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Abstract

We analyze The V-Model of Skills Based Routing. This is a model in which servers are

homogeneous, and there areJ customer classes having the same service requirements. With

respect to the V-Model we ask the following questions:

1. Given a fixed number of servers, how to schedule servers to the different customer

classes so as to optimize system performance, and

2. How many servers are required in order to minimize staffing and waiting costs while

maintaining pre-specified performance goals.

We address these questions by first characterizing a scheduling scheme and staffing scheme

that are asymptotically optimal as the arrival rate increases to infinity. The asymptotic optimal-

ity is in the sense that the policy (asymptotically and stochastically) minimizes the steady-state

waiting and staffing costs while satisfying a pre-specified waiting probability in steady-state,

asymptotically as the arrival rate grows large.

The main asymptotic framework considered in this paper is the many-server heavy-traffic

regime formally introduced by Halfin and Whitt. We refer to this regime as the QED (Quality

and Efficiency Driven) regime. In the concluding sections, we extend the V-Model by adding

abandonment and considering optimization of staffing and control under certain cost struc-

tures. To conclude, we briefly introduce some ongoing research about the N Model of Skills

Based Routing.
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1 Introduction 1

In modern service systems it is common to have multiple classes of customers and multiple

server types (skills). The customer classes are differentiated according to their service needs.

The server types are characterized by the subset of customer classes that they can adequately

serve and the quality of service that they can devote to each such class. An important exam-

ple of such large scale service systems are multi-skill call/contact-centers. Such centers are

often characterized by multiple classes of calls (classified according to type or level of ser-

vice requested, langauge spoken, perceived value of customers, etc.). To match the various

service needs of those customers, call centers often consist of hundreds or even thousands of

customer service representatives (CSRs). These CSRs have different skills, depending on the

call classes that they can handle, and the speed in which they do it.

There are three main issues to address when dealing with the operations management of large-

scale service systems. Given a forecast of the customers’ arrival rates and their service re-

quirements, these issues are:

• Design: The long-term problem of determining the class partitioning of customers,

and the types of servers; this typically includes overlapping skills (i.e. servers that can

handle more than one class of customers, and classes that can be served by several server

types).

• Staffing: The short-term problem of determining how many servers are needed of each

type, in order to deal with the given demand. These server types may be of overlapping

skills. (In addition, there is a scheduling problem which determines the shift structure

for the system, as well as the determining of who are the actual servers that would work

in these shifts. The last two issues will not be discussed in this work.)

• Control: The on-line problem of customer routing and server scheduling that involves

the assignment of customers to the appropriate server upon service completion or a

customer’s arrival.

These three problems are all interrelated and should, therefore, be discussed in conjunction

with one another. Yet, because of the complexity involved in addressing all these three com-

bined, they are typically addressed hierarchically and unilaterally in the literature.

Even when one addresses the three issues separately, a general solution for all possible system

configurations is currently out of reach. Instead, we approach the problem by studying a

1The introduction is adapted from the paper by Armony and Mandelbaum [2], with the authors’ approval.
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Figure 1: The V Model - multiple customers classes and a single server type.

relatively simple model in order to gain insight to the more general model. The model we focus

on in this work is the V-design. This is a system design in which servers are homogeneous,

and there areJ customer classes having the same service time requirements. The V-design is

depicted in Figure 1.

With respect to the V-design we ask the following two questions:

1. Given a fixed number of servers, how to schedule servers to the different customer

classes so as to optimize system performance, and

2. How many servers are required in order to minimize staffing and waiting costs while

maintaining pre-specified performance goals.

We address these questions by first characterizing a scheduling scheme and staffing scheme

that are asymptotically optimal as the arrival rate increases to infinity. The asymptotic optimal-

ity is in the sense that the policy (asymptotically and stochastically) minimizes the steady-state

waiting and staffing costs while satisfying a pre-specified waiting probability in steady-state,

asymptotically as the arrival rate grows large.

The main asymptotic framework considered in this paper is the many-server heavy-traffic

regime acknowledged by Erlang [18], Jagerman [35] and ultimately introduced and formal-

ized by Halfin and Whitt [30]. We refer to this regime as the QED (Quality and Efficiency

Driven) regime. Systems that operate in the QED regime enjoy a rare combination of high

efficiency together with high quality of service. More formally, consider a sequence of sys-

tems of a fixed design and an increasing arrival rateλ. Suppose that the total service capacity
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of each system in the sequence exceedsλ by a safety capacity of order
√

λ. In particular,

the traffic intensity (or server efficiency) approaches 1 asλ→∞ (i.e. the system goes to heavy

traffic). On the other hand, the high quality aspect of the QED regime may be seen through it’s

following alternative characterization: Suppose that asλ→∞, the limiting waiting probability

is non-trivial (ie. it is strictly between0 and1). This high performance, which is typically im-

possible to achieve for systems in heavy traffic, is obtained here due to the economies of scale

associated with the large number of servers. The two characterizations of the QED regime

are shown to be equivalent in various settings, as first established in [30]. (See the literature

review, Section 1.1.1 for more details). In the present work we establish this equivalence for

the V-Model.

1.1 Literature Review

1.1.1 The QED regime: asymptotic theory of many-server queues.

The QED regime has been given much attention in the last few years, especially the “Ik”-

model, which corresponds to multiple independent queues, each with its own devoted server

pool (no overlap in skills). For a formal description, consider a sequence ofN -server queues,

indexed byr = 1, 2, . . .. Define theoffered loadby Rr = λr

µ
, whereλr is the arrival-rate andµ

the service-rate. The QED regime is achieved by choosingλr andN r so that
√

N r(1− ρr) →
β, asr ↑ ∞, for some finiteβ. Hereρr = Rr/N r. When customers have infinite patienceρr

may be interpreted as the long-run servers’ utilization and0 < β < ∞. Otherwise,ρr is the

offered load per server and−∞ < β < ∞. Equivalently, the staffing level is approximately

given by

N r ≈ Rr + β
√

Rr, −∞ < β < ∞ . (1)

Yet another equivalent characterization is a non-trivial limit (within(0, 1)) of the fraction of

delayedcustomers. The latter equivalence was established for GI/M/N [30], GI/D/N [36] and

M/M/N with exponential patience [27].

Due to the desirable features of the QED regime, it has enjoyed recently considerable atten-

tion in the literature. Yet the regime was explicitly recognized already in Erlang’s 1923 paper

(that appeared in [18]) which addresses both Erlang-B (M/M/N/N) and Erlang-C (M/M/N)

models. Later on, extensive related work took place in various telecom companies but little

has been openly documented, as in Sze [59] (who was actually motivated by AT&T call cen-

ters operating in the QED regime). A precise characterization of the asymptotic expansion of

the blocking probability, for Erlang-B in the QED regime, was given in Jagerman [35]; see

also Whitt [66], and then Massey and Wallace [46] for the analysis of finite buffers. But the

operational significance of the QED regime, in particular its balancing of “service and econ-

11



omy” via a non-trivial delay probability, was first discovered and formalized by Halfin and

Whitt [30]: within the GI/M/N framework, they analyzed the scaled number of customers,

both in steady state and as a stochastic process. Recent generalizations for non-exponential

service times were made by Whitt [67, 68]. Convergence of the scaled queueing process, in

the more general GI/PH/N setting, was established By Puhalskii and Reiman in [50]. Appli-

cation of QED queues to modelling and staffing of telephone call centers and communication

networks, taking into account customers’ impatience, can be found in Garnett et al. [27] and

Fleming et al. [21], respectively. The optimality of the QED regime, under revenue maxi-

mization or constraint satisfaction, is discussed in Borst et al. [11] and in [41, 4, 5, 2]. Readers

are referred to Sections 4 and 5.1.4 of Gans et al. [22] for a survey of the QED regime, both

practically and academically.

It is important to note that the QED regime differs in significant ways from the conventional (or

“classical”) heavy traffic regime. Indeed, QED combines light and heavy traffic characteris-

tics. For example, in conventional heavy traffic, the theory of which has been well established

(see for example Chen & Yao [16]), essentially all customers are delayed prior to service. In

the QED regime, on the other hand, a non-trivial fraction is served immediately upon arrival.

Also, conventional heavy traffic can be achieved by settingN r ≈ Rr + β, for some constant

β, rather than the square-root form in (1).

To conclude this part we would like to use the characterization through the probability of delay

to partition the spectrum of operational regimes. We identify three operational regimes:

• Efficiency Driven (ED): Almost all the customers wait -P{Wait > 0} ≈ 1.

• Quality and Efficiency Driven (QED): a non trivial fraction of the customers wait

-P{Wait > 0} ≈ α, 0 < α < 1.

• Quality Driven: Only a negligible portion of the customers wait -P{Wait > 0} ≈ 0.

In the rest of the paper, we will focus mainly on theQED andED regimes. For more details

on the different operational regimes readers are referred to [22].

1.1.2 Skill-based Routing

Of the three issues related to the management of large-scale service system, the control prob-

lem has received the most attention in the literature. Specifically, for a given design, and

staffing levels, researchers have proposed routing and / or scheduling schemes that are either
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optimal or near-optimal. Alternatively, researchers have considered commonly used rout-

ing schemes (such as fixed priority rules, or dedicated servers per customer class) and com-

puted the relevant performance measures. Examples for both criteria include:Exact analysis

(Kella and Yechiali [39], Federgruen and Groenvelt [20], Schaack and Larson [55], Brandt

and Brandt [14], Gans and Zhou [25], Armony and Bambos [3], Rykov [53], Luh and Viniotis

[40], and de V́ericourt and Zhou [17],Asymptotic analysis - “conventional” heavy traffic

(Harrison [31], Bell and Williams [9], Glazebrook and Niño-Mora [28], Teh and Ward [71]

and Mandelbaum and Stolyar [44]) andAsymptotic analysis - QED regime(Armony and

Maglaras [4, 5], Harrison and Zeevi [32], and Atar et al. [6, 7]).

1.1.3 Staffing Rules

The staffing problem in the single-class, single-type case has also gained a lot of attention in

the literature. However, things are quite different in the case of multiple types of servers, as

is the case dealt with in [2]. The problem of determining how many servers of each type are

required is very difficult. This is especially true if skills overlap. In the latter case, one wishes

to take advantage of the flexibility of the servers who have multiple skills, but these servers

are typically more costly. The most common approaches taken by researchers to tackle the

staffing problem are:

• a) Heuristical bounds: Using heuristics to achieve performance bounds by analyzing

simpler (but related) systems (Examples include Borst and Seri [12], Whitt [65], and

Jennings et al. [37]),

• b) Stability Staffing: Staffing levels that guarantee system stability (Examples include

Bambos and Walrand [8], Gans and van Ryzin [23], Armony and Bambos [3]), and

• c) Cost minimizing staffing: For a given routing scheme, find the staffing level that

minimizes personnel costs while guaranteeing certain performance bounds, or alterna-

tively, such staffing levels that minimize personnel costs plus operating costs. (Exam-

ples include Borst et al. [11], Perry and Nilsson [48], Stanford and Grassmann [54] and

Shumsky [56]).

The common thread among these approaches is that they all focus on the QED regime, which

corresponds to the so-called square-root staffing rule (due to the form of the staffing rule

N ≈ R + β
√

R of equation (1)). Although these approaches arrive at the QED regime from

different points of view, they seem to produce similar results (at least for the single-class,

single-skill case). We next expand on some of the different approaches.
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Heuristic bounds: The approach of achieving staffing through heuristic bounds is based on

reducing the original system to a simpler system for which performance measures can be

easily obtained. The simpler system can then offer staffing levels for the original system, with

guaranteed upper or lower bound on performance. Two directions have been taken by different

researchers.

Borst and Seri [12] determine bounds for the number of agents required to offer a given level

of service by considering two systems: one in which servers are dedicated to a single customer

class (“Ik” design), and the other is a “V” design, in which all servers can serve all customers.

For the former they apply the well known formulae of the performance of an M/M/N system

to identify an upper bound on the number of agents needed. For the “V” design they use

results concerning the achievable performance of multi-server systems. This produces a lower

bound, due to the maximum flexibility that applies in this system. Today, more is known,

both about the staffing in the “I” design (the square-root staffing rule, for example), and about

the achievable region (Glazebrook and Niño-Mora [28] provide performance bounds for the

system with “V” design and different service requirements for different customer classes).

Therefore, one may be able to a) obtain tighter staffing bounds, and b) apply this approach to

more general designs.

The second approach taken by researchers (see, for example, Whitt [65] and Jennings et al.

[37]) is achieving performance bounds by considering an infinite server system. In a single

class infinite server system (M/G/∞), the number of busy servers found by an arriving cus-

tomer has a Poisson distribution with meanR = λ
µ
, and the heuristic assumes that in large

finite-server systems, this number isnearlyPoisson if delays are not prevalent. In turn, a Pois-

son random variable with meanR is approximately a normally distributed random variable

with meanR and standard deviation
√

R. Then, given a target waiting probability ofα, one

chooses the number of servers,N , to beN = R + β
√

R such that

α = 1− Φ(β).

This is justified by

P{Wait > 0} = P{Number of busy servers≥ N}
≈ P{R + Z

√
R ≥ R + β

√
R} = 1− Φ(β).

HereZ denotes a standard normal random variable, and the PASTA property ensures the first

equality. This heuristically justifies the applicability of the square-root safety-staffing rule,

and for small values ofP{Wait > 0}, the heuristic’s recommendation essentially matches that

of QED regime. In order to apply this approach in the multi-type case, one could perhaps use

performance measures of an infinite server, multiclass queueing system with a given design.

One example in which such performance measures have been computed is Alanyali and Hajek

[11].
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Stability staffing: If one is to apply the square-root staffing principle to complex multi-skill

settings, a natural question arises: how to define the offered load, beyond which one needs

to add a safety staffing. If the service rate of a classi customer is independent of the type of

server (that is, ifµij = µi for all j), then the offered load is easily calculated according to

R =
∑

i
λi

µi
. However, ifµij is different for differentj’s, then the offered load will generally

depend on the fraction of classi customers who are served by each server typej. In fact, in

this case, the offered load should be thought of as a vector of offered loads, whose entries are

the offered loads on each server pool. Armony and Bambos [3] propose a definition for the

vector of offered loads that is independent of the routing rule, and is based on a solution of an

optimization problem. Specifically, [3] sets up a mixed integer program (MIP) whose solution

specifies the number of servers required of each skill, in order to minimize personnel costs,

while ensuring that system instable(hence the name stability staffing). The solution of this

MIP (which for large systems may be approximated by a solution to a linear program) can be

treated as the vector of offered loads for staffing purposes.

Cost minimizing staffing: This approach takes the point of view of minimizing staffing costs

with respect to various constraints such as class-dependant bounds on the mean waiting times,

and on the probability of waiting more than pre-specified time. Alternatively, it seeks to

minimize total cost which is a sum of the staffing costs and the costs associated with waiting.

Both these points of view were taken in Borst et al. [11] for the staffing of a single class

call center. The authors in [11] formalized the optimality of the square-root staffing principle.

They verified the robustness and accuracy of this form ofN asR + β
√

R, and showed how

the actual value ofβ depends on the particular model and performance criteria used.

For the M/M/N model, [11] shows that the square-root principle is essentially asymptotically

optimal, for large heavily-loaded call centers (λ ↑ ∞, N ↑ ∞). There is an ample evidence,

however, that the principle is applicable much more broadly [27, 37, 50, 12, 4, 5, 2]. Given

the applicability of the square-root safety-staffing rule in many different settings, it is natural

to examine its applicability in the presence of multiple customer class and / or server types.

Note, however, that even in the single class case, there are situations in which the QED regime

is not optimal. For example, Jelenkovic et al. [36] show that for the G/D/N queue, if the

inter-arrival time distribution is heavy tailed, then the appropriate safety-staffing is of larger

order than square-root of the offered load. Having said that, we note that as long as the arrival

process is Poisson, or other renewal processes with light-tail inter-arrival time distribution, the

QED regime appears to be very robust.

Given the complexity of general large-scale service systems, it is difficult to assess the appli-

cability of the square-root safety-staffing rule to these systems. An approach that may lead

to simple staffing rules is that of looking atsimplerouting schemes (that may optimize other

performance criteria - other than cost minimization). This approach has already lead to a sim-

15



ple staffing rule in a particular multi-class setting (see [4] and [5]); indeed, conjecture that it

will be widely applicable in more general settings. In fact, we find it to be very useful for the

model studied in this paper.

The approaches described above are all quite promising; at the same time they each have their

own subtleties and challenges. The staffing rules obtained using these different approaches

may turn out to be quite different; nevertheless, they all enjoy the potential of producing inter-

esting and useful results. In this work, we take the third approach of minimizing staffing costs

while maintaining performance levels within pre-specified bounds. Moreover, we manage to

solve both routing and staffing problems simultaneously, a task which is commonly beyond

reach. An example in Harrison and Zeevi [33], in which the authors suggest an algorithm for

determining optimal routing and staffing levels when the target is to minimize overall aban-

donment costs in a general multi-class multi-type setting.

1.1.4 Design

On the design front, even less has been done. Ganz and Zhou [24] develop a dynamic pro-

gramming (DP) model of long term server hiring that admits a general class of controls. There,

the lower level routing problem is explicitly modelled as the core of the DP’s one-period cost

function, and the optimal hiring policies are characterized as analogues to “order-up-to” poli-

cies in the inventory literature. Other studies we are aware of focus on design for flexibility

that results from the cross-training of service reps. Such is the paper by Wallace and Whitt

[62] which shows how performance is improved with the increase of flexibility. In particular

[62] shows that the biggest improvement in performance is obtained when replacing a com-

pletely specialized system (with no overlapping skills) by a system with little flexibility. For

more on design for flexibility in service systems see Aksin and Karaesmen [1] and references

therein. There is also much work on design for flexibility in the context of manufacturing

systems. For an outline of the existing approaches and a survey of the literature on the subject

see Hopp and Van-Oyen [34] and the references therein.

1.1.5 The V Model

A particular case of the skills-based routing model is the so-called General V Model: several

customer types are served by one pool of servers. The importance of the General-V case is

that it isolates the scheduling problem of different types of customers between a group of

statistically identical servers. In [72] the authors considered the multi-server V-Model with

Poisson arrival streams and identically distributed exponential service time for all customer
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classes,µi = µ, ∀i = 1, 2, ..., J , whereJ is the number of classes. They considered the

optimization problem of minimizing discounted holding costs in the long run, where a classi

customer has a holding cost ofci per unit of time. Assume, without loss of generality, that the

ci’s are ordered in descending order (c1 ≥ c2... ≥ cJ ). Then the optimal policy is a threshold

policy where the control rule is:

Upon finishing a service, a server chooses to serve a classi customer if there are no customers

in all higher-priority queues and there are more thanKi(x) idle servers where0 ≤ K1 ≤ K2 ≤
.. ≤ KJ ≤ N , N is the number of servers andx = (x1, ..., xJ) is the state descriptor in which

xi, i > 1 describes the number of classi customers in queue andx1 describes the number of

class1 customers in queue plus the total number of customers in service (regardless of their

class identity). Within each queue, service follows a First-Come First-Served (FCFS) order. It

is important to note that [72] establishes structure for the optimal scheduling policy but it does

not address the problem of choosing the appropriate threshold levelsKi(x), i = 1, 2, ....., J .

The dependence of the thresholds on the state of the system makes the choice of the thresholds

a very complicated task.

Note that the proposed policy is not work conserving, namely lower priority customers may be

not allowed to enter service even though some of the servers are idle. When restricted to work

conserving policies and a single server, it can be proved by simple interchange arguments

(see [63]) that thecµ rule is optimal also when classes have different service requirements.

Thecµ rule is a static priority rule that assigns priorities according tociµi values: the higher

the value ofciµi the higher the priority of classi. Hereci is the cost incurred by a priorityi

customer waiting one unit of time, andµi is the service rate of priority i customers. As for

multi-server, the authors of [20] proved that thecµ rule is optimal among allwork-conserving

policies for the multi-classM/M/N queue with linear holding costs. This policy is clearly

suboptimal when allowing imposed idleness.

Under conventional heavy traffic the V Model, as well as much more complicated scenarios,

are amenable to analysis. Van Mieghem [61] analyzed the single server V Model under heavy

traffic and proved the asymptotic optimality of the so-called Generalizedcµ (or Gcµ) rule:

upon completion of service, a server chooses to serve next a customer of classi∗ for which

i∗ = arg max
i

C ′
i(Wi(t))µi ,

whereCi(t) is the (convex) cost incurred by a priorityi customer waitingt units of time

andWi(t) is the waiting time at timet of the oldest customer in queuei. Later, in [44], a

generalization of this policy was proved to be optimal under conventional heavy traffic for

convex holding cost functions and for a very rich family of network topologies, including the

V model.

Limits in theQED regime for the V Model were first introduced in Puhalskii and Reiman [50].
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Here, the authors considered the more general setting ofGI/PH/N . They allow each class

to a have a different Phase-Type service time distribution. convergence of the scaled queueing

process to multi-dimensional diffusion limits. In particular, they consider the limits of the V

Model under FIFO and non-preemptive priority schemes.

Armony et al. [4] and [5] were the first to consider a control problem in theQED regime. The

authors consider a call center with two classes of service: real-time and postponed service

with guaranteed delay. Callers self-select their type of service, given information on their

expected delay. The resulting system is a “V” design call center, with two customer classes,

and a single server pool. For this system, the authors in [4, 5] devise a routing algorithm which

is asymptotically optimal (in the sense that it minimizes real-time delays, while guaranteeing

the delay bound for the postponed service), and determine that the square-root safety-staffing

rule is optimal under the criteria of minimizing staffing costs, while maintaining pre-specified

performance measures (such as average waiting time, and the fraction of callers who wait

more than a certain length of time). Hence, [4, 5] are examples in which both the routing and

the staffing problems are solved jointly, and where the square-root staffing principle applies.

Another control problem of the V Model in theQED regime was considered in Rami et al. [6].

A Brownian Control Problem is constructed for the two class V model under exponentially

distributed service times and where both customer classes have exponential patience. For lin-

ear discounted queueing costs it is shown that under particular assumptions (such asµ1 = µ2)

the asymptotically optimal policy leads in the QED regime to a limit that is a one-dimensional

diffusion. This gives a structural insight about the asymptotic performance of the optimal pol-

icy but it does not suggest a specific policy to obtain this performance. In our work we show

that under certain cost functions, or alternatively under certain constraints, a threshold policy

in which the thresholds are stateindependent is optimal in some asymptotic sense. To this

end, we would like to introduce theM/M/{Ki} model.

1.1.6 TheM/M/{Ki} Model

M/M/{Ki} is a multi-class multi-server system in which different customer classes are served

according to a threshold policy, where thresholds (on the number of idle servers) are constants

and state independent. This service discipline is also motivated by applications in police and

ambulance dispatching, hospital bed management, communication channel allocation, and

many other priority queueing systems in which it is desirable to retain a “strategic reserve” of

servers for higher priority customers. See Schaack and Larson [55] for further discussion of

the relevance of the model to the dispatch of police cars. Also, see Rege and Sengupta [51]

for some interesting examples of application of the model to communications.
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More formally, the model assumes that customers from classi (i = 1, ..., J) arrive into an

N-Server queueing system according to a homogeneous Poisson process, with arrival rateλi

customers per unit time. All Poisson streams are independent. Service time is assumed to

be exponential with mean1/µ, independent of the priority of the customer or the identity

of the server. The service discipline is assumed to be non-preemptive. The threshold based

scheduling rule is then as follows:

Assign an idle server to a priorityi customer only if there are more thanKi idle servers and all

higher priority queues are empty (0 = K1 ≤ K2 ≤ ... ≤ KJ). Customers that upon arrival can

not be served immediately are backlogged in a queue dedicated to their priority class. Each

queue is depleted in a FCFS manner.

Our notation of the model is based on the notationM/M/{Ni}, used in [55], where it denotes

a Marokovian (Poisson) input, exponential service times, and a set of servercutoffs{Ni}. In

our notationKi denotes theleastnumber ofidle servers needed before accepting a priorityi

customer to service whereas, in the notation used in [55],Ni denotes the maximum number of

busy servers beyond which priorityi customers are not accepted to service. Thus,Ki + Ni =

N , i = 1, ..., J .

An exact analysis of the model, including the probability of delay for each priority type as well

as the Laplace transforms for their waiting times, was performed in [55], using anM/G/1

reduction, i.e. utilizing the fact that, given wait, the queue of classi customers behaves like an

M/G/1 queue where the Laplace transform ofG can be obtained by a sequence of recursive

equations. The recursive equations obtained in [55] translate into quite complicated expression

even for the two class case. LetPn be the steady state probability that n servers are busy

(0 ≤ n ≤ N ). Also let K be the threshold level for the low priority customers (that is, low

priority customers will enter service only if there are more than K idle servers). Finally, let

M = N −K. The stability conditions of the system, as given in [55], are:

λ1

Nµ
< 1 (2)

and

λ2h1(M) < 1 , (3)

where

h1(M) =
1

Mµ
+

N−M∑

k=2

λ1
k−1

µk
∏k−1

j=0(M + j)
+

λ1
N−M

(Nµ− λ) µN−M
∏N−M

l=1 (N − l)
. (4)

Under these conditions and the PASTA property we have by [55] that the probability of delay
for high priority customers is:

PN = P0 ·
(

λ1 + λ2

2

)M

· λ1

µ

N

· 1
N !

· 1
1− λ1

Nµ

· 1
1− λ2h1(M)

, (5)
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where

P0 =

[
M−1∑

n=0

(
λ1 + λ2

µ

)n 1
n!

+
N−1∑

n=M

(
λ1 + λ2

2

)M (
λ1

µ

)n 1
n!

1
1− λ2h1(M)

+
(

λ1 + λ2

2

)M (
λ1

µ

)N 1
N !

1
1− λ1

Nµ

1
1− λ2h1(M)

]−1

.

DefinePM+ to be delay probability for low priority customers. Then, by PASTA,PM+ is
equal to the probability thatM or more servers are busy, i.e.

PM+ = P0

(
N−1∑

n=M

(
λ1 + λ2

2

)M (
λ1

µ

)n 1
n!

1
1− λ2h1(M)

+
(

λ1 + λ2

2

)M (
λ1

µ

)N 1
N !

1
1− λ1

Nµ

1
1− λ2h1(M)

)
.

(6)

We denote byWi, i = 1, 2, the waiting time of classi customers. Then,

E[W2] =
F

2h1(M)
1

1− λ2h1(M)
(7)

where

F =
λ1/µN−M

∏N−M−1
j=0 (M + j)

2Nµ

(Nµ− λ1)3
+ 2

(
N−M−1∑

k=1

λ1/µk

∏k−1
j=0(M + j)

h1(M + k)2 + h1(M)2
)

(8)

In this work we will show how these complicated expressions translate asymptotically into

simpler forms. In the following section we summarize our results and illustrate some of them

through a simple example of a two-class V Model.

2 Summary of our Results

The asymptotically optimal routing policy we propose is a threshold type priority policy. Ac-

cording to the proposed policy a classi customer is admitted to service only if there are more

thanKi servers idle. The asymptotic optimality is in terms of the steady state holding costs and

delay constraints. The proposed policy allows one to differentiate between the probabilities

of delay for the different customers in a quite delicate manner. This is achieved by choosing

the appropriate sizes of the thresholds, which asymptotically turns out to be a rather simple

function of the problem parameters.

Moreover, we propose an asymptotically optimal staffing level that goes with the proposed

policy and gives rise to the QED regime. We show that for reasonable constraints on the prob-

ability of delay, this staffing level is determined easily as a function of the overall load on the

system and the parameters of the lowest priority class. We deduce that for an unconstrained,
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linear holding costs problem, thecµ rule is asymptotically optimal among all non-anticipating

policies: work conserving and non-work conserving.

We extend part of the results in Garnett et. al. [27] to the case of non-preemptive priorities

with thresholds where we allow the different classes to have different patience parameters.

Moreover, we show that under certain setting the threshold policy is optimal when one wishes

to minimize abandonment costs.

2.1 An Illustrative Example

N

1 2

1 2

Figure 2: An Example of a V Model

To clarify our results, let us consider a particular case of the V Model where there are two

customer classes: high priority and low priority (see Figure 2.1). The two classes are denoted

by 1 and 2 respectively. This model, despite its relative simplicity, already provides some

interesting insights.

The model specifics are as follows: Both classes have a common exponentially distributed

service time with rateµ. The arrival process for priorities 1 and 2 are Poisson with arrival
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ratesλ1 andλ2 respectively and we denote byλ the total arrival rate (i.e.λ = λ1 + λ2). The

only restriction we impose on the arrival rates is thatλ2 is comparable toλ, i.e. asλ increases

to infinity we assume thatλ2/λ → a2 wherea2 > 0. The reason will become clearer in the

following sections. For the meanwhile we just point out that, as long asλ2 is comparable toλ,

the high priority customers will experience light traffic regardless of whetherλ1 is comparable

toλ or not. Assume thatN , the total number of servers, is determined by the square root safety

staffing rule mentioned previously (N = R+β
√

R with R = λ1+λ2

µ
), and therefore the system

operates in the QED regime. We will show later that the QED regime is a direct outcome of

the optimization problem, similarly to [11]. That is, the QED regime is an outcome rather than

an assumption.

Once the staffing level has been determined there is still one degree of freedom in the model

parameters - the choice ofK2, the threshold level on the number of idle servers before serving

class 2 customers.

We will show how one can carefully adjust the threshold level to obtain different delay proba-

bilities for both classes.

Despite the fact that this model assumes non-preemption, one expects an asymptotic equiv-

alence of preemptive and non-preemptive strategies, as suggested in [6]. This enables the

following insight: while the low priority customers could experience different service lev-

els under the three different regimes, depending on the magnitude of the threshold, the high

priority customers will, regardless of the threshold chosen, experience a Quality Driven ser-

vice level. This becomes clear by noting that, under the preemptive policy, the high priority

customers do not “see” the low priority customers and therefore experience a system with

substantially more staffing than needed to accommodate their workload.

2.1.1 Steady State Analysis

The formulae obtained by the recursive equations in [55] are very complicated even for the

two-class case. We will show in the following sections that asymptotic analysis does not

require the explicit use of these formulae.

For the asymptotic analysis we consider a sequence ofM/M/{Ki} system, indexed by a

superscriptr that denotes therth system. For example:E[W r
1 ] stands for the average waiting

time of high priority customers in therth system. For the meanwhile let us assume that our

system is staffed according to theSquare-Root Staffingrule, i.e.λr andN r scale in a manner

that
√

N r(1− ρr) → β, 0 < β < ∞, asr →∞.
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As a preliminary observation, note that if all customers are served FIFO (with no differentia-

tion between both classes) the asymptotic probability of delay as given in [30] is

α(β) =

[
1 +

βΦ(β)

φ(β)

]−1

, (9)

in whichΦ(·) andφ(·) are the normal distribution and density function respectively.

Having this observation we can now describe what happens as we create service level differ-

entiation between the two classes, using theM/M/{Ki} model.

Table 1 is based on Section 4.2 and it summarizes the relations between the threshold level

and the service level, as experienced asymptotically by both customer classes. Here,ρr
1 stands

for the load generated by the high priority class, i.e.ρr
1 =

λr
1

Nrµ

For two sequences{an}∞n=1, {bn}∞n=1, we say thatan is Θ(bn) if limn→∞ an

bn
→ a, wherea is

a finite constant; Whena = 1 we say thatan ∼ bn. Also, b, c andd, are constant that do not

scale withr.

] ThresholdK ∼ P{W r
1 > 0} ∼ P{W r

2 > 0} E[W r
1 |W r

1 > 0] E[W r
2 |W r

2 > 0]

A 0 0 < α(β) < 1 0 < α(β) < 1 Θ( 1
N ) Θ( 1√

N
)

B b α(β) · ρb
1 α(β) Θ( 1

N ) Θ( 1√
N

)

C c · lnN α(β) · ρc ln N
1 α(β) Θ( 1

N ) Θ( 1√
N

)

D d · √N Θ(α(β − d)ρd
√

N
1 ) α(β − d) Θ( 1

N ) Θ( 1√
N

)

Table 1: A Two-Class V Model: Service Levels for Both Classes

Theβ in Table 1 is obtained via the Halfin Whitt limit forN servers and arrival rates equal to

N − β
√

N . For stability reasons (see Section 4.2.1 we assume thatd < β. In case D we have

that the probability of delay of the high priority is such that

P{W r
1 > 0}

α(β − d)(ρr
1)

d
√

Nr
→ η, 1 ≤ η ≤ ed2

Remarks on the probability of delay and the waiting time distribution:

1. Case A in Table 1 is simply a two class static priority system. In this system the proba-

bility of delay for both customer classes should be the same (equal toPN ) and asymp-

totically given byα(β) from (9).

2. In all cases,P{W2 > 0} is equal to the probability of the event “more than or exactly

N−K servers busy”. This probability is clearly smaller than the probability of the same
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event in a single class system with the same overall arrival rate andN−K servers. Also,

it is higher than the probability of findingN servers busy in a single class system with

the same overall arrival rate andN servers. This procedure results in tight bounds for

P{W2 > 0} and in turn it implies thatP{W r
2 > 0} → α(β). Actually, the same

reasoning works for any threshold that iso(
√

N), but it does not work for Case D. In

Proposition 4.2.1 we give the result for the general threshold case.

3. Note that in all cases, A-C, the probability of delay for the high priority is of the form

α(δ) · (ρr
1)

Kr
, whereδ equalsβ for cases A-C andβ1 for case D. Hence, the probability

of delay for high priority is always proportional toρ1 to the power of the threshold. The

result for the general case is given in Proposition 4.2.2.

4. In all cases, A-D, we can prove that
√

N rW r
2 converges to a mixture of an exponential

random variable and a point mass at the origin (see corollary 4.2.4. Proposition 4.2.3

gives asymptotic Laplace transforms and average waiting times for the high priorities.

Note that Table 1 does not cover the case where the threshold is proportional toN . The reason

is the instability of the system when the threshold is proportional toN . We give a simple set

of necessary and sufficient conditions for stability in Section 4.2.1.

2.1.2 Static Priorities

In this section we briefly consider the case of non-preemptive static priorities, which is a

particular case of theM/M/{Ki} model where allKi’s are taken to be zero (see Case A in

Table 1). Due to its relative simplicity, the static priority setting is very useful for developing

intuition that would apply later for the more generalM/M/{Ki} model.

The performance of the non-preemptive static priorities case was analyzed in Kella and Yechiali [39].

The average waiting times for this model are given by:

E[W1] = π[Nµ(1− ρ1)]
−1, E[W2] = π[Nµ(1− ρ2)(1− ρ1)]

−1

where

π =
(λ/µ)N

N !(1− ρ)

[
N−1∑
i=0

(λ/µ)i

i!
+

(λ/µ)N

N !(1− ρ)

]−1

,

andλ = λ1 + λ2, ρ1 = λ1/Nµ, ρ2 = λ2/Nµ andρ = ρ1 + ρ2.

Based on anM/G/1 reduction, [39] gives moments and Laplace transforms forW |W > 0 of

the different classes in the static priority V-Model. These expressions will be used later on to
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determine the limiting expressions ofW |W > 0 in the threshold system. As explained above,

the probability of delay for both customer classes is the same (equal toPN ) and asymptotically

given by formula (9) forα(β).

Preemptive Vs. Non-Preemptive

In Atar et al. [6], the authors suggested the asymptotic equivalence of preemptive and non-

preemptive policies for the V-Model. Again, through this simple setting the equivalence

(mainly for the low priorities) can be illustrated in quite a convincing manner.

The following conclusions can be drawn:

1. Probability of Delay:

The probability of delay for low priority will remain the same under preemptive and

non-preemptive regimes disciplines (since the Birth and Death process representing the

total number in system is the same for both disciplines). Consider again a sequence of

systems indexed byr such thatλr → ∞ and both classes are comparable. Choose the

staffing level in a manner that
√

N r(1− ρr) → β, 0 < β < ∞, whereρr = λr/(N rµ).

Under the preemptive discipline, the delay probability for the high priority is given

by the Erlang-C Formula for anM/M/N system with arrival rate equal toλ1 and it

converges to zero at rate

O

(
e−Nrρ1(N rρ1)

Nr

N r!(1− ρ1)

)
.

whereρ1 = limr→∞
λr
1

Nrµ
. For two positive sequences{an}, and{bn}, we say thatan

is O(bn) if for some constantc ≥ 0, lim sup an/bn ≤ c. This convergence can be

established by simple manipulations using the approximations for Poisson tails given

in [29].

2. Queue Lengths:

The sum processes (i.e. the total number of customers in system) for both preemptive

and non-preemptive disciplines are equal in law to the respective single classM/M/N

system with arrival rateλ1 + λ2. Therefore, by [30] we have that

1√
N r

(Qr
2 + Qr

1) ⇒ Q

whereQr
i denotes the steady state number of typei customers in therth queue andQ

is a proper random variable. For both the preemptive and the non-preemptive cases we

claim that,
1√
N r

Qr
1 ⇒ 0

25



and therefore
1√
N r

Qr
2 ⇒ Q

which means that in the limit the low priority queue is equal in law for both preemptive

and non-preemptive regimes.

To support the claim that 1√
Nr (Q

r
1) ⇒ 0, note that given wait the high priority queue

behaves like an under-loadedM/M/1 queue. So, even in the worst case scenario (when

the delay probability equals 1) we have thatE[Q1] = E[Q1|Q1 > 0] = O(1). This is

true for both preemptive and non-preemptive regimes and therefore high priority will

disappear from queue under the normalization above.

3. Average Waiting Time:

Low Priority: The order of the average waiting time of the low priority in the non-

preemptive case is given in Table 1. For the preemptive case we can calculate explicitly

the waiting time of the law priority which is given by

E[W2] =
1

λ2

[
(λ1 + λ2)E[W ]− λ1E[W1]

]
.

Here,W1 andW2 remain as before andW is the waiting time in a single classM/M/N

system withλ = λ1 + λ2. But there is no need for explicit calculations. We have

claimed above that the asymptotic queue length of low priority is the same for both the

preemptive and non-preemptive regimes. Based on this formula it can be shown that the

average waiting time of the low priority class is the same under the preemptive and the

non-preemptive regimes..

High Priority: As shown in Table 1, the waiting time of the high priority customers

under the non-preemptive regime isΘ(1/N r). Under the preemptive regime it will no

longer beΘ(1/N r) but instead it will behave like

O

(
e−Nrρ1(N rρ1)

N

N r!(1− ρ1)

1

N r

)
.

The latter is a direct consequence of the rate of convergence of the delay probability.

To summarize, we have illustrated by a simple two-class example the asymptotic equivalence

of preemptive and non-preemptive regimes. While the waiting time of high priority will im-

prove significantly under the preemptive regime, the waiting time of the low priority will

hardly suffer any deterioration, in particular their waiting time is asymptotically the same

under the preemptive and non-preemptive regimes.
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The discussion in this example was limited to questions of performance analysis of theM/M/{Ki}
model. In this work, we show that theM/M/{Ki} model is of great relevance. In particu-

lar we solve concurrently the questions of staffing and control of the V Model and show that

usingM/M/{Ki} is asymptotically optimal. We now turn to a formal presentation of the

M/M/{Ki} model.

2.2 Thesis Outline

We formally introduce theM/M/{Ki} Model in Section 3. Section 4 contains complete

transient and steady state analysis of theM/M/{Ki} model in the QED regime. In particular

we show that the diffusion limit of the overall number of customers in system, when properly

scaled and normalized, converges to a diffusion limit with a piecewise linear drift. The result

is obtained through a collapse of the multi-dimensional state-space into a single dimension -

the overall number of customers in system.

In the context of steady state analysis we give, in Subsection 4.2, a set of necessary and

sufficient conditions for stability and present asymptotic steady state performance measures

for the probability of delay and waiting time distributions for all customer classes.

Section 5 contains adaptation of the result of Section 4 to the case of Efficiency Driven

M/M/{Ki}.

We conclude the first part of the thesis in Section 6 with the solution to both optimization

problems (10) and (11). We show that theM/M/{Ki} is the asymptotically optimal policy

for both the constraint satisfaction and the cost minimization problems.

In Section 7 we present some extensions to the V-Model. The main extension presented is the

introduction of abandonments into the V-Model. In particular, we assume that customers of

classi have exponential patience with rateθi. We give complete analysis, transient and steady

state, for theM/M/{Ki} model in the new setting. Also we prove, that under certain cost

structures theM/M/{Ki} policy minimizes the overall abandonment cost. We conclude this

section with a brief presentation of ongoing research about theN Model.

We now proceed to the formulation of the V-Model under theM/M/{Ki} policy.
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Figure 3: The V Model

3 Model Formulation

Consider the system described in Figure 3 withJ customer classes and a single server type.

Customers of classi arrive according to a Poisson process with rateλi independently of other

classes. Service times are assumed to be exponential with rateµ for all customer classes.

Classi delayed customers wait in an infinite buffer queuei.

We wish to minimize the staffing cost while maintaining a target service level constraint. The

service level performance measure that we study is the steady state probability that a classi

customer waits before starting service. Denote this steady state probability byP{Wi > 0}
for classi, and letαi be its target delay probability. Assume that the classes are ordered in an

increasing order ofαi: α1 ≤ α2 ≤ ... ≤ αJ , namely class1 are the highest priority and class

J are the lowest priority.

Let Π be the set of all non-preemptive non-anticipative scheduling policies. Given a policy

π ∈ Π, let Pπ{Wi > 0} be the steady state probability that a customer from classi is delayed
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before his service starts. The staffing problem is then stated as follows:

minimize N

subject to Pπ(Wi > 0) ≤ αi, 0 < αi < 1, i = 1, ..., J, for someπ ∈ Π;

N ∈ Z+

(10)

As the arrival rate to the system increases, we will also allowαi, i = 1, ..., J − 1, to converge

to zero in a certain manner.

Another problem formulation is to assume linear waiting costs for all classes, i.e. a unit

waiting time of a classi customer incurs a cost ofci. Now, assume that classes are ordered in

decreasing order of their cost, i.e.c1 ≥ c2 ≥ ... ≥ cJ ; again,1 is the highest priority andJ

is the lowest. Then, we will show that the same type of policy that asymptotically minimizes

(10) is also the solution to the following problem:

minimize
∑J

i=1 ciλiE[Wi] + N

subject to Pπ(Wi > 0) ≤ αi , i = 1, ..., J, for someπ ∈ Π;

N ∈ Z+

(11)

Under the second formulation we allow theαi’s to be equal to 1. If allαi’s are equal to 1

(11) becomes a pure cost minimization problem. We will also consider the case where the

coefficientsci, i = 1, ..., J , are allowed to scale with the overall arrival rate,λ, in certain

manners.

Notation:

For theM/M/{Ki} model, we denote byZ(t) the number of busy servers at time t, and by

Qi(t) the number of classi customers in queue at timet. Then, theJ dimensional vector

{Z(t) + Q1(t), Qi(t) : i = 2, ..., J} gives a Markovian description of the system. The proba-

bility of delay for classi can be stated in terms of the system state. In particular, due to the

PASTA property, if the model’s parameters are such that steady state exists then

Pπ{Wi > 0} = P{Z(t) ≥ N −Ki} (12)

In addition, though not essential for the description of the system, we would like to define

Zi(t) to be the number of busy servers above the level ofN −KJ−i+1 servers, or equivalently

Zi(t) = [Z(t)−N −KJ−i+1]
+, where

[Z(t)−N −KJ−i+1]
+ 4

= ((Z(t)− (N −KJ−i+1)) ∨ 0).

The rest of the thesis is organized as follows: In the following section we will analyze limits

(Diffusion and Steady State) for theM/M/{Ki} model in the QED regime. In Section 5, we
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will make a short excursion through Efficiency Driven analysis of theM/M/{Ki}model. We

will conclude in Section 6 by showing (relying mainly on [11]), how different cost structures

or constraints give rise asymptotically to either the Efficiency Driven or QED regimes.

4 QED Asymptotic Framework

As mentioned before, we have (by [72]) that the optimal policy, when trying to minimize

waiting costs, is to use a threshold policy. The optimal thresholds are state dependent which

makes the use of theM/M/{Ki} policy suboptimal for fixed number of serversN . Moreover,

even if theM/M/{Ki} policy was optimal we would still have to determine the staffing

level and the optimal thresholds. We could have made use of the work done in [55] to solve

the optimization problem (10) by direct enumeration for systems of reasonably small size.

However, as shown for the two class case this is very complicated, time consuming and is

not likely to provide any further useful insights. Instead, we take an asymptotic approach

which finds asymptotically optimal staffing rules for systems with high demand. To this end,

we consider a sequence of systems indexed byr = 1, 2, ... (to appear as a superscript) with

increasing demand valuesλr → ∞ asr → ∞ and a fixed service rateµ. All other quantities

that are associated with therth system will be denoted with a superscriptr. We assume that

the arrival rate of the lowest priority is comparable toλr for eachr. More formally, we assume

that there areJ numbersak ≥ 0, k = 1, ..., J , with
∑J

k=1 ak = 1, such that the arrival rate of

each class behaves according to the following rule

lim
r→∞

λr
k

λr
= ak, k = 1, ..., J ; aJ > 0, ai ≥ 0, i = 1, ..., J − 1 (13)

We consider a sequence ofM/M/{Ki} systems indexed byr. Therth system is staffed with

N r servers and the customers are routed according toJ thresholds given byKr
1 ≤ Kr

2 ≤ ... ≤
Kr

J

4
= Kr, whereKr

1 ≡ 0; i.e. an arriving classi customer will enter service immediately

upon arrival only if there are more thanKr
i idle servers. Upon a service completion, if there

arek idle servers, admit into service the first customer from classi∗, wherei∗ = mini{Kr
i <

k, ith queue is not empty}

The appropriate staffing level will be determined according to the solution of the optimization

problems (10) and (11) given in Section 6. For the time being we assume that the number of

servers grows withr in the following manner:

lim
r→∞

√
N r(1− ρr

C) = β , 0 < β < ∞ (14)

where

ρr
C =

λr

(N r −Kr)µ
. (15)
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For simplicity of presentation of the resultsWe restrict our performance analysis toKr =

o(N r). All the results that follow hold also in the case whereKr 6= o(N r) (unless stated

otherwise) with the heavy traffic condition (14) replaced by

lim
r→∞

√
N r −Kr(1− ρr

C) = β , 0 < β < ∞

and with the normalizing factor being
√

N r −Kr instead of
√

N r. For example,Xr(t) in

Section will be defined as
Y r(t)− (N r −Kr)√

N r −Kr
.

Remarks:

• Since we restrict ourselves toKr = o(N r), (14) implies thatρr 4
= λr/(N rµ) con-

verges to 1 asr →∞, and the system is inheavy traffic.

• Looking at the ”super-class” composed from classes1 throughJ − 1, (13) implies that

ρr
1→J−1

4
=

∑J−1
i=1 λr

i

(N rµ)
→ δ < 1 (16)

By (14), this also means that
PJ−1

i=1 λr
i

(Nr−Krµ)
→ δ. Equivalently we can say that under the

M/M/{Ki} policy with the staffing implied by (14), all classes, except for classJ , can

experience light traffic, orQuality Drivenservice.

• Note that (14) is typically different from the heavy traffic condition of [30], which is

given by

lim
r→∞

√
N r(1− ρr) = β′, 0 < β′ < ∞. (17)

Still, β = β′ wheneverKr = o(
√

N r).

Let Ar
j(t) : j = 1, ..., J be the total number of arrivals into classj up to time t (i.e. a

Poisson(λj) process). Due to FLLN and FCLT we have

1

N r
Ar

j(t) ⇒ λ̂jt (18)

whereλ̂j = limr→∞
λr

j

Nr , j = 1, ..., J , and

1√
N r

(Ar
j(t)− λr

jt) ⇒ BM(0, λ̂j). (19)

Also, define

Y r(t) = Zr(t) +
J∑

i=1

Qr
j(t) (20)

to be the total number of customers in therth system at timet.
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4.1 Diffusion Limits for the M/M/{Ki} model

For r = 1, 2, .... define the centered and scaled process

Xr(t) =
Y r(t)− (N r −Kr)√

N r
(21)

Theorem 4.1.1 Assume (13), (14) and thatXr(0) ⇒ X(0). Then

Xr ⇒ X (22)

whereX is a diffusion process with infinitesimal drift given by

m(x) =

{
−βµ x ≥ 0

−(β + x)µ x ≤ 0
(23)

and state independent infinitesimal varianceσ2 = 2µ.

Remarks:

• ρr
C is the load on the system assuming onlyN r − Kr servers. Note thatN r − Kr is

the capacity available for all customers disregarding the priority they have. Of course,

whenKr is o(
√

N r) this centering is asymptotically equivalent to centering aroundN r.

• WheneverKr = o(
√

N r) we will have thatβ = β′ (whereβ′ was defined in equation

(17). Hence a sequence of threshold systems such thatβ = β′, converges weakly to

the same limit as a sequence ofM/M/N queues withβ′. We will address this ques-

tion in detail when dealing with queues and waiting of the different priorities, but we

can already conclude that the overall number in system is asymptotically indifferent to

reservation of servers for high priorities, as long as the reservation iso(
√

N).

Proof: For simplicity we will prove the proposition for a system withJ = 2. The proof is

similar for arbitrary number of classes as will be explained at the end of the proof.

The proof consists of two steps: In the first step we introduce another system (denoted by (B))

which is equivalent in law to ourM/M/{Ki} system (denoted by (A)). In the second step we

will use a coupling argument and the convergence together theorem (Theorem 11.4.7 in [64])

to conclude the proof.

Definition of system B:

Split the server pool into two distinct pools: one withN r −Kr servers and the other withKr
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servers. Throughout the proof we will denote these two pools by”The N −K Pool” and the

”The K pool” respectively.

Use the following routing policy: as long as the total number in system is belowN −K route

all customers to theN −K pool. When the system is aboveN −K (i.e. there are more than

N −K servers busy) route any arriving high priority customer to theK pool. If there are any

customers in service in theK pool upon a service completion in theN −K pool preempt one

of these customers and assign to him/her the server that was just released in theN −K pool.

Since we have a commonµ for all priority classes, systems (A) and (B) can be constructed

so that the total number in system process will have the same sample paths and the same

probability law. Thus, proving the convergence of (B) will result in the desired convergence

for (A).

Let us further introduce System C which is anM/M/m queue with the same arrival and

service rates as System B and withm = N −K servers.

Denote byY r
B(t) the total number in system process for system (B) and byY r

C(t) the total

number in system for system C. Also, denote byZr
K(t) the number of busy servers from the

K pool in system B. As before define

Xr
B(t) =

Y r
B(t)− (N r −Kr)√

N r
(24)

and

Xr
C(t) =

Y r
C(t)− (N r −Kr)√

N r
(25)

By our assumption thatlimr→∞
√

N r(1 − ρr
C) = β , 0 < β < ∞ we have from [30] that

Xr
C ⇒ X.

Coupling:

We will now couple system (B) with (C). We will show that these two systems can be cou-

pled so that the distance (in thesup norm) between them is bounded by an expression that

converges to zero asr → ∞. Having that, the result will follow by the convergence together

theorem. In the following paragraphs we fixr > 0 and eliminate the superscript from the

notation.

Then, we create the coupled sample paths in the following manner:

We use the same sample path of arrivals for both systems. For simplicity let us assume that

both systems are initiated withN −K servers busy and an arrival of a customer. As long as

YB(t) > N −K andYC(t) > N −K we can create the departures for system C as well as for
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theN −K pool of system B from a common Poisson process with rate(N −K)µ. System

B will have also departures from theK pool generated by a different Poisson process. During

the time that both system are aboveN −K the difference between them can be at most as the

number of departures due to service completions (and not preemption) from theK pool.

Now, assume that systemB goes belowN −K. We will continue to generate the departures

for systemC and for theN −K pool from the same Poisson process but with a thinning (as

in [67]). i.e. If systemB is at levelj at a departure epoch and systemC is in level l, then

the candidate departure event generated from the Poisson process with ratelµ is an actual

departure for systemB with probabilityj/l (recall thatj ≤ l).

During the epoch in which systemB is belowN −K the distance between the two systems

in consideration can only decrease. If the two systems meet they will proceed together until

they hitN −K for the first time.

Denote byDK(t) the departures from theK pool up to timet. Then, we can write (see for

example [43])

Dk(t) = N
(∫ T

0

Zr
Kr(t)µdt

)
(26)

Where,N is a unit Poisson process.

By the construction of the sample paths we have that for allT ≥ 0 the distance between the

two systems can be bounded by the number of departures from theK pool up to that time.

More formally, for therth system we have

sup
0≤t≤T

‖Y r
B(t)− Y r

C(t)‖ ≤ N
(∫ T

0

Zr
Kr(t)µdt

)
(27)

or,

sup
0≤t≤T

‖Xr
B(t)−Xr

C(t)‖ ≤ 1√
N r
N

(∫ T

0

Zr
Kr(t)µdt

)
(28)

Proving
1√
N r
N

(∫ T

0

Zr
Kr(t)µdt

)
⇒ 0 , (29)

and applying the convergence together theorem leads to the desired result.

To establish (29) it is enough to show that for eachr, Zr
K(t)+Q1(t) can be path wise bounded

by anM/M/1 queue with arrival rateλr = λr
1 and with service rate(N r − Kr)µ. This is

shown in the following way:
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Assume we initiate both systems by zero. Every jump up inZr
Kr(t) + Qr

1(t) is necessarily a

jump up in the associatedM/M/1. The opposite is not correct since if more thenKr servers

are idle an arrival of high priority will not result in an increase inZr
Kr(t)+Qr

1(t). Assume that

at timet ≥ 0 both systems are not empty (in particular assume thatZr
k(t) + Qr

1(t) = j > 0,

i.e. the time until the next departure is exponential with rate(N r−Kr + j)µ. Then, as before,

we will use thinning - every service completion inZr
Kr(t) + Qr

1(t) will result in a service

completion in theM/M/1 with probability Nr−Kr

Nr−Kr+j
. Thus we have proved that for allt ≥ 0,

Zr
Kr(t) + Qr

1(t) can be path wise bounded by the associatedM/M/1.

By (13) this M/M/1 is under-loaded and by Theorems 4.1 and 4.2 of [43] its scaled version

converges to zero. Since the poisson processN
(∫ T

0
Zr

Kr(t)µdt
)

admits the decomposition

(see for example [50])

N
(∫ T

0

Zr
Kr(t)µdt

)
=

∫ T

0

Zr
Kr(t)µdt + M r(t) (30)

whereM r is a martingale with quadratic variation function that is bounded byKrt, we have

the desired result. Thus, we have established the convergence (22). To prove the result for an

arbitrary number of classes it is enough to note that in the general caseZr
Kr(t) +

∑J
i=1 Qr

i (t)

can also be bounded by an under-loadedM/M/1 queue and hence the proof follows.

¥

Corollary 4.1.2 Let X(·) be the diffusion process described in (4.1.1). Then the steady-state

distribution ofX has a densityf(·) which satisfies:

f(x) =





exp{−βx}α(β) x ≥ 0

φ(β+x)
Φ(β)

(1− α(β)) x < 0

(31)

whereP{X(∞) > 0} = α(β).

This result follows from [30].

A consequence of the last proof is thatXr(t) (the scaled and normalized process of the overall

number of customers in system) becomes sufficient in describing the asymptotic behavior of

theJ dimensional process(Z1 + Q1, Q2, ..., QJ). We call the collapse of the dimensionality

of the problemState-Space Collapse. The state space collapse of theM/M/{Ki} model is

summarized by the following corollary:
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Corollary 4.1.3 State Space CollapseDenote byEr(t) the number of busy servers above the

level ofN r −Kr, i.e. Er(t) = [Zr(t)− (N r −Kr)]+. Then

1√
NrEr(t) ⇒ 0

1√
Nr Q

r
i (t) ⇒ 0, ∀i ≤ J − 1

1√
Nr Q

r
J(t) ⇒ X+

(32)

Proof: Note thatEr(t) + Qr
1(t) is justZr

K(t) +
∑J−1

i=1 Qr
i (t), hence the result follows from the

proof of Theorem 4.1.1.

¥

The next corollary show how to obtain the limit of the virtual waiting time for classJ as a

function of the limit queue length processX.

Corollary 4.1.4 LetW r
i (t) be the virtual waiting time process for classi. If

∃ −∞ < c < ∞ :
√

N(
λr

J

N r
− aJµ) → c , (33)

then √
N rW r

J ⇒
1

aJµ
[X]+. (34)

Proof:

By the FCLT for the arrivals and by (33) we have the convergence

V r(t) =
√

N r(
Ar

J(t)

N r
− aJµt) ⇒ V (t) (35)

WhereV (t) = Â(t) + ct andÂ is BM(0, λ̂J).

DefineQ̂r = 1√
Nr Q

r
J . Then, by corollary (4.1.3) we have thatQ̂r ⇒ [X]+(t).

The convergence ofV r andQ̂r does not imply the joint convergence of(V r, Q̂r). However,

following [67], we claim that the component wise convergence is enough for our purposes.

By Theorem 11.6.7 in [64], and by the convergence ofV r andQ̂r we have the tightness of

the sequence(V r, Q̂r). Hence, by Prohorov’s Theorem we have that there exists a convergent

subsequence{rk} for which
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(V rk , Q̂rk) =⇒ (V̂ , Q̂), (36)

for some process(V̂ , Q̂).

DefineU r(t) =
√

N rk(
D

rk
J (t)

Nrk
− aJµt). Then, using the relation

Qrk
J (t) = Qrk

J (0) + Ark
J (t)−Drk

J (t), (37)

or alternatively

U rk(t) = V rk(t) + Qrk
J (0)−Qrk

J (t), (38)

and applying the continuous mapping theorem we have the convergence

(U rk , V rk) ⇒ (Û , V̂ ), (39)

whereÛ = V̂ − Q̂.

SinceU andV are continuous withU(0) = 0 we can apply the corollary of [49] to obtain for

the subsequence

√
N rkW rk(t) ⇒ W (t) (40)

whereW (t) = Q̂(t)
aJµ

.

Since the limitQ̂(t) is independent of the subsequence chosen (and equal to[X]+) we have

the desired result. ¥
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4.2 Steady State Analysis

4.2.1 Stability Conditions

First we should address the question of stability, i.e. what are the conditions under which a

steady state distribution exists as a proper random variable. For fixed parameters these condi-

tions can be explicitly calculated using the formulae in [55]. However, as we have shown in

Section 2.1, these formulae are very complicated for calculation even for two classes. There-

fore we find the following theorem useful. In the following theorem we use the notationλr
Jc

for the arrival rate of the ”super class”S consisting of classes1, ..., J − 1, i.eλr
Jc =

∑J−1
i=1 λJ .

Also, we denote byδr the probability of abandonment given wait (P r{ab|W r > 0}) in an

M/M/1 + M system with arrival rateλr
Jc , service rate(N r −Kr)µ and abandonment rateµ.

We denote byρr
C,<J the nominal load in this single server queue. i.e.ρr

C,<J =
λr

Jc

(Nr−Kr)µ
.

For the second part of the Theorem we assume some regularity conditions on the threshold

levelKr. In particular we assume that there exists a numbera ∈ [0,∞), such that

λr

Rr −Kr
→ a. (41)

We say that a system is stable is there exists a unique stationary distribution.

Under these notations we have the following:

Theorem 4.2.1 Under assumption (13) we have that:

1. fixr and assumeKr > 0. Then:

(a) The threshold system is stable ifλr < (N r −Kr)µ.

(b) The system is unstable wheneverλr
J > (N r −Kr)µ− λr

Jc · δr.

2. Assume thatN r = Rr + ∆r where∆r = o(Rr). Also, assume (41). Then,

(a) If Kr 6= o(N r), there existsr1 > 0 such that∀r > r1 the system is unstable .

(b) Otherwise, ifKr = o(N r), letr1 = max{r > 0 : ρr
C,<J ≥ 1}. Then, for allr > r1,

δr ≤ 1
(Nr−Kr)(1−ρr

C,<J )
, and in particular stability requires thatKr ≤ ∆r + O(1).

If Kr ≡ 0 (static priority), Condition 1.(a) is necessary and sufficient.

Remark: The advantage of writing stability conditions usingδr is thatδr has a known formula

which can be also calculated using existing software such as [73].
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Proof: Y r(t) is not a Markovian process. However, proving that the stateN r − Kr of Y r

is positive recurrent implies that the state(Zr + Qr
1 = N r − Kr, Qr

i = 0 : i = 2, ..., J) of

the underlying Markov process is positive recurrent. Also, the underlying Markov process

is clearly irreducible and hence proving the positive recurrence of this state is sufficient for

stability (see for example Theorem 5.5.3 in [52]).

First, the case whereKr ≡ 0 is clear since this is a work conserving policy and the sum

process is the same Birth and Death process that describes the regularM/M/N system.

AssumeKr > 0. For the sufficient conditions it is enough to use the coupling used for (4.1.1).

It is clear that if theM/M/N r − Kr is stable than so is the threshold system which, by the

construction in Theorem 4.1.1, is path wise dominated by theM/M/N r −Kr system.

For the necessary conditions we build a static priority system with abandonments and show

that if it is not stable then the correspondingM/M/{Ki} system is not stable. Denote by

S a static priority system withN r − Kr servers. All classes except for the lowest priority

classJ have a finite exponential patience with rateµ, theJ th class has infinite patience. Note

the following: If we assume that none of the customers of priorities1, ..., J − 1 waits before

entering service (i.e. there is infinite capacity for all priorities except forJ) then the system we

would have is equal in law to systemS. We can easily construct both systems from the same

sample paths and have that for allt ≥ 0, Y r(t) ≥ Y r
S (t). Hence, ifY r

S (t) → ∞ ast → ∞
thenY r(t) →∞ as t →∞. Hence, in the remaining of the proof we focus on the stability of

systemS.

SystemS can be modelled as a multi-dimensional Markov process with the coordinates(Zr +

Qr
1, Q

r
i = 0 : i = 2, ..., J) where the notations have the same meaning as before. Let us

look at this multidimensional when it is restricted to the states in which allN r −Kr servers

are busy. The restriction is formally obtained via a time-change argument, as customary in

Markov Processes. See, for example, Chapter VII of [10]).

Then, the number of customers from the super class(1, ..., J−1) in this restricted process can

be modelled by a Markov process, with the same law as anM/M/1+M queue. Hence, it has

a unique stationary distribution.

Define byδr to be the steady state probability of abandonment in this restricted process. This,

in turn is equal to the probability of abandonment given wait in anM/M/1 + M queue with

arrival rateλc
J , service rate(N r − Kr)µ and abandonment rateµ. The latter has a known

formulae.

As before, proving positive recurrence ofY r
S is sufficient for the stability of the underlying

multi-dimensional Markov process.
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Then, a trivial necessary condition for stability of systemS is that

λr
J + λr

Jc(1− δr) ≤ (N r −Kr)µ (42)

Assume now thatKr = o(N r). Then, by (13) we have that there existsr1 such thatρr
C,<J < 1

for all r > r1. Then, using the identityλr
JcP{ab} = µE[Qr

<J ] (whereQr
<J stands for the

steady state queue length of the super class1, ..., J − 1), we have that

δr =
µ

λ
E[Qr

<J |Zr > N r −Kr] (43)

But

E[Qr
<J |Zr > N r −Kr] ≤ (ρr

C,<J)2

1− ρr
C,<J

. (44)

This is straightforward noting that the right side is average queue length of a non-abandonment

M/M/1 with arrival rateλr
Jc and service rate(N r −Kr)µ. After some simplification,

δr ≤ ρr
C,<J

(N r −Kr)(1− ρr
C,<J)

(45)

This expression converges to zero as fast as1/N r by assumptions (13), (41 and assuming

that Kr = o(N r). Plugging this upper bound into (42) results in the necessary condition:

Kr ≤ ∆r + O(1).

It is only left to consider the case in whichN r = Rr + ∆r, ∆r = o(Rr) andKr 6= o(N r).

Assume there is a subsequence{rk} such that systemS is stable for allk ≥ 1. Then, we

would necessarily have that

λrk
J + λrk

Jc(1− δr) ≤ (N rk −Krk)µ

Now, consider two cases:

Case 1:λr
Jc/(N r − Kr)µ → γ > 1. In this case,δr converges asymptotically to1 − 1

ρC,<J

whereρC,<J = limr→∞ ρr
C,<J (see for example [69]).

By our assumption thatKr 6= o(N r), there exists a subsequencerkj
and0 < c < 1 such that

limrkj
→∞

(N
rkj−K

rkj )
Nr = c.

On the subsequencerkj
we have that
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lim
j→∞

1

N rkj
(λ

rkj

J + λ
rkj

Jc (1− δrkj ) ≤ lim
rkj

→∞
(N rkj −Krkj )µ

N rkj
(46)

On this subsequence the limiting equation is

λ̂J + cµ ≤ cµ (47)

Which is a contradiction to our non-negligibility of classJ assumption (13).

Case 2:λr
Jc/(N r − Kr)µ → γ ≤ 1 By [69] the probability of abandonment converges to 0

asrk → ∞. Hence we would have that for the sequencerk the stability equation (42) can be

written as

λr
J + λr

Jc − o(λr
Jc) ≤ (N r −Kr)µ (48)

or after dividing byµ this can be written as

Kr ≤ ∆r + o(Rr) (49)

which clearly contradicts the assumption on the size ofKr. ¥

4.2.2 Convergence of Steady State Distributions

Define

Sr =
Y r(∞)− (N r −Kr)√

N r
= Xr(∞) (50)

whereY r(∞) is the steady state distribution of the sum process in therth system.

We should expect that the limiting distribution of the diffusion processX in Theorem 4.1.1

would coincide with the limit of the sequenceSr. This is not immediate since an interchange

of limits is involved. More formally, we want to show that

P{X(∞) ≤ x} 4
= lim

t→∞
lim
r→∞

P{Xr(t) ≤ x} = lim
r→∞

lim
t→∞

P{Xr(t) ≤ x} (51)

We will show this in the following theorem.

Theorem 4.2.2 Under the notation above and assuming

lim
r→∞

√
N r(1− ρr

C) = β , 0 < β < ∞, (52)

the following is true:

Sr ⇒ X(∞). (53)
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whereX is the limit process from Theorem 4.1.1 with steady state as given in 4.1.2.

Proof: Note thatY r(∞) exists as a proper random variable according to Theorem 4.2.1 and

under our choice of the parameters. Following the proof of Theorem 4 in [30] all we have

to prove is the tightness of the sequenceSr. Recall systems (B) and (C) from the proof of

Theorem 4.1.1. Then, sinceSr andBr have the same law, it is enough to prove the tightness

of the sequenceSr
B. In addition we create another coupling ofXr with a M/M/N r system

(denoted by D) and for which we define:

Xr
D(t) =

Y r
D(t)− (N r −Kr)√

N r
(54)

Construct system (D) in the same way as the threshold system by splitting the servers into two

distinct pools and using the same preemption procedure (as in the construction of System (B).

For the threeN r −Kr (of systems (B), (C) and (D)) systems) create the departures from the

same Poisson processes with thinning. Also for theK pools (in system (B) and (D)) create

the departures from the same poisson process with thinning. Define

Xr
D(t) =

Y r
D(t)− (N r −Kr)√

N r
(55)

Clearly, by the same coupling arguments as in the proof of Theorem 4.1.1 we have path-wise

dominationXr
D(t) ≤ Xr

C(t). And on the whole we have the path wise ordering

Xr
D(t) ≤ Xr

B(t) ≤ Xr
C(t) ∀t ≥ 0 (56)

DefineSr
C = Xr

C(∞) whereXr
C is as defined in (25) andSr

D in the same way for theM/M/N

system constructed above. We will compare the stationary threshold system with thresholdKr

to both single class multi server stationary systems.

Since the constructed coupling preserves (56) for every finitet it does so also fort → ∞.

Since under the conditions of the theorem both sequencesSr
C andSr

D converge, they are tight.

The tightness ofSr
C implies that

∀ε > 0∃n1 : P{Sr
C ∈ [−n1, n1]} > 1− ε

2
(57)

The tightness ofSr
D implies that

∀ε > 0∃n2 : P{Sr
D ∈ [−n2, n2]} > 1− ε

2
(58)

and by the ordering (56) we have that

∀ε > 0∃n1, n2 : P{Sr ∈ [−n2, n1]} > 1− ε (59)
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With the tightness ofSr = Xr(∞) we have actually established the theorem.

SinceXr(∞) is tight, by Prohorov’s Theorem it has a convergent subsequenceXrk(∞). If we

let (Zrk(0) + Qrk
1 (0), Qrk

i (0) : i = 2, ..., J) be distributed as(Zrk(∞) + Qrk
1 (∞), Qrk

i (∞) :

i = 2, ..., J), then(Zrk(t) + Qrk
1 (t), Qrk

i (t) : i = 2, ..., J) is a strictly stationary stochastic

process. In particular{Xrk(t), t ≥ 0} (which is a function of the multidimensional Markov

process) is a strictly stationary stochastic process and by Theorem 4.1.1 we haveXrk ⇒ X̂

whereX̂ is the limiting diffusion process witĥX(0) having the stationary distribution of the

limit of Xrk(0). However, sinceXrk is stationary for eachrk so is the limitX̂. Hence the limit

of Xrk(∞) must be the unique stationary distribution ofX̂. Since every subsequence ofXrk

that converges must converge to this same limit, the sequenceXr(∞) itself must converge to

this limit. ¥

Corollary 4.2.3 Under (13) ifβ ≤ 0 there is no convergence of the sequenceSr.

Proof. Let us assume thatSr does converge to a unique and finite limitS and that we start

therth system with its stationary distributionSr. Xr is thus a stationary process withXr(t)

having the stationary distribution. By the same arguments as above, and since we assume the

convergence ofSr, we should have thatXr converges to a limitX and thatXr(t) converges

to the stationary distribution ofX.

First let us assume thatβ < 0 : Then, for allM , there exists a subsequence{rk}, rk > M

such thatρrk
C > 1, and by the coupling in (4.1.1) there is no limit forXrk(t) and the process

clearly diverges contradicting the assumption on the convergence.

Otherwise, ifβ = 0 we have a limit which is a diffusion process with infinitesimal drift

function

m(x) =

{
0 x ≥ 0

−µx x < 0
(60)

See for example Theorem 4.2 of [43]. This is clearly a non-stationary process and this is again

a contradiction to the assumption on the convergence ofSr.

¥

Corollary 4.2.4 √
N rW r

J (∞) ⇒ WJ , (61)

where

WJ ∼
{

exp(aJµβ) w.p. α(β)

0 otherwise
(62)
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Proof. Having the convergence ofXr(∞) we can repeat the proof of (34) withQr(0) =

Qr(∞) to obtain the desired result. ¥

Proposition 4.2.1 Halfin-Whitt Analog

Consider a sequence ofM/M/{Ki} systems indexed byr = 1, 2, ..., with service rateµ for

all classes and arrival rateλr
i for classi, i = 1, ..., J , such that (13 holds. Then,

P{W r
J (∞) > 0} → αJ , 0 < αJ < 1, (63)

iff √
N r(1− ρr

C) → β , 0 < β < ∞, (64)

whereλr =
J∑

i=1

λr
i andρr

C =
λr

(N r −Kr)µ
,

in which caseαJ =
[
1 + βΦ(β)

φ(β)

]−1

, whereΦ(·) andφ(·) are the standard normal distribution

and density functions respectively.

Proof. The ‘if’ part is a direct result of the steady state convergence already proved. For the

‘only if’ part note the following: Since the threshold system is path wise dominated from

above by anM/M/N r −Kr system we have that, ifβ = ∞ thenP{W r
J > 0} → 0.

For the case in whichβ = 0, let us assume that steady state exists andP{W r
J (∞) > 0} →

α < 1. Then by the continuity of the functionα(·) there existsβ′ > 0 such that

α < α(β′) < 1. (65)

We can then construct a threshold system with the same thresholds but with a total number

of serversM r > N r, or more specifically takeM r = N r + β′
√

N r and we will have that√
M r(1 − ρr

C) → β′. For the new system the ‘if’ direction applies and hence we will have

the inequality (65). Denote byYMr(t) the total number of customers in the system withM r

servers. Then, we can easily construct the sample paths such thatYMr(t) − (M r − Kr) ≤
YNr(t)− (N r −Kr), ∀t ≥ 0. Hence, we have a contradiction.

There is another case to consider in the ‘only if’ part. It is possible that the sequence
√

N r(1−
ρr

C) will fail to converge. In that case we would have at least two convergent subsequences

converging to two different limitsβ1 6= β2 (one of which might be∞). But since the function

α(·) is strictly decreasing in its argument we would also have thatα(β1) 6= α(β2) and thus the

sequenceP{W r
J > 0} would fail to converge.

¥
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Having the convergence of the probability of delay of classJ , it remains to analyze the proba-

bilities of delay for higher classes. In particular we would like to know what can be said about

P{W r
i (∞) > 0}, i = 1, ..., J − 1. The answer is given in the following proposition.

Proposition 4.2.2 For everyr > 0 such thatρr
C < 1.

1 ≤ P{W r
i (∞) > 0}

P{W r
J (∞) > 0} ·∏J−1

j=i (ρr
≤j)

Kr
j+1−Kr

j

≤
(

N r

N r −Kr

)Kr

, (66)

whereρr
≤k =

∑k
i=1

λr
i

Nrµ
.

in particular, for Kr = o(
√

N r) and assumingα(β) > 0 we have

P{W r
i (∞) > 0} ∼ α(β) ·

J−1∏
j=i

(ρr
≤j)

Kr
j+1−Kr

j (67)

wherean ∼ bn if limn→∞ an

bn
= 1.

Remarks:

• In the case ofKr = Θ(
√

N r) the right bound converges by simple calculus toed2
where

d = limr→∞ Kr√
Nr

• Note that the above implies that for thresholds that are of the formc log N the probability

of delay is asymptotically polynomial, i.e. it is of the formd 1
Nγ whered, γ > 0.

Proof. For the two-class case this can be proved by direct approximations of the formulae

in [55]. However, we can exploit the structure of the model to prove the desired asymptotic

equivalence. The result is almost immediate using upper and lower bounds.

Let us look at priority classj. Given that classj + 1 has to wait (i.e. the number of idle

servers is smaller or equal toKj+1) - the conditional probability of delay for classj equals to

the probability that there would be additionalKj+1 −Kj busy servers or more.

Let us look at the Markov process of the model restricted to the states in which more than

N r−Kr
j+1 servers are busy. Define a new processỸ r = {Z̃r

j , Q̃
r
1, ..., Q̃

r
j}, whereZ̃r

j describes

the number of busy servers above the level ofN r − Kr
j+1, andQ̃r

i is the number of classi

customers in queue. Under our restrictionỸ r is also a Markov process. Denote it’s steady
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state byỸ r(∞) = {Z̃r
j (∞), Q̃r

1(∞), ..., Q̃r
j(∞)}. Also, because of the model’s structure, the

probability we are looking for can be calculated by

P{W r
j (∞) > 0} = P{W r

j+1(∞) > 0} · P{Z̃r
j (∞) +

j∑
i=1

Q̃r
i (∞) ≥ Kr

j+1}

To justify this, see, for example, Section 10.4 of [47] and the results therein.

Define

πs =
∑

z,q1,..,qj :z+
Pj

i=1 qi=s

πz,q1,...,qj
, s = N −K, ..., N, ...

to be the probability that the sum of the components of the restricted chain equalss, under its

stationary distribution. Then, the cuts method implies fors ∈ N −K, ...:

πs

∑j
i=1 λi ≥ πs+1(N −Kj+1)µ ≥ πs+1(N

r −Kr)µ

πs

∑j
i=1 λi ≤ πs+1Nµ

(68)

or alternatively

P{Z̃r
j (∞) +

∑j
i=1 Qr

i (∞) ≥ Kj+1} ≤
(Pj

i=1 λi

(N−K)µ

)Kj−Kj+1

P{Z̃r
j (∞) +

∑j
i=1 Q̃r

i (∞) ≥ Kj+1} ≥
(Pj

i=1 λi

Nµ

)Kj−Kj+1

(69)

By induction we have proved the desired result. By simple Taylor expansion the upper bound

in (66) converges to 1 if and only ifKr is o(
√

N r). ¥

In proposition 4.2.4 we have shown the convergence of
√

N rW r
J (∞) to a mixture of an ex-

ponential r.v. and a point mass in the origin. Equivalently we could say that the waiting time

of classJ is Θ(1/
√

N r). In the next proposition we show that given wait, the waiting time of

all the other classes ({Wi(∞)|Wi(∞) > 0}, i = 1, ..., J − 1) areO(1/N r). Furthermore, we

give expressions for the Laplace transforms and moments for limits ofWi(∞)|Wi(∞) > 0

for all i = 1, ..., J − 1.

Proposition 4.2.3 Assume (13), then, for alli = 1, ..., J − 1

N r · [W r
i |W r

i > 0] ⇒ [Wi|Wi > 0] (70)

[Wi|Wi > 0] has the Laplace transform:

µ(1− σi)(1− γ̃(s))

s− λ̂i + λ̂iγ̃(s)
(71)
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whereσi = limr→∞
∑i

j=1
λr

i

Nrµ
, and

γ̃i(s) =
s + µ

2biµ
+

1

2
−

√(
s + µ

2biµ
+

1

2

)2

− 1

bi

(72)

wherebi = lim
r→∞

∑i−1
j=1 λr

j

N r

Also,

N rE[W r
i |W r

i > 0] → [µ(1− σi)(1− σi−1)]
−1

(N r)2E[(W r
i )2|W r

i > 0] → 2(1− σiσi−1) [(µ)2(1− σi)
2(1− σi−1)

3]
−1

(73)

Proof: Let us focus on classi, 1 ≤ i < J . We will prove the result through theM/G/1

reduction that was applied in both [55] and [39].

Step 1 (Limit for the M/M/1 Busy Period): Let us look at anM/M/1 queue with arrival rate

λ−i =
∑i−1

j=1 λr
j and service rateN rµ. Then, by known results (see for example [38]),γ̃r

i (s) -

the Laplace transform of the busy period is given by:

γ̃r(s) =
N rµ + s + λ−i −

√
N rµ + s + λ−i − 4λ−i N rµ

sλ−i
(74)

By simple algebra we can prove that

γ̃r
i (s) → γ̃(s) (75)

Whereγ̃i(s) = limr→∞ γ̃r
i (s) andγ̃i(s) is given by (72).

Note that the convergence above is still valid if the service rate of the relevantM/M/1 is

(N r −Kr)µ whereKr = o(N r).

Step 2 (bounding): Following [55], note that given wait of classk their queue behaves like

anM/G/1 queue with theG being the distribution of the busy period beginning with a class

j : j < i arriving to a system withN −Ki busy servers and ends with a completion of service

when there areN −Ki − 1 busy servers. The Laplace transform of thisG is denoted in [55]

by B∗
i (s), and it’s expectation is denoted byE[Bi]. Denote byφr

i (s) the Laplace transform of

Wi|Wi > 0 in therth system. Then, by formula (17) in [55] we have that

φr
i (s) =

1−B∗
i (s)

(s− λr
i + λr

i B
∗
i (s))

1− λiE[Bi]

E[Bi]
(76)
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G can be sample wise bounded from above byGi,Nr−Kr and from below byGi,Nr . Hence we

have by the previous step that

B∗
i (N

rs) → γ̃i(s), (77)

and the convergence of the moments follows. Hence:

N rE[B∗
i ] →

1

µ(1− σi−1)
(78)

Now, by simple calculus, and since by (13)σi < 1 we have that

φr
i (N

rs) → µ(1− σi)(1− γ̃i(s))

s− λ̂i + λ̂iγ̃i(s)
(79)

The limiting transform is similar to the one obtained for the static priority case. The pre-limit

moments for the static priority case are given in [39] and their limits are easily calculated.

Corollary 4.2.5 for i = 1, ..., J − 1 we have thatE[Qr
i |Qr

i > 0] = O(λr
i /N

r). In particular,

E[Qr
i |Qr

i > 0] = λr
i E[W r

i |W r
i > 0] → λ̂i [µ(1− σi)(1− σi−1)]

−1 ,

and

E[Qr
i ] ∼ λr

i

Nr P{W r
i > 0} [µ(1− σi)(1− σi−1)]

−1

(80)

where, as before,̂λi = lim
r→∞

λr
i /N

r

Proof: This is a direct application of Theorem (4.2.3) using Little’s Law.

¥

We would like to conclude this section with a theorem that summarizes important result proved

throughout the section.

Theorem 4.2.6 Consider a sequence ofM/M/{Ki} systems indexed byr = 1, 2, ..., with

service rateµ for all classes and arrival rateλr
i for classi, i = 1, ..., J , such that (13) holds.

Letρr
C = λr

(Nr−Kr)µ
. Then,

P{W r
J (∞) > 0} → αJ , 0 < αJ < 1, (81)
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iff √
N r(1− ρr

C) → β , 0 < β < ∞, (82)

in which caseαJ =
[
1 + βΦ(β)

φ(β)

]−1

, whereΦ(·) andφ(·) are the standard normal distribution

and density functions respectively.

Corollary 4.2.7 Let ρr = λr

Nrµ
. If in addition to the conditions of Theorem 4.2.6,Kr =

o(
√

N r), then

P{W r
J (∞) > 0} → αJ , 0 < αJ < 1, (83)

iff √
N r(1− ρr) → β , 0 < β < ∞, (84)

Moreover,

P{W r
i (∞) > 0} ∼ α(β) ·

J−1∏
j=i

(ρr
≤j)

Kr
j+1−Kr

j (85)

and if, in addition, all classes are non-negligible, i.e.λr
j/λ

r → aj > 0, j = 1, ..., J , then

P{W r
i (∞) > 0} → αi, 0 < αi < 1, i = 1, ..., J − 1, (86)

iff

Kr
j+1 −Kr

j →
ln αj/αj+1

ln ρ≤j

, ∀j = 2, . . . , J, (87)

whereρ≤j = limr→∞
Pj

i=1 λr
i

Nrµ
.
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5 Efficiency Driven M/M/{Ki}

Analogously to the characterization of the QED regime given in the introduction, we can

characterize the Efficiency Driven (ED) regime as follows:

Consider a sequence ofN -server queues, indexed byr = 1, 2, . . .. Define theoffered loadby

R = λr

µ
, whereλr is the arrival-rate andµ the service-rate. The ED regime is achieved by

letting (N r)δ(1− ρr) → β, asr ↑ ∞, for some finiteβ and1 ≥ δ > 1/2.

Analogously to (14), we define the ED regime for a sequence ofM/M/{Ki} queues as fol-

lows:

∃0 < β < ∞ , 1 ≥ δ > 1/2 : lim
r→∞

(N r)δ(1− ρr
C) → β, 0 < β < ∞ (88)

For purposes of optimization we will need to adapt some of the results of the previous sections

to the case of the EDM/M/{Ki} model.

As before we assume (13), i.e. that classJ is non-negligible.

5.1 Diffusion Limits

Since by [30] the probability of delay in this regime converges to 1, we expect that the diffusion

limits will be reflected brownian motions as is the case with the conventional heavy traffic for

multi-server queues.

However, to differ from conventional heavy traffic, this regime requires different scaling for

different values ofδ in order to obtain a non-degenerate limit.

Note that having ED limits for the relevantM/M/N queue immediately translates into limits

for our model using the same procedures as used in the proof of Theorem 4.1.1.

The ED limits for a sequence ofM/M/N queues where not proved for a generalδ > 1/2,

in the appendix we adapt methods that were used in [26], to prove the desired results. In

particular we prove the following:

Proposition 5.1.1 Consider a sequence ofM/M/N system indexed byN = 1, 2, ..., such that

N δ(1− ρN) → 0 < β < ∞, (89)

Let QN(t) be total number of customers in theN th system at timet. AssumeQ
N (0)
Nδ ⇒ X(0),

whereX(0) ≥ 0, a.s. Then,
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XN(t) ⇒ RBM(−βµ, 2µ) (90)

We omit the proofs of the following theorems. Having the convergence of an ED sequence of

M/M/N queues, the proofs for theM/M/{Ki} model are the same as for the QED case.

The following theorem summarizes the diffusion limit results for the EDM/M/{Ki}.

Theorem 5.1.1 Define

Xr(t) =
Y r((N r)2δ−1t)− (N r −Kr)

(N r)δ
. (91)

Assume that there existsδ > 1/2 such that:

lim
r→∞

(N r)δ(1− ρr
C) → β, 0 < β < ∞. (92)

andXr(0) ⇒ X(0), X(0) ≥ 0. Then,

Xr ⇒ X, (93)

whereX is anRBM(−βµ, 2µ).

Also:

1

N δ
Qr

i ((N
r)2δ−1t) ⇒ 0, i = 1, ..., J − 1. (94)

Remark: The state space collapse in this case follows in the same manner as in the QED

setting, using a boundingM/M/1 queue. The fact that thisM/M/1 is not only scaled in

space but also in time does not influence the result.

5.2 Steady State

In the following theorem we adapt the steady state results of the previous section to the ED

case. Here we limit our discussion to thresholdsKr = o((N r)1−δ). As will be shown in the

next section (Asymptotic Optimality) we only need threshold that are logarithmic and this is

clearly covered byKr = o((N r)1−δ) sinceδ < 1. Moreover, takingKr = o((N r)1−δ) sim-

plifies the proof of the tightness that we need for convergence of the steady state distributions.
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Theorem 5.2.1 Assume that there exists1 ≥ δ > 1/2 such that

(N r)δ(1− ρr
C) → β, 0 < β < ∞. (95)

andKr = o((N r)1−δ). Then:

N−δY r(∞) ⇒ X(∞), (96)

whereX(∞) ∼ exp(β),

P{W r
J (∞) > 0} → 1, (97)

and, for everyr > 0

P{W r
i (∞) > 0} ∼

J−1∏
j=i

(ρr
j)

Kr
j+1−Kr

j , (98)

(N r)−δQr
i (∞) ⇒ 0, i = 1, ..., J − 1;

(N r)−δQr
J(∞) ⇒ X+(∞).

(99)

Remark: Recall that for the proof of convergence of the steady state distribution in the QED

case we had to prove first the tightness for the sequenceY r(∞). We achieved that by bounding

our system from above and from below by two systems for which the tightness was known.

By the same path-wise construction used before we can bound our system from above by an

M/M/m queue withN r−Kr servers and from below by anM/M/m queue withN r servers.

Provided thatKr = o((N r)1−δ the tightness for both systems under our scaling is known, and

the result follows by the same manner as before.

¥
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6 Asymptotic Optimality

6.1 Definition

In this section we consider the solution for (10) and (11) under condition (13). As in [11], for

a meaningful form of asymptotic optimality one needs to compare normalized staffing costs

which measure the difference between the actual staffing costs and a base cost of orderλr,

which is a lower bound of the staffing cost.

First, following [2] we will define asymptotic optimality. Let̄Kr = {Kr
1 , ..., K

r
J} andλ̄r =

{λr
1, ..., λ

r
J} the vectors of the thresholds and arrival rates in therth system. Also, letN r be the

minimal number of servers required in therth system to ensure stability (i.e.N r = dλr/µe).
Let Cr be the staffing cost when usingN r servers.

Let Cr(N r, πr) be the cost function in therth system when the system is equipped withN r

servers and controlled by,πr.

Definition: The sequence{N r, πr} is asymptotically optimal with respect tōλr if, when

used for the system, the following two conditions apply:

• Asymptotic feasibility: lim supr→∞ Pπr{W r
i > 0} ≤ αi ,∀i = 1, ..., J ;

• Asymptotic Optimality: If we take any other sequence of policies{N̂ r, π̂r} that is

asymptotically feasible then

lim inf
r→∞

Cr(N̂ r, π̂r)− Cr

Cr(N r, πr)− Cr ≥ 1

6.2 Constraint Satisfaction

We will now turn to the solution of (10). Here the cost function reduces to the staffing costs, i.e

Cr(N r, πr) = N r. The results that follow are direct consequences of [11] for the single class

case ofM/M/N . The original work done in [11] in the context ofConstraint Satisfaction

covers general constraints on the waiting costs. Since we have a very simple constraint on

the probability of delay (i.e.P{Wait > 0} ≤ α}) we can establish a simpler property of

optimality than the one stated in [11].

Proposition 6.2.1 M/M/N Staffing. Consider anM/M/N system with arrival rateλr and

fixed service rateµ. We are interested in finding

(N∗)r := min{N : P{W r > 0} ≤ α} (100)
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where0 < α < 1. Assume that we have a sequence of arrival ratesλr. Then, the staffing se-

quenceN r = λr/µ+β
√

λr/µ is asymptotically optimal in the sense of the previous definition,

whereβ is such thatP (β) = α. P (·) is the Halfin-Whitt function

α(β) =

[
1 +

βΦ(β)

φ(β)

]−1

.

Proof: Note that [30] and the monotonicity of the functionP (·) imply that the asymptotically

feasible region is the following:

P r{W r > 0} → α′, 0 ≤ α′ ≤ α, (101)

iff √
N r(1− ρr) → β̄, 0 < β ≤ β̄ < ∞ (102)

So for eachβ > ε > 0 and staffing sequenceN r = λr/µ+(β− ε)
√

λr/µ there existsr0 such

that for allr ≥ r0 , P r{W r > 0} > α. Hence, we would necessarily have that for allr > r0,

(N r)∗ ≥ λr/µ + (β − ε)
√

λr/µ. Therefore, for eachβ > ε > 0 we have that

lim inf
r→∞

β
√

λr/µ

(β − ε)
√

λr/µ
≥ lim inf

r→∞
β
√

λr/µ

(N r)∗ −N r ≥ 1 (103)

takingε to zero and by the definition of asymptotic optimality the proof is concluded. ¥

Having Proposition 6.2.1 we can proceed to defining the asymptotically optimal solution for

(10).

Theorem 6.2.1 For (10) and under condition (13), the following combined staffing and rout-

ing policy is asymptotically optimal:

Assume (without loss of generality) that for alli 6= j , αi 6= αj (otherwise we can merge

classesi andj for whichαi = αj) and that the classes are ordered in increasing order ofαi.

ChooseN r = Rr + P−1(αJ)
√

Rr whereRr =
∑J

i=1 λr
i /µ, and letP (β) be the Halfin-Whitt

delay function given byP (β) =
[
1 + βΦ(β)

φ(β)

]−1

. Route according to threshold priorities with

the threshold determined by the following recursive relation:

Kr
i −Kr

i−1 =
⌈

ln αi−1−ln αi

ln ρr
≤i−1

⌉
i = 2, . . . , J

Kr
1 ≡ 0

(104)
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Remark: Note that our assumption thatαJ < 1 rules out the case of efficiency driven staffing.

It appears that better non-asymptotic results are required to handle the case ofαJ ≈ 1.

Proof. Define

M r = {min N : P{W r
i > 0} ≤ αJ , ∀i = 1, ..., J}. (105)

If we denote by(N∗)r the optimal solution to (10) then clearlyM ≤ N r∗. Now, (105) is equiv-

alent to a single classM/M/N constrained staffing problem. For this problem the asymptoti-

cally optimal staffing is given by Proposition 6.2.1 and it equalsλr/µ + P−1(αJ)
√

λr/µ.

For αr
i , i = 1, ..., J − 1, that decrease polynomially withr we have by Proposition 4.2.2 that

αr
i , i = 1, ..., J − 1, are achieved by logarithmic thresholds. Proposition 4.2.1 guarantees that

staffing the system withM servers and using logarithmic thresholds asymptotically achieves

αJ . Hence, the lower bound is asymptotically achieved. ¥

6.3 Cost Minimization

Before presenting the solution to (11) it is necessary to adapt an important theorem from [11]

to our setting. In [11], the authors show how different costs lead to the three different regimes:

Efficiency Driven(or ED), QEDandQuality Driven. We omit from our discussion theQuality

Driven regime and hence we will not use the general results of [11], but rather their conclu-

sions with respect to theED andQED regimes.

Theorem 6.3.1 (Theorems 6.1 and 7.1: Borst, Mandelbaum & Reiman 2002) Consider a

sequence ofM/M/N systems, indexed byr = 1, 2, ..., with arrival rateλr and fixed service

rate µ. Assume that an agent’s salary is a function ofr given bysr. A customer waiting one

unit of time incurs a cost ofcr. We are interested in finding

(N r)∗ := arg min
N>λr/µ

{srN r + crE[W r]} (106)

For a sequencear, we say thatar ∼ a if limr→∞ ar

a
= 1.

Then:

• Assumesr ∼ 1 and cr ∼ c. Then, the staffing sequenceN∗r = Rr + (yr)∗ (c)
√

R is

asymptotically optimal, where

(yr)∗(c) ≡ y∗(c) = arg min
y>0

{
y +

cP (y)

y

}
(107)
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approximations for the staffing functiony∗(·) are given in [11].

• Assumesr ∼ 1 and cr ∼ cJr whereJr = o(1). Then the staffing sequenceN r =

Rr + (yr)∗ (c)
√

Rr is asymptotically optimal, where

(yr)∗ (c) = arg min
y>0

{
y +

c

y
Jr

}
=
√

cJr. (108)

The following Theorem deals with the cost minimization problem (11. Recall that when we

remove the constraints on the probability of delay the remaining problem is a pure cost mini-

mization problem. For this problem the optimal policy, as established in [72], is one with state

dependent thresholds. In the following theorem, however, we show that asymptotically the

state independent threshold policy is optimal. The intuitive explanation for this phenomenon

is what we call Economies of Scale. The state dependence of the optimal policy is aimed at

protecting against a situation where lower class queue gets too long and expensive because of

the reservation for higher priorities. However, in large systems, we can combine high quality

service for the high priorities with very little harm to low priorities.

Theorem 6.3.2 Consider (11) and assume that the waiting cost coefficients scale withr in

a polynomial manner:cr
i = di · rγi , γi ≥ 0, i = 1, ..., J − 1,−1 < γJ ≤ 0. Recall that

our assumptions are such thatcr
1 ≥ cr

2 ≥ ... ≥ cr
J . Also, αr

1 ≤ αr
2 ≤ ... ≤ αJ , where

αr
i , i = 1, ..., J − 1 are allowed to decrease polynomially withr whileαJ is fixed.

Then, the following is asymptotically optimal:

Staff withN r = Rr + β
√

Rr, where

β = max{(yr)∗(dJ), P−1(αJ)} (109)

Where(yr)∗(dJ) = arg miny>0

{
y + dJP (y)

y

}
, wheneverγJ = 0 and (yr)∗(dJ) =

√
dJJr,

otherwise.

Route usingM/M/{Ki} with

Kr
i −Kr

i−1 =
⌈

ln α∗i−1−ln α∗i
ln ρr

i−1

⌉
i = 2, . . . , J,

Kr
1 ≡ 0,

(110)

where fori = 1, ..., J

α∗i = αi ∧
(

1

Nγi−1/2(1+γJ )+ε

)
, (111)
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andε > 0 can be arbitrarily small.

Finally, ties are resolved according to thecµ rule.

Proof:

Step 1 (Lower Bound): Since we have a commonµ, the long run average number of customers

in queue is minimized, for fixedN , by any work conserving policy. For all work conserving

policies the average number of customers in queue is equal. This gives us a lower bound on

the target function since

J∑
i=1

cr
i λ

r
i E[W r

i ] ≥ cr
J ·

J∑
i=1

λr
i E[W r

i ] = cr
J ·

J∑
i=1

E[Qr
i ] ≥ cr

J · E[Qr]. (112)

WhereQr is the steady state queue length in aM/M/N r system withλr =
∑J

i=1 λr
i .

Then, as a lower bound for the staffing problem we can take the solution of

minimize cr
JE[Qr] + N

subject to P{W r > 0} ≤ αJ

N ∈ Z
(113)

Let M1 be the solution of the unconstrained problem

minimize cr
JE[Qr] + N

N ∈ Z (114)

Let M2 be the solution of the constrained staffing problem:

minimize N

subject to P{W r > 0} ≤ αJ

N ∈ Z
(115)

By [11], the cost function is strictly convex and unimodal and the feasible region for (113) is

the interval[M2,∞) the solution (M r) to the above problem (113) will equalmax{M1,M2}.

Now, we have three cases:

Case 1:γJ = 0 ⇒ M r = λr/µ + β
√

λr/µ, whereβ = max{(yr)∗, P−1(αJ)} (where

(yr)∗(dJ) = arg miny>0

{
y + dJP (y)

y

}
. For the lower bound we have that:

1√
M r

[Cr(M r)−N r] =
1√
M r

[
cJE[Qr] + β

√
λr/µ

]
∼

[
cJα(β)

1

β
+ β

]
(116)
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Under the proposed choice of the thresholds we have by propositions 4.2.2 and 4.2.5 that

1√
M r

cr
i E[Qr

i ] → 0, (117)

and

1√
M r

E[Qr
J ] → α(β)

1

β
, (118)

Hence, we have that the lower bound is achieved. i.e.

lim
r→∞

∑J
i=1 cr

i E[Qr
i ] + β

√
Rr

cJE[Qr] + β
√

Rr
= 1. (119)

Case 2:γJ < 0, αJ < 1. In this caseN r = Rr + P−1(αJ)
√

Rr. The lower bound cost is

equivalent toβ
√

Rr and under the given thresholds we again have that

1√
N r

cr
i E[Qr

i ] → 0 (120)

and hence the lower bound is achieved.

Case 3:γJ < 0, αJ = 1 ⇒ M r = λr/µ + (yr)∗
√

λr/µ where(yr)∗ → 0 asλ → ∞.

Due the restrictionγj > −1, we have by (6.3.1) that there exists an1 > δ > 1/2 such that

y∗λ
√

λr/µ = Θ(N1−δ). In particular we have thatδ = 1/2(1− γJ).

Staffing withM r and choosing the appropriate logarithmic threshold would still lead to

lim
r→∞

(M r)δ(1− ρr) = lim
r→∞

(M r)δ(1− ρr
C) →, β (121)

and hence the overall lower bound normalized cost isθ
(
(M r)1/2(1+γJ )

)

By the choice ofα∗i we have that

1

(M r)1/2(1+γJ )
cr
i E[Qr

i ] ⇒ 0, (122)

and
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1

(M r)1/2(1+γJ )
cr
JE[Qr

J ] ⇒ dJ
1

β
. (123)

Again the lower bound is asymptotically achieved.

¥

Note that in this theorem we restricted our attention toγJ > −1. This rules out cases for which

the solution of the single class dimensioning problem would result inN r ≈ Rr +b(Rr), where

b(·) is a sub-polynomial function ofR (i.e. b(x) = o(xδ),∀δ > 0.

Corollary 6.3.3 cµ Optimality: Assume for (11) thatαi = 1,∀i = 1, ..., J , and thatcr
i =

ci,∀i = 1, ..., J, ∀r ≥ 1. Then, thecµ rule is asymptotically optimal among all non-preemptive

policies (work-conserving and non-work conserving), and the corresponding optimal staffing

is given byRr + β
√

Rr, where

β = arg min
y>0

{
y +

cP (y)

y

}
.

Proof: In the previous theorem we would have thatαi∗ ≡ 1, in (111), and hence the staffing

problem reduces to the single class dimensioning problem, and the routing is static priority.

¥
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7 Some Extensions

7.1 Adding Abandonment

7.1.1 Model Formulation

The previous sections were aimed at generalizing the dimensioning results of [11] to the multi-

class case, by characterizing the asymptotically optimal staffing and control. Moreover, the

optimal staffing in the multi-class case was derived directly from the optimal staffing in [11].

Such dimensioning results are still not available for the single classM/M/N +M queue, i.e. a

single class queue where all customers have finite exponential patience with rateθ. However,

much can be said about the control problem in the multi-classM/M/N +M (now, classi has

finite exponential patience with rateθi). Furthermore, it turns out that under certain settings

the minimization of weighted abandonment costs gives rise to theM/M/{Ki} + M model

(designating now a multi-class multi-server system with thresholds and impatient customers)

as the asymptotically optimal policy in theQED regime - this makes this section a natural

continuation of the previous sections.

The setting: As before, we consider a multi-class queue with a single type of servers at-

tending all customer-classes. The service times of different customers are i.i.d exponentially

distributed random variables with rateµ for all customer classes. As before, classi customers

arrive according to a Poisson process with rateλi, and we still assume non-negligibility of

the low priority class 13). The patience of each customer is defined as the maximal time this

customer will wait before abandoning the system. A customer does not leave after her service

starts. In our setting, the patience of each customer is an exponentially distributed random

variable with rateθi, 0 < θi < ∞ for classi, and is independent of all other processes.

We denote byPi{Ab} the steady state probability of abandonment for classi. Note, that in

this case the system is always stable due to the impatience of the customers. Also, we assume

that an abandonment of a classi customer incurs a cost ofci, whereci, i = 1, ..., J = 1 are

allowed to grow with system size (to be made precise later).

The problem of minimizing weighted abandonment costs is then given as follows:

minimize
∑J

i=1 ciλiPi{Ab}+ N

N ∈ Z+

(124)

The pure control problem of minimizing the total number of abandonments (with no cost dif-

ferentiation) was addressed in [60]. In [60] the authors proved that the non-preemptive policy
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that stochastically minimizes the number of customers lost during a finite interval of time

belongs to the class ofstochastic earliest deadlinepolicies. Specifically, in the exponential

patience setting their result implies that the optimal policy is such that it admits customers

into service in order of their average patience. i.e. it always serves first the waiting customers

with the shortest patience (or highest patience parameterθ). Moreover, when restricted to

non-idling policies the optimal policy is a static priority policy where customers are served in

decreasing order ofθi. This gives the structure of the optimal policy but does not give an ex-

plicit optimal policy. Moreover, [60] does not say if the optimal policy is idling or non-idling.

Another problem of interest, in analogy to (11), is the problem of constraint satisfaction. i.e.

we wish to determine the minimal staffing required to ensure that the probability of abandon-

ment for classi customers does not exceed a certain levelαi. More formally, we consider the

following problem:

minimize N

subject to

P π
i (Ab) ≤ αi, 0 < αi < 1, i = 1, ..., J, for someπ ∈ Π

N ∈ Z+

(125)

Where, as before,Π is the set of all non-preemptive non-anticipative scheduling policies. We

have shown in Section 6 that when the constraints on the probability of delay are fixed (i.e.

whenαi’s in (11) are not allowed to scale with system size) the asymptotically optimal staffing

leads to theQEDregime. However, for (125), fixedαi’s lead to theED regime, which suggests

a very simple pool decomposition policy, i.e. decompose the V-Model intoJ I models, each

serving a different class of customers. The real challenge, then, is to solve (125) when theαi’s

are allowed to scale with system size. We leave this question open for future research.

As mentioned before, we will prove that under certain settings a threshold policy with fixed

thresholds is asymptotically optimal in theQED regime. To this end, we would like first to

analyze diffusion and steady state limits for theM/M/{Ki}+ M model.

7.1.2 Diffusion Limits

First we quote Theorem 2 from [27] for a sequence ofM/M/N + M queues.

Denote by{Y r(t), t ≥ 0} the total number in system in anM/M/N + M system. Let

Xr(t) =
Y r(t)−N r

√
N r

,

then we have the following:
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Theorem 7.1.1 [27], Theorem 2Consider a sequence ofM/M/N + M queues indexed by

the superscriptr = 1, 2, .... Let λr andN r be, respectively, the arrival rate and the number

of servers in therth system. The service rateµ and the individual abandonment rateθ are

independent of the indexr. Letρr = λr/(N rµ).

Assume that

lim
r→∞

√
N r(1− ρr) → β , −∞ < β < ∞ (126)

If Xr(0) ⇒ X(0) thenXr ⇒ X whereX is a diffusion process with drift

m(x) =

{
−(β + (θ/µ)x)µ x ≥ 0

−(β + x)µ x ≤ 0

andσ2 = 2µ.

In the next two propositions we will show that the normalized and scaled overall number of

customers in systems in theM/M/{Ki} + M model converges to the same limit as in7.1.1,

with θ = θJ (which is the impatience rate of the lowest priority).

We consider a sequence ofM/M/{Ki} systems indexed byr = 1, 2, .... The policy is the

same policy as in the non-abandonment case. A classi customer is served only if there are no

customers of a higher priorityj (j < i) waiting and the number of idle servers is bigger than

Kr
i . As before, we use the notationKr to stand for the threshold of the lowest priority (i.e.

Kr = Kr
J ), and define a“nominal” load:ρr

C = λr

Nr−Kr .

As before, letQr
i (t) stand for the queue length of classi at time t in the rth system,Zr(t)

stands for the number of busy servers at timet in the rth system, andY r(t) is the overall

number of customers in system, i.e.Y r(t) = Zr(t) +
∑J

i=1 Qr
i (t).

Proposition 7.1.1 State Space Collapse.Assume (13) and

lim
r→∞

√
N r(1− ρr

C) → β, −∞ < β < ∞. (127)

Then, asr →∞,
1√
Nr Q

r
i ⇒ 0, i = 1, ..., J − 1,

1√
Nr [(N

r −Kr)− Zr]− ⇒ 0,

1
Nr [(N

r −Kr)− Zr]+ ⇒ 0.

(128)

Proof: for the first two limits the proof is omitted since it is similar to the proof in the no-

abandonment case. Still, we would like to prove

1

N r
[(N r −Kr)− Zr]+ ⇒ 0 (129)
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We will use bounding as before. Assume we start[(N r − Kr) − Zr]+ from zero. Then,

this process can be bounded from above by a birth and death process with birth ratesλi =

(N − K − i)µ, i = 0, ..., N − K and death ratesµi = λ. By [43] the fluid limit of the

bounding process is zero and hence the result. ¥

Theorem 7.1.2 Assume (13) and

lim
r→∞

√
N r(1− ρr

C) → β, −∞ < β < ∞. (130)

If Xr(0) ⇒ X(0), Then,

Xr(t) =
Y r(t)− (N r −Kr)√

N r
⇒ X (131)

whereX is a diffusion process with infinitesimal drift given by

m(x) =

{
−(β + (θJ/µ)x)µ x ≥ 0

−(β + x)µ x ≤ 0

andσ2 = 2µ.

Proof.

In this proof we employ the same approach that was used in [2] for the proof of the diffusion

limit. We write the proof for the two-class case. The proof is similar for arbitrary number of

classes as will be explained at the end of the proof.

First, like in the proof of 4.1.1, we define a system with two server pools:TheN − K pool

andThe K pool. For simplicity of notation we will call them from now on pools 1 and 2,

respectively. Whenever a server in pool 1 completes service and there are any customers in

service in pool 2 we preempt a customer from pool 2 and pass it to pool 1. This system has

the same law as the original system. Denote byIr
k(t) andZr

k(t) the number of idle servers and

the number of busy servers respectively in poolk at timet. Also, letQr(t) be the total number

of customers in queue (i.e.Qr(t) = Qr
1(t) + Qr

2(t)).

Activate a Poisson process with rate(N − K)µ. Create the service completions using this

Poisson process in the following manner: A jump in this Poisson process create a departure

from pool 1 with probability Zr
1 (t)

Nr−Kr , and not result in a departure otherwise (with probability
Zr

1 (t)

Nr−Kr ).

Then, the total number of customers in system processY r(t) admits the following dynamics:

63



Y r(t) := Qr(t) + Zr
1(t) + Zr

2(t)

= Y r(0) + Ar(t)−N1(µ(N −K)) +N1

(
µ

∫ t

0

Ir
1(s)ds

)
−N2

(
µ

∫ t

0

Zr
2(s)ds

)

−
2∑

l=1

N a
l

(
θl

∫ t

0

Ql(s)ds

)

(132)

WhereNk, k = 1, 2 andN a
l , l = 1, 2 are independent unit Poisson processes, andAr(t) is a

poisson process with rateλr independent of all the other processes.

DefineF r(t) to be the followingσ−algebra:

F r(t) = σ {Qr
k(0); Zr

k(0), Ar
k(t),N a

l (t),Nj(t); k = 1, 2, l = 1, 2, j = 1, 2} ∨ N ,

whereN denotes the family ofP−null sets, and introduce the filtrationFr = (F r(t), t ≥ 0).

Clearly, the processesQr, Zr
k andIr

k , k = 1, 2, areFr adapted.

Then,Y r(t) admits the following decomposition:

Y r(t) = Y r(0)+λrt−µ(N−K)t+µ

∫ t

0

Ir
1(s)ds−µ

∫ t

0

Zr
2(s)ds−

2∑

l=1

θl

∫ t

0

Qr
l (s)ds+M r(t),

(133)

whereM r = (M r(t), t ≥ 0) is anFr−locally square-integrable martingale, that satisfies

M r = M r
A −M r

1 + M r
I1
−M r

Z2
−∑2

l=1 M r
Ql

, where all the above martingales areFr−locally

square-integrable martingales with respective predictable quadratic variations:

〈M r
A〉 (t) = λrt, (134)

〈M r
1 〉 (t) = (N r −Kr)µt, (135)

〈
M r

I1

〉
(t) = µ

∫ t

0

Ir
1(s)ds (136)

〈
M r

Z2

〉
(t) = µ

∫ t

0

Zr
2(s)ds (137)

〈
M r

Ql

〉
(t) = θl

∫ t

0

Qr
l (s)ds, l = 1, 2. (138)

we can rewrite (133) also as
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Y r(t) =Y r(0) + λrt− µ(N −K)t + µ

∫ t

0

Ir
1(s)ds− µ

∫ t

0

Zr
2(s)ds−

+ θ2

∫ t

0

Qr
1(s) + Qr

2(s) + Zr
2(s)ds +

∫ t

0

(θ2 − θ1)Q
r
1(s) + θ2Z

r
2(s)ds + M r(t),

(139)

By definition,

Qr
1(t) + Qr

2(t) + Zr
2(t) = [Y r(t)− (N r −Kr)]+

Ir
1(t) = [Y r(t)− (N r −Kr)]−

(140)

Also, note thatZr
2(t) = [N r −Kr − Zr]+. Hence, by (7.1.1),

1√
N r

Qr
1 ⇒ 0

1√
N r

Zr
2 ⇒ 0

(141)

After normalization and scaling we have that

Xr(t) = Xr(0)− βµt + µ

∫ t

0

[Xr(s)]− ds + θ2

∫ t

0

[Xr(s)]+ ds

+ εr(t) +
M r(t)√

N r
+ o(1),

(142)

wheresupt≤T |εr(t)| p→ 0. We claim that

{
M r

A/
√

N r,M r
1/
√

N r,M r
I1

/
√

N r,M r
Z2

/
√

N r,M r
Q1

/
√

N r, M r
Q2

/
√

N r
}

⇒ {√µba,
√

µb1, 0, 0, 0, 0},
(143)

where ba and b1 are independent standard Brownian motions. Hence, by the continuous

mapping theorem we would have thatM r/
√

N r converges to
√

µba − √
µb1. This is a

Brownian motion with zero drift and variance2µ. Since [·]+ and [·]− are Lipschitz con-

tinuous functions we have by Gronwall’s inequality thatXr(t) is a continuous function of

Xr(0) − βµt + εr(t) + Mr(t)√
Nr + o(1). The result now follows from the continuous mapping

theorem.

It is still left to prove (143). First note that by the Functional Law of Large Numbers (FLLN),

asr →∞,
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〈
M r

A√
N r

〉
(t) ⇒ µt, (144)

〈
M r

1√
N r

〉
(t) ⇒ µt, (145)

By Proposition, 7.1.1 we have that
〈

1√
N r

M r
I1

〉
(t) ⇒ µt, (146)

〈
1√
N r

M r
Z2

〉
(t) ⇒ 0 (147)

〈
1√
N r

M r
Ql

〉
(t) ⇒ 0, l = 1, 2. (148)

The independence ofM r
A andM r

1 together with the inequality〈M,N〉 ≤
√
〈M〉〈N〉 imply

that all covariations converge to zero.

Also, note that since the jumps of all the above martingales are bounded by 1 we have also

that for eachT > 0,

lim
r→∞

E

[
sup
t≤T

∣∣∣∣
1

N r
M r(t)− 1

N r
M r(t−)

∣∣∣∣
]

= 0 (149)

Hence, we can apply Theorem 7.1.4 from [19] to obtain the result. To prove the result for an

arbitrary number of classes it is enough to re-build the decomposition ofY r. The rest readily

follows.

¥
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7.1.3 Steady State

By [27], the processX defined in Theorem 7.1.2 has a unique stationary distribution whose

density is given by:

f(x) =





√
θJ/µ · h(β

√
µ/θJ) · w(−β,

√
µ/θJ)φ(x+β)

φ(β)
x ≤ 0

√
θJ/µ · h(β

√
µ/θJ) · w(−β,

√
µ/θJ)

φ(x
√

θJ/µ+β
√

µ/θJ )

φ(β
√

µ/θ)
x > 0

where the hazard functionh is defined by

h(x) =
φ(x)

1− Φ(x)

and

w(x, y) =

[
1 +

h(−xy)

yh(x)

]−1

Theorem 7.1.3 Assume (13) and

lim
r→∞

√
N r(1− ρr

C) → β, −∞ < β < ∞. (150)

Then

Xr(∞) ⇒ X(∞) (151)

whereXr(∞) andX are as defined in Theorem 7.1.2,

Proof. in this case there is no problem of stability since the abandonments stabilize the system.

Hence,Xr(∞), exists for allr = 1, 2, .... Having the tightness of the sequenceY r, the proof

follows in the same manner as the proof of Theorem 4.2.2. To prove the tightness we will again

construct two systems that will constitute stochastic lower and upper bounds on our system.

DefineU r to aM/M/(N r −Kr) + M system with arrival rateλr =
∑J

i=1 λr
i , service rate

µ and abandonment rateθ = mini∈1,...,J θi. DefineLr to be anM/M/N r − Kr/N r − Kr

loss system. We denote byU r(t) andLr(t) the total number of customers in systemsU r and

Lr respectively. LetY r stand for ourM/M/{Ki} with abandonment system and recall that

Y r(t) stands for the total number of customers in system at timet.

In the following, we fixr and hence omit the superscript for simplicity of notation. We will

show that :

L(t) ≤st Y (t) ≤st U(t), t ≥ 0. (152)
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To show (152), we use sample path coupling. For systemU andL and for theN − K pool

of systemY , we create the departures from the same Poisson process with thinning, as we

did in the proof of 4.1.1. The abandonments for systemsY andU will be also created from

the same Poisson process with thinning: i.e. whenever there arei customers in systemU and

jk, k = 1, ..., J customers from classk in queue in systemY , we create the next abandonment

from a Poisson process with ratemax{i · θ,∑J
k=1 jkθk}. Then, we create an abandonment in

systemU with probability iθ

max{i·θ,
PJ

k=1 jkθk} and an abandonment in systemY with probabilityPJ
k=1 jkθk

max{i·θ,
PJ

k=1 jkθk} .

Note that whenever
∑J

k=1 jk ≥ i, the next abandoning event will be an abandonment from

systemY with probability 1.

For simplicity, lets start all 3 system withN −K customers in service and none in queue. An

arrival will not alter the state of systemL while it will increase the total number of customers

in both systemsY andU . So, the ordering is still preserved. Now, If there are no customers in

theK pool of systemY the creation of the service completions from the same Poisson process

will preserve the order. Otherwise, if there are any customers in service at theK pool, the next

service completion is more likely to happen in systemY , but this can only preserve the order.

Assume that there arei customers in queue in systemY andj = i in systemU . Then, by

our construction, any abandonment in theU system will cause an abandonment inY and the

ordering is preserved.

By [27] we have the tightness of the sequenceU r(∞). By [46] we have the tightness of the

sequenceLr(∞).

The rest follows as in the proof of Theorem 4.2.2. ¥

Corollary 7.1.4 Assume (13) and

lim
r→∞

√
N r(1− ρr

C) → β, −∞ < β < ∞. (153)

Then,

P{W r
J > 0} = P{Zr ≥ N r −Kr} → w(−β,

√
µ/θ) (154)

wherew(x, y) was defined in Theorem 7.1.2.

The next proposition is analog to Proposition 4.2.2 for the non-abandonment case. However,

in the context of abandonments we have a result that is somewhat weaker in the sense that we

do not find an exact asymptotic expression for the probability of delay of the high priority, but

rather an asymptotic upper bound.
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Proposition 7.1.2 (Probability of Delay) For everyr > 0

P{W r
i (∞) > 0}

P{W r
J (∞) > 0} ·∏J−1

k=i (ρ
r
k)

Kr
k+1−Kr

k

≤
(

N r

N r −Kr

)Kr

. (155)

In particular for Kr = o(
√

N r) and assumingα(β) > 0 we have

P{W r
i (∞) > 0} = O

(
w(−β,

√
µ/θ) ·

J−1∏

k=i

(ρr
k)

Kr
k+1−Kr

k

)
(156)

whereρr
≤k =

∑k
i=1

λr
i

Nrµ
.

Proof:

By the same considerations as in the non-abandonment case we have that

P{Wi ≥ 0|Wi+1 ≥ 0} ≤
( ∑i

j=1 λr
j

(N r −Kr)µ

)Ki+1−Ki

(157)

The proof is completed as in the case without abandonment.

Corollary 7.1.5 Probability of Abandonment

Denote byP r
k{Ab} the probability of abandonment for classk. Then

lim
r→∞

√
N rP r

k{Ab} = ∆k , 0 ≤ ∆k < ∞ (158)

where∆k is given by

∆k =

{
a−1

k [
√

θk/µ · h(β
√

µ/θk)− β] · w(−β,
√

µ/θk) k = J

0 Otherwise.
(159)

Hereak is equal to lim
r→∞

λr

λr
k

.
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7.1.4 Asymptotic Optimality - Cost Criterion

In this section, we consider the solution to a specific setting of (124). In the no-abandonment

case our optimality results were based heavily on the existing results for the single class case

(as given in [11]). However, at this point, there are no such results for the abandonment case.

Hence, we limit our discussion to asymptotic optimality of the threshold policy under given

staffing levels and do not include staffing recommendations.

Also, we restrict our attention to a certain setting of the problem in which theci ≥ cj whenever

θi ≥ θj. i.e. the case where the value the system gives to the different customer classes is

proportional to their relative patience.

We restrict ourselves to systems which are in theQED regime. Formally we consider systems

in which the staffing level of therth system,N r, is such that

√
N r(1− ρr) → β, −∞ < β < ∞.

Actually, the results are applicable also to the Efficiency Driven regime, but we do not discuss

this here, since we would need for that purpose analysis ofM/M/{Ki}model with abandon-

ments in the ED regime. We leave this part for future research. However, we would like to

mention that even in the particular case of the Efficiency Driven regime, in whichρr → c > 1,

we can show that the thresholds have a very positive impact on the abandonment cost.

We now turn the definition of asymptotic optimality in the context of abandonment cost.

Definition: Assume √
N r(1− ρr) → β, 0 < β < ∞. (160)

The sequence{πr} is asymptotically optimal with respect tōλr, if for any sequence of policies

{π̂r} we have that

lim inf
r→∞

Cr(π̂r, N r)

Cr(πr, N r)
≥ 1

whereCr(πr, N r) =
∑J

i=1 cr
i λ

r
i P

πr

i {Ab}

Under this definition, we have the following:

Theorem 7.1.6 Consider a sequence of multi-class multi-server systems, with theith class

customers have finite patience with rateθi.

Assume that all of the following three conditions holds:
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(a) Theθi’s are such thatcr
i ≥ cr

j wheneverθi ≥ θj, where we allowci, i = 1, ..., J − 1 to

grow polynomially withr (i.e cr
i = ci · rγi , γJ = 0).

(b) Condition (13) holds.

(c) The staffing is such that

√
N r(1− ρr) → β, −∞ < β < ∞.

Then, serving the classes in decreasing order ofciθi, and according to threshold priorities

asymptotically minimizesCr. In particular, choose the threshold such that the probability of

delay for classi, i = 1, ..., J − 1 is 1
Nγi

. Or, equivalently, choose

Kr
i −Kr

i−1 =

⌈
ln αi−1 − ln αi

ln ρr
i−1

⌉
(161)

whereαi = N−γi.

Proof:

First, we would like to create a lower bound for the overall number of abandonments. We can

restrict our attention to preemptive policies. Since all r.v’s involved here are exponential, al-

lowing preemption cannot damage the performance when looking at the overall abandonment

rate.

Denote byA, a system with the arrival, service and abandonment parameters as defined before.

Denote byB a system with the same arrival and service parameters but such that the patience

parameters are the same for all classes and are equal to

θ = min
i=1,...,J

θi.

Under any non-idling policy, systemB behaves (in the sense of the overall abandonment) as

a single classM/M/N + M .

Now, note that for any non-idling policy, the average length of the excursions below the level

of N is equal for systemsA andB. Now, let us focus on the excursions aboveN (the positive

excursions): it is clear (and can be proved by simple coupling arguments), that the positive

excursions in systemB are stochastically larger than the positive excursions in systemA.

Furthermore, when visitingN , the probability of starting a positive excursion is the same for

both systems.
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Denote byYi the overall number of customers in systemi, i ∈ {A,B}, by Zi the average

number of busy servers, andPi{Ab} the probability of abandonment in systemi. Then, for

any non-idling policy

P{YA ≥ N} ≤ P{YB ≥ N} (162)

Moreover, since the negative excursions have the same law, we have that

E[ZA|YA < N ] = E[ZB|YB < N ] (163)

Hence, we have that

E[ZA] = E[ZA|YA < N ]P{YA < N}+ NP{YA ≥ N}
≤ E[ZB|YB < N ]P{YB < N}+ NP{YB ≥ N} = E[ZB]

(164)

But, by Little’s Law

E[Zi] =
λ

µ
(1− Pi{Ab})

and hence we have that

PA{Ab} ≥ PB{Ab} (165)

So, systemB with non-idling policy constitutes a lower bound for our system with respect to

the overall probability of abandonment.

Having the lower bound, we can not proceed with the asymptotic optimality.

By our condition on theci’s andθi’s and by Proposition 7.1.5, we have that the lower bound

which iscJλPB{Ab} is asymptotically achieved, for any logarithmic threshold level.

Now, if we allow the abandonment costs of high priorities to grow polynomially withr we can

still achieve the lower bound by using thresholds such that the probability of delay for classi

is ano(1/Nγi−1/2). ¥

72



7.1.5 Asymptotic Optimality - Constraint Satisfaction

In this section, we wish to tackle the question of staffing a large call center when the opti-

mization problem is given by (125). We give here the result for the case in which0 < αi <

1, i = 1, ..., J are fixed (independently of system size). Under this configuration we allow the

different classes to have different service rate (in particular we assume that the service time

of classi customers is exponentially distributed with rateµi). The optimal policy in this case

gives rise to a pool decomposition solution. i.e. decompose theN servers intoJ groups of

servers, such that classi customers will be served only by groupi servers. It is, however,

interesting to examine the question what is the optimal policy in the general case, in which the

αi’s are allowed to vary with the system size. It seems that this more general question requires

different tools than those used in this work and hence we leave it for future research.

In the following, we assume, without loss of generality, that the classes are ordered such that

αi ≥ αk wheneveri ≥ k. Also, we still demand that condition (13) holds.

Before proving the optimality of the pool decomposition policy we would like to state the

definition of asymptotic optimality in this context. In the non-abandonment case we centered

the cost around the lower bounddλ/µe in order to get a meaningful result. This is clearly not

a lower bound in the case with abandonment.

Lemma 7.1.7 Consider a multi-class system where classi customers have exponential service

times and patience with ratesµi andθi, respectively.

Fix r > 0 and denote by(N r)∗ the optimal solution to (125). Then,

(N r)∗ ≥
J∑

i=1

λr
i

µi

(1− αi). (166)

where, as before,λr =
∑J

i=1 λr
i ,

Proof: For this proof, and sincer is fixed, we omit the superscript for simplicity of notation.

DefineTi(t) to be the cumulative time dedicated to service of classi customers up to time

t. DefineRi(t) to be the number of abandonments from classi until time t, Ai(t) to be

the number of arrivals to classi until time t, Qi(t) to be the classi queue length at timet,

andDi(t) the number of service completions from classi until time t. Also, defineT (t) =∑J
i=1 Ti(t), D(t) =

∑J
i=1 Di(t), Q(t) =

∑J
i=1 Qi(t), R(t) =

∑J
i=1 Ri(t). Finally, P{Ab} is

the overall probability of abandonment:P{Ab} =
∑J

i=1
λi

λ
Pi{Ab}.
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Then, we have:

αi ≥ Pi{Ab} = lim
t→∞

Ri(t)

Ai(t)
= lim

t→∞
Ai(t)−Di(t) + Qi(t)

Ai(t)
= lim

t→∞
1−µiTi(t)

λit
, ∀i = 1, ..., J.

(167)

To justify the last equality, note the following:

• Ai(t) → ∞, ast → ∞. Also Ai(t) = λi(t) + MA(t) whereM(t) is a locally square-

integrable martingale for whichlimt→∞
MA(t)
Ai(t)

→ 0

• Steady state exists and hencelimt→∞
Qi(t)
Ai(t)

→ 0

• Di(t) = µiTi(t) + MT (t) whereMT (t) is a locally square-integrable martingale for

which limt→∞
MT (t)
Ai(t)

→ 0.

• Ti(t) →∞, ast →∞ (otherwiselimt→∞
Ri(t)
Ai(t)

→ 1). Hencelimt→∞
Di(t)
Ai(t)

= limt→∞
µiTi(t)
λi(t)

.

We can re-write the last equation as

lim
t→∞

1− µiTi(t)/λit ≤ αi

or, alternatively, as

N∗ ≥ lim
t→∞

J∑
i=1

Ti(t)/t ≥
J∑

i=1

λi

µi

(1− αi).

¥

Having the lower bound, we proceed to the definition of asymptotic optimality:

Definition: Suppose that the sequence{N r, πr}∗ is an optimal solution of (125) with respect

to the sequence of arrival rates vectorλ̄r. Then the sequence{N r, πr} is asymptotically

optimal if when used for the system,

• lim supr→∞ P r
i {Abi} ≤ αi ,∀i = 1, ..., J , and,

• if we take any other sequence of policies{N r
2 , πr

2} thenlim inf
r→∞

N r
2 −N r

N r −N r ≥ 1,
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whereN r =
∑J

i=1
λi

µi
(1− αi).

The following is an immediate result of the lower bound.

Proposition 7.1.3 For (125) the following policy is asymptotically optimal (in the sense of the

last definition):

Partition the server pool into distinct pools of sizesNi, i = 1, . . . J , whereNi = bλi

µi
(1−αi)c.

Let classi customers be served only by the servers of theith pool (i.e. convert the system into

J single class systems).

Proof: The proposed policy and staffing are clearly asymptotically feasible. Each class is now

served in a single classM/M/N + M with ED staffing, and, by the choice of the staffing, the

probability of abandonment for classi is αi (see for example [69]).

The optimality is immediate since the lower bound is approached from below.

¥

Remark: Similar procedures are likely to work for more general network topologies in which

the service times are also dependent of the servers (i.e. when classi customers are served by

server typej with rateµij.

Remark: Performance measures for the proposed policy can be found in Whitt [69].

75



N1

1

1

2

2

21

N2

3

Figure 4: The N Model

7.2 Ongoing Research - An N Model

In the previous sections of this paper we analyzed the V Model which constitutes a single

server type and multiple customers classes. Armony and Mandelbaum [2] analyzed the case

of multiple server types and a single customer class (denoted the
∧

Model) and established

the asymptotic optimality of a certain staffing and routing scheme. These two models can

be thought of as building blocks for the more general multi-class multi-type systems. In this

section we introduce some ongoing research that considers a more general, but still relatively

simple system. In particular, we consider the N Model depicted in Figure 4, that can be

thought of as a combination of the V Model and the
∧

Model. While the V Model isolates the

scheduling problem (which customer to admit into service upon a service completion) and the∧
Model isolates the routing problem (which server to choose upon a customer arrival), the N

Model combines scheduling and routing.

The N model constitutes two customer classes (1 and 2) arriving according to independent

poisson processes with arrival rateλi for classi, i = 1, 2. A class2 customer can be served

only by a type2 server and his service will take on average1/µ1 units of time. Class 1

customers can be served by both server types. A service of a class1 customer by a type1

server will take, on average,1/µ1 units of time. service of a class1 customer by a type2

server will take, on average,1/µ3 units of time
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An analytical method for calculation of steady state performance measures was given by Stan-

ford and Grassmann [54] [54] which consider a special case in whichµ1 = µ2 = µ3 = µ. The

policy analyzed is the following:

Type 2 servers give non-preemptive priority to class 2 customers. In the event that no class 2

customers are waiting and all type1 servers are busy, a type 2 server that becomes available

would select a waiting class 1 customer for service, if any is present. A class 1 customer that

arrives and finds any type server available will be served by type 1 servers. Otherwise, if all

type 1 servers are busy and there are any available type 2 servers, he will be served by a type

2 server.

Shumsky [56] gives an approximation scheme for the steady state distribution of the N Model

under the same policy and withµ2 = µ3. Bell and Williams [9] analyzed the N Model in the

context of conventional heavy traffic and established the asymptotic optimality of a certain

threshold policy.

Yahalom and Mandelbaum [72] found that for certain settings of the N model, for which

µ2 = µ3, the optimal policies are threshold policies combining thresholds on the number in

queue and number of busy servers.

As mentioned above, [2] analyzes the
∧

model (as described in Figure 5). The model, which

constitutes a single customers class and multiple server types, is, in a sense, symmetric to the

previously discussedV model.Armony and Mandelbaum [2] solve concurrently the asymptot-

ically optimal staffing and routing problem in the context of Halfin-Whitt asymptotics as we

did in the first part of this paper for theV Model. Our aim in this section is to combine both

results to obtain the asymptotically optimal staffing, scheduling and routing for the N-Model.

The work done in [2] turns out to be extremely useful for our setting since most of the methods

employed there can be almost automatically adopted to our setting here.
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As in [72], and for tractability, we limit our attention to settings of the N Model in which

µ2 = µ3. The different settings we wish to consider vary in the value of the two customers

classes (class 1 might be VIP or the opposite), in the cost of the different server types and in

the relation betweenµ1 andµ2.

To illustrate this ongoing research we state here only results for a single specific setting. We

limit ourselves to presentation of the asymptotically optimal policy and staffing, while omit-

ting the propositions and their proofs. For the optimal policy we also have asymptotic analysis

of performance measures (diffusion and steady state). These are also omitted.

The setting we present is the following: We consider the model in Figure 4 withµ1 >= µ2 =

µ3, and where class 2 customers are the VIP customers. A motivation for this setting could

be as follows. Class 2 are VIP customers requiring a certain type of service which can be

given only by specialists of server type 2. Class 1 customers are regular customers who need

a regular service which takes a shorter time. The experienced type 2 servers are capable of

handling the regular service (but at a cost of slower service to class1) while type 1 servers

are not trained to handle the service required by the VIP customers. For this scenario the

following policy was proved to be optimal in [72]:

• When a type 1 server completes a service, she will admit a class 1 customer to service

if there are any waiting in queue 1.

• When a type 2 server completes a service, she will admit a class 2 customer to service,

if any are waiting in queue 2. Otherwise, she will admit a class 1 customer if there are

at leastq∗1(I2) waiting in queue 1, where the thresholdq∗1(I2) is a function of the system

state.

• When a class 2 customer arrives to an empty queue 2, she will begin service with a type

2 server if any of them is idle.

• When a class 1 customer arrives to an empty queue 1, she will begin service with an idle

type 1 server. If all type 1 servers are busy and there are at leastI∗2 idle type 2 servers

(or, equivalently, ifq∗1(I2) ≤ 1), she will begin service with one of them.

Since we wish to solve the control and staffing problems jointly, we consider the problem of

minimizing staffing costs and waiting costs of the VIP customers. In addition, we impose

constraints on the probability of delay for each class. Formally, we examine the following

optimization problem:
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minimize c1N1 + c2N2 + cwλ2E[W2|W2 > 0]

subject to

Pπ(Wi > 0) ≤ αi, 0 < αi < 1, i = 1, 2, for someπ ∈ Π.

(168)

HereΠ, as before, is the set of all non-preemptive non-anticipative scheduling policies, and

cw is the cost of a VIP customer waiting one unit of time. Also, we assume thatα2 ≤ α1.

Actually, we can limit ourselves to policies in which class 2 customers are served as soon

as possible: When a type 2 server completes service he will choose to serve next a class 2

customer if there is one waiting in queue. To support this it can be shown that for any fixed

N̄
4
= (N1, N2), cwE[W2|W2 > 0] is minimized by such a policy.

The waiting cost can therefore be re-written ascw
λ

N2µ2−λ2
(since, given wait, the waiting

of VIP customers has the same distribution as the waiting time given wait in a single class

M/M/1 queue with service rateN2µ2 and arrival rateλ2). We restate the optimization prob-

lem as follows:

minimize c1N1 + c2N2 + cw
λ2

N2µ2−λ2

subject to

Pπ(W1 > 0) ≤ αi, 0 < αi < 1, for someπ ∈ Π

(169)

As done for the V Model, we consider a sequence of systems indexed byr = 1, 2, ... such that

λr →∞ and we assume non-negligibility of both classes, i.eλr
i

λr → ai > 0, i = 1, 2.

We consider a sequence ofN models indexed by the superscriptr = 1, 2, .... For systemr,

we now present the asymptotically optimal policy,πr. In contrast to the optimal policy of

[72], the thresholds in this policy do not depend on the system state. Moreover, there are only

thresholds on the number of idle servers and not on queue lengths. For fixed system size,πr

is as follows:

• When a type 1 server completes a service, she will admit a class 1 customer to service

if there are any waiting in queue 1.

• When a type 2 server completes a service, she will admit a class 2 customer to service,

if any are waiting in queue 2; otherwise she will admit a class 1 customer.

• When a class 2 customer arrives to an empty queue 2, she will begin service with a type

2 server if any of them is idle.

• When a class 1 customer arrives to an empty queue 1, she will begin service with an idle

type 1 server. If all type 1 servers are busy, she will begin service with an idle type 2
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server only if there are more thanKr type 2 servers idle.

Let N̄ r = (N r
1 , N r

2 ) be the optimal solution to the following convex program:

minimize c1N
r
1 + c2N

r
2 + cr

w
λ2

N2µ2−λr
2

subject to µ1N
r
1 + µ2N

r
2 ≥ λr + δ

√
λr

µ2N
r
2 ≥ λr

2

(170)

whereδ > 0 is chosen so that:
[
1 +

(δ/
√

µ2)Φ(δ/
√

µ2)

φ(δ/
√

µ2)

]−1

= α1. (171)

Denote byCr the solution to the above optimization problem whenδ = 0. ThenCr is the

minimum cost when we only demand stability and it is clearly a lower bound for the cost of

the original problem.

Let Kr = d ln α2−ln α1

ln ρr
1

e

in whichρr
1 =

λr
1

Nr
2 µ2

.

Let Cr(N̄ r, πr) = c1N1 + c2N2 + cr
w

λ2

N2µ2−λr
2
.

Then, we can prove the following:

Assume thatcr
w = Θ(λr). Then(N̄ r, πr) with Kr given above, are asymptotically optimal in

the following sense:

• Feasibility: lim supr→∞ P{W r
i (∞) > 0} ≤ αi, i = 1, 2.

• Optimality: If we take any other feasible sequence(
¯̂
N r,

hatπr), we have that

Cr(
¯̂
N r

2 , π̂r)− Cr

Cr(N̄ r, πr)− Cr → γ ≥ 1

The interesting fact is that, similarly to the V Model, the complicated state dependent optimal

policy becomes asymptotically simple.

The above is just an illustration of what can be done in the context of the N Model. Our aim is

to complete the picture by finding optimal staffing and controls for additional settings of the

N Model, hopefully all of them.
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8 Future Research

In this work we a have limited our attention mainly to the V-Model of Skills-Based Routing.

We have tried to make the problem as realistic as possible. However, some more work is

required to understand the effects of limited number of lines, retrials and feedback as well as

the issue of different service requirements for different classes.

The V-Model is a simple example of Skills-Based Routing that isolates the scheduling prob-

lem. A natural continuation, as illustrated in Section 7.2, would be to combine the results of

this work with other related works (such as [2]) to obtain results for networks of more general

topology such as theN Model.

Also, the work done in this thesis lays the ground for the solution of several design problems.

For example, the results of this thesis can be used to consider the question of pooling several V

models (orI models) when the pooling incurs a cost as a result of the required cross-training

of the CSRs.

We have dealt only briefly with abandonments. In this context, there is still a need for more

general results to the two optimization problems that where presented in Section 7.1.
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9 Appendix - Efficiency Driven M/M/N

In Section 5, we introduced the diffusion limit for the Efficiency DrivenM/M/{Ki} model.

The result there is heavily based on having an Efficiency Driven limit for the single class

M/M/N queue.

In the next proposition we consider a sequence ofM/M/N queues where, for simplicity of

notation, we use the number of servers as the index. We wish to examine the limits obtained

in the Efficiency Driven regime, i.e. we fixδ, 1/2 < δ ≤ 1, and letλN grow in the following

manner:

N δ(1− ρN) → β, 0 < β < ∞. (172)

Our aim is to prove convergence of the processQN(t) (standing for the total number of cus-

tomer in systemN at timet) to a Reflected Brownian Motion. This result was proved in [70]

for the particular case in whichδ = 1. Essentially, the limit we obtain here is the same as

would be obtained in the conventional heavy traffic regime where the number of servers,N ,

is held fixed and the load is increased to one.

Essentially, in order to obtain convergence, all that we have to do is prove that the time that the

processX spends below zero becomes negligible asN grows indefinitely. Since the positive

part is clearly the same as in the case of anM/M/1 queue with fast arrivals and fast services,

the result will follow by a time change argument.

The proof of the next proposition is just an adaptation of the proof used in Garnett’s M.Sc.

Thesis [26] for the proof of part 3 of Theorem 6.2 there (A brief version of Garnett’s proof

can be found in Garnett et al. [27], where most of the details are omitted).

Let XN(t) be the scaled process, i.e.

XN(t) =
QN((N2δ−1t)−N

N δ
(173)

First we quote again proposition 5.1.1.

Proposition 5.1.1. Consider a sequence ofM/M/N system indexed byN = 1, 2, ..., such

that

N δ(1− ρN) → 0 < β < ∞, (174)

AssumeQN (0)
Nδ ⇒ X(0), whereX(0) ≥ 0, a.s. Then,
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XN(t) ⇒ RBM(−βµ, 2µ) (175)

Remark: The conditionX(0) ≥ 0 is necessary for the limit process to be continuous on

[0,∞). Otherwise, we would have a limit process that is continuous only on the open interval

(0,∞). See [26] and the references therein for more details on this kind of limits.

Proof:

The time changed process, when restricting the process to be positive, is the same as an

M/M/1 queue with fast arrivals and fast service and converges by known results (see for

example [43]) to the desired limit. Formally, denote byτN
+ (t) andτN

− (t) the time the process

spends above zero and below zero respectively, i.e.

τN
+ (t) =

∫ t

0

1{XN (s)≥0}ds, (176)

τN
− (t) =

∫ t

0

1{XN (s)<0}ds, (177)

Then,

XN ◦ τN
+ ⇒ RBM(−βµ, 2µ). (178)

Wheref ◦ g is the composition map (i.e.f ◦ g(t) = f(g(t))). By the random time change

theorem all that is left to prove is that

τN
− (t) ⇒ 0. (179)

Let us look at the processQN(N2δ−1t). Let AN
i be the length of theith period in which there

is no queue (i.e.QN ≤ 0). Also let BN
i be the length of theith busy period (i.e.QN > 0

during this times). LetCN
i = AN

i + BN
i , i = 1, 2, ... be the length of theith cycle, where a

cycle consists of a busy period and a non-busy period.

By the Markovian structure of the process{CN
i }∞i=1 is a sequence of I.I.D random variables.

Let σN(T ) be the number of cycles that begin until timeT , or formally

σN(T ) = min{n :
n∑

i=1

CN
i > T} (180)
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Then,σN(T ) is a stopping time with respect to the sequence{CN
i }.

What we are seeking to prove is that

lim
N→∞

P{
σN (T )∑

i=1

BN
i > ε} = 0. (181)

We will prove the convergence of
∑σN (T )

i=1 AN
i to zero inL1, which in turn implies convergence

in probability.

We will assume for now thatQN(0) = 0, so thatCN
1 will have the same distribution as any

otherCN
i . We will relax this assumption later.

Note thatN δ(1 − ρN) → β implies thatNµ − λ ∼ N1−δ. Now, BN
i is just a busy period in

anM/M/1 queue with accelerated time scale. Hence,

E[BN
i ] =

1

N2δ−1(Nµ− λ)
∼ 1

βN δ
(182)

N δ(1 − ρN) → β also implies that
√

N(1 − ρN) → 0 and hence, following [26] and due to

the time acceleration, we will have also that

E[AN
i ] = O

(
1

N2δ−1/2h(0)

)
= o

(
1

N δ

)
,

whereh is the hazard rate function of a standard normal r.v (i.e.h(x) = φ(x)/(1 − Φ(x)).

Hence, we have thatE[CN
i ] ∼ 1

βNδ .

From here, following exactly pages (64-67) of [26], with
√

N replaced byN δ, h(−β) replaced

by β andBN
i replaced byAN

i , we can conclude that

limN→∞ E
[∑σN (T )

i=1 AN
i

]
= 0.

It is only left to remove the assumption thatQN(0) = 0.

If X(0) > 0 a.s. the result clearly holds with a limit that is continuous on[0,∞). So, let

us assume thatX(0) = 0. . WheneverQN(0) > 0 the result clearly holds since the time

spent below zero would be stochastically smaller than in the case withQN(0) = 0. The

only problem is whenQN(0) < 0 (remember that we are still dealing with the case in which

X(0) = 0 which means thatQN(0) = o(N−δ)).
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We will prove that ifQN(0) < 0 andX(0) = 0

lim
N→∞

E[AN
1 ] = 0, (183)

and hence the negative part still disappears in the limit. In particular, denote byV N−k
N the

expected time it takes for the process to arrive fromN − k to N . Then

V N−k
N ≤ E[AN

i ]
1−

(
λN

λN+(N−k+1)µ

)k

1−
(

λN

λN+(N−k+1)µ

) (184)

The above is obtained by a simple adaptation of pages (67-68) in [26]. Now,E[AN
i ] = o( 1

Nδ )

and the result follows. ¥
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[28] Glazebrook, K., Nĩno-Mora, J., “Parallel scheduling of multiclass M/M/m queues: ap-

proximate and heavy-traffic optimization of achievable performance”,Operations Re-

search, 49:4, pp. 609-623, 2001.

[29] Glynn, P.W., “Upper bounds on Poisson tail probabilities”,Operations Research Letters,

6(1), pp. 9-14, 1987.

[30] Halfin S., Whitt W., “Heavy-Traffic Limits for Queues with Many Exponential Servers”,

Operations Research, 29, pp. 567-587, 1981.

[31] Harrison, J.M., “Heavy traffic analysis of a system with parallel servers: asymptotic

analysis of discrete-review policies”,Annals of applied probability, 8, pp. 822-848, 1998.

[32] Harrison J.M., Zeevi A., “Dynamic scheduling of a multiclass queue in the Halfin and

Whitt heavy traffic regime”, to appear inOperations Research, 2003.

[33] Harrison J.M., Zeevi A., “A Method for Staffing Large Call Centers Based on Stochastic

Fluid Models”. To appearManufacturing and Service Operations Management (MSOM),

2005.

[34] Hopp W.J., Van Oyen M.P., “Agile Workforce Evaluation: A Framework for Cross-

training and Coordination”. To appearIIE Transactions, 36, 2004.

[35] Jagerman D.L., “Some properties of the Erlang loss function”,Bell Systems Technical

Journal, 53:3, pp. 525–551, 1974.

[36] Jelenkovic P., Mandelbaum A., and Momcilovic P., “The GI/D/N queue in the QED

regime”, Accepted toQueueing Systems, June 2003, available at

http://iew3.technion.ac.il/serveng/References/references.html ,

[37] Jennings O.B., Mandelbaum A., Massey W.A., and Whitt W., “Server staffing to meet

time-varying demand”,Management Science, 42, pp. 1383–1394, 1996.

[38] Kleinrock L., “Queueing Systems”, Volume II, CH. 1, pp. 1-22, John Wiley & Sons,

1976.

[39] Kella O., Yechiali U., “Waiting Times in the Non-Preemptive Priority M/M/c Queue”,

Communications in Statistics - Stochastic Models, 1(2), pp. 357-262, 1985.

[40] Luh, H.P., Viniotis, I., “Threshold Control Policies for Heterogeneous Server Systems”,

Math Meth Oper Res, 55, pp 121-142, 2002.

[41] Maglaras C., Zeevi A., “Pricing and capacity sizing for systems with shared resources:

Scaling relations and approximate solutions”,Management Science, 49(8), pp. 1018-

1038, 2003.

88



[42] Mandelbaum A., Sakov A. and Zeltyn S., “Empirircal Analysis of a Call Center”, Tech-

nical Report, 2000.

[43] Mandelbaum A., Pats G., “State-Dependent Queues: Approximations and Applications”.

[44] Mandelbaum A., Stolyar A., “Scheduling Flexible Servers with Convex Delay Costs:

Heavy-Traffic Optimality of the Generalizedcµ-Rule”, to appear inOperations Re-

search, 2004.

[45] Mandelbaum A., “Call Centers: Research Bibliography with Abstracts”, Version 3, May

27, 2002.

[46] Massey A.W., Wallace B.R., “An Optimal Design of the M/M/C/K Queue for Call Cen-

ters”, to appear inQueueing Systems, 2004.

[47] Meyn S.P. and Tweedie R.L., “Markov Chains and Stochastic Stabiliy”, Springer, 1993.

[48] Perry M., Nilsson A., “Performance modeling of automatic call distributors: assignable

grade of service staffing”, InXIV International Switching Symposium, pp. 294–298,

1992.

[49] Puhalskii A. “On the Invariance Principle For the First Passage Time”,Mathematics of

Operations Research, Vol. 19, Nov. 1994.

[50] Puhalskii A., Reiman M., “The Multiclass GI/PH/N Queue in the Halfin-Whitt Regime”,

Advances in Applied Probablity, 32, pp. 564-595, 2000.

[51] Rege K.M., Sengupta B., “A Priority Based Admission Scheme for a Multiclass Queue-

ing System”, AT & T Tech. J. 64, pp. 1731-1753, 1985.

[52] Resnick S. “Adventures in Stochastic Process”, Birkhäuser, 1992.
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2 

המחקר נערך בהנחייתו של פרופסור אבישי מנדלבאום מהפקולטה 

ברצוני להודות לו מקרב לב על . להנדסת תעשייה וניהול בטכניון

על שיחות רבות וממושכות שבמהלכן סייע לי ; מסירותו הראויה להערכה

תוך מציאת האיזון הנכון בין , להתמודד עם בעיות שעלו במהלך המחקר

דרכה לבין הקידום של התפתחותי האישית מלאכת ההכוונה והה

. ועל התרומה הניכרת שתרם לי מידיעותיו ומרעיונותיו; והמקצועית

ועל כך נתונה לו , עבודתנו המשותפת הייתה משמעותית ביותר בעבורי

 . תודתי העמוקה

כמו כן ברצוני להודות לפרופסור מור ערמוני מבית הספר למינהל עסקים 

אשר במהלך שנת שהותה בטכניון , יורק- ניוש סטרן באוניברסיטת"ע

לעזרתה הנדיבה תפקיד מרכזי בהצלחתו . הייתה לי בבחינת מנחה נוספת

 . של מחקר זה

תודתי נתונה גם לפרופסור חיה כספי מהפקולטה להנדסת תעשייה 

שעל אף עיסוקיה הרבים מצאה זמן לייעץ לי ולהשיב , וניהול בטכניון

 . ת רבהבאריכות ובסבלנו לשאלותיי

אני מודה לבית הספר ללימודי מוסמכים בטכניון על התמיכה , לבסוף

 .הכספית הנדיבה במהלך השתלמותי
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