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ABSTRACT

In this thesis, we consider the control of patient flow through physicians
in emergency departments (EDs), which have attracted many researchers’
attention. Our work here seems to be the first model to quantitatively analyze
the control of patient flow in an emergency department from a queueing

theory perspective.

Problem: In emergency departments, the physicians must choose between
catering to patients right after triage, who are yet to be checked, and those
that are work-in-process (WIP), who are occasionally returning to be checked.
The service requirements for the two kinds of patients are different: for the
patients right after triage, they must see a doctor within targeted time win-
dows (that may depend on the patients’ severity and other parameters);
while the WIP patients, on the other hand, impose congestion costs. The
physicians in the emergency departments have to balance between triage and
WIP patients so as to minimize costs, while meeting the constraints on the

time-till-first-service.

Model: 'We model this prioritization problem as a queueing system with
multi-class customers, combining deadline constraints, feedback and conges-

tion costs together. We consider two types of congestion costs: per individual
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visit to a server or cumulative over all visits. The former is the base-model,

which paves the way for the latter (more ED-realistic) one.

Method: The method we use is conventional heavy-traffic analysis in queue-
ing theory, based on the empirical evidence that the emergency departments
can be viewed as critically-loaded stationary systems between late morning
till late evening. We propose and analyze scheduling policies that asymptot-

ically minimize congestion costs while adhering to all deadline constraints.

Solution: 'The policies have two parts: the first chooses between triage and
WIP patients using a simple threshold policy; assuming triage patients are
chosen, the physicians serve the one with the largest delay relative to dead-
line; alternatively, WIP patients are served according to some generalized cp
policy, in which g is simply modified to account for feedbacks. The poli-
cies that we propose are easy to implement and, from an implementation
point of view, has the appealing property that all information required is
indeed typically available in emergency departments. For the proposed poli-
cies, asymptotic optimality, as well as some congestion laws that support

forecasting of waiting and sojourn times, are established.

Application: Finally, via data from the complex ED reality, we use our
models to quantify the value of refined individual information, for example,
whether an ED patient will be admitted to the hospital as opposed to being
discharged. This is an illustration on how our recommendations can improve

the operational efficiency and service quality.
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1. INTRODUCTION

Very few things can be more important than health care to our lives. Health
care is such a holistic topic that each part of it deserves a lot of efforts
for understanding. In this thesis, we will focus on hospitals, especially, the
“gate” of hospitals — emergency departments. Emergency departments are
service systems, which are so crucial in the sense that the quality of service
there is closely related to people’s lives. Emergency departments without
good quality of service (long delays) can result into unnecessary death ([28]).

It is the job of physicians to provide good treatments to patients, while
it is the system managers’ job to manage the emergency departments well
and eliminate unnecessary delay of treatments. The problem of long delays in
emergency departments has been observed in many places, and has attracted
system managers’ attentions.

In 2011, the Ministry of Health (MOH) of China proposed to use a triage
system to manage the emergency departments. The objective is to improve
the quality of care (the safety of patients). By using this triage system,
patients are classified into 4 classes according to their severities. Patients will
be scheduled to see the physicians according their severities, and a natural
problem after this triage system is, what is the best scheduling, so that

physicians can provide the best quality of care to the patients.
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In developed countries such as the United States, triage systems are
widely used in emergency departments, but similar scheduling problem still
exists. From 1991 to 2009 in the United States, the number of emergency
departments decreased by 10%, while the number of visits to the emergency
departments increased by more than 20% ([22]). As a result, the ED envi-
ronment in the United States has become more crowded. Indeed, from 2003
to 2009, the waiting time in most of the emergence departments increased
by 25% (from 46.5 to 58.1 mins, see [21]).

All these show the needs to manage emergency departments, that is,
to improve the performance of emergency departments. To do this, it is
necessary to understand the operations in the emergency departments. As
it has been observed, control of patient flow is a major factor for improving
hospital operations. Indeed, patient flow is a central driver of a hospital’s
operational performance, which is tightly coupled with the overall quality and
cost of health care ([2, 34, 33]). This is also true in emergency departments.
This brings the research problem of patient low management in emergency
departments.

Here is how patients go through the emergency departments: a new pa-
tient arriving at an emergency department is first triaged by a nurse, then
waits in the waiting area for the first examination by the physicians; after
the first examination, the patient may leave the emergency department di-
rectly, or go to the other parts of the emergency department to do further
examinations, such as doing CT scan or blood test; after getting the report
of the examination, the patient returns to the physicians to get guidelines

for further treatments; the patient may have to do several examinations to
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complete the treatments; after all treatments are done, the patient leaves
the emergency department, either by being admitted to the hospital, or dis-

charged to go home. This is illustrated in the following:

Fig. 1.1: Patient flow in emergency departments

Arrivals

" Examlnat ions

Disposition

There are two kinds of patients in an emergency department: one is new
patients arriving from the outside of the system, the other is the work-in-
process (WIP) patients who have stayed in the system for a while and have
received some treatments. Different from the new-arriving patients, there is
no external arrivals for those WIP patients and they are all transferred from
new-arriving or other WIP patients. In addition, each patient may visit the
physicians for several times, this corresponds to the several examinations took
place in the emergency department, as described above. The following table
is calculated using the numbers from Table 2 of [44], in which the authors

did empirical analysis with data from an emergency department in Israel.
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The patients in this emergency department are classified into 7 classes, and
the physicians are also classified into 4 classes, according to their expertise.
From this table, it can be seen that, each patient visits the physician for at

least 3 times.

Tab. 1.1: Number of visits in an Israeli emergency department

Physician type | Patient type | Average number of visits
1 1,7 3.9698
2 2,5 2.9904
3 3,6 2.9700
4 4 2.9904

The service requirements for those new and WIP patients are different:

e New patients: when arriving at the emergency department, the new
patients are generally classified into different classes via a pre-specified
triage system, for example, Canadian Emergency Department Triage
& Acuity Scale (CTAS, [7]). The triage system classifies the patients
into different classes according to the severity of those patients (by
using emergency severity index, ESI), and puts requirements on the
Time-Till-First-Examination (TTFE) for patients in different classes —
that is, a patient must start the first examination in some pre-specified
time-window. For example, in the CTAS, patients are classified into
5 classes according to the clinical conditions, and the corresponding

deadlines are as follows:
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Tab. 1.2: Deadlines specified in CTAS

Severity | Resuscitation | Emergent | Urgent | Less urgent | Non-urgent

Deadlines Immediate 15 mins | 30 mins 60 mins 120 mins

Patients in level 1 (Resuscitation) are with very serious conditions,
and they must start their first examination immediately. Generally
those patients are treated in a separate area so those patients are not
considered in this thesis. For the patients in the other four levels, they
may wait for a while, but with different deadlines on waiting times. For
example, a patient whose health condition is identified as “Urgent” can
wait for as long as 30 minutes, which is the length of the safe period

for this patient before receiving the first treatment.

WIP patients: work-in-process patients use the resources in the emer-
gency department, and bring congestions to the emergency department.
The directors of the emergency department use cost which is called con-
gestion cost to measure the congestion incurred by those WIP patients
— the congestion cost can represent several costs, such as waiting costs,
clinical costs, emotional costs, psychological costs and others. One ex-
ample of what congestion cost can measure is the impact of long waiting
time: if a patient waits in the emergency department for a long time,
then that patient may face high risk of suffering additional disease (ei-
ther caused by the existing disease or infected from other patients —

the emergency department is indeed not a safe place to stay.)

However, how to identify the cost functions by WIP patients are gen-

erally difficult. Here is an example of how the director in an Israeli
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emergency department do. In that Israeli emergency department, the
director identified the cost functions by the patients’ triage class, age

and the decisions after treatments, see the following Fig. 1.2 (cited

from [10]):

Fig. 1.2: Cost functions in an Israeli emergency department
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Generally, a patient with more serious condition needs more care from
the emergency department, and will bring more congestion, hence will
result more cost to the emergency department. The patients are clas-
sified into different age groups, and the cost functions for patients in
different age groups are different, for example, the cost from the pa-
tients over 75 is higher than patients from other groups. Also the
decisions after treatments have impact on the cost functions: for those

patients who will be discharged to go home, their cost is twice as much
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as the cost by those patients who will be admitted to the hospitals (as
it can be seen from the figure, the cost functions are grouped into two
groups. The functions in the upper group correspond to the patients
who will be admitted to the hospitals, while the functions in the lower

group correspond to the patients who will be discharged to go home).

This system has attracted many researchers’ attention. However, there
are several complexities in analyzing emergency departments. As described
above, there are several classes of new patients, as well as several classes of
WIP patients. The service requirements for different classes of patients are
different. An optimal scheduling policy should not be a (simple) static one:
if the priority is always given to the new patients, then the queue lengths
of the WIP patients will be long — this makes the emergency department
blocked and all patients have to experience long sojourn times; on the other
hand, if the priority is always given to the WIP patients, the waiting time
for the new patients will increase — this is dangerous for the new patients
with serious health conditions.

Till now, there are hundreds of simulation-based studies for emergency
departments. Simulation models are useful to compare different policies and
get insights on the importance of features, however, they are not suitable to
find the optimal policy among all reasonable policies. As a result, analytical
models are needed. However, because of the complexities mentioned above,
building analytical models is indeed a challenging problem ([40]). In this
thesis, we will build two analytical models, and propose the corresponding
asymptotically optimal policies to manage the emergency departments.

The complexities, as well as the challenge to manage patient flow, stem
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from two flow characteristics: deadlines and feedbacks. First, arriving pa-
tients must be served within time-deadlines that are assigned after triage,
based on clinical considerations ([18, 29]). Second, patient flow has a signifi-
cant feedback component that must be accounted for: WIP patients possibly
return several times to physicians during their stay in the emergency depart-
ment, before ultimately being either released or hospitalized, see Tab. 1.1.
Another challenge is that the new and the WIP patients have different service
requirements: the service requirements for those WIP patients is to minimize
the congestion cost (recall that the service requirements for triage patients
is to meet pre-specified deadlines).

In a summary, WIP patients impose operational congestion (e.g. they
occupy beds), which must be controlled while adhering to clinical triage
constraints (e.g. stabilizing patient conditions). It is this operational-and-
clinical friction that makes the problem interesting and complicated, from
the viewpoint of the physician: when becoming idle, what class should be
served next - triage or WIP - after which one must decide on the specific
patient to be examined.

In this thesis, we will model and analyze the emergency department by
using queueing models. We will ignore some unimportant features to make
the models tractable. Other possible important features will be discussed in
Chapter 4. The first feature we ignore is the time for the examination steps.
This means that feedbacks in the model are immediate. If the times for
the examination steps are very short, then this is a reasonable assumption.
We will give a conjecture in §4.1 on how long can these examination steps

be. Another feature is the triage-steps. This thesis will not focus on any
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triage system here, but only considers the steps after the triage stage. It is
worth to mention that, though triage systems are not the main subject of this
thesis, the results in this thesis can give us suggestions on how to design triage
systems (for example, the case study in subsection 3.2). Finally, the decisions
after the treatments (whether to be discharged to go home or be accepted
by hospital)are not the main focus here either, though they can also be used
to help managers improve the operations of the emergency departments, as
shown in §3.2.

Instead, this thesis will focus on the features which we regard as the
most important ones in emergency departments, they are: feedback, dead-
lines on the time-till-first-treatment, and congestion cost incurred by those
work-in-process patients. As a reminder, the deadline constraints are clini-
cal constraints while the congestion costs are operational consideration. The
problem faced by the director is how to balance between the clinical and op-
erational considerations. To this end, we model and analyze the emergency
departments by using queueing theory, and propose flow control policies that
minimize congestion costs while subject to deadline constraints.

In this thesis, we consider two models, which differ by their conges-
tion costs: the first is a basic (queue length) model in which the congestion
costs are incurred per individual doctor visits; in the second, congestion costs
accumulate over all visits during patient sojourn-times. The mathematical
framework used here is conventional heavy-traffic, in which one analyzes a
sequence of systems that converge to critical loading. This is a relevant op-
erational regime, despite the fact that emergency departments are inherently

time-varying. Specifically, empirical evidence suggests that, during regular
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peak shifts between late morning till late evening, the emergency depart-
ments can be usefully viewed as critically-loaded stationary systems ([2]).
Within this asymptotic framework, the work-in-process analysis follows the
generalized cu-rule of [41], after generalizing it to models with feedback.
The triage analysis combines the due-date scheduling in [42] with the formu-
lation of [35]. The latter offers a rigorous meaning for adherence to (triage)
time-constraints, by introducing “asymptotic compliance” as a relaxation
for “feasibility”. Together, triage and work-in-process controls yield what we
prove to be asymptotically optimal flow-control policies: they minimize WIP
congestions costs subject to triage compliance.

The proposed policies for both models have the same structure: they
are two-stage policies. At the first stage, the physicians first determine the
priority between the triage classes and the WIP classes. Then at the second
stage, the physicians determine the specific patient to be served next. The
details of the policies are slightly different.

In the basic (queue length) model, the proposed policy is as follows:
first fix any one triage class, for example, the triage class with index 1. If a

physician becomes idle at time ¢, then:

o At the first stage, use a threshold policy to determine the priority
between the triage classes and the WIP classes: the threshold policy

only uses the information of triage class with index 1;
e At the second stage:

— If the physician decides to serve a patient from triage classes, the

physician chooses the head-of-the-line patient from the triage class
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with the largest relative age;

— If the physician decides to serve a patient from WIP classes, the
physician uses a policy which is similar to the generalized cu rule

([41]), and we call this policy the modified generalized cpu rule.

For the second (sojourn time) model, the system first classifies the WIP
patients into starting classes and subsequent classes. Then the physicians
use the following guidelines: the threshold policy between triage and WIP
patients, as well as the policy part to determine the priorities among triage
patients, do not change; while if a physician decides to serve a patient from
the WIP classes, the physician first serves a patient in the subsequent classes
if there is any, then uses a policy which is similar to the generalized cu rule
for the starting classes.

Under the proposed policies, some congestion laws are established. Those
congestion laws are based on a principle which is known as the snapshot prin-
ciple, that is, under the heavy traffic scaling, the duration of a patient staying
in the emergency department is very short, and the status of the emergency
department will not change too much. The congestion laws can help us es-
timate the waiting time of a new arriving patient, the age of the patient at
the head-of-the-line, and the sojourn time of a new arriving patient if the
routing vector is known.

Finally, we apply the sojourn time framework, with the expert-elicited
sojourn time costs from [10], to support analysis of the value of information
in ED flow-control. Specifically, we show that accurate prediction of both

the number of visits to a physician and whether a patient will be hospitalized
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or discharged, reduces WIP congestion cost by as much as 27%. From our
ED sources, and supported by [39, 40], such predictions can be accurately

made and, hence, are worth being accounted for.

Literature review and contributions: To the best of our knowledge, this
thesis is the first research analyzing the control of patient flow in an emer-
gency department, from a queueing-theory perspective. (As mentioned be-
fore, there are hundreds of simulation-based studies; [8].) After starting this
project, additional work has appeared on the operations of emergency depart-
ments. The closest to this thesis are [39, 40]: [39] discusses a complexity-
based triage systems, based on the number of visits that patients pay to
the emergency department physician (serving as an up-front proxy for com-
plexity); and [40] analyzes the advantage of streaming patients (separating
them into classes, e.g. by their admission vs. discharge status), comparing
this practice vs. pooling and, what they call, “virtual-streaming”. The lat-
ter supplements class-separation with dynamic resource allocation, and it is
shown to dominate the other two. We will return to [39, 40] in §3.2, where we
analyze the value of the information they require. There are additional papers
that cater to specific emergency department characteristics: [44] models the
emergency department as a single-class time-varying queueing system with
feedback (Erlang-R), operating in the QED regime, and in support of staffing
physicians and nurses; [17] develops an overloaded queueing network to an-
alyze the impact of interruptions on throughput of emergency department;
and [4] addresses synchronization of activities in emergency department (e.g.

interpretations of a blood-test and x-ray imaging must precede a visit to the
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physician), by analyzing a fork-join queueing network in heavy-traffic.

The models and analysis in this thesis follow two main lines of research:
formulation of the triage constraints is adapted from [35], which analyzes
admission control; and our IP control generalizes [41], which solves a cost
minimization problem for a multi-class queue without feedback. The results
in [41] have been generalized by [31] to a feedforward network of parallel
queues, and both papers establish asymptotic optimality of the generalized
cu-rule. Here we generalize [41] to a model with both feedback and dead-
lines, and prove asymptotic optimality of a routing rule in which a modified
generalized cpu-rule plays a central role.

The model structure for IP patients here resembles [25, 26], where the au-
thor considers a dynamic scheduling problem of a multiclass M/GI/1 queue-
ing system with Markovian feedback. Unlike [25, 26], which minimize a cost
function that is linear in average queue lengths and proves the optimality of
a static routing policy (and the model is known as Klimov’s model), here
we consider a minimization problem with cumulative costs over a finite hori-
zon, with cost rates that are convex functions of queue lengths (or waiting
times), which gives rise to asymptotic optimality of a dynamic routing policy.
Notably, the analysis of WIP patients here in fact can be applied to cover
Klimov’s model: simply take the deadlines and means of service times for
triage patients to be 0. We thus establish, indirectly, asymptotic optimality
of the generalized cp-rule also for Klimov’s model (with convex costs). A final
related references is [12], which concerns dynamic scheduling of a multi-class
fluid network with feedbacks.

Diffusion approximations for queueing systems with multiclass customers
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and feedback have been analyzed in [15, 38], restricting to a global FCF'S ser-
vice discipline among all classes. The analysis here can be also adapted to
the FCFS discipline, as well as to other work-conserving disciplines. Indeed,
we prove the convergence of a weighted queue length to a reflected Brownian
motion, under any work-conserving policy (Proposition 2.4.1), in which the
global FCF'S policy is a special case. Proving convergence of individual queue
lengths, for each class, amounts to establishing state-space collapse, which
will follow from standard arguments (e.g. [9]).

The main contributions of this thesis can be summarized as follows:

e Methodological: We analysis multiclass queueing systems with feed-

back, particularly,
1. Proving the conjecture in [31] regarding feedback, and improving
upon it by identifying simpler asymptotically optimal policies;

2. Solving Klimov’s model with convex costs, for both individual

waiting times and cumulative sojourn times;

3. Analyzing multiclass queueing systems with feedback, under any

work-conserving policy;
4. Accommodating jointly delay constraints and congestion costs.
e Practical: We model and analyze the control of patient flow in EDs,

from the point of view of ED physicians, which naturally gives rise to

a queueing perspective:

1. The models here capture the tradeoff between catering to triage-

vs. WIP-patients;
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2. They give rise to scheduling policies that are insightful and imple-

mentable;

3. They enable analysis of the value of information in a real ED

setup.

Structure of the thesis: This thesis is organized as follows. A basic ED
model is introduced in Chapter 2: a detailed description of the model, policy
and insights is given in §2.1; heavy traffic conditions, asymptotic compliance
and optimality are introduced in §2.2 and §2.3, respectively. The main results
and some auxiliary propositions and extensions are presented in §2.4, with
their discussions in §2.5. The proofs for the main theorems are in §2.6,
and the proofs for propositions and complements are provided in §2.7. Our
alternative ED model, with sojourn time costs, is discussed in §3.1, with an
application in §3.2, using data from an Israeli ED, and expert-elicited costs.
The technical discussions are in §3.4-3.5. We conclude with a discussion of

future research directions in Chapter 4.

Notation: Firstly, from now on, we will use abbreviation “ED” for “emer-
gency department”. We use the standard notation R, to denote the set of
nonnegative real numbers. For a real number z, [z] is the maximal integer
less than or equal to x; ]Ri and RY are the J-dimensional and K-dimensional
nonnegative orthant, respectively; Zf is the subset of Rf with all compo-
nents integers. Unless otherwise specified, all vectors are assumed to be
column vectors. The notation {e;} is reserved for the standard basis of R,

The transposition of a vector or a matrix is indicated with a superscript 7.
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Vector inequalities are understood to be componentwise; e.g., for z,y € RV,
x <y if and only if z; < y;, forall e = 1,2,..., N. We also use 0 to denote a
column vector with all components being 0, with the dimension being clear
from the context. For any given matrix M, we use M. to denote the jth row,
and M the kth column of M. The function 1(-) is the indicator function,
the value of which is 1 when the event within (-) prevails, and 0 otherwise.
We assume that all random variables are defined on a common proba-
bility space (Q, F,P). Expectation with respect to P is E. Let D[0,00) be
the standard Skorohod space of right-continuous left-limit (RCLL) functions
defined on [0, 00) and equipped with the Skorohod .J; topology. Similar to
D[0,00), D|0,t] is the space of functions on [0,¢]. The symbol = denotes
weak convergence of stochastic processes, and — stands for convergence of
non-random elements in D[0, 00). Finally, e(-) is the 1-dimensional identity

function on Ry, where e(t) = ¢, t > 0.



2. A BASIC MODEL

This section will build a basic quantitative model for emergency departments
(EDs). The congestion cost in this model is based on the queue length of

each class, thus the model here is also called as queue length model.

2.1 The model, policy and intuitions

In this basic model, ED dynamics is captured by a multiclass queueing sys-
tem, with S servers (physicians), J classes of triage patients and K classes of
work-in-process (WIP) patients. Triage patients are yet to be examined by a
physician, and work-in-process (WIP) patients require further treatment. (A
patient class could embody information such as treatment type, emergency
level or age; see [10].) Triage customers subject to deadline constraints,
while WIP customers incur queueing costs. To highlight the application
to EDs, “patient” is used interchangeably with “customer” and “physician”
with “server”. Let J and K denote the index sets of triage and WIP pa-
tients, respectively: 7 € J is an index for triage patients, and [,k € I are
indices for WIP patients. It will be convenient to let J = {1,2,...,J} and
K = {1,2,..., K}, while keeping in mind that the indices 1,2,...,J in J

differ from those in K.
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The system is depicted in the following Fig. 2.1. In this figure, we use
superscript 0 for the terms of the triage patients. For example, we denote
by A} and m? the arrival rate and the mean service time of class 1 triage
patients, while A\; and m; the arrival rate and the mean service time of class

1 WIP patients.

Fig. 2.1: Patient flow in emergency department (queue cost)

Triage-Patients

Arrivals

Exits

WIP-Patients

From now on, we will not use the specific index number and instead,
will use j € J and k,l € K to represent the indices of triage and WIP
patients. For example, we use )\?, j € J to denote the arrival rates of triage
patients. Asindex j € J suffices for their characterization, we shall omit the

superscript 0, that is, we will use A\j, m;,j € J to denote the arrival rates
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and mean service times for triage patients.

Triage patients: For each triage patient class j € J, there are two indepen-
dent sequences of i.i.d. random variables, {u;(i),7 = 1,2,...} and {v;(i),i =
1,2,...}, as well as two real numbers A\; and m;. Assume E[u;(1)] = 1,
E[v;(1)] = 1 and denote a7 = var(u;(1)), b7 = var(v;(1)). Among j-triage
patients, the interarrival time between the (i—1)st and ith arrivals is u;(i)/\;
and the service time required for the ith patient is m;v;(7). As a result, \;
is the arrival rate and m; is the mean service time requirement of a j-triage
patient. Assume A; > 0 for all j € J and use Ay to denote the vector with

components \;, 7 € J. Denote M as the vector with components m;,j € J.

For t > 0 and j € J, let the renewal process

E;(t) := max {n >0: iu](z) < )\jt}

=1

indicate the number of j-triage arrivals till time ¢, and the renewal process

S;(t) := max {n >0: imjvj(i) < t}

i=1

denote the number of service completions if the physician has devoted ¢ time
units to j-triage patients. Denote p; = 1/m;, which is the service rate for
j-triage patients.

Among each class of triage patients, the service discipline is First-Come-
First-Served (FCFS). After completing service, a j-triage patient will join

the queue of k-WIP patients, with probability Pj, (again in the figure, we



2. A basic model 20

denote it by Pf}), or leave the system directly, with probability 1 -7, Pj.
Let the matrix Py = (Pjx)sxx be the triage-to-WIP matrix. Use ¢;(n) to
denote the indicator function recording to which class the nth j-triage patient
will transfer: this patient will transfer to the queue of k-WIP patients if
¢;(n) = ex (recall that {e;} is reserved for the standard basis of R¥), or leave
the system directly if ¢;(n) = 0. Then {¢;(n),n > 1} is a sequence of i.i.d.
random vectors with P(¢;(n) = ex) = Pj, and P(¢;(n) = 0) = 1=, . Pjk-

Use ¢;i(n) to denote (¢;(n)),, the kth element of ¢;(n), and use

n
®i(n) =Y (i),
i=1
to record the transition of the first n j-triage patients.

WIP patients: For WIP classes, there are no external arrivals. All WIP
patients are transferred from either triage or WIP patients. Denote the
number of k-WIP arrivals till time ¢ by Ex(t). Just like triage patients, for
each class k € IC, there are a sequence of random variables {vy(i),i = 1,2, ...}
and a real number my. Assume E[vi(1)] = 1 and denote b7 = var(vi(1)).
Among k-WIP patients, the service time required for the ith patient receiving
service is myvg (7). When we discuss queue lengths, service order among each
WIP class will not affect the result, thus we do not assume it to be FCFS.
When there is a need (such as when discussing waiting times and sojourn
times), we will put the FCFS discipline explicitly. Then, my is the mean
service time requirement of a k-WIP patient. Denote by M the vector with

components my, k € K.
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For t > 0 and k € IC, use the renewal process

Sk(t) ;= max {n >0: zn:mkvk(i) < t}
i=1
represent the number of service completions if the physician has devoted t
time units to k-WIP patients. Denote pp = 1/my; then this is the service
rate for k-WIP patients.

After completing service, an [-WIP patient will join the queue of k-
WIP patients, with probability P, or exit the system with probability
1 — > ex Px- Denote the matrix P = (Py)xxx to be the WIP-to-WIP
transition matrix and assume that its spectral radius is strictly less than 1.
Let ¢;(n) be the indicator function, showing which class the nth served I-
WIP patient will transfer to; that is, the nth [-WIP patient finishing service
will go to the queue of k-WIP patients if ¢;(n) = e, and leave the system if
¢r(n) = 0. Then {¢(n),n > 1} is a sequence of i.i.d. random vectors with
P(¢i(n) = ex) = P and P(¢y(n) = 0) =1 — >, .« Pir. Use ¢i(n) to denote
(¢1(n))g, the kth element of ¢;(n) and, as before, use

®y(n) = Z@(z’),

to record the transition of the first n served [-WIP patients.

Assume that all the arrivals of triage classes, services and transitions
of all triage and WIP classes, are mutually independent. This assumption
is not necessary for the proofs, but it simplifies calculations and saves the

notation (as in [35]). (Practically, arrivals of triage classes can be correlated
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with service times of triage and WIP classes, as in [15].)

Introduce a K-dimensional vector A = (Ag),cc, in which A is inter-
preted as the effective arrival rate for k-WIP patients, through the following
equation:

AT = (A7)T Py + ATP. (2.1)

Then
AT = (AT Py (I — P)~ . (2.2)

Define M5 = (m$);cz as

M§ = Mg+ Prc(I—P)'M, (2.3)

in which mf is called the effective mean service time of j-triage patients, and

define M€ = (m§)rex to be

M= (I - P)"'M, (2.4)

in which m¢, is called the effective mean service time of k-WIP patients. Then

(2.3) can be written as

M$ = My + Py M. (2.5)

The reason we call m§ “effective” is because it is the expected total ser-

vice requirement of a j-triage patient, accumulated up to leaving the system.

The reason for mg to be “effective” is similar.
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An infeasible problem: Service goals for triage and WIP patients are differ-

ent:

e Triage patients facing deadlines: Denote by 7;(¢) the age of the
head-of-the-line j-triage patient at time ¢. Then a feasible policy must

ensure 7;(t) < d;, for j € J and ¢t > 0.

e WIP patients incurring costs: Denote by Q(t) the number of k-
WIP patients in the system at time ¢. Those k-WIP patients will incur
cost at rate Ci(Qx(t)), for some functions Cx, k € K. Consequently,

the total cost will be incurred at rate ), - Cr(Qx(t)).

A control policy is defined as m = {1}, j € J; T}, k € K}, in which T} (¢),
j € J,and Ti(t), k € K, are, respectively, the cumulative time allocated to
j-triage patients and k-WIP patients during the first ¢ time units. Then the

objective is to solve the following optimization problem for any T" > 0,

min / S Cul(Quls))ds
0 kek (2.6)

st. 7(t) <d;, VjeJ and 0<t<T.

Here 7 is implicit in the formulation, and 7w € II, the set of all candidate
control policies (to be defined later).

The problem above is clearly infeasible, as the age processes 7;(-),j € J,
are stochastic. The first task of this thesis is to generalize (2.6) to one with a
plausible meaning. To this end, we will consider a sequence of systems with
the same structure as above, and show that in conventional heavy traffic,

there is a plausible generalization of “feasibility” for the triage constraints.
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However, even if one can generalize the problem (2.6) to a reasonable
one, the optimal policy could not be a trivial one: if the physician always
gives priority to triage patients, the queue length of the WIP patients will
get long and the cost high; on the other hand, if the physician always gives
priority to WIP patients, this reduces the cost but the triage patients are
likely to not start their service before their deadlines. Indeed, we propose a
threshold policy that determines between triage patients and WIP patients
which we describe in the following. We shall prove that this policy is asymp-
totically optimal in the following sense: it is asymptotically feasible and
it stochastically minimizes total congestion cost, among all asymptotically

feasible policies.

The Proposed policy: Choose any one of the triage classes (conceivably the
least d;, say di). Then a physician that becomes idle at time ¢ adopts the

following guidelines:

e Serve triage patients if 7 (t) > d; — €, where € is small relative to d;

(e.g. di = 30 minutes while ¢ = 3 minutes);

e If a physician decides to serve a patient from triage classes, the physi-

cian chooses the head-of-the-line patient from the class with index

75(t).
d; ’

J € argmax;¢ 7

e [f a physician decides to serve a patient from WIP classes, the physician
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chooses the head-of-the-line patient from the class with index

CLQu(1)

e
k

k € argmax

Within a suitable heavy traffic framework (Section 2.2), the above policy
is asymptotically “feasible” and asymptotically optimal among all asymptot-
ically “feasible” policies. The simplicity of the asymptotically optimal poli-
cies, as well as state-space collapse and snap-shot properties that it enjoys
(Theorem 2.4.3 and Proposition 2.4.3), are all due to the fact that heavy-
traffic analysis exposes macroscopic and mesoscopic essentials, which is for-
malized by fluid and diffusion approximations (§2.6.4). For example, the
S-server system here behaves as one with a super single-server, in which this
virtual server is S-times faster than each of the original servers, see for exam-
ple, [11]; accordingly and without loss of generality, our subsequent analysis
will assume S = 1.

Non-unique optima: Under the relative crudeness of heavy-traffic dy-
namics, there are other policies that emerge as asymptotically optimal (Sec-
tion 2.5). For example, the decision of triage vs. WIP can be formulated in

terms of a threshold w = Y7,/ A)d;ms: if 37, m5Q;(t) > w, a physician

JET 73
just becoming idle caters to triage patients, otherwise to WIP patients. Fur-
thermore, triage classes can be alternatively prioritized according to shortest-

deadline-first, that is, serve j € argmin;. ;[d; — 7;(¢)]; and the selection cri-
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terion of WIP-classes can also be any rule that makes

! !
lLkek 0<t<T mf mz

in particular the one conjectured in page 853 of [31].

Intuition of the policy: The idea is first to maximize service effort for WIP
patients which, given the server’s fixed capacity, is the same as minimizing
it for triage patients subject to adhering to their deadline constraints; then
one allocates the service capacity to WIP patients to greedily minimize the
queueing cost rate. This is a reasonable approach since, in a critically loaded
(heavy traffic) system, there is enough capacity for the triage patients to
“see” the system in light-traffic, which implies that their needs can be ac-
commodated essentially ad hoc. (The situation could be very different in
a significantly time-varying environment, in contrast to the stationary case
assumed here. An example is a mass-casualty event during which triage
patients overload the system; see Section 4 for further discussion.)

The driver of heavy-traffic dynamics is the (total) workload in the sys-

tem. At time ¢, while conditioning on all queue lengths, its definition is

> msQ;(t) + Y miQx(t),

jeT kek
which can be interpreted as the average time that a single server would empty
the system, assuming there are no new arrivals after time ¢. The significance

of the workload is due to the fact that it is invariant to, and minimized
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by, any work-conserving policy (Proposition 2.4.1 and (2.41)). Since most
j-triage customers at time ¢ arrived to the system during (t —7;(¢), ¢], it must

be that Q;(t) = A‘;Tj(t) and the workload equals approximately

D omENIT() + > miQk(t).
jET ke
The invariance of the potential workload now implies that minimizing the
weighted queue lengths of WIP patients >, . m{Qx(t) (which is in con-
cert with minimizing WIP congestion costs) is equivalent to maximizing the
weighted age processes of triage patients ., mj)\?Tj (t).

Triage vs. WIP patients: By the deadline constraints, an upper bound
for 37 5c; m§AYT;(t) is w = 37, ; ANJd;ym$, and a “good” policy should thrive
to narrow their gap. From the light-traffic view of triage patients, this can be
achieved by serving triage patients only as their deadline in getting “danger-
ously” close - a “threat” that can be monitored through the status of (any)
single triage class, as we explain next.

Triage selection: The selection rule among triage classes is designed to
ensure that their age processes are so balanced that one class of triage patients
is about to violate its deadline constraint if and only if all other classes are
) o @)

~

d; dys

close to their deadlines as well. In fact, , for any j,7' € J, at
all times ¢, which implies that the age of any one triage class tells those of
the others. (Such balancing rules are common in heavy traffic; see the age
processes of [35] in conventional heavy traffic, and the QIR controls of [20] in

the QED regime.) Alternative selection rules could also achieve the desired

balance, as described in §2.5.1.
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WIP selection: After applying the threshold guideline and the triage
selection rule, one expects that >, m{Qx(t) is minimized, thus invariant
under any work conserving policy. To minimize cumulative queueing cost,
it suffices to minimize cost rates greedily at each time. We are thus led
to a convex optimization problem with linear constraints (2.10). The KKT
condition now yields the generalized cp rule in this thesis, as in [41] but with
the p’s replaced by 1/ms to account for feedbacks.

The above outline also guides the proofs of the main results, Theorems
2.4.1 and 2.4.2. These results are consequences of the parsimonious nature
of heavy-traffic dynamics, which is also manifested through some congestion

laws that will be now described.

Performance analysis: Under the proposed policy, we can also do system’s
performance analysis. A tool is known as snapshot principle.

A Snapshot principle: This is a common feature of heavy traffic ([36])
which, as explained in page 187 of [43] and adopted here, during the sojourn
time of a patient within the ED, the various queue lengths do not change
significantly (or rather negligibly in diffusion scale). In some sense, the ED is
temporarily in “steady state”, which leads one to expect that some congestion
laws in steady state, for example Little’s Law or Arrival See Time Average
(ASTA), would also prevail temporarily. This snapshot principle then enables
predictions of virtual waiting and sojourn times (when the service discipline
among each WIP class is FCFS), as we now explain.

Waiting times: When a patient of a particular class completes service,

the queue length of that class approximately equals the number of arrivals
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during this patient’s queueing time. (The service duration is negligible rela-
tive to queueing time.) By the snapshot principle, the queue length @) and
the virtual waiting time wy, are then related via Qx(t) ~ Apwi(t), with Ag
being the arrival rate to class k. On the other hand, if we denote by 74(t) the
age of the head-of-the-line k-WIP patient at time ¢, then Qr(t) ~ \x7x(t), as
those patients in the queue at time ¢ arrive during the interval (¢t — 74(t), t].
It follows that wg(t) ~ 7(t), which suggests that an estimate of the virtual
waiting time (or the waiting duration, predicted at an arrival time) is simply
the age of the head-of-the-line patient (See §2.4.4, which is in the spirit of
23)).

Sojourn times: By the snapshot principle, the ED sojourn time of a
patient arriving at time ¢ constitutes the sum of all virtual waiting times
at time ¢t over the patient’s route. Moreover, virtual waiting times remain
unchanged during successive visits of the patient to a specific queue. It
follows that, asymptotically, the ED sojourn time of a patient is w;(t) +
> kex hewi(t), given that the patient experiences hy physician visits as a
class k patient. Now replace waiting times on the route by the ages of the
head-of-the-line patients at the time of arrival. One concludes that 7;(t) +
> kex hiTi(t) can be taken as a forecast for the ED sojourn time, over a

pre-specified route of a patient that arrives at time ¢ (§2.4.5).

2.2 Heavy traffic condition

As noticed before, the problem (2.6) may not have any feasible solution in

conventional meaning. In this thesis, we will analyze and solve this problem
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in an asymptotical framework, which is known as the conventional heavy
traffic framework.

Consider a sequence of systems, as discussed in Section 2.1. The se-
quence will be indexed by r 1 0o, and r will be appended as a superscript to
denote quantities associated with the rth system. Then, in the rth system,
the arrival rate of j-triage class is A} and the effective arrival rate for k-WIP
class is Aj. The deadline for j-triage patients is d}, while the cost func-
tion CY for k-WIP patients will be specified in the next section. We assume
that the service times and transition vectors are invariant with respect to r,
hence there will be no superscript for terms relating to the service times and
transition vectors.

The traffic intensity for the rth system is defined to be

p = Z Aim + Z A

jeg kek

By (2.2) and (2.3), it can also be represented as
o= DX,
JjeT

This underscores the meaning of m$ being the effective mean service time for
j-triage patients.

Assume that the sequence of our systems is under (conventional) heavy-
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traffic, that is,

A=A, J€J, and
(2.8)
r(ph—1) = 5, as r— o0,

for some \; >0, j € J, and f € R. Let A = (\;)kex be the vector obtained
from (2.2), with Ay = () ez in (2.8).

Under condition (2.8), the queue lengths are expected to be O(r), and
similarly the ages of head-of-the-line triage patients. Hence, for each j € 7,

assume the deadline of j-triage patients satisfies the following convergence:

ﬁ

—d;, as 1 — 00,
,

where c/l\j, j € J, are strictly positive constants.
Denote by Q’(t) and Qj(¢) the number of j-triage and k-WIP patients
in the rth system at time ¢, respectively. Assume that the following initial

condition holds:

Assumption 2.2.1: When r — oo,

rTQ50) = 0, jeJ,

r1Qu0) = 0, kek.
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2.3 Asymptotic compliance and optimality

A control policy " = {TJ?", jeJ, T}, k € K} determines the age processes
of the head-of-the-line patients in the rth system, 7"(-) = {77(-), j € J}.

Define the diffusion scaled age processes through

ol T2 :
() =rT(rt), jeJ.

The following concept of “asymptotically compliant” family of control

policies, is a generalization of “feasibility” for the optimization problem (2.6).

Definition 2.3.1: A family of policies {n"} is said to be asymptotically com-

pliant if, for any fixed T' > 0,

P
sup [?J”"(t) — d]} =0, as r—oo, forall j€J.
0<t<T

Define the diffusion scaled number of k-WIP patients in the system by
Q) =r'Q(%, keK.

Assume that, at time ¢, k-WIP patients incur a queueing cost at rate C’k(@\};(t)),
for some function Cj. (Concrete assumptions on Cj, will be provided in As-

sumption 2.4.1.) Then the cumulative queueing cost is
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The heavy-traffic adaptation of problem (2.6) is to stochastically minimize
U"(t), for each t, over all asymptotically compliant families of policies. For-

mally:

Definition 2.3.2: A family of control policies {7} } is said to be asymptotically

optimal if
1. it is asymptotically compliant and

2. for every t > 0 and every x > 0,

limsup P{U] (t) > z} < Hminf P{U"(t) > x};
r—00

r—00

here {U]} is the family of cumulative queueing costs defined through
(2.9) under the family of control policies {7} }, and {U"} is the sequence
of queueing costs corresponding to any other asymptotically compliant

family of policies {#"}.
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2.4  Main results

2.4.1 Cost functions and an optimization problem

For any given a > 0, consider the optimization problem over z = (xy)rex:

kek
8.t Z miry = a, (2.10)
kek
z > 0.
Denote the optimal solution as
= Ax(a).

The mapping Ag : Ry — ]Rf is part of the lifting mapping used in the
state-space collapse result; see Theorem 2.4.3.
Assume that the cost functions Cy, k € K, satisfy the following, in

analogy to [41]:

Assumption 2.4.1 (Cost regularity): The nondecreasing cost functions {C, k €
K} are strictly convex, continuously differentiable. In addition, for all a > 0,
there is an optimal solution z* to the optimization problem (2.10) such that
x>0, ke k.

By this assumption and the KKT condition, a sufficient condition for a

nonnegative vector z* = (x})rex to be optimal is the existence of ay € R
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such that

(2.11)

It is easy to see that this optimal vector 2* satisfies C}(x})/m{ = C)(x})/ms,

for all [, k € K. Using this fact, the proof of the following is elementary:

Lemma 2.4.1: The function Ax(+) is well defined, and A (a) is nondecreasing

in a, for each k € K.

. . . - my
Proof: From the assumption on cost functions, we can write zj = C, ™! (m—iC’,’c(x,’g)>
k

for all I,k € K. Then for any fixed k € K, from (2.11),

e
1 [Ty *
> miC, (%CIQ(%)) = a.
lex k
From Assumption 2.4.1, ), miC, ! (:—%C,Q()) is a strictly increasing func-
tion, as a result, for any a there will be a unique solution z}, and if a in-

creases, x; will also increase. These prove that Ay is well defined and is

nondecreasing. O

2.4.2 A lower bound

The first result in this section gives a lower bound for the costs, among all

asymptotically compliant families of policies.
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For j € J and k € K, define K x K matrices TV = (I'},) and I'* = (T'%,)
through

Fj . le(l—le/), 1fl:l, and I‘k . Pkl(l_Pkl’)a lfl:l,
mw - i -

— PPy, ifl#1' — PPy, ifl#1'

Define Q,, = ®(X); here ® is the 1-dimensional Skorohod mapping ([13]),

and X is a Brownian motion with drift rate £ and variance

2
Z<m§>%ai+2(2mmk—m§> Ab2+Z(ZPmml mz) B

JjeJ JjeT

kel kel \lek
Y NMOTTIM Y (M) TEM®.
€T ke

(2.12)

Finally define =73, , )\jc/l\jmi.

Theorem 2.4.1 (Lower Bound): Fix any asymptotically compliant family

of policies, with the corresponding cumulative costs U" defined in (2.9). Then

for any t,x > 0,

lim inf P {24" (1) >x}>IF’{ ch Ak Qw() )))d5>q,-}.

0 kek

This theorem is proved in §2.6.2.
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2.4.3 The proposed policy and its asymptotic optimality

Now we will modify the proposed policy in Section 2.1 to the following se-

quence of scheduling policies, which we denote by {7]}.

e When becoming idle, the physician deploys a threshold policy to deter-
mine which type of patient classes to serve next — a triage-type patient

or an WIP-type patient. Fix any j € J, for example, 1 € J:

— If Q7(t) > A\]d}, priority is given to triage-type patients;

— Otherwise, priority is given to WIP-type patients.

e [f the physician chooses to serve a patient from the triage classes at time
t, the physician chooses the head-of-the-line patient from the class with

index

77 (t)
ieJ ro
j dj

J € argmax (2.13)

e [f the physician chooses to serve a patient from WIP classes at time ¢,
the physician uses a policy ensuring (for any 7' > 0)
GQI(1)  Cr(Qk())

max sup e -
lke 0<t<T m my,

= 0. (2.14)

An example of such a policy is to choose k € argmax;, K%, which
k
is a modified generalized cpu-rule. (More examples of policies ensuring

(2.14) can be found in §2.5.2.)

The main result for this basic (queue length) model is the following

theorem, which we prove in §2.6.5.
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Theorem 2.4.2 (Asymptotic Optimality): The family of control policies

{nl'} is asymptotically optimal.

In proving Theorem 2.4.2, we will show that the proposed policy makes
the system “well behaved”, in the sense that the weighted queue length
converges, and there is state-space collapse for the queue length processes;
see Proposition 2.4.1 and Theorem 2.4.3 below.

Proposition 2.4.1 indeed holds under any family of work-conserving poli-
cies. To state it, define the diffusion scaled queue length processes for triage
classes: @;(t) = r‘lQ;f(rzt), j € J, and diffusion scaled weighted queue

length processes

Qo) =>_ msQi(t) + > mQi(t). (2.15)

JjeT kek

Proposition 2.4.1 (Invariance principle for work-conserving policies):

Under any family of work-conserving policies,

Q. = Qu, as r— . (2.16)

This proposition is proved in §2.6.3.
To state the state-space collapse result, define the lifting vector A :

R, — R as the J-dimensional vector © = A za, which is the solution to the
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following equation

€ —
E m;rj = a,

jeJ

X, X

Il =2 for j, 7 eJ.
N Aydy

As in Lemma 2.4.1, one can also prove Ay(-) is well-defined, and A; is
nondecreasing for each j € J. Unlike Ag, the mapping A7 is linear. The
function pair (A, Ax) is the lifting mapping in the state-space collapse

result. Let Q" = {@;, jeJd, @2, k € K} and recall = 3., /\jcjjmj.

Theorem 2.4.3 (State-Space Collapse): Under the family of control poli-

cies {rl}, @T = @, where @ = {@j, jeJ, @k, k € K} is specified by

Q;(t) = Ajmin(@w(t),@>, jed, (2.17)

~

Oult) = Ay ((@w@) - @)+) . kek. (2.18)
This theorem is proved in §2.6.4.

2.4.4 Virtual waiting times

In this and the next subsection, we will analyze the family of control policies
{m’}. In addition, assume that the service discipline among each WIP class
is FCFS.

Define the virtual waiting time of a patient class at time t as the time

that a virtual patient of this class, arriving at ¢, would have to wait till
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completing the service. (Note that this definition is slightly different from
the traditional one, which is the waiting time till service starts. As the service
time is negligible in heavy traffic scaling, these two definitions yield the same
result.) Denote by wf(t) and wy(t) the virtual waiting times for j-triage class
and k-WIP class respectively, and define the diffusion scaled virtual waiting

time processes by

Wity =r"'Wi(r’t), jeJ, and W(t)=r"'wp(r’t), kek. (2.19)

Proposition 2.4.2 (Asymptotic Sample-Path Little’s Law): Under the fam-
ily of control policies {n]}, with FCFS service discipline among each WIP

patient class, when r — oo,

Or-QiN = 0, jed,

G —Qy/N. = 0, kek.

This proposition is proved in §2.7.2.

Remark 2.4.1: From the convergence of CA)" in Theorem 2.4.3, one can obtain
the convergence of the vector of virtual waiting times under the family of
control policies {7’ }.

Recall that 77(t) is defined as the age of the head-of-the-line j-triage

patient in the rth system. Now, define 7/(¢) as the age of the head-of-
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the-line k-WIP patient in the rth system, and similarly its diffusion scaling
77(t) = r~'7[(r*), k € K. The next proposition establishes connections
between the virtual waiting time processes and the age processes. This kind

of result is often referred to as a snapshot principle.

Proposition 2.4.3 (Snapshot Principle — Virtual Waiting Time and Age):
Under the family of control policies {77}, with FCFS among each WIP pa-

tient class, when r — oo,

w; -1 = 0, jeJ,

o,—17, = 0, kek.

This proposition is proved in §2.7.3.

2.4.5 Sojourn times

This section considers sojourn times associated with specific routes through
the system, as in [37]. Each patient is associated with a route vector h € ZX,
where hj denotes the number of times that the patient visits the physician
as a k-WIP patient before leaving the system. A vector h € Z% is called
j-feasible if it is possible that a patient entering the system as a j-triage
patient has a route vector h. Denote by W7, (t) the sojourn time of the next
j-triage patient, arriving after ¢, with route vector h, and the diffusion scaled

processes

—~

j"h(t) =yt h (7’275) , JEeJ.
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Proposition 2.4.4 (Snapshot Principle — Sojourn Time and Queue Lengths):
Under the family of control policies {7}, with FCFS among each WIP pa-

tient class, if a route vector h is j-feasible, then as r — oo,

—qQ hy ~

r J r -
th_)\_§_§ )\_ZQk = 0, jeJ.
ke

This proposition is proved in §2.7.4.

Remark 2.4.2: From Theorem 2.4.3, when r — o0,

a (@u-2)7).

k

_+Zi—Z@Z = A;min <C§w,@> +Z

ke

Then Proposition 2.4.4 gives rise to

Aymin (Qu(1.8) + 302 a, (@) - 2)7)

pereRil
being a good candidate for estimating the distribution of W\]"h()

The following is a direct corollary of Propositions 2.4.2, 2.4.3 and 2.4.4.

Corollary 2.4.1 (Snapshot Principle — Sojourn Time and Ages): Under

the family of control policies {n} with FCFS among each WIP patient class,
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if a route vector h is j-feasible, then as r — oo,

LT =Y WA = 0, jeJ.
kel

Remark 2.4.3: This corollary suggests that, upon arrival, patients can es-
timate their sojourn time by using the current age of the head-of-the-line
patients on their routes (assuming they know their route). As in [37], the
diffusion limit does not depend on the specific order in which the physician

is visited.

2.5 Further discussion

2.5.1 Alternative triage policies to (2.13)

The recipe in (2.13), as part of an asymptotically optimal policy, is not
unique. From the proof in §2.6.4, it will be seen that any asymptotically

compliant family of control policies ensuring

ij@;’() = min (@w(.),@>, as r — 0o, (2.20)

jeT

is asymptotically optimal (recall that @w and & are defined in §2.4.2). One
such control policy, assuming that triage classes are chosen to be served at

time t, is having the physician cater to the head-of-the-line patient from the
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class with index

. Q;(t)

] € argmaxjejw;
770

the latter can be easily proved asymptotically equivalent to (2.13).
Next consider the Shortest-Deadline-First policy: when the triage classes
are chosen to be served at time t, the physician chooses the head-of-the-line

patient from the class with index
j € argmin e ; (df — 77 (t)) . (2.21)

From Lemma 2.7.2, the above is asymptotically equivalent to choosing the

head-of-the-line patient from the class with index
j € argmin e ; (df — Q%(t)/\}) .

Lemma 2.5.1: For any 7" > 0, as r — o0,

Q(t) — Ajmin (Z meQ(t) + Y meQh(t), w)

JjeT kel

sup = 0.

0<t<T

Here As(a) = (Aj(a))jes is defined as follows (where we assume that the

indices of triage classes are ordered such that @ is decreasingly in j): if
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Zjéj )\jTTL;(dj — dj/)+ <a< Zjé] )\jTTL;(dj — dj/+1)+, then

This lemma will be proved in §2.7.5.

One can now prove that the family of control policies, with (2.21) re-
placing (2.13), is asymptotically compliant, and satisfies (2.20) — it is thus
asymptotically optimal.

The expression of A 7 is more complicated than A 7. On the other hand,
a discussion in [35] suggests that the policy in (2.13) is a more natural one,
as it uses a ‘relative’ term. As a result, we choose (2.13) for elaboration. The
comparison of (2.13) and (2.21) may involve rates of convergence, which is

beyond the scope of the present paper.

2.5.2  WIP-Policies that imply (2.14)

For any K x K-dimensional invertible matrix G, with Gy > 0, Gy < 0 for
k # K € K while Y, Gy > 0. We also assume that all terms in G™! are
non-negative, and all components of GM¢ being positive. Let H denote the
K-dimensional vector with the kth component 1/(GM¢),. When the WIP
classes are chosen to be served at time ¢, the physician chooses a patient from

the class with index

k € argmax;,c Hy (GC” (@T(t)>>k, (2.22)
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here C'(Q"(t)) is a K-dimensional column vector with Cg(@;(t}) being its

kth component.

Lemma 2.5.2: For any T' > 0, as r — o0,

o 2D 9G

for all [,k € K. As a result, (2.14) holds.

This lemma will proved in §2.7.6.

There are two special choices of G which are especially interesting:

1. G = I: then Hy = 1/m$; hence (2.22) is

L@ 1)

k € argmax;

This is a generalized cp policy, modified from [41] and [31] to account
for feedbacks.

2. G = I — P: noticing that M¢ = (I — P)~'M, then H is a vector with

pr being the kth component; hence (2.22) is

k € argmax;

Cy (QWD =) PuC (@f(ﬂ)] [k

lek

Note that this is the policy conjectured in [31].

The expression in (2.14) is similar to equation (51) in [41], with the

waiting times there replaced by the queue lengths, and the mean service
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times there replaced by the effective mean service times. As the effective
mean service time is in fact the expected total service time of a patient,
accumulated over all visits, the following exhaustive policy is also expected
to satisfy (2.14): when the WIP classes are chosen to be served, the physician
chooses a patient from the class with index k € argmaxkE,CC,’C(@Z(t)) /ms,, and
serves this patient continuously until completing all services — the current
one as well as feedbacks. This exhaustive policy is not FCFS within each
WIP class. Alternatively, this system can be viewed as a new one with
no feedback, but with the service times for k-WIP patients being now the
cumulative service requirement — with mean mg. To have this system enjoy
asymptotically the queueing-cost lower bound in Theorem 2.4.1, there must
exist at least one triage class for each WIP class, such that after the triage
service, this class of triage patients will transfer directly to the WIP class
with positive probability — that is, for each column in P7x, there must be at
least one positive element. Needless to say, such is not plausible in an ED

setup.

2.5.3 Waiting costs

This section considers waiting costs, instead of queueing costs. To this end,
assume that the service discipline among each WIP class is FCFS. Recall
that wy () is the virtual waiting time of a k-WIP patient at time ¢, and its
diffusion scaling @7 (¢) is defined in (2.19). Define EI(t) = r=2EI(r%t) for
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k € KC. One seeks to stochastically minimize the following cost:

=y / Cy, (@r(s)) dEL(s), (2.23)

kek

among all asymptotically compliant families of control policies.

The control policy {7’} in Section 2.4 is slightly modified as follows.
The first step, using a threshold policy to determine between triage classes
and WIP classes, and the step using (2.13) to determine priorities among
triage patients, do not change. The step determining the priority among

WIP classes changes as follows:

e [f the physician decides to serve a patient from the WIP classes, the
physician uses a policy ensuring that, for any 7" > 0,
ai(%) _a(%)
k

max sup = 0.
LkeK o<t<T ml mk

Cr(Qr)/Ay)

An example of such a policy is to choose k € argmax;, e
Other examples of policies satisfying the above can be deduced from the
policies in §2.5.2: assume G and H are K x K-dimensional invertible
matrix and K-dimensional vectors in §2.5.2, the physician chooses a

patients from the class with index

k € argmax;eic Hy, (GC, <@T(t>/ AT)) ’

k

here C' (Q;(t)> is a K-dimensional column vector with C, (

T

) being
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its kth component.
Denote this family of modified policies by {7} }.

Proposition 2.5.1 (Waiting Time Cost): The family of control policies {77 }
is asymptotically compliant. It is also asymptotically optimal among all
asymptotically compliant families of work-conserving control policies, in the

sense that for any fixed t > 0 and x > 0,

limsup P {ﬁ:(t) > x} < liminfP {ﬁr(t) > x} :

T—00 T—00

where {U47} is the family of cumulative cost, defined through (2.23) under
the family of control policies {7}, and {U"} is the corresponding cost under

any other asymptotically compliant family of work-conserving policies {7"}.

The proof for this proposition can be found in §2.7.7.

2.6 Proofs for theorems

2.6.1 Preliminary analysis

This section starts with an analysis that covers any asymptotically compliant

family of control policies.
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For j-triage class, j € J, define diffusion scaled processes

Er(t) = r~ (E5(r2) — Nir?t)

S() = r (S ([P°4]) —wyr®t), Ty (0) = (T](7) = Njmyr®t)

and fluid scaled processes

QL(t) =r2QL(r*),  EN(t) = r2EN(r?t),

Ti(t) =r 2I7(r%),  Si(t) =1728;(r?).

J

From Donsker’s Theorem, when r — oo,
(Ej, S5, jed) = (B, 5, jed) (2.24)

here (Ej, j € J) and (§j, j € J) are independent driftless Brownian mo-

tions, with the corresponding covariance matrices

diag(N;a7),  diag(u;b}).

Lemma 2.6.1: Under any asymptotically compliant family of control policies,

and for all T" > 0,

max sup @;(t)—)\ﬁ}"(t) = 0, as r — oo. (2.25)
JET o<t<T

Proof: For each triage class j € J, the patients in queue at time ¢ are those
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patients arriving between [t — 77 (¢), ], thus

Qj(t) = Ej(t) — Ej ((t —7;()—) -

Then

() = N = BN () — B ((t— 7)), jeJ. (2.26)

J

Here 77(t) = r=77(r*t) is the fluid scaled age process of class j triage pa-

are

tients. From the definition of asymptotic compliance, 7; = 0 and 7}

stochastically bounded for all j € J. Together with (2.24) and (2.8), (2.25)

is easily proved from (2.26), in view of the Random-Time-Change theorem.

O

The following is a direct corollary, which translates the asymptotic com-

pliance condition to the language of queue length processes.

Corollary 2.6.1: Under any asymptotically compliant family of control poli-

cies, when r — o0,

~ ~1+
sw |Q5(0)/, -4 = 0, jed

0<t<T

Proof: As (x +y)" <zt 4+ y* for any =,y € R, we have

sw [@i0/n— 4] < sw (@@ -7+ s [F0) -]

0<t<T 0<t<T
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From (2.25) and the definition of asymptotic compliance, both terms on the
right-hand side of the above equation converge to 0 in probability, as a result,
the term on the left-hand side should also converge to 0 in probability. This

proves the conclusion. O

Lemma 2.6.2: Under any asymptotically compliant family of control policies,

when r — oo,

Tr() = Amye(s), (2.27)

J

Qi)+ mwTi() = Ej() = S; (\ymye()) . (2.28)

As a result, @; and IA}T are stochastically bounded.

Proof: For j € 7, as
Q;(t) = Q5(0) + E5(t) — S;(T7 (1)),
then

Q;(t) = Qj(0) + By (1) = it — |57 (T7(0)) = iy Ty (1)) + s [Nymst = T7 (1)
(2.29)

and

~

Q(t) = Q5(0) + E5 (1) = S5(T (1)) — T} (8). (2.30)
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From Corollary 2.6.1 and the Functional Law of Large Numbers, for any

T > 0, when r — oo,

sup @;(t) =0, sup E]T(t) — Nit| =0, (2.31)
0<t<T 0<t<T

sup 5’; <T;(t)> — ujir(t)‘ < sup §;(t) — pt| =0, (2.32)
0<t<T 0<t<T

and (2.27) can be easily obtained from (2.29). Then (2.24) and (2.30), to-

gether with the Random-Time-Change theorem, imply (2.28). a

The rest of this subsection discusses system dynamics, without assuming
a specific policy. Thus the following discussion can be applied to all policies.

Define the diffusion scaled processes for j € 7,1,k € K:

Ej(t) =~ (BL(r*t) = Nir®1),
S(t) =71 (Su(rt) — pr’t), Ty () = r H(TE (%) — Xomur®t),

O () = (@ ([72]) — Pur®t) . Bp(t) = r (Qu([r2]) — Purt) .
Then from Donsker’s Theorem, when r — oo,

(500,800 510 € Tk € K) 0.33)

~

= (&)jk(')aq)lk(')»gk('>§ jeT ke IC) :

here (Bj(-),k € K), j € T, (®u(-),l € K), k € K, (Sc(-),k € K) are
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independent driftless Brownian motions, with covariance matrices
I, jeJ, I*, kek, and diag(h?),

respectively.

Recall that Ej(t) is the arrival process for k-WIP patients, k € K. Then

Q1 (t) = Qr(0) + Ex(t) — Sk(Tx (1)), (2.34)

and

Ep(t) =) O (S (T7(1)) + > @ (St (T (1)) -

jed lek

From this and (2.1), similar to (2.30),

Qi (t) =Qi(0) + Ej(t) — Sp(Ty (1) — uyTi(t)

=QLO) + &) = SUTLO) + 3 Pas T} () g
jeJ

+ > Py (1) — T3 (0);

lek

here

(2.36)
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Denote (Q7,(t) is defined in (2.15), but we would like to repeat it here)

)= msQ(t) + Y miQi(t)

jeTJ kel
Ri(t) =Q0,(0) + 7" = 1)t + > m [E;u) -8 ()]
JjeJ
R L (2.37)
+ > mi &) - Sp (Ti) .
kel
T7(t) =r ( 2T =Y T (r >
JjeT ke
From (2.5) and (2.4), one can verify that
—mip;+ Y Ppymy = —1, (2.38)
ke
— My + Z Papemi = —1. (2.39)
leKk

Multiply (2.30) by m§, (2.35) by mj, and summing them together, one

has

(2.40)

T7 () is nondecreasing with i’L(O) = 0.

Note that the policy may not be work-conserving, thus it is possible that 77}
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increases at ¢ when Q' (t) # 0. Hence
Qu(t) = ®(X})(1); (2.41)

here ® is the 1-dimensional Skorohod mapping; see for example, [31]. Equal-
ity in (2.41) holds when the system operates under any work-conserving

policy.

2.6.2 Proof of Theorem 2.4.1: Lower bound

Proof of Theorem 2.4.1: Fix an arbitrary family of control policies {n"}

which is asymptotically compliant. Define

MO {u’”(t> >z, max sup Qi(s) < #}

kex 0<s<t

m@:{WMQM>ﬁ}

ke g<s<t

ke 0<s<t

Ii(t) = {Ur(t) < x, max sup Ql(s) > T1_1/4}

Here 622’,; is the fluid scaled number of k-WIP patients in the system, defined
via

Qi(t) =r72Q(r?), keKk.

Then
{Ur(t) >z} = (I1() UT5()) \I'5(2). (2.42)
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First we prove

lim P {T%(t)} = 0. (2.43)

r—00

For notation simplicity, denote I"(s, ) = [s, s+ W] and Yy = 4 maxpexc .
For s < u, denote Si(s,u) = Sy (T"(r*s) +r*(u —s)) — Sy (T"(r*s)) and

Sr(s,u) = r~25r(s,u). One can prove that

1
lim P{max sup  sup Sk(s u) > —} =0

r—00 ke p<s<t uel(s,90) 2T1/4

Note that for all k € K and u > s, Q}(r*s) < Qi (r?u) + Si(s,u) because
S7(s,u) is the number of departures of k-WIP patients during [r?s, 7?u] if the

physician allocates all the capacity to k-WIP patients in this period. Thus
Qi(s) — Qh(u) < Si(s,u) and

= = 1
lim P < max su su [’”s— 7"u]>— =0
r—00 { kek o<sI<)t uélr(fﬂo) Qi(s) = Qilw) 27’1/4}

It follows that

lim P{T%(¢t)} < hmsupP{L{ (t) < z,max sup  inf Qf(u) > L}

=300 oo keK g<s<tuel™(s,90) 2rl/4
< hﬂs(gpl[” {Hlellg 7 f1/40k (1 3/4> <z,
ek Os<lil<)t ueIITI(lsf 90) 622’,;(u) - 2r1/4}
< liﬂS;}pIP’ {:;:2 r]inel’g 7”32/40 (%r3/4) < x} = 0.

This completes the proof of (2.43).
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From (2.42) and (2.43) one can conclude that,

liminf P{U"(t) > z} = liggg)lﬂ[” {TI()UT5(t)}. (2.44)

T—00

Next we derive a lower bound for the latter term.

Denote

Ii(t) = {maX sup Qh(s) < 7"1/4}.

keK o<s<t

We first prove that, on sets I'|(t), the following is true on D[0, t]:
i) = Aemge(), kek. (2.45)
For s < t, define TJ?"(S) = r‘lfj?”(s) for j € J, and

Qi(s) =r7'Qu(s),  Ei(s) =r7'E(s),
Si(s) =17'S(s),  Ti(s) =r'Ti(s),

T(s) = 17100 (s),  Bjls) = 17 D (s),

for j € J, 1,k € K. Then from (2.35),

> PuguTy (s) — Ty (s)
ek (2.46)

= Qi(s) = Qh(0) = & () + S (Ti(s)) = 3 P T,

JjET

On T'G(t), supg<,< Q7(s) = 0. Together with (2.27), the expression of & in

2.36), and Tr(s) < s for all k € K (those hold for all asymptotic compliant
k
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policies), one can deduce that the terms on the right-hand side of (2.46)

converge to 0. Then on I'j(t),

Zﬂkul{ff() - Mkfl:() = 07 on ,D[Ovt]
lek

Introducing a K-dimensional process Tﬁ(s) = (7 (s))kexc on D0, ], the

above is then

(PT = D)T() =0, on Tjt).

o
As PT — [ is invertible, and all uy, k € K, are nonzero, then
T/ () =0, kek on D[0,1],

which is equivalent to (2.45).
For s < t, define /‘/(\g(s) = )A(fv(s) on I'f(t), and otherwise,

= > m$Q5(0) + > miQi(0) +r(p — 1)s

JjeT ke
30w [By(s) = 85 (mys) | + > mi [E1() = S mas)|
JjeJg kex

here for k € IC,

$) = O (Ns) + ) B (Ars) + > PiSy (Armys) + 3PS (Ajmus) .

JjET lek VISVA lek
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From (2.45) on I'y(t), (2.27) and Aj — A\g, k € KC, when r — oo,
.J?OT = X

on D|0,t]. Here X is the Brownian motion defined in 62.4.2. For s < t,

denote

Z1(s) = (@(2?@(8) = mE(Qh(s) — Nidj)t — me@) :

JjeTJ jeJ

then by the continuity of ® and the definition of asymptotic compliance, on

D[0,t], when r — oo,

By the definition of Ax and the nondecreasing property of Ay for all k € K,
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we have

() U T5(t)

> { 3000 (82260 ds > s s G5 < /} UTH()

ek
0 keKk Osss<t

Uz

kek

U

e (Ak( " (s ))) ds > x}

Combined with (2.44),

liminf P{U"(t) > x} > liminf P {/ ZC’“ Ak ))) ds > x} .

r—00 r—00 0
kek

From the convergence of ZAIF, the right-hand side is exactly the lower bound

in Theorem 2.4.1. This completes the proof. a

2.6.3 Proof of Proposition 2.4.1: Invariant principle for work-conserving
policies

Proof of Proposition 2.4.1: For any family of work-conserving policies,

besides (2.40), the following is also true:
fj increases at ¢ only when Q7,(t) = 0.
As a result, equality holds in (2.41).

From (2.33), (2.24) and the fact that T]-T(s) <s,jeJand T}(s) < s,

k € IC, it is easy to see that )A([U in (2.37) is stochastically bounded. By the
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Lipschitz continuity of ® ([31]), Q", is stochastically bounded, which implies
the stochastic boundedness of @;, j e J, and @,2, k € K. Then 622;’ = 0 for

j € J. Note that (2.29) is still true. We then have

i) = \mye(r), jeJ. (2.47)

J

For k € KC, following the procedure in proving (2.45) in the proof of Theorem

2.4.1, one also has
i) = Memge(), kek. (2.48)

Together with (2.47), (2.33), (2.24) and the Random-Time-Change theorem,
when r — oo,

Xr=X. (2.49)

w

By the continuity of the mapping ®, (2.16) follows. a

2.6.4 Proof of Theorem 2.4.3: State-space collapse

Hydrodynamic limit: We start to analyze the family of control policies {7’ }.
In the present subsection, we focus only on the triage part.
Under the policies {n}, we have the following dynamic equations of the

system:

Q1(t) = Q5(0) + EI(t) — Di(t), jeJ, (2.50)
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Di(t)=S; (T7(t), jedJ, (2.51)
Qr(t) = Q4 (0) + Ei(t) — Di(t), kek, (2.52)
=Y o ( )+ O (ST (1), keK, (2.53)
JjeTJ ek
Di(t) = S (TL(t)), kek, (2.54)
> (T ]+ [T | <t—s, for s<t, (2.55)
JjeT kex
Y(t) =t — (Z T7(t) + ZT,:(t)) : (2.56)
JjeT keK
/OO (]g%@ _ Tﬂd—(t)> AT =0, f €, (2.57)
| @0 xaay o -o (2.58)
0 kek
/ T (@’1@) < Nd, > Qi(t) > 0> dy T7(t) = (2.59)
0 kek jeJ
/ <Z msQ5(t) + > miQn(t) ) dY"(t) = 0. (2.60)
jeTJ ke

Define the hydrodynamic scaled processes for j-triage classes, j € 7,

E;(t) = r’lE;(rt), S’;(t) = r’lsj(rt), T(t)=r 17'”(7“25),

J

J

and for k-WIP classes, k € IC,

Ej(t) = r~' B (rt), w(t) = 1718k (rt),

T (t) = r’le(rt), Q’]"(t) = r’lQ;(rt), Dg(t) = 7"1D;7(7ﬂz€)7

Ti(t) =r='TE(rt), Qi) =r'Qi(rt),  Di(t) =r " Di(rt).
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First we can prove the following lemma, which is similar to Lemma 2.6.1.

Lemma 2.6.3: For any T' > 0, supg<;<p |\i77(t) — Q%(t)| = 0

Proof: For each triage class j € J, the patients in queue at time ¢ are those

patients arriving between [t — 77 (t), ], thus

Qi(t) = Ej(t) — Ef ((t — 5 (t)—) -

Then
Qit)y=FE/(t)—El (t—7/(t)—), jeJ. (2.61)
By the functional law of large numbers, supy;r |Ej(t) — Xit| = 0, together

with (2.61), the conclusion can be easily proved. O

Similar to [35], there is

Lemma 2.6.4: Almost surely, every sequence contains a subsequence {r,}
such that, the hydrodynamic scaled processes E”" S;", ", TT", Q"" DT", JjE
J, Er S T QD k€ K, converge uniformly on compact time sets

to limit processes E;, S;, 7, T, Q;, Dj,j € J, Ey, Sk, Tk, Qx, Dy, k € K which

satisfy the following equations

Q;(t) = Q;(0) + Mt — Dy(t), je€JT, (2.62)
D;(t) = wTi(t), jeJ, (2.63)

Qr(t) = Qr(0) + Ei(t) — Dip(t), ke, (2.64)
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En(t) =Y i PuTi(t) + Y wPuTi(t), k€K, (2.65)
JjeJ lek
Dk(t) = Mka(t), ke IC, (266)
ATi(t) = Q;(t), JEJT, (2.67)
ST = Ti(s) + > _[Th(t) = Tu(s)] <t —s, for s<t, (268
JjeT kex
Y(t)=t— ( Ti(t) + ZTN)) : (2.69)
JjeJ kek
(M @O\ e
/0 (Ijnef?( )\j,\j - )\j/C/l\j/> AN1dTy(t) =0, j e€J, (2.70)
/Oo 1 (Ql(t) > Alcil) 4> Ti(t) =0, (2.71)
0 kek
/OO 1 (Ql(t) <hdi Y Qult) > 0) dY Ti(t) =0, (2.72)
0 kek JET
/OO 1 (Z miQ;(t) + Zmz()k(t) > 0) dY (t) = 0. (2.73)
0 jed keK

Remark 261 Any S = (Ej, S’j, ’77'3'7 T‘j, Qj, Dj,j € j, Ek, gk, Tk, Qk, Dk, k? €
K) satisfying (2.62)-(2.73) is called a hydrodynamic model solution, and one
can prove that, any hydrodynamic model solution is Lipschitz, hence abso-

lutely continuous and differentiable almost everywhere.

Proof: We follow the argument for Theorem 4.1 in [14]. Almost surely, we

have the following convergence ([13]):

E;(t) — Ajt, uwoc., jeJ, (2.74)
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S’; — wit, wo.c., jeJ, (2.75)
Sy — upt, wo.c., kek, (2.76)
%(I);k(vtj) — Pjt, uwo.c, jeJ kek, (2.77)
%%(Lrﬂ) S Pyt woe, Lkek. (2.78)

Fix such a sample path and notice that on this sample path, we always have

1 (Z (T (rt) — T} (rs)) + Z (75 (rt) — Tf(rs))) <t—s, for t>s.

T 5
kek JjeJ

As a result, there exists a subsequence {r,} such that as n — oo,

1, _ .

ETjn(rnt) — T5(t), uwo.c., jeJT, (2.79)
1 _

ETk"(rnt) — Tk(t), wo.c, kekK. (2.80)

Here Tj,j € J, Tk, k € K are Lipschitz continuous processes. Then (2.62)-
(2.69) (except (2.67), which is from Lemma 2.6.3) follow from (2.50)-(2.56),
(2.74)-(2.78) and (2.79)-(2.80). From the Lipschitz continuity of Tj,j €
T, T,k € K, it is easy to see that (7;,Q;,D;,7 € J, Ex, Qx, Dy, k € K)
is also Lipschitz continuous.

The proofs for (2.70)-(2.73) are similar. Here we give a proof for (2.73).
If (2.73) is not true, then there is a tg and § > 0 such that .., m5Q;(to) +
> okex MiQr(to) > 0 and Y(tg 4 0) = Y(to — 6) > 0. As 3., m5Q;(to) +
D kek m$Qx(to) is Lipschitz continuous, we can also assume that this § is

chosen so that >, ; meQ;(t) + 3 e mEQr(t) > 0 for all ¢ € [tg — 0, to + 6]
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Then for n large enough, Y., mSQ" (t) + 3o, mEQy (t) > 0 for all t €
[to — 6,to + 0], and Y™ (tg + 0) — Y™ (tg — 0) > 0. However, this contradicts

with our work-conserving assumption. As a result, (2.73) should be true. O

Lemma 2.6.5: Any hydrodynamic model solution satisfies
2 miQi(8) + 3 miQu(t) = 3 miQ;(0) + 3 miQu(0
jeJ kel jeJ kel

Proof: From the fact that 3, ; A;m$ = 1, (2.38)-(2.39) and (2.62)-(2.66),

we can prove

ZmeQ] + kaQk ZmeQ] + kaQk Y (t).

JjeJ kel JET kex
From (2.73), (2.68) and (2.69), Y (-) = 0. This completes the proof. O

State-space collapse for triage patients: First we prove a state-space collapse

result for the hydrodynamic model solution.

Lemma 2.6.6 (State-space collapse for hydrodynamic model solution):
Fix C' > 0. For any hydrodynamic model solution with Zjej ijj(O) +

> ke MEQK(0) < C, there exists a constant T such that, for all ¢ > Ty,

E

Q7(t) = Asmin (ZmeQJ —i—kaQk )
JjeJ kex
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Furthermore, if

Q7(0) = Agmin (Z m$5Q;(0) + > miQx(0), 071) ;

jeT kek

then Q7 (t) = Q7 (0).

Proof: For j € 7, define

fit) = ﬁ (Qj(t) — Ajmin (Z m5Q;(0) + ZmiQk(O)@)) :

jeg kek

If f1(t) > 0 and is differentiable, then one can claim

1
/
(t) =—=<0
1 7
Indeed, if this is not true, then T}(¢) # 0 and from (2.70), one has Q;\L%) =
max;e gy ?7? Together with fi(¢) > 0, one can prove by contradiction that

Qi(t) < Aidy. Then from (2.72), one has Qx(t) = 0 for all k € K. This,
together with fi(¢) > 0, will contradict the definition of A;.
As a result, f; will decrease to 0 in a finite time (denote it as 77) and

once becoming 0, it will never be positive again. Then for each 7 € 7, if

fi(t) > 0 for some t > Ty, then T}(t) = 0 from (2.70), hence
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Consequently, after a finite time (denote it by 75 > T7), all f; will be 0 and
will never be positive again.

Now for any t > T3, f;(t) =0 for all j € J. Define

9;(t) = )\L(QJ() Ajmin (Zmer +kaQk )) :

jeT kel

We can assume g;(t) > 0 whenever >, Aj@mjgj(t) > 0. Otherwise, if
g1(t) = 0 and there is another j € J such that g;(t) > 0, then from the
definition of Az, Q1 (t)/Mdy < maxjes Q;(t)/A;d;, and from (2.70), TI(t) =
0 and g1 (t) = dTll > 0. Hence right after ¢, g;(-) will be positive.

Now, as we have proved that f;(t) = 0 for all j € J and over t > T5,
together with gi(t) > 0 and the definition of A;, we have > ., msQ;(t) +
S ek MEQr(t) > B, Yk @Qr(t) > 0 and for 1 € J, Qy(t) > M\dy. Then
from (2.71), >, T (t) = 0. From (2.73), ZJEJT]’( ) = 1. As a result, the

derivative of } ., )\jcfjmjgj(t) is

Z/\jmj—l < 0.

jeJ

Thus in finite time (denote it by Ty > T3), >, ; )\jc/l\jmjgj (t) will converge
to 0. It follows that, for all t > Ty, f;(t) = g;(t) = 0,j € J. Finally, from

Lemma 2.6.5,

Q7(t) = Asmin <ZmeQ] —i—kaQk. )

jeT kel
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— Ay min (Z msQs () + Zmz@(t),w) ,

JjeT kek

for t > Ty. O

The main result in this subsection is the following lemma, which proves

the state-space collapse result for triage patients.

Lemma 2.6.7: Under Assumption 2.2.1 and the proposed family of control

policies, when r — oo,

sup @;(t) — A min (
0<t<T

O (1), a)‘ ~ 0.

Proof: The basic argument is similar to the arguments in [9]. For complete-
ness, we include it here. From Lemma 2.6.6, we know that Assumption 3.2
of Bramson holds, then from Theorem 5 of [9], we can obtain what the terms

“multiplicative state space collapse” (equation (3.41) of [9]):

Spperer | @5(6) — Ay min (QL(1), )
SUPg<¢<T Q:u (t> A1

Notice that here @Z}(t) plays the role of W in Theorem 5 of [9] there.
Next from our Proposition 2.4.1, we know that supg<,<r @;(t) A1 is

stochastically bounded. As a result,

sup @;(t) — A min (@Zv(t), @)‘ = 0.

0<t<T
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This proves the result. O

State-space collapse for WIP patients: From Propositions 2.4.1 and Lemma

2.6.7, when r — o0, one has

> miQp = (@w—@)+. (2.81)

kek

Recall that the proposed policy for WIP patients is to ensure

Cl(Qi(t)  Ch@Qi(1)

[ [
my my

max sup
LkeK o<t<T

‘ = 0. (2.82)

Lemma 2.6.8: Under the family of control policies {7n’}, one has (@\z, k €

K) = (Qn k € K). Here

O = & ((Qu-2)"), kek (2.83)

Proof: The proof is similar to [41]; for completeness, we include it here.

From (2.82), for any given T > 0,

max sup
Lk‘E’C OStST

ot (Pha (@) - @) = o @

e
k

From the assumption on Cj, k € K, C;7! (%C,@()) is a nondecreasing func-
k

tion.
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From (2.84) and (2.81), we have
ev/—1 ﬁle 1 [ Ar A N +
;ml e (mz c; (Qk>> = (Qu-2) .

As the function on the left-hand of the above equation has a continuous

inverse, Q" converges. From (2.84), (QI,1 € K) = (Qy,1 € K). Also

e
my my

C@) G e

This proves (2.83). O

Proof of Theorem 2.4.3: Lemma 2.6.8 proved (2.18). From Proposition
2.4.1, Lemma 2.6.7 and the continuity of the function ¢ (z) = min(z, ), with
the application of the continuous mapping theorem and the Convergence-

together Theorem (Theorem 11.4.7 in [43]), we get (2.17). O

2.6.5 Proof of Theorem 2.4.2: Asymptotic optimality

Proof of Theorem 2.4.2: First, it can be verified that A; min (z,©) <
)\jc/l;' for any x and 5 € J. Then from Theorem 2.4.3, under the proposed
policies {r!}, @\5 = @j < >\j6/l\j. An analysis of work-conserving policies
will show that (2.25) is equivalent to “asymptotic compliance” for work-
conserving policies (see Lemma 2.7.2); hence the family of the policies {n]}
is asymptotically compliant.

By Theorem 2.4.3, together with the continuity of the cost functions,
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one also has

/OZCk<Qk ds = ch Q( ))ds

kekC 0 k:EIC

Hence, under the family of the proposed policies, the lower bound in The-
orem 2.4.1 is attained. As a result, the family of the proposed policies is

asymptotically optimal. O

2.7 Additional proofs

2.7.1 Additional results for work-conserving policies

In this section, we prove some additional results for work-conserving policies;
in particular, they apply to {7 }. From the discussion in proving Proposition
2.4.1, @;, j € J, are stochastically bounded and (2.47) holds for any work-
conserving policies. With these, notice that (2.30) is still true, hence we can
verify the convergence (2.28). As @;, j € J, are stochastically bounded, 7/:]7’,
Jj € J, are also stochastically bounded.

Next consider WIP patients. Define Vi = (VI )rexc with each k € K,

Vi(t) = Qr(t) — Qp(0) — EL(t) + Sp(TE() = Y Pirpt, T

jeT

and recall that g,: is defined in (2.36). Denote ZAZ = (;ka,:)ke,g. Then from
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(2.35),
0= (P" - 1)V (2.85)

We can easily verify the stochastic boundedness of j}}é from the facts T‘;(S) <
s and T7(s) < s, for all j € J and k € K. This implies the stochastic
boundedness of flf, then f/& = (T )pex-

Note that, for all k € IC,

Ej() = 80+ 3. Pu, T (0) + S Pund Ty (1), (2.86)
jeT lek

Then the stochastic boundedness of E}; can be then obtained from the stochas-
tic boundedness of éA’,Q’, j\’f and YA’[ (jeT, klek).

Define the fluid scaled virtual waiting time processes as

2

Qi) =) (rPt), jed,  @pt)=rwp (r’t), kek.

First we prove the following:

Lemma 2.7.1: Under any family of work-conserving policies, with FCFS among

each WIP class, when r — oo,

= 0, j7€J,

wp, = 0, kek.

Proof: We only prove the results for j € 7, as the proof for k € K is the
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same. First note that, for any e > 0, if w}(t) > ¢, then
Si (T7(t+¢€)) < Q5(0) + EL(t).
Then @} (t) > € ensures
S (Tj(t + e)) + T (t A+ €) + Nire < Q(0) + EN ().

Hence, for any fixed T' > 0 and € > 0, we have

IP’{ sup &I(t) > e}

0<t<T

b

However, noticing that supy,<r ’@;(0) + E;(t) — :9\; (f}’-"(t + e)> - ,ujff(t +¢€)

< P {Agre < sup ‘@;(0) + E;(t) — §]” <7:}T(t + e)> — ,uﬂ/:;(t +e)

0<t<T

is stochastically bounded, together with the fact that Ajre — oo, implies that

the probability on the right-hand side above converges to 0. Hence

lim ]P’{ sup wy(t) > e} = 0.

r—00 OStST

This completes the proof. O

Lemma 2.7.2: Under any family of work-conserving policies, for any given
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T > 0, we have

sup [N7T(1) = Q5(t)| = 0, jeEJ.
0<t<T

Proof: The proof follows exactly that of Lemma 2.6.1, by noticing that
from Lemma 2.7.1 and the fact sup,, 77 (s) < sup,, wj(s) for all t and j, we
have supg< <, 7j (s) = 0. Note that the result here is slightly different from
Lemma 2.6.1, as only after proving this lemma, can we have the stochastic

boundedness of 77, j € J, for all work-conserving policies. O

2.7.2 Proof of Proposition 2.4.2: Asymptotic sample-path Little’s law

Lemma 2.7.3: Under the family of control policies {n}, when r — o0,
(ir7jej7 Eguf];n?keK) = (j:’_]ujejv E\kufkakEK)7

for some continuous processes (j\}, jeJd, Ek, T\k, ke lC) satisfying

uiTi(t) = —Q;(t) + Ej(t) — S; (\jmyt) | (2.87)

Ey(t) = &) + > P Ti(t) + Y P Ti(t), (2.88)
JjeET leKk

(PT-I) (ukﬁe)kek = V. (2.89)
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Here
= Z El\)jk ()\jt) + Z (/Islk ()\lt) + Z ijs\] ()\jmjt) + Z Plkgl (/\lmlt) s
jeg lek jeg lek
Vilt) = Qu(t) — Eu(t) + Se(wmat) — Y Pipt T,
JjeT

Proof: From (2.30), (2.86) and (2.85), we have (T) = (1.1} )ex)

Tr() = [@;<0> ~ Q0+ By0) = 5 ()| g (290)

Eyt) = &)+ Puw i)+ Pundy (t), (2.91)
jeT lex
o) = (PT—D7'Ye), (2.92)

where
= 285 (B0)+ 38 (% (Fw))
—I—Z kST<Tr ) ZPlkSl <Tl )
lex
Vit) = @;;(t)—cyk() Ev(t) + SUTE(®) = Y Py T,
jeJ

As a result, (f}r, jeJ, E’" f,g; k€ IC) can be represented as a continuous
mapping from (Q E]T, S]T,T;, @;k, (IDZTk, @};, S'\,Z,f,z,j eJ, ke IC), whose con-
vergence can be obtained from the assumptions and Theorem 2.4.3. The ex-

pressions (2.87)-(2.89) in the lemma can be easily verified from (2.90)-(2.92).

This completes the proof. O
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Proof of Proposition 2.4.2: We prove the result for j-triage patients. For
k-WIP patients, the proof is similar. The convergence of @;, together with

Lemma 2.7.1, ensure that, for any 7" > 0,

sup ‘@;(t)—@;(t—l—@;(t))‘ = 0, as 71— oo.

0<t<T
Thus it is enough to prove

sup [ AjW;(t) — C/Q\; (t+ @;(t))‘ = 0, as r — oo.
0<t<T
Note that the j-triage patients that are present at time ¢ +wj(t) arrive during
the time interval (¢, +w’(t)], and those j-triage patients arriving during this

interval will remain in this class, or finish this stage of service at ¢ + wj(t).

Hence

Q' (t+wi(t))

< Ei(t+wj(t) — Ei(t) <Qj (t+ w;(t)) + AS] (t+ w;(t)) ;

(2.93)

here, with some abuse of notation, AS? (t+wi(t)) = S; (T"(t +wi(t))) —
S; (T (t + wf(t)—)). From this relationship, we can get the following for the

diffusion scaled processes:

NG (t) — QF (tm;(t))] < \Er (t+a0() — B (t)’
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Here

and

From the convergence of §;(7:’;"()) and YA}T(-), then both A@”( + @7(+)) and
Aff (-+ @;()) converge to 0. Together with Lemma 2.7.1 and the conver-
gence of E;, j € J, the processes on the right-hand side above will converge
to 0; thus the process on the left-hand side will also converge to 0, which

completes the proof. O

2.7.3 Proof of Proposition 2.4.3: Snapshot principle — virtual waiting time

and age

Lemma 2.7.4: Under the family of control policies {n]}, for any given T > 0,

when r — oo,

sup |(NiFL(t) — QL(t)| = 0, kek.
0<t<T

Proof: The proof follows exactly as the one for Lemma 2.6.1. For k € K,

note that the convergence of E; has been proved in Lemma 2.7.3. On the
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other hand, sup,; 77 (s) < sup,;wj(s) for all £ and k; hence, from Lemma

2.7.1 we have supy.,<; 77 (s) = 0. 0

Proof of Proposition 2.4.3: This can be easily deduced from Proposition

2.4.2, Lemmas 2.7.2 and 2.7.4. O

2.7.4  Proof of Proposition 2.4.4: Snapshot principle — sojourn time and

queue lengths

The argument here follows the framework in [37]. Introduce the following
notation: 77,(¢) is the time at which the patient of interest to us arrives to
the system, and (j;,(¢) is the time at which this patient becomes a k-WIP
patient for the ith time (it is also related to h, but we omit h to simplify the
notation). Then

t < Cralt) < 7, () + WiL(2). (2.94)

Define the fluid scaled processes

éjrm(t) =r? ;ki(T2t>7 ﬂffh@) =r? ]Th(rzt)’ 7:']7'}1(75) = 7’727';11(7’275)-

Lemma 2.7.5: Under the family of control policies {n]} with FCFS among

each WIP class, if h is j-feasible, then for any T" > 0, as r — o0,

sup V:Vj?“h(t) = 0, (2.95)
0<t<T
sup [7,(t) —t] = 0. (2.96)

0<t<T
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As a result, when r — oo,

sup [E;ki(t) - t} = 0. (2.97)
0<t<T

We first assume this last lemma is true and prove Proposition 2.4.4.
Proof of Proposition 2.4.4: The sojourn time W7, (f) can be represented

as

jh(t) + Z Zwk jkz

ke i=1

From this we then have

Afh(t) - Q;E ) ka( )]
= a;(%;h<t>>+zzaz (E;kiu))—[Qi—ff) @k< >]
oy G0 o Qi)
= @ v ]+§Chk [wk(t)—Tk]

+ [ (7)) +ZZ[ (Gut)) — @]

kek =1
From Lemma 2.7.5 and the convergence of &7, j € J and &y, k € K,
EAGAG) |+ ZZ [ ( i ) @,’;(t)} = 0.
kel i=1

Together with Proposition 2.4.2, the conclusion is immediate. a
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Proof of Lemma 2.7.5: We first prove (2.95). It is enough to show that,

for any € > 0, there exists an N < oo such that, for all r > N,

P{ sup I/T/]-Th(t) > e} <.

0<t<T

Similarly to [37], denote ||h]| = 31, hx. Then we have

- _ €
P W7o (t) > < P on(t) > —
{ sup W5, (t) > e} < max { sup  wi(t) > T 1}

0<t<T kek 0<t<T+e (2.98)
_ €
+P sup w-(t) > ——— 5.
{mg§¥+e () nhn%-l}

From Lemma 2.7.1, the right-hand side of (2.98) converges to 0, hence (2.95)
holds.

The proof of (2.96) follows the one in [37]. Let L, = min{n >
i;h"(j,n) = h}, where h"(j,n) is the visit vector associated with the nth

j-triage patient. We can write

P{mmﬁww—ﬂz%

0<t<T

1
: (.2 2.\ _ pr(,2 T a2
< ]P){O%Itlng[Ej(T‘t—i-T €) — B (r t)]<2)\ﬂ“ e}

1
+P{E;(r"T) > 2)\7°} + IP{ sup  [Lj;, —1i] > 5)\]'7“26} :
1<i<2x;72
The first two terms on the right-hand side converge to zero by the strong
law of large numbers. The j-triage patients have i.i.d. paths and hence i.i.d.

visit vectors. Let the probability of a particular j-triage patient, having visit
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vector h, be g, where g, > 0 since h is j-feasible. Define g, = 1 — g;, then

1 r 13,207 2072
]P’{ sup  [Lj;, —1i] > 5)\]'7"26} < 1-/1 —g,f)\k }

1<i<2A,72

_ h
- 1-— 1_T

2
B QA%)\M‘QE 2XkT
g

The same reason as in [37] then implies that the latter expression vanishes,
as r — oo. This establishes (2.96).

Combining (2.95), (2.96) with (2.94), now yields (2.97). O

Proof of Corollary 2.4.1: This is implied by Propositions 2.4.4, 2.4.2 and
2.4.3. O

2.7.5 Proof for Lemma 2.5.1

Proof: The proof follows the framework in §2.6.4. For completeness, we
include the steps here.

Firstly, the argument in proving Lemma 2.6.4 still works for the new
scheduling policy, except for the equation (2.70), which we replace by the

following:

>0 Q;t) . Qi N\ o
/0 (dj— . —%g{dj,— . }) ALdT;(t) =0, jeJ. (2.99)

J J

Because the proof of Lemma 2.6.5 does not use (2.70), thus it is still true for
the new policy.

Next we prove that, for any fixed C' > 0 and a hydrodynamic model
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solution with Y., m5Q;(0) + 3, miQx(0) < C, there exists a constant

To such that, for all ¢t > To,

Qs(1) = Agmin (ZmeQJ )+ > miQk(t), )

JjeET ke

To prove this, for j € J, define

) = I (Q] ; min (ZmeQJ +kaQk >> .

JET ke

If f1(t) > 0 and is differentiable, then one can claim

Indeed, if this is not true, then T}(¢) # 0 and from (2.99), one has dy —

N = Minjey {c/i\j/ — %} Together with fi(t) > 0, one can prove by
contradiction that Q;(t) < Ady. Then from (2.72), one has Qy(t) = 0 for all
k € K. This, together with f;(¢) > 0, will contradict the definition of Zj.
As a result, f; will decrease to 0 in a finite time (denote it as 77) and
once becoming 0, it will never be positive again. Then for each j € 7, if

E(t) > 0 for some ¢ > T}, then Tj(t) = 0 from (2.70), hence

Consequently, after a finite time (denote it by Ty > T 1), all f; will be 0 and
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will never be positive again.

Now for any ¢ > T, E(t) =0 for all j € J. Define

i) - }(@m Ay min (Zme@] )+ 3 miQu(0) )) .

JjET ke

We can assume gi(t) > 0 whenever >, /\jc@»mjﬁj(t) > 0. Otherwise, if
g1(t) = 0 and there is another j € J such that g;(¢) > 0, then from the
definition of A, di — Q1(t) /N > mln]ej( Q;(t)/);), and from (2.99),
T|(t) =0 and g (t) = i > 0. Hence right after ¢, g;(-) will be positive.
Then the discussion in the last paragraph in the proof of Lemma 2.6.6,
we can prove that in finite time (denote it by Ty > Tb), dies )\jc/i;mjﬁj(t)
will converge to 0. It follows that, for all ¢ > Ty, E(t) =yg;(t)=0,5 € J.

This proves that

Qs(t) = Agymin (Z m5Q;(0) + > miQw(0), ) :
VISVA kel
for t > T().
Then we can follow the argument in [9], first proving “multiplicative

state space collapse” (equation (3.41) of [9]):

SUPg<t<T Q;(t) — Ajmin (Q;(t)a &7> ’
SUPgp<¢<T Qrw(t) N1
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Then from our Proposition 2.4.1, we know

sup @;(t) — A, min (@:U(t), @)‘ = 0.

0<t<T

This proves the result. U

2.7.6 Proof for Lemma 2.5.2
Proof: We follow the framework in §2.6.4, but for WIP patients now. We
first prove that under the proposed policy, any limit of the hydrodynamic
scaled processes E;, S;, 7, Tj, Q;, Dy, 5 € J, Ex, Sk, T, Qx, Dy, k € K should
satisfy (2.62)-(2.73), as well as the following:

kel

/0 ) <maXHkr (GC Q) — Hy (GC" (Q(t)))k) AT4(t) = 0. (2.100)

This is because, if the above is not true, then there is a ty and § > 0
such that maxpex He (GC' (Q(t0))),, > Hi (GC' (Q(t))), and Ti(to +
§) — Yi(to — d) > 0. We can also assume that this § is chosen so that
maxpex Hy (GC' (Q(1))),, > Hy (GC' (Q(1))), for all ¢ € [to — 6,y + 4].
Then for n large enough, maxy cx Hy (GC’ (QT" (t)))k, > H, (GC’ (QT” (t)))k
for all t € [ty — &,to + 6], and T}"(to + &) — T (to — d) > 0. However, this
contradicts with the work principle for WIP patients. As a result, (2.100)
should be true.

Without loss of generality (from Lemma 2.6.5 and 2.6.6), we assume
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that for all t > 0,

+
S 0u) - )+ T i) -3
kek JET ke

For any fixed k € K, define a K x K matrix B, = T + Oy, where T is
a K x K diagonal matrix with component —H; in the /th place, and Oy is a

K x K matrix with its kth column being Hj while all others are 0, that is,

~H, - 0 .- 0 0 --- H, - 0
T = 0 - e ... 0 and ©,=| 0 --- H, --- 0
0 - 0 - —Hg 0 -+ H, --- 0

It is easy to verify that the vector M€ is the only column vector (up to
scaling) satisfying

BrGM* = 0.

Recall the definition of Aj; in Lemma 2.4.1 and define

Qo = Ax (Z m5Q;(0) + Zmi@k(O) — @) .

JET ke

Then
BkGC’(QO) = 0.

Here C"(Qo) is a K-dimensional vector with C7(Qoy) being its kth component.
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This means that for any k,[ € K,

Hi (GC'(Qo)), = Hi (GC'(Qo)), -
Next we prove that for any fixed C' > 0 and a hydrodynamic model

solution with >, msQ;(0) + 3, miQr(0) < C, there exists a constant

Ty such that, for all ¢ > Ty,

We first prove that, if Q(¢) # Qo, then there is a &k, such that
Hy, (G (C'OW) - C'(@Q0)),, > 0.
It is enough to prove (G (C'(Q(t)) — C'(Qv))),

GG (C'(Q(1) = C'(Qo)) = (C"(Q(t) — C'(Qo)), and (C'(Q(1)) — C'(Qv))

is a vector with positive component(s), together with the assumption that

. > 0. This is because we have

all components of G~! are nonnegative, we know that there must be at least

one term in G (C'(Q(t)) — C'(Qo)) being positive.

Now choose any k_ € argmin{ C’/“(g’;(t)) — C’/“,(ﬁo’“) }, then G}, (Qk_(t))—
k k -

;. (Qor_) < 0. Now we will prove that

H,_ (G (C'(Q(t)) — C"(Qu)), <0.



2. A basic model 89

It is enough to prove that (G (C'(Q(t)) — C'(Qo)))

all ¥ # k_ and k_ € argminke,c{c’l“@f(t)) — C”“(QO’“)}, we have

€
my my

b S 0. As Gk,k’ S 0 for

(G(C'Q)) ~C'(Q), <3 Ciw (Ci(Qu_() — Ch_(Qui)) -

kel

From the assumption of Y., Gr_w > 0, and the fact that C,_(Qy_(t)) —
Ci_(Qor_) <0, we know (G (C"(Q(t)) — C'(Qu))), <0.
As Hj_ (GC,<QO))k_ = Hy, (GC/(Q(]))koa thus Hj,_ (GC,<Q(75)));€_ <

Hy, (GC”(Q(t)))kO. From (2.100) we then have T} (t) = 0. Then Ge ) _

e
my_

an’“ > 0. As a result, there will be a finite time T} such that for all t > Tj,
k_

C’/“(gf(t)) > C,;;Q;Ok)7 which is equivalent to Q(t) > Qor. However, we have
k k

as a result, Qi(t) = Qo for all k and t > Ty,
Then we can follow the argument in [9], first proving “multiplicative

state space collapse” (equation (3.41) of [9]):

SUPg<t<T @2(’5) — Apmin (@Z’(t)’ CTJ) ‘

SUPg<¢<T Q:u(t) A1

= 0.

Then from our Proposition 2.4.1, we know

sup @2(1&) — Aj min (@:U(t), @)’ = 0.

0<t<T
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This proves the result. O

2.7.7 Proof for Proposition 2.5.1: Waiting time cost

We first provide the proof of a lower bound, which is similar to the proof of
Theorem 2.4.1.

For any fixed k € K, define C7, C}, C? as follows:

1 ET(r2b)
Ol?l = r r _T]:J"H
EL(0) — Bf(r%a) g, 7"
1 |
Cr, = —Q7(t)dt
B B0 - Ba) fuy O
1 B} (r°b)~Q} (b) 1
on, = —T7 ..
k3 Ep(r?b) — E{(r?a) Z L
i=E7(r?a)
Then C}5 < C}, < C7,. Further,
E7(r2b)
1 S 1
Cri —Cis = =72 2 Z ~Th,i
Ei(r?b) — Ei(r*a) i— B (r2b)—Qp (r2b) 41
S :T - :T QZ(b) (2 s IglaX ; T (2 _T]:’i'
E;(b) — Ei(a) B} (r20)— Q5 (r2b) +1<i< Ef (r2b) T

As the proposed policy is work-conserving, Proposition 2.4.1 and Lemma
2.7.1 hold. Then we have C}, —C}; = 0asr — oo. Asaresult, C}; —Cj, = 0

as r — oo, that is, forany 0 <a < b < T,

E};(b)iég(a) (/ab?,’gdﬁ:?; - /ab @;(s)ds> = 0. (2.101)
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With this, we can prove the following

~ t o~ —~
lim inf P {L{T(t) > x} >P {/ 3 MG <Ak <(Qw(s) - @)+) /)\k> ds > x} .
(2.102)
Here K,C = (ﬁk)ke;c is defined for any a > 0 as the solution x* = ﬁn(a) to

the following;:

ke

s.t. Z mix = a, (2.103)
kek

x> 0.

The argument is modified slightly from the discussion in proving Proposition
6 of [41]. For completeness, we provide the several key steps here. Fix ¢ > 0

and for any ¢ > 0, consider a sequence of stopping times of Q,, defined as

ty =min{1,inf{0 <t < 1:|(Qu(t) — @) — [(Qu(0) —D)* /e|e| > €}},

tivs =min{1,inf{t; <t: |(Qu(t) —®)* — [(Qu(t;) — @) /e]e| > €}}.

~

Thus ¢;4 is the first time (Q,, —®)* changes by € starting from (Q,,(t;) —®)*
at time t;. Because (Q, — @) is continuous, sup,(t;s; — t;) — 0 as € — 0,

so that sup,(t;11 — t;) = O(¢€). Via Jensen’s inequality and (2.101), we can
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prove that

ur(t)

> 3% Mltiss — )G (Akl(tm ) /t o - a)wt) +o.(1) +0(e)

kek i

>33 Mt — )i ((ti+1 ) /tt A (@t - 2)7) dt) +0,(1) + O(e).

kel i

i

Using the fact that (@L —0)T = (Q., —®)* and the way defining #;, we have

tit1

(tiv1 — 1) QL()dt = (Qu(t:) = B) + O(e) + o,(1).

ti

We can arrive at the following

( 1 i
lim inf277(1) > ;ZM i1 = )Gk (A (Qult) = 8)7) ) + Oe).
Letting € — 0, then we have (2.102).
Finally, following the discussion in §2.6.4 exactly, especially the steps to
get the state-space collapse results, one can prove that the family of modified
policies {7} reaches the lower bound. As a result, {77} is asymptotically

optimal.



3. AN ALTERNATIVE MODEL

3.1 Sojourn time model and its policy

In some emergency departments, the costs are not based on the queue lengths,
but on individual’s sojourn time ([10]). In this section, we consider an al-
ternative model, which is called sojourn time model. The structure of this
model is identical to the figure in §2, except that congestion cost is associated
with each patient’s sojourn time in the WIP stage (as opposed to queueing
and waiting costs previously).

With an assumption that the routing matrix P is upper-triangular, the
number of routing vectors is finite. Thus, without loss of generality, one can
assume that in the WIP stage each patient has a deterministic routing vector
and there are finite number of routing vectors. We use Cy to denote the set of
starting classes of routes, for k € Cy, and let C; denote all the classes on the
route that starts at k. If the waiting time for a specific patient, say patient
i, with starting class k waits wy (i), as a k’-WIP patient (k' € Cy), then the
sojourn time of this patient is } ;.. wi(i). Any class in Uyee, Ce\{k} is
called a subsequent class. The structure of the model is as in the following
figure.

Now the cumulative cost incurred by those WIP patients till time ¢ is
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Fig. 3.1: Patient flow in emergency department (sojourn time cost)

Arrivals Triage-Patients

A A9 A

Exits

WIP-Patients

Individual Cost

Starting classes Cy Subsequent classes

as follow:

Ey ()
St)y=> Y Cx (Z W(i)) . (3.1)

keCy i=1 k'eCy,
Here Cj(+) is a convex increasing function (which differs from those in the
previous section).
There are still deadline constraints on triage patients. As a result, the

problem is still to minimize the cumulative cost above, while subject to the
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deadline constraints on those triage patients. Similarly to the queue length
model, we will solve this problem in the conventional heavy traffic framework.
The heavy traffic framework is similar to the one for the queue length
model. The definition of asymptotic compliance is also identical to the one
in the queue length model.
Define the diffusion scaled waiting time of a WIP patient at stage &’

with starting class & by

wn(t) = r i (r’t).

Assume that, a WIP patient starting with class k incur a sojourn time cost

Ck (Zk’eck @y,). Then the cumulative queueing cost till time ¢ is

(Z @,g,(s)) dE; (s). (3.2)

Definition 3.1.1: A family of control policies {7, } is said to be asymptotically

optimal if
1. it is asymptotically compliant and

2. for every t > 0 and every x > 0,

limsup P {gf*(t) > :ic} < liminf P {gr(t) > x} ;

r—00 r—00

here {gfk”*} is the family of cumulative queueing costs defined through
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(2.9) under the family of control policies {n”,}, and {S"} is the sequence
of queueing costs corresponding to any other asymptotically compliant

family of policies {7"}.

We propose the following routing policy: the first step, using a threshold
policy to determine the priority between triage classes and WIP classes, and
the step using (2.13) to determine priorities among triage patients, do not
change. The step determining the priority among WIP classes will change as

follows:

e Give priority to all subsequent classes, while allocating the service ca-

pacity to all starting classes to ensure the following

(%) (%)
max sup —

LkeCo o<i<T mle mi

= 0. (3.3)

Here @Q;, Q. are the queue lengths of the starting classes j,k € Co,
and mj, m{, are the corresponding effective means of service times. An
G(QLON) Other

example of such a policy is to choose k € argmax;c, e

examples of policies satisfying the above can be modified from the
policies in §2.5.2: assume G and H are K x K-dimensional invertible
matrix and K-dimensional vectors in §2.5.2, the physician chooses a

patients from the class with index

k € argmaxyc, Hy (GC' (Q)\—St))> ;
k
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here C’ (Qr\ﬁt)> is a |Co|-dimensional column vector with C,g( Eft)>
k

being its kth component (here |Cy| is the number of terms in Cy).

This family of policies is denoted by {77, }.
Giving priority to all subsequent classes when serving WIP classes is
consistent with the observation in [40], where it is referred to as “Prioritize

Old” policy.

Theorem 3.1.1 (Sojourn Time Cost): The family of control policies {77, }

is asymptotically optimal.

The proof for this Theorem can be found in §3.4.

Remark 3.1.1: 1. A different feature from the queue length case in choos-
ing which WIP class to serve is as follows: one assigns priority to those
patients who have already received at least one WIP treatment. Then
when applying the results to the case with upper WIP-to-WIP transi-
tion matrix, such a service policy is not FCFS within classes: indeed,
if patients in an WIP class can originate from both triage and WIP pa-
tients, priority must be given to the latter. It follows that, even under
Markovian routing, it is necessary to record the class-history of each

patient.

2. Congestion laws: Similarly to our cost-per-visit model, and assuming

the above class designation, the snapshot principle also prevails for the
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WIP cost per sojourn time model, under our proposed policy. The
snapshot principle then implies the sample-path version of Little’s law:
the relation between waiting time and queue length for any starting
class, where the former is asymptotically identical to the age of head-
of-the-line patient in that class. Moreover, the overall WIP sojourn
time is approximately the waiting time in the corresponding starting
class, since higher priority is given to the subsequent classes. Thus, a
predictor for the sojourn time of a patient, who is starting the WIP pro-
cess in class k, would be simply the age of the head-of-the-line patient

in class k.

3.2 An ED case study: the value of information & imputed
costs

Most triage indices are based on 5 severity levels ([18, 29]). This granularity
is typically too lean to account for patient characteristics that are relevant
for decision making - clinical and operational. For example, the ED in Israel
([10]), which uses the Canadian Triage and Acuity Scale (CTAS), attempts
to also take into account age and predicted A&D status (will the patient
be Admitted, Discharged or transferred to another facility); other EDs, for
example those implementing the U.S. Emergency Severity Index (ESI), con-
sider the number of ED resources used by the patient, a proxy for which could

be the number of visits to an ED physician that a patient experiences. Note
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that A&D status and the number of WIP phases are unknown at the triage
state, but existing report, as well as ED directors, tell us that experienced
ED physicians or nurses can predict them accurately; see [39, 40]. In this
subsection, based on data from our partner, we use our models to assess the
operational benefits of such predictions.

For simplicity and insight, we analyze only the WIP part of the ED
patient flow, and we focus on A&D status and the number of WIP visits to
an ED physician (which we refer to as WIP phases: each such phase will be
regarded as a separate class in our formal model.)

In ED-Partner, patients experience 1-5 WIP phases: 28% go through 1
phase only, 30% have 2 phases, 28% - 3 phases, 11% - 4 phases, and 3% go
through 5 WIP phases.

Tab. 3.1: Number of WIP visits

# WIP visits 1 2 3 4 5
Proportion | 0.28 | 0.30 | 0.28 | 0.11 | 0.03

The fractions of patients who are Discharged is close to 60%; the others
are admitted or transferred elsewhere - both referred to as Admitted. We
assume that A&D status and the number of WIP phases are independent;
hence, for example, the fraction of patients who will be admitted after 3
WIP phases is 40% x 28% = 11.2%. Expert-solicitation in [10] revealed that
sojourn time costs can be assumed quadratic. Specifically, the cost function
for admitted patients is c,(t) = Ct? for some constant C; the specific value
of C turns out unimportant for the comparisons that we shall perform - we

thus assume C' = 1. For discharged patients, the cost is twice that of the
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admitted ones, hence it is cg(t) = 2t%.

Tab. 3.2: Cost functions

A & D Status Admitted | Discharged
Proportion/Cost function | 0.40, > | 0.60, 2t

Assume that the external arrival rate is 1, and the mean service time for
WIP patients is equal across all phases (this is not unreasonable from our
experience); denote this common value by m, which is determined so that
the ED operates in heavy traffic (traffic intensity p ~ 1).

Now we compare three scenarios: no-information, where the ED con-
troller is aware of neither A&D status nor the number of WIP phases; partial-
information, where only the number of WIP phases is known, which will be
shown to lead to a reduction of 18% in congestion costs; and full-information,
where both are known, which results in about 27% reduction relative to the
no-information cost. The results of the three scenarios are summarized in
the following table (here “Y” means the information can be estimated when
a patient arriving at the ED, “N” means can not; “|} 18.01%” means by com-
paring to the “Benchmark” in Case 1, the congestion cost can be reduced by

18.01%, similarly to “| 26.8%".):

Tab. 3.3: Comparison of results

Case 1 Case 2 | Case 3
# WIP visits N Y Y
A & D Status N N Y
Congestion Cost | Benchmark | {18.01% | {26.8%
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No information: FEach patient goes (stochastically) through 1 to 5 phases;
e.g. the probability of continuing to phase 3 after a 2nd physician visit is
Py; = (1—-0.28—0.3)/(1—0.28) ~ 0.583. The individual sojourn cost function
is

c(t) = 0.4cq(t) + 0.6¢4(t) = 1.6t (3.4)

In §3.5 of the Appendix, we analyze a system with only two phases. From the
analysis there, with the above cost functions and means of service times, an
asymptotically optimal policy is to give priority to the second phase. This ar-
gument can be generalized to multi-phases: for example, in the 5 phase prob-
lem, one can first consider the last two phases. It can be argued, similarly
to §3.5, that an optimal policy assigns priority to the last phase. Then the
2-phase system is reduced to a system with only one phase and, in turn, the
5-phase to a 4-phase system. Continuing this way, an optimal policy assigns
priority to phases 2 — 5 over phase 1, and only the queue length of the latter
remains non-negligible asymptotically. From the argument in the Appendix,
the minimal queueing costs, corresponding to the above policy, accrues ap-
proximately at rate 1.6(‘Z==25)2 = 1.6 x 0.1874@52 — 0.2998@u=2"
As a reminder, here va is a reflected Brownian motion, @ is a weighted sum-

mation of the triage deadlines, and both can be calculated via the formulae

in §2.4.2.

Partial information: Now assume that the ED director knows, for individual
patients, their number of WIP phases (1-5). Then the cost function is still

as in (3.4). The patients are initially classified into 5 WIP classes; e.g.
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Class 3 returns 3 times to the physician, giving rise to 2 additional classes
along the way and ultimately being either admitted or discharged. (There
is a total of 15 classes.) From the sojourn time analysis in the previous
section, an asymptotically optimal policy assigns priority to all non-starting
WIP classes, while allocating the remaining service capacity to the 5 starting

phases as follows: serve a class with index

(3.5)

Here Q) is the queue length of class | WIP patients, and p; is the fraction of
patients that visit the physician [ times, [ = 1,--- ,5. From the argument
in the Appendix (especially (3.7) and the paragraph above it), the minimal

cost rate will be the value of the following problem:

. o Q2 Qs Q4 5
0.28¢(~21) 4 0.30¢(~22) + 0.28¢(—22) 4 0.11¢(=24 ) + 0.03¢(—22
min 0.28¢(5%2) +0.80e(5755) +0.28¢(70) + 0.11e(577) +0.03¢(572)

s.t. m(Qr 4 2Qs + 3Qs +4Q4 + 5Qs) = (Qu — ).

with @; being the queue length of starting class i (i phases). Then the optimal

: : . 44 84 . :
solution satisfies QF = 32Q7%, Q5 = 25:Q%, Q% = 25207, Q5 = 2LQ7, with

QF _ (Qu—a)*
0.28 ~ m(0.2841.2+2.52+1.76+0.75) *

Simple algebra leads to the asymptotically
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minimal cost rate of

* 2
(0.28 4 0.3 x4+ 0.28 x 9+ 0.11 x 16 + 0.03 x 25) x 1.6 x (Ql)

1.6 x (Qu — 0)? (Qu—©)?
- =1.6 x 0.1536—————
m2(0.28 + 1.2 + 2.52 1+ 1.76 + 0.75) 8 m?
A2
:0‘2458M'
m
. . —0. 4 . . . . .
Calculating % = 0.1801, it follows that having the information on

the number of WIP visits will reduce 18.01% of the no-information cost.
This is consistent with [39], in which this number of visits (complexity) is

identified as an important factor for improving ED operations.

Complete information: Now assume, at the director’s disposal, an accurate
prediction of both the number of WIP phases and the A&D status. By
the assumed independence of these two pieces of information, one can first
analyze the unilateral impact of A&D status, then multiply the two impacts
together. For completeness, we present an analysis that accounts jointly for
both factors.

Denote by Q,; and Q)4 the queue length of i-phase patients who will be
admitted and discharged, respectively. From the analysis in the Appendix
(especially (3.7) and the paragraph above it), and now having 10 initial
classes (the rest, due to their high-priority, enjoy negligible queueing), the

minimal cost rate is approximately the optimal value of the following opti-
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mization problem:

Qa2
0.30

QaS )
0.28

1 a
min — <0.280a(Q L) 4 0.30¢,(=222) 4+ 0.28¢4

0.6 0.28
+0.11¢ (Q“4)+003 (Q“5)>

0.11 0.03
le QdQ Qd3
0.28 0.30 0.28

+0. 11cd(OQﬁ) +0.03¢ ((?32))

1

04 )+ 0.30cq(—=

)+ 0.28¢4(——=

(o 28cq( - )

s.t. m(Qa1 + 2Qu2 + 3Qa3 + 4Qua + 5Qus + Qa1 + 2Qu2

+3Qus + 4Qus + 5Qu5) = (Qu — B) ™.

(In the above, we use the fact that ¢, and ¢4 are quadratic functions, and

b5 =

. x?).) Similarly to the partial information case, the problem can be

1
b

further reduced to the following:

min (0.28 +0.3 x 44 0.28 x 9+ 0.11 x 16 + 0.03 x 25)

2
X Qal + L X @
0.6 6 0.28 0.4 0.28
Qal + le _ (Qw - @)Jr
0.28 m(0.28 + 1.2 + 252 + 1.76 + 0.75)

s.t.

The optimal value, namely the minimal cost rate, is % X 0.1536w =

0.2194QuB - A 0205502194 _ ) 1074 and 2202191 — (9682, we con-
clude that the information of A&D status unilaterally reduces 10.7% cost;
this is consistent with [40], who showed that A&D status contributes to im-
proving ED operations. Furthermore, having jointly the A&D status and the

number of WIP phases reduces congestion costs by 26.8%.
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3.3 Imputed cost

The ED case study was based on expert estimates of costs in an Israeli
hospital. Generally, such cost parameters are unavailable, which raises a
natural question: assume that an ED, after accumulating ample experience,
operates close to optimally; can one then infer the relative costs associated
with patient classes? The answer will shed light on the implicit understanding
of these costs by ED physicians. As an example, assume that patients are
classified into two classes: admitted and discharged, with the same means
of service times; assume further that sojourn time costs are quadratic, but
the parameters are unknown. The results in this thesis suggest that, if the
proportion of the queue lengths of the admitted class to the discharged class
are roughly a constant (state-space collapse), then the inverse of this constant
is an estimator of the ratio of the cost parameters. This is because, under

the assumptions on mean service times, one can expect that

caQa(t) ~ caQalt)

from the state-space collapse results; here ¢,, ¢y are the cost parameters of
patients admitted and discharged, respectively, and @),, @, are the corre-

sponding rate. Then one has, as discussed above,

Ca  Qal?)
Cd Qa(t)
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3.4 Proof of Theorem 3.1.1: Sojourn time cost

We first provide the proof of an asymptotic lower bound for all asymptoti-
cally compliant policies. Note that, when an WIP patient transfers to a next
stage, the cost accumulates and the cost function does not change. As a
result, whenever there are WIP patients in the ED, the physician should not
be idle, as the physician can always serve an WIP patient to reduce sojourn
cost. Then for any asymptotically compliant family of control policies, one
can prove that the family {@ZJ} is stochastically bounded, in particular the
diffusion scaled queue length processes of WIP patients are stochastically
bounded. We now restrict our discussion to asymptotically compliant poli-
cies, in which the physician can not be idle if there are WIP patients. Then
one can prove Lemma 2.7.1. Following exactly the discussion in §2.7.7, we

can prove that, forany 0 <a < b < T,

Er(b) i El(a) (fﬁdé’: - /ab QZ(S)dS) -0

Now, following the steps in §2.7.7 (also in [41]), we can prove that for all

x>0,

lim inf P {g’”(t) > x} >P {/t 3 MG (3; ((@w(s) - @)+) /Ak) ds > x} .

0 keCo
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Here A% = (KZ)kGK is defined, for any a > 0, via the solution to the following;:

Hgll Z )\ka (Z $]/)\k>

keCo J€E€Ck

s.t. E E mz,xk/ =a, (36)
keCo k'eCy,
x> 0.

The fact that the proposed family of control policies {7, } reaches the
lower bound can be proved easily, by showing the corresponding state-space
collapse result. Here we just give some structural insights on the optimal so-
lution to the problem (3.6). For classes in Cy, we know that, if ) ;.. mgap
is fixed, then the solution minimizing Cy (> ;.cc, Tx/Ar) is making x; non-
zero, while all other x with k' € C,\{k} are 0 (this is because m{, > my,,
for all " € C,\{k}). As a result, if the problem has an optimal solution
with some k' € Ci\{k} for some k, then one can always find a better solu-
tion, which is a contradiction. Now the problem is reduced to the following

problem:

keCo

s.t. Z mgr, = a, (3.7)

keCo

x>0,

Following the discussion in solving (2.10) (using the KKT conditions), we can

define a new function, in analogy to Ax(+) from (2.103) (but now with sub-
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script Cp), and under {7],}, this function plays the role of a lifting mapping

in state-space collapse results.

3.5 Incomplete information

We consider a two phase problem as outlined in §3.2. Assume that each
patient in the ED will need at most two phases of treatment. After the first
phase, some of patients will leave the ED directly, while others will go to
phase 2. Assume that the mean service times at both phases are 1, and the
fraction of patients continuing to the second phase is p.

The physician in the ED does not have the complete information. That
is, when a new patient arrives at the ED, the physician does not know how
many phases will this patient go through in the ED. While arriving at the
second phase, the physician naturally knows that this is the second visit.
Assume that the cost function of a patient is az?, when the sojourn time is
x. (As a is not important in the following analysis, we fix it to be 1.)

The physician seeks a routing policy which asymptotically minimizes the

following cost:

in which 77, (s) represents the waiting time of a patient arriving at time epoch
s and will go through only phase 1, 7{,(s) represents the waiting time in phase
1 of a patient arriving at time epoch s and going through both phases, and

75 represents the waiting time in phase 2 of that patient; EY is the arrival
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process for patients with 1 visit only, and EJ is the arrival process for patients
with 2 phases.

Following the discussion in the previous section, one can prove that

lim §7(1) >(1 - )/Ot (ﬁl (Quls) —@>+>2ds

b [ (B (ol =0) 45 (Qute)-3) o) as,

where (A (a), As(a)) is the solution to the following optimization problem:

(3.9)

min (1 —p)ay + p(a1 + 72/p)*

st. (14 p)zy + 22 = a, (3.10)
L1, T2 Z 0.
It is easy to see that the optimal solution to this problem is x; = ﬁp and

x9 = 0. As a result, in this two phase problem, an asymptotically optimal
policy is to give priority to the second phase.
Note that, there is some secretly trick in getting the lower bound above.

Following the discussion in §2.7.7, one can only prove that

(3.11)

(/ab?{l(s)dE{(;+2/ab712 VAES (s /Q" )

Here él(t) is the queue length of those patients in the first phase at time ¢.

But this is not enough for proving (3.9). Indeed, the service discipline in the
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first phase is FCFS. One can thus expect that

(3.12)

By using (3.12), together with (3.11), then following the discussion in §2.7.7
(also in [41]), we deduce (3.9).



4. SOME FUTURE RESEARCH DIRECTIONS

This thesis modeled and analyzed the patient flow in EDs by using queueing
theory. Two ED models are built, and asymptotic optimality of proposed
policies are also established. The differences of these two models (as shown
in the following table) are the assumptions (cost structure and the routing

behavior) and the information used in the policies (queue lengthes or ages):

Tab. 4.1: Comparison of two models

Queue Length Model

Sojourn Time Model

Congestion Cost

Queue Length

Sojourn Time

blueWIP Transition

Markovian

Deterministic

WIP Policy

Queue Length

Age

The models considered in this thesis capture usefully the control of ED
patient flow, however, they are by no means the final story. Several no-
ticeable ED characteristics are left out. Additional ED features that seek
modeling include time-varying arrival rates, treatment times between suc-
cessive visits to the physician, ambulance diversion (admission control) and
patients who Leave-Without-Being-Seen (LWBS) or Against-Medical-Advice

(LAMA). Those features, we believe, are worthy of future researchs.
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4.1 Adding delays between transfers

In emergency department, there are delays between successive patient visits
to physicians. In [44], the delay phases are modeled as infinite-server queues
(content phases). One would expect that, if the delays are short, those delays
will have no impact asymptotically; at the other extreme, if the delays are
long, then those patients experiencing long delays can be regarded as new
arrivals and the system’s performance will change. The question is the precise
meaning of “short” and “long”, which we now formalize.

Consider the basic model as an example. Similarly to [44], model the de-
lays as infinite-server queues with exponential service times. The individual
service rate for the infinite-server queue between j-triage patients and k-WIP
patients is 7%/* 1, and the one between [-WIP patients and k-WIP patients
is r®% . Here pj, and pyy, are fixed positive constants. The magnitude of
the a’s will determine “short” delays (large «) vs. “long” (small). Specifi-
cally, we conjecture that when o > —2 (for all a’s), the delays are then short
enough to leave the results in this thesis intact. Conversely, aj, < —2 (for
all j, k) decouples the triage from WIP - both can be controlled separately;
and o < —2 (for all I, k) pushes the WIP feedback far enough into the
future so that the WIP sub-system can be analyzed as a queueing system
without feedback. All other cases require further thought and plausibly a

more delicate analysis. A brief discussion is provided in §A.
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4.2 Time-varying arrival rates

Emergency departments, like many other service systems, must cope with
arrival rates that are significantly time-varying. The following figure, plotted
using SEEStat developed in SEELab at Technion, elaborate the arrival rate
to the emergency department of a hospital in Israel based on data on all

workdays in September-October 2004:

Fig. 4.1: Arrival rate in an Israeli ED
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As it can be seen from this figure, the arrival rate on the whole day is
time-dependent. In the present paper, we have focused our attention on the
ED afternoon-evening peak, which rendered relevant a stationary critically-
loaded model. Nevertheless, it is still of interest (to analyze the whole day),
and theoretically challenging, to view the ED as a time-varying queueing
system. This is especially true when staffing capacity can not be matched
well with demand - an unfortunate recurring scene in EDs - in which case

the system could alternate between underloaded and overloaded periods of
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a day ([30], [27]). The triage part of the time-varying ED flow control is
analyzed in [10], where the following problem is solved, in a fluid framework
and for a single triage-class: minimize service capacity for triage patients
subject to adhering to their triage constraints. A corresponding WIP part
is carried out in [6]. Combining these two results could provide the starting
point for solving the flow control problem for a time-varying ED, within a

fluid framework.

4.3 Length-of-Stay constraints

Many EDs implement, or at least strive for, an upper bound on patients’
overall Length of Stay (LOS). In an Israeli ED ([10]), for example, the goal is
to release a patient within at most 4 hours. Note, however, that if there are
too many patients within the ED, LOS constraints could simply turn infea-
sible. To this end, one could, perhaps should apply a rationalized admission
control - a rare protocol in the Israeli ED, but relatively prevalent in U.S.
EDs in the form of ambulance diversion ([16, 1, 2]). Interestingly, admission
control problems, with costs incurred by blocked customers, in fact motivated
[35]. But we opted for the analysis of triage-constraints first, in the belief
that they play a higher order (clinical) role. Nevertheless, accommodating
LOS and Triage constraints simultaneously is of interest and significance -

we thus leave it for future research.
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4.4 Adding abandonment to triage or WIP patients

The following figure, plotted using SEEStat again, elaborate the proportion
of patients leaving the ED in the Israeli hospital based on all workdays in
September-October 2004: From the figure, it can be seen that during the
afternoon-evening peak, the fraction of patients abandoning the ED is around

5%. Similar proportion is also observed in [2].

Fig. 4.2: Abandon proportion in an Israeli ED
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Abandonment phenomenon has become a growing concern in overcrowded
EDs. There are two kinds of abandonment: Left-Without-Been-Seen (LWBS)
and Against-Medical-Advice (AMA), in which the former represents the phe-
nomenon that the triage patients leave the ED before receiving any treat-
ments, while the latter represents the phenomenon that the WIP patients
leave the ED before finishing all treatments. For those LWBS patients may
miss out their necessary care and be exposed to unnecessary medical risk.

Similarly for those AMA patients. Thus it is necessary to analyze a model
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with customer abandonment. Queueing models with customer abandonment
has been analyzed in service systems such as call centers, and has proved sig-
nificant in affecting system performance and optimal decisions; see [19, 32].

Indeed, abandonment could significantly impact the structure of optimal
policies. For systems without feedback, [24] considered linear cost, with
hazard rate scaling of patience time distributions, and [3] covered general
cost functions with exponential patience time distributions. Both the works
analyze the corresponding Brownian control problem, and then interpret the
results to the original queueing systems. Both works show that the cu (or
the generalized cu) is no longer an optimal policy. As a result, for systems
with feedback, it is also natural to conjecture that the generalized cu rule
is not optimal. But more fundamentally, understanding of the impact of

abandonment on systems with feedback is still lacking.



APPENDIX



A. DISCUSSION FOR THE CONJECTURE IN §4.1:

ADDING DELAYS AFTER SERVICE

From Lemma 3.4 of [5], we know that, for any given sequence of 2™ € D,

there are y™ € D satisfying the following equation:
t
y"(t) = a"(t) — ,u"/ y"(s)ds; (A.1)
0

furthermore, if ™ — oo and the sequence of {z"} is tight with 2"(0) — 0,
then y™ — 0. We shall use this result in the following discussion.

We use Q. (t) to denote the number of patients in the delayed system
between j-triage and k-WIP patients at time ¢, and Q},(¢) the number of
patients in the delayed system between the k-WIP and [-WIP patients at

time ¢.
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The number of k-WIP patients at time t is

W) = QRO+ (R (S (TF(1)) + Qik(0) — Qii(t)

jeT
+ 3 ( Py (S (T (1)) + Qi (0) — Qii(t)) — Sk (T (1))
leK
= QuO0)+ ) @5 (S (T (1)) + > P (St (T7 (1)) — S (Ti (1))
JjeT lek
=S (Q5 ) — Q3(0)) = S (Qi(6) — Qp(0),  keK.
JjET lek

(A.2)

If we ignore the changes of 77,5 € J and T}, k € K, then the difference
between (A.2) and (2.34) is Zjej ( ;k(t) - §k(0))+2le;c (Qu(t) — Q,(0)),
which is the total change in the numbers of patients within the infinite-server
queues that would delays between services. As a result, we first describe an
analysis for infinite-server queues.

Consider a sequence of infinite-server queueing systems G /M /oco. In the
rth system, the arrival process is £ (), with individual service rate u” = ur®,
in which o > —2. Assume that the fluid scaled arrival processes E" are tight.
Here

E"(t) = r2E"(r?t).
Denote by S a unit rate Poisson process, with its fluid scaling §T(t) =

r=2(S(r2t)—r%t). Then the fluid scaled queue length process X" = r=2X"(r%t)
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can be represented as

X"(t) = X"(0) + E"(t) = 5" (W“a /0 t ):(T(s)ds) — prte /O t X7 (s)ds.

Fix a T > 0 and assume that there is M > 0 such that limsup, .. E"(T) <

M /2. Define a sequence of stopping times (indexed by r) via
t =
o" = inf {t > 0, ;M‘Q”LO‘/ X"(s)ds > M} AT.
0

Using (A.1), if X7(0) = 0, then one can show that X"(0” A -) = 0. And
following the discussion in proving (39) in [5], we can also prove 0" = T. As
a result, X” = 0 on [0, T]. As this T is arbitrary, we have X" = 0 on [0, 00).

Now return to our queueing systems with delays. Note that the arrival
processes for the infinite-server queueing systems are parts of the departure
processes from the physician. We can then easily verify that the requirements
for the analysis of the above G/M /oo hold, in particular the sequence of the
fluid scaled arrival processes is tight. As a result, the G/M /oo system will
not change in fluid scaling, meaning that the delays will have no impact on
the fluid limit of the ED model. (For a rigorous discussion, we can first
argue that the fluid limit of ) e ijZ + D kek mzéz will not change, and
then follow the steps in §2.6.2 to prove that the fluid limit for the busy time
processes do not change, namely they are A\;m;t for j € J and A\ymyt for
keK.)

Finally we discuss the diffusion scaled processes. From the differences

between (A.2) and (2.34), to prove that >, m§@§+2ke/c mzé)\z is invariant
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to all work-conserving policies, it is enough to argue that the following is true

for each k£ € K:

LIS (@t - @30) + 3 (@utn - auo) | = o

JjeET lek

This again brings us to the analysis of G/M /oo systems. Now for a se-
quence of G/M /oo systems, fix a sequence of {\"}, and denote Xr(t) =
“HXT(r?t) — X /") as well as

E"(t) = Y(E"(rt) — N'7t), and S7(t) = r ' (S(r%t) — r?t).
We then have
X"(t)=X"(0)+ E"(t) — S" (,ur”a/ Xr(s)ds> - ur2+a/ X"(s)ds
0 0

Suppose that there is a sequence of {\"} with (i) A" — A for some X > 0, (ii)
X "(0) = 0, and (iii) making {ET} tight. Then from the fluid limit argument,
we can prove that S ([M“QJFO‘ f X " ds) converge to a driftless Brownian
motion with variance \; using (A.1), we can now deduce that X"(-) = 0.
Finally, return to the queueing systems with delays. From the above
discussion, it is enough to prove that the diffusion scaled arrival processes to
the delayed queues are tight. This is a gap that we are leaving for our future

research.
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