∫ t

0
1{X1(u−)+(X2(u−)−N2)+= N1+H} dA(u);

(3)

here, the last right-hand term represents the cumulative number of arrivals to Station
1 that were blocked because all N1 servers were busy and the waiting room was full.

Now, we rewrite (2) and (3):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
X1(t)

X1(t) + X2(t)

]
=
[
Y1(t) − L(t)

Y2(t) − L(t)

]
≤
[

N1 + H

N1 + N2 + H

]
, t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0 1{X1(t)+(X2(t)−N2)+< N1+H} dL(t) = 0,

(4)
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X1

X 2

N1+H N1+N2+H

N2

N1+N2+H

R
2

N1+N2+H

N2

R1N1+H

Fig. 2 Geometrical representation of the reflection. On the left—in terms of X , and on the right—in terms
of R

where

Y1(t) = X1(0) + A(t) − D1

(
pμ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)

− D3

(
(1 − p)μ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)
,

Y2(t) = X1(0) + X2(0) + A(t) − D3

(
(1 − p)μ1

∫ t

0
[X1(u) ∧ (N1 − B(u))] du

)

− D2

(
μ2

∫ t

0
[X2(u) ∧ N2] du

)
,

L(t) =
∫ t

0
1{X1(u−)+(X2(u−)−N2)+= N1+H} dA(u). (5)

Figure 2 (left) geometrically illustrates the reflection in (4). The region for X1 and
X2 is limited by the two blue lines. Arrivals are lost when the system is on the blue
lines. The system leaves the state X1 = N1+H when a service is completed at Station
1. The system leaves the state X1 + X2 = N1 + N2 + H when a service is completed
at Station 2.

The last equation of (4) is a complementary relation between L and X : L(·) increases
at time t only if X1(t)+ (X2(t)−N2)

+ = N1+H . We justify this by first substituting
the last equation of (5) in the last equation for L(t) of (4), which yields the following:

∫ ∞

0
1{X1(t)+(X2(t)−N2)+< N1+H} · 1{X1(t−)+(X2(t−)−N2)+= N1+H} dA(t) = 0. (6)

Now, if (6) does not hold, there must be a time when, at state N1, a service completion
and an arrival occur simultaneously. However, when X1+ (X2−N2)

+ = N1+H , the
next departure will occur according to an exponential random variable; hence, by the
independence of the building blocks, an arrival occurs simultaneously with a departure
with probability 0.
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We simplify (4), so that the reflection will occur on the axes, by letting

R1(t) = N1 + H − X1(t),

R2(t) = N1 + N2 + H − (X1(t) + X2(t)) = R1(t) + N2 − X2(t), t ≥ 0.

Note that R1(t) represents the non-utilized space in Station 1 at time t , namely the
blocked servers, the idle servers, and the available waiting room space. When all N1
servers are occupied and the waiting room is full, R1(t) includes the blocked servers
at Station 1. When all N1 servers are occupied but the waiting room is not full, R1(t)
includes the blocked servers and the available waiting room space. When some of the
N1 servers are idle, R1 includes the sum of the idle servers, the blocked servers, and
the available waiting room space. The function R2(t) represents the available space in
the system at time t . Hence, when the N1 + N2 servers are occupied, R2(t) includes
the available waiting room space. When only the N2 servers are occupied but not all
N1 servers are occupied, R2(t) includes the idle servers in Station 1 and the available
waiting room space. Finally, when Station 2 is not full, R2(t) includes the idle servers
in Stations 1 and 2 and the available waiting room space.

The functions R1 and R2 give rise to the following, equivalent to (4):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
R1(t)

R2(t)

]
=
[
Ỹ1(t) + L(t)

Ỹ2(t) + L(t)

]
≥ 0, t ≥ 0,

dL(t) ≥ 0, L(0) = 0,∫∞
0 1{R1(t)∧R2(t) > 0} dL(t) = 0,

(7)

where

Ỹ (t) =
[
Ỹ1(t)
Ỹ2(t)

]
=
[

N1 + H − Y1(t)
N1 + N2 + H − Y2(t)

]
; (8)

the last line in (7) is derived from

∫ t

0
1{X1(t)+(X2(t)−N2)+< N1+H} dL(t) =

∫ t

0
1{N1+H−X1(t)>(X2(t)−N2)+} dL(t)

=
∫ t

0
1{R1(t)−(R1(t)−R2(t))+> 0} dL(t) =

∫ t

0
1{R1(t)∧R2(t)> 0} dL(t).

The processes Ỹ1, Ỹ2, and L (see (7)) can be stated in the “language” of R:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ỹ1(t) = R1(0) − A(t) + D1

(
pμ1

∫ t
0 [(N1 + H − R1(u)) ∧ (N1 − B(u))] du

)

+ D3

(
(1 − p)μ1

∫ t
0 [(N1 + H − R1(u)) ∧ (N1 − B(u))] du

)
,

Ỹ2(t) = R2(0) − A(t) + D3

(
(1 − p)μ1

∫ t
0

[(
N1 + H − R1(u)

) ∧ (
N1 − B(u)

)]
du
)

+ D2

(
μ2

∫ t
0
[
N2 ∧ (

R1(u) − R2(u) + N2
)]
du
)

,

L(t) = ∫ t
0 1{R1(u−)∧R2(u−) = 0} dA(u).
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Here, B(u) = (
R1(u) − R2(u)

)+ in terms of R.
Figure 2 (right) presents the direction of reflection in terms of R. When the process

hits the boundary of the positive quadrant, L increases. This increase causes equal
positive displacements in both R1 and R2 as necessary to keep R1 ≥ 0 and R2 ≥ 0,
which drives L in the diagonal direction, presented in Fig. 2.

From (7), we see that L(t) ≥ −Ỹ1(t) and L(t) ≥ −Ỹ2(t). Therefore, L(t) ≥(− Ỹ1(t) ∨ −Ỹ2(t)
) = −(Ỹ1(s) ∧ Ỹ2(s)

)
, and

L(t) = sup
0≤s≤t

(
−
(
Ỹ1(s) ∧ Ỹ2(s)

))+
.

Note that this solution is applicable even though Ỹ depends on R (see [50] for details,
though recall that they do not cover blocking).

2.2 Fluid approximation

We now develop a fluid limit for our queueing model through the Functional Strong
Law of Large Numbers (FSLLN). We begin with (7) and scale up the arrival rate and
the size of the system (servers and waiting room) by η > 0, η → ∞. This parameter
η will serve as an index of a corresponding queueing process Rη, which is the unique
solution to the following Skorokhod representation:

{
Rη
1 (t) = Ỹ η

1 (t) + Lη(t),

Rη
2 (t) = Ỹ η

2 (t) + Lη(t),
t ≥ 0,

where

[
Ỹ η
1 (·)

Ỹ η
2 (·)

]

=

⎡
⎢⎢⎣

Rη
1 (0) − Aη(·) + D1

(
pμ1

∫ ·
0
[
(ηN1 + ηH − Rη

1 (u)) ∧ (ηN1 − Bη(u))
]
du
)

+ D3
(
(1 − p)μ1

∫ ·
0
[
(ηN1 + ηH − Rη

1 (u)) ∧ (ηN1 − Bη(u))
]
du
)

Rη
2 (0) − Aη(·) + D3

(
(1 − p)μ1

∫ ·
0
[
(ηN1 + ηH − Rη

1 (u)) ∧ (ηN1 − Bη(u))
]
du
)

+ D2
(
μ2

∫ ·
0
[
ηN2 ∧ (Rη

1 (u) − Rη
2 (u) + ηN2)

]
du
)

⎤
⎥⎥⎦ .

Here, Aη = {ηA(t), t ≥ 0} is the arrival process under our scaling; thus,

EAη(t) = η

∫ t

0
λ(u) du, t ≥ 0.

We now introduce the scaled processes rη = {rη(t), t ≥ 0}, lη = {lη(t), t ≥ 0} and
bη = {bη(t), t ≥ 0} by

rη(t) = η−1Rη(t), lη(t) = η−1Lη(t) and bη(t) = η−1Bη(t),
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respectively; similarly, ỹη
1 = N1 + H − yη

1 and ỹη
2 = N1 + H + N2 − yη

2 . Then, we
get that

[
ỹη
1 (·)
ỹη
2 (·)

]

=

⎡
⎢⎢⎣

rη
1 (0) − η−1Aη(·) + η−1D1

(
ηpμ1

∫ ·
0

[
(N1 + H − rη

1 (u)) ∧ (N1 − bη(u))
]
du
)

+ η−1D3
(
η(1 − p)μ1

∫ ·
0

[
(N1 + H − rη

1 (u)) ∧ (N1 − bη(u))
]
du
)

rη
2 (0) − η−1Aη(·) + η−1D3

(
η(1 − p)μ1

∫ ·
0

[
(N1 + H − rη

1 (u)) ∧ (N1 − bη(u))
]
du
)

+ η−1D2
(
ημ2

∫ ·
0

[
N2 ∧ (rη

1 (u) − rη
2 (u) + N2)

]
du
)

⎤
⎥⎥⎦ .

(9)

The asymptotic behavior of rη is described in the following theorem, which we prove
in Appendix A.

Theorem 1 Suppose that

{
η−1Aη(t), t ≥ 0

}
→

{∫ t

0
λ(u)du, t ≥ 0

}
u.o.c. as η → ∞,

and rη(0) → r(0) a.s., as η → ∞, where r(0) is a given nonnegative deterministic
vector. Then, as η → ∞, the family {rη} converges u.o.c. over [0,∞), a.s., to a
deterministic function r . This r is the unique solution to the following differential
equation (DE) with reflection:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r1(t) = r1(0) − ∫ t
0 [λ(u) − μ1((N1 + H − r1(u)) ∧ (N1 − b(u)))] du + l(t) ≥ 0,

r2(t) = r2(0) − ∫ t
0 [λ(u) − (1 − p)μ1((N1 + H − r1(u)) ∧ (N1 − b(u)))] du

+ ∫ t
0 [μ2(N2 ∧ (r1(u) − r2(u) + N2))] du + l(t) ≥ 0,

dl(t) ≥ 0, l(0) = 0,∫∞
0 1{r1(t)∧r2(t) > 0} dl(t) = 0;

(10)

where b(t) = (
r1(t) − r2(t)

)+
, t ≥ 0.

Returning to our original formulation (4), (10) can in fact be written in terms of
x(·) for t ≥ 0 as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1(t) = x1(0) + ∫ t
0 [λ(u) − μ1(x1(u) ∧ (N1 − b(u)))] du − l(t) ≤ N1 + H,

x1(t) + x2(t) = x1(t) + x2(0) + ∫ t
0 [pμ1(x1(u) ∧ (N1 − b(u))) − μ2(N2 ∧ x2(u))] du

≤ N1 + N2 + H,

dl(t) ≥ 0, l(0) = 0,∫∞
0 1{x1(t)+(x2(t)−N2)+< N1+H} dl(t) = 0.

(11)

The function x will be referred to as the fluid limit associated with the queueing family
Xη, where Xη = (Xη

1 , Xη
2) = (ηN1 + ηH − Rη

1 , Rη
1 − Rη

2 + ηN2).
The following proposition provides a solution to (11); see Appendix B for details.

As opposed to (11), this solution (12) is given by a set of differential equations with
discontinuous RHS but without reflection. Thus, implementing (12) numerically is
straightforward via recursion, which would not be the case with (11).
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Proposition 1 The fluid limit approximation for X in (2) is given by

x1(t) = x1(0) − μ1

∫ t

0
[x1(u) ∧ (N1 − b(u))] du

+
∫ t

0

[
1{x1(u)< N1+H} · 1{x1(u)+x2(u)< N1+N2+H} · λ(u)

]
du

+
∫ t

0

[
1{x1(u)=N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · [λ(u) ∧ l∗1 (u)

]]
du

+
∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)=N1+N2+H} · [λ(u) ∧ l∗2 (u)

]]
du

+
∫ t

0

[
1{x1(u)=N1+H} · 1{x1(u)+x2(u)=N1+N2+H} · [λ(u) ∧ l∗1 (u) ∧ l∗2 (u)

]]
du,

x2(t) = x2(0) +
∫ t

0
[pμ1(x1(u) ∧ (N1 − b(u))) − μ2(x2(u) ∧ N2)] du, (12)

where

l∗1 (u) = μ1N1,

l∗2 (u) = μ2N2 + (1 − p)μ1 (x1(u) ∧ (N1 − b(u))) ,

b(u) = (x2(u) − N2)
+.

We now introduce the functions q1 and q2 that denote the number of customers at
Station 1 (including the waiting room) and the number of customers in service at
Station 2, respectively:

q1(t) = x1(t) + b(t);
q2(t) = x2 ∧ N2.

Remark 1 Ourmodel can be used to analyze theGt/M/N/(N+H) queueing system.
By assuming N2 = ∞ and b = 0, the network can be reduced to a single station
(N1 = N and μ1 = μ). In that case, the fluid limit q for the number of customers in
the system is given by

q(t) = q(0) +
∫ t

0

[
λ(u) − (λ(u) − μN )+ · 1{q(u)=N+H} − μ(q(u) ∧ N )

]
du.

Remark 2 Abandonments from the waiting room can occur when customers have
finite patience. This is a prevalent phenomenon in service systems and healthcare
in particular (for example, customers that abandon the Emergency Department are
categorized as Left Without Being Seen (LWBS) [3,8]). Such abandonments can be
added to our model by following [49,60]. In particular, let θ denote the individual
abandonment rate from the waiting room. Thus, the term θ

∫ t
0 [x1(u)+b(u)−N1]+ du

should be subtracted from the right-hand side of x1(t) in (12); here, [x1(t)+b(t)−N1]+
represents the number of waiting customers at Station 1 at time t .

123



Queueing Syst

0 50 100 150 200 250 300
t

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r 

of
 c

us
to

m
er

s

Station 1 - Fluid Model
Station 1 - Simulation
Station 2 - Fluid Model
Station 2 - Simulation
Blocked - Fluid Model
Blocked - Simulation

0 100 200 300 400 500
t [days]

0

10

20

30

40

50

60

70

N
um

be
r 

of
 c

us
to

m
er

s

Station 1 - Fluid Model
Station 1 - Simulation
Station 2 - Fluid Model
Station 2 - Simulation
Blocked - Fluid Model
Blocked - Simulation

Fig. 3 Total number in each station–fluid formulation versus simulation for two scenarios. The fluid model
curves overlap the simulation curves

2.3 Numerical examples

To demonstrate that our proposed fluid model accurately describes the flow of cus-
tomers, we compared it to a discrete stochastic simulationmodel. In thatmodel, service
durations were randomly generated from exponential distributions. Customers arrive
according to a non-homogeneous Poisson process that was used to represent a pro-
cess with a general, time-dependent arrival rate. We note that simulating a general
time-varying arrival process (Gt ) is not trivial [32,47]. In [44], the authors introduce
an algorithm that is based on the standard equilibrium renewal process (SERP). This
algorithm is implemented in [61] to approximate the general inter-arrival times for the
phase-type distribution.

The fluid equations in (12) were solved recursively, by discretizing time. Figure 3
shows the comparison between the proposed fluid model and the average simulation
results for two scenarios. In the first (left plot), N1 = 200, N2 = 150, H = 50,
μ1 = 1/10, μ2 = 1/20, p = 1, q1(0) = q2(0) = 0 and λ(t) = 2t , 0 ≤ t ≤ 120. In
the second (right plot), N1 = 30, N2 = 60, H = 10, μ1 = 1/10, μ2 = 1/90, p = 1,
q1(0) = q2(0) = 0, and λ(t) = t , 0 ≤ t ≤ 60.

We calculated the simulation standard deviations, averaged over time and over 500
replications. For the first scenario, the standard deviations were 0.657 for the number
of customers in Station 1 with a maximal value of 4.4, 0.558 for the number in Station
2 with a maximal value 4.2, and 0.585 for the number of blocked customers with a
maximal value of 4.462. To conclude, the average difference between the simulation
replications and their average is less than one customer.

3 Multiple stations in tandem with finite internal waiting rooms

We now extend our model to a network with k stations in tandem and finite internal
waiting rooms, as presented in Fig. 4. The notation remains as before, only with
a subscript i , i = 1, . . . , k, indicating Station i . Moreover, we denote the transfer
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Fig. 4 Multiple stations in tandem with finite internal waiting rooms

probability from Station i to Station i + 1 as pi,i+1. Before each station i , there
is Waiting Room i of size Hi . The parameter Hi can vary from 0 to ∞, inclusive. A
customer that is referred to Station i , i > 1, when it is saturated waits inWaiting Room
i . If the latter is full, then the customer is blocked in Station i − 1 while occupying a
server there, until space becomes available in Waiting Room i .

The stochasticmodel is created from the following stochastic buildingblocks,which
are assumed to be independent: the external arrival process A = {A(t), t ≥ 0}, as was
defined in (2), processes Di = {Di (t), t ≥ 0}, i = 1, . . . , 2k − 1, where Di (t) are
standard Poisson processes, and Xi (0), i = 1, . . . , k, the initial number of customers
in each state.

As before, the above building blocks will yield a k-dimensional stochastic process,
which captures the state of our system. The stochastic process X1 = {X1(t), t ≥ 0}
denotes the number of arrivals to Station 1 that have not completed their service at
Station 1 at time t , and the stochastic process Xi = {Xi (t), t ≥ 0}, i = 2, . . . , k,
denotes the number of customers that have completed service at Station i − 1, but not
at Station i at time t . The stochastic process Bi = {Bi (t), t ≥ 0}, i = 1, . . . , k − 1,
denotes the number of blocked customers at Station i waiting for an available server
in Station i + 1.

Let Q = {Q1(t), Q2(t), . . . , Qk(t), t ≥ 0} denote the stochastic queueing process
in which Qi (t) represents the number of customers at Station i (including the waiting
customers) at time t . The process Q is characterized by the following equations:

Q1(t) = X1(t) + B1(t);
Qi (t) = [

Xi (t) + Bi (t)
] ∧ (Ni + Hi ), i = 2, . . . , k − 1;

Qk(t) = Xk(t) ∧ (Nk + Hk), t ≥ 0.

(13)

Here,

X1(t) = X1(0) + A(t) − D1

(
p12 · μ1

∫ t

0
[X1(u) ∧ (N1 − B1(u))] du

)

− Dk+1

(
(1 − p12) · μ1

∫ t

0

[
X1(u) ∧ (

N1 − B1(u)
)]
du

)

−
∫ t

0
1{X1(u−)+B1(u−)= N1+H1} dA(u),
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Xi (t) = Xi (0) + Di−1

(
pi−1,i · μi−1

∫ t

0

[
Xi−1(u) ∧ (

Ni−1 − Bi−1(u)
)]

du

)

− Di

(
pi,i+1 · μi

∫ t

0

[
Xi (u) ∧ (Ni − Bi (u))

]
du

)

− Dk+i

(
(1 − pi,i+1) · μi

∫ t

0

[
Xi (u) ∧ (Ni − Bi (u))

]
du

)
, i = 2, . . . , k − 1,

Xk(t) = Xk(0) + Dk−1

(
pk−1,k · μk−1

∫ t

0

[
Xk−1(u) ∧ (

Nk−1 − Bk−1(u)
)]

du

)

− Dk

(
μk

∫ t

0

[
Xk(u) ∧ Nk

]
du

)
,

Bi (t) = [
Xi+1(t) + Bi+1(t) − Ni+1 − Hi+1

]+
, i = 1, . . . , k − 2,

Bk−1(t) = [
Xk(t) − Nk − Hk

]+
. (14)

Note that although Bi (t), i = 1, . . . , k − 1, is defined recursively by Bi+1(t), it can
be written explicitly for every i . For example, when k = 3, we get that B1(t) =
[X2(t) + [X3(t) − N3 − H3]+ − N2 − H2]+. An inductive construction over time
shows that (14) uniquely determines the processes X and B.

By using similar methods as for the two-station network in Sect. 2, with more
cumbersome algebra and notation, we establish that x , the fluid limit for the stochastic
queueing family Xη, is given, for t ≥ 0, by

x1(t) = x1(0) − μ1

∫ t

0
[x1(u) ∧ (N1 − b1(u))] du

+
k∑

m=0

∑
A⊂{1,...,k}:

|A|=m

∫ t

0

[∏
j∈A

1{∑ j
i=1 xi (u)=∑ j

i=1(Ni+Hi )
}

×
∏

j∈{1,...,k}∩ Ā

1{∑ j
i=1 xi (u)<

∑ j
i=1(Ni+Hi )

}[λ(u) ∧
∧
y∈A

l∗y(u)
]]

du,

xi (t) = xi (0) +
∫ t

0

[
pi−1,i · μi−1 (xi−1(u) ∧ (Ni−1 − bi−1(u)))

− μi (xi (u) ∧ (Ni − bi (u)))
]
du, i = 2, . . . , k − 1,

xk(t) = xk(0) +
∫ t

0

[
pk−1,k · μk−1 (xk−1(u) ∧ (Nk−1 − bk−1(u)))

− μk (xk(u) ∧ Nk)
]
du, (15)

where

l∗1 (u) = μ1N1,

l∗n (u) = μnNn +
n−1∑
j=1

(1 − p j, j+1)μ j
(
x j (u) ∧ (

N j − b j (u)
))

, n = 2, . . . , k,
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bi (t) = [
xi+1(t) + bi+1(t) − Ni+1 − Hi+1

]+
, i = 1, . . . , k − 2,

bk−1(t) = [xk(t) − Nk − Hk]
+ .

The term in the second line of (15) is a generalization of the last four terms in the
expression for x1(t) in (12), when k = 2.

For each summand and j , if
∑ j

i=1 xi (u) = ∑ j
i=1 Ni + Hi , the corresponding

l j (u) will appear in the product. The term l j (u) represents the departure rate from

Station j when the waiting room and Stations 1, . . . , j are full (i.e.,
∑ j

i=1 xi (u) =∑ j
i=1(Ni + Hi )). The two first summations account for all combinations of l j (u),

j ∈ {1, . . . , k}.
We now introduce the functions qi (t), i = 1, . . . , k, which denote the number of

customers at Station i at time t and are given by

q1(t) = x1(t) + b1(t);
qi (t) = [xi (t) + bi (t)] ∧ (Ni + Hi ) , i = 2, . . . , k − 1;
qk(t) = xk(t) ∧ (Nk + Hk) .

Remark 3 A special case for the model analyzed in Sect. 3 is a model with an infinite
sizedwaiting roombefore Station 1 (H = ∞). In this case, since customers are not lost
and no reflection occurs, both the stochastic model and the fluid limit are simplified.
This special case is in fact an extension of the two-station model developed in [81].

4 Numerical experiments and operational insights

In this section, we demonstrate how our models yield operational insights into time-
varying tandem networks with finite capacities. To this end, we implement our models
by conducting numerical experiments and parametric performance analysis. Specifi-
cally, we analyze the effects of line length, bottleneck location, and size of the waiting
room on network output rate, number of customers in process, as well as sojourn,
waiting, and blocking times. The phenomena presented were validated by discrete
stochastic simulations.

In Sects. 4.1, 4.2, we focus on and compare two types of networks. The first has
no waiting room before Station 1 (H = 0), and in the second there is an infinite sized
waiting room before Station 1 (H = ∞). Sects. 4.3, 4.4 are dedicated to buffer-size
effects (H varies).

The model we provide here is a tool for analyzing tandem networks with blocking.
Some observations we present are intuitive and can easily be explained; others, less
trivial and possibly challenging, are left for future research.

4.1 Line length

We now analyze the line length effect on network performance. We start with the case
where all stations are statistically identical and their primitives independent (i.i.d.
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Fig. 5 Line length effect on the network output rate with k i.i.d. stations, the sinusoidal arrival rate function
in (16) with λ̄ = 9, β = 8 and γ = 0.02, Ni = 200, μi = 1/20 and qi (0) = 0, ∀i ∈ {1, . . . , k}. Five
networks of different length are considered

stations). This implies that the stations are identical in the fluid model; in Sect. 4.2,
we relax this assumption.

The arrival rate function in the following examples is the sinusoidal function

λ(t) = λ̄ + β sin(γ t), t ≥ 0, (16)

with average arrival rate λ̄, amplitude β, and cycle length T = 2π/γ .
Figure 5 presents the time-varying input and output rates from the network, as the

number of stations increases from one to eight. In both types of networks (H = 0 and
H = ∞), the variation in the output rate diminishes and the average output rate (over
time) decreases as the line becomes longer. When H = 0, due to customer loss and
blocking, the variation is larger and the average output rate is smaller.

Figure 6 shows the time-varying number of customers in each station in a network
with eight stations in tandem. When H = 0 (left plot), due to customer loss, the
average number of customers is smaller, while the variation is larger, compared to the
case when H = ∞. In fact, only about 70% of arriving customers were served when
H = 0, compared to the obvious 100% when H = ∞.

Observe that the same phenomenon of the variation and average output rate decreas-
ing as the line becomes longer (Fig. 5) also occurs when stations have ample capacities
to eliminate blocking and customer loss. In these cases, system performance reaches
its upper bound. Here, the output from one station is the input for the next one. In [20],
an analytic expression was developed for the number of customers in the Mt/G/∞
queue with a sinusoidal arrival rate as in (16). In particular, the output rate from Station
1 is given by

δ1(t) = λ̄ + β

(
μ2

μ2 + γ 2 sin(γ t) − γμ

μ2 + γ 2 cos(γ t)

)
, t ≥ 0. (17)
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Fig. 6 Total number of customers in each station in a network with eight i.i.d. stations and the sinusoidal
arrival rate function in (16) with λ̄ = 9, β = 8 and γ = 0.02, Ni = 200, μi = 1/20, and qi (0) = 0,
i = 1, . . . , 8

We now extend this analysis to tandem networks with ample capacity and hence
no blocking (tandem networks with an infinite number of servers). Specifically, we
consider (17) as the input rate for the second station and calculate the output rate from
it, and so on for the rest of the stations. Consequently, the output rate from a network
with i , i = 1, 2, . . ., i.i.d. stations in tandem and exponential service times is given by
the following expression:

δi (t) = λ̄ + β
(
C (i)
1 sin(γ t) − C (i)

2 cos(γ t)
)

, t ≥ 0, (18)

where

C (1)
1 = A1, C (1)

2 = B1,

Ai = μ2
i

μ2
i + γ 2

, Bi = γμi

μ2
i + γ 2

, i = 1, . . . , k,

C (i)
1 = C (i−1)

1 Ai − C (i−1)
2 Bi ,C

(i)
2 = C (i−1)

1 Bi + C (i−1)
2 Ai , i = 2, . . . , k. (19)

Figure 7 demonstrates that, in the special case of no blocking and sinusoidal arrival
rate, our results are consistent with those derived in [20]. Using (18) and (19), one can
verify that the amplitude of the output rate decreases as the line becomes longer.

When capacity is lacking, blocking and customer loss prevail. Analytical expres-
sions such as (18) do not exist for stochastic models with blocking, which renders our
fluid model essential for analyzing system dynamics.

4.2 Bottleneck location

In networks where stations are not identical, the location of the bottleneck in the line
has a significant effect on network performance. In our experiments, we analyzed
two types of networks (H = 0 and H = ∞), each with eight stations in tandem. In
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Fig. 7 Input and output rates from networks with k i.i.d. stations—fluid model (solid lines) versus values
from (18) (dashed lines). The sinusoidal arrival rate function in (16) with λ̄ = 9, β = 8 and γ = 0.02,
N = 200, μ = 1/20, and qi (0) = 0, ∀i ∈ {1, . . . , k}. Five networks of different length are considered.
Once the system reaches steady state, the curves from the fluid model and the analytic formula overlap

each experiment, a different station is the bottleneck; thus, it has the least process-
ing capacity 0.3µN, while the other stations are i.i.d. with processing capacity µN.
Figure 8 presents the total number of customers in each station when the bottleneck
is located first or last. In both types of networks, the bottleneck location affects the
entire network.

Figure 9 presents the total number of blocked customers in each station when the
last station is the bottleneck. When H = ∞, blocking begins at Station 7 and surges
backward to the other stations. Then, the blocking is released in reversed order: First
in Station 1 and then in the other stations until Station 7 is freed up. In contrast, when
H = 0, blocking occurs only at Station 8. The blocking does not affect the other
stations since Station 7 is not saturated, due to customer loss.

4.3 Waiting room size

We now examine the effect of waiting room size before the first station. Figure 10
presents this effect on a network with four i.i.d. stations in tandem, as the size of
the waiting room before the first station increases from zero to infinity. The left plot
in Fig. 10 presents the total number of customers in the network, and the right plot
presents the network output rate. The effect of the waiting room size on these two
performances is similar. As the waiting room becomes larger, fewer customers are
lost, and therefore the total number of customers in the network and the output rate
increase.
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Fig. 8 The bottleneck location effect on the total number of customers in each station. For the bottleneck
station, j , N j = 120, μ j = 1/40. For the other stations, i = 1, . . . , 8, i 
= j Ni = 200, μi = 1/20,
qm (0) = 0, m = 1, 2, . . . , 8, and λ(t) = 2t , 0 ≤ t ≤ 40
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Fig. 9 Number of blocked customers in each station when the last station (Station 8) is the bottleneck.
Ni = 200, μi = 1/20, i = 1, . . . , 7, N8 = 120, μ8 = 1/40. qm (0) = 0, m = 1, . . . , 8, and λ(t) = 2t ,
0 ≤ t ≤ 40. On the left, the curves for Stations 1–6 are zero and overlap
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Fig. 10 Waiting room size effect on the total number of customers (left plot) and on the output rate (right
plot) in a network with four i.i.d. stations, where Ni = 200, μi = 1/20, qi (0) = 0, i = 1, 2, 3, 4, and
λ(t) = 2t , 0 ≤ t ≤ 40

4.4 Sojourn time in the system

It is of interest to analyze system sojourn time and the factors that affect it.We begin by
analyzing a network with two stations in tandem. Figure 11 presents the effect of the
waiting room size and the bottleneck location on average sojourn time and customer
loss. When there is enough waiting room to eliminate customer loss, the minimal
sojourn time is achieved when the bottleneck is located at Station 2. This adds to [5]
and [7], who found that the order of stations does not affect the sojourn time when
service durations are deterministic and the number of servers in each station is equal.
When the waiting room is not large enough to prevent customer loss, there exists a
trade-off between average sojourn time and customer loss. The average sojourn time
is shorter when the bottleneck is located first; however, customer loss, in this case, is
greater. Explaining in detail this phenomenon requires further research.

We conclude with some observations on networks with k stations in tandem. Fig-
ure 12 presents the average sojourn time for different bottleneck locations and waiting
room sizes. When the waiting room size is unlimited, the shortest sojourn time is
achieved when the bottleneck is located at the end of the line. Conversely, when the
waiting room is finite, the shortest sojourn time is achieved when the bottleneck is
in the first station. Moreover, when the waiting room is finite, the sojourn time, as a
function of the bottleneck location, increases up to a certain point and then begins to
decrease. This is another way of looking at the bowl-shaped phenomenon [18,33] of
production line capacity. In the recent example, the maximal sojourn time is achieved
when the bottleneck is located at Station 6; however, other examples show that it can
happen at other stations as well. To better understand this, one must analyze the com-
ponents of the sojourn time—namely, the waiting time before Station 1, the blocking
time at Stations 1, . . . , 7, and the service time at Stations 1, . . . , 8. Since the total
service time was the same in all the networks, we examined the pattern of the sojourn
time is governed by the sum of the blocking and waiting times. Figure 13 presents
each of these two components. The average waiting time (right plot) decreases as
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Fig. 11 The effects of waiting room size and bottleneck location on sojourn time and customer loss in
a tandem network with two stations, where qm (0) = 0, m = 1, 2, and λ(t) = 20, 0 ≤ t ≤ 100. In the
bottleneck station, j , N j = 120, and μ j = 1/40; in the other station, i , Ni = 200, and μi = 1/20
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Fig. 12 The effects of waiting room size and bottleneck location on the average sojourn time in a tandem
network with eight stations. Here, qm (0) = 0,m = 1, . . . , 8, and λ(t) = 20, 0 ≤ t ≤ 100. In the bottleneck
station, j , N j = 120, and μ j = 1/40; in all other stations, i = 1, 2, . . . , 8, i 
= j , Ni = 200, and
μi = 1/20

the bottleneck is located farther down the line. However, the blocking time (left plot)
increases up to a certain point and then starts to decrease. To better understand the
non-intuitive pattern of the average blocking time, one must analyze the components
of the blocking time. In this case, it is the sum of the blocking time in Stations 1, . . . , 7.
Figure 14 presents the blocking time in each station and overall when H = 0. The
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Fig. 13 The effects of waiting room size and bottleneck location on the average blocking time (left plot)
and the average waiting time (right plot). The summation of the waiting time, blocking time, and service
time yields the sojourn times presented in Fig. 12
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Fig. 14 Average blocking time in each station and overall when H = 0

blocking time in Station i , i = 1, . . . , 7, equals zero when Station i is the bottleneck,
since its exit is not blocked. Further, it reaches its maximum when Station i + 1 is
the bottleneck. The sum of the average blocking time in each station yields the total
blocking time and its increasing–decreasing pattern.
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Appendix A: Proof of Theorem 1

Let T be an arbitrary positive constant. Using the Lipschitz property (Appendix C)
and subtracting the equation for r in (10) from the equation for rη in (9) yields that

∥∥rη
1 − r1

∥∥
T ∨ ∥∥rη

2 − r2
∥∥
T ≤ G

[ ∣∣rη
1 (0) − r1(0)

∣∣+
∣∣∣∣
∣∣∣∣
∫ ·

0
λ(u) du − η−1Aη(·)

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣η−1D1

(
ηpμ1

∫ ·

0

[(
N1 + H − rη

1 (u)
)

∧
(
N1 − bη(u)

)]
du

)

− pμ1

∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)]

du

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣η−1D3

(
η(1 − p)μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)]
du

)

− (1 − p)μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
)

∧ (
N1 − bη(u)

)]
du

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
)

∧ (
N1 − bη(u)

)

− (N1 + H − r1(u)) ∧
(
N1 − b(u)

)]
du

∣∣∣∣
∣∣∣∣
T

]
∨

G

[ ∣∣rη
2 (0) − r2(0)

∣∣+
∥∥∥∥
∫ ·

0
λ(u) du − η−1Aη(·)

∥∥∥∥
T

+
∣∣∣∣
∣∣∣∣η−1D3

(
η(1 − p)μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)]
du

)

− (1 − p)μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)]

du

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣η−1D2

(
ημ2

∫ ·

0

[
N2 ∧ (rη

1 (u) − rη
2 (u) + N2)

]
du

)

− μ2

∫ ·

0

[
N2 ∧ (rη

1 (u) − rη
2 (u) + N2)

]
du

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣(1 − p)μ1

∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)

− (N1 + H − r1(u)) ∧ (N1 − b(u))
]
du

∣∣∣∣
∣∣∣∣
T

+
∣∣∣∣
∣∣∣∣μ2

∫ ·

0

[(
N2 ∧ (

rη
1 (u) − rη

2 (u) + N2
))

− (N2 ∧ (r1(u) − r2(u) + N2))
]
du

∣∣∣∣
∣∣∣∣
T

]
, (20)
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where G is the Lipschitz constant.
The first, second, sixth, and seventh terms on the right-hand side converge to zero

by the conditions of the theorem. For proving convergence to zero of the third, fourth,
eighth, and ninth terms, we use Lemma 1 in Appendix D. By the FSLLN for Poisson
processes,

sup
0≤u≤t

∣∣∣η−1D(ηu) − u
∣∣∣ → 0, ∀t ≥ 0 a.s.

Note that the functions pμ1
∫ t
0

[(
N1 + H − rη

1 (u)
) ∧ (N1 − bη(u))

]
du and μ2

∫ t
0[

N2 ∧
(
rη
1 (u) − rη

2 (u) + N2

)]
du are bounded by pμ1 · (N1+H) ·T andμ2 ·N2 ·T ,

respectively, for 0 ≤ p ≤ 1 and t ∈ [0, T ]. This, together with Lemma 1, implies that
the third, fourth, eighth, and ninth terms in (20) converge to 0.

We get that

∥∥rη
1 − r1

∥∥
T ∨ ∥∥rη

2 − r2
∥∥
T

≤
[
ε
η
1 (T ) + Gμ1

∥∥∥∥
∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)− (N1 + H − r1(u)) ∧ (N1 − b(u))

]
du

∥∥∥∥
T

]
∨

[
ε
η
2 (T ) + G(1 − p)μ1

∥∥∥∥
∫ ·

0

[(
N1 + H − rη

1 (u)
) ∧ (

N1 − bη(u)
)− (N1 + H − r1(u)) ∧ (N1 − b(u))

]
du

∥∥∥∥
T

+ Gμ2

∥∥∥∥
∫ ·

0

[
N2 ∧ (rη

1 (u) − rη
2 (u) + N2)

]− [N2 ∧ (r1(u) − r2(u) + N2)] du

∥∥∥∥
T

]

≤
[
ε
η
1 (T ) + Gμ1

∥∥∥∥
∫ ·

0

[
rη
1 (u) − r1(u)

]
du

∥∥∥∥
T

+ Gμ1

∥∥∥∥
∫ ·

0

[
bη(u) − b(u)

]
du

∥∥∥∥
T

]
∨

[
ε
η
2 (T ) + G(1 − p)μ1

∥∥∥∥
∫ ·

0

[
rη
1 (u) − r1(u)

]
du

∥∥∥∥
T

+ G(1 − p)μ1

∥∥∥∥
∫ ·

0

[
bη(u) − b(u)

]
du

∥∥∥∥
T

+ Gμ2

∥∥∥∥
∫ ·

0

[
rη
1 (u) − r1(u)

]
du

∥∥∥∥
T

+ Gμ2

∥∥∥∥
∫ ·

0

[
rη
2 (u) − r2(u)

]
du

∥∥∥∥
T

]

≤
[
ε
η
1 (T ) + Gμ1

∫ T

0

∥∥rη
1 − r1

∥∥
u du + Gμ1

∫ T

0

∥∥bη − b
∥∥
u du

]
∨

[
ε
η
2 (T ) + Gμ1

∫ T

0

∥∥rη
1 − r1

∥∥
u du + Gμ1

∫ T

0

∥∥bη − b
∥∥
u du

+ Gμ2

∫ T

0

∥∥rη
1 − r1

∥∥
u du + Gμ2

∫ T

0

∥∥rη
2 − r2

∥∥
u du

]
, (21)

where ε
η
1 (T ) bounds the sum of the first four terms on the right-hand side of (20),

and ε
η
2 (T ) bounds the sum of the sixth to ninth terms; these two quantities ε

η
1 (T ) and

ε
η
2 (T ) converge to zero, as η → ∞. The second inequality in (21) is obtained by using
the inequalities |a ∧ b − a ∧ c| ≤ |b − c| and |a ∧ b − c ∧ d| ≤ |a − c| + |b − d| for
any a, b, c, and d. The third equality in (21) is because 0 ≤ p ≤ 1.
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We now use

∫ T

0

∥∥bη − b
∥∥
u du =

∫ T

0

∥∥∥(rη
1 − rη

2

)+ − (r1 − r2)
+
∥∥∥
u
du

=
∫ T

0

∥∥rη
1 − rη

1 ∧ rη
2 − r1 + r1 ∧ r2

∥∥
u du

≤
∫ T

0

[ ∥∥rη
1 − r1

∥∥
u + ∥∥rη

1 ∧ rη
2 − r1 ∧ r2

∥∥
u

]
du

≤
∫ T

0

[
2
∥∥rη

1 − r1
∥∥
u + ∥∥rη

2 − r2
∥∥
u

]
du

= 2
∫ T

0

∥∥rη
1 − r1

∥∥
u du +

∫ T

0

∥∥rη
2 − r2

∥∥
u du. (22)

From (21) and (22), we get that∥∥rη
1 − r1

∥∥
T ∨ ∥∥rη

2 − r2
∥∥
T

≤ [
ε
η
1 (T ) ∨ ε

η
2 (T )

]+ G (3μ1 + μ2)

∫ T

0

∥∥rη
1 − r1

∥∥
u du + G (μ1 ∨ μ2)

∫ T

0

∥∥rη
2 − r2

∥∥
u du

≤ [
ε
η
1 (T ) ∨ ε

η
2 (T )

]+ 2G (3μ1 ∨ μ2)

[∫ T

0

∥∥rη
1 − r1

∥∥
u du +

∫ T

0

∥∥rη
2 − r2

∥∥
u du

]

≤ [
ε
η
1 (T ) ∨ ε

η
2 (T )

]+ 4G (3μ1 ∨ μ2)

[∫ T

0

∥∥rη
1 − r1

∥∥
u du ∨

∫ T

0

∥∥rη
2 − r2

∥∥
u du

]

≤ [
ε
η
1 (T ) ∨ ε

η
2 (T )

]+ 4G (3μ1 ∨ μ2)

[∫ T

0

∥∥rη
1 − r1

∥∥
u ∨ ∥∥rη

2 − r2
∥∥
u du

]
. (23)

The first equality in (23) is obtained by using the inequality (a + b) ∨ (c + d) ≤
a ∨ c + b ∨ d, for any a, b, c, and d. Applying Gronwall’s inequality [22] to (23)
completes the proof for both the existence and uniqueness of r .

Appendix B: Proof of Proposition 1

We begin by proving that the solution for (11) satisfies, for t ≥ 0,

l(t) =
∫ t

0
1{x1(u)≥ N1+H} · 1{x1(u)+x2(u)<N1+N2+H} [λ(u) − l1(u)]+ du

+
∫ t

0
1{x1(u)< N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u) − l2(u)]+ du

+
∫ t

0
1{

x1(u)≥ N1+H
} · 1{

x1(u)+x2(u)≥N1+N2+H
}[λ(u) − l1(u) ∧ l2(u)

]+
du,

(24)

where

l1(u) = μ1 (x1(u) ∧ (N1 − b(u))) ;
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l2(u) = μ2 (x2(u) ∧ N2) + (1 − p)μ1 (x1(u) ∧ (N1 − b(u))) .

In order to prove this, we substitute (24) in (11) and show that the properties in (11)
prevail. We begin by substituting (24) in the first line of (11). Using (a − b)+ =
[a − a ∧ b], for any a, b, we obtain

x1(t) = x1(0) +
∫ t

0
[λ(u) − μ1 [x1(u) ∧ (N1 − b(u))]] du

−
∫ t

0
1{x1(u)≥N1+H} · 1{x1(u)+x2(u)<N1+N2+H} [λ(u) − λ(u) ∧ l1(u)] du

−
∫ t

0
1{x1(u)< N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u) − λ(u) ∧ l2(u)] du

−
∫ t

0
1{x1(u)≥ N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} [λ(u) − λ(u) ∧ l1(u) ∧ l2(u)] du,

and therefore,

x1(t) = x1(0) +
∫ t

0

[
1{x1(u)< N1+H} · 1{x1(u)+x2(u)< N1+N2+H} · λ(u)

− μ1 [x1(u) ∧ (N1 − b(u))]
]
du

+
∫ t

0

[
1{x1(u)≥N1+H} · 1{x1(u)+x2(u)<N1+N2+H} · (λ(u) ∧ l1(u))

]
du

+
∫ t

0

[
1{x1(u)<N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l2(u))

]
du

+
∫ t

0

[
1{x1(u)≥N1+H} · 1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du;

x2(t) = x2(0) +
∫ t

0
[pμ1 [x1(u) ∧ (N1 − b(u))] − μ2 (x2(u) ∧ N2)] du. (25)

Clearly, the properties in the third and fourth lines in (11) prevail. It is left to verify
that the first and second conditions prevail. This is done by the following proposition.

Proposition 2 The functions x1(·) and x1(·)+x2(·) as in (25) are bounded by N1+H
and N1 + N2 + H, respectively.

Proof First, we prove that the function x1(·), as in (25), is bounded by N1+H . Assume
that, for some t , x1(t) > N1+H . Since x1(0) ≤ N1+H and x1 is continuous (being an
integral), theremust be a last t̃ in [0, t], such that x1(t̃) = N1+H and x1(u) > N1+H ,
for u ∈ [t̃, t]. Without loss of generality, assume that t̃ = 0; thus x1(0) = N1 + H
and x1(u) > N1 + H for u ∈ (0, t]. From (25), we get that

x1(t) = N1 + H +
∫ t

0

[
1{x1(u)+x2(u)<N1+N2+H} · (λ(u) ∧ l1(u))

]
du

+
∫ t

0

[
1{x1(u)+x2(u)≥N1+N2+H} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du

− μ1

∫ t

0
[x1(u) ∧ (N1 − b(u))] du
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≤ N1 + H +
∫ t

0
[l1(u) − μ1 [x1(u) ∧ (N1 − b(u))]] du = N1 + H,

which contradicts our assumption and proves that x1(·) cannot exceed H1 + N1.
What is left to prove now is that the function x1(·) + x2(·) is bounded by N1 + N2.

Without loss of generality, assume that x1(0) + x2(0) = N1 + N2 + H and x1(u) +
x2(u) > N1 + N2 + H for u ∈ (0, t]. This assumption, together with x1 ≤ N1 + H ,
yields that x2 > N2; hence, from (25), we get that

x1(t) + x2(t)

= N1 + N2 + H
∫ t

0

[
1{x1(u)≥N1+N1} · (λ(u) ∧ l1(u) ∧ l2(u))

]
du

+
∫ t

0

[
1{x1(u)<N1+H} · (λ(u) ∧ l2(u))

]
du

−
∫ t

0
[(1 − p)μ1 (x1(u) ∧ (N1 − b(u))) + μ2 (x2(u) ∧ N2)] du

≤ N1 + N2 + H +
∫ t

0
[l2(u) − (1 − p)μ1 (x1(u) ∧ (N1 − b(u)))

−μ2 (x2(u) ∧ N2)] du

= N1 + N2 + H,

which contradicts the assumption that x1(t) + x2(t) > N1 + N2 + H and proves that
x1(·) + x2(·) is bounded by N1 + N2 + H . ��

By the solution uniqueness (Proposition 3), we have established that x , the fluid
limit for the stochastic queueing family Xη in (2), is given by (25).

The following two remarks explain why (25) is equivalent to (12):

1. After proving that x1(·) ≤ N1 + H and x1(·) + x2(·) ≤ N1 + N2 + H in Proposi-
tion 2, the indicators in (24) can accommodate only the caseswhen x1(·) = N1+H
and x1(·) + x2(·) = N1 + N2 + H .

2. When x1(u) = N1 + H and x1(u) + x2(u) < N1 + N2 + H , x2(u) < N2, and
hence b(u) = 0 and l1(u) = l∗1 (u). Alternatively, when x1(u) < N1 + H and
x1(u) + x2(u) = N1 + N2 + H , x2(u) > N2, and therefore l2(u) = l∗2 (u).

Appendix C: Uniqueness and Lipschitz property

Let C ≡ C[0,∞]. We now define mappings ψ : C2 → C and φ : C2 → C2 for
m ∈ C2 by setting

ψ(m)(t) = sup
0≤s≤t

(
−
(
m1(s) ∧ m2(s)

) )+;

φ(m)(t) = m(t) + ψ(m)(t)

[
1
1

]
, t ≥ 0.
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Proposition 3 Suppose thatm ∈ C2 andm(0) ≥ 0. Then,ψ(m) is the unique function
l, such that

1. l is continuous and non-decreasing with l(0) = 0,
2. r(t) = m(t) + l(t) ≥ 0 for all t ≥ 0,
3. l increases only when r1 = 0 or r2 = 0.

Proof Let l∗ be any other solution. We set y = r∗
1 − r1 = r∗

2 − r2 = l∗ − l. Using the
Riemann–Stieltjes chain rule [31, Ch. 2.2]

f (yt ) = f (y0) +
∫ t

0
f ′(y) dy,

for any continuously differentiable f : R → R. Taking f (y) = y2/2, we get that

1

2

(
r∗
i (t) − ri (t)

)2 =
∫ t

0
(r∗
i − ri ) dl

∗ +
∫ t

0
(ri − r∗

i ) dl. (26)

The function l∗ increases when either r∗
1 = 0 or r∗

2 = 0. In addition, r1 ≥ 0 and
r2 ≥ 0. Thus, either (r∗

1 − r1) dl∗ ≤ 0 or (r∗
2 − r2) dl∗ ≤ 0. Since r∗

1 − r1 = r∗
2 − r2,

both terms are non-positive. The same principles yield that the second terms in both
lines on the right-hand side of (26) are non-positive. Since the left-hand side≥ 0, both
sides must be zero; thus, r∗

1 = r1, r∗
2 = r2, and l∗ = l. ��

Proposition 4 The mappingsψ and φ are Lipschitz continuous on Do[0, t] under the
uniform topology for any fixed t.

Proof We begin by proving the Lipschitz continuity of ψ . For this, we show that for
any T > 0 there exists C ∈ R such that

∥∥ψ(m) − ψ(m′)
∥∥
T ≤ C

[ ∥∥m1 − m′
1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T

]
,

for all m,m′ ∈ D2
0.

∥∥ψ(m) − ψ(m′)
∥∥
T

=
∥∥∥∥∥ sup
0≤s≤·

(
− (

m1(s) ∧ m2(s)
))+ − sup

0≤s≤t

(
− (

m′
1(s) ∧ m′

2(s)
))+

∥∥∥∥∥
T

≤
∥∥∥∥∥ sup
0≤s≤·

∣∣(m1(s) ∧ m2(s)
)− (

m′
1(s) ∧ m′

2(s)
)∣∣
∥∥∥∥∥
T

= ∥∥(m1 ∧ m2
)− (

m′
1 ∧ m′

2

)∥∥
T ≤ 2

[ ∥∥m1 − m′
1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T

]
. (27)

The last inequality derives from

m1(t) ∧ m2(t) = (
m1(t) − m′

1(t) + m′
1(t)

) ∧ (
m2(t) − m′

2(t) + m′
2(t)

);
therefore,
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m1(t) ∧ m2(t) ≤ m′
1(t) ∧ m′

2(t) + ∥∥m1 − m′
1

∥∥
T + ∥∥m2 − m′

2

∥∥
T ,

m1(t) ∧ m2(t) ≥ m′
1(t) ∧ m′

2(t) − ∥∥m1 − m′
1

∥∥
T − ∥∥m2 − m′

2

∥∥
T ,

and

∣∣m1(t) ∧ m2(t) − m′
1(t) ∧ m′

2(t)
∣∣ ≤ ∥∥m1 − m′

1

∥∥
T + ∥∥m2 − m′

2

∥∥
T ,

which yields

∥∥m1(t) ∧ m2(t) − m′
1(t) ∧ m′

2(t)
∥∥
T ≤ ∥∥m1 − m′

1

∥∥
T + ∥∥m2 − m′

2

∥∥
T

≤ 2
(∥∥m1 − m′

1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T

)
.

Our next step is proving the Lipschitz continuity of φ. For this, we show that for any
T > 0 there exists C ∈ R such that

∥∥φ1(m) − φ1(m
′)
∥∥
T ∨ ∥∥φ2(m) − φ2(m

′)
∥∥
T ≤ C

[ ∥∥m1 − m′
1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T

]
,

for all m,m′ ∈ D2
0.

We begin with the left-hand side:

∥∥φ1(m) − φ1(m
′)
∥∥
T ∨ ∥∥φ2(m) − φ2(m

′)
∥∥
T

= ∥∥m1(t) + ψ(m)(t) − m′
1(t) − ψ(m′)(t)

∥∥
T ∨∥∥m2(t) + ψ(m)(t) − m′

2(t) − ψ(m′)(t)
∥∥
T

= ∥∥m1(t) − m′
1(t) + ψ(m)(t) − ψ(m′)(t)

∥∥
T ∨∥∥m2(t) − m′

2(t) + ψ(m)(t) − ψ(m′)(t)
∥∥
T

≤ ∥∥m1(t) − m′
1(t)

∥∥
T + ∥∥ψ(m)(t) − ψ(m′)(t)

∥∥
T ∨∥∥m2(t) − m′

2(t)
∥∥
T + ∥∥ψ(m)(t) − ψ(m′)(t)

∥∥
T

≤ ∥∥m1 − m′
1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T + ∥∥ψ(m)(t) − ψ(m′)(t)

∥∥
T

≤ 3
(∥∥m1 − m′

1

∥∥
T ∨ ∥∥m2 − m′

2

∥∥
T

)
,

where the last inequality is derived from (27). ��

Appendix D: Lemma 1

Lemma 1 Let the function fη(·) → 0, u.o.c. as η → ∞. Then, fη(gη(·)) → 0, u.o.c.
as η → ∞, for any gη(·) that are locally bounded uniformly in η.

Proof Choose T > 0, and let CT be a constant such that
∣∣gη(t)

∣∣ ≤ CT , for all
t ∈ [0, T ]. By the assumption on fη(·), we have ‖ fη‖CT → 0 as η → ∞. It follows
that ‖ fη(gη(·))‖T → 0 as η → ∞, which completes the proof. ��

123



Queueing Syst

References

1. Afèche, P., Araghi, M., Baron, O.: Customer acquisition, retention, and queueing-related service qual-
ity: optimal advertising, staffing, and priorities for a call center. Manuf. Serv. Oper. Manag. 19(4),
674–691 (2017)

2. Akyildiz, I., von Brand, H.: Exact solutions for networks of queues with blocking-after-service. Theor.
Comput. Sci. 125(1), 111–130 (1994)

3. Arendt, K., Sadosty, A., Weaver, A., Brent, C., Boie, E.: The left-without-being-seen patients: what
would keep them from leaving? Ann. Emerg. Med. 42(3), 317–IN2 (2003)

4. Armony, M., Israelit, S., Mandelbaum, A., Marmor, Y., Tseytlin, Y., Yom-Tov, G.: On patient flow in
hospitals: a data-based queueing-science perspective. Stoch. Syst. 5(1), 146–194 (2015)

5. Avi-Itzhak, B.: A sequence of service stations with arbitrary input and regular service times. Manag.
Sci. 11(5), 565–571 (1965)

6. Avi-Itzhak, B., Levy, H.: A sequence of servers with arbitrary input and regular service times revisited:
in memory of Micha Yadin. Manag. Sci. 41(6), 1039–1047 (1995)

7. Avi-Itzhak, B., Yadin, M.: A sequence of two servers with no intermediate queue. Manag. Sci. 11(5),
553–564 (1965)

8. Baker, D., Stevens, C., Brook, R.: Patients who leave a public hospital emergency department without
being seen by a physician: causes and consequences. JAMA 266(8), 1085–1090 (1991)

9. Balsamo, S., de Nitto Personè, V.: A survey of product form queueing networks with blocking and
their equivalences. Ann. Oper. Res. 48(1), 31–61 (1994)

10. Balsamo, S., de Nitto Personé, V., Onvural, R.: Analysis of Queueing Networks with Blocking.
Springer, Berlin (2001)

11. Borisov, I., Borovkov, A.: Asymptotic behavior of the number of free servers for systems with refusals.
Theory Probab. Appl. 25(3), 439–453 (1981)

12. Borovkov, A.: Stochastic Processes in Queueing Theory. Springer, Berlin (2012)
13. Brandwajn, A., Jow, Y.: An approximation method for tandem queues with blocking. Oper. Res. 36(1),

73–83 (1988)
14. Bretthauer, K., Heese, H., Pun, H., Coe, E.: Blocking in healthcare operations: a new heuristic and an

application. Prod. Oper. Manag. 20(3), 375–391 (2011)
15. Buzacott, J., Shanthikumar, J.: StochasticModels ofManufacturing Systems. PrenticeHall, Englewood

Cliffs (1993)
16. Chen,H.,Yao,D.: Fundamentals ofQueueingNetworks: Performance,Asymptotics, andOptimization.

Springer, Berlin (2013)
17. Cohen, I., Mandelbaum, A., Zychlinski, N.: Minimizing mortality in a mass casualty event: fluid

networks in support of modeling and staffing. IIE Trans. 46(7), 728–741 (2014)
18. Conway, R., Maxwell, W., McClain, J., Thomas, L.: The role of work-in-process inventory in serial

production lines. Oper. Res. 36(2), 229–241 (1988)
19. Dallery, Y., Gershwin, S.: Manufacturing flow line systems: a review of models and analytical results.

Queueing Syst. 12(1–2), 3–94 (1992)
20. Eick, S., Massey, W., Whitt, W.: Mt/G/∞ queues with sinusoidal arrival rates. Manag. Sci. 39(2),

241–252 (1993)
21. El-Darzi, E., Vasilakis, C., Chaussalet, T., Millard, P.: A simulation modelling approach to evaluating

length of stay, occupancy, emptiness and bed blocking in a hospital geriatric department. Health Care
Manag. Sci. 1(2), 143–149 (1998)

22. Ethier, S., Kurtz, T.: Markov Processes: Characterization and Convergence. Wiley, New York (2009)
23. Feldman, Z., Mandelbaum, A., Massey, W., Whitt, W.: Staffing of time-varying queues to achieve

time-stable performance. Manag. Sci. 54(2), 324–338 (2008)
24. Filippov, A.: Differential Equations with Discontinuous Righthand Sides: Control Systems. Springer,

Berlin (2013)
25. Garnett, O., Mandelbaum, A., Reiman, M.: Designing a call center with impatient customers. Manuf.

Serv. Oper. Manag. 4(3), 208–227 (2002)
26. Gershwin, S.: An efficient decomposition method for the approximate evaluation of tandem queues

with finite storage space and blocking. Oper. Res. 35(2), 291–305 (1987)
27. Glynn, P., Whitt, W.: Departures frommany queues in series. Ann. Appl. Probab. 1(4), 546–572 (1991)
28. Grassmann, W., Drekic, S.: An analytical solution for a tandem queue with blocking. Queueing Syst.

36(1–3), 221–235 (2000)

123



Queueing Syst

29. Green, L., Kolesar, P.,Whitt, W.: Coping with time-varying demandwhen setting staffing requirements
for a service system. Prod. Oper. Manag. 16(1), 13–39 (2007)

30. Harrison, J.: Assembly-like queues. J. Appl. Probab. 10(02), 354–367 (1973)
31. Harrison, J.: Brownian Motion and Stochastic Flow Systems. Wiley, New York (1985)
32. He, B., Liu, Y., Whitt, W.: Staffing a service system with non-Poisson non-stationary arrivals. Probab.

Eng. Inf. Sci. 30(4), 593–621 (2016)
33. Hillier, F., Boling, R.: Finite queues in series with exponential or Erlang service times—a numerical

approach. Oper. Res. 15(2), 286–303 (1967)
34. Katsaliaki, K., Brailsford, S., Browning, D., Knight, P.: Mapping care pathways for the elderly. J.

Health Organ. Manag. 19(1), 57–72 (2005)
35. Kelly, F.: Blocking, reordering, and the throughput of a series of servers. Stoch. Process. Appl. 17(2),

327–336 (1984)
36. Koizumi, N., Kuno, E., Smith, T.: Modeling patient flows using a queuing network with blocking.

Health Care Manag. Sci. 8(1), 49–60 (2005)
37. Langaris, C., Conolly, B.: On the waiting time of a two-stage queueing system with blocking. J. Appl.

Probab. 21(03), 628–638 (1984)
38. Leachman, R., Gascon, A.: A heuristic scheduling policy for multi-item, single-machine production

systems with time-varying, stochastic demands. Manag. Sci. 34(3), 377–390 (1988)
39. Li,A.,Whitt,W.:Approximate blockingprobabilities in lossmodelswith independence anddistribution

assumptions relaxed. Perform. Eval. 80, 82–101 (2014)
40. Li, A., Whitt, W., Zhao, J.: Staffing to stabilize blocking in loss models with time-varying arrival rates.

Probab. Eng. Inf. Sci. 30(02), 185–211 (2016)
41. Li, J., Meerkov, S.: Production Systems Engineering. Springer, Berlin (2009)
42. Liu, Y., Whitt, W.: Large-time asymptotics for the Gt/Mt/st + GI t many-server fluid queue with

abandonment. Queueing Syst. 67(2), 145–182 (2011)
43. Liu, Y., Whitt, W.: A network of time-varying many-server fluid queues with customer abandonment.

Oper. Res. 59(4), 835–846 (2011)
44. Liu, Y., Whitt, W.: The Gt/GI/st + GI many-server fluid queue. Queueing Syst. 71(4), 405–444

(2012)
45. Liu, Y., Whitt, W.: A many-server fluid limit for the Gt/GI/st + GI queueing model experiencing

periods of overloading. Oper. Res. Lett. 40(5), 307–312 (2012)
46. Liu, Y., Whitt, W.: Many-server heavy-traffic limit for queues with time-varying parameters. Ann.

Appl. Probab. 24(1), 378–421 (2014)
47. Ma,N.,Whitt,W.: Efficient simulation of non-Poisson non-stationary point processes to study queueing

approximations. Stat. Probab. Lett. 109, 202–207 (2016)
48. Mandelbaum, A., Massey, W., Reiman, M.: Strong approximations for Markovian service networks.

Queueing Syst. 30(1–2), 149–201 (1998)
49. Mandelbaum, A., Massey, W., Reiman, M., Rider, B.: Time varying multiserver queues with abandon-

ment and retrials. In: Proceedings of the 16th International Teletraffic Conference (1999)
50. Mandelbaum, A., Pats, G.: State-dependent queues: approximations and applications. Stoch. Netw. 71,

239–282 (1995)
51. Mandelbaum, A., Pats, G.: State-dependent stochastic networks. Part I. Approximations and applica-

tions with continuous diffusion limits. Ann. Appl. Probab. 8(2), 569–646 (1998)
52. Martin, J.: Large tandem queueing networks with blocking. Queueing Syst. 41(1–2), 45–72 (2002)
53. Meerkov, S., Yan, C.B.: Production lead time in serial lines: evaluation, analysis, and control. IEEE

Trans. Autom. Sci. Eng. 13(2), 663–675 (2016)
54. Millhiser, W., Burnetas, A.: Optimal admission control in series production systems with blocking.

IIE Trans. 45(10), 1035–1047 (2013)
55. Nahmias, S., Cheng, Y.: Production and Operations Analysis, vol. 5. McGraw-Hill, New York (2009)
56. Namdaran, F., Burnet, C., Munroe, S.: Bed blocking in Edinburgh hospitals. Health Bull. 50(3), 223–

227 (1992)
57. Oliver, R., Samuel, A.: Reducing letter delays in post offices. Oper. Res. 10(6), 839–892 (1962)
58. Osorio, C., Bierlaire,M.: An analytic finite capacity queueing networkmodel capturing the propagation

of congestion and blocking. Eur. J. Oper. Res. 196(3), 996–1007 (2009)
59. Pang, G., Whitt, W.: Heavy-traffic limits for many-server queues with service interruptions. Queueing

Syst. 61(2), 167–202 (2009)

123



Queueing Syst

60. Pender, J.: Nonstationary loss queues via cumulant moment approximations. Probab. Eng. Inf. Sci.
29(1), 27–49 (2015)

61. Pender, J., Ko, Y.: Approximations for the queue length distributions of time-varying many-server
queues. INFORMS J. Comput. 29(4), 688–704 (2017)

62. Perros, H.: Queueing Networks with Blocking. Oxford University Press Inc, Oxford (1994)
63. Prabhu, N.: Transient behaviour of a tandem queue. Manag. Sci. 13(9), 631–639 (1967)
64. Reed, J., Ward, A., Zhan, D.: On the generalized drift Skorokhod problem in one dimension. J. Appl.

Probab. 50(1), 16–28 (2013)
65. Rubin, S., Davies, G.: Bed blocking by elderly patients in general-hospital wards. Age Ageing 4(3),

142–147 (1975)
66. Srikant, R., Whitt, W.: Simulation run lengths to estimate blocking probabilities. ACM Trans. Model.

Comput. Simul. (TOMACS) 6(1), 7–52 (1996)
67. Takahashi, Y., Miyahara, H., Hasegawa, T.: An approximation method for open restricted queueing

networks. Oper. Res. 28(3–part–i), 594–602 (1980)
68. Tolio, T., Gershwin, S.: Throughput estimation in cyclic queueing networks with blocking. Ann. Oper.

Res. 79, 207–229 (1998)
69. Travers, C., McDonnell, G., Broe, G., Anderson, P., Karmel, R., Duckett, S., Gray, L.: The acute-aged

care interface: exploring the dynamics of bed blocking. Aust. J. Ageing 27(3), 116–120 (2008)
70. Vandergraft, J.: A fluid flow model of networks of queues. Manag. Sci. 29(10), 1198–1208 (1983)
71. van Vuuren, M., Adan, I., Resing-Sassen, S.: Performance analysis of multi-server tandem queues with

finite buffers and blocking. OR Spectr. 27(2–3), 315–338 (2005)
72. Wenocur, M.: A production network model and its diffusion approximation. Technical report, DTIC

Document (1982)
73. Whitt, W.: The best order for queues in series. Manag. Sci. 31(4), 475–487 (1985)
74. Whitt, W.: Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Appli-

cation to Queues. Springer, Berlin (2002)
75. Whitt,W.: Efficiency-driven heavy-traffic approximations for many-server queues with abandonments.

Manag. Sci. 50(10), 1449–1461 (2004)
76. Whitt, W.: Two fluid approximations for multi-server queues with abandonments. Oper. Res. Lett.

33(4), 363–372 (2005)
77. Whitt, W.: Fluid models for multiserver queues with abandonments. Oper. Res. 54(1), 37–54 (2006)
78. Whitt, W.: What you should know about queueing models to set staffing requirements in service

systems. Nav. Res. Logist. (NRL) 54(5), 476–484 (2007)
79. Whitt, W.: OM forum—offered load analysis for staffing. Manuf. Serv. Oper. Manag. 15(2), 166–169

(2013)
80. Yom-Tov, G., Mandelbaum, A.: Erlang-R: a time-varying queue with reentrant customers, in support

of healthcare staffing. Manuf. Serv. Oper. Manag. 16(2), 283–299 (2014)
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