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ABSTRACT:

In a Mass-Casualty Event (MCE) the work brought by casualties exceeds the capacity for taking care
of them. Such events, unfortunately, happen all the time. They may have either a world-wide effect
(e.g., the 2004 Indian Ocean tsunami that killed over 200,000 people) or a local one (e.g., a terror
attack or a train accident that sends tens of casualties to a hospital) — in both cases there is a
continuous imbalance between the workload and the available resources. Therefore it is very

important to prepare for such events.

We concentrate on the operational aspects of MCE in hospitals. A central problem in establishing a
hospital's emergency plan is the inability to forecast the performances of healthcare services. When
an MCE occurs, suddenly and all at once, the demand for healthcare staff and facilities increases, and
an emergency plan must be quickly implemented. Such a plan has clinical and operational

components. The focus of this research is on the latter.

The mainstream approach for modeling MCEs is through simulation. We, on the other hand, develop
a mathematical model (a fluid model) that captures the operational performance of a hospital during
and after an MCE. The results from the fluid model are in agreement with a simulation model that

was developed for validation purposes.

We formulate optimization problems with the objective of minimizing the mortality of casualties. We
then solve the problems by combining theory with numerical analysis. Our research enhances the
understanding of the operational effects of MCEs. It provides managerial insights that support
dynamic resource allocation throughout the MCE. We then capture these insights in terms of

managerial guidelines.



NOMENCLATURE

Mt) — Arrival rate of immediate casualties to the ED at time t (number of casualties per minute).
Mi — Individual treatment (service) rate in Station i (number of casualties per minute).

0; — Individual mortality rate in Station i.

p;j — transition probability from Station i to Station j.

Ri — The required number of surgeons per patient at Station i.

Qi(t) — Number of casualties in Station i (queue + service) at time t.

Lgi(t) — Queue Length in Station i at time t.

N;(t) — Number of resources in Station i at time t.

Ai(t) — Cumulative arrivals to Station i at time t.

Ds;(t) — Cumulative departures from Station i at time t.

Da;i(t) — Cumulative departures from Station i's queue at time t.



1 INTRODUCTION

A mass-casualty event (MCE) is defined as an unusual, unpredictable situation in which, at a certain
moment, there are more casualties than the system is able to manage. During MCEs, the hospital
emergency services must treat a large number of patients that suddenly arrive [1]. When a disaster
occurs, the number of patients who require treatment in Emergency Departments could easily

overwhelm hospitals’ resources [2].

The major challenges that hospitals face in an MCE include surge capacity issues, the fact that they
are already at or near capacity for emergency and trauma services, a lack of on-call specialists and
nurses, the need to coordinate between competing health care systems and incompatibilities in
communications systems [3].

MCEs can be classified into two categories: (1) those that result in an immediate or sudden impact on
healthcare services and (2) those that result in a developing or sustained impact [3]. From a Service
Engineering point of view, this classification is based on the arrival rate of casualties to receive

medical service.

The first category of MCEs includes events such as the detonation of a conventional bomb, NBC
(nuclear, biologic, chemical) attack, airplane or train crashes and natural disasters such as earthquakes
or tsunamis. This immediate impact category is characterized by a large numbers of casualties at the
outset of the event. In some cases there may be a second wave of casualties due to secondary

exposure.

The second MCE category features events such as a massive exposure to anthrax or smallpox, or a
potential case of influenza pandemic, in which there would be a gradual increase in the number of
people affected, possibly rising to a catastrophic number of patients. In this type of MCE, the number
of cases may decline due to treatment and prophylactic efforts. This type of MCE would necessitate a
more sustained response, as the impact would be felt over a much longer period than the immediate-

impact MCE. In our research, we focus on the first category of MCEs with sudden immediate impact.

A different classification of MCEs is to conventional MCEs vs. non-conventional. The hospitals
disaster plan in a non-conventional MCE (an MCE that includes toxic exposure - chemical,
biological, radiological, nuclear or contamination threat) differs from a conventional disaster plan. A
non-conventional MCE requires a decontamination procedure and different medical treatments ([4].
[5]. [6]. [7]). Our research focuses on conventional MCEs.

According to Hirsberg et al. [8] and Aylwin et al. [9], Mass Casualty Event differ from Multiple
Casualty Incidents (MCI) in that the former overwhelms the emergency systems, hospitals and

community infrastructure, and exceeds the capability of available resources to provide optimum



trauma care. For example, human caused MCEs such as the New York World Trade Center attack in
2001 [10], the Madrid commuter train bombings in 2004 [11] and the London bombing in 2005 [9] or
in nature disasters such as the Haiti earthquake in 2010 [12,13], the Turkish earthquake in 2011 [14]
and the Japanese tsunami in 2011 [15].

An MCE affects nearby hospitals, which have been working in steady state while treating a
reasonable amount of patient, but now must start treating a large number of patients. The lack of
adequate staff and equipment may cause injured patients to not receive the same level of medical
treatment that would have been provided had they been treated as an individual rather than as one of
multiple casualties arriving simultaneously. In order to overcome the temporary lack of qualified staff
and resources, the hospital prepares itself to work under a triage strategy. Upon arrival, patients are
triaged by the severity of their injuries. Severely injured must be treated immediately, since any delay
can endanger their lives. Ideally, hospital allocates separate locations for each group so as to ensure
that the majority of resources are allocated to the most severe injuries.

When an MCE occurs, the hospital usually receives an advanced notification at which time it
immediately activates its emergency plan. Figure 1 shows the activity flow which casualties go
through when entering the ED, following the hospital emergency plan. The resources include
healthcare staff and equipment. Healthcare staff includes (a) physicians: internal, surgical and
intensive care, (b) nurses: ED, Operation Room (OR) and Intensive Care Unit (ICU) (c) stretcher
bearers. The equipment category covers ORs, Intensive Care positions and stretchers.

The main goal of a hospital's emergency response in MCEs is "to provide severely injured patients
with a level of care that approximates the care given to similar patients under normal conditions" [8,
16]. In particular, the main goal of the hospital is to reduce the mortality of critically injured patients.

That is the reason we chose to focus on immediate casualties and on the upper branch in Figure 1.

Previous research, which has been based either on an ED simulation during Mass Casualty Incident
[8, 17] or on the analysis of the surgical response during real MCEs [9,10], found that the hospital
surge capacity depends primarily on the number of available surgeons. Therefore, we chose to focus
on the bottleneck resource which is surgeons. Surgeons treat patients in two stations: Shock Rooms
and Operation Rooms. We seek to find a dynamic policy for allocating the surgeons between the two

stations during the event.
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Modeling healthcare systems or emergency departments in general and in MCEs in particular is

difficult due to the complexity, size and dynamic of the systems involved.

According to Paul et al. , most MCE research has focused on modeling and simulating emergency
department in their steady state, while the hospital model in disaster management differs from the
model of normal operations in the characteristics of patient arrivals, which changes the system nature

to a transient one.

The most widespread method in operation research of MCEs is simulation [8, 16,17, 19]. We, on the
other hand, offer a mathematical, dynamic model that reflects the number of casualties in each station
at any time. All research that we are familiar with and used simulation model, assumed a constant
arrival rate through the event. Data collected during Mass Casualties Incidents in Israel [20] and after
the London bombing in 2005 [9] show a time-varying surge pattern in casualty arrivals. While the
use of averages does not reach the actual maximum surge rate, the fluid model we suggest and the
simulation model we use take into account the time-varying arrivals. According to Aylwin et al. [9], a
disaster plan that is based on estimates of average surge will fail in an MCE with large number of

critical casualties.

1.1 RESEARCH OBJECTIVES AND STRUCTURE OF THE THESIS

The objectives of our research are to develop a mathematical (fluid) model for a hospital's Emergency
Department (ED) during an MCE. The model will allow predicting operational performances and

determine the optimal dynamic policy for resource allocations.

The thesis is organized as follows: In Section 2, we review the related literature on MCEs and fluid
models. In Section 3 we define our problem and assumptions. In Section 4 we describe and compare
two mathematical (fluid) models for our problem. In Sections 5 we formally define and solve the
optimization problem for reducing mortality in two network stations and then describe its solution.
We also illustrate the solution by a few examples which give insight into the structure of the optimal
policy. In addition, we propose a heuristic greedy algorithm for the problem and compare it with the
optimal solution. In Section 6 we summarize our conclusions and in Section 7 we suggest several

directions for future research.



2 BACKGROUND AND LITERATURE REVIEW

2.1 MASS CASUALTY EVENTS

In the literature, various aspects of MCEs are analyzed: clinical aspects [8, 9, 16, 20], social sciences
aspects [13, 21, 22] and operational aspects. The latter, according to a literature survey conducted by
Altay and Green [22], is yet limited, despite the fact that analyzing MCEs requires dynamic, real-
time, effective and cost efficient solutions, which are most suitable for Operations Research. In
addition, according to [23], the main challenges of MCEs are organizational and logistic problems,

rather than trauma care problems.

When an MCE occurs in a place with poor or no medical infrastructure, the local population and
government are helpless and need assistance from other countries. An example of such an event is the
earthquake that struck Haiti on January 2010 [12, 13]. The number of deaths that were caused by the
earthquake is estimated to be 230,000, plus approximately 250,000 injured people. Israel Defense
Forces Medical Corps sent a delegation to Haiti, consisting of 121 medical personnel who set up a
field Hospital. During the 10 days that the hospital was operational, its staff treated 1,111 patients,
hospitalized 737 patients, and performed 244 operations on 203 patients [12].

The Israeli field hospital in Haiti managed to treat 100 patients a day despite the fact that its bed
capacity was only 60 (later expanded to 72) [13]. The reason for this was efficiency and flexibility in
resource allocation and staffing. For example, the distribution of injuries had changed during the time
and the hospital had constantly re-balanced its resources accordingly.

Einav et al. [20] analyzed data collected at level 1 Trauma centers in Israel, during 32 MCls caused
by suicide bombings, it concluded that high staffing demand for Emergency Department (ED),
Operation Rooms (OR) and Intensive Care Units (ICU) overlap, hence, surgeons are needed
immediately. Therefore, the hospital emergency plan should include simultaneous appropriate

resource allocation.

The hospital's surge capacity for multiple casualties in Israel, as was defined by the Emergency and
Disaster Medicine Division in the Israeli Ministry of Health, is 20% of each hospital's bed capacity.
Recent research disagrees with this definition and offers alternative definitions, either by a fixed

number of casualties [24], or by the rate of casualty arrivals [16].

Operations Research regarding MCEs focuses on four operational stages: mitigation [25,26],
preparedness [27, 28], response [29, 30] and recovery [31]. Most of these works, according to Altay

and Green [22], focus on preparedness and response.



Various problems and methodologies are described in the literature regarding hospital operations
during MCEs.

Simulation is widely accepted as an effective method for assisting management in evaluating
different operational alternatives [32]. Sinreich and Marmor developed a general flexible simulation
tool for Emergency Departments, which provides estimates regarding the current operational state
and enables short term operational planning. Hirshberg et al. [17] used a discrete-event computer
model of an emergency room during an urban terrorism bombing, based on accumulated data from 12
urban terrorist bombing incidents in Israel, while assuming a constant average arrival rate. They
concluded that the admitting capacity of the hospital depends primarily on the number of available
surgeons and defined an optimal staff profile for surgeons, residents, and trauma nurses. The
researchers concluded that the major bottlenecks in the flow of critical casualties are the shock rooms

and the computed tomography scanner but not the operating rooms.

Simulation models were also used to evaluate the realistic hospital capacity, considering the actual
quality of care provided to severe casualties [8] and to define a quantitative relation between an
increasing casualty load the level of trauma care [16] and the Time To Saturation (TTS) of the trauma
teams [19], which is the time interval between the beginning of the simulation until all trauma teams
reach their capacity. The TTS was used by the researches as a convenient substitute for the processing
capacity of the ED trauma system. A definition of the surge capacity of hospitals as a rate of casualty
arrival was also determined by a simulation model [16].

A transient model of hospital operation for a disaster response was developed by Paul et al. [18] by
using a generic simulation model and Meta-model for predicting patients' waiting times and estimate

hospitals' capacities for all the hospitals in the disaster region.

Mathematic Models and dynamic optimization for minimizing the fatalities in MCEs were used for
setting priority assignment and scheduling casualties base on their lifetime (their tolerance to wait)
and their service time in a clearing system with multiple classes of impatient jobs [33] and for
medical or logistic resource allocation [34]. A dynamic optimization model was used by Fiedrich et

al. [35] in order to best assign available resources to operational areas after earthquake disasters.

Planning the transportation of vital first-aid commodities to disaster-affected areas during emergency
response is done using stochastic programming [36]. Logistic planning of supplies was done by
solving a dynamic problem which combines the multi-commodity network flow problem and the
vehicle routing problem [37]. Sherali et al. [38] prescribed an evacuation plan under hurricane or
flood conditions, which minimizes the total congestion-related evacuation time by a nonlinear mixed-

integer programming model and heuristic algorithm and exact implicit enumeration algorithm.



2.2 FLUID MODELS

Fluid models provide useful approximations that support performance analysis and control of large
systems (high arrival rate and large number of servers) that vary in time. For example, fluid models
have been used to design and analyze Markovian service network, in which large demand is being
served by a large number of servers. The approximation becomes more accurate as the system grows
[39]. The basic fluid model (Figure 2) refers to the system as a black box having an arrival rate

function A(t) and a departure rate function 5(t), t=>0.

ﬂ, System &,

Figure 2 — A Black Box Model

Let Q(t) represent the total amount of "fluid" in the system, it can be calculated by solving the

equation:

Q) =A(H)—-3(t), 120, Q(0)=Q°

If the system consists of N(t) servers at time t, each one with service rate 4, then we get the following

differential equation:

QD) =A(t) —p-min(Q(t),N(), t=0, QO)=Q°

Mandelbaum et al. [40,41] used fluid approximation for modeling a multi-server queue in a single
service system station with abandonment and retrials. The model was proven accurate both in steady
state and in transient state, the latter caused by a sudden peak in the arrival rate. Solving the model's
equations yields an estimation of the total number of people in the system at any time, the total
number in queue and in service. The model allows predicting the time until the system returns to
steady state. In [41] Mandelbaum et al. develop fluid and diffusion approximations for the waiting
time in the system. Both approximations are "asymptotically exact as the size of the system grows

large".

Oliver and Samuel [42] present an application of the fluid approach for analyzing the mail sorting

procedure, modeled as a flow network. The network consists of serial and parallel processing stations



in post offices. The minimal delay for two sequential activities is found by the researchers, by

equaling the processing rates of the two stations.

Analyzing time-varying queueing networks is presented by Vandergraft [43], who models the flow in
a network by a set of ordinary differential equations, one for every station, and solves them by
numerical methods. Vandergraft [43] characterizes five operational measurements (productivity,
gueue length, utilization of resources, waiting time and sojourn time) and expresses the staffing level

for each station in terms of the number of customers in each station.

Whitt [44] analyzes a multi server queue with abandonment. In his research, Whitt develops a many
server heavy-traffic limits in the Efficiency Driven (ED) regime for the M(n)/M(n)/s/r + M (n)
model, on which arrival rates, service rates and abandonment rates are state-dependent, there are s
servers and r extra waiting spaces. The development includes fluid limit, diffusion limit and limits for
the steady-state distribution. In [45] Whitt develops a deterministic fluid approximation for the G/Gl/s
+ GI queueing model with large s (queueing model for a general multi-server queue with customer

abandonment) while focusing on steady state behavior.

Based on the fluid approximation developed by Whitt [44], Green et al. [46] analyze time varying
service systems while focusing on methods for setting staffing requirements. They show that
analyzing systems that are overloaded for long periods by using deterministic fluid models is useful
and implement fluid approximation to an overloaded financial service call center. The approximation
allows estimating the waiting time and queue length (which vary in time) and the total time until the

system recovers from congestion that occurs during rush hours.

Yom-Tov [47] expands the framework of Mandelbaum et al. [39] on time-varying queues and
develops fluid and diffusion limits for the Erlang-R model. Erlang-R captures the behavior of Re-
Entrant customers, who cycle between need for service and being content: such reentrant customers
are prevalent in healthcare. Yom-Tov [47] shows that fluid approximations are not only useful in
analyzing time-varying systems, but also help understand the transient behavior of systems in steady-
state. More specifically, the Erlang-R model is a stochastic queueing process which consists of 2-
node state-dependent queues: Q(t) = (Qu(1),Qx(t)). Q(t) represents the number of Needy patients in
the system (i.e., those either waiting for service or being served), and Q,(t) the number of Content

patients in the system, at time t. The fluid model yields an approximation for Q(t), t>0.

The developed model is then used to analyze mass-casualty events in which the arrival rate changes
rapidly during a short time. A numerical example, in which arrival rate is multiplied fivefold over two
hours, was simulated and compared to the fluid and diffusion approximation. The comparison showed

high accuracy, under the assumption that the time in critically-loaded state is negligible.
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Liu and Whitt [48,49] analyze a deterministic fluid model for systems which alternate between
overloaded and under-loaded intervals, having time-varying arrival rate and staffing, exponential or
non-exponential service and a non-exponential abandonment time. When the system is under-loaded,
the total system content is less than its service capacity, hence, there is no waiting and external input
flows directly into service at time-varying rate A(t), t=0. When the system is overloaded, there is no
spare service capacity, so that the input is buffered in a queue, where abandonment occurs. Liu and
Whitt [48,49] develop algorithms to describe time-dependent performance. They determine the time-
varying potential waiting time, i.e., the virtual waiting time of an arrival at a specified time, assuming
that it will not abandon. Simulations of queueing systems confirmed that the algorithm and the
approximation were effective even when the number of servers was as low as 20. They also show that
non-exponential service distribution played an important role in the fluid dynamics.

3 PROBLEM DEFINITION

We focus on immediate casualties, who go through the upper branch of Figure 1. The analyzed sub-

network of three stations is presented in Figure 3.

4 > I

Operation
P12 Rooms
N
A(t) )
Shock P32
Rooms
l I:)1 3 3)
CT Scanners |——>

/

Figure 3 — The network flow for immediate casualties
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Model Assumptions:

1. Immediate patients arrive to Station 1 after triage according to a general arrival rate. We assume
that all immediate patients are identical in their clinical situation thus their flow throughout the
network is according to First Come First Served (FCFS) priority.

2. An immediate patient that enters Station 1 at time t receives a life-saving treatment if at least one
of the N, (t) surgeons is available, or otherwise queues for treatment.

3. With probability p,, the patient is routed into an operation room, where N,(t) surgeons are
allocated.

4. With probability p;5 the patient is routed to CT scan, where N;(t) scanners are allocated.
Treatment starts immediately by an available scanner or the patient waits until one completes a
previously started treatment.

5. Treatment rates are p, 1, and p for Stations 1,2 and 3 , respectively.

6. The “effective” treatment time for a patient treated in a station includes its treatment duration and

any delay time caused by unavailable surgeons.

A treatment may take place at a station only if the necessary resources (e.g., surgeons, operation
room, CT scanners and medical equipment) are available. We assume that the only constraining
resources are the N surgeons that are available at the hospital so, at any time, N;(t) + N,(t) <N
must hold.

The value of the parameters used in our analysis is based on previous research, both from data
collected in trauma centers in Israel during MCls [17,20] and on data from international MCEs
[9,10,11]. According to Kosashvily et al. [24], and Einav et al. [20], recent terror assaults involve
high rates of blast, penetrating injuries and unpredictable trajectories, which make the CT scans
necessary. Hirshberg et al. [17], based on a simulation model, suggests that the bottlenecks in the

flow of critical casualties are the shock rooms and the CT scans, but not the operating rooms.

One surgeon is required for each casualty in the shock room and for performing an operation. A CT
scanner and a technician are required for performing a CT scan. The durations of service in each

station are taken from previous research [17,16,19].

Our analysis includes two parts. In the first part we examine and compare two fluid models for
describing the dynamics of the system. In the second part, we optimize system performance based on
the fluid model we chose, by determining the optimal dynamic surgeons' allocation in Stations 1 and
Station 2.

12



4 FLUID MODEL - POSSIBLE APPROACHES

4.1 FIRST FLUID MODEL

The first fluid model we present is based on characterizing the number of casualties in each station by
a differential equation. The solution of these differential equations set is the number of casualties in
each station at any time.

4.1.1 SINGLE STATION ANALYSIS

The number of casualties in Station 1 (in queue and in treatment) is expressed by the following

differential equation:

1) Q) =A(t) =y (1) - (Qu(t) AN,(1))
Q.(0)=Q;
d
(A AB) = min(A, B)
The rate change in the number of casualties in the station at time t is given by the difference between

the number of casualties that entered the station at time t and the number of casualties that departed
the station at time t.

The number of departures is determined by the treatment rate, uy(t), multiplied by the number of
casualties in treatment. When there is no queue, all casualties in the station are in treatment and,
therefore, the number of casualties in treatment is Q4(t). When there is a queue, all surgeons work at
full capacity and the number of casualties in treatment equals the number of surgeons, Ni(t).
Therefore, the number of casualties in treatment is the minimum between the total number of

casualties and the total number of available surgeons in the station.

There are two options for practically solving equation (1). The first option is achieved by dividing the

time interval to incremental time intervals dt, which yields the following difference equation:
Q,(t+dt) =Q,(t) +dt-[A(t) — (1) - (Q,(t) AN, (1))]
The approximation becomes more accurate as the size of the incremental time intervals diminishes.

The second option for solving equation (1) uses the assumption that first there is no queue and from a
certain time point, queue starts to form. The solution is done by dividing the total time interval into
two intervals: before a queue starts to build up and after. We define the time at which a queue starts to
form as the critical time point of the station and denote it as s;. During the time interval until s, there

is no queue and therefore there are no more casualties than surgeons. During the time interval after s;
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a queue starts to form and therefore there are no more surgeons than casualties. The equation can be

written for the two intervals by the following non-homogeneous linear differential equations:

Q,(t), 0O<t<s,

(Ql(t)ANl(t)>={N O s ter

ﬂ‘(t)_lul(t)'Ql(t)’ 0<tSSl

% :{ﬂ(t)—yl(t).r\ll(t), s, <t<T

The solution for a non-homogeneous linear differential equation of the form:

f(t)=a(t)- A)-F(1), 120,

IS
¢ T/s(w)dw t t
[o(u)-e® du c t i sy
0
f(t)= t +— =[a(u)-e® du+C-e? . t>0.
| pw)dw [pwyaw 0
e° eo

This yields the following solution for (1):

t

~[Carwndw ¢ —j(m(w»dw
Q,(0)-e° +[(A(u)-e )du, 0<t<s,
Q,(1) = t 0
Ql(sl)+j((ﬁ'(u)_ﬂ1(u)' Nl(U)))dU, Sl <t<T.

The queue length at any time t can be expressed by the following:
La,() = (Q()-N,(1))", t=0

where (X)" =max( X, 0)

If the total number of casualties in the station exceeds the total number of surgeons, the difference
between the two is the number of casualties in queue. If the number of casualties is less than the
number of surgeons, then this difference expresses the number of idle surgeons and, in this case, the

gueue length equals to zero.
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4.1.2 A NETWORK ANALYSIS

The extension of the model from one station to three stations is carried out by defining a set of three
differential equations, one for each station. Each equation represents the rate of change in the number
of casualties at time t.

The first equation for Station 1 (Shock Rooms) remains the same. The second and third equations
represent the change in the number of casualties at time t by adding the number of casualties that
entered the station at time t and subtracting the number of casualties that departed the station at that
moment. Casualties entering Station 3 (CT scans) come solely from Station 1, since the use of CT
scans in MCEs is limited to very specific indications of severe casualties [17]. Therefore, the number
of casualties that enter Station 3 (CT) at time t equals the number of casualties that departed from
Station 1 (shock rooms) at time t multiplied by the transition probability p,s from Station 1 to Station
3. (about 25% based on previous research [9,17,20]).

Casualties entering Station 2 (Operation Rooms) come either directly from Station 1, with probability
P12, Or from Station 3, with probability ps,. (Based on previous research p;; = 25% and ps, = 15%
[grﬂaﬂ])

We formalize the above as follows for t=>0:

Qu (1) =2 (1) = 1, (1) - (Qu () A N, (1)
Qu (1) =2, (1) — 11, (1) - (Q, (1) A N, (1)
Qa (1) =g (8) — 1 (1) - (Q4 (1) A N, (D))

Ay (£) = Pt (1) - (Qu (1) A N (1)) + Pt (1) - (Q5 (1) A N, (1))
Aa (1) = g, (1) - (Qu (1) A N, (D))
Q.(0)=Q!, Q,(0)=Q;, Q,(0)=Q;

One can summarize the flow equations more compactly, for t>0:

(@) QM) =21 -1 O Q1) AN,(1)
Q. (1) = Puokty () (Qu (1) A NY(D) + Py -1, (8) - (Q (D) A N (1) = 1, (D) (Q, (1) A N, (1)
Qs (1) = Pty () (Qu() AN, (1) 5 (1) (Qu() AN, ()
Q.(0)=Q, Q,(0)=0Q3, Q,(0) =Q;

Solving (2) can be achieved, as in the case of a single station, via two approaches. It is important to
notice that the solution of the first equation remains the same as for the one station model and is

independent of the other two equations. The analytical solution is more difficult, since the equations
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are dependent. The first approach is carried out by dividing the time interval into small intervals of

length dt. This yields the following:

Q,(t+dt) =Q,(t) +dt-[A, (t) -, (1) - (Q, (1) AN,(1))]
Q,(t+dt) =Q,(t) +dt-[p,,u, (1) - (Qu(t) ANy (1)) +Pyhts (1) - (Qa(t) AN, (1)) -, (1) - (Q, (1) A N, ()]
Q4 (t+dt) = Q,(t) +dt-[pyzu, (1) - (Qu(t) A N (1)) — (1) - (Q5(t) AN, (1))]

In the second approach we define the time at which a queue begins to form before station i as the

critical time point of that station and denote it as s;.

The third equation does not depend on the second one but not vice versa. We begin therefore, with the

third equation:

Q,(t), O<t<s,

(Q3(t)/\N3(t)):{N (t) s <t<T

Q.g (t) =Pty (t) ' (Q1(t) A Nl(t)) - ,us(t) ' (Q3(t) A Ns(t))-

The solution for the third equation depends on the relation between s; and s, e.g. which station will
first reach saturation and will start to form a queue. The first option is that the surgeons in the Station
1 (shock rooms) work in full capacity before the CT scanners and technicians in Station 3 do: s; < s3,

Then one obtains:

. p13:u1(t)'Q1(t)_;us(t)‘Qz(t), 0<t£Sl
Qs(t)= plalul(t)‘Nl(t) _/ls(t)'Q3(t) ) S1<t<53
Puatey (1) - Ny (1) — 25 (1) - N, (1), S, <t<T,
—j(#3(t))dW t —j#s(W))dW
Q3(0)'e ’ +J.(p13:u1(u)'Q1(u)'e ‘ )dU ) 0<t£51
—j(m(t»dw t
Qs(t) = QS(Sl) e + ,[ (plslljl(u). N1(U))du’ 5 < t< S
Qu(2)+ (Pt (1)- Ny (1) = a5 (W) - N (W)l 5,<t<T.
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The second option is that a queue begins to form in Station 3 before building up in Station 1: s; > s3:

. plszul(t)‘Ql(t)_:us(t)'Qs(t)’ 0<t353
Qs(t): p13ﬂ1(t)'Q1(t) _lus(t)'Ns(t)v S3<t<51
Puate; (1) - Ny () — 225 (1) - N, (1), s, <t<T,
*j(#s(l))dw t *j.ﬂ3(W))dW
Qe(o)'e ’ +j(p13/,11(u)-Q1(u)'e ! )dU 1 0<t£53
Q1) =1 Q(8,) + + [(Prara (U)- Q) — g2, (u) - N, (u)]du, 5, <t<s,
Qu(6) + [ I(Poatts () N, () = a5 (W) - N, (u))]du, 5, <t<T,

The solution for the second equation is performed in a similar way, except that there are now more
options regarding the order of sy, S, and ss.

4.2 SECOND FLUID MODEL

Following Hall's model [50] for systems with long service times (relative to the waiting times), we
distinguish between the departures of casualties from the queue into treatment and the departures
from treatment. Since the service time in the stations is assumed long, the delay between the time a

casualty leaves the queue and the time leaving the station cannot be ignored.

4.2.1 SINGLE STATION ANALYSIS

The two departure curves, one from the queue and the other from treatment, must, according to Hall
[50] p.192, satisfy the following two conditions:

(3) Ds(t+1)=Dq(t)
u

Dq(t) = min(A(t), Ds(t) + N(t))

The vertical difference between the two curves is given by the second condition. When there is no
gueue, the total number of casualties that departed from the queue equals the total number that
arrived. If a queue exists, the total number that departed from the queue equals the total number that
already departed the station plus the total number that are being treated at that moment. Since a queue
exists, the surgeons work at full capacity and, thus, the number of casualties in treatment equals the

number of surgeons.
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. L 1 . .
If we assume that Q(0)=0, then until one service time (t = —), no casualties leave the station:
y7i

Ds(t)=0, O<t<~>

u
Ds(t) = Da(t— ) = min(A(t—2), Ds(t—2)+ N(t—2)),  t>+
i m i p i

An illustration of the three cumulative curves is presented in Figure 4:

150

Cumulative Mumber
=
[}

m
=

|:| -
300
t [min]

Figure 4 — Cumulative Arrivals and Departures from Queue and from Treatment

The horizontal distance between the two cumulative departure curves equals one service time and is
given by the first condition. At any time t, the number of casualties that departed from the queue

equals the number of casualties that will depart the station at time t plus one service time (t+1/p).

The vertical distance between the cumulative arrivals and the cumulative departures from queue is the
gueue length and the vertical distance between the cumulative arrivals and the cumulative departures

from the station is the number of casualties in station (in queue and in treatment).
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4.2.2 A NETWORK ANALYSIS

The expansion of the second fluid model for a three stations network is based on the construction of
the two departure curves (from queue and from treatment) for each station. Ds; denotes the
cumulative departures from station i and Dg; denotes the cumulative departures from station i's queue.
The two conditions for the first station remain the same as in the single station model:

Ds, (t +ﬁ) — Dy, (1)

Dql (t) = min(Al(t): DSl(t) + N1(t))

The cumulative number of arrivals for Station 3 is the cumulative number of departures from Station
Imultiplied by p1s, the transition probability from the Station 1 to the Station 3. In other words, As(t)
= p13Ds; (V).

Therefore, the two conditions that must be satisfied for Stations 3 are:
1
Ds,(t+1) =Day (1)
Dg, (t) = min(p,3Ds, (1), Ds,(t) + N4 (1))

Following the same principles, the cumulative arrivals to the second station is constructed by the
cumulative departures from Station 1 and Station 3 multiplied by the corresponding transition
probabilities:

A,(t) = p12Ds; (1) + p32Dss (1)

The two conditions for Station 2 are:

Ds, (t+ ) = Da, (1)
u

qu(t) = min((plZDsl(t) + p32D53(t)), Dsz(t) + Nz)
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4.3 FLUID MODELS' COMPARISON AND SIMULATION RESULTS

In order to validate the fluid models against a discrete simulation and compare the two models, a
network queueing simulation model of Figure 3 was created. The simulation was developed in
SimEvent - Matlab discrete simulation tool, with 200 replications for each simulation run. Several
MCE scenarios were used for the comparison. Each scenario was represented by an arrival rate
function A(-) which indicates the number of immediate casualties arriving per minute. Arrivals were
sampled from a non-homogeneous Poisson process with an intensity functioni(t), as described in
Appendix I. The service times in each station were sampled from exponential distributions with rates
W i=1,2,3. Transitions from stations in the network were determined according to transition

probabilities. We use minutes as our time units.

We demonstrate the comparison between the models and the simulation results in two MCE scenarios
distinguished by their arrival rate. The first is a quadratic arrival rate and the second is an arrival rate

with two surges.
Scenario 1 - Quadratic Arrival Rate

The quadratic arrival rate, which represents the number of immediate casualties that arrive to the ED

per minute, is presented in Figure 5.

Arrival rate (per minute)
DE T T T T T T T T T
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1 1 1 1 L L L L L
a 100 200 300 400 500 BOO 700 800 500 1000
t [min]

Figure 5 — A quadratic arrival rate function
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The parameters used in the First Scenario are as follows:
At) = -1-10°t°+0.0044t, te[0,440],
W=1/30, [=1/30, Hs=1/20, p1;=0.25, pys = 0.25, p=0.15, Ni=10, N,=5, Ns=3

The arrival rate (per minute) is A(t) , average treatment time is 30 minutes in the Station 1, 100
minutes in the Station 2 and 20 minutes in Station 3. 25% of the casualties in Station 1 are transferred
to Station 2, 25% of the casualties in Station 1 are transferred to Station 3 and 15% of the casualties
in Station 3 are transferred to Station 2. The number of available surgeons is 10 in Station 1 and 5 in
Station 2. There are 3 available CT scanners in Station 3.

Figures 6 and 7 show the time-varying total number of casualties in each station and in queue for each
model. The continuous line represents the number of casualties given by the model and the dashed
lines represent the simulation results: average over the 200 replications and 95% confidence interval.
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Figure 6 — Total number of Casualties in each station and Queue - Simulation vs. First Fluid model —

First Scenario
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Figure 7 — Total number of Casualties in each station and Queue - Simulation vs. Second Fluid model —

First Scenario

Mean Square Error (MSE) for cumulative arrivals, cumulative departures, total number in each
station and queue length in each station were calculated for each model according to the following

formula;

MSE =

Where T denotes the total duration of the MCE scenario in minutes, m, denotes the value calculated
by the model at time t and s, denotes the average value over the 200 replications measured by the

simulation at time t.
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The MSE results are summarized in the following table:

) Cumulative Cumulative Total Queue
Station Model )
Arrivals Departures number Length
First Fluid
0.167 1.084 1.003 1.273
(1) Shock Model (4.1)
Room Second Fluid
0.167 1.699 1.62 1.243
Model (4.2)
First Fluid
0.757 0.43 0.634 0.828
2 Model (4.1)
OR Second Fluid
0.732 1.32 1.9 0.888
Model (4.2)
First Fluid
0.966 1.074 0.326 0.271
3) Model (4.1)
CT Second Fluid
0.961 1.153 0.427 0.271
Model (4.2)

Table 1 — MSE results for the two Fluid Models

Although the two models both predict the time of the peak and the maximal number of casualties and
gueue length, according to the graphs and MSE results it is apparent that the first fluid model is more

accurate than the second model.
Scenario 2 — Two-surge (peaks) Arrival Rate

The two-surge arrival rate is presented in Figure 8.
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Figure 8 — A two-surge arrival rate
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All parameters used in the Second Scenario, besides the arrival rate, are the same as were used in the

First Scenario:
AMt) = -2.16-107"t"+5.23-10°t°-0.00410- t°+0.1085t, te[0,115],
u1=1/30, l.l2:1/100, l.l3=1/20, p12:0.25, p13:O.25, p23:0.15, N1=10, N2:5, N3:3

Figures 9 and 10 show the total number of casualties in each station and in queue for each model. The
continuous line represents the number of casualties given by the model and the dashed lines represent
the simulation results: average over the 200 replication and 95% confidence interval.
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Figure 9 — Total number of Casualties in each station and Queue - Simulation vs. First Fluid model —

Second Scenario
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Figure 10 — Total number of Casualties in each station and Queue - Simulation vs. Second Fluid model —

Second Scenario

While the first fluid model is quite accurate in predicting the two peaks in the number of casualties,
the second fluid model fails to do so. In order to understand the reason for this, we go back to the
cumulative arrivals and departures curves constructed by the second fluid model in Figure 11. The
departure curves in the figure have a piecewise-constant shape. In trying to analyze this shape, we
focus on the first station, as presented in Figure 12. In Phase 1 in Figure 12, there is no queue and
therefore, the total number that departed the queue equals the total number that arrived. In addition,

no casualty has yet departed the station:

Da(t) = A(t),
Ds(t) =0.
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In the start of Phase 2 in Figure 12, a queue begins to form but no casualty has yet departed the

station, therefore

Da(t) = N, (1),
Ds(t) =0.

At Phase 3 in Figure 12, one period of service time has ended (t >1/u) and the total number of

departures from the station equals the total departures from the queue one service time earlier, hence:

Daq(t) = Ds(t) + N, (1),
Ds(t) =Dq(t -1/ ).

From the start of Phase 3 and on, the piecewise-constant pattern repeats itself in a 30 minutes (1/p)

cycle.

The reason why the second fluid model fails in the two-surge scenario, in comparison with the
quadratic arrival rate scenario, is that in the latter a queue began to form after one service time, and
therefore there were no intervals in which the number of departures remained constant, e.g. Phase 2 in
Figure 12 did not appear. The conclusion from this is that the second fluid model is not accurate in
cases where the resources reach full capacity and a queue starts to form before one service time ends.

When Ds is strictly increasing, one can deduce that the second fluid model will be accurate.

Following the reasons above, we chose to focus on the first fluid model when solving the

optimization problem in the next chapter.

Sojourn Time from the models

We denote the sojourn time of a casualty that entered a station at time t by t(t). Under the FCFS
gueue regime assumption, all casualties that arrived until time t, leave Station 1 until time t+1(t),

therefore t(t) can be obtained as a solution to the following equation:

D,(t+z(t)) =A(t), t>0.
r(t)=D'(A(t))-t, t=>0.

The sojourn time and waiting time can be derived by calculating the horizontal distance between the
cumulative arrival curve and the cumulative departure curves from the station and from the queue

respectively.
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5 MINIMIZING MORTALITY

The main goal of hospitals during MCEs is to reduce mortality [5]. Hence, the objective function we
chose is minimizing total mortality. Our model treats mortality as abandonments, which can occur
both during waiting time and during treatment. The mortality rate differs from one station to another
and the overall mortality is a summation of mortality in all stations throughout the MCE. We assume
that the mortality rate is 0, and 6, for Stations 1 and Station 2, respectively. Based on the literature,

we also assume that 0,0, < 1. For example if 6;=1/300, then the average time to death in station i is 5

hours (300 minutes). From this point on, we focus on two stations: Station 1 represents the Shock
Rooms, Station 2 represents the Operation Rooms and the transition probability between the two is
P]_2.

The optimization problem we define for the two stations is:

Min  J0.Q.(t)+6,Q,(t)] dt

Ni(*). N2(*) 0o

ST.
Qu(t) = 1(1) ~ 1, (Qu (1) A N, (1) 6, -Q, (1), 0<t<T
Qu(1) =Py -1, (Q () AN, (D) — 1,(Q () AN, (1) -0,-Q,(t),  0stsT

N, (t) + N, (8) <N, 0<t<T
N, (1), N, (1), Q,(t), Q,(t) =0, 0<t<T
Q1(0)=01 Q2(0)=0

The decision variables are N1(t) and Ny(t) for all t in [0,T]. This is the number of surgeons that must
be allocated to each station in every minute. The first two constraints are the flow constraints,
according to which the number of casualties is calculated for every t. The third constraint is a
resource constraint, ensuring that the maximal number of surgeons does not exceed N. The two last
constraints define the variables to be non-negative and set the initial conditions. For simplicity, we
assume that the system starts empty, e.g. there was early enough notice to clear the stations before

casualties begin to arrive.

We transform the continuous problem into a discrete one by dividing the time interval into small

subintervals, each of length 1 (we think in terms of time unit being 1 minute):
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Min i[elQl (1) + 0,Q, (]

Ni(+).Na(s)  t=0

ST.

Ql(t +1) = Ql(t) +2(t) _“1(Q1(t) A Nl(t)) _el 'Ql(t) t=0,.T-1
Q, (t+1) = Qz(t) P, 'Ml(Ql(t) A Nl(t)) - “2(Q2(t) A Nz(t)) -6, 'Qz(t) t=0,..T-1
N, () + N, () <N t=0,. T-1
N, (1), N, (1), Q,(t). Q,(t) =0 t=0,.T-1

Q,(0)=0, Q,(0)=0.
We thus implicitly assume that the allocation of surgeons can change every minute.

The above problem can also be rewritten as follows:

Min  S[0,Qu(t+1)+0,Q, (t+1)]

Ni(:).N2(s)  t=0

ST.

Q,(t+1) = 1-0,)Q, (t) + A(t) — i, (Q, (t) A N,(1)) t=0,. T-1
Q,(t+1) = (L-6,)Q, (1) + Py, -1y (Q () AN, D) — 1,(Q() AN,()  t=0,... T-1
N,(t) + N, (t) <N t=0,. T-1
N,(t), N, (1), Q,(t), Q,(t) >0 t=0,. T-1

Ql(o) = 0, Qz (O) =0.

Substituting the flow constraints into the objective function yields the following:

Min  S{O[A-8)Q,(0) +A() - 1,(Q () AN, (V)] +

Ni(+),Na(s) =0

0,[1=6,)Q, (1) + Py, - by (Qy (1) AN, (1)) = 1,(Q, (1) A N, (D)1}

ST.

Q,(t+1) = (1-0,)Q, (t) + A(t) — . (Q,(t) A N, (1)) t=0,. T-1
Q,(t+1) = (L= 6,)Q, (1) + Py, -1y (QO) AN (©) — 1o (Q M AN, (D) t=0,..T-1
N,(t)+ N, (t) <N t=0,. T-1
N, (1), N, (t), Q,(t), Q,(t) >0 t=0,. T-1

Ql(o) = 0, Qz (O) =0.
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The following two sets of constraints can be added without changing the optimization problem. They

ensure that the number of surgeons in each station will not exceed the number that is needed:

N,()<Q,(t)  t=0,.,T-1
N,()<Q,(t)  t=0,..T-1

Those constraints reduce the number of possible solutions while the value of the objective function is
not affected, since adding more surgeons than needed does not change the departure rate from the

station.

Another reason for adding those constraints is to leave the redundancy of surgeons at the hands of the

hospital and use only the necessary minimum as indicated by the solution.

Adding the above two sets of constraints will transform the problem into a linear one, by the

following substitutions:

[N.(1) A Qu(D]=N,(t)
[N, (1) A Q, ()] = N, (t)

The linear programming problem we now wish to solve is:

Min Till{(el[(l_ el)Ql(t) + k(t) - “1N1(t)] + 62[(1_ ez)Qz (t) +P- MlNl(t) - K, Nz(t)]}

Ni(e), N2 (s)  t=

ST.
Ql (t +1) = (1_ el)Ql(t) + K(t) - MlNl(t)

— -+ ~ ~+ ~
Il
o o
-
[N

L T-1

O O

Qz(t+1):(1_ez)Q2(t)+p12'MlNl(t)_ MzNz(t) =0,..T-1
N, () <Q,(t) =0,..T-1
N, (1) <Q,(1)

N, () +N,(t) <N
N, (1), N, (1), Q,(t), Q,(t) >0
Ql(o) = 0, Qz (O) =0.

L T-1
L T-1

o o
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Few algebraic manipulation steps and omitting the constants yield the following:

Min Ti%{Nl(t)Ml[(l_el)T_t -1- plz[(]-_ez)-r_t _1]]+ Nz(t)uz (1_92)T—t -1 }

Np(), Na(+)  t=1

ST.

N,(1) =0

N, @) +N,2) < AQ)

(1_91)M1N1(1) +H1N1(2) +N1(3) < (1_91)7‘(1) +)V(2)

(1-0)7 1N, (@) + (1-0)" N, () +-- N (T =D < (1-6)7°A(D) + (1-06)"A(2) +---+ A(T-1)

N,(1) =0
“2N2(1) _p12M1N1(1)+ Nz(z) <0
(l_ez)HzNz(l) '(1_92)p12“1N1(1)+ “2N2(2) - p12M1N1(2)+ N2(3) <0

(1_92)T_3“2N2(1) + (1_92)T_3p12H1N1(1)+ (1_92)T_4“2N2(2) - (1_92)T_4p12H1N1(2)+"'
"“H/lzNz(T_Z) - p12H1N1(T_2) +N2(T'1)SO

N,(t)+ N, (t) <N t=0,..T-1
N,(t), N,(t) >0 t=0,. T-1.

5.1 OPTIMAL SOLUTION

We demonstrate the solution for the optimization problem in three scenarios. The solutions were

generated by Mosek software installed on Malab (www.mosek.com), which globally solves constraint

optimization problems.
First Scenario - Priority is given to Station 1:

The First Scenario is a quadratic arrival rate with the following parameters:

A(t) =—-1-10"°t? + 0.0044t t €[0,440]
l_,l_ 1:1/30, H 221/100, el :1/180, 6221/300’ p12 — 025, N =10

The arrival rate A(t) refers to the number of immediate casualties who arrive to the ED per minute.
Average treatment time is 30 minutes in Station 1 and 100 minutes in Station 2. Average time to
death is 180 minutes in Station 1 and 300 minutes in Station 2. 25% of the casualties in Station 1 are

transferred to Station 2 and there are 10 available surgeons.
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Figure 13 — Optimal Surgeons allocation — First Scenario

At the beginning of the event, until t=113, there is relatively a small number of casualties and,
therefore, enough available surgeons for each station. The curves of Q4(:) and Ny(:) and the curves of
Q.(") and N,(:) coincide. At t=113, the surgeons reach full capacity, Station 1 is prioritized before
Station 2 and the surgeons are diverted to Station 1, until t=385, when the need for surgeons in

Station 2 starts to decrease.

Second Scenario - Priority is given to Station 2:

The Second Scenario is a quadratic arrival rate with the following parameters:

A(t) =—1-10°t> + 0.0044t t =[0,440]
u,=1/30, p,=1/100, 6, =1/180, 6,=1/180, p,, =0.9, N =10

The arrival rate A(t), treatment rates and number of available surgeons are equal to the First Scenario.
Average time to death is 180 minutes both in Station 1 and in Station 2. 90% of the casualties in

Station 1 are transferred to Station 2.
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Figure 14 — Optimal Surgeons allocation — Second Scenario

In this scenario, when the surgeons reach full capacity at time t=83, Station 2 is prioritized over
Station 1 and receives all the resources it requires. Station 1 receives all the resources that are left. In

general, when Station 2 is prioritized, the arrival rate to Station 2 equals the exit rate from it:

Pz - Ny (6) - 1y = N, (1) - (1, +6,).

The system during those time interval is overloaded, the surgeons work at full capacity and therefore:
N,()+N,(t)=N = N, (t)=N-N,(t)

Combining the above equations yields the following constant ratio between the two stations:

Nl(t)z N(Hz +92) , Nz(t)z N'plz Ty , 0<t<T
B, +0,+p, 1 B, +0,+p, 1y

If we generalize the number of surgeons needed in each station to R; for Station 1 and R, for Station

2, as is common in specific operations or with different resources, we get:

N-R,N, (1)

RlNl(t)+R2N2(t)=N = N1(t): R
1
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Combining the above equations yields the following:

N, (t) = N(u, +6,)

= , N, (t) = NP, 1, 0<t<T
Rl(u2+62)+R2 Py

Rl(“z +62) +R, Py ,

Third Scenario - Priority is Switching:
The Third Scenario is a quadratic arrival rate with the following parameters:

A(t) =—-1-10"°t* +0.0044t t €[0,440]
“’1 :1/30, MZ :1/100, el :1/180’ 92 :1/300, p12 :08’ N :10

The arrival rate A(t), treatment rates and number of available surgeons are equal to the First and
Second Scenarios. Average treatment time is 30 minutes in Station 1 and 100 minutes in Station 2.
Average time to death is 180 minutes in Station 1 and 300 minutes in Station 2. 80% of the casualties

in Station 1 are transferred to Station 2 and there are 10 available surgeons.
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Figure 15 - Optimal Surgeons allocation — Third Scenario

In this example, the priority is changing throughout the event. At the beginning when t<86, there are

enough surgeons in order to allocate to each station the number it needs. When 86 <t < 176, Station 2
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is prioritized and receives all the surgeons it needs and Station 1 receives the rest. At t=176, and until
t=400, Station 1 is prioritized and all surgeons are diverted to it. When t > 400, the total number of
casualties is less than the number of available surgeons and, therefore, each station receives the

number of surgeons it needs.

In general, the optimal solution gives priority to a station with higher service rate and higher mortality
rate. As the transition probability from Station 1 to Station 2 increases, the priority for Station 2
increases since more casualties are being transferred to Station 2. As the required ratio between
surgeons and casualties in Station 2 increases, the priority for Station 2 decreases, since it is

preferable to allocate surgeons to Station 1 were only one surgeon per casualty is needed.

5.2 GREEDY PROBLEM

The greedy problem would be to solve an optimization problem for every t, namely for every time
interval t, determining Ny(t) and Ny(t) in order to minimize the mortality in the next interval (t+1).
The optimization problem, in this case would be:

Min 6,Q,(t+1)+6,Q,(t+1) vt €[0, T-1]
Ny (), Na ()
ST

Q1(t +1) = Q1(t) + 7\'(t) - u1(Q1(t) A Nl(t)) - e1 Ql(t)
Q,(t+1) = Q, (1) + Py, - 1y (Qu (1) AN, (1) — 1, (Q, (1) AN,(1)) =6, -Q,(1)

N, (t) +N,(t) <N
N, (1), N,(t), Q,(t), Q,(t)>0
Ql(O) =0, QZ(O) =0.

Substituting the flow constraints in the objective function yields the following:

Min  6,[1—-6,)Q, (t) +A(t) -y (Qu(Y) AN, ()] +

Ny (+), N2 (+)

0,[(1=0,)Q, (1) + Py - 1y (Qu() AN (1)) = 11,(Q, () AN, (D))] vte[0, T-1]

ST.
N,(t) + N, (t) < N

N, (t), N,(t), Q.(t), Q,(t)=0
Q,(0)=0, Q,(0)=0.

As before, adding the two following constraints will prevent surgeons' redundancy, but will not affect

the objective function and will transform the problem into a linear one:
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N, (1) <Q, (1),
N, (1) <Q,(1).

Min 61[(1_91)Q1(t)+}"(t)_HlNl(t)]"'ez[(l_ez)Qz(t)+p12 'ulNl(t)_ MzNz(t)] Vte[O, T'l]

N1 (+), N2 (+)

ST.
N, () <Qu(t)
N, (1) <Q,(t)
N, (t) + N, (t) <N

Ny (1), N,(1), Qu(t), Q,(1)=0
Ql(o):Ov QZ(O)ZO

At any time t, Q,(t), Q,(t) and A(t) are already known and do not affect the optimization problem.

Therefore, they can be omitted from the objective function.

Min 6.1 N OF+ 6, -1, N (O = 1N (O] vte[0, T-1]
ST.

N, (1) <Q,(t)

N, (t) <Q,(t)

N, (8) + N, (t) <N

N, (t), N,(t), Q(t), Q,(t)=0

Q,(0)=0, Q,(0)=0.

The problem can also be written as a maximization problem as follows:

Max Nl(t) '“1[ e1 - p1262]+ Nz(t) 'uz'ez Vte [0, T'l]
Ny (+), N2 (+)
ST.
N, (t) <Q,(t)
N, (1) <Q, (1)
N,(t) + N, (t) <N

Ny (1), N,(1), Q. (1), Q,(1)=0
Ql(o):Ov QZ(O)ZO

The priority for allocating the resources when the system is overloaded is determined according to the
continuous Knapsack Problem. The Knapsack Problem is an optimization problem, where given a set
of items, each with a weight and a value, determines the number of each item to include in a
collection so that the total weight is less than or equal to a given limit and the total value is as large as

possible [51]. In the continuous Knapsack Problem, the number of items can be a fraction (not
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necessary an integer). The solution for the continuous Knapsack problem is given by the following

rule;

If w(0,-p,0,) > w6, the priority should be given for Station 1. In other words, allocate all the

resources Station 1 needs, and if there are still available resources left, allocate them to Station 2.
N1(t) = min(N, Qu(t)), Na(t) = N-Ny(t).
Otherwise, the priority should be given to Station 2 and the allocation should be:

No(t) = min(N, Qz()),  Ni(t) = N-Ny(t).

If we generalize the constraint N, (t)+ N, (t) <Nto R,N,(t)+R,N,(t) <N, that is we allow the ratio

between the number of resources and number of casualties to be different then 1:1, we get different

rules regarding the priorities:

If “1(61_p1292) S K0

= 2, the priority should be given to Station 1. In other words, allocate all the

1 2

resources Station 1 needs, and if there are still available resources left, allocate them to Station 2.
N1(t) = min(N, Q4(t)), Na(t) = [N-R{N;(1)}/ R..
Otherwise, priority should be given to Station 2 and the allocation should be:

No(t) = min(N, Qx(t)),  Nu(t) = [N-R2No()]/ Ry

We now demonstrate the greedy solution to the three scenarios discussed in the previous chapter.

First Scenario:

A1) =—1-10°t* +0.0044t  t<[0,440]
w, =1/30, p,=1/100, 6, =1/180, ©,=1/300, p,, =0.25, N =10

The arrival rate A(t) refers to the number of immediate casualties who arrive to the ED per minute.
Average treatment time is 30 minutes in Station 1 and 100 minutes in Station 2. Average time to
death is 180 minutes in Station 1 and 300 minutes in Station 2. 25% of the casualties in Station 1 are

transferred to Station 2 and there are 10 available surgeons.

37



The greedy solution is the optimal one - the priority is given to Station 1 since p,(6, —p,,0,) > 1,0,

as shown in Figure 16:

DT T T T T T "

Murnber of Casualties / Surgeons
Arrival Rate

t [min]

Figure 16 - Optimal Surgeons allocation — Greedy solution - First Scenario

Second Scenario:

A(t)=-1-10°t*+0.0044t  t<[0,440]
My =1/30, [ 29 :l/lOO, 91 =1/180, 92:]_/1801 P, = 09, N =10

Average treatment time is 30 minutes in Station 1 and 100 minutes in the Station 2. Average time to
death is 180 minutes both in Station 1 and in Station 2. 90% of the casualties in Station 1 are

transferred to Station 2 and there are 10 available surgeons.

The greedy solution is the optimal one - the priority is given to Station 2 since w, (0, —p,,0,) <u,0,

as shown in Figure 17:
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Figure 17 - Optimal Surgeons allocation — Greedy solution - Second Scenario

Third Scenario:

A(t) =—1-10°t* +0.0044t t €[0,440]
L, =1/30, u, =1/100, 91 =1/180, 92:1/300, P, =0.8, N=10

Average treatment time is 30 minutes in Station 1 and 100 minutes in Station 2. Average time to
death is 180 minutes in Station 1 and 300 minutes in Station 2. 80% of the casualties in Station 1 are

transferred to Station 2 and there are 10 available surgeons.

The greedy solution here is different from the optimal solution. The Priority is given to Station 1
throughout the entire event, since w, (0, —p,,0,) > 1,0, . The priority does not change as it did in the

optimal solution. This is shown in Figure 18:
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Figure 18 - Optimal Surgeons allocation — Greedy solution - Third Scenario

5.3 COMPARISON BETWEEN OPTIMAL AND GREEDY SOLUTIONS

A comparison between the optimal solution and the greedy solution for the Third Scenario in
Chapters 5.1 and 5.2 is presented in Figures 18-20. Figure 18 presents the total number of casualties
in each station in each solution. The total number of casualties is similar in both solutions, although in
the greedy solution the total number is slightly higher. Despite this, the distribution between the two
stations is different: the total number in the first station is higher in the optimal solution than in the

greedy solution, but in the second station, the total number is higher in the greedy solution.

Figure 19 presents the mortality rate in each solution. When t <331, the mortality rate is higher in the

optimal solution. But when t>331, the mortality rate in the greedy solution is higher.
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Figure 20 — Mortality Rate — Optimal vs. Greedy Solutions
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Figure 20 presents the cumulative mortality in each solution. Until t=729, the total mortality in the
optimal solution is higher than in the greedy solution. Only when t>729, the total mortality in the

optimal solution improves.

=N I I I ! ! ! ! ! !
Station 1 - greedy ' el T T

g0 f Station 1- optirnal Freoeoojoo o efl - R R _
Station 2 - greedy ' :

70H Station 2 - optimal r 1, ..... —
Total - greedy .

B0 H Total - Optimal e S B =

e s S | S o

SR .

Curnulative Mortality

an

20

10

a 100 200 300 400 &S00 GO0 700 800 500 1000
t [min]

Figure 21 — Cumulative Mortality — Optimal vs. Greedy Solutions

5.3.1 SENSITIVITY ANALYSIS

A sensitivity analysis of the Greedy solution vs. optimal solution for 24 scenarios is summarized in
Table 2. The parameters used in the experiments were chosen after consulting with experts in MCEs
and Emergency Medicine and they are adequate for an Emergency Departments during MCE. Station
1 (Shock Rooms) treats casualties at rate of 2 casualties per hour. The treatments rate in Station 2
(Operation Rooms) is lower and is on average 0.6 casualties per hour. The mortality rate in both
stations was determined by the average time it takes a casualty until death. In Station 1, an average of
5 hours is taken per casualty. Since the mortality is modeled by an exponential distribution, the
probability that a casualty will survive more than 5 hours is ~0.333, and the probability of survival
more than 10 hours is ~0.13. In Station 2, averages of 3.33 hours and 1.667 hours are taken. The
transition probability from Station 1 to Station 2 is 0.25. We used eight scenarios for the arrival rate
(quadratic, linear, constant and two-surges) (Table 2c) and a range of 10-20 available surgeons. The
mortality percentages in Tables 2a and 2b are calculated from the total number of casualties that

arrive to the ED (out of which 15% are immediate casualties).
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The main insight from the results is that the closer the mortality rates of the two stations to each other,
the smaller the difference between the optimal and greedy solutions (Table 2a vs. Table 2b). This
insight strengthens with the fact that there is no difference between the greedy and optimal solutions
when the mortality rates are equal. The maximal difference between the greedy and optimal solution
is ~6%. Another insight which can be derived from the results is that the higher the arrival rate and

the fewer the number of available surgeons (N), the larger the difference between the two solutions.

No. Scenario Mortality - Optimal | Mortality - Greedy | % Diff
1 Arrival Ratel, N=10 39.25 (4.15%) 39.26 (4.15%) 0.01%
2 Arrival Ratel, N=15 27.35 (2.89%) 27.35 (2.89%) 0.01%
3 Arrival Rate2, N=20 45.07 (3.17%) 45.07 (3.17%) 0.01%
4 Arrival Rate3, N=10 27.49 (4.12%) 27.49 (4.12%) 0.02%
5 Arrival Rate4, N=10 62.96 (5.90%) 62.97 (5.90%) 0.01%
6 Arrival Rate4, N=15 46.47 (4.36%) 46.47 (4.36%) 0.01%
7 Arrival Rate5, N=10 23.37 (3.98%) 23.38 (3.98%) 0.02%
8 Arrival Rate5, N=15 17.86 (3.04%) 17.86 (3.04%) 0.03%
9 Arrival Rate6, N=15 57.13 (4.90%) 57.14 (4.90%) 0.01%
10 Arrival Rate7, N=10 13.41 (3.53%) 13.41 (3.53%) 0.04%
11 Arrival Rate7, N=15 10.04 (2.64%) 10.05 (2.64%) 0.06%
12 Arrival Rate8, N=15 26.80 (4.67%) 26.81 (4.68%) 0.01%

Table 2a — Sensitivity Analysis of Greedy vs. Optimal solution
(11=1/30, p,=1/100, 6,=1/300, 8,=1/200, P1,=0.25)

No. Scenario Mortality - Optimal | Mortality - Greedy | Diff
1 Arrival Ratel, N=10 43.65 (4.61%) 46.17 (4.88%) 5.77%
2 Arrival Ratel, N=15 31.69 (3.35%) 31.98 (3.38%) 0.92%
3 Arrival Rate2, N=20 51.84 (3.65%) 53.28 (3.75%) 2.78%
4 Arrival Rate3, N=10 30.96 (4.64%) 31.84 (4.78%) 2.86%
5 Arrival Rate4, N=10 67.28 (6.31%) 69.84 (6.55%) 3.81%
6 Arrival Rate4, N=15 51.89 (4.86%) 53.46 (5.01%) 3.03%
7 Arrival Rate5, N=10 26.44 (4.51%) 26.84 (4.58%) 1.52%
8 Arrival Rate5, N=15 21.03 (3.58%) 21.04 (3.59%) 0.08%
9 Arrival Rate6, N=15 62.68 (5.37%) 64.37 (5.52%) 2.69%
10 Arrival Rate7, N=10 15.53 (4.09%) 15.59 (4.10%) 0.37%
11 Arrival Rate7, N=15 12.08 (3.18%) 12.08 (3.18%) 0.01%
12 Arrival Rate8, N=15 29.70 (5.18%) 30.07 (5.24%) 1.26%

Table 2b — Sensitivity Analysis of Greedy vs. Optimal solution

(1:=1/30, p,=1/100, 6,=1/300, 0,=1/100, P;,=0.25)
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Arrival Rate A(t)

Arrival Ratel A(t) =-1-10°t* +0.0044t, 0<t<440

Arrival Rate2 A(t)=-15-10"t* +0.0066t, 0<t<440

Arrival Rate3 A(t)=0.5 0<t<200

Arrival Rate4 A(t)=0.8, 0<t<200

Arrival Rate5 A(t) =0.0044t, 0<t<200

Arrival Rate6 A(t)=0.0088t, 0<t<200

Arrival Rate7 A(t)=-2.16-10"t* +5.23t* —0.0041t* +0.1085t, 0<t<115
Arrival Rate8 A(t)=-3.24-10"t* +7.85t> —0.0062t* + 0.163t, 0<t<115

Table 2c — Arrival Rates (per minute)

5.4 PROBLEM ANALYSIS

When the decision maker encounters an MCE, and the surgeons cannot overcome the load, the
options are to prioritize surgeons to Station 1 or to Station 2. Another conflict is if to change priorities
(e.g., first prioritize Station 1 and at some time point prioritize Station 2) or keep them constant until
the event concludes. In this section, we present Theorem 1 that characterizes optimal priority settings

for various scenarios, and we then analyze each scenario.

Theorem 1: The optimal policies are listed in the following Table 3, according to the relationship

between pi(1-p12) and py:

Conditions 0, =0, 6, >0, 6, <0,
Station 1 or ) )
(1w Station 2 Station 1 Station 2
-P12) = ation
HiEPe) ik (Case 4) (Case 7)
(Casel)
) Station 1 Set priority to Station 1 and
Station 1 _ _
w(1-p12) > o (Case 5) switch to Station 2 at t
(Case 2)
(Case 8)
] Set priority to Station 2 and )
(1w Station 2 itch to Station 1 att Station 2
-p12) < switch to Station 1 a
HalPiz) = Kz (Case 3) (Case 9)
(Case 6)

Table 3: Optimal Surgeons allocations
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Specifically, the entries in the table indicate which station gets a higher priority: this station gets all

the surgeons it needs out of those available, the other station gets the rest of the surgeons, if any.

Proof: The proof involves three steps. In the first step we prove, by induction, that the greedy
problem vyields optimal results when mortality rates at the two stations are equal and develop
analytical conditions for priority policy setting (Cases 1- 3 of Theorem 1). In the second step, we
prove by induction that, when the mortality rates are equal and the priority is giving to a specific
station, this priority will also be given to it when the mortality rate in that station is higher than in the
other (Cases 4,5,7 and 9 of Theorem 1). In the third step we show, empirically, that a switch in
priority may occur during the event (Cases 6 and 8 of Theorem 1). As the mathematics involved is
rather tedious, we have placed it, when possible, in Appendix Il and Il while keeping here only the

main components.

Step 1. We prove by a Mathematical Induction that the optimal solution of the greedy problem is
identical to the optimal solution of the original problem for equal mortality rates&@ =6, =6,. The

proof is detailed in Appendix Il and it facilitates a static priority rule for optimal surgeons' allocation.
The Second Scenario in Chapters 5.1 and 5.2 illustrates Case 3.

Step 2: We expand our proof for equal mortality rates to the cases where the mortality rates are
different but still the Greedy solution is the optimal one. Cases 4 and 5 - if no station or Station 1 gets
priority when 6,=0,, then when 6, > 0,, Station 1 will still get priority, since higher mortality rate in
one station strengthens its priority. The same holds for cases 7 and 9 - if no station or Station 2 gets
priority when 6,=6,, then when 6; < 0, Station 2 will still get priority. The proof is detailed in
Appendix I1l. The First Scenario in chapters 5.1 and 5.2 illustrates Case 5.

Step 3: We show, empirically, that for Cases 6 and 8 there may be a switch in priority. The priority
before the switch is determined according to the priority for the equal mortality rates and the priority
after the switch is given to the other station. The Third Scenario in chapters 5.1 and 5.2 illustrates

Case 6. The 24 scenarios described in Chapter 5.3.1 are also included under those cases.

5.5 MINIMAL TIME WINDOW FOR RESOURCE ALLOCATION

Changing the allocation of surgeons every minute is not feasible. We assume that the allocation can
be changed only every S minutes (usually S=30 or 60 minutes). Then, additional constraints must be

added to our original problem. The optimal allocation for each period cannot be found by solving an
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optimization problem for every minute, as was done before. The entire time interval must be taken

into account while the objective function is minimizing the overall mortality.

Min - [00,(0+6,0,()]

ST.

Qut+D) = (1=0)Q.(0+ 7 (0~ 1,(Q) A N,(D)

Qu(t+1) = (1= 0,)Q () + Pt (QuO AN, (D)~ 1a(Qu() AN, (D)

N, (t)+R,N,(t)<N t=1,..T
N,(i)=N,(i+)=..=N,(i+S-1) i :l,S+1,28+1...[£JS+1
N,(i)=N,(i+1)=..=N,(i+S-1) i :1,S+1,28+1...[£JS+1

N, (1), N,(t), Q,(t), Q,(t)=>0.

When allocations can be changed every minute, additional constraints preventing surgeons'
redundancy were added and transform the problem into a linear one. In present case, such constraints
cannot be added since the allocation remains constant for S minutes. The optimal solution can include

intervals in which there is redundancy in surgeons in order to prevent shortage in other parts of the
interval.

Auxiliary sets of variables Z, (t) and Z,(t) for every t are defined by the following:

Z,(1) =Q,(t) ANy (t) vt €[0,T]
Z, ® = Q, (t) A Nz(t) vt €[0,T].

This can be expressed in terms of the four sets of linear constraints:

Z,(t) <N,(t)

Z,(t) <Q,(t)
Z,()<N,(t)

Z,(t) <Q,(1).

In addition, Z (t)and Z,(t) must appear with a negative sigh in the objective function, in order to

assure that the solution sets Z, (t) and Z,(t) the maximal value it can. Z,(t) always appears with a

negative sign, but Z, (t) appears with a negative sign only if the following condition holds:
_61“1 +92p12“1 <0 = ezplz < 91
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Substituting the auxiliary variables in the problem yields the following:

Min  ST0,Q.(t+1)+0,Q,(t+1)]

Ni(+). Na(+) =0

ST.
Ql(t+1):Ql(t)+?\‘l(t)_l"llzl(t)_61'Ql(t)
Qz(t+1) :Qz(t) +Pg, 'M1zl(t) - Hz'zz(t)_ez Qz(t)

N,(t)+R,N,(t) <N
N,(i)=N,(i+1)=..=N,(i+S-1) i:15+128+1m[£J8+1
N, () =N,(i+1)=..=N,({i+S-1) i=15+123+1m{£J5+1

N, (1), N,(1), Q.(t), Q,()20
Q,(0)=Q,(0)=Q;(0)=0.

We illustrate the three scenarios described in Chapters 5.1 and 5.2:

First Scenario: Priority is given to Station 1:
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Figure 22 — Optimal Surgeons allocation — Minimal Time Window — First Scenario
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Second Scenario: priority is given to Station 2:
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Figure 23 — Optimal Surgeons allocation — Minimal Time Window — Second Scenario

Third Scenario: priority is Switching:
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48



6 SUMMARY AND CONCLUSIONS

The model we propose predicts the number of casualties in a hospital’s ED during an MCE. We
formulate optimization problems with the objective of minimizing the mortality of casualties and then
solve the problems by combining theory with numerical analysis. Our solution approach finds the
dynamic allocation of surgeons between the shock rooms and operating rooms during an MCE.

We formulated a greedy counterpart for the original problem and found the conditions under which
its solution solves also the original problem. We defined a general approach to predict the structure of
the optimal solution of the original problem. Our model is simple enough, yet able to describe a broad
range of different MCE scenarios. As such, it can be used to help in preparing for, and managing an
MCE.

7 FEwW DIRECTION FOR FUTURE RESEARCH

There are several directions for future research.

One type of research can deal with analytical extensions such as finding the optimal t in which
resource allocation priority changes between the two stations and bounds to the performance of the
greedy algorithm compared to the optimal policy. Our insights can be analyzed also with respect to a
change in the structure of parameters, for example if the mortality rates (or alternatively, the survival

chances) of casualties increase (decrease) while they are waiting for treatment.

Another possible outlet is to use the developed approach to account for other types of MCEs, such as
non-conventional MCEs (biological, chemical, nuclear and radiation), where there are different

medical processes and resources.

Extensions to the network and empirical work may be also natural directions for future research. For
example, the analyzed two stations network can be expanded to account for the entire ED. Moreover,
real data, collected from MCEs can be analyzed and the approach suggested here can be analyzed
with this data and extended networks to find managerial insights that will help to prepare and manage
the next MCEs.
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APPENDIX I:

The technique used for sampling from a non-homogenous Poisson process, with rate A(t), 0 <t < T,

where S(I) will contain the arrival times which were samples:

Set A=max {A(t)}.

Set t=0, 1=0
Generate Ul /* sample U1 from a Uniform[0,1] distribution */
Set t=t-log(U1)/ A /* sample from a homogenous poisson process with rate A */
Whilet<T

Generate U2 [* sample U2 from a Uniform[0,1] distribution */

If U2 <A(t)/ A

Set I=1+1, S(I)=t
Generate Ul /* sample U1 from a Uniform[0,1] distribution */

Sett=t-log(Ul)/ A  /* sample from a homogenous poisson process with rate A */

APPENDIX II:

Proof of Theorem 1 Step 1:
When mortality rate of the two stations are equal (6 = 0, = 0,), the greedy solution is optimal.
Proof by induction:

Stage 1: Proof that when 6,=6,, any two time units (n=2) and any initial conditions (Q1(0), Q2(0)), the
Greedy solution is the Optimal solution (e.g. the priority of stations is determined by the problem

parameters and does not change throughout event: if (1-p,)u, >u, station 1 gets priority, if

(1-p,)u, <p, station 2 gets priority and if (1—p,,)u, =L, ).

The time unit we choose can be as small as we wish by doing that we guarantee that the optimal

solution for the discrete problem is equal to the optimal solution of the continuous problem.

Stage 2: Assume that when 06,=6, and any n (or less) time units the Greedy solution is Optimal, and

proof for n+1 time units.
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Stage 1:
The problem for the first time unit (t=0) given Q;(0) and Q2(0) is :

Max  Wy[1-p,IN,(0) + p,N,(0)

Ny (0), N2 (0)

ST.

N,(0)<Q,(0)

N,(0)<Q,(0)

N,(0)+N,(0)<N

N, (0), N,(0)>0.

The optimal solution is:

If 1-p,)u, >n, station 1 gets priority and

N, (0) =min(Q,(0),N), N, (0)=min(Q,(0),N-N,(0))
If 1-p,)u, <p, station 2 gets priority and

N, (0) =min(Q,(0), N—N,(0)), N,(0)=min(Q,(0),N)

The problem for the second time unit (t=1), given Q1(1) and Q,(1) is:

Max  K,(0-p)N, @) + p,N, @)

Ny (1), N2 (1)

ST.

N, (1) <Q,()

N, (1) <Q,(1)

N,@+N,@1)<N

N,(1), N,(@)=0.

The optimal solution is:

If 1-p,)u, >n, station 1 gets priority and

N, (@ =min(Q,@),N), N, () =min(Q,(1),N-N,(®)

If 1-p,)w, <p, station 2 gets priority and

N, (1) =min(Q,(1),N-N, (1)), N,()=min(Q,(1),N)
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The problem for the two time units altogether is:

MaX (1_p12)“~1(2'6)N1(0)+ Mz(z'e)Nz(O) + (1_p12)H1N1(1)+ HzNz(l)

NLE N

s.t.

N,(0)+N,(0) <N

N, () +N, (<N
N,(0)<Q,(0), N,(0)<Q,(0)
N, () <Q,(1), N,(1)<Q,()
N,(0), N,(0)>0

N, (D, N,()>0.

Eight cases have to be checked regarding the initial conditions:

If Q-py)y, >u,:

1.N<Q,(0), N<Q@), VvQ,(0),Q,(2)
2.N>Q,(0), N>Q,(1), VQ,(0).Q,(1)
3.N<Q,(0), N>Q,(), VQ,(0).Q,(1)
4.N>Q,(0), N<Q,(1), VQ,(0),Q,(1)

If Q-py)y, <p,:

5.N<Q,(0), N<Q,(), VvQ,(0),Q,(1)
6.N>Q,(0), N>Q,(), vQ,(0).Q,(1)
7.N<Q,(0), N>Q,(1), VvQ,(0).Q,(1)
8.N>Q,(0), N<Q,()., vQ,(0).Q,(1)

Case 1:

The solution for solving each time unit separately is N;(0) = N, N,(0) =0, N3(1) =N, N»(1) = 0.
The value of the objective function is:

T=Np, (1-p,,)(3-6)

We assume that it is preferable not to assign all the resources to the first station at the first time unit
N;(0) < N, N2(0) = min(N-N1(0), Q»(0))

We define: N-N;(0) =X >0 > Ny(0) =N-X
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Substituting the above in the objective function of the two time units altogether yields the following:

T'=N,(0)(2-0)p,A-py,) *N,(0)(2-0)u, +N p,(1-p,,) <
N, (0)(2 -0, (1 - py,) +(N-N,(0))(2 - 6)p, +N p, (1 - py,) =
N(3_ 9)“1(1_ p1z) 'X(2 —9)[H1(1— plz) - Hz] < N(3_ e)ul(l_ plz) =T

Since we wish to maximize the objective function we get a contradiction to our assumption.

We assume that it is preferable not to assign all the resources to the first station at the second time

unit

N;(1) < N, Nx(1) = min(N-Ny(1), Q»(1))

We define: N-N;(1) =X >0 > N1(1) = N-X

Substituting the above in the objective function of the two time units altogether yields the following:

T'=N(2-6) pn,(1-py,) +N,Qp,@1-p,,) +N,Dp, <
N(2-6) p,(1-py,) + N, @Qp,@-py,) +Np, =N, Dp, =
N(2-0) p,(1—py,) + N, Q—py,) -Np, +Np, = X[y, (1-p,,) —p,1=
Np, (1-py,)3E—0) = X[, (1 -py,) — 1,1 < Ny (1-p,,)3-0)=T

Again we get a contradiction to our assumption.

The other cases are proven in the same way.
Stage 2:

The induction assumption is that for n time units (or less) the Greedy solution is the optimal one and

we wish to prove it for n+1 time units.

For n time units station i gets priority. We wish to prove that for n+1 station i will still get priority.
We assume that in the optimal solution of n+1 time units exists a time interval [t;, t,] of at least one
time unit in which the priority is not for station i. There are four options regarding the location of the

time interval [t;, t5]:

1. At the beginning of the event (t,=0, t, < n+1).
2. Atthe middle of the event (t; > 0, t, < n+1).
3. Atthe end of the event (t; > 0, t, = n+1).

4. At the entire event (,=0, t, = n+1).

57



For the four cases we prove that option B is preferable in the following figures

Option 1: t;=0, t, <n+1

A

station i does station i gets priority
not get priority
t 2 n+1

| station i gets priority |
1] n+1

[ [
» »

We divide the n+1 minutes into two intervals [0, t] and [t, n+1] where t; < t <t, both with length
less than n time units. In the first interval, according to the Induction assumption, option B is
preferable since it gives priority to the ith station. In addition, in the second interval the induction
assumptions also holds and therefore option B is preferable. If option B is preferable in both
intervals, it is also preferable for the entire interval.

Ogtion 2: 1,>0,t,<n+1

| station i gets | station i does station i gets |
priority not get priority priority
0 t, t, n+1

| station i gets priority |
1] n+1

v
v

We divide the n+1 time units into two intervals [0, t;] and [t;, n+1] both with length less than n
time units. In the first interval, the two options are the same. In the second interval, according to
the induction assumptions option B is preferable, since it gives priority to station i through the
entire interval. If option B is preferable in one interval and is the same in the second, it is also
preferable for the entire interval.
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Option 3: t;>0,t, =n+1

stationi gets station i does

priority not get priority
0 t1 t2=n+1

o |
| station i gets priority |
0 n+1

» »
» »

We divide the n+1 time units into two intervals [0, t;] and [t;, n+1] both with length less than n
time units. In the first interval, the two options are the same. In the second interval, according to
the induction assumptions option B is preferable, since it gives priority to station i. If option B is

preferable in one interval and is the same in the second, it is also preferable for the entire interval.

Option 4: t,=0,t, =n+1

station i does not get priority

Priority to station i
0 n+1

v
v

We divide the n+1 time units into two intervals [0, t] and [t, n+1] both with length less than n
time units. In both intervals, according to Induction assumption option B is preferable since it
gives priority to station i. If option B is preferable in both intervals it is also preferable for the

entire interval.
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APPENDIX Il1:

Proof of Theorem 1 Step 2:

If when 6;=6; no station or Station i gets priority, then this priority will also be given to Station i

when 6; > ;.
Proof by induction:

Stage 1: Proof that when (1-p,,)u, =1, and 6; > 6, or when (1-p,, ), <p,and 6; < 0,, any two time

units (n=2) and any initial conditions (Q1(0), Q2(0)), the Greedy solution is the Optimal solution (e.g.

the priority is given to the first station in the first case and to the second station in the second case).

Stage 2: Assume the Greedy solution is Optimal under the above conditions for any n (or less) time
units, and proof for n+1 time units. Stage 2 is identical to Stage 2 in Step 1.

Stage 1:

The problem for the first time unit (t=0) given Q;(0) and Q»(0), is:

Max 16, -0,p,IN,(0) + 0,u,N,(0)

Ny (0), N2 (0)

ST.

N,(0)<Q,(0)

N,(0)<Q,(0)

N,(0)+N,(0)<N

N,(0), N,(0)>0.

The optimal solution is:

If (6, —6,p,,), =6,u, station 1 gets priority and

N,(0) =min(Q,(0),N), N, (0) =min(Q,(0),N -N,(0))
If (6, —6,p,,)w, <6,u, station 2 gets priority and

N,(0) =min(Q,(0),N—N,(0)), N,(0)=min(Q,(0),N)

The problem for the second time unit (t=1), given Q1(1) and Q(1) is:
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NM%) 1[0, - 6,p,IN; (@) + 6,1, N, (1)
ST.

N,(D)<Q,@®

N,()<Q,(®)

N,@)+ N, <N

N,(1), N,(1)=>0.

The optimal solution is:

If (6,—-6,p,)un, =6,u, station 1 gets priority and

N, (D) =min(Q,@),N), N,(@)=min(Q,(1),N—-N,®))
If (6,—-6,p,)un, <6,u, station 2 gets priority and

N, (1) =min(Q,(1),N-N, (1)), N,()=min(Q,(1),N)

The problem for the two time units altogether is:

NI>0/)|%)§0) [91(2_91) _ezplz (2'62)]H1N1(0) + 92“2(2'92)’\12(0) +[91 _92p1z]M1N1(1) + ez“zNz(l)
N (1), N3 ()

sit.

N,(0)+ N, (0) <N
N,(D)+N,(@) <N

N,(0) <Q,(0), N,(0)<Q,(0)
N,() <Q,@), N, 1) <Q, 1)
N,(0), N,(0)>0

N,(1), N,(1)>0.
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Eight cases have to be checked regarding the initial conditions:

It A-po)2p,:

LN<Q(0), N=<Q(@), VvQ,(0).Q,(1)
2.N>Q,(0), N>Q,(), VQ,(0),Q,(1)
3.N<Q,(0), N>Q,@1), VvQ,(0).Q,(1)
4.N>Q,(0), N<Q@). VvQ,(0).Q,(1)

If Q-pyy, <uy,:

5.N<Q,(0), N<Q,()., vQ,(0).Q,(1)
6.N>Q,(0), N>Q,(), VvQ,(0).Q,(1)
7.N<Q,(0), N>Q,1). VvQ,(0).Q,(1)
8.N>Q,(0), N<Q,(), VvQ,(0).Q,(1)

Case 1:

The solution for solving each time unit separately is N1(0) = N, N»(0) =0, N¢(1) =N, N,(1) = 0.

The value of the objective function is:

T =Ny, [6,(2-6,)- 6,p,,(2-6,)] + Np, (6, —p,,0,)

We assume that it is preferable not to assign all the resources to the first station at the first time unit
N;(0) < N, N2(0) = min(N-N;(0), Q,(0))

We define: N-N;(0) =X >0 - Ny(0) = N-X

Substituting the above in the objective function of the two time units altogether yields the following:

T'=N,(0),[6,(2-6,) - 6,p,,(2- 6,)] + N,(0)(2-6,)6,1,+ N 1, (6, - 6,p,,) <
=N, (0)w,[6,(2- 6,) —0,p,,(2- 6,)]+ N(2-6,)0,1, — N, (0)(2-6,)0,u, +
+Np,(6,-6,p,,) =
=N, 0, {[6,(2- 6,) —6,p,,(2- 0,)] - (2—6,)0,1,} + N(2-6,)6,1, +
+ N p, (6, -6,p,) =
= N{“’l[el(z- 91) - ezplz (2' e2 )] - (2 - 92)92“2}"' N(2 - ez)ezuz +
+N “1(61 - ezplz) - X{[el(z' 61) - ezplz (2' e2)] - (2 - 62)62“2} =
= Np,[6,(2-6,) - 6,p,,(2- 0,)]+ N 1, (6, - 0,p,,) -
= X{[6,(2- 6,) - 0,p,,(2- 8,)] - (2-6,)6,1,} =
T—X{w,[6,(2-6,) - 6,p,,(2- 6,)] - (2-6,)0,u,} =
T—X[6,(2-6,)1, —6,(2-0,)(u, +1,p,)] < T
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The reason the coefficient of X is positive:
Loy —(u, +1,p,) 20 since p(1-p,) = n,

2. 6,(2-9,)-6,(2-6,)>0when 9, >6, and (6,+6,)<2 since
20,- 6,7 >20,- 0,°
2(6,-6,)>6,*-0, =(6,- 6,)(6,+6,)
when 6, >0,
2>(0,+6,)

Since we wish to maximize the objective function we get a contradiction to our assumption.

The other cases are proven in the same way.

Stage 2: Assume the Greedy solution is Optimal for any n (or less) time units, and proof for n+1 time

units. Stage 2 is proven the same as Stage 2 in Step 1, detailed in Appendix II.
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