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Abstract

We analyze The V-Model of Skills Based Routing. This is a model in which servers are
homogeneous, and there afeustomer classes having the same service requirements. With
respect to the V-Model we ask the following questions:

1. Given a fixed number of servers, how to schedule servers to the different customer
classes so as to optimize system performance, and

2. How many servers are required in order to minimize staffing and waiting costs while
maintaining pre-specified performance goals.

We address these questions by first characterizing a scheduling scheme and staffing scheme
that are asymptotically optimal as the arrival rate increases to infinity. The asymptotic optimal-
ity is in the sense that the policy (asymptotically and stochastically) minimizes the steady-state
waiting and staffing costs while satisfying a pre-specified waiting probability in steady-state,
asymptotically as the arrival rate grows large.

The main asymptotic framework considered in this paper is the many-server heavy-traffic
regime formally introduced by Halfin and Whitt. We refer to this regime as the QED (Quality
and Efficiency Driven) regime. In the concluding sections, we extend the V-Model by adding
abandonment and considering optimization of staffing and control under certain cost struc-
tures. To conclude, we briefly introduce some ongoing research about the N Model of Skills
Based Routing.
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1 Introduction?

In modern service systems it is common to have multiple classes of customers and multiple
server types (skills). The customer classes are differentiated according to their service needs.
The server types are characterized by the subset of customer classes that they can adequately
serve and the quality of service that they can devote to each such class. An important exam-
ple of such large scale service systems are multi-skill call/contact-centers. Such centers are
often characterized by multiple classes of calls (classified according to type or level of ser-
vice requested, langauge spoken, perceived value of customers, etc.). To match the various
service needs of those customers, call centers often consist of hundreds or even thousands of
customer service representatives (CSRs). These CSRs have different skills, depending on the
call classes that they can handle, and the speed in which they do it.

There are three main issues to address when dealing with the operations management of large-
scale service systems. Given a forecast of the customers’ arrival rates and their service re-
guirements, these issues are:

e Design: The long-term problem of determining the class partitioning of customers,
and the types of servers; this typically includes overlapping skills (i.e. servers that can
handle more than one class of customers, and classes that can be served by several server

types).

e Staffing: The short-term problem of determining how many servers are needed of each
type, in order to deal with the given demand. These server types may be of overlapping
skills. (In addition, there is a scheduling problem which determines the shift structure
for the system, as well as the determining of who are the actual servers that would work
in these shifts. The last two issues will not be discussed in this work.)

e Control: The on-line problem of customer routing and server scheduling that involves
the assignment of customers to the appropriate server upon service completion or a
customer’s arrival.

These three problems are all interrelated and should, therefore, be discussed in conjunction
with one another. Yet, because of the complexity involved in addressing all these three com-
bined, they are typically addressed hierarchically and unilaterally in the literature.

Even when one addresses the three issues separately, a general solution for all possible system
configurations is currently out of reach. Instead, we approach the problem by studying a

1The introduction is adapted from the paper by Armony and Mandelbaum [2], with the authors’ approval.



Figure 1: The V Model - multiple customers classes and a single server type.

relatively simple model in order to gain insight to the more general model. The model we focus
on in this work is the V-design. This is a system design in which servers are homogeneous,
and there arg customer classes having the same service time requirements. The V-design is
depicted in Figure 1.

With respect to the V-design we ask the following two questions:

1. Given a fixed number of servers, how to schedule servers to the different customer
classes so as to optimize system performance, and

2. How many servers are required in order to minimize staffing and waiting costs while
maintaining pre-specified performance goals.

We address these questions by first characterizing a scheduling scheme and staffing scheme
that are asymptotically optimal as the arrival rate increases to infinity. The asymptotic optimal-
ity is in the sense that the policy (asymptotically and stochastically) minimizes the steady-state
waiting and staffing costs while satisfying a pre-specified waiting probability in steady-state,
asymptotically as the arrival rate grows large.

The main asymptotic framework considered in this paper is the many-server heavy-traffic
regime acknowledged by Erlang [18], Jagerman [35] and ultimately introduced and formal-
ized by Halfin and Whitt [30]. We refer to this regime as the QED (Quality and Efficiency
Driven) regime. Systems that operate in the QED regime enjoy a rare combination of high
efficiency together with high quality of service. More formally, consider a sequence of sys-
tems of a fixed design and an increasing arrival pat8uppose that the total service capacity
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of each system in the sequence excekds a safety capacity of ordey’\. In particular,

the traffic intensity (or server efficiency) approaches A-asx (i.e. the system goes to heavy
traffic). On the other hand, the high quality aspect of the QED regime may be seen through it's
following alternative characterization: Suppose that-asxo, the limiting waiting probability

is non-trivial (ie. it is strictly betweefi and1). This high performance, which is typically im-
possible to achieve for systems in heavy traffic, is obtained here due to the economies of scale
associated with the large number of servers. The two characterizations of the QED regime
are shown to be equivalent in various settings, as first established in [30]. (See the literature
review, Section 1.1.1 for more details). In the present work we establish this equivalence for
the V-Model.

1.1 Literature Review
1.1.1 The QED regime: asymptotic theory of many-server queues.

The QED regime has been given much attention in the last few years, especialli/the *
model, which corresponds to multiple independent queues, each with its own devoted server
pool (no overlap in skills). For a formal description, consider a sequendesdrver queues,
indexed byr = 1,2, .. .. Define theoffered loadby R" = % where)" is the arrival-rate angd
the service-rate. The QED regime is achieved by choasirnd N” so thaty'N"(1 — p') —
3, asr 1 oo, for some finites. Herep” = R"/N". When customers have infinite patience
may be interpreted as the long-run servers’ utilization @rd 5 < co. Otherwisep” is the
offered load per server andoo < 3 < oo. Equivalently, the staffing level is approximately
given by

N" ~ R +0BVR, —oco<f<o0. (2)

Yet another equivalent characterization is a non-trivial limit (witflin1)) of the fraction of
delayedcustomers. The latter equivalence was established for GI/M/N [30], GI/D/N [36] and
M/M/N with exponential patience [27].

Due to the desirable features of the QED regime, it has enjoyed recently considerable atten-
tion in the literature. Yet the regime was explicitly recognized already in Erlang’s 1923 paper
(that appeared in [18]) which addresses both Erlang-B (M/M/N/N) and Erlang-C (M/M/N)
models. Later on, extensive related work took place in various telecom companies but little
has been openly documented, as in Sze [59] (who was actually motivated by AT&T call cen-
ters operating in the QED regime). A precise characterization of the asymptotic expansion of
the blocking probability, for Erlang-B in the QED regime, was given in Jagerman [35]; see
also Whitt [66], and then Massey and Wallace [46] for the analysis of finite buffers. But the
operational significance of the QED regime, in particular its balancing of “service and econ-
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omy” via a non-trivial delay probability, was first discovered and formalized by Halfin and
Whitt [30]: within the GI/M/N framework, they analyzed the scaled number of customers,
both in steady state and as a stochastic process. Recent generalizations for non-exponential
service times were made by Whitt [67, 68]. Convergence of the scaled queueing process, in
the more general GI/PH/N setting, was established By Puhalskii and Reiman in [50]. Appli-
cation of QED queues to modelling and staffing of telephone call centers and communication
networks, taking into account customers’ impatience, can be found in Garnett et al. [27] and
Fleming et al. [21], respectively. The optimality of the QED regime, under revenue maxi-
mization or constraint satisfaction, is discussed in Borst et al. [11] and in [41, 4, 5, 2]. Readers
are referred to Sections 4 and 5.1.4 of Gans et al. [22] for a survey of the QED regime, both
practically and academically.

Itis important to note that the QED regime differs in significant ways from the conventional (or
“classical”) heavy traffic regime. Indeed, QED combines light and heavy traffic characteris-
tics. For example, in conventional heavy traffic, the theory of which has been well established
(see for example Chen & Yao [16]), essentially all customers are delayed prior to service. In
the QED regime, on the other hand, a non-trivial fraction is served immediately upon arrival.
Also, conventional heavy traffic can be achieved by setiiig~ R™ + 3, for some constant

5, rather than the square-root form in (1).

To conclude this part we would like to use the characterization through the probability of delay
to partition the spectrum of operational regimes. We identify three operational regimes:

o Efficiency Driven (ED): Almost all the customers waitP{Wait > 0} ~ 1.

e Quality and Efficiency Driven (QED): a non trivial fraction of the customers wait
-P{Wait >0} ~a, 0 < a < 1.

e Quality Driven: Only a negligible portion of the customers waiP{Wait > 0} ~ 0.

In the rest of the paper, we will focus mainly on &D andED regimes. For more details
on the different operational regimes readers are referred to [22].

1.1.2 Skill-based Routing

Of the three issues related to the management of large-scale service system, the control prob-
lem has received the most attention in the literature. Specifically, for a given design, and
staffing levels, researchers have proposed routing and / or scheduling schemes that are either
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optimal or near-optimal. Alternatively, researchers have considered commonly used rout-
ing schemes (such as fixed priority rules, or dedicated servers per customer class) and com-
puted the relevant performance measures. Examples for both criteria inElxale:analysis

(Kella and Yechiali [39], Federgruen and Groenvelt [20], Schaack and Larson [55], Brandt
and Brandt [14], Gans and Zhou [25], Armony and Bambos [3], Rykov [53], Luh and Viniotis
[40], and de \éricourt and Zhou [17]Asymptotic analysis - “conventional” heavy traffic
(Harrison [31], Bell and Williams [9], Glazebrook andidi-Mora [28], Teh and Ward [71]

and Mandelbaum and Stolyar [44]) aAdymptotic analysis - QED regime(Armony and
Maglaras [4, 5], Harrison and Zeevi [32], and Atar et al. [6, 7]).

1.1.3 Staffing Rules

The staffing problem in the single-class, single-type case has also gained a lot of attention in
the literature. However, things are quite different in the case of multiple types of servers, as
is the case dealt with in [2]. The problem of determining how many servers of each type are
required is very difficult. This is especially true if skills overlap. In the latter case, one wishes
to take advantage of the flexibility of the servers who have multiple skills, but these servers
are typically more costly. The most common approaches taken by researchers to tackle the
staffing problem are:

e a) Heuristical bounds: Using heuristics to achieve performance bounds by analyzing
simpler (but related) systems (Examples include Borst and Seri [12], Whitt [65], and
Jennings et al. [37]),

e b) Stability Staffing: Staffing levels that guarantee system stability (Examples include
Bambos and Walrand [8], Gans and van Ryzin [23], Armony and Bambos [3]), and

e c) Cost minimizing staffing: For a given routing scheme, find the staffing level that
minimizes personnel costs while guaranteeing certain performance bounds, or alterna-
tively, such staffing levels that minimize personnel costs plus operating costs. (Exam-
ples include Borst et al. [11], Perry and Nilsson [48], Stanford and Grassmann [54] and
Shumsky [56]).

The common thread among these approaches is that they all focus on the QED regime, which
corresponds to the so-called square-root staffing rule (due to the form of the staffing rule
N =~ R + VR of equation (1)). Although these approaches arrive at the QED regime from
different points of view, they seem to produce similar results (at least for the single-class,
single-skill case). We next expand on some of the different approaches.
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Heuristic bounds: The approach of achieving staffing through heuristic bounds is based on
reducing the original system to a simpler system for which performance measures can be
easily obtained. The simpler system can then offer staffing levels for the original system, with
guaranteed upper or lower bound on performance. Two directions have been taken by different
researchers.

Borst and Seri [12] determine bounds for the number of agents required to offer a given level
of service by considering two systems: one in which servers are dedicated to a single customer
class (‘7*” design), and the other is a “V” design, in which all servers can serve all customers.
For the former they apply the well known formulae of the performance of an M/M/N system

to identify an upper bound on the number of agents needed. For the “V” design they use
results concerning the achievable performance of multi-server systems. This produces a lower
bound, due to the maximum flexibility that applies in this system. Today, more is known,
both about the staffing in the “I” design (the square-root staffing rule, for example), and about
the achievable region (Glazebrook andibliMora [28] provide performance bounds for the
system with “V” design and different service requirements for different customer classes).
Therefore, one may be able to a) obtain tighter staffing bounds, and b) apply this approach to
more general designs.

The second approach taken by researchers (see, for example, Whitt [65] and Jennings et al.
[37]) is achieving performance bounds by considering an infinite server system. In a single
class infinite server system{/G/oc), the number of busy servers found by an arriving cus-
tomer has a Poisson distribution with me&n= ﬁ and the heuristic assumes that in large
finite-server systems, this numbenisarly Poisson if delays are not prevalent. In turn, a Pois-

son random variable with meaR is approximately a normally distributed random variable

with meanR and standard deviatiof R. Then, given a target waiting probability ef one

chooses the number of served§, to be N = R + 5v/R such that
a=1—-9(9).
This is justified by

P{Wait > 0} = P{Number of busy servers N}
~ P{R+ZVR> R+ (VR} =1—-0(p).

HereZ denotes a standard normal random variable, and the PASTA property ensures the first
equality. This heuristically justifies the applicability of the square-root safety-staffing rule,
and for small values aP{Wait > 0}, the heuristic’'s recommendation essentially matches that

of QED regime. In order to apply this approach in the multi-type case, one could perhaps use
performance measures of an infinite server, multiclass queueing system with a given design.
One example in which such performance measures have been computed is Alanyali and Hajek
[11].
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Stability staffing: If one is to apply the square-root staffing principle to complex multi-skill
settings, a natural question arises: how to define the offered load, beyond which one needs
to add a safety staffing. If the service rate of a clasgstomer is independent of the type of
server (that is, ifu;; = p,; for all j), then the offered load is easily calculated according to
R=73", ,AT However, ify;; is different for different;’s, then the offered load will generally
depend on the fraction of classustomers who are served by each server fypa fact, in

this case, the offered load should be thought of as a vector of offered loads, whose entries are
the offered loads on each server pool. Armony and Bambos [3] propose a definition for the
vector of offered loads that is independent of the routing rule, and is based on a solution of an
optimization problem. Specifically, [3] sets up a mixed integer program (MIP) whose solution
specifies the number of servers required of each skill, in order to minimize personnel costs,
while ensuring that system stable(hence the name stability staffing). The solution of this
MIP (which for large systems may be approximated by a solution to a linear program) can be
treated as the vector of offered loads for staffing purposes.

Cost minimizing staffing: This approach takes the point of view of minimizing staffing costs

with respect to various constraints such as class-dependant bounds on the mean waiting times,
and on the probability of waiting more than pre-specified time. Alternatively, it seeks to
minimize total cost which is a sum of the staffing costs and the costs associated with waiting.
Both these points of view were taken in Borst et al. [11] for the staffing of a single class
call center. The authors in [11] formalized the optimality of the square-root staffing principle.
They verified the robustness and accuracy of this forivais R + 5v/R, and showed how

the actual value off depends on the particular model and performance criteria used.

For the M/M/N model, [11] shows that the square-root principle is essentially asymptotically
optimal, for large heavily-loaded call centers { oo, N T oo). There is an ample evidence,
however, that the principle is applicable much more broadly [27, 37, 50, 12, 4, 5, 2]. Given
the applicability of the square-root safety-staffing rule in many different settings, it is natural
to examine its applicability in the presence of multiple customer class and / or server types.
Note, however, that even in the single class case, there are situations in which the QED regime
is not optimal. For example, Jelenkovic et al. [36] show that for the G/D/N queue, if the
inter-arrival time distribution is heavy tailed, then the appropriate safety-staffing is of larger
order than square-root of the offered load. Having said that, we note that as long as the arrival
process is Poisson, or other renewal processes with light-tail inter-arrival time distribution, the
QED regime appears to be very robust.

Given the complexity of general large-scale service systems, it is difficult to assess the appli-
cability of the square-root safety-staffing rule to these systems. An approach that may lead
to simple staffing rules is that of looking sitmplerouting schemes (that may optimize other

performance criteria - other than cost minimization). This approach has already lead to a sim-
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ple staffing rule in a particular multi-class setting (see [4] and [5]); indeed, conjecture that it
will be widely applicable in more general settings. In fact, we find it to be very useful for the
model studied in this paper.

The approaches described above are all quite promising; at the same time they each have their
own subtleties and challenges. The staffing rules obtained using these different approaches
may turn out to be quite different; nevertheless, they all enjoy the potential of producing inter-
esting and useful results. In this work, we take the third approach of minimizing staffing costs
while maintaining performance levels within pre-specified bounds. Moreover, we manage to
solve both routing and staffing problems simultaneously, a task which is commonly beyond
reach. An example in Harrison and Zeevi [33], in which the authors suggest an algorithm for
determining optimal routing and staffing levels when the target is to minimize overall aban-
donment costs in a general multi-class multi-type setting.

1.1.4 Design

On the design front, even less has been done. Ganz and Zhou [24] develop a dynamic pro-
gramming (DP) model of long term server hiring that admits a general class of controls. There,
the lower level routing problem is explicitly modelled as the core of the DP’s one-period cost
function, and the optimal hiring policies are characterized as analogues to “order-up-to” poli-
cies in the inventory literature. Other studies we are aware of focus on design for flexibility
that results from the cross-training of service reps. Such is the paper by Wallace and Whitt
[62] which shows how performance is improved with the increase of flexibility. In particular
[62] shows that the biggest improvement in performance is obtained when replacing a com-
pletely specialized system (with no overlapping skills) by a system with little flexibility. For
more on design for flexibility in service systems see Aksin and Karaesmen [1] and references
therein. There is also much work on design for flexibility in the context of manufacturing
systems. For an outline of the existing approaches and a survey of the literature on the subject
see Hopp and Van-Oyen [34] and the references therein.

1.1.5 The V Model

A particular case of the skills-based routing model is the so-called General V Model: several
customer types are served by one pool of servers. The importance of the General-V case is
that it isolates the scheduling problem of different types of customers between a group of
statistically identical servers. In [72] the authors considered the multi-server V-Model with
Poisson arrival streams and identically distributed exponential service time for all customer
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classesyu; = u, Vi = 1,2,...,J, whereJ is the number of classes. They considered the
optimization problem of minimizing discounted holding costs in the long run, where aiclass
customer has a holding cost@fper unit of time. Assume, without loss of generality, that the
¢;'s are ordered in descending ordey & c»... > ¢;). Then the optimal policy is a threshold
policy where the control rule is:

Upon finishing a service, a server chooses to serve actastomer if there are no customers

in all higher-priority queues and there are more thafr) idle servers where < K; < K, <

.. < K; < N, N is the number of servers and= (x1, ..., =) is the state descriptor in which

x;,1 > 1 describes the number of classustomers in queue and describes the number of
classl customers in queue plus the total number of customers in service (regardless of their
class identity). Within each queue, service follows a First-Come First-Served (FCFS) order. It
is important to note that [72] establishes structure for the optimal scheduling policy but it does
not address the problem of choosing the appropriate threshold Byets, i = 1,2, ....., J.

The dependence of the thresholds on the state of the system makes the choice of the thresholds
a very complicated task.

Note that the proposed policy is not work conserving, namely lower priority customers may be
not allowed to enter service even though some of the servers are idle. When restricted to work
conserving policies and a single server, it can be proved by simple interchange arguments
(see [63]) that they rule is optimal also when classes have different service requirements.
The cu rule is a static priority rule that assigns priorities according;to values: the higher

the value ofc;i; the higher the priority of class Herec; is the cost incurred by a priority
customer waiting one unit of time, and is the service rate of priority i customers. As for
multi-server, the authors of [20] proved that therule is optimal among allvork-conserving
policies for the multi-class///M /N queue with linear holding costs. This policy is clearly
suboptimal when allowing imposed idleness.

Under conventional heavy traffic the V Model, as well as much more complicated scenarios,
are amenable to analysis. Van Mieghem [61] analyzed the single server V Model under heavy
traffic and proved the asymptotic optimality of the so-called Generalizegr Gcu) rule:

upon completion of service, a server chooses to serve next a customer af ¢tasghich

i* = argmax C(W;(t))u; ,

where C;(t) is the (convex) cost incurred by a prioritycustomer waiting: units of time
andW;(t) is the waiting time at time of the oldest customer in quede Later, in [44], a
generalization of this policy was proved to be optimal under conventional heavy traffic for
convex holding cost functions and for a very rich family of network topologies, including the
V model.

Limits in the QED regime for the V Model were first introduced in Puhalskii and Reiman [50].
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Here, the authors considered the more general settidg/ 9 H/N. They allow each class

to a have a different Phase-Type service time distribution. convergence of the scaled queueing
process to multi-dimensional diffusion limits. In particular, they consider the limits of the V
Model under FIFO and non-preemptive priority schemes.

Armony et al. [4] and [5] were the first to consider a control problem inQE® regime. The
authors consider a call center with two classes of service: real-time and postponed service
with guaranteed delay. Callers self-select their type of service, given information on their
expected delay. The resulting system is a “V” design call center, with two customer classes,
and a single server pool. For this system, the authors in [4, 5] devise a routing algorithm which
is asymptotically optimal (in the sense that it minimizes real-time delays, while guaranteeing
the delay bound for the postponed service), and determine that the square-root safety-staffing
rule is optimal under the criteria of minimizing staffing costs, while maintaining pre-specified
performance measures (such as average waiting time, and the fraction of callers who wait
more than a certain length of time). Hence, [4, 5] are examples in which both the routing and
the staffing problems are solved jointly, and where the square-root staffing principle applies.

Another control problem of the V Model in tf@ED regime was considered in Rami et al. [6].

A Brownian Control Problem is constructed for the two class V model under exponentially
distributed service times and where both customer classes have exponential patience. For lin-
ear discounted queueing costs it is shown that under particular assumptions (such ag)

the asymptotically optimal policy leads in the QED regime to a limit that is a one-dimensional
diffusion. This gives a structural insight about the asymptotic performance of the optimal pol-
icy but it does not suggest a specific policy to obtain this performance. In our work we show
that under certain cost functions, or alternatively under certain constraints, a threshold policy
in which the thresholds are statedlependent is optimal in some asymptotic sense. To this
end, we would like to introduce th&/ /M /{ K;} model.

1.1.6 TheM/M/{K;} Model

M /M /{K;} is amulti-class multi-server system in which different customer classes are served
according to a threshold policy, where thresholds (on the number of idle servers) are constants
and state independent. This service discipline is also motivated by applications in police and
ambulance dispatching, hospital bed management, communication channel allocation, and
many other priority queueing systems in which it is desirable to retain a “strategic reserve” of
servers for higher priority customers. See Schaack and Larson [55] for further discussion of
the relevance of the model to the dispatch of police cars. Also, see Rege and Sengupta [51]
for some interesting examples of application of the model to communications.
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More formally, the model assumes that customers from clgdss= 1, ..., J) arrive into an
N-Server queueing system according to a homogeneous Poisson process, with arrhal rate
customers per unit time. All Poisson streams are independent. Service time is assumed to
be exponential with meai/x, independent of the priority of the customer or the identity

of the server. The service discipline is assumed to be non-preemptive. The threshold based
scheduling rule is then as follows:

Assign an idle server to a prioritycustomer only if there are more théf) idle servers and all

higher priority queues are empty £ K; < K, < ... < K). Customers that upon arrival can

not be served immediately are backlogged in a queue dedicated to their priority class. Each
gueue is depleted in a FCFS manner.

Our notation of the model is based on the notatlépiV//{ V; }, used in [55], where it denotes
a Marokovian (Poisson) input, exponential service times, and a set of seteéis{ V;}. In
our notationk’; denotes théeastnumber ofidle servers needed before accepting a priarity
customer to service whereas, in the notation used in [B5flenotes the maximum number of
busy servers beyond which prioritycustomers are not accepted to service. Ths+ N; =
N,i=1,..,J.

An exact analysis of the model, including the probability of delay for each priority type as well
as the Laplace transforms for their waiting times, was performed in [55], using &r/1
reduction, i.e. utilizing the fact that, given wait, the queue of classtomers behaves like an

M /G /1 queue where the Laplace transform(étan be obtained by a sequence of recursive
equations. The recursive equations obtained in [55] translate into quite complicated expression
even for the two class case. LB} be the steady state probability that n servers are busy

(0 < n < N). Also let K be the threshold level for the low priority customers (that is, low
priority customers will enter service only if there are more than K idle servers). Finally, let
M = N — K. The stability conditions of the system, as given in [55], are:

A1
1 2
N < (2
and
)\th(M) < ].7 (3)
where
N—-M k—1 N—M
1 A1 A1
hi(M) = —— + = ~+ , - . (4)
Mp kzg PRI (M +5) (N = A) pN-M T[NV - 1)

Under these conditions and the PASTA property we have by [55] that the probability of delay
for high priority customers is:

(5)

)\1+)\2)M )\1N 1 1 1

Py = P - . )
N 0 < 2 7 N! I—L 1—)\2h1(]\4)7

Nup
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where

[y S ) ) hn

= n=

<A1+/\2> <>\1>N 11 1 ]
9 T AT A _
2 ) N'l—ﬁl )\th(M)

Define P, to be delay probability for low priority customers. Then, by PAST,, is
equal to the probability that/ or more servers are busy, i.e.

Pus—p (3 (A) (M) L L e\ oL !
My =20 20\ T p ) nl1— Aghy(M) 2 p)o NI = go 1= Jeh(M

n=M

(6)

We denote byiV;, i = 1,2, the waiting time of classcustomers. Then,

F 1
Bl = o i T e ) (7)
where
Al/ﬂN—M ONu N-M-1 Al/uk i 2
h= —————h (M + k)" + h (M (8)
Hj‘vz_oM_l(M—i_j) (Nu—)\l)B ; Hf;é(M‘f‘j) 1( ) 1( )

In this work we will show how these complicated expressions translate asymptotically into
simpler forms. In the following section we summarize our results and illustrate some of them
through a simple example of a two-class V Model.

2 Summary of our Results

The asymptotically optimal routing policy we propose is a threshold type priority policy. Ac-
cording to the proposed policy a classustomer is admitted to service only if there are more
thank; servers idle. The asymptotic optimality is in terms of the steady state holding costs and
delay constraints. The proposed policy allows one to differentiate between the probabilities
of delay for the different customers in a quite delicate manner. This is achieved by choosing
the appropriate sizes of the thresholds, which asymptotically turns out to be a rather simple
function of the problem parameters.

Moreover, we propose an asymptotically optimal staffing level that goes with the proposed
policy and gives rise to the QED regime. We show that for reasonable constraints on the prob-
ability of delay, this staffing level is determined easily as a function of the overall load on the

)

system and the parameters of the lowest priority class. We deduce that for an unconstrained,

20



linear holding costs problem, thg rule is asymptotically optimal among all non-anticipating
policies: work conserving and non-work conserving.

We extend part of the results in Garnett et. al. [27] to the case of non-preemptive priorities
with thresholds where we allow the different classes to have different patience parameters.
Moreover, we show that under certain setting the threshold policy is optimal when one wishes
to minimize abandonment costs.

2.1 An lllustrative Example

Al AZ
1 2

Figure 2: An Example of a V Model

To clarify our results, let us consider a particular case of the V Model where there are two
customer classes: high priority and low priority (see Figure 2.1). The two classes are denoted
by 1 and 2 respectively. This model, despite its relative simplicity, already provides some
interesting insights.

The model specifics are as follows: Both classes have a common exponentially distributed
service time with rate:;. The arrival process for priorities 1 and 2 are Poisson with arrival
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rates\; and\, respectively and we denote bythe total arrival rate (i.eA = A\; + X\3). The

only restriction we impose on the arrival rates is thats comparable td, i.e. as) increases

to infinity we assume that, /A — a, wherea, > 0. The reason will become clearer in the
following sections. For the meanwhile we just point out that, as long &scomparable to,,

the high priority customers will experience light traffic regardless of whether comparable

to A or not. Assume thav/, the total number of servers, is determined by the square root safety
staffing rule mentioned previousiW(= R+ 3v/ R with R = %), and therefore the system
operates in the QED regime. We will show later that the QED regime is a direct outcome of
the optimization problem, similarly to [11]. That is, the QED regime is an outcome rather than
an assumption.

Once the staffing level has been determined there is still one degree of freedom in the model
parameters - the choice &f,, the threshold level on the number of idle servers before serving
class 2 customers.

We will show how one can carefully adjust the threshold level to obtain different delay proba-
bilities for both classes.

Despite the fact that this model assumes non-preemption, one expects an asymptotic equiv-
alence of preemptive and non-preemptive strategies, as suggested in [6]. This enables the
following insight: while the low priority customers could experience different service lev-
els under the three different regimes, depending on the magnitude of the threshold, the high
priority customers will, regardless of the threshold chosen, experience a Quality Driven ser-
vice level. This becomes clear by noting that, under the preemptive policy, the high priority
customers do not “see” the low priority customers and therefore experience a system with
substantially more staffing than needed to accommodate their workload.

2.1.1 Steady State Analysis

The formulae obtained by the recursive equations in [55] are very complicated even for the
two-class case. We will show in the following sections that asymptotic analysis does not
require the explicit use of these formulae.

For the asymptotic analysis we consider a sequenck/ 0f//{ K;} system, indexed by a
superscript that denotes the!” system. For exampleZ[1/]] stands for the average waiting
time of high priority customers in the” system. For the meanwhile let us assume that our
system is staffed according to tBguare-Root Staffingile, i.e. \” and N" scale in a manner
thatv/N7(1 — p") — 3, 0 < 8 < o0, asr — oo.
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As a preliminary observation, note that if all customers are served FIFO (with no differentia-
tion between both classes) the asymptotic probability of delay as given in [30] is

6<I>(6)} -
o(B) | 7

in which ®(-) and¢(-) are the normal distribution and density function respectively.

a(d) = {1 ; (9)

Having this observation we can now describe what happens as we create service level differ-
entiation between the two classes, usingthg\//{ K;} model.

Table 1 is based on Section 4.2 and it summarizes the relations between the threshold level
and the service level, as experienced asymptotically by both customer classeg)| Id&reds

for the load generated by the high priority class, pp= ]\?1#

For two sequencegu, }>° ,, {b,}°

n=1"1

we say that, is ©(b,) if lim,, ., = — a, wherea is

n

a finite constant; When = 1 we say that,, ~ b,. Also, b, ¢ andd, are constant that do not
scale withr.

| ¢ | Thresholdis |~ P{wy >0} |~ P{wy >0} | EWIW] > 0] | E[W5|Wy > 0] |
A 0 0<alp)<1 0<alp) <1 O(+) @@%)
B b a(f) - o} a(B) o(x) O(7%)
C| c-lnN a(B) - pi" N a(f) O(x) O(7%)
D| d-VN |6(@B-ds¥™) | oB-d O (%) O(H)

Table 1: A Two-Class V Model: Service Levels for Both Classes

The in Table 1 is obtained via the Halfin Whitt limit fQ¥ servers and arrival rates equal to
N — 3V/'N. For stability reasons (see Section 4.2.1 we assumelthaf. In case D we have
that the probability of delay of the high priority is such that

P{WT > 0}
(B — d)(py) VN

—nl<n<e”

Remarks on the probability of delay and the waiting time distribution:

1. Case Ain Table 1 is simply a two class static priority system. In this system the proba-
bility of delay for both customer classes should be the same (equaltand asymp-
totically given bya(5) from (9).

2. In all casesP{W, > 0} is equal to the probability of the event “more than or exactly
N — K servers busy”. This probability is clearly smaller than the probability of the same
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event in a single class system with the same overall arrival rat&/and” servers. Also,

it is higher than the probability of findingy servers busy in a single class system with
the same overall arrival rate ard servers. This procedure results in tight bounds for
P{W, > 0} and in turn it implies that’{W] > 0} — «(f3). Actually, the same
reasoning works for any threshold thais,/N), but it does not work for Case D. In
Proposition 4.2.1 we give the result for the general threshold case.

3. Note that in all cases, A-C, the probability of delay for the high priority is of the form
a(d) - (p})%", wheres equalss for cases A-C ang@; for case D. Hence, the probability
of delay for high priority is always proportional g to the power of the threshold. The
result for the general case is given in Proposition 4.2.2.

4. In all cases, A-D, we can prove thatN" 177 converges to a mixture of an exponential
random variable and a point mass at the origin (see corollary 4.2.4. Proposition 4.2.3
gives asymptotic Laplace transforms and average waiting times for the high priorities.

Note that Table 1 does not cover the case where the threshold is proportidnalte reason
is the instability of the system when the threshold is proportion& tdVe give a simple set
of necessary and sufficient conditions for stability in Section 4.2.1.

2.1.2 Static Priorities

In this section we briefly consider the case of non-preemptive static priorities, which is a
particular case of thé/ /M /{ K;} model where all(;’s are taken to be zero (see Case A in
Table 1). Due to its relative simplicity, the static priority setting is very useful for developing
intuition that would apply later for the more genefd)/M /{ K;} model.

The performance of the non-preemptive static priorities case was analyzed in Kella and Yechiali [39].
The average waiting times for this model are given by:

EWy] =#[Nu(l—p)]™!,  E[Ws] =7[Nu(l—p)(1—p1)] "

where
OYORE NZ A/u PRCYION
N'l— — N!(l—p) ’

and)\ = A +)\2,p1 = )\1/N,u, P2 = )\Q/N,u andp: p1 + pa2.

Based on ard//G/1 reduction, [39] gives moments and Laplace transform$iforl” > 0 of
the different classes in the static priority V-Model. These expressions will be used later on to
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determine the limiting expressionsdf|1/" > 0 in the threshold system. As explained above,
the probability of delay for both customer classes is the same (egigl)tand asymptotically
given by formula (9) for(53).

Preemptive Vs. Non-Preemptive
In Atar et al. [6], the authors suggested the asymptotic equivalence of preemptive and non-

preemptive policies for the V-Model. Again, through this simple setting the equivalence
(mainly for the low priorities) can be illustrated in quite a convincing manner.

The following conclusions can be drawn:

1. Probability of Delay

The probability of delay for low priority will remain the same under preemptive and
non-preemptive regimes disciplines (since the Birth and Death process representing the
total number in system is the same for both disciplines). Consider again a sequence of
systems indexed by such that\" — oo and both classes are comparable. Choose the
staffing level in a manner that N7 (1 — p") — 3, 0 < § < oo, wherep” = X" /(N"p).

Under the preemptive discipline, the delay probability for the high priority is given
by the Erlang-C Formula for an//M /N system with arrival rate equal ty, and it

converges to zero at rate
o (GNTm (Nrpl)NT)
NT'(l — pl) .

wherep; = lim, ., NA—IM For two positive sequencds,, }, and{b,}, we say that,,

is O(b,) if for some constant > 0, limsupa,/b, < c. This convergence can be
established by simple manipulations using the approximations for Poisson tails given
in [29].

2. Queue Lengths
The sum processes (i.e. the total number of customers in system) for both preemptive
and non-preemptive disciplines are equal in law to the respective singlel¢la&s' N
system with arrival rate; + 5. Therefore, by [30] we have that

1
——(Qy + Q1) =
=@+en =@
where@Q’ denotes the steady state number of typestomers in the'" queue and)
is a proper random variable. For both the preemptive and the non-preemptive cases we

claim that, .
——Q =0
NITad
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and therefore .
- T:>
T e

which means that in the limit the low priority queue is equal in law for both preemptive
and non-preemptive regimes.

To support the claim tha\t/—JlW(Qq) = 0, note that given wait the high priority queue
behaves like an under-loadéd/M /1 queue. So, even in the worst case scenario (when
the delay probability equals 1) we have thigt),| = E[Q1|Q:1 > 0] = O(1). Thisis

true for both preemptive and non-preemptive regimes and therefore high priority will
disappear from queue under the normalization above.

. Average Waiting Time

Low Priority: The order of the average waiting time of the low priority in the non-
preemptive case is given in Table 1. For the preemptive case we can calculate explicitly
the waiting time of the law priority which is given by

Bl = 5 [0+ X2) BIW] = A B[]
Here, W, andW, remain as before and’ is the waiting time in a single clasd /M /N
system withA = \; + \,. But there is no need for explicit calculations. We have
claimed above that the asymptotic queue length of low priority is the same for both the
preemptive and non-preemptive regimes. Based on this formula it can be shown that the
average waiting time of the low priority class is the same under the preemptive and the
non-preemptive regimes..

High Priority: As shown in Table 1, the waiting time of the high priority customers
under the non-preemptive regimedg1/N"). Under the preemptive regime it will no
longer bed(1/N") but instead it will behave like

o (<IN 1
N”(l — pl) N* ’

The latter is a direct consequence of the rate of convergence of the delay probability.

To summarize, we have illustrated by a simple two-class example the asymptotic equivalence
of preemptive and non-preemptive regimes. While the waiting time of high priority will im-
prove significantly under the preemptive regime, the waiting time of the low priority will
hardly suffer any deterioration, in particular their waiting time is asymptotically the same
under the preemptive and non-preemptive regimes.
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The discussion in this example was limited to questions of performance analysis\éf ffi¢{ K, }
model. In this work, we show that the/ /M /{ K;} model is of great relevance. In particu-

lar we solve concurrently the questions of staffing and control of the V Model and show that
using M /M /{K;} is asymptotically optimal. We now turn to a formal presentation of the
M /M /{K;} model.

2.2 Thesis Outline

We formally introduce thel//M/{K;} Model in Section 3. Section 4 contains complete
transient and steady state analysis ofAtig)/ /{ K;} model in the QED regime. In particular

we show that the diffusion limit of the overall number of customers in system, when properly
scaled and normalized, converges to a diffusion limit with a piecewise linear drift. The result
is obtained through a collapse of the multi-dimensional state-space into a single dimension -
the overall number of customers in system.

In the context of steady state analysis we give, in Subsection 4.2, a set of necessary and
sufficient conditions for stability and present asymptotic steady state performance measures
for the probability of delay and waiting time distributions for all customer classes.

Section 5 contains adaptation of the result of Section 4 to the case of Efficiency Driven
M/M/{K;}.

We conclude the first part of the thesis in Section 6 with the solution to both optimization
problems (10) and (11). We show that th&/M/{ K;} is the asymptotically optimal policy
for both the constraint satisfaction and the cost minimization problems.

In Section 7 we present some extensions to the V-Model. The main extension presented is the
introduction of abandonments into the V-Model. In particular, we assume that customers of
classi have exponential patience with rate We give complete analysis, transient and steady
state, for theM/ /M /{K;} model in the new setting. Also we prove, that under certain cost
structures thé//M/{ K;} policy minimizes the overall abandonment cost. We conclude this
section with a brief presentation of ongoing research abouwtivodel.

We now proceed to the formulation of the V-Model under i)/ /{ K;} policy.
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Figure 3: The V Model

3 Model Formulation

Consider the system described in Figure 3 witbhustomer classes and a single server type.
Customers of classarrive according to a Poisson process with rgtendependently of other
classes. Service times are assumed to be exponential with fateall customer classes.
Classi delayed customers wait in an infinite buffer queue

We wish to minimize the staffing cost while maintaining a target service level constraint. The
service level performance measure that we study is the steady state probability thatia class
customer waits before starting service. Denote this steady state probabilyy > 0}

for classi, and leta; be its target delay probability. Assume that the classes are ordered in an
increasing order ofy;: a; < ap < ... < ay, namely clasg are the highest priority and class

J are the lowest priority.

Let IT be the set of all non-preemptive non-anticipative scheduling policies. Given a policy
€ 11, let P.{W,; > 0} be the steady state probability that a customer from clasdelayed
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before his service starts. The staffing problem is then stated as follows:
minimize N
subjectto P,(W; >0) < a;, 0 <oy <1, i=1,...J, forsomer € II; (20)
NeZ,

As the arrival rate to the system increases, we will also atlpwi = 1, ..., J — 1, to converge
to zero in a certain manner.

Another problem formulation is to assume linear waiting costs for all classes, i.e. a unit
waiting time of a class customer incurs a cost of. Now, assume that classes are ordered in
decreasing order of their cost, i.e. > ¢ > ... > c¢y; again,l1 is the highest priority and

is the lowest. Then, we will show that the same type of policy that asymptotically minimizes
(10) is also the solution to the following problem:

minimize Y7 e N E[W] + N
subjectto P,(W; >0) <«;, i=1,..,J, forsomer € II; (112)
NezZ,

Under the second formulation we allow the's to be equal to 1. If alh;’s are equal to 1

(11) becomes a pure cost minimization problem. We will also consider the case where the
coefficientse;, @ = 1,...,J, are allowed to scale with the overall arrival ratg,in certain
manners.

Notation:

For theM /M /{ K;} model, we denote by (¢) the number of busy servers at time t, and by
Q:(t) the number of class customers in queue at tinte Then, theJ dimensional vector
{Z(t) + Q1(t),Q:(t) : i = 2,..., J} gives a Markovian description of the system. The proba-
bility of delay for classi can be stated in terms of the system state. In particular, due to the
PASTA property, if the model's parameters are such that steady state exists then

PAW, > 0} = P{Z(t) > N — K} (12)

In addition, though not essential for the description of the system, we would like to define
Z;(t) to be the number of busy servers above the levéV of K;_;., servers, or equivalently
Zl(t) = [Z(t) - N - K]*i+l]+1 Where

Z(t) = N = Ky_ia]" = ((Z(t) = (N = K;_i11)) V 0).

The rest of the thesis is organized as follows: In the following section we will analyze limits
(Diffusion and Steady State) for thef /M /{ K;} model in the QED regime. In Section 5, we
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will make a short excursion through Efficiency Driven analysis of¥thé\/ /{ K;} model. We
will conclude in Section 6 by showing (relying mainly on [11]), how different cost structures
or constraints give rise asymptotically to either the Efficiency Driven or QED regimes.

4 QED Asymptotic Framework

As mentioned before, we have (by [72]) that the optimal policy, when trying to minimize
waiting costs, is to use a threshold policy. The optimal thresholds are state dependent which
makes the use of th&/ /M /{ K;} policy suboptimal for fixed number of serveks Moreover,

even if theM /M /{K;} policy was optimal we would still have to determine the staffing
level and the optimal thresholds. We could have made use of the work done in [55] to solve
the optimization problem (10) by direct enumeration for systems of reasonably small size.
However, as shown for the two class case this is very complicated, time consuming and is
not likely to provide any further useful insights. Instead, we take an asymptotic approach
which finds asymptotically optimal staffing rules for systems with high demand. To this end,
we consider a sequence of systems indexed by 1,2, ... (to appear as a superscript) with
increasing demand value$ — oo asr — oo and a fixed service rate. All other quantities

that are associated with thé& system will be denoted with a superscriptWe assume that

the arrival rate of the lowest priority is comparable\tdor eachr. More formally, we assume

that there are¢/ numberszy, > 0, k£ =1, ..., J, with Z,le a, = 1, such that the arrival rate of
each class behaves according to the following rule

lim —F=a, k=1,..,J; a;>0,a0;2>0,i=1,...,J -1 (13)

We consider a sequence bf /M /{K;} systems indexed by. Ther!" system is staffed with
NT" servers and the customers are routed accordingtoesholds given by] < Kj < ... <

K7, 2 Kr, whereK] = 0; i.e. an arriving class customer will enter service immediately
upon arrival only if there are more thdx idle servers. Upon a service completion, if there
arek idle servers, admit into service the first customer from classhere:* = min,{ K7 <

k, i" queue is not empty

The appropriate staffing level will be determined according to the solution of the optimization
problems (10) and (11) given in Section 6. For the time being we assume that the number of
servers grows with in the following manner:

lim VN"(1 —pp) =0,0< [ < o0 (14)
where
S (15)
SO O
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For simplicity of presentation of the resulfée restrict our performance analysis to K" =
o(N"). All the results that follow hold also in the case wheté # o(N") (unless stated
otherwise) with the heavy traffic condition (14) replaced by

lim VN" = K"(1—pp)=0,0< <0

T—00

and with the normalizing factor being N — K" instead ofy N”. For example X" (¢) in
: : , Y(t) — (N"— K")
Section will be defined as .

/Nr _ Kr

Remarks:
e Since we restrict ourselves toK” = o(N"), (14) implies thaty” 2 A"/(N"p) con-
verges to 1 as — oo, and the system is ineavy traffic

e Looking at the "super-class” composed from classdsough.J — 1, (13) implies that

J—-1
r A 1= )\’7;
D R (16)

By (14), this also means thé% — 0. Equivalently we can say that under the

M/M/{K;} policy with the staffing implied by (14), all classes, except for cldssan
experience light traffic, oQuality Drivenservice.

e Note that (14) is typically different from the heavy traffic condition of [30], which is
given by
lim VN (1—p")=0,0< (3 < 0. 17)

r—00

Still, 8 = B’ wheneverK”™ = o(v/ N7).
Let A%(t) : j = 1,..,J be the total number of arrivals into clagsup to time t (i.e. a
Poissonf;) process). Due to FLLN and FCLT we have

1 A
A1) = At (18)

A : PV
where)\; = lim, .o +%,j =1,...,J, and

1 r r \
W(Aj(t) — Nit) = BM(0, );). (19)
Also, define
J
Y'(t) = Z7(t) + Y Qj(t) (20)

i=1

to be the total number of customers in t& system at time.
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4.1 Diffusion Limits for the M /M /{K;} model

Forr =1,2,.... define the centered and scaled process

Y™(t) — (N"— K")

X"(t) = 21
(v N 21

Theorem 4.1.1 Assume (13), (14) and thaf”(0) = X (0). Then
X'=X (22)

whereX is a diffusion process with infinitesimal drift given by

_ ) B x>0
m(@) = { —(B4z)p <0 (@3)

and state independent infinitesimal variance= 2.

Remarks:

e o is the load on the system assuming oy — K" servers. Note thalV™ — K" is
the capacity available for all customers disregarding the priority they have. Of course,
when K" is o(v/ N") this centering is asymptotically equivalent to centering aralifid

e WheneverK” = o(v/N7) we will have that3 = 3’ (where’ was defined in equation
(17). Hence a sequence of threshold systems suchstkats’, converges weakly to
the same limit as a sequence/df/M /N queues with3’. We will address this ques-
tion in detail when dealing with queues and waiting of the different priorities, but we
can already conclude that the overall number in system is asymptotically indifferent to
reservation of servers for high priorities, as long as the reservatigr/ia7).

Proof: For simplicity we will prove the proposition for a system with= 2. The proof is
similar for arbitrary number of classes as will be explained at the end of the proof.

The proof consists of two steps: In the first step we introduce another system (denoted by (B))
which is equivalent in law to out//M /{ K;} system (denoted by (A)). In the second step we
will use a coupling argument and the convergence together theorem (Theorem 11.4.7 in [64])
to conclude the proof.

Definition of system B
Split the server pool into two distinct pools: one witi — K" servers and the other withi”
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servers. Throughout the proof we will denote these two poolShg N — K Pool” and the
"The K pool” respectively.

Use the following routing policy: as long as the total number in system is b&lewK route
all customers to théV — K pool. When the system is aboyé — K (i.e. there are more than
N — K servers busy) route any arriving high priority customer tofghpool. If there are any
customers in service in th€ pool upon a service completion in thé— K pool preempt one
of these customers and assign to him/her the server that was just releasedy in-thepool.

Since we have a commanfor all priority classes, systems (A) and (B) can be constructed

so that the total number in system process will have the same sample paths and the same
probability law. Thus, proving the convergence of (B) will result in the desired convergence
for (A).

Let us further introduce System C which is an/M/m queue with the same arrival and
service rates as System B and with= N — K servers.

Denote byY};(t) the total number in system process for system (B) and’hf¢) the total
number in system for system C. Also, denotejy(t) the number of busy servers from the
K pool in system B. As before define

o YE() — (V= K7)

xp(0) = O (24)
e Ya(t) - (V7 - K7
Xe(t) ==~ Vi (25)

By our assumption thdim, ... VN"(1 — p;.) = 4,0 < 8 < oo we have from [30] that
X6 = X.

Coupling:

We will now couple system (B) with (C). We will show that these two systems can be cou-
pled so that the distance (in tBap norm) between them is bounded by an expression that
converges to zero as— oo. Having that, the result will follow by the convergence together
theorem. In the following paragraphs we fix> 0 and eliminate the superscript from the
notation.

Then, we create the coupled sample paths in the following manner:

We use the same sample path of arrivals for both systems. For simplicity let us assume that
both systems are initiated with — K servers busy and an arrival of a customer. As long as
Yr(t) > N — K andY(t) > N — K we can create the departures for system C as well as for
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the N — K pool of system B from a common Poisson process with fate- K')u. System

B will have also departures from thé pool generated by a different Poisson process. During
the time that both system are abaVe- K the difference between them can be at most as the
number of departures due to service completions (and not preemption) frakhpbel.

Now, assume that system goes belowV — K. We will continue to generate the departures
for systemC' and for theN — K pool from the same Poisson process but with a thinning (as
in [67]). i.e. If systemB is at level;j at a departure epoch and systéfis in level/, then

the candidate departure event generated from the Poisson process with isatn actual
departure for syster® with probability j /I (recall that; < [).

During the epoch in which syste is below N — K the distance between the two systems
in consideration can only decrease. If the two systems meet they will proceed together until
they hit N — K for the first time.

Denote byD (t) the departures from th& pool up to timet. Then, we can write (see for
example [43])

T
Di(t) =N ( / Z%(t);mlt) (26)
0
Where N is a unit Poisson process.
By the construction of the sample paths we have that fdf'alf 0 the distance between the

two systems can be bounded by the number of departures frolt gheol up to that time.
More formally, for ther’h system we have

T
sup [¥3(0) = Vel < A ( [ Zg ot @
0<t<T 0
or,
| XE(t) — XL < ! /\/( TZ’" (t dt) (28)
OZ?£T| 5(t) a _ﬁ /0 K (E)p
Proving
1 r_
\/WN ( /0 ZKT(t)udt> =0, (29)

and applying the convergence together theorem leads to the desired result.

To establish (29) it is enough to show that for each’. (¢) + Q1 (¢) can be path wise bounded
by anM /M /1 queue with arrival rate”™ = A} and with service ratéN” — K")u. This is
shown in the following way:
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Assume we initiate both systems by zero. Every jump ufin(t) + Qj(t) is necessarily a
jump up in the associatetd /M /1. The opposite is not correct since if more thi€h servers
are idle an arrival of high priority will not result in an increaseip. (t) + Q' (t). Assume that
at timet > 0 both systems are not empty (in particular assumefjét) + Q' (t) = j > 0,

i.e. the time until the next departure is exponential with (&é — K" + j)u. Then, as before,
we will use thinning - every service completion #j;.(t) + Q7 (t) will result in a service
completion in thel/ /M /1 with probability N]),’:;ff;j. Thus we have proved that for al> 0,

Zr+(t) + Q' (t) can be path wise bounded by the associdted//1.

By (13) this M/M/1 is under-loaded and by Theorems 4.1 and 4.2 of [43] its scaled version
converges to zero. Since the poisson proge: stT A (t)udt) admits the decomposition
(see for example [50])

N ( /O ) Mdt) _ /0 " g (Opdt 1 () (30)

whereM" is a martingale with quadratic variation function that is boundedy, we have

the desired result. Thus, we have established the convergence (22). To prove the result for an
arbitrary number of classes it is enough to note that in the generalZgage) + 27, Q1 (t)

can also be bounded by an under-loadéd\//1 queue and hence the proof follows.

Corollary 4.1.2 Let X(-) be the diffusion process described in (4.1.1). Then the steady-state
distribution of X has a densityf (-) which satisfies:

exp{—pBz}a(B) x>0
f(x) = (31)

(1 —a(B) =<0

whereP{X (c0) > 0} = «a(f).

This result follows from [30].

A consequence of the last proof is thét(¢) (the scaled and normalized process of the overall
number of customers in system) becomes sufficient in describing the asymptotic behavior of
the J dimensional processZ; + @1, Q-, ..., Q). We call the collapse of the dimensionality

of the problemState-Space Collapséhe state space collapse of thé/M /{K;} model is
summarized by the following corollary:
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Corollary 4.1.3 State Space Collapdeenote bye"(¢) the number of busy servers above the
level of N" — K", i.e.E"(t) = [Z"(t) — (N" — K")]*. Then

=E(t) =0

Qi) =0, Vi< J -1 (32)

LQ5(t) = X+

Proof: Note that€” (t) + Q}(t) is just Zy (t) + 3277 Qi (t), hence the result follows from the
proof of Theorem 4.1.1.

[
The next corollary show how to obtain the limit of the virtual waiting time for cldsss a

function of the limit queue length proce&s

Corollary 4.1.4 LetW/ (t) be the virtual waiting time process for clasdf

)\7‘
El—oo<c<oo:\/N(NJT—aJ,u)—>c, (33)
then )
VN'Wh = —[X]7". (34)
ajp
Proof:

By the FCLT for the arrivals and by (33) we have the convergence

V'(t) = W(A-T]Q—@ —ayut) = V() (35)

WhereV (t) = A(t) + ¢t and A is BM (0, \;).

DefineQ” = —=@Q7. Then, by corollary (4.1.3) we have that = [X]*(¢).

The convergence df™ andQ" does not imply the joint convergence @f, QT). However,
following [67], we claim that the component wise convergence is enough for our purposes.

By Theorem 11.6.7 in [64], and by the convergencd/6fandQ” we have the tightness of
the sequencg)/", Q"). Hence, by Prohorov’s Theorem we have that there exists a convergent
subsequencér; } for which
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(V™,Q™) == (V. Q). (36)
for some procesg/, Q).
DefineU"(t) = W(% — ayut). Then, using the relation
7 (t) = Q7 (0) + Ay (t) — Dy (#), 37)

or alternatively
U™ (t) = V™ (t) + Q1 (0) — QF (1), (38)

and applying the continuous mapping theorem we have the convergence

(U™, V™) = (U, V), (39)
wherell =V — Q.

SinceU andV are continuous witli/ (0) = 0 we can apply the corollary of [49] to obtain for
the subsequence

VNTEWTE(E) = W (t) (40)
wherelV (t) = %

Since the limitQ(¢) is independent of the subsequence chosen (and eq{i&]t) we have
the desired result. [ |
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4.2 Steady State Analysis
4.2.1 Stability Conditions

First we should address the question of stability, i.e. what are the conditions under which a
steady state distribution exists as a proper random variable. For fixed parameters these condi-
tions can be explicitly calculated using the formulae in [55]. However, as we have shown in
Section 2.1, these formulae are very complicated for calculation even for two classes. There-
fore we find the following theorem useful. In the following theorem we use the notation

for the arrival rate of the "super clas§”consisting of classels ..., J — 1, i.e \}. = Z;];f AJ.

Also, we denote by’ the probability of abandonment given wa’{ab|lW" > 0}) in an
M/M/1+ M system with arrival rate’,., service raté N" — K" ), and abandonment rate

We denote by, _; the nominal load in this single server queue. pg. ; = (Niﬁ

For the second part of the Theorem we assume some regularity conditions on the threshold
level K. In particular we assume that there exists a number0, o), such that

AT‘

o (41)

We say that a system is stable is there exists a unique stationary distribution.

Under these notations we have the following:
Theorem 4.2.1 Under assumption (13) we have that:

1. fixr and assumé{” > 0. Then:
(@) The threshold system is stable\if< (N" — K")p.
(b) The system is unstable whenexgr> (N" — K" )y — X} - 0".
2. Assume thalV” = R" + A" whereA” = o(R"). Also, assume (41). Then,

(@) If K™ # o(N"), there exists; > 0 such thatvr > r; the system is unstable .

(b) Otherwise, itk = o(N"), letr; = max{r > 0 : Ppcy > 1}. Then, for allr > r,

r 1 - - TR - r r
o< O At and in particular stability requires thak™ < A™ + O(1).

If K™ = 0 (static priority), Condition 1.(a) is necessary and sufficient.

Remark: The advantage of writing stability conditions usisigs thaté” has a known formula
which can be also calculated using existing software such as [73].
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Proof: Y"(¢) is not a Markovian process. However, proving that the stéte- K" of Y”

is positive recurrent implies that the stdté” + Q7 = N" — K",Q7 =0 :i = 2,...,J) of

the underlying Markov process is positive recurrent. Also, the underlying Markov process
is clearly irreducible and hence proving the positive recurrence of this state is sufficient for
stability (see for example Theorem 5.5.3 in [52]).

First, the case wher&”™ = 0 is clear since this is a work conserving policy and the sum
process is the same Birth and Death process that describes the relgulaiN system.

AssumeK™ > 0. For the sufficient conditions it is enough to use the coupling used for (4.1.1).
It is clear that if theM/ /M /N™ — K" is stable than so is the threshold system which, by the
construction in Theorem 4.1.1, is path wise dominated by\thd//N" — K" system.

For the necessary conditions we build a static priority system with abandonments and show
that if it is not stable then the corresponding/A/{ K;} system is not stable. Denote by

S a static priority system withiv" — K" servers. All classes except for the lowest priority
classJ have a finite exponential patience with ratethe .J'* class has infinite patience. Note

the following: If we assume that none of the customers of priorities, J — 1 waits before
entering service (i.e. there is infinite capacity for all priorities excepfjdahen the system we
would have is equal in law to systefh We can easily construct both systems from the same
sample paths and have that for al> 0, Y"(¢) > Y&(t). Hence, ifY§(t) — coast — oo
thenY”(t) — oo ast — oo. Hence, in the remaining of the proof we focus on the stability of
systems.

SystemS can be modelled as a multi-dimensional Markov process with the coordifites

,QF =0 : 4= 2,...,J) where the notations have the same meaning as before. Let us
look at this multidimensional when it is restricted to the states in whictvall- K" servers
are busy. The restriction is formally obtained via a time-change argument, as customary in
Markov Processes. See, for example, Chapter VIl of [10]).

Then, the number of customers from the super dlass., J — 1) in this restricted process can
be modelled by a Markov process, with the same law a®/ah//1+ M queue. Hence, it has
a unique stationary distribution.

Define byd” to be the steady state probability of abandonment in this restricted process. This,
in turn is equal to the probability of abandonment given wait im&m//1 + M queue with
arrival rate)\9, service rat§ N" — K")u and abandonment raje The latter has a known
formulae.

As before, proving positive recurrence B is sufficient for the stability of the underlying
multi-dimensional Markov process.
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Then, a trivial necessary condition for stability of systéris that

N+ N(1—67) < (N" — K" (42)

Assume now thak'” = o(N"). Then, by (13) we have that there existsuch thapy, _; < 1
for all » > r,. Then, using the identity’,. P{ab} = pE[Q~ ;] (whereQ” ; stands for the
steady state queue length of the super class J — 1), we have that

5 = gE[ 2" > NT— K] (43)

But )
(pTC,<J)

1- p6,<J'
This is straightforward noting that the right side is average queue length of a non-abandonment
M /M /1 with arrival rate)’,. and service rateN” — K7)u. After some simplification,

ElQ-,|1Z" > N"— K" < (44)

: PC<g
;< ’ (45)
(NT = K")(1 = pg - s)

This expression converges to zero as fast @8” by assumptions (13), (41 and assuming
that K" = o(N"). Plugging this upper bound into (42) results in the necessary condition:
K" < A"+ 0(1).

It is only left to consider the case in whidii” = R" + A", A" = o(R") and K" # o(N").
Assume there is a subsequereg} such that systens is stable for allk > 1. Then, we
would necessarily have that

X4 N (1= 07) < (N7 — K7

Now, consider two cases:

1
PC,<J

Case 1:\}./(N" — K")u — ~ > 1. In this case¢” converges asymptotically tb—
wherepc, <; = lim, ., pi - ; (Se€ for example [69]).

By our assumption thak™ # o(N"), there exists a subsequenggand0 < ¢ < 1 such that

i (N K™
My oo 5 — = C

On the subsequencg, we have that
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(N — K™)p

. 1 Tk Tk; Tk . .
jlglolo W(/\J + A (1—=6") < Tkl;inoo N (46)
On this subsequence the limiting equation is
A+ ep < cp (47)

Which is a contradiction to our non-negligibility of clagsassumption (13).

Case 2:\}./(N" — K")u — ~v < 1 By [69] the probability of abandonment converges to 0
asr; — oo. Hence we would have that for the sequent¢he stability equation (42) can be
written as

A+ A —o(Ne) < (N"— K" (48)

or after dividing by this can be written as
K" < A"+ o(R") (49)

which clearly contradicts the assumption on the siz& of |

4.2.2 Convergence of Steady State Distributions

Define
Y7(o0) = (N" = K")

VN*

whereY " (00) is the steady state distribution of the sum process inthsystem.

S" =

= X"(00) (50)

We should expect that the limiting distribution of the diffusion proc&ss Theorem 4.1.1
would coincide with the limit of the sequen@&. This is not immediate since an interchange
of limits is involved. More formally, we want to show that

P{X(c0) < 2} 2 lim lim P{X"(t) < } = lim lim P{X"(t) < z} (51)

t—00 r—00 r—00 t—00

We will show this in the following theorem.

Theorem 4.2.2 Under the notation above and assuming

Tlggo\/ﬁu—pg):ﬁ, 0<f< o0, (52)

the following is true:
S" = X(0). (53)
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whereX is the limit process from Theorem 4.1.1 with steady state as given in 4.1.2.

Proof: Note thatY " (co) exists as a proper random variable according to Theorem 4.2.1 and
under our choice of the parameters. Following the proof of Theorem 4 in [30] all we have
to prove is the tightness of the sequerite Recall systems (B) and (C) from the proof of
Theorem 4.1.1. Then, sin¢® and B" have the same law, it is enough to prove the tightness
of the sequencé’;. In addition we create another coupling &f with a M /M /N"™ system
(denoted by D) and for which we define:

o = 0= 0

(54)

Construct system (D) in the same way as the threshold system by splitting the servers into two
distinct pools and using the same preemption procedure (as in the construction of System (B).
For the threeV" — K" (of systems (B), (C) and (D)) systems) create the departures from the
same Poisson processes with thinning. Also for sh@ools (in system (B) and (D)) create

the departures from the same poisson process with thinning. Define

_YB() — (N K7)
U

Xp(t) (55)

Clearly, by the same coupling arguments as in the proof of Theorem 4.1.1 we have path-wise
dominationX},(¢) < X7.(¢). And on the whole we have the path wise ordering

XT(t) < X5(t) < X5(t) VE > 0 (56)

DefineS;, = X{.(c0) whereX(. is as defined in (25) an8l}, in the same way for th&/ /M /N
system constructed above. We will compare the stationary threshold system with thi€shold
to both single class multi server stationary systems.

Since the constructed coupling preserves (56) for every finiteloes so also for — oo.
Since under the conditions of the theorem both sequesfc@sd .S}, converge, they are tight.
The tightness of, implies that

Ve >03n, : P{SL € [-ni,m]} > 1 — % (57)

The tightness of7, implies that

Ve > 03ny : P{ST € [—ng,no]} > 1 — % (58)

and by the ordering (56) we have that
Ve > 03ny,ng: P{S" € [—ng,ny]} >1—¢ (59)
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With the tightness ob” = X" (co0) we have actually established the theorem.

SinceX " (c0) is tight, by Prohorov’s Theorem it has a convergent subsequEhdec). If we
let (Z™(0) + Q1*(0),Q;*(0) : i = 2, ..., J) be distributed a$Z"(c0) + Q7" (00), Q¥ (o0) :

i =2,...,J), then(Z™(t) + Q*(t),Q:*(t) : i = 2,...,J) is a strictly stationary stochastic
process. In particulaf X" (t),¢ > 0} (which is a function of the multidimensional Markov
process) is a strictly stationary stochastic process and by Theorem 4.1.1 w& have X
whereX is the limiting diffusion process Witkf((O) having the stationary distribution of the
limit of X"*(0). However, sinceX " is stationary for each; so is the limitX. Hence the limit
of X" (o0) must be the unique stationary distribution%f Since every subsequenceXf*
that converges must converge to this same limit, the sequEnhg®) itself must converge to

this limit. [ |
Corollary 4.2.3 Under (13) if 3 < 0 there is no convergence of the sequefite

Proof. Let us assume that” does converge to a unique and finite lifiitand that we start

the " system with its stationary distributio$f’. X" is thus a stationary process wiff¥ (¢)

having the stationary distribution. By the same arguments as above, and since we assume the
convergence of”, we should have thaX" converges to a limiX" and thatX"(¢) converges

to the stationary distribution oX .

First let us assume that < 0 : Then, for allM, there exists a subsequenog }, r, > M
such thafp > 1, and by the coupling in (4.1.1) there is no limit far" (¢) and the process
clearly diverges contradicting the assumption on the convergence.

Otherwise, if3 = 0 we have a limit which is a diffusion process with infinitesimal drift

function
>
m(x)z{o r= (60)
—pxr x <0

See for example Theorem 4.2 of [43]. This is clearly a non-stationary process and this is again
a contradiction to the assumption on the convergenc#® of

[ |
Corollary 4.2.4
VNTWh(o0) = Wy, (61)
where
0 otherwise
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Proof. Having the convergence of"(co) we can repeat the proof of (34) with"(0) =
Q" (o0) to obtain the desired result. [

Proposition 4.2.1 Halfin-Whitt Analog

Consider a sequence o6f /M /{K;} systems indexed by= 1,2, ..., with service rateu for
all classes and arrival rate\] for classi, : = 1, ..., J, such that (13 holds. Then,

P{Wj(c0) >0} = ay, 0<ay<l, (63)
iff
VN™(1—=p) — (,0< B < o0, (64)
J A\
where)\” = Z )\: andpg = m,

i=1

—1
in which casev; = [1 + ﬁ(ﬁgﬁ))] , Where®(-) and¢(-) are the standard normal distribution

and density functions respectively.

Proof. The ‘if’ part is a direct result of the steady state convergence already proved. For the
‘only if’ part note the following: Since the threshold system is path wise dominated from
above by anV//M/N" — K" system we have that, if = oo thenP{W} > 0} — 0.

For the case in whicl¥ = 0, let us assume that steady state exists &t/ (c0) > 0} —
a < 1. Then by the continuity of the function(-) there exists? > 0 such that

a<alf) <. (65)

We can then construct a threshold system with the same thresholds but with a total number
of serversM” > N', or more specifically také/” = N” + 3’v/N7 and we will have that
VM7 (1 — p}) — (. For the new system the ‘if’ direction applies and hence we will have
the inequality (65). Denote by, (¢) the total number of customers in the system witl
servers. Then, we can easily construct the sample paths suchthg) — (M"™ — K") <

Ynr(t) = (N” — K7), ¥t > 0. Hence, we have a contradiction.

There is another case to consider in the ‘only if’ part. It is possible that the sequeviog —

p¢) will fail to converge. In that case we would have at least two convergent subsequences
converging to two different limitg,; # [, (one of which might bex). But since the function

a(-) is strictly decreasing in its argument we would also havedliat) # «(32) and thus the
sequence”{IW} > 0} would fail to converge.
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Having the convergence of the probability of delay of clds& remains to analyze the proba-
bilities of delay for higher classes. In particular we would like to know what can be said about
P{W/(x) > 0}, i=1,...,J — 1. The answer is given in the following proposition.

Proposition 4.2.2 For everyr > 0 such thatp;, < 1.

P{W@T(OO> > O} ( N” )KT
t= TR S : 66
= P{Ws(o0) > 0} - T1S (o) 5 = \NT = K7 (66)

koA
wherepl, = > i, o

in particular, for K™ = o(+/N7) and assuming(3) > 0 we have

J—1
P{W} (00) > 0} ~ a(B) - [ [ (o) 507" (67)

j=i

wherea,, ~ b, if lim,, o, 7 = 1.

Remarks:

¢ Inthe case oK = ©(+/N7) the right bound converges by simple calculustowhere

. KT'
d= hmr_,oo \/T—T

¢ Note that the above implies that for thresholds that are of the faom/N the probability
of delay is asymptotically polynomial, i.e. it is of the for(t@% whered, v > 0.

Proof. For the two-class case this can be proved by direct approximations of the formulae
in [55]. However, we can exploit the structure of the model to prove the desired asymptotic
equivalence. The result is almost immediate using upper and lower bounds.

Let us look at priority clasg. Given that clasg + 1 has to wait (i.e. the number of idle
servers is smaller or equal 16, ) - the conditional probability of delay for clagsequals to
the probability that there would be additionfl ; — K; busy servers or more.

Let us look at the Markov process of the model restricted to the states in which more than
N"— KT, servers are busy. Define a new process= {Z7,Q}, ..., @}, whereZ! describes

the number of busy servers above the leveNof— K7 ;, and@; is the number of class
customers in queue. Under our restrictibh is also a Markov process. Denote it's steady
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state byY " (00) = {Z](c0), Q}(c0), ..., @7 (c0)}. Also, because of the model's structure, the
probability we are looking for can be calculated by

P{Wj(c0) > 0} = P{W],(c0) > 0} - P{Z](00) + ZQ?(O@) > Kj}

To justify this, see, for example, Section 10.4 of [47] and the results therein.

Define
Tg = Z Tt 5 s=N-K,...,N,...
2041y 2+ ST ai=s
to be the probability that the sum of the components of the restricted chain equatier its
stationary distribution. Then, the cuts method impliessfer N — K, ...

Ts Zgzl /\z Z 7T5+1(N — Kj-H)M Z 775+1(NT o KT),LL
(68)
Ty g Ni S T Np

or alternatively

ot j E] \s Kj—=Kjt1
PAZ}(00) + S0, @1(00) > Kyun} < (F=20)

(69)

~ i A 9y KK
P{Z;(00) + XL, Qi(00) = Ky} > (Z)

By induction we have proved the desired result. By simple Taylor expansion the upper bound
in (66) converges to 1 if and only K" is o(v/ N™). [

In proposition 4.2.4 we have shown the convergence/af 177 (o) to a mixture of an ex-
ponential r.v. and a point mass in the origin. Equivalently we could say that the waiting time
of classJ is ©(1/v/N7). In the next proposition we show that given wait, the waiting time of
all the other classe§ V;(co)|W;(c0) > 0}, i =1,...,J — 1) areO(1/N"). Furthermore, we

give expressions for the Laplace transforms and moments for limikg; 6o )|W;(c0) > 0
foralli=1,....J — 1.

Proposition 4.2.3 Assume (13), then, forall=1,....,J — 1
N™ - [WI W] > 0] = [W;|]W; > 0] (70)
[W;|W; > 0] has the Laplace transform:

p(l—o;)(1—5(s)) (71)
S — 5\1 + 5\1’?(3)
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i AT

whereo; = lim, . ijl m and
_ s+p 1 s+p 1 S|
(5) = S ) —= 72
W)= S T3 \/(2biu+2 b (72)
i—1 yp
Py

whereb; = lim
r—00
Also,

NTE[W! W > 0] = [u(l — 03)(1 — o5-1)]
(73)
(NE[(W])2W! > 0] = 2(1 — 0305-1) [(0)2(1 — 03)2(1 — 03-1)%]

Proof: Let us focus on clas§ 1 < i < J. We will prove the result through th&//G/1
reduction that was applied in both [55] and [39].

Step 1 (Limit for the M/M/1 Busy Period): Let us look at &/ /1 queue with arrival rate

A, = Zj;ll A7 and service ratéV" .. Then, by known results (see for example [38})s) -

the Laplace transform of the busy period is given by:

N'p+s+ A —+/Nu+s+ A —4X N'u

7(5) = e

(74)

By simple algebra we can prove that

Y (s) = A(s) (75)
Where?;(s) = lim, o 77 (s) and?;(s) is given by (72).

Note that the convergence above is still valid if the service rate of the relévdnt/1 is
(N" — K")pwhereK” = o(N").

Step 2 (bounding): Following [55], note that given wait of clastheir queue behaves like
an M /G/1 queue with theZ being the distribution of the busy period beginning with a class
Jj :j < iarriving to a system withv — K; busy servers and ends with a completion of service
when there aréV — K; — 1 busy servers. The Laplace transform of thiss denoted in [55]

by B(s), and it's expectation is denoted ) B;|. Denote byy!(s) the Laplace transform of
W;|W; > 0 in ther®" system. Then, by formula (17) in [55] we have that

(s = AT +A/Bi(s))  E[Bl]

¢; (s) = (76)
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G can be sample wise bounded from abovehy-_ - and from below byG; x-. Hence we
have by the previous step that
B (N"s) — qi(s), (77)

and the convergence of the moments follows. Hence:

1
N"E[B; _ 78
| Z]Hﬂ(l_ai—l) (78)
Now, by simple calculus, and since by (18)< 1 we have that

s — X + Ai(s)

The limiting transform is similar to the one obtained for the static priority case. The pre-limit
moments for the static priority case are given in [39] and their limits are easily calculated.

Corollary 4.2.5 fori =1,...,J — 1 we have tha¥[Q} |Q} > 0] = O(A]/N"). In particular,

E[Qf1Q; > 0] = N EW/|W] > 0] — A [u(1 = 0,)(1 — oi0)]

and (80)

BlQ] ~ 3= P{W} > 0} [u(1 — o) (1 — o5-1)]

where, as before); = lim \//N"

Proof: This is a direct application of Theorem (4.2.3) using Little’s Law.
[

We would like to conclude this section with a theorem that summarizes important result proved
throughout the section.

Theorem 4.2.6 Consider a sequence aéff /M /{K;} systems indexed by = 1,2, ..., with
service rateu for all classes and arrival raté\] for classi, i = 1, ..., J, such that (13) holds.

P{Wj(c0) >0} —ay, 0<ay<l, (81)
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VNI (1= pf) = 3,0 < < oo, (82)

-1
in which casev; = [1 + [ﬁ(f))] , Wwhered(-) and¢(-) are the standard normal distribution

and density functions respectively.

Corollary 4.2.7 Let p" = g+, If in addition to the conditions of Theorem 4.28, =

N7
o(V'NT), then

P{Wj(c0) >0} —ay, 0<ay <1, (83)
iff
VN'(1=p") = 8,0< B <o, (84)
Moreover,
J—1
P{W} (00) > 0} ~ a(B) - [ [ (o) 507" (85)

and if, in addition, all classes are non-negligible, i6,/\" — a; >0, j = 1,..., J, then

P{W!(0) >0} a5, 0<a;<1,i=1,...,J—1, (86)
iff
, . Inaj/ajn _
KJ"H_KJHﬁ Vi=2,....J, (87)
. Iz
wherep<; = lim, ﬁ
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5 Efficiency Driven M /M /{K;}

Analogously to the characterization of the QED regime given in the introduction, we can
characterize the Efficiency Driven (ED) regime as follows:

Consider a sequence df-server queues, indexed by= 1, 2, . ... Define theoffered loadby
R = % where\” is the arrival-rate ang the service-rate. The ED regime is achieved by
letting (N")°(1 — p") — 3, asr T oo, for some finite3 and1 > ¢ > 1/2.

Analogously to (14), we define the ED regime for a sequenc®/ 6§/ /{ K;} queues as fol-
lows:
J<pf<oo, 1>6>1/2:1lim(N)°(1—pp) =6, 0<p<o0 (88)

r—00

For purposes of optimization we will need to adapt some of the results of the previous sections
to the case of the ED//M/{ K;} model.

As before we assume (13), i.e. that cldsis non-negligible.

5.1 Diffusion Limits

Since by [30] the probability of delay in this regime converges to 1, we expect that the diffusion
limits will be reflected brownian motions as is the case with the conventional heavy traffic for
multi-server queues.

However, to differ from conventional heavy traffic, this regime requires different scaling for
different values o in order to obtain a non-degenerate limit.

Note that having ED limits for the relevant /M /N queue immediately translates into limits
for our model using the same procedures as used in the proof of Theorem 4.1.1.

The ED limits for a sequence df//M /N queues where not proved for a genefab 1/2,
in the appendix we adapt methods that were used in [26], to prove the desired results. In
particular we prove the following:

Proposition 5.1.1 Consider a sequence 6f /M /N system indexed by = 1,2, ..., such that

N(1—p") = 0< B < o0, (89)

Let QN (¢) be total number of customers in th&" system at time. Assume% = X(0),
whereX (0) > 0, a.s. Then,
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XY (t) = RBM(— B, 2p1) (90)

We omit the proofs of the following theorems. Having the convergence of an ED sequence of
M/M/N queues, the proofs for the/ /M /{ K;} model are the same as for the QED case.

The following theorem summarizes the diffusion limit results for the HDM /{ K, }.

Theorem 5.1.1 Define

Xr(t> _ Yr((]\]r)?é—(ljt\;?‘; (Nr _ Kr) | (91)

Assume that there exisfs> 1/2 such that:

lim (N")°(1 —p}) — B, 0<f < oo. (92)

r—00

and X" (0) = X(0), X(0) > 0. Then,

X" =X, (93)
whereX isan RBM (=, 214).
Also:
1
G (N2 ) = 0,i=1,...,J — 1. (94)

Remark: The state space collapse in this case follows in the same manner as in the QED
setting, using a bounding//M /1 queue. The fact that this//M /1 is not only scaled in
space but also in time does not influence the result.

5.2 Steady State

In the following theorem we adapt the steady state results of the previous section to the ED
case. Here we limit our discussion to threshalds = o((N")'~?). As will be shown in the

next section (Asymptotic Optimality) we only need threshold that are logarithmic and this is
clearly covered by = o((N")'~?%) sinced < 1. Moreover, takingk™ = o((N")'~°) sim-

plifies the proof of the tightness that we need for convergence of the steady state distributions.
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Theorem 5.2.1 Assume that there exists> ¢ > 1/2 such that
(N (1=pp) =B, 0<f<o0. (95)

and K" = o((N")'=°). Then:

N7Y"(00) = X(o0), (96)
whereX (oo) ~ exp(f),
P{Wj(0) >0} — 1, (97)
and, for every > 0
J—1
P{W} (00) > 0} ~ [ (o))" 5075, (98)

j=i

(N)3Qr(00) = 0,i=1,...,J — 1;

(V') 3@ (50) = X *(c0). )
Remark: Recall that for the proof of convergence of the steady state distribution in the QED
case we had to prove first the tightness for the sequEhgs). We achieved that by bounding

our system from above and from below by two systems for which the tightness was known.
By the same path-wise construction used before we can bound our system from above by an
M /M /m queue withV"™ — K" servers and from below by af/M /m queue withN" servers.
Provided thatk™ = o((N")'~ the tightness for both systems under our scaling is known, and
the result follows by the same manner as before.
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6 Asymptotic Optimality

6.1 Definition

In this section we consider the solution for (10) and (11) under condition (13). As in [11], for
a meaningful form of asymptotic optimality one needs to compare normalized staffing costs
which measure the difference between the actual staffing costs and a base cost af order
which is a lower bound of the staffing cost.

First, following [2] we will define asymptotic optimality. Lek”™ = {K7,..., K7} and\" =
{\1,..., A\, } the vectors of the thresholds and arrival rates intheystem. Also, lefV" be the
minimal number of servers required in thé system to ensure stability (i.&V" = [\"/u]).
Let C" be the staffing cost when using” servers.

Let C"(N", ") be the cost function in the/” system when the system is equipped with
servers and controlled by, .

Definition: The sequencgé N", 7"} is asymptotically optimal with respect to\” if, when
used for the system, the following two conditions apply:
e Asymptotic feasibilitylim sup,_, ., P {W/ > 0} < s, Vi =1, ..., J;

o Asymptotic Optimality If we take any other sequence of polici€d/”, 7"} that is
asymptotically feasible then

lim inf

r—00 CT(NT’ "

|
9

6.2 Constraint Satisfaction

We will now turn to the solution of (10). Here the cost function reduces to the staffing costs, i.e
C™(N",n") = N". The results that follow are direct consequences of [11] for the single class
case ofM/M/N. The original work done in [11] in the context @fonstraint Satisfaction
covers general constraints on the waiting costs. Since we have a very simple constraint on
the probability of delay (i.e.P{Wait > 0} < a}) we can establish a simpler property of
optimality than the one stated in [11].

Proposition 6.2.1 M /M /N Staffing. Consider anM /M /N system with arrival rate\” and
fixed service rate.. We are interested in finding

(N*)" :=min{N : P{W" > 0} < o} (100)
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where0 < a < 1. Assume that we have a sequence of arrival ratesThen, the staffing se-
quenceN” = \"/u+ [/ A"/ is asymptotically optimal in the sense of the previous definition,
where( is such thatP(5) = «. P(+) is the Halfin-Whitt function

a(f) = [1 + ﬁj(_;ﬁ))] _1.

Proof: Note that [30] and the monotonicity of the functié!{-) imply that the asymptotically
feasible region is the following:

P{W" >0} - d,0<a <a, (101)
iff
VN (1—=p") = 3,0<B<B <00 (102)

So for eachi > ¢ > 0 and staffing sequend€” = \"/u+ (5 — €)y/ A"/ 1 there exists, such
that for allr > r, , P"{W" > 0} > a. Hence, we would necessarily have that forratt r,
(N")* > X" /u+ (B — €)\/\"/u. Therefore, for eacf¥ > ¢ > 0 we have that

L By 1 . BN
hﬂl@gf G- e)m > hﬂgfw—_M >1 (103)

takinge to zero and by the definition of asymptotic optimality the proof is concluded. &

Having Proposition 6.2.1 we can proceed to defining the asymptotically optimal solution for
(10).

Theorem 6.2.1 For (10) and under condition (13), the following combined staffing and rout-
ing policy is asymptotically optimal:

Assume (without loss of generality) that for alkz j , o; # «; (otherwise we can merge
classes andj for which«a; = «;) and that the classes are ordered in increasing ordetof
ChooseN” = R" + P~Y(a;)v/R" whereR" = 3.7 \/u, and letP () be the Halfin-Whitt

i=1"%

delay function given by (5) = [1 + ﬁ(ﬁ(ﬁﬁ))} . Route according to threshold priorities with

the threshold determined by the following recursive relation:

r r _ | Imaj—1—Inay .
Kz—Kl_l—’VW 1—27...,J

(104)
KT =0
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Remark: Note that our assumption thay < 1 rules out the case of efficiency driven staffing.
It appears that better non-asymptotic results are required to handle the egse df

Proof. Define

M"={minN : P{W/ >0} < ay, Vi=1,..,J}. (105)

If we denote by N*)" the optimal solution to (10) then clearly < N"". Now, (105) is equiv-
alent to a single clas&//M /N constrained staffing problem. For this problem the asymptoti-
cally optimal staffing is given by Proposition 6.2.1 and it equél&u + P~ (ay)\/ A"/ .

Foral,:=1,...,J — 1, that decrease polynomially withwe have by Proposition 4.2.2 that
af,i=1,...,J — 1, are achieved by logarithmic thresholds. Proposition 4.2.1 guarantees that
staffing the system witld/ servers and using logarithmic thresholds asymptotically achieves
a ;. Hence, the lower bound is asymptotically achieved. [ |

6.3 Cost Minimization

Before presenting the solution to (11) it is necessary to adapt an important theorem from [11]
to our setting. In [11], the authors show how different costs lead to the three different regimes:
Efficiency Drivenor ED), QED andQuality Driven We omit from our discussion th@uality
Driven regime and hence we will not use the general results of [11], but rather their conclu-
sions with respect to theD andQED regimes.

Theorem 6.3.1 (Theorems 6.1 and 7.1: Borst, Mandelbaum & Reiman 2002) Consider a
sequence oM /M /N systems, indexed by= 1,2, ..., with arrival rate A" and fixed service
rate ;. Assume that an agent's salary is a function-@jiven bys”. A customer waiting one
unit of time incurs a cost af’. We are interested in finding

(N")*:=arg min {s"N" + "E[W"]} (106)

N>X\"/u
For a sequence”, we say that” ~ a if lim,_, % = 1.

Then:

e Assumes’ ~ 1 andc” ~ c. Then, the staffing sequens&”™ = R" + (y")* (¢) VR is
asymptotically optimal, where

()" () = 4*(c) = argmin {y ) } (107)

y>0 Yy
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approximations for the staffing functiari(-) are given in [11].

e Assumes” ~ 1 andc¢” ~ c¢J” whereJ” = o(1). Then the staffing sequenéé =
R" + (y")* (¢) V R" is asymptotically optimal, where

7\ * _ : E T . T
(y") (c)—arggl;gl{y—i-yJ } =VeJr. (108)

The following Theorem deals with the cost minimization problem (11. Recall that when we
remove the constraints on the probability of delay the remaining problem is a pure cost mini-
mization problem. For this problem the optimal policy, as established in [72], is one with state
dependent thresholds. In the following theorem, however, we show that asymptotically the
state independent threshold policy is optimal. The intuitive explanation for this phenomenon

is what we call Economies of Scale. The state dependence of the optimal policy is aimed at
protecting against a situation where lower class queue gets too long and expensive because of
the reservation for higher priorities. However, in large systems, we can combine high quality
service for the high priorities with very little harm to low priorities.

Theorem 6.3.2 Consider (11) and assume that the waiting cost coefficients scalerwiith
a polynomial mannere] = d; - %,y >0, i = 1,....,J — 1,—1 < ~v; < 0. Recall that
our assumptions are such thét > ¢, > ... > ¢}. Also,a] < of < ... < ay, Where
af,i=1,..,J — 1 are allowed to decrease polynomially witlwhile «; is fixed.

Then, the following is asymptotically optimal:
Staff withN™ = R" + v R", where

B =max{(y")"(ds), P~ (as)} (109)
Where(y")*(d;) = argmingsg {y—i— &;(y)}, whenevery;, = 0 and (y")*(d;) = Vd,J",
otherwise.

Route using\//M /{ K} with

Inaf ;—Ina’
T T — i—1 ] y —
K'— Kl | = {—mp;;l ] i=2 ...

(110)
K7 =0,

where fori =1, ..., J

. 1
@ =i A (N%—l/2(1+w)+6) ’ (111)
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ande > 0 can be arbitrarily small.

Finally, ties are resolved according to tlag rule.

Proof:

Step 1 (Lower Bound): Since we have a commthe long run average number of customers

in queue is minimized, for fixed, by any work conserving policy. For all work conserving
policies the average number of customers in queue is equal. This gives us a lower bound on
the target function since

J J
S CANEW] = ¢ Y NEW] =) Y E[Q]] > E[Q]. (112)
=1 3

i=1

Where(" is the steady state queue length infgdM /N" system with\" = ZLI AL

Then, as a lower bound for the staffing problem we can take the solution of
minimize ¢ E[Q"]+ N
subjectto P{IWW" > 0} < ay (113)
N eZ

Let M, be the solution of the unconstrained problem

minimize ¢} E[Q"]+ N

114
N eZ (114)
Let M, be the solution of the constrained staffing problem:
minimize N
subjectto P{IWW" > 0} < ay (115)
N eZ

By [11], the cost function is strictly convex and unimodal and the feasible region for (113) is
the interval[ M5, co) the solution (/") to the above problem (113) will equalax{M;, M>}.

Now, we have three cases:
Case liy; = 0 = M" = X' /u+ BN/, where = max{(y")*, P~*(as)} (Where
(y")*(dy) = argmin,~ {y + &;(y)}. For the lower bound we have that:

[ O0) = N7 = [ BlQ + V] ~ {cm(ﬁ)% ¥ ﬁ] (116)
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Under the proposed choice of the thresholds we have by propositions 4.2.2 and 4.2.5 that

\/Wc;'E[Q;"] — 0, (117)
and
_plQ7] - a(9)= (118)
\/W J Q ﬁ?

Hence, we have that the lower bound is achieved. i.e.

Zz 1 z [QT]—Fﬁ\/F

I ~1. 119
T B+ VR (119)

Case 2:v; < 0,a; < 1. In this caseN” = R" + P~ !(a;)vV R". The lower bound cost is
equivalent to3v/ R™ and under the given thresholds we again have that

1 T T SN
Wci ElQi] — 0 (120)

and hence the lower bound is achieved.

Case 317y < 0,ay =1 = M" = X/u+ (y)"/\/u where(y")* — 0asA — oo.
Due the restrictiony; > —1, we have by (6.3.1) that there exists an- § > 1/2 such that
YA/ AT/ = O(N179). In particular we have that= 1/2(1 — v,).

Staffing with /"™ and choosing the appropriate logarithmic threshold would still lead to

lim (M"Y (1 - p) = lim (M"Y (1— ) =, 3 (121)

and hence the overall lower bound normalized co8t(ig\/")"/2(*+17))

By the choice oty we have that
]' T ‘s
mCiE[QJ =0, (122)

and
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I EQY] = drs (123)

(M™)1/20570) 3

Again the lower bound is asymptotically achieved.

Note that in this theorem we restricted our attentiom to>- —1. This rules out cases for which
the solution of the single class dimensioning problem would resit'inz R"+b(R"), where
b(-) is a sub-polynomial function aR (i.e. b(x) = o(z?), Vs > 0.

Corollary 6.3.3 ¢ Optimality: Assume for (11) that;, = 1,Vi = 1,...,J, and thatc] =
¢i,Vi=1,....,J,¥r > 1. Then, they rule is asymptotically optimal among all non-preemptive
policies (work-conserving and non-work conserving), and the corresponding optimal staffing
is given byR" + 3v/R", where

£ = argmin {y + cPy) } .

y>0 Yy

Proof: In the previous theorem we would have that = 1, in (111), and hence the staffing
problem reduces to the single class dimensioning problem, and the routing is static priority.
[
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7 Some Extensions

7.1 Adding Abandonment
7.1.1 Model Formulation

The previous sections were aimed at generalizing the dimensioning results of [11] to the multi-
class case, by characterizing the asymptotically optimal staffing and control. Moreover, the
optimal staffing in the multi-class case was derived directly from the optimal staffing in [11].
Such dimensioning results are still not available for the single A48 /N + M queue, i.e. a
single class queue where all customers have finite exponential patience wiih lHmeever,

much can be said about the control problem in the multi-cldgs//N + M (now, class has

finite exponential patience with raée). Furthermore, it turns out that under certain settings
the minimization of weighted abandonment costs gives rise ta\flig//{ K;} + M model
(designating now a multi-class multi-server system with thresholds and impatient customers)
as the asymptotically optimal policy in tH@ED regime - this makes this section a natural
continuation of the previous sections.

The setting: As before, we consider a multi-class queue with a single type of servers at-
tending all customer-classes. The service times of different customers are i.i.d exponentially
distributed random variables with rgtefor all customer classes. As before, classistomers

arrive according to a Poisson process with rateand we still assume non-negligibility of

the low priority class 13). The patience of each customer is defined as the maximal time this
customer will wait before abandoning the system. A customer does not leave after her service
starts. In our setting, the patience of each customer is an exponentially distributed random
variable with rate);, 0 < 6; < oo for classi, and is independent of all other processes.

We denote byP;{ Ab} the steady state probability of abandonment for clagdote, that in

this case the system is always stable due to the impatience of the customers. Also, we assume
that an abandonment of a classustomer incurs a cost ef, wherec;,i = 1,...,J = 1 are

allowed to grow with system size (to be made precise later).

The problem of minimizing weighted abandonment costs is then given as follows:

minimize 7, ¢\ P{Ab} + N

124
N eZy (124)

The pure control problem of minimizing the total number of abandonments (with no cost dif-
ferentiation) was addressed in [60]. In [60] the authors proved that the non-preemptive policy
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that stochastically minimizes the number of customers lost during a finite interval of time
belongs to the class atochastic earliest deadlingolicies. Specifically, in the exponential
patience setting their result implies that the optimal policy is such that it admits customers
into service in order of their average patience. i.e. it always serves first the waiting customers
with the shortest patience (or highest patience parand@teMoreover, when restricted to
non-idling policies the optimal policy is a static priority policy where customers are served in
decreasing order @f;. This gives the structure of the optimal policy but does not give an ex-
plicit optimal policy. Moreover, [60] does not say if the optimal policy is idling or non-idling.

Another problem of interest, in analogy to (11), is the problem of constraint satisfaction. i.e.
we wish to determine the minimal staffing required to ensure that the probability of abandon-
ment for class customers does not exceed a certain leyeMore formally, we consider the
following problem:

minimize N
subject to

) _ (125)
Pr(Ab) <a;, 0<a; <1, i=1,..,J, forsomer €Il

NezZ,

Where, as beford] is the set of all non-preemptive non-anticipative scheduling policies. We
have shown in Section 6 that when the constraints on the probability of delay are fixed (i.e.
whenq;'s in (11) are not allowed to scale with system size) the asymptotically optimal staffing
leads to th&@ED regime. However, for (125), fixed;’s lead to theED regime, which suggests

a very simple pool decomposition policy, i.e. decompose the V-Modelintanodels, each
serving a different class of customers. The real challenge, then, is to solve (125) wheg the
are allowed to scale with system size. We leave this question open for future research.

As mentioned before, we will prove that under certain settings a threshold policy with fixed
thresholds is asymptotically optimal in tiggED regime. To this end, we would like first to
analyze diffusion and steady state limits for thie' A/ /{ K;} + M model.

7.1.2 Diffusion Limits

First we quote Theorem 2 from [27] for a sequenc@bfM /N + M queues.
Denote by{Y"(t),t > 0} the total number in system in ai /M /N + M system. Let

Y'(t) — N

X7(t) =

then we have the following:
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Theorem 7.1.1[27], Theorem 2Consider a sequence o8f /M /N + M queues indexed by
the superscript = 1,2,.... Let\” and N" be, respectively, the arrival rate and the number
of servers in the'"” system. The service rateand the individual abandonment rafeare
independent of the index Letp” = X" /(N"u).

Assume that
lim VNT(1—p") = 3, —00 < 3 < 0 (126)

T—00

If X7(0) = X(0) thenX” = X whereX is a diffusion process with drift

m(z) = —(B+O/wx)p =0

ando? = 2.

In the next two propositions we will show that the normalized and scaled overall number of
customers in systems in thé /M /{ K;} + M model converges to the same limit asrin.1,
with § = 6, (which is the impatience rate of the lowest priority).

We consider a sequence df /M /{K;} systems indexed by = 1,2,.... The policy is the
same policy as in the non-abandonment case. A ¢lagstomer is served only if there are no
customers of a higher priority (; < i) waiting and the number of idle servers is bigger than
K. As before, we use the notatidq” to stand for the threshold of the lowest priority (i.e.

H 7 H ” A"
K" = K}), and define a“nominal” loadhy, = 7.

As before, letQ”(¢) stand for the queue length of clasat timet in the r** system,Z"(t)
stands for the number of busy servers at titria the »* system, and’"(¢) is the overall
number of customers in system, i¥(t) = Z"(t) + 327, Qi (t).

Proposition 7.1.1 State Space Collapsé&ssume (13) and
lim VN7 (1 — pi) — (3, —o00 < 8 < 0. (27)

T—00

Then, as — oo,

LQr=0,i=1,..,J—1,

VN
A=[(NT— K7) = 777 =0, (128)
H((NT = K") = Z'F = 0.

Proof: for the first two limits the proof is omitted since it is similar to the proof in the no-
abandonment case. Still, we would like to prove
1
Nr

(N"— K") = Z'T" =0 (129)
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We will use bounding as before. Assume we sta” — K”) — Z"]* from zero. Then,
this process can be bounded from above by a birth and death process with birth; rates
(N — K —i)u,i = 0,...,N — K and death rateg, = ). By [43] the fluid limit of the
bounding process is zero and hence the result. |

Theorem 7.1.2 Assume (13) and
lim VN™(1 — pg) — B, —00 < 3 < 0. (130)

r—00

If X"(0) = X(0), Then,

= X (131)

whereX is a diffusion process with infinitesimal drift given by

m(z) = —(B+ 05/ p)x)p x>0
—(B+x)u <0

ando? = 2.

Proof.

In this proof we employ the same approach that was used in [2] for the proof of the diffusion
limit. We write the proof for the two-class case. The proof is similar for arbitrary number of
classes as will be explained at the end of the proof.

First, like in the proof of 4.1.1, we define a system with two server pobte N — K pool
andThe K pool For simplicity of notation we will call them from now on pools 1 and 2,
respectively. Whenever a server in pool 1 completes service and there are any customers in
service in pool 2 we preempt a customer from pool 2 and pass it to pool 1. This system has
the same law as the original system. Denotd}lfy) andZ; (¢) the number of idle servers and

the number of busy servers respectively in poat timet. Also, letQ"(¢) be the total number

of customers in queue (i.€" (1) = Q5 (t) + Q5(1)).

Activate a Poisson process with rdt& — K)u. Create the service completions using this
Poisson process in the following manner: A jump in this Poisson process create a departure

from pool 1 with probabilityNZT{ft)r, and not result in a departure otherwise (with probability

Z1(t)
).

Then, the total number of customers in system prot€ss) admits the following dynamics:
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Y7(t) = Q"(t) + Z1(t) + Z5(t)
t t
=¥+ 40 - N = 10+ (1 [ 119 ) = e (o [ Z5(0y0s)
0 0
2 t
Yo (0 [ @teas)
=1 0
(132)
WhereN;, k = 1,2 and N}, | = 1,2 are independent unit Poisson processes,Aiid) is a
poisson process with raté independent of all the other processes.
DefineF"(t) to be the followingr—algebra:
F(t) = o {Q5(0); Z5(0), AR (), Ni'(8), Nj(t); k= 1,2, 1=1,2, j=1,2} VN,

where denotes the family of—null sets, and introduce the filtratid# = (F7(¢),¢ > 0).
Clearly, the processe&g”, Z; andl;, k = 1, 2, areF" adapted.

Then,Y”(¢) admits the following decomposition:
t t 2 t
Y (t) :YT(O)—I—/\Tt—u(N—K)t—HL/ ]I(s)ds—u/ Zg(s)ds—z 6’;/ Q;(s)ds+M"(t),
0 0 —1 0
(133)

where M"™ = (M"(t),t > 0) is an[F"—locally square-integrable martingale, that satisfies
M" = M} — M + M} — My — S Mg, , where all the above martingales de-locally
square-integrable martingales with respective predictable quadratic variations:

(M}) (1) = A"t (134)

(M) (t) = (N" — K")ut, (135)
()0 = [ s (136)
() 0 =n [ Z3(s)ds (137)
(M) (t) =6, /Ot "(s)ds, 1=1,2. (138)

we can rewrite (133) also as
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t

Y7 (#) =Y7(0) + At — p(N — Kt + M/Ot I7(s)ds — ”/o 73 (s)ds—

0, / Qi(s) + Qi(s) + Z5(s)ds + / (6, — 0)Q1(s) + 6,25 (s)ds + M (1),

(139)
By definition,
Q) + @50+ Z3(0) = [¥" (1)~ (V" — K" 140)
Ii(t) = [Y"(t) = (N" = K")]”
Also, note thatZ; (t) = [N" — K" — Z"|". Hence, by (7.1.1),
L Q1 =0
- 1
v (141)
—— 75 =0
v
After normalization and scaling we have that
t t
X0(0) = X0(0) = Bt [ X)) ds 6 [ (X0 ds
) 0 0 (142)
+€(t) + M) +o(1)
VN7 ’
wheresup,.; €' (t)| % 0. We claim that
{ M3V M VN7 M, VN, My, NN, M, [N, M, VN | 143

= {/jiba, /jib1,0,0,0,0},

whereb, and b; are independent standard Brownian motions. Hence, by the continuous
mapping theorem we would have th&f"/+/N" converges to/ub, — \/ub;. This is a
Brownian motion with zero drift and varianc.. Since[-]* and[-]~ are Lipschitz con-
tinuous functions we have by Gronwall's inequality th&t(¢) is a continuous function of
X"(0) — But + € (t) + ]‘jNLt) + o(1). The result now follows from the continuous mapping
theorem.

It is still left to prove (143). First note that by the Functional Law of Large Numbers (FLLN),

asr — oo,
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< Mi >(t) = ut, (144)

VN
<\%\+> (t) = ut, (145)
By Proposition, 7.1.1 we have that
<\/%M;1> (1) = ut, (146)
<\/LFMZ> ) =0 (147)
<\/%Mél> (1)=0, 1=12 (148)

The independence aff; and M7 together with the inequalityM, N) < /(M)(N) imply
that all covariations converge to zero.

Also, note that since the jumps of all the above martingales are bounded by 1 we have also
that for eachl” > 0,

1
Nr

LMT(t) —

lim E |sup G

r—oo |:t<T

Mr(t—)H =0 (149)

Hence, we can apply Theorem 7.1.4 from [19] to obtain the result. To prove the result for an
arbitrary number of classes it is enough to re-build the decompositidii.of he rest readily
follows.
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7.1.3 Steady State

By [27], the processY defined in Theorem 7.1.2 has a unique stationary distribution whose
density is given by:

TR WO -l TSR <0
Al YR R

where the hazard functidinis defined by

o= o
and )
B _
= [
Theorem 7.1.3 Assume (13) and
rlirgo W(l —pe) — B, —00 < ff < 0. (150)
Then
X"(00) = X(o0) (151)

whereX"(oo0) and X are as defined in Theorem 7.1.2,

Proof. in this case there is no problem of stability since the abandonments stabilize the system.
Hence, X" (c0), exists for allr = 1,2, .... Having the tightness of the sequencg the proof
follows in the same manner as the proof of Theorem 4.2.2. To prove the tightness we will again
construct two systems that will constitute stochastic lower and upper bounds on our system.
DefineU” to a M/M/(N" — K") + M system with arrival rate” = Y7 7, service rate

w and abandonment rate= min;¢; s 6;. DefineL” to be anM/M/N"™ — K"/N"™ — K"

loss system. We denote By (¢) and L"(¢) the total number of customers in systebsand

L" respectively. Let’” stand for ourM /M /{ K;} with abandonment system and recall that

Y"(t) stands for the total number of customers in system at time

In the following, we fixr and hence omit the superscript for simplicity of notation. We will
show that :
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To show (152), we use sample path coupling. For sydteand . and for theN — K pool

of systemY’, we create the departures from the same Poisson process with thinning, as we
did in the proof of 4.1.1. The abandonments for systémend U will be also created from

the same Poisson process with thinning: i.e. whenever therecastomers in systeidl and

jk, k=1, ..., J customers from clagsin queue in systerin’, we create the next abandonment
from a Poisson process with rateiz{i - 6, Y"7_, jif}. Then, we create an abandonment in

systemUJ with probability i SJ o and an abandonment in systéfwith probability
maxqto, k=1JkVk
S b

maz{i'Q,Zizl JKOk}’

Note that WheneveEizljk > i, the next abandoning event will be an abandonment from
systemY” with probability 1.

For simplicity, lets start all 3 system witN — K customers in service and none in queue. An
arrival will not alter the state of systemwhile it will increase the total number of customers

in both system%” andU. So, the ordering is still preserved. Now, If there are no customers in
the K pool of systent” the creation of the service completions from the same Poisson process
will preserve the order. Otherwise, if there are any customers in service Atploel, the next
service completion is more likely to happen in systéprbut this can only preserve the order.

Assume that there arecustomers in queue in systefhand; = i in systemU. Then, by
our construction, any abandonment in thesystem will cause an abandonmentirand the
ordering is preserved.

By [27] we have the tightness of the sequenEécc). By [46] we have the tightness of the
sequencéd.”(oo).

The rest follows as in the proof of Theorem 4.2.2. |

Corollary 7.1.4 Assume (13) and

lim VNT(1=p}) — 8, —00 < 3 < . (153)
Then,
P{W; >0} =P{Z" >N = K"} — w(=0,/1/0) (154)

wherew(z, y) was defined in Theorem 7.1.2.

The next proposition is analog to Proposition 4.2.2 for the non-abandonment case. However,
in the context of abandonments we have a result that is somewhat weaker in the sense that we
do not find an exact asymptotic expression for the probability of delay of the high priority, but
rather an asymptotic upper bound.

68



Proposition 7.1.2 (Probability of Delay For everyr > 0

P{W/(o0) > 0} . ( NT )KT. e
P{W3(00) > 0} - T[;Z) (pp) ke =% = \N7 — K7 (155)

In particular for K™ = o(v/N") and assumingy(3) > 0 we have
J-1
P{W{(o0) >0} = O (w(—ﬁ, Vo) - (pi)%l“) (156)
k=i

kAT
wherepl, = >, G

Proof:

By the same considerations as in the non-abandonment case we have that

Zi~ A Kit1—-K;
P{W,; > 0|W;11 > 0} < (ﬁ) (157)

The proof is completed as in the case without abandonment.

Corollary 7.1.5 Probability of Abandonment
Denote byP] { Ab} the probability of abandonment for class Then

lim VNTPI{Ab} = Ay ,0 < Ay < 00 (158)

whereA, is given by

A, { g,;l[\/ek/u (BN fB) = B w(=8,\/ufO) k=T 159

Otherwise.

r

. A
Herea, is equal tolim VR

r—00 k
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7.1.4 Asymptotic Optimality - Cost Criterion

In this section, we consider the solution to a specific setting of (124). In the no-abandonment
case our optimality results were based heavily on the existing results for the single class case
(as given in [11]). However, at this point, there are no such results for the abandonment case.
Hence, we limit our discussion to asymptotic optimality of the threshold policy under given
staffing levels and do not include staffing recommendations.

Also, we restrict our attention to a certain setting of the problem in which;thec; whenever
g; > 0;. i.e. the case where the value the system gives to the different customer classes is
proportional to their relative patience.

We restrict ourselves to systems which are in@ieD regime. Formally we consider systems
in which the staffing level of the‘h system N, is such that

VNT(1=p') — 8, —00 < ff < 0.

Actually, the results are applicable also to the Efficiency Driven regime, but we do not discuss
this here, since we would need for that purpose analysig a¥//{ K;} model with abandon-
ments in the ED regime. We leave this part for future research. However, we would like to
mention that even in the particular case of the Efficiency Driven regime, in whieh ¢ > 1,

we can show that the thresholds have a very positive impact on the abandonment cost.

We now turn the definition of asymptotic optimality in the context of abandonment cost.

Definition: Assume

VNT(1=p') — 3,0< 3 < co. (160)

The sequencén”} is asymptotically optimal with respect ¥, if for any sequence of policies

{7} we have that
) ) Cr(,fr'r’ NT)
lim inf

——>1
00 CT(TFT,NT) -

177

whereC” (7", N") = Y27, &\ P7" { Ab}

Under this definition, we have the following:

Theorem 7.1.6 Consider a sequence of multi-class multi-server systems, witit"tliéass
customers have finite patience with rate

Assume that all of the following three conditions holds:
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(@) Thed;’s are such that] > c; whenever); > 0;, where we allow;, i = 1,...,J — 110
grow polynomially with- (i.e ¢ = ¢; - ¢, v; = 0).

(b) Condition (13) holds.

(c) The staffing is such that

VNT(1=p') — 8, —00 < ff < 0.

Then, serving the classes in decreasing ordet;6f and according to threshold priorities
asymptotically minimize€”. In particular, choose the threshold such that the probability of
delay for class, i = 1,...,J — 1 is ;. Or, equivalently, choose

K- KL= | (161)

Ina;_; —In ai-‘

Inp;_,

whereq; = N7,

Proof:

First, we would like to create a lower bound for the overall number of abandonments. We can
restrict our attention to preemptive policies. Since all r.v’s involved here are exponential, al-
lowing preemption cannot damage the performance when looking at the overall abandonment
rate.

Denote byA, a system with the arrival, service and abandonment parameters as defined before.

Denote byB a system with the same arrival and service parameters but such that the patience
parameters are the same for all classes and are equal to

6 = min 6,.
i=1,...,.J

Under any non-idling policy, systems behaves (in the sense of the overall abandonment) as
asingle clas3//M/N + M.

Now, note that for any non-idling policy, the average length of the excursions below the level
of N is equal for systemd andB. Now, let us focus on the excursions abadvethe positive
excursions): it is clear (and can be proved by simple coupling arguments), that the positive
excursions in systen are stochastically larger than the positive excursions in system
Furthermore, when visiting/, the probability of starting a positive excursion is the same for
both systems.

71



Denote byY; the overall number of customers in system € {A, B}, by Z; the average
number of busy servers, arfg{ Ab} the probability of abandonment in systemThen, for
any non-idling policy

P{Y4 > N} < P{Y3 > N} (162)

Moreover, since the negative excursions have the same law, we have that

E[Z4|YA < N] = E[Zp|Yp < N] (163)

Hence, we have that

E[Z4] = E[Za|Ya < N|P{Ys < N} + NP{Y4 > N}

(164)

But, by Little’s Law
E[Z) = 2(1 - P{AB})
o

and hence we have that
Po{Ab} > Py{Ab} (165)

So, systemB with non-idling policy constitutes a lower bound for our system with respect to
the overall probability of abandonment.

Having the lower bound, we can not proceed with the asymptotic optimality.

By our condition on the;’s andé,’s and by Proposition 7.1.5, we have that the lower bound
which isc;APg{ Ab} is asymptotically achieved, for any logarithmic threshold level.

Now, if we allow the abandonment costs of high priorities to grow polynomially wiklke can
still achieve the lower bound by using thresholds such that the probability of delay for class
is ano(1/N7~1/2). u
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7.1.5 Asymptotic Optimality - Constraint Satisfaction

In this section, we wish to tackle the question of staffing a large call center when the opti-
mization problem is given by (125). We give here the result for the case in whichy; <
1,7=1,...,J are fixed (independently of system size). Under this configuration we allow the
different classes to have different service rate (in particular we assume that the service time
of classi customers is exponentially distributed with ratg. The optimal policy in this case

gives rise to a pool decomposition solution. i.e. decomposé\tlservers into/ groups of
servers, such that clagsustomers will be served only by grougservers. It is, however,
interesting to examine the question what is the optimal policy in the general case, in which the
«;'s are allowed to vary with the system size. It seems that this more general question requires
different tools than those used in this work and hence we leave it for future research.

In the following, we assume, without loss of generality, that the classes are ordered such that
a; > ai whenever > k. Also, we still demand that condition (13) holds.

Before proving the optimality of the pool decomposition policy we would like to state the
definition of asymptotic optimality in this context. In the non-abandonment case we centered
the cost around the lower boufd/x.] in order to get a meaningful result. This is clearly not

a lower bound in the case with abandonment.

Lemma 7.1.7 Consider a multi-class system where clasgstomers have exponential service
times and patience with rates andd;, respectively.

Fix » > 0 and denote by/N")* the optimal solution to (125). Then,

(N =3 21— ). (166)

where, as beforey” = 527 A7,

Proof: For this proof, and sinceis fixed, we omit the superscript for simplicity of notation.

DefineT;(t) to be the cumulative time dedicated to service of clasgstomers up to time
t. Define R;(t) to be the number of abandonments from classtil time ¢, A;(t) to be
the number of arrivals to clagsuntil time ¢, Q;(¢) to be the class queue length at time,
and D;(t) the number of service completions from claamitil time ¢. Also, defineT'(t) =
YL T(), D) = XL Di(t), Q) = L, Qit), R(t) = 321, Ri(t). Finally, P{Ab} is
the overall probability of abandonmene{ Ab} = 377 | 2 P{ Ab}.
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Then, we have:

0; > PLAD) — fim ) _ g, 4D = DD +Qilt)

— L =1,..., J.
t—00 Az<t> t—00 Az(t) tililo )\Zt ) VZ ) 7J

(167)
To justify the last equality, note the following:

o A;(t) — oo, ast — oo. Also A;(t) = N\i(t) + M4(t) whereM (t) is a locally square-
A

integrable martingale for whichm;, .« ]Z ((t)) =0

e Steady state exists and henae, ... gj—g; -0

e D;(t) = wTi(t) + My(t) where Mr(t) is a locally square-integrable martingale for
which lim, ., 2zl _, ¢,

Aqi(t)
o Ti(t) — oo, ast — oo (otherwisdim,_. f}'—g) — 1). Hencelim, o %' Etg = limy_o “;_Tgt()t).
We can re-write the last equation as
hm 1 — T (t) /Nt <«

or, alternatively, as

J J )\

N* > lim T;(t Z—l—az.
t—o0 L
=1 =1
|

Having the lower bound, we proceed to the definition of asymptotic optimality:

Definition: Suppose that the sequend®”, 7" }* is an optimal solution of (125) with respect
to the sequence of arrival rates vectdr Then the sequencfN", 7"} is asymptotically
optimal if when used for the system,

e limsup,_ . P/{Ab} <«;,Vi=1,...,J,and,

. - N — N’
o if we take any other sequence of policigs?, 75} thenlim inf ﬁ > 1,
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whereN" = S7  2i(1 — ).

=1
The following is an immediate result of the lower bound.
Proposition 7.1.3 For (125) the following policy is asymptotically optimal (in the sense of the
last definition):
Partition the server pool into distinct pools of sizZ&s i = 1, ... .J, whereN; = L%(l —ay)].
Let classi customers be served only by the servers of'thpool (i.e. convert the system into

J single class systems).

Proof: The proposed policy and staffing are clearly asymptotically feasible. Each class is now
served in a single clas¥/ /M /N + M with ED staffing, and, by the choice of the staffing, the
probability of abandonment for classs o; (see for example [69]).

The optimality is immediate since the lower bound is approached from below.
[

Remark: Similar procedures are likely to work for more general network topologies in which
the service times are also dependent of the servers (i.e. when clast®mers are served by
server type with rateyu;;.

Remark: Performance measures for the proposed policy can be found in Whitt [69].
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M1 H2

Figure 4. The N Model

7.2 Ongoing Research - An N Model

In the previous sections of this paper we analyzed the V Model which constitutes a single
server type and multiple customers classes. Armony and Mandelbaum [2] analyzed the case
of multiple server types and a single customer class (denoted thiodel) and established

the asymptotic optimality of a certain staffing and routing scheme. These two models can
be thought of as building blocks for the more general multi-class multi-type systems. In this
section we introduce some ongoing research that considers a more general, but still relatively
simple system. In particular, we consider the N Model depicted in Figure 4, that can be
thought of as a combination of the V Model and fhéviodel. While the VV Model isolates the
scheduling problem (which customer to admit into service upon a service completion) and the
/\ Model isolates the routing problem (which server to choose upon a customer arrival), the N
Model combines scheduling and routing.

The N model constitutes two customer classes (1 and 2) arriving according to independent
poisson processes with arrival ratefor classi, : = 1,2. A class2 customer can be served

only by a type2 server and his service will take on averagg:; units of time. Class 1
customers can be served by both server types. A service of alctasgomer by a typé

server will take, on averagé,/;; units of time. service of a classcustomer by a typé

server will take, on averagé/ .3 units of time
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Figure 5: The/\ Model

An analytical method for calculation of steady state performance measures was given by Stan-
ford and Grassmann [54] [54] which consider a special case in whieh s = pu3 = p. The
policy analyzed is the following:

Type 2 servers give non-preemptive priority to class 2 customers. In the event that no class 2
customers are waiting and all typeservers are busy, a type 2 server that becomes available
would select a waiting class 1 customer for service, if any is present. A class 1 customer that
arrives and finds any type server available will be served by type 1 servers. Otherwise, if all
type 1 servers are busy and there are any available type 2 servers, he will be served by a type
2 server.

Shumsky [56] gives an approximation scheme for the steady state distribution of the N Model
under the same policy and with = p3. Bell and Williams [9] analyzed the N Model in the
context of conventional heavy traffic and established the asymptotic optimality of a certain
threshold policy.

Yahalom and Mandelbaum [72] found that for certain settings of the N model, for which
io = s, the optimal policies are threshold policies combining thresholds on the number in
gueue and number of busy servers.

As mentioned above, [2] analyzes themodel (as described in Figure 5). The model, which
constitutes a single customers class and multiple server types, is, in a sense, symmetric to the
previously discussedd model. Armony and Mandelbaum [2] solve concurrently the asymptot-
ically optimal staffing and routing problem in the context of Halfin-Whitt asymptotics as we
did in the first part of this paper for thé Model. Our aim in this section is to combine both
results to obtain the asymptotically optimal staffing, scheduling and routing for the N-Model.
The work done in [2] turns out to be extremely useful for our setting since most of the methods
employed there can be almost automatically adopted to our setting here.
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As in [72], and for tractability, we limit our attention to settings of the N Model in which

1o = psz. The different settings we wish to consider vary in the value of the two customers
classes (class 1 might be VIP or the opposite), in the cost of the different server types and in
the relation between; and .

To illustrate this ongoing research we state here only results for a single specific setting. We
limit ourselves to presentation of the asymptotically optimal policy and staffing, while omit-
ting the propositions and their proofs. For the optimal policy we also have asymptotic analysis
of performance measures (diffusion and steady state). These are also omitted.

The setting we present is the following: We consider the model in Figure 4with= 5 =

13, and where class 2 customers are the VIP customers. A motivation for this setting could
be as follows. Class 2 are VIP customers requiring a certain type of service which can be
given only by specialists of server type 2. Class 1 customers are regular customers who need
a regular service which takes a shorter time. The experienced type 2 servers are capable of
handling the regular service (but at a cost of slower service to tlashile type 1 servers

are not trained to handle the service required by the VIP customers. For this scenario the
following policy was proved to be optimal in [72]:

e When a type 1 server completes a service, she will admit a class 1 customer to service
if there are any waiting in queue 1.

e When a type 2 server completes a service, she will admit a class 2 customer to service,
if any are waiting in queue 2. Otherwise, she will admit a class 1 customer if there are
at leasty; (1) waiting in queue 1, where the threshald /,) is a function of the system
state.

e When a class 2 customer arrives to an empty queue 2, she will begin service with a type
2 server if any of them is idle.

e When a class 1 customer arrives to an empty queue 1, she will begin service with anidle
type 1 server. If all type 1 servers are busy and there are atllpadie type 2 servers
(or, equivalently, ifg; (1) < 1), she will begin service with one of them.

Since we wish to solve the control and staffing problems jointly, we consider the problem of
minimizing staffing costs and waiting costs of the VIP customers. In addition, we impose
constraints on the probability of delay for each class. Formally, we examine the following
optimization problem:
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minimize ¢, Ny + coNy + e, Mo E[Ws|Wy > 0]
subject to (168)
P.(W;>0)<a;, 0<a; <1,i=1,2, forsomer € II.
Herell, as before, is the set of all non-preemptive non-anticipative scheduling policies, and
¢ IS the cost of a VIP customer waiting one unit of time. Also, we assumexthat ;.

Actually, we can limit ourselves to policies in which class 2 customers are served as soon
as possible: When a type 2 server completes service he will choose to serve next a class 2
customer if there is one waiting in queue. To support this it can be shown that for any fixed
N2 (N1, Na), ¢, E[W3|W, > 0] is minimized by such a policy.

The waiting cost can therefore be re-written% (since, given wait, the waiting

of VIP customers has the same distribution as the waiting time given wait in a single class
M /M /1 queue with service rat&,., and arrival rate\,). We restate the optimization prob-

lem as follows:

minimize ¢, Ny + ¢ Ny + ¢, NQ:;_M

subject to (169)
P,(W; >0) <a;, 0<aq; <1, forsomer € 1

As done for the V Model, we consider a sequence of systems indexee:bly 2, ... such that
A" — oo and we assume non-negligibility of both classes%.ee a; >0,1=1,2.

We consider a sequence df models indexed by the superscripte 1,2, .... For systenr,

we now present the asymptotically optimal poliay, In contrast to the optimal policy of

[72], the thresholds in this policy do not depend on the system state. Moreover, there are only
thresholds on the number of idle servers and not on queue lengths. For fixed systerfi size,

is as follows:

When a type 1 server completes a service, she will admit a class 1 customer to service
if there are any waiting in queue 1.

When a type 2 server completes a service, she will admit a class 2 customer to service,
if any are waiting in queue 2; otherwise she will admit a class 1 customer.

When a class 2 customer arrives to an empty queue 2, she will begin service with a type
2 server if any of them is idle.

When a class 1 customer arrives to an empty queue 1, she will begin service with an idle
type 1 server. If all type 1 servers are busy, she will begin service with an idle type 2
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server only if there are more thdt’” type 2 servers idle.

Let N" = (N7, N5) be the optimal solution to the following convex program:

minimize ¢, N7 + co N3 + CZJ_NQ;ZQ*M
2

subject to g N7 + o Ny > X+ 6/ A" (170)
paNg > Ay

whered > (0 is chosen so that:

(6/ V)2 (5/ )] ™"

b )

ay. (171)

Denote byC" the solution to the above optimization problem whies- 0. ThenC" is the
minimum cost when we only demand stability and it is clearly a lower bound for the cost of
the original problem.

r _ [lhay—Ina
Let K" = (fn—p{l}

AT
Nypa*

in which p} =

Let C"(N",7") = ¢; Ny + caNy + ¢, N2,j\22—)\5'

Then, we can prove the following:
Assume that” = ©(\"). Then(N", ") with K" given above, are asymptotically optimal in
the following sense:

e Feasibility: lim sup,_, , P{W/(c0) > 0} < oy, i = 1, 2.

e Optimality: If we take any other feasible sequed@%,
hatr"), we have that

— —>721

The interesting fact is that, similarly to the V Model, the complicated state dependent optimal
policy becomes asymptotically simple.

The above is just an illustration of what can be done in the context of the N Model. Our aim is
to complete the picture by finding optimal staffing and controls for additional settings of the
N Model, hopefully all of them.
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8 Future Research

In this work we a have limited our attention mainly to the V-Model of Skills-Based Routing.
We have tried to make the problem as realistic as possible. However, some more work is
required to understand the effects of limited number of lines, retrials and feedback as well as
the issue of different service requirements for different classes.

The V-Model is a simple example of Skills-Based Routing that isolates the scheduling prob-
lem. A natural continuation, as illustrated in Section 7.2, would be to combine the results of
this work with other related works (such as [2]) to obtain results for networks of more general
topology such as th&’ Model.

Also, the work done in this thesis lays the ground for the solution of several design problems.
For example, the results of this thesis can be used to consider the question of pooling several V
models (orl models) when the pooling incurs a cost as a result of the required cross-training
of the CSRs.

We have dealt only briefly with abandonments. In this context, there is still a need for more
general results to the two optimization problems that where presented in Section 7.1.
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9 Appendix - Efficiency Driven M /M /N

In Section 5, we introduced the diffusion limit for the Efficiency Drivify M /{ K;} model.
The result there is heavily based on having an Efficiency Driven limit for the single class
M/M/N queue.

In the next proposition we consider a sequenc@of\//N queues where, for simplicity of
notation, we use the number of servers as the index. We wish to examine the limits obtained
in the Efficiency Driven regime, i.e. we fix 1/2 < § < 1, and let\" grow in the following
manner:

No(1—pN) = B,0< 3 < . (172)

Our aim is to prove convergence of the proc€s¥t) (standing for the total number of cus-
tomer in systemV at timet) to a Reflected Brownian Motion. This result was proved in [70]
for the particular case in which = 1. Essentially, the limit we obtain here is the same as
would be obtained in the conventional heavy traffic regime where the number of sé¥yers,
is held fixed and the load is increased to one.

Essentially, in order to obtain convergence, all that we have to do is prove that the time that the
processX spends below zero becomes negligibleNagrows indefinitely. Since the positive

part is clearly the same as in the case oflé\/ /1 queue with fast arrivals and fast services,

the result will follow by a time change argument.

The proof of the next proposition is just an adaptation of the proof used in Garnett’s M.Sc.
Thesis [26] for the proof of part 3 of Theorem 6.2 there (A brief version of Garnett's proof
can be found in Garnett et al. [27], where most of the details are omitted).

Let XV (¢) be the scaled process, i.e.

XN(t) = (173)

First we quote again proposition 5.1.1.

Proposition 5.1.1 Consider a sequence af /M /N system indexed by = 1,2, ..., such
that
N°(1—pN) = 0< B < oo, (174)

Assume% = X (0), whereX (0) > 0, a.s. Then,
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XN(t) = RBM(—Bu,2u) (175)

Remark: The conditionX'(0) > 0 is necessary for the limit process to be continuous on
[0, 00). Otherwise, we would have a limit process that is continuous only on the open interval
(0,00). See [26] and the references therein for more details on this kind of limits.

Proof:

The time changed process, when restricting the process to be positive, is the same as an
M/M/1 queue with fast arrivals and fast service and converges by known results (see for
example [43]) to the desired limit. Formally, denote4fy(¢) and 7" (¢) the time the process
spends above zero and below zero respectively, i.e.

t
T (t) = / Lx~(s)>01d5, (176)

0

t
V() = / Lix~(5)<0yds, (177)

0

Then,

XY orY = RBM(—08pu,2u). (178)

Where f o g is the composition map (i.ef o g(t) = f(g(t))). By the random time change
theorem all that is left to prove is that

™ (t) = 0. (179)

Let us look at the proces3” (N?~!t). Let AV be the length of thé" period in which there
is no queue (i.eQ" < 0). Also let BN be the length of theé" busy period (i.e.Q" > 0
during this times). LeC" = AN + BY¥ i = 1,2, ... be the length of thé'" cycle, where a
cycle consists of a busy period and a non-busy period.

By the Markovian structure of the proceS;} }°, is a sequence of I.1.D random variables.

Let oV (T) be the number of cycles that begin until tifigor formally

o™N(T) = min{n : 2”: cN>T} (180)
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Then,o™ (T is a stopping time with respect to the sequeficg’ }.

What we are seeking to prove is that

oN(T)
. N o
lim Py Z; BY > ¢} =0. (181)

We will prove the convergence Qf;’jlm A to zeroinC!, which in turn implies convergence
in probability.

We will assume for now tha®)™ (0) = 0, so thatC}¥ will have the same distribution as any
otherC}. We will relax this assumption later.

Note thatN°(1 — pV) — 3 implies thatNu — A ~ N'=°. Now, BY is just a busy period in
anM /M /1 queue with accelerated time scale. Hence,
1 1

BB = iy, =)~ GV (182)

N°(1 — pN) — § also implies that/N(1 — p") — 0 and hence, following [26] and due to
the time acceleration, we will have also that

whereh is the hazard rate function of a standard normal r.v (kex) = ¢(x)/(1 — ®(x)).

Hence, we have thaf[C'] ~ 55.

From here, following exactly pages (64-67) of [26], witflV replaced byV?, h(—3) replaced
by 5 and B replaced by4", we can conclude that

limy oo B[S AY] < 0.

It is only left to remove the assumption th@t' (0) = 0.

If X(0) > 0a.s. the result clearly holds with a limit that is continuous|@mc). So, let

us assume thak (0) = 0. . WheneverQ” (0) > 0 the result clearly holds since the time
spent below zero would be stochastically smaller than in the case@ittd) = 0. The
only problem is wher®)™¥ (0) < 0 (remember that we are still dealing with the case in which
X (0) = 0 which means tha®)™ (0) = o(N79)).
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We will prove that if Q™ (0) < 0 and X (0) = 0

lim E[A)] =0, (183)

N—o0

and hence the negative part still disappears in the limit. In particular, dendt/gfvbfl the
expected time it takes for the process to arrive fildm- k£ to N. Then

e Gz
AN H(N=k+1)p

Vit < BAY] =
L= <)\N+(N—k+1),u>

(184)

The above is obtained by a simple adaptation of pages (67-68) in [26]. MloW!] = o(+)

Né
and the result follows. [ |
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