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Abstract

We analyze Service Times and Customers’ Patience at a Call Center of one
of Israel‘’s banks. This is done by modelling and fitting Phase-type (PH)
distributions to its data. The motivation is the optimization of call center
performance. The correct design and management of a call center become
possible only as a result of a system modelling and deep analysis of the data
supporting the model. PH-distributions are used as the statistical models
that provide a compact description of the data and possibly enhance our
understanding of the mechanism of the underlying processes.

PH-distributions are defined as distributions of absorption times 7' in
Markov processes with k < oo transient states (the phases) and one absorb-
ing state A. There are several reasons for using the class of PH-distributions.
One important property of PH-distributions is that they are dense and can
be used to approximate any kind of distribution on [0,00). Moreover, PH-
distributions are sufficiently versatile and computationally tractable that
they can be used to reflect the essential qualitative features of the model
and to provide, through the interpretation of numerical results, much useful
information on its physical behavior. They enable us to investigate the un-
derlying processes going through the time a customer spends in service, or
to understand customers’ behavior by modelling their patience.

Service time is the positive time a customer spends with an agent, until
departure from the service/system. Whereas the patience is the time a cus-
tomer is willing to wait in queue before being served. We refer to the service
time and the waiting time variables as the survival time, since both are times
a customer has ”survived” over some follow-up period, till occurrence of a
certain event. When studying the service time, the event of interest is the
time of departure from service. While measuring the patience, the customer’s
survival time becomes incomplete at the right side of the follow-up period.
For customers who abandon the system before being served, the patience
is their positive waiting time in queue before abandoning the system. On
the other hand, the patience of customers who get the service is larger than
their waiting time in queue and hence, the corresponding data constitutes



right-censored observations. The parameters of PH-distributions, for both
censored and non-censored observations, are estimated via the EM-algorithm
using the EMpht-program.

In this research we fit various phase-type distributions to empirical data
sets, referred to as service duration and patience, according to priorities and
service types. Qualitative comparison of empirical survival functions with the
fitted ones is done by visual examination of their plots. The empirical sur-
vival functions are computed by non-parametric techniques, constructed for
censored as well as for non-censored observations. The Kaplan-Meier setup
for estimating the patience and the Kernel density estimator for estimat-
ing the density of service data are implemented, using S-PLUS and Matlab
softwares. Simultaneous confidence interval for the empirical cumulative dis-
tribution function (CDF) provide heuristic stopping rules for adding phases
of the fitted PH-distribution. We implement the Kolmogorov-Smirnov and
Anderson-Darling goodness-of-fit tests to evaluate quantitative aspects of the
produced fits.

We found that the general structure of order £ = 3 already provides a
reasonable fit to the service time. Moreover, the Coxian structure of the
same order is also appropriate. The PH-model that provides a perfect fit to
the patience is the general Coxian structure of order k£ = 30, which captures
peaks that take place at the small time-interval, around 15 and 60 seconds,
while the overall time-interval is over 1000 seconds.

We fit PH-distributions to four major service types of customers and pri-
orities. We note a stochastic ordering between types and priorities. For
example, it is demonstrated that high priority customers are more patient.
This pattern emerges not just visually through survival and hazard curves,
but also from the Coxian structure of order 30 fitted to the customers’ pa-
tience of different priorities.

In view of the fact that Service Times of our call center turn out to be
Log-normal distributed, according to Mandelbaum et al. [20], we compared
Phase-Type to Log-normal distribution. Method of moments has been used
for comparing between these two distributions. Furthermore, we found the
optimal parameters of the PH-distribution numerically, for specific parame-
ters of Log-normal distribution and for a given order of the PH-distribution.
We implemented two numerical methods for this purpose: constrained non-
linear minimization, using Matlab, and minimization of information diver-
gence, using EMpht.
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Chapter 1

Introduction

1.1 Motivation

The call center industry constitutes a big, complicated group of people and
companies, from many different backgrounds. It spans the globe, crosses
industry borders, and includes everyone from reps to technology vendors.
Somewhere between 2-3% of the American workforce works in a call center.
That’s an enormous amount [16, 29]. There are anywhere from 20,000 to
350,000 call centers, which employ anywhere between 4 to 6.5 million people
(more than the entire agriculture sector) [17].

Call centers are becoming more important in financial services, and in
this research we will focus on this sector of a telephone-based human-service
operation. They are of importance to retail banking operations, credit card
operations and mutual fund organizations. A significant part of the dynamics
of call centers in financial services is similar to call centers in other industries.
Financial services institutions are providing a rapidly expanding variety of
products and services; technology is making customers more mobile, and de-
lay is unacceptable in financial transactions. These attributes of the financial
services sector mean that firms must provide effective, efficient and reliable
service or quickly lose customers to competitors. To avoid huge labor costs,
financial services firms must develop innovative approaches to manage their
workforces and their service delivery process [18].

Quoting from Mandelbaum et al. [20], ” Call center is the common term
for describing a telephone-based human-service operation. A call center pro-
vides tele-services, namely services in which the customers and the service
agents are remote from each other. The agents, who sit in cubicles, constitute
the physical embodiment of the call center: with numbers varying from very
few to many hundreds, they serve customers over the phone, while facing a



computer terminal that outputs and inputs customer data. The customers,
who are only virtually present, are either being served, or they are waiting in,
what we call, tele-queues: up to possibly thousands of customers sharing a
phantom queue, invisible to each other and the agents serving them, waiting
and accumulating impatience until one of two things happens — an agent is
allocated to serve them (through a supporting software), or they abandon
the tele-queue, plausibly due to impatience that has built up to exceed their
anticipated worth of the service”.

Telecommunication call centers have become the primary channel of cus-
tomer service interaction for many businesses. The level of professionalism
and efficiency that call center agents deliver to customers provides a signifi-
cant advantage over traditional customer service practices. The growth of call
centers has been substantial over the last two decades. This growth is driven
by a company’s desire to lower operating costs and to increase revenues.
Given analytical and simulation-based models for the design and manage-
ment of call centers, the goal is to optimize their performance. The system
performance can be measured with quantities such as the mean waiting-time
in queue, the expected time in system, the percentage of calls answered within
a given time, the waiting-time probability distribution, and the abandonment
rate [18].

Call centers are growing at unprecedented rates, yet relatively little is
known about customer satisfaction with this method of service delivery. One
of the main questions arising is: why do customers leave? Primarily because
they don’t get what they want. But it has less to do with price than service
level: 45% of those who leave do so because of ”poor service”; another 20%
because of "lack of attention” (that’s 65% leaving because you've done some-
thing wrong). 15% leave because they can find a cheaper product elsewhere,
another 15% because they find a better product elsewhere, and 5% for other
unspecified reasons [16, 29]. Hence, a major concern for service managers
is the determination of how long a customer should wait to be served. Ser-
vices, due to the customer’s direct interaction with the process, must face
a trade-off between minimizing the cost of having a customer wait and the
cost of providing good service. Then in order to determine the least number
of agents that could provide a given service level, it is critical to understand
customers’ (im)patience while waiting at the phone to be served.

The motivation behind this research work is analyzing and modelling of
service durations and patience by measuring this data. The correct design
and management of a call center, and the optimization of call center perfor-
mance become possible only as a result of system modelling and deep analysis
of the data supporting the model. The source of the data used in this re-
search is a small call center of one of Israel’s banks. The center provides



several types of services: information for current and prospective customers,
transactions of checking and saving accounts, stock-trading, and technical
support for Internet users of the bank’s site.

1.2 Objective

The purpose of this research is analyzing and modelling the call center data
described above and then fitting phase-type distributions (see Chapter 5) to
the data. There are several motivations for using phase-type distributions as
statistical models. These distributions arise from a generalization of Erlang’s
method of stages in a form that is particularly well-suited for numerical
computation: problems which have an explicit solution assuming exponential
distributions are algorithmically tractable when one replaces the exponential
distribution with a phase-type distribution. Furthermore, the class of phase-
type distributions is dense and hence any distribution on [0, c0) can, at least
in principle, be approximated arbitrary close by a phase-type distribution.
In some applications, the phases have no physical interpretation and the
phase-type modelling is purely descriptive. However, in other areas such as
demography, drug kinetics, epidemiology, etc, the probabilistic interpretation
fits in nicely with standard Markovian modelling.

It may often be natural to think that there are underlying processes going
through a set of stages till the occurrence of certain events. For example,
a primary interest is in modelling waiting times, where the waiting time
is defined as a positive time in queue. It is important for understanding
customer behavior - patience, and for analyzing how it might be different for
customers with different priorities or different types of service. As defined in
[20], patience is the time a customer is willing to wait in queue before being
served. For customers who abandon the system before being served, patience
will be estimated by their positive waiting time in queue before abandoning
the system. On the other hand, for customers who get the service, their
patience is larger than their waiting time in queue and hence they are right-
censored observations. In order to estimate patience, it is necessary to use
techniques for analyzing censored data. Another reason for being interested
in the underlying processes is the need to understand better the hazard rate
or intensity (see section 4.1, 4.2) of the distributions of interest. One may ask
why the hazard rate assumes various typical shapes, sometimes increasing,
sometimes decreasing, sometimes with a unimodal shape of increase followed
by a decrease.

Modelling service time data via phase-type distributions allows us to un-
derstand a service, which consists of a random sequence of tasks such that a



phase corresponds to a task. According to Mandelbaum et al. [20], the ser-
vice times are Log-normal distributed. Therefore, the comparison between
Phase-type and Log-normal distributions is natural.

Once we have a model, it is important to check whether it is any good or
not. Typically this is judged by comparing the empirical functions with cor-
responding ones obtained from the fitted model. The nonparametric methods
for estimation of the density, the distribution, the survival and the hazard
functions are implemented for both censored and non-censored observations.
The plots of the empirical functions together with the fitted ones, simulta-
neous confidence interval for empirical distribution function, and goodness
of fit tests allow us to assess whether a particular phase-type distribution
provides an adequate fit to the data.

1.3 Outline of the Research

The organization of this research work is as follows.

Chapter 2 presents a survey of several articles where phase-type distribu-
tions play a central role. The applications of phase-type distributions
in the various fields of study are described. It contains various exam-
ples of fitted phase-type models to both censored and non-censored real
data-sets. The main results of previous works are pointed out as well.

Chapter 3 gives partial description of the data-base of the telephone call-
center of " Anonymous Bank” in Israel, used in this research, and fo-
cuses on studying two types of the data: service durations and customer
patience of several types and/or priority rules. The complete informa-
tion about the data-base and the design of the telephone call-center of
” Anonymous Bank” in Israel are given in [20].

Chapter 4 describes the nonparametric methods for estimation the density,
the survival and distribution functions, and the hazard rate. Estima-
tion from a sample containing right-censored observations as well as
non-censored is presented. Considering right-censored observations,
the Kaplan-Meier estimator is used. The kernel density estimator is
described for estimating density of non-censored observations. Several
S-PLUS functions are mentioned for implementing these techniques.

Chapter 5 contains the formal definition of phase-type distributions. We
review early in the chapter the reasons for introducing this highly ver-
satile class of probability distributions. We illustrate some basic dis-



tributional characteristics and properties of PH-distributions, and in-
troduce several familiar distributions, which are simple examples of
the phase-type distributions. An example of non-identifiability of the
parameterization of the phase-type distribution is illustrated too.

Chapter 6 is entitled after the EMpht-program that was kindly supplied
to us by Marita Olsson [26]. This is a program for fitting phase-type
distributions, either to a sample (which may contain censored observa-
tions), or to another continuous distribution, using an EM-algorithm.
The chapter concludes with a discussion about the EM-algorithm and
its properties, and an example for illustrating an implementation of
the proposed algorithm to the Hyperexponential distribution with two
phases.

Chapter 7 includes a discussion about an heuristic stoping rule for adding
phases into the model, that is the confidence band for empirical cumu-
lative distribution function. It is used as a graphical method, which
has an advantage being very simple and effective. In addition, the
chapter describes two statistical tests for goodness-of-fit, the so-called
EDF tests, based on the empirical distribution function and enabling
to compare quantitatively the produced fits.

Chapter 8 analyzes two kinds of empirical data, referred to as service du-
rations and patience. Various phase-type distributions were fitted to
these data-sets, according to priorities and service types. Qualitative
comparison of empirical survival functions with the fitted ones is done
by visual examination of their plots. The empirical survival functions
are computed by non-parametric techniques, described at Chapter 4.
The parameters of fitted phase-type distributed functions are derived
with EMpht-program, described at Chapter 6. The simultaneous con-
fidence interval for empirical cumulative distribution function is re-
ferred as an heuristic stoping rule for adding phases. This sensitive
graphical method allows us to select the phase-type model with the
least number of phases. Goodness-of-fit techniques based on supre-
mum and quadratic empirical distribution function statistics, namely
Kolmogorov-Smirnov and Anderson-Darling tests, respectively, are im-
plemented to compare qualitatively the produced fits.

Chapter 9 discusses the problem of minimization of the distance between
Phase-type and Log-normal densities. It is of interest, since accord-
ing to Mandelbaum et al. [20], the service times are Log-normal dis-
tributed. Method of moments is used for comparing between these



two distributions. Furthermore, the optimal parameters of the phase-
type distribution are numerically found for specific parameters of Log-
normal distribution and for specified order of phase-type distribution.
Two numerical methods are implemented for this purpose: the con-
strained optimization, using Matlab, and the minimization of infor-
mation divergence, using EMpht. The results are obtained in three
cases: Log-normal(y = 1,0 = 0.5), Log-normal(u = 1,0 = 1) and Log-
normal(y = 0,0 = 1). In addition, an example of real data of overall
service time - December is considered. The parameters of Log-normal
distribution, corresponding to the data, are derived by maximum like-
lihood estimation. Using EMpht, we approximate this Log-normal dis-
tribution by phase-type one of a specific order.



Chapter 2

Literature review: Application
and examples of phase-type
distributions

Phase-type distributions have received a lot of attention in applied probabil-
ity, in particular in queueing theory where they generalize the classical Erlang
distributions. A survey of several articles where phase-type distributions play
a central role is given herein.

2.1 ”0On phase-type distributions in survival
analysis” by O.Aalen

O.Aalen’s article [2] demonstrates that phase-type distributions should find
greater application in biostatistics. This survey describes various kinds of
phase type models, connecting them to problems in survival analysis. Phase
type models have been used in medical statistics and other fields. Examples
include studies of the incubation period of AIDS, and of the duration of
genital herpes lesions. The description of the model for the incubation time
of AIDS is shown in Figure 2.1. One sees that the model has two phases for
developing to advanced HIV disease. In that stage treatment may be offered,
described by a rate . The effect of treatment is to slow down the further
progression to AIDS by a factor 6. The incubation period in this model is
the time it takes to go from state 1 (HIV infection stage) to state 5 (AIDS
stage).

The model for the incubation distribution of AIDS is an example of phase
type models of acyclic type, that is, where no state can be visited more than
once. Often, in biostatistical applications, this inexorable development in

10
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Figure 2.1: Phase-type model for incubation distribution of AIDS.

one direction will be unrealistic, and it is more natural to assume that the
process moves back and forth between states even though absorption may
eventually take place. Such models are so-called models with feedback. 1t is
always possible to arrive from models with feedback to a particularly simple
type of acyclic model — the series model, where all states are ordered and a
transition can only go to the next state in ordering, with the last state being
absorbing.

There is another example illustrating fitting phase-type distribution to
real data [2]. The example concerns women having had a live-born first
child, and the object is to analyze the time until their next birth, if any. The
analysis of birth intervals is of interest in demographic research. A random
sample of married woman who had a live-born first child during the period
1967-71 was taken. The total number of women included was 1779, and
they were followed up until 1982. The number of women giving birth and
the number of women that is not known whether they had another child
or had not, means the number who are censored, have been registered in
intervals of six months, starting nine months after the first birth.

A phase type model for the situation at hand should incorporate the
following features. Since it may be assumed that the women (or couples)
will generally wait a while before attempting to have another child, it is
natural to incorporate at least two stages in the process. Hence, the minimal
model would consist of three states, where the transition from the first to the
second state might mean that the couple is ready to have another child, while
transition from the second to the third state represents birth of the next child.
Next, one should consider the heterogeneity between individual women. Some
women will bear another child quite soon, while for others it may take many
years. Hence there should be at least two ways to proceed through the states,
a fast one and a slower one. Finally, one should incorporate the possibility
that some women will never conceive another child for an individual decision,
or some medical problems, or other circumstances. Hence there should be an
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extra absorbing state in the state space. A simple model which incorporates
these features is given in Figure 2.2. This simple and special structure is made

EEEEEE—
1 a 2 a > 3
First birth Second birth
y y B
B
4 <+“— 5

No second birth \

Figure 2.2: Phase-type model for birth interval example.

possible for explicit calculation of distribution, density and hazard functions.
The fit appears to be reasonably good, and thus one has an illustration that
phase type modelling may be a practical tool in statistical analysis.

2.2 7Fitting phase-type distributions via the
EM algorithm” by S.Asmussen et al

S.Asmussen et al [5] present a general statistical approach to estimation the-
ory for phase-type distributions. The idea of this approach is: the class of
phase-type distributions may for a fixed & (the number of transient states)
be viewed as a multi-parameter exponential family, provided the whole of
the underlying absorbing Markov process is observed. Since the data in
practice consist of i.i.d. replications of the absorption times Yi,...,Y, of
Y, there are incomplete observations and it is given to implement the EM
algorithm. The EM (expectation-maximization) algorithm is an iterative
maximum likelihood method for estimation the elements of (g,R), the pa-
rameters of the phase-type distribution. The program for implementation of
the proposed algorithm is EMPHT-program [11]. The performance and the
dynamics of the algorithm illustrated in S.Asmussen et al [5] by a sequence
of fits of phase-type distributions to three different theoretical distributions:
Weibull, Log-normal and Erlang distribution with feedback. Furthermore, it
was found a Coxian distribution to provide almost as good fit as a general
phase-type distribution with the same k, for one exception: the Erlang dis-
tribution with feedback. It is also presented that all phase-type distributions
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corresponding to acyclic distributions (that is distribution whose generator
is upper triangular), coincide with the Coxian distributions.

In the same article [5] exhibited four samples of the lengths of incoming
telephone calls to the service center of one of Israel’s major television cable
companies supplied by Professor A.Mandelbaum and Professor O.Kella. The
calls are classified into types 0—10. The four types, 1, 3, 4, and 7, of incoming
calls having the largest number of observations were taken for fitting phase-
type distributions. The types have the following meaning: type 1) "home
services”; type 3) "sales”; type 4) "billings”; type 7) ”general information”.
All four samples have fitted both a general phase-type structure and a Coxian
structure. For samples of type 1,4,7 it has not been possible to distinguish
the fitted Coxian density from the fitted general phase-type density in the
graphs. When fitting phase-type distributions to the sample of type 3, it
was discovered that the phase-type distribution with feedback gave better
fits (according to the log-likelihood) than the Coxian structure, although the
difference is hard to see in plots of the densities. However, as much as the
approximation is of the higher order k, the fits of the general phase-type
and the Coxian structures gave the same log-likelihood value. The Coxian
structure has the advantage of being much faster to fit.

2.3 7Estimation of phase-type distributions
from censored data” by M.Olsson

In M.Olsson [25] it is shown how the EM algorithm can also be extended
to cover estimation from censored data: right-censored and interval-censored
observations. To test the performance of EM algorithm for data set of right-
censored type of observations, the survival functions of the fitted phase-type
distributions were compared with the Kaplan-Meier estimate. In the interval-
censored examples, the distribution function fitted with EM algorithm have
plotted together with the Turnbull estimate. According to survival function
fitted to one of the data sets presented in this paper, the melanoma data-set,
it is shown that as much as the fit of phase-type distribution is of higher order
so it is much closer to the non-parametric survival estimator, the Kaplan-
Meier estimator in this case. The same results are received by fitting phase-
type distributions to data-set — Data on Hepatitis A in Bulgaria, which
includes interval-censored observations.
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2.4 ” Analysis of the ¥ Ph;/Ph/1 queue” by G.R.Bitran
and S.Dasu

G.R.Bitran and S.Dasu [6] have been analyzing a queue to which the ar-
rival process is the superposition of separate arrival streams, each of whose
interarrival time distributions is of phase type, and the service time distribu-
tion is also of phase type, that is ¥ Ph;/Ph/1. There are several situations
in which the arrival process is the superposition of different arrival streams.
For example, in multi-echelon distribution systems if the time between orders
from each retailer to the central plant has a phase-type distribution, then the
arrival of orders at the plant will be the superposition of phase renewal pro-
cesses. Such a situation can arise if each retailer observes Poisson demand,
and orders a fixed quantity k£ from the plant. Under these assumptions, the
time between consecutive orders from each retail outlet will be distributed
as an Erlang distribution of order k. The performance measures derived for
Y Ph;/Ph/1 queue include: the distribution of the number in the system as
seen by each customer class upon arrival, Laplace-Stieltjes transform of the
waiting-time distribution for each customer class, characteristics of the tails
of the waiting time and queue length distributions.

2.5 7Parallel-Processing Times: Extreme Val-
ues of Phase-type and Mixed Random
Variables” by S.Kang and R.F.Serfozo

The purpose of S.Kang and R.F.Serfozo [12] is to determine the distribution
of the time to complete a large number of tasks in parallel. That is, know-
ing the probability structure of the individual tasks, what is the asymptotic
distribution of the maximum of the task times as the number of tasks tends
to infinity? The problems discussed in the article are: a) a task consists
of performing a set of randomly selected subtasks in series and the subtask
durations have Erlang distributions; b) the task times are independent, iden-
tically distributed phase-type random variables; c¢) the tasks are dependent
and their distributions are selected by a random environment process. In the
paper it is shown that the distributions of the task completion times in the
three setting above are the three classical extreme-value distributions — the
classical Gumbel distribution in setting (a) and (b) and, any one of the three
distributions in setting (c).
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Chapter 3

Data Description

The source of the data [20]:
(http://iews.technion.ac.il/serveng/callcenterdata/index.html) The call cen-
ter of ”Anonymous Bank” is the source of the data used in this research
for constructing models and their analysis. The call center of ” Anonymous
Bank” provides several different service:

e Information on and transactions of checking and saving accounts, to
bank-customers.

e Computer generated voice information (through Voice Response Unit(VRU)).
e Information for prospective customers.
e Support for Internet customers.

The call center consists of 8 regular-agent positions, 5 Internet-agent po-
sitions, and one shift-supervisor. Working hours are weekdays (Sunday to
Thursday) from 7am to midnight; the center closes at 2pm on Friday and
reopens around 8pm on Saturday. The automated service (VRU) operates 7
days a week, 24 hours a day.

The data archives all the calls handled by the call center, on a monthly
basis, from January 1999 to December 1999. The number of phone calls
recorded per month fluctuates between 20,000 to 40,000 calls (excluding the
calls satisfied with self-service transactions at the VRU). The variables per
phone call include the following:

e Service durations in seconds.

e Waiting time in queue is in seconds. An announcement is replayed
every 60 seconds or so, with music, news or commercials intervened.

15



e Types of departure system: AGENT — a customer receives a service;
HANG — a customer abandons the system after he gets tired of waiting
to service.

e Priority types: 70 or 17 — indicates unidentified customer or regular
customer, ”2” — indicates high-priority customer. Regular customers
join the “end” of the tele-queue, while high-priority customers are ad-
vanced in the queue by 1.5 minutes right upon arrival. Service is then
rendered on a first-come-first-served (FCFS) basis. Customers have not
been told about the existence of priorities.

e Service types: PS — regular activity, PE — regular activity in English,
IN — Internet consulting, NE — stock exchange activity, NW — potential
customer getting information, T'T — customer who left a message asking
the bank to return his call.

e Customer identification: in the most calls a customer identified by his
ID.

e Server identification: in all phone calls agent who provides service is
identified by his name.

The analysis in this research work focuses on studying two types of the
data: service durations and customer patience of several types and /or priority
rules. Service durations is the time a customer spends with agent, ignoring
records with zero service time, since these records are mostly of customers
abandoned the system directly from automated service (VRU). In order to
estimate the patience, it is necessary to use waiting time, considering waiting
time as a positive time in queue, for the customers who abandon the system
(HANG) and for the customers who get the service (AGENT).

Let us refer to the service time and waiting time variables as survival
time, because it gives the time that the customer has "survived” over some
follow-up period. In survival analysis one studies the times to occurrence of
certain events. When studying the service time, the event of interest is the
time of departure from service. When measuring the patience, a customer’s
survival time becomes incomplete at the right side of the follow-up period,
occurring when the customer get the service (AGENT), thus the survival
time of this kind of data is right-censored. The distribution of survival time is
usually described or characterized by three functions: (1) survival function,
(2) the probability density functions, and (3) the hazard function. These
three functions mathematically equivalent - if one of them is given, the other
two can be derived.
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Chapter 4

Nonparametric Methods for
Estimation of Survival
Functions

In order to see how well PH-distributions of different structure and order
can fit real data, the fitted cumulative distribution function and/or survival
function, the fitted density function, and the fitted hazard rate are compared
to appropriate empirical functions estimated with non-parametrical methods.

4.1 Estimation of Service time

Let consider a single nonnegative random variable on (0,00), T that denotes
positive service time until departure from service. Its continuous distribution
specified by a cumulative distribution function F' with a density f. In a
survival analysis it is more usual to work with the survival function S(t) =
1 — F(t) = P(T > t), the hazard function h(t) = lima;— o P(t < T <
t+ AtT > t)/At and the cumulative hazard function H(t) = fot h(s)ds.
These are all related by:

ht) =22 H(t) = —log, S(t).
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Survival function: The survival function of service time estimates as the
proportion of customers surviving longer than t is:

A number of calls still receiving service at time t

S) =

total number of calls in service

- iil(T»>t) here 1(T;>t) =4 b 7>t
- N i byowhere M =V = ) i T <

=1

(4.1)

A steep survival curve represents low survival rate or short survival time.
A gradual or flat survival curve represents high survival rate or longer sur-
vival. The survival function or the survival curve (the graph of S(t)) is used
to find the 50th percentile (the median) and other percentiles of survival
time and to compare survival distributions of different types and/or priori-
ties. The mean is used to describe the central tendency of a distribution, but
by modelling data from the call center of ” Anonymous Bank” the median is
often better because a large number of calls with exceptionally long or short
lifetimes will cause the mean survival time to be disproportionately large or
small.

Density function: The probability density function of service time esti-
mates as the proportion of calls in service ended in the short interval time:

- number of calls in service ending in the interval beginning at time t

ft) =

(total number of calls in service)(interval width)

The proportion of callers that departure from the service in any time interval
and the peaks of high frequency of departure can be found from density
function.

The simplest nonparametric method to estimate f that easy to construct
and interpret is histogram, but histograms have a major disadvantage, namely
they are discontinuous. This might be less crucial when the histogram is
being used only as a summary of the data. However, if the histogram is
being used as an intermediate step in a more complicated procedures, which
require continuity of the density then the use of the histogram is not good.
The estimator that has the continuity and smoothness properties is the kernel
density estimator, and it has the form:

) = Nihéf( (t_hT) (4.2)

where K is a smooth function known as kernel function, satisfies [ K (u)du =
1 and h is the bandwidth. The most widely used kernel is the Gaussian
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kernel K (u) = ¢(u) = (27)"2exp(—u?/2). The kernel density estimator is
sum of ’bumps’ placed on t, when a kernel K determine the shape of the
bumps, and the bandwidth A determine its width. The choice of bandwidth
is a compromise between smoothing enough to remove insignificant bumps,
over-smoothing and not smoothing too much to smear out real peaks, under-
smoothing. This reflects a fundamental tradeoff in all smoothing methods —
bias versus variance, when bias measures how close the estimator, f (1), is to
the true density, while variance can be seen by the variability in heights of
neighboring bumps. For a small bandwidth the bias is small and the variance
is large and vice versa.

The function density is the S-PLUS command that estimates the density
[31]. This function returns x and y coordinates of a non-parametric estimate
of the data. Options include the choice of the window to use and the number
of points at which to estimate the density. The kernel is the normal by
default, with alternatives "rectangular”, ”triangular” and ”cosine” (kernel
used in this research is normal).

Hazard function: The hazard function of service time defines as the prob-
ability that callers finishing to receive their service during a very small time
interval, assuming they were in service at the beginning of the interval. Then
the hazard rates estimates as:

number of calls in service ending at the interval beginning at time t

h(t) =

(number of calls still in service at time t)(interval width)

The service time hazard rates give the local behavior of a customer. This
estimate is unstable as the time increases, as the remaining population be-
comes smaller. To get a better picture of the hazard rate, they are smoothed
with nonparametric regression method super-smoother, using S-PLUS func-
tion supsmu. The smoother supsmu based on a symmetric k-nearest neighbor
linear least squares procedure. Cross-validation is used to choose a value of
k.

There are a number of reasons why estimation of the hazard function for
service time and patience may be a good idea, according to A.Mandelbaum
[19]:

e The hazard rate is a dynamic characteristic of a distribution.

e The hazard rate is more precise ”fingerprint” of a distribution than
cumulative distribution function, the survival function, or density (for,
example its tail need not to converge to zero; the tail can increase,
decrease, converge to some constant etc.)
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e The hazard rate provides a tool to compare the tail of the distribution
of interest against a "benchmark”: exponential distribution.

e The hazard-based models are often convenient when there is censoring.

4.2 Estimation of Patience

Let us consider a single nonnegative random variable on (0,00), W that
denotes a positive waiting time in queue until one of the following events
occur: a) entering an agent for receiving service (AGENT); or b) abandoning
the queue due to lack of patience (HANG). Denote by V' the ”virtual waiting
time” and by 7' the ”time willing to wait before abandoning”, defined as the
patience [32]. We observe W = min(V,T") and an indicator for observing V'
and T (AGENT and HANG outcomes, respectively). Since our purpose is
to estimate distribution of 7', we consider all calls that reached an agent as
censored observations.

Survival function: The estimation of survival function of patience is im-
plemented by introducing the product-limit (PL) method of estimating the
survival function developed by Kaplan and Meier (1958) or Kaplan-Meier
(KM) method.

The KM setup for estimating patience is as follows from Mandelbaum
et al. [32]: "There is given a sample W; of N waiting times from a call
center. Some of the calls end up with abandonment (W; = T;) and the
others with a service (W; = V;). Denote by M < N the number of distinct
abandonment times in the sample. Let 7' < T? < ... < TM be the ordered
observed abandonment times, and A; the number of abandonment at T},
units of time. The Kaplan-Meier estimator S (t),t > 0, estimates survival
function F(t) = P(T > t), where T is the time to abandon (patience). It is
given by

s = TJa-29 (1.3

k?:Bk<t Bk
= [ a—hm. (4.4)
k:Bp<t

where By, denotes the number of customers still present at T}, that is neither
served nor abandoned before Tj,. The h(t) is the estimated hazard rate of the
patience. The estimator for mean patience is then based on the tail-formula

E[T| = /0 " Stt. (4.5)
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On Independence: KM assumes independence for the observations whose
distribution is to be estimated. Such an independence is plausible for pa-
tience, despite the repeat calls by the same customers. It is also requires an
independence of the patience and the censoring time. It was found out that
at the entrance to the queue, and thereafter every minute or so, customers
are exposed to an automatic message. This message informs customers about
their queue, which possibly affects their patience, hence it is not clear, how
much information a customer actually gains out of it, and how strong the
dependence is.”

The S-PLUS command that computes an estimate of a survival curve
is survfit. The estimate of the survival curve for uncensored data is one
minus the empirical distribution function. The function survfit also handles
censored data, and uses KM estimator by default.

Hazard function: The estimated hazard at a time interval is the number
of failures during that interval (i.e. number who abandon), divided by the
number at risk at the beginning of the interval (i.e. number of calls who
were still waiting at the beginning of the interval). Those raw hazards very
noisy and unstable for large time, as the remaining population becomes small.
The raw hazard rates are the building blocks for the Kaplan-Meier estimate
of the survival function (formula (4.4) above). The KM estimator is very
sensitive to censored data at the upper tail of the sample. For example, if
the longest wait in a customer’s history ended up with an abandonment, the
KM estimator has a positive mass at infinity. In order to get the continuous
and smoother hazard curve we use super-smoother method, mentioned in
section 4.1. The S-PLUS function supsmu smoothes the raw hazard rates
above, when the hazard rates for non-failure times are zero (for correction
the behavior of the tail).

Density function: Given the estimated survival function and hazard func-
tion, a natural way to estimate the density of patience is by:

F(t) = 5(t) - h(t) (4.6)
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Chapter 5

Phase-type distributions

5.1 Definitions

The continuous distribution of phase-type (PH-distribution) is the distribu-
tion of time to absorption of an absorbing Markov process. Correspond-
ingly, the discrete PH-distribution is the distribution of number of steps to
absorption in an absorbing Markov chain. Let us define the continuous PH-
distribution precisely.

Definition 5.1 Consider a finite Markov process {X(t),t > 0} on the state
space {1,2,..., K, A} with infinitesimal generator Q. The {1,..., K} are all
transient and A is the only absorbing state of the process. Let q. be the
probability of starting in the transient state k, for 1 < k < K, when q, =
P(Xo = k), and the probability of starting in the absorbing state, qa, is zero.
That is, q = (q1, ..., qx, 0) be some initial distribution. Write

Q:(o,?,o S) (5.1)

where ry (the k-th element of T, the exit-rate vector) is the conditional in-
tensity of absorption in A from state k. The (K x K )-dimensional matriz
R is called the phase-type generator. The matrix R satisfies Ry, < 0, for
1<k <K, and Ri; > 0, for k # j. Since every row in Q sums to zero,
it follows that r = —R1, where 1 = (1,...,1), a column-vector of K ones.
Let T =inf{t > 0: X(t) = A} be the absorption time in the state A. Then
Fr(t) = P,[T <t] is a PH-distribution.

The pair (gq,R) is called a representation of F(-) and k is the order of
the representation. The class of phase distributions (as k, ¢, and @ vary) is
called the PH-class.
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5.2 Characteristics of PH-distributions

Some basic distributional characteristics of PH-distributions are:
e distribution function Fr(t) =1 — gexp{Rt}1, (5.2)
e density fr(t) = qexp{Rt}r, (5.3)

e Laplace transform / exp{—at}Fr(dt) = q(zI — R)'r,  (5.4)
0

e rth moment E(T7) = / £ Fp(dt) = (—1)'rlgR"1. (5.5)
0

5.3 The special cases of PH-distributions

There are several reasons for using the class of phase-type distributions as
statistical models. The most established ones come from their role as the
computational vehicle of much of applied probability. These distributions
are much applied in queueing theory, where they include commonly used dis-
tributions like the exponential distributions, the Erlang distribution, sum of
exponential, and mixtures of exponential distributions. An Erlang distribu-
tion, that is the distribution of the sum of independent identically distributed
exponential random variables, and Hyperexponential distribution are simple
examples of the PH-distributions:

a) Erlang distribution: K independent and identically distributed tasks,
given in Figure 5.1. It can be represented as a PH-distribution of or-

K

[ T Y A T .

Figure 5.1: Erlang distribution.

der K, where the underlying Markov-process starts in state 1 (implying
g= (1,0,...,0)), then visits each state 2,..., K, and terminates when
leaving state K.

b) Hyperexponential distribution: k tasks in parallel, given in Figure 5.2.
The Markov-process can start in any state (all elements in g are allowed
to be non-zero), but terminates in absorbing state without visiting any
other states (all elements in R off the main diagonal is zero).
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Figure 5.2: Hyperexponential distribution.

c) Coxian distribution is constructed as a sum of exponential, or generalized
Erlang-distribution, where the Markov-process starts in state 1, and
then visits each state 2,...,k, with the exception that the absorbing
state can be reached from all the transient states in the process, see

Figure 5.3.
( : ) P12 ( : ) ____? Pk-1.k ‘
1-p12 1-Pr-1 k

Figure 5.3: Coxian distribution.

d) Erlang mixtures:

/&0@

OO

Figure 5.4: Erlang mixtures.

5.4 Properties of PH-distributions

There are several important properties of PH-distributions:

24



e dense: PH-distributions can be used to approximate all probability
distributions on [0, 00) and applied in the large area of statistical fitting.
For every non-negative distribution G, there exists a sequence of phase-
type distributions F;, 3 F,, = G.

o Markov modelling: PH-distributions arise from a generalization of Fr-
lang’s method of stages in a form that is particularly well-suited for nu-
merical computation: problems which have an explicit solution assum-
ing exponential distributions are algorithmically tractable when one
replaces the exponential distribution with a phase-type distribution.

o structurally informative: PH-distributions are sufficiently versatile and
computationally tractable that they can be used to reflect the essential
qualitative features of the model and to provide, through the inter-
pretation of numerical results, much useful information on its physical
behavior.

5.5 The non-identifiability of PH-distributions

There are usually several different representations of a PH-distribution: dif-
ferent setups of parameters can correspond to the same distribution, the pa-
rameters (g, R) are thus not identifiable. Therefore, we should be cautious
in giving a physical interpretation to the k phases of the process Q. The fol-
lowing are some examples of different representations of a PH-distribution.

General Erlang distribution of second order: This distribution can
be represented with two different setups of parameters (g, R) and (q, R)":

(1 e
= (o) [0 4]
I 0 ! _>\1 0
(1) e[

Let X1, X5 be two independent random variables exponentially distributed
with parameters A\;,7 = 1,2. Then Y = X; + X, is time to absorption, and
in both cases:

©) —{A]—{x]

(® —[a]—{A]

A1 Ao

_ e (Y oy
) (e e M),y > 0.

fr(y) =
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Figure 8.3 (section 8.1.1, p. 44) shows another example of two different
structures of PH-distribution of order £ = 3 with the same log likelihood
function.

Exponential distribution with parameter \: According to S. Asmussen,
any PH-distribution with a complicated PH-generator of order k& > 2, but
with absorption rates independent of the phase, have an extremely represen-
tation of the exponential distribution. Figure 5.5 a) presents the special case
of this statement - the PH-distribution of the Coxian structure of order k = 2
with the absorption rate A from each phase. Figure 5.5 b) shows another rep-

Figure 5.5: The nicest examples of the Exponential distribution with param-
eter \.

1M Mu

1-AMp
N
a) g b)

resentation of the same distribution. Let X, X5 - two independent random
variables exponentially distributed with parameters p and A, respectively,

and an indicator
1 wp. 1-2
I = NG
0 w.p. m

independent of X;,i = 1,2. Then Y = (1 — I) X, + I(X; + X5) is time to
absorption, exponentially distributed with parameter A.

The non-identifiability of the parameterization of the PH-distributions
implies that there can be different set-ups of estimates (q, R) corresponding
to the same PH-distribution. Typically, when different fits to a sample or a
distribution are performed using EMpht-program (see section 6), they will
result in different parameter values. However, the value of the likelihood
function are most often almost the same for different fits, and the corre-
sponding densities are, when plotted, seldom possible to distinguish from

each other [26].
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Chapter 6

The EMpht-program

EMpht is a program for fitting phase-type distributions. This program was
kindly supplied by Marita Olsson [26] and greatly appreciated. It can be
used either to fit a phase-type distribution to a sample (which may contain
censored observations), or to make a phase-type approximation of another
continuous distribution. The fitting procedure consists of an iterative estima-
tion of the parameters of the phase-type distribution, using an EM-algorithm.
The program is an implementation of the EM-algorithm presented in [25, 5].
The EMpht-program is a C-program. It is complemented by a Matlab pro-
gram, PHplot, for graphical display of the fitted phase-type distribution.

6.1 The EM Algorithm

All data augmentation algorithms, including the EM (expectation maximiza-
tion) algorithm, are used to locate the mode or modes of the likelihood func-
tion or of the posterior density. (The quantity p(f|Y"), which describes what
is known about given data Y, is called the posterior density of 6). They
share a common approach to problems: rather than performing a compli-
cated maximization or simulation, one augments the observed data with
latent data to simplify the computations in the analysis. This latent data
can be the "missing” data, parameter values or values of sufficient statistics.
Thus, in the EM algorithm, one augments the observed data with latent
data such that one complicated maximization is replaced by an iterative se-
ries of simple maximizations. The principle of data augmentation can then
be stated as follows: augment the observed data Y with latent data Z so
that the augmented posterior distribution p(0|Y, Z) is "simple”. Making use
of this simplicity in maximizing/marginalizing/calculating/sampling the 0b-
served posterior p(0|Y).
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More specifically, the EM algorithm is an iterative method for locating
posterior modes. Each iteration consists of two steps: the E-step (expectation
step) and the M-step (maximization step). Formally, let 6 denote the current
guess to the mode of the observed posterior p(0|Y); let p(0]Y,Z) denote
the augmented posterior, i.e. the posterior of the augmented data; and let
p(Z|6%,Y") denote the conditional predictive distribution of the latent data Z,
conditional on the current guess to the posterior mode. In the most general
setting, the E-step consists of computing the expected log likelihood

QI Y) = / log[p(6]2, Y)|p(Z]6', Y)dZ. (6.1)

i.e. the expectation of log[p(|Z,Y)] with respect to p(Z|6%,Y). In the M-step
the Q function is maximized with respect to  to obtain #**1. The algorithm
is iterated until || —67|| or |Q(07T10%,Y) —Q(6]6°,Y )| is sufficiently small.

6.2 An Example

An observation y of the time to absorption can be regarded as an incomplete
observation of the Markov process {X(¢),¢ > 0}. It is incomplete in the
sense that it only tells us when the process hits A, and does not provide
any information about how it got there, where it started, which of the states
it visited and for how long. For example, consider the Hyperexponential
distribution with two phases in parallel, as given in Figure 6.1, where ¢ is
the probability to start in state one with rate A; and 1 — ¢ is the probability
to start in state two with rate \,.

)

Figure 6.1: An example of Hyperexponential distribution.

6.2.1 The general approach of EM-algorithm

Let y;,7 = 1,2,3 represents the observed data, and the augmented data is
given by x;,7 = 1,2, 3 that represents to which state the process is jumped,
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either to state one or to state number two. Then, the z; = (y;, x;) be the com-
plete information of an underlying Markov process. The vector of parameters,
for which maximum likelihood estimator have to be found, is @ = (g, A1, A2).

The goal is to maximize the likelihood function L(0|Y") or the observed
posterior f(0]Y"). Notice that

log[f (B )] = loglf(O]Y , X)] — log[f (X0, Y)]. (6.2)

With an initial guess @q (to start the iterations), the expected log likelihood
is

Q(6160,Y) = > [log[f(Y, X|0)] f(X[|Y,8), (6.3)

where according to Bayes’ theorem

_ J(Y|X,60)P(X]6)

(X[60, ) = HES D (6.4

and
fY,X|0)=f(Y|X,0)P(X|0). (6.5)

When three observed data (yi,y9,y3) are given, there are eight possible
cases that may happen, and the computation of f(Y, X|0) for all cases is
given:

FY, X =1,X,=1,X;=1|6
Y, X; =0,X,=0,X;=0[6
Y, X, =0,X,=0,X;=1|6
Y, X;=1,X,=0,X;=0[0

( ) -
1 ) = ((L—g)e e
i )
i )
Y. Xi=1,X,=1,X;=0[0) = ¢*(1—q)\jhge M1 Wrte)etous
i )
i )
i )

(

— q(l — q)Q)\l)\%e*/\lyse*)\2(y1+y2)
(
2

Y. Xi=1,Xo=0,X3=1|0) = ¢*(1 - q)A\]hge N1 1Tws)e 22w

Y, X;=0,Xo=1X3=110) = (1 — )N he MW2tm)erom

Y. Xi=0,X,=1,X;=000) = g(1—q)*\ e M12e2rtu)
(6.6)
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Then, the expected log likelihood function is

3

Q (0|007 Y) =

=1

+

(3log[(1 — ) A2 —

/\QZyz

(3log[gAi] — M Z yi) f(X =

(]-7 17 1)|Y7 00) +

(0,0,0)]Y,80) +

X =
X =
X =
X =
X =

The M-step consists of maximizing Q(6|6,

function with respect to 8 in order to obtain the 3 x 1 vector 0Q(0|6o,

+ (2log Ay — \o(yy + y2) + log Ay — Mys + 2log(1l — q) + log g
+ (log A1 + 2log Ay — Myp — Aoy + y3) + 21og(1 — q) + logq
+ (2log A1 +log As — A (y1 + y2) — Aays + 2log g + log(1 — q)
+ (2log Ay +1og Ag — At (y1 +y3) — Aaya + 2log g + log(1 — q)
+ (2log A1 +log Ay — A (y2 + y3) — Aeys + 2log g + log(1 — q)
+ (log A1 4+ 2log Aa — Mya — A2(y1 + y3) + log ¢ + 2log(1 — q)

(0,0,0)[Y, 6o) +
(0,0,1)[Y,8o) +
(1,0,0)[Y, 8o) +
= (1,1,0)|Y,6,) +
(1,0,1)[Y,8o) +

07 17 1)’Y 00)

0Q(0|60,Y) _ 3 _
e - af(X_(1,1,1)|Y,00)+
- < o)X=
+ <1 )f
g l-g¢
+ (1 - )f
¢ l-—gq
+ (2 ! )f
¢ 1l-—gq
+ (2 : )f
¢ l—gq
+ (2 : )f
¢ l1—gq
+ <1 = )f
g l-—gq

07 17 0)|Y 00)

(0,0,1)|Y, 60) +
(1,0,0)|Y,8¢) +
(1,1,0)|Y,60) +
(1,0,1)]Y, 6o) +
(0,1,1)]Y,60) +
( ) )

6

= (0,1,0)|Y, 6p).

(6.7)

Y). By differentiating the @
Y)/00:

(6.8)



%ﬁlﬁ’) _ (% _ ily> F(X =(1,1,1)]Y,80) +

N <Ai1 —ys ) (X = (0,0,1)]Y,80) +

n (Ail - y1> F(X = (1,0,0)]Y,8) +

N (% . yz)) F(X = (1,1,0)]¥,80) +

N (% . yg)) FIX = (1,0,1)]Y,8) +

N (% - yg)) F(X = (0,1,1)]Y, 80) +

N <Ai1 _ y2> F(X = (0,1,0)]Y, 65), (6.9)
%ioﬂ’) _ (% _ ily> F(X = (0,0,0)]Y, 80) +

n (% — (i + y2)) F(X = (0,0,1)]Y, 60) +

+ (% — (12 +y3)) f(X =(1,0,0)]Y,60) +

n (%2 _ yg) F(X = (1,1,0)]Y,80) +

N (%2 - y2> FX = (1,0,1)]Y, 8) +

N <)\i2 _ y1> F(X = (0,1,1)[Y,80) +

b (- ) ) FX = 010160 (610

Then, by setting the three simultaneous expected log likelihood equation to
0 and solving for 8, one derives the maximum likelihood estimate é, based
on the sample > ;.7 = 1,2,3. The j + 1th step consists of calculating the
expected log likelihood 6.3, with @¢ replaced by éj, and then maximizing it.

Suppose that Y = (y1,y2,y3) = (1,10, 10). Starting at ¢ = 0.5, \; = 0.5,
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Ay = 0.9, after 20 iterations the EM algorithm converges to

{ 0.970101 R— —0.139186  0.000000
~\ 0.029899 n 0.000000 —0.990838

with log-likelihood = -8.840220, that is, ¢ = 0.97, A\; = 0.14, Ay = 0.99. And
after 500 iterations the EM algorithm converges to ¢ = 1 /\1 = 0.14, Ao = 0.99
with log-likelihood = -8.837730. The derived phase-type structure includes
only one phase with rate A = 0.14. The corresponding mean is 7, and there
is also the average of three observed observations (y1,¥2,y3) = (1,10, 10).
However, with observed observations (y1,y9,y3) = (1,10,10), we expect to
derive ¢ = 0.33, Ay = 1, Ay = 0.1. The results of EM algorithm are not what it
is expected. But when we tried to apply the same procedure to observations
(y1,Y2,y3) = (1,100, 100), the results of EM algorithm were exactly what we
are expected. For example, with starting values ¢ = 0.5, A\ = 0.5, Ay = 0.9,
after 50 iterations the EM algorithm converges to

., { 0.685633 R — —0.010282  0.000000
~\ 0.314367 N 0.000000 —1.000003

with log-likelihood = -14.064556, that is, ¢ = 0.69, \; = 0.01,\» = 1. For
comparison, the expected parameter values are ¢ = 0.67, Ay = 0.01, Ay = 1.
So, with observations (1,10,10) the EM algorithm converges to structure with
one phase that is the average of these observations, apparently, because the
distance between 1 and 10 is not sufficient.

6.2.2 The EM-algorithm for the exponential family

The observed sample y;,7 = 1, 2, 3 of the time to absorption is an incomplete
information of the Markov process X (). Suppose that we have 3 independent
replications of the process, Xtm,Xt[Q],X 13 Then, the density of complete
sample x;,7 = 1,2,3 can be written in the form

flziq, R) = " e PAP - (1 — g)P2e %)\ P

where
B; = the number of Markov processes starting in state i,7 =1, 2.
Z; = the total time spent in state 7,7 = 1,2 of all Markov processes.

The density f(x;q, A\, A2) is a member of a multi-parameter exponential
family with sufficient statistic

S = ((Bi)i=1,2, (Zi)i=12)-
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E-step: The calculation of the conditional expectation of the sufficient
statistic S, given the observed sample y;,7 = 1, 2, 3 and the current estimates
of (q, )\1, )\2)

Let By = ) 1;,j = 1,2,3 where [; is an indicator that the process starting
in state 1. Then By + By, = 3.

3 3
B 5, 50) (Bilyr v2,y3) = Z E(1ly;) = Z P 5,.50) (the process visits state 1]y;),

j=1 j=1
where
qA/\lefAlyl

P, < (the process visits state 1 = — . _ —
(Q7>‘1’/\2)( p |y1) qA)\le—)\lyl + (1 _ Cj))\ge_)‘le

B 5050 (Zily1, y2, y3) Z Yj * P 5,4, (the process visits state 1[y;).

M-step: The new estimates are given by
Bl . B, . By
7l = A —= -, )\ =

1= =7

By implementing this approach of the EM-algorithm to the same data
sets as in the previous section 6.2.1, the results are seen to coincide.

6.3 The closure properties of the EM-algorithm

The following is the key property of the sequence {é(j)}:

e The EM algorithm increases the posterior p(6|Y") at each iteration, that
is, p(0"TLY) > p(0']Y), with equality holding if and only if Q(#*F1(0°,Y) =
Q016" Y).

In addition, the following results are available:

e The EM algorithm may not converge to the global maximum, when
there are multiple stationary points (local maxima or saddle points) of
p(0]Y).

e The EM algorithm converges at a linear rate, with the rate depending
on the proportion of information about 6 in p(A|Y") that is observed.
This implies that the convergence can be quite slow if a large proportion
of the data is missing.
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e By implementing the EM algorithm to fit PH-distributions, the mean
of the fitted phase-type distribution is the same as the mean of the
sample (or the theoretical mean if it fits another distribution).

6.4 Fitting continuous distributions

For the approximation of a theoretical density by a phase-type density, it
is considered the infinite analogue of maximum likelihood estimation: mini-
mization of the information divergence (relative entropy or Kullback-Leibler
information). Computationally, this turns out to be almost equivalent to
implementing the EM algorithm for a sample. Let f(-;q, R) be a density
of a phase-type distribution and h(-) the density of the distribution to be
approximated. Fitting f(-;q, R) to h(-) means minimizing the information
divergence, then the information divergence of f with respect to h is

/ log {%} h(y)dy, (6.11)

which is equivalent to maximizing

/ loglf (v; ¢, R) 1(y)dy. (6.12)

Details and further theoretical motivations are given in [5].

In each iteration of the EM-algorithm, in the EMpht-program, when fit-
ting phase-type distribution to the sample or to another distribution, the
new parameter estimates are calculated by solving of homogeneous linear
differential equations (of dimension k? 4 2k, when fitting general phase-type
structure). This is done numerically with Runge-Kutta method of fourth
order [26, p. 12].

6.5 The PHplot-program

PHplot is a Matlab program for graphical display of the fitted phase-type
distribution [26, p. 13]. It is modified here for more convenient way to obtain
the graphical display (postscript files) and the results of sample characteris-
tics with fitted results, when one fits PH-distribution to sample (text-file).
The graphical display contains the fitted distribution function and the fitted
survival function together with empirical distribution (or survival) function
(the Kaplan-Meier estimator is used for censored observations), the fitted
density and hazard functions together with appropriate empirical functions
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estimated with non-parametrical methods derived in S-PLUS (described in
4.1, 4.2). The text-file contains sample characteristics of the data to be
fit, such as the total number of observations, the minimum and maximum,
the sample mean, the median, the standard deviation and the coefficient of
variation (CV). Given a data sample {X;}¥ |, the main sample statistics are:

o Average: m = Zf\;l X;/N. (Function mean in Matlab.)

o Standard deviation: 6 = \/ZiL(Xz —m)?/(N —1). (Function std in
Matlab.)

o Coefficient of Variation(CV): ¢ = & /m.

It also gives the number of transient states fitted, the transition proba-
bility matrix, the vector of the probability of starting in the transient states
[1,..., K], the absorption probability vector, the vector of a length of time
spends in states [1,..., K] in the seconds and the minutes, the fitted mean
and standard deviation of PH-distribution and, consequently, the coefficient
of variation. The fitted quantities derives from (q, R), which estimated with
EMpht-program. For example, the transition probability matrix is calculated

by:

ij:{ 8Rjk/Rjj iiii:}i:ig (6.13)
the absorption probability vector is:
Pip = —rp/Ryy, for 1 <k <K, (6.14)
and the length of time spends in states [1,..., K| in the seconds is:
mp = —1/Ryy, forl1 <k <K. (6.15)
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Chapter 7

Graphical methods and
Goodness-of-fit tests based on

the EDF, applied to Service
times

7.1 Heuristic stopping rule for adding phases

Based on the data, we have an empirical CDF, estimated with non-parametric
methods (see Chapter 4). Usually, as the number of parameters in the model
is larger, the corresponding fitted model is better. Thus, in order to get a
perfect fit of PH-distribution to the empirical CDF we need infinitely many
phases. But we want to fit PH-model to the true distribution, not to the

empirical CDF. The true distribution is known to be in \/iﬁ neighborhood.

That is, we know that the true distribution is up to iin resolution. There-
fore, we keep adding phases until we get the fit under this resolution. More
observations lead us to add more phases. This heuristic guides us in Chapter
8. The next section provides the foundation to these heuristical arguments.

7.2 Construction of simultaneous confidence
interval to the CDF

Confidence interval is an important graphical method to convey some idea of
the probable accuracy of the estimator, by specifying a random set covering
the true parameter value with some specified (high)probability. For construc-
tion a simultaneous confidence interval for cumulative distribution function
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F (CDF) with non-parametric methods, one can use Kolmogorov-Smirnov
(K-S) statistic [27] (denoted as D, formula (7.14) below). Given a sample of
n iid random variables { X7, Xs, ..., X,,} and significance level v, the upper
v-percent point of the distribution of D — D,, ., can be found such as

P{D > D, ~} <. (7.1)

Let ]
L,(z) = max{ﬁ — D, ., 0} (7.2)

and .
Un(x) = min{ﬁ + Dy 1} (7.3)

Then the region between L, (x) and U, (x) can be used as a confidence band
for F'(x) with associated confidence coefficient 1 — +.

The exact distribution of D for selected values of v and n = 1,...,40, and
approximation for n > 40 is given in [27], p.661. Table 7.2 gives the values
of D, - for some selected v and for n > 40.

Table 7.1: Critical Values of the Kolmogorov-Smirnov One sample Test
Statistics.

[ Significance level 5 [ 0.20 [ 0.10 [ 0.05 | 0.02 ] 0.01
’ Approximation for n > 40 H L T

Table 7.2 presents values computed using the theorem, derived by Kol-
mogorov, about the large-sample distribution of D. It states that for any
continuous distribution function F,

lim P{D < zn "%} = L(z), z2>0, (7.4)

where -
L(z) =1-2) (-1)"te 2", (7.5)

=1

From (7.1),(7.4) and (7.5) followed

2> (—1) e <, (7.6)
=1
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For each specific value of v, the value of z can be found such that (7.6) holds.

Then
z

ny — %
is computed to get the confidence interval [L,(z), U,(z)] for F(x). For
example, for significance level v = 0.05 the value of z is 1.36.

D (7.7)

7.3 EDF tests

The confidence interval is the subjective method which determines whether
the assumed distribution fitting the data is based on visual examination
rather than statistical test.

A statistical test involves calculation of a test statistic from the data
and the probability of obtaining the statistic if the correct distribution is
chosen. Statistical tests that measure the discrepancy between an empirical
cumulative distribution function (CDF) and a hypothesized CDF F' are the
EDF tests [10, 7, 14]. If the probability of obtaining the calculated statistic
is very low, we conclude that the assumed distribution does not provide
an adequate fit to the data. This procedure allows to reject an inadequate
distribution but never allows to prove that the distribution is correct. It gives
a probabilistic statement about the assumed distribution. The outcome of a
statistical test of hypothesis depends on the amount of data available — n; the
more data there is, the better chances of rejecting an inadequate distribution.

Let F(t) be the underlying distribution from which the sample of our
data is taken. Then, the general null hypothesis is

Hy: F(t) = Fy(t), (7.8)

where Fy(t) is a specific distribution.

The two famous goodness-of-fit tests, Kolmogorov-Smirnov (K-S) and
Anderson-Darling (A-D), are implemented in this research work. According
to E. Chlebus [7], the A-D test is more powerful then the K-S test, neverthe-
less the K-S test is presented in order to compare between them.

Given an observed sample {x1,Zs, ..., z,} of size n that is sorted in ascend-
ing order the supremum D* and quadratic A? statistics associated with the
K-S and A-D tests, respectively, are given by

0.11

D* = D(v/n+0.12 + W> (7.9)
and .
A2 = —p— %2(22’ — DInz +In(1 = zp41-5)], (7.10)

i=1
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where

1
Dt = 112;&;;{5 — 2}, (7.12)
D= = max{s— — 1 (7.13)
1<i<n
and
D = max{D*, D~} (7.14)

The hypothesis that the observed sample {xi,xs,...,z,} comes from the
assumed probability distribution with CDF F' is accepted with significance
level v if D*(A*)< ¢, (a,), where c,(a,) is the critical value of EDF test
D*(A?), respectively. Otherwise, the hypothesis is rejected. Smaller values
of D*(A?) indicate the better fit. These critical points are given in following
table:

Table 7.2: Critical values ¢, (a,) for the K-S (A-D) test statistic.

Significance level ~
0.250 \ 0.150 \ 0.100 \ 0.05 \ 0.025 \ 0.010 \ 0.005 \ 0.001
D* || 1.019 | 1.138 | 1.224 | 1.358 | 1.480 | 1.628 | 1.731 | 1.950
A% [ 1.248 | 1.610 | 1.933 | 2.492 | 3.070 | 3.857 | 4.500 | 6.000

Null hypothesis, the distribution of service time is PH-distribution of a
specific order (k = 2,3,4,5,6), is tested. According to the outcome of a
statistical test, the PH-model with the least number of phases is selected, for
which the Hy - hypothesis is not rejected with appropriate significance level

.
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Chapter 8

Analysis, Modelling and Fitting
PH-distributions to the call
center data: Service times and
Patience

When fitting PH-distributions to the data, we are faced with the problem
of choosing the appropriate order of the PH-model. It is well known that
a perfect fit requires choosing the highest possible dimension. Since the
size of the data-set, we used, is large — 30,000-40,000, then theoretically we
could estimate PH-model of order £k = 100 (number of transient states),
say. However, using PH-distributions for modelling, the more the phases the
larger the state space, hence the less clear the model is. In addition, there is
no interpretation to the phases and one could not give a physical meaning to
the phase, if there are &k = 100. Besides, it is impossible to fit such a model
in a practical way. Therefore, we should estimate the model with the least
number of parameters, in order to understand what is going on, and what is
most appropriate to the data.
There are two issues considering the modelling of PH-distributions:

e complexity — how many phases are there.
e structure — how are the phases related.
The following are reasonable steps for selecting an appropriate model:

1. Find a PH-model with the least number of phases that fits into a con-
fidence band around the empirical distribution function.
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2. Given this number, presumably there will be more than one possibility,
that is, structure. Then, we should analyze possible structures, and
perhaps see if there are very different structures when we add, say a
phase or two.

This way we can infer structure from the data, for example, what are phases
of service, and what are phases of (im)patience.

8.1 Fitting PH-distribution to Service-time
durations (service time > 0)

The histograms of service time of December 1999 and January 1999 are given
in Figure 8.1. Service times for January exhibited a QUICK-HANG phenom-
ena [20]: there is high percentage of calls with service times between 1 and 10
seconds, while service times for December are free of this problem. Service
time shorter than 10 seconds is questionable. And indeed, questioning the
manager of the call center revealed that short service times were caused by
agents that simply hung-up on customers, to obtain extra rest-time. The
phenomenon was only discovered in late, October 1999, after unreasonably
many customers had complained about being disconnected. Corrective man-
agerial action was taken and the problem was fixed towards the end of 1999.

Figure 8.1: Distribution of service time.

January December
0.006 — -
5.7% 0.006
n 55%
[lte 5.2%
0.005 — 0.005 —
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SD =230 SD =273
AL Cv=125 I CcVv=132
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N = 27091 1 L N = 34433
Min=1 Min =2
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£ Max = 5300 2 n Max = 11868
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@ [
a la)
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December service times for the four major service types: IN, NE, NW and
PS, for low and high priorities, and overall, 34433 service transactions are
analyzed. The distribution according to major service types is: IN — 3117,
NE — 3725, NW — 2723, PS — 23811. The distribution according to priority
types is: LOW — 22699, HIGH — 11734.

8.1.1 Overall service time — December

Figure 8.2 (p. 43) shows the service time histogram, where 98.07% of the calls
with positive service time are in the range of the histogram, with the kernel
density estimator of width = 30. Standard queueing theory often assumes
that service times are ”exponentially distributed”. However, we see from the
histogram below that service times from call center of ” Anonymous Bank”
does not have the shape of an exponential distribution.

Theory suggests that the bandwidth h should be proportional to n™
But this is an example in which this value, 0.12 (n = 34433), is too small.
Considering a few bandwidths and plotting the resulting histograms, we chose

= 10 that gives a "smooth” histogram. The chosen value of bandwidth
is very close to Sturges’ rule [7], according to which [1 + logyn| = |1 +
3.3221og;,n|, where |o| denotes the largest integer number not greater than
the argument. Applying this rule to our data, the result is 16, meaning that
the Sturges’ rule does work here. For exponential distribution the optimal

1/5

bandwidth is E * ¢/ %, where E is an expectation. By applying this to our

data (n = 34433) the result is 15 that almost coincide with Sturges’ rule.

Figure 8.3 (p. 44) gives the actual hazard rates with superimposed super
smoother hazard curve that smoothes the actual hazard rates up to 1000,
when the hazard rates for non-failure times are zero (for correction the be-
havior of the tail). It was truncated at 1000 seconds because otherwise the
shape of the hazard curve at the lower times being more flat than it has to
be according to the actual hazard rates. Figure 8.3 shows the hazard rate
of a unimodal shape of increase followed by decrease. Since the hazard rate
of Hyperexponential distribution is always decreasing and the hazard rate of
Generalized Erlang distribution is always increasing, the mode of the hazard
rate of service time can be described by some kind of Generalized Erlang
mixture distribution.

When starting to analyze what is the structure that fits the data, firstly
it is considered to fit the PH-distribution of General structure for k£ =
2,3,4,5,6. Figure 8.4 (p. 45) compares the fitted PH-distributions of the
density and the survival functions. It can be seen from the graphs that the
fitted PH-distribution of order k& = 2 cannot describe the mode of the distri-
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Figure 8.2: Distribution of overall service time - December. Superimposed on
a histogram is the kernel density estimator with a Gaussian kernel of width
= 30.

bution. The general structure of order k£ = 2 end up in the Hyperexponential
distribution, because the probabilities to move from phase one to phase two
and vice versa are negligible. The process starts with probability 0.94 in the
state with a length time 175, and with probability 0.06 in the state with a
length time 680. The state with a longer length time, 680, apparently related
to customers with a longer service time. Indeed, according to the histogram
of service time, 4.47% of the calls spend over 680 seconds (over 11 hours) in
the service. Phase-type fits of a general structure of order kK = 3 and k = 4,
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Figure 8.3: Hazard rate for overall service time - December. Superimposed
on a hazard rates is a smoother hazard curve.

k =5 and k = 6 almost coincide, therefore the phase-type fits of order k =4
and k = 6 are not given in the graphs above. In general, as the order of
PH-distribution is higher, the fits of PH-distributions is better, as seen from
the graphs.

As it is demonstrated in section 5.5 (p. 25) there are several different
representations of a PH-distribution. For example, fits of PH-distributions
of order k = 3 to service time, from different initial values, gives the dif-
ferent setups of parameters of PH-distribution, (g,R), but the maximum
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Figure 8.4: Phase-type fits to December service time by a general structure

of order k = 2 — —,

-3 .

, k =5--- . In the top plot, the solid line

is the kernel density estimator, given as a comparison to the fitted densities.
In the bottom plot, the solid line is the empirical survival function.
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likelihood function is coincide. Figure 8.5 shows three different structures of
PH-distribution of order £ = 3 with the same log likelihood function. The

a)

Log-likelihood = -215735.877179 (final)

Figure 8.5: Two different structures of the same order, £ = 3, of PH-type fit
to the service time - December, starting with different initial values, Figure
a) above. The fitted Coxian structure of the same order, Figure b) above.

corresponding densities are, when plotted, difficult to distinguish from each
other. Then, Figure 8.6 (p. 47) demonstrates the fitted distribution, survival,
density and hazard functions together with corresponding empirical functions
for the PH-distribution of order k£ = 3 of the structure at left in Figure 8.5.
In addition, Figure 8.5 b) demonstrates the fitted Coxian structure of order
k = 3. It has the same log-likelihood function and, correspondingly, the same
fitted mean and standard deviation.

When one looks at the two structures above by ignoring the small prob-
abilities (the dashed arrows in Figure 8.5 a)), it can be seen that despite of
different estimated set-up of the parameters at first sight, there are similar
length time in the states. Moreover, these two structures can be simplified to
the following, showed in Figure 8.7 (p. 48), with corresponding two different

!/

setups of parameters (q, R) and (g, R)":
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Figure 8.6: PH-type fit of order k = 3 of general structure (dashed curve)
with empirical functions (solid curve).
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The fitted PH—distribution has mean = 207 and standard—deviation = 253, CV = 1.22.

(1)

q -\ A 0
q= 0 R = 0 —X 0
1—gq 0 A3 —A3
(2)
0 -\ 0 0
q/ = 1 R,I = q>\2 —>\2 (1 — q))\g
0 0 0 — A3

Let X1, X5, X3 - three independent random variables exponentially distributed
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Figure 8.7: An example of PH-distribution of third order represented by two

different setups of parameters.
q
1-q 1\q‘@—>

with parameters \;,7 = 1, 2,3, and an indicator

I — 1 w.p. ¢q
10 wp.1—gq

independent of X;,i = 1,2,3. Then Y = Xy, + I X; + (1 — ) X3 is time to
absorption, and in both cases:

A1A2q

fy(y) = m (e—hy — @—Aly) +

>\2)\3(1 - Q)

X2y _ ,—A3y
O — o) (e e ),y>0.

The PH-distribution of order £ = 3 of the structure at left in Figure 8.7
is fitted to compare its results with the fitted PH-distribution of the same
order of the general structure, given in figure 8.5. Figure 8.8 (p. 49) shows
the derived specified structure with corresponding log-likelihood function and
the graph of fitted PH-density functions of general and specified structures
together with kernel density estimator. It is difficult to distinguish between
the two structures, according to the graph of their survival functions. It
can be seen, according to their fitted density functions that there is a little
difference between them at the top of the mode, with preference to spec-
ified structure. However, according to the likelihood function, the general
structure has larger likelihood (or consequently, the smaller log-likelihood).

Table 8.1 presents the fitted PH-distribution mean (Mean), standard-
deviation (SD), coefficient of variation (CV) and log-likelihood function (Log-
L) for the fitted general structure of order k = 2,3,4,5,6 to the service time
- December.

Table 8.2 (p. 50) shows the results of applying EDF tests — the D* and
A? statistics associated with the K-S and A-D tests, respectively. These
statistics heavily depend on size of the sample data. In table at top, the
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Figure 8.8: The specified PH-structure of order k£ = 3 fitted to the service
time - December (at top). The fitted PH-density functions with empirical

one (at bottom).
0.83 @
0.17 @

Log-likelihood = -215792.369456 (final).
3 December — Overall service times

—— kernel density estimator
{ — — specified structure of k=3
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Table 8.1: Service time - December. Statistics.

I | k=2| k=3| k=4| k=5| k=0

Mean 207 207 207 207 207
SD 270 253 265 265 264
CV 1.31 1.22 1.28 1.28 1.28
Log-L || -217288 | -215736 | -215648 | -215544 | -215425

Table 8.2: Service time - December. EDF tests.

| Overall - 34433 | k=2 | k=3 [ k=4 | k=5 | k=6 |

D* 17.503 [ 3.754 | 3.613 | 1.708 | 1.799
A? 459.214 [ 20.417 | 15.294 | 3.492 | 3.408
I D | 0.094 | 0.020 | 0.019 [ 0.009 |0.010 |

| 10% of overall - 3443 | k=2 | k=3 | k=4 | k=5 | k=6 |

D* 5.537 | 1.182 | 1.134 | 0.535 | 0.564
A? 45.795 | 2.046 | 1.530 | 0.350 | 0.341
I D | 0.094 [ 0.020 | 0.019 | 0.009 | 0.010 |

D* and A? statistics calculated for overall data - 34433 observations, while
in table at bottom, the D* and A? statistics calculated for 10% of overall
data, that is 3443 observations. The selected model in the two cases above is
different. In the first case, 34433 observations, the PH-model with 5 phases
is selected (bold signed), while in the second case, with 3443 observations,
the selected PH-model is with only 3 phases. Therefore, it was decided to
include in each table the calculation of D, which does not depend on the size
of the sample.

There are some explanations to the specified decision:

e For null hypothesis: the distribution of service time is PH-distribution
of order 2, it is obtained that D* = 17.503 and A? = 459.214, as-
sociated with the K-S and A-D tests, respectively. According to the
critical points of K-S and A-D tests, given in Table 7.3, the null hy-
pothesis above is rejected for any significance level . (The same de-
cision received for null hypothesis: the distribution of service time is
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PH-distribution of order k = 3,4).

e For null hypothesis: the distribution of service time is PH-distribution
of order 5, it is obtained that D* = 1.708. For significance level v =
0.25,0.15,0.1,0.05,0.025,0.01; 1.708 > c,, that is, the null hypothesis
above is rejected, by applying K-S test. But for significance level v =
0.005,0.001; 1.708 < c,, that is, the null hypothesis above is accepted.
The same analysis applied to obtained A-D statistic, A? = 3.492. For
significance level v = 0.25,0.15,0.1,0.05,0.025; 3.492 > a,, that is,
the null hypothesis above is rejected, by applying K-S test. But for
significance level v = 0.01,0.005,0.001; 3.492 < a.,, that is, the null
hypothesis above is accepted.

e For null hypothesis: the distribution of service time is PH-distribution

of order 6, it is obtained that D* = 1.799 and A? = 3.408. According
to K-S test, the null hypothesis is accepted for v = 0.001 and rejected
for v = 0.25,0.15,0.1,0.05,0.025,0.01,0.005. According to A-D test,
the null hypothesis is accepted for v = 0.01,0.005,0.001 and rejected
for v = 0.25,0.15,0.1,0.05, 0.025.
However, the PH-model with the least number of phases is selected and
this is the PH-model of order 5. This is also the selected PH-model with
the least number of phases that fits into a simultaneous confidence band
(:I:\/Lﬁ and :l:%) around the empirical CDF. Figure 8.9 presents the
simultaneous confidence interval around the empirical CDF of resolu-
tion :I:%. In order to demonstrate how fitted PH-distribution trapped
into the bands on each time-interval there are five plots.

Figure 8.10 (p. 55) shows fitted density, distribution, survival and hazard PH-
functions together with empirical functions of selected PH-model of order 5,
according to the confidence interval and goodness-of-fit tests.

There are estimated parameters of selected PH-model of order 5:

e The Probability of Starting in the state [1,..,5]:

q=1[0.09 091 0 0 0]

e The Transition Probability Matrix:

0 0260 0 012
O 0 1 0 0

P=]1099 0 0 0 0.01
0.03 0.33 039 0  0.26
0 058 0.39 0.02 0

o1



e A length of time spent in state [1,..,5] in seconds and in minutes, re-
spectively:

m=[27 37 37 718 169 ] or [045 0.61 0.61 12 28]

e The Absorption Probability Vector:
Pr=[061 00 0 0]
Figure 8.11 (p. 56) shows the PH-structures of order k = 2,3,4,5,6 de-

rived by fitting PH-distributions of general structure to service time - De-
cember.
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Figure 8.9: The simultaneous confidence interval around the empirical CDF
of resolution il'—\;’f with fitted PH-distributions of general structure of order
k=3,4,5.
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Figure 8.10: PH-type fit of order k£ = 5 of general structure (dashed curve)
with empirical functions (solid curve).
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Figure 8.11: Overall service time - December. PH-type structures of order
k=23,4,5,6.
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8.1.2 Service time — December, by priorities

Figure 8.12 presents histograms of service time — December, by LOW and
HIGH priorities. The peak of high frequency of departure of customers with

Low priority High priority
0.006 0.006
5.4%
5.2%
0.005 — Il 0.005 —
Mean = 204 Mean = 213
SD =278 SD =263
0.004 — CVv=1.36 0.004 — Cv=1.23
2 Median = 121 2 Median = 140
@ a N = 22699 @ _ N =11734
$ 0008 T Min = 2 $ 0008 7 Min = 2
a) Max = 8313 a) Max = 11868
0.002 0.002
0.001 0.001
0000 il AT A T rrrererereres 0000 ............................ o
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
Time Time

Figure 8.12: Distribution of service time, by priorities. Superimposed on a
histogram is the kernel density estimator with a Gaussian kernel of width =
30.

LOW priority is 5.4% at the time-interval [70,80], which is greater than of
customers with HIGH priority, 5.2% at the time-interval [60,70].

Figure 8.13 (p. 58) shows the empirical survival and density functions,
estimated with non-parametric methods (section 4.1), plotted for LOW and
HIGH priorities. In Figure 8.13 we note a stochastic ordering between LOW
and HIGH priorities. That is, given the two random variables Y; (for LOW
priority) and Y5 (for HIGH priority) with distributions F} and F3, Y] stochas-
tically dominates Y3, denoted Y7 >4 Y3, if Si(t) > Sa(t) for all ¢, where
S(t) =1— F(t). So, not only the mean of service time for HIGH priority is
larger than the mean of service time for LOW priority. In addition, according
to survival functions, the proportion of HIGH-priority customers, surviving
longer than ¢, is larger than that of LOW-priority customers.

Figure 8.14 (p. 59) compares the fitted PH-distributions of general struc-
ture for £ = 3,4,5 of the density and survival functions, by priorities.

Tables 8.3 and 8.4 (p. 60) present the fitted PH-distribution mean (Mean),
standard-deviation (SD), coefficient of variation (CV) and log-likelihood func-
tion (Log-L) for the fitted general structure of order k = 2,3,4,5 to the
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Figure 8.13: Service time - December, by priorities. Empirical results.
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Figure 8.14: Service time - December, by priorities. Phase-type fits of general
structure of order kK = 3 — — k=4 —-— and k = 5---. In the density
plots, the solid line is the kernel density estimator, given as a comparison to
the fitted densities. In the plots of survival functions, the solid line is the
empirical survival function.

service time - December, by priorities.

Tables 8.5 and 8.6 (p. 60) present the results of applying EDF tests — the
D* and A? statistics associated with the K-S and A-D tests, respectively.

According to the outcome of goodness-of-fit tests, the PH-model for LOW
priority with the least number of phases is the selected PH-model of order 5.
This is also the selected model that fits into a simultaneous confidence band
(j:\/Lﬁ) around the empirical CDF.

The null hypothesis: the distribution of service time - LOW priority
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Table 8.3: Low priority - Service time, December. Statistics.

[ [ [ ws] &1l iv]

Mean 204 204 204 204
SD 279 262 273 273
CcvV 1.37 1.28 1.34 1.34
Log-L | -142708 | -141738 | -141690 | -141626

Table 8.4: High priority - Service time, December. Statistics.

H [ k=2] k=3[ k4]
Mean | 213 | 213] 213
SD 256 | 236 | 237
v 120 111| 111
Log L | -74509 | -73384 | -73831

Table 8.5: Low priority - Service time, December. EDF tests.

| Low priority - 22699 | k=2 | k=3 | k=4 | k=5 |

D* 13.912 | 3.019 [ 2.889 | 1.480
A? 285.086 | 12.882 [ 9.923 | 2.526
I D | 0.092 | 0.020 [ 0.019 | 0.010 |

Table 8.6: High priority - Service time, December. EDF tests.

| High priority - 11734 | k=2 | k=3 | k=4 |

D* 11.292 [2.481 | 1.319
AZ 189.816 | 8.678 | 3.032
I D | 0.104 [0.023] 0.012 |

is PH-distribution of order 5, is accepted for v = 0.025,0.01,0.005,0.001,
according to K-S test, and rejected for v = 0.25,0.15,0.1,0.05. According to
A-D test, the null hypothesis is accepted for v = 0.025,0.01,0.005, 0.001 and
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rejected for v = 0.25,0.15,0.1,0.05.

For HIGH priority, the selected PH-model is of order 4, according to the
EDF tests and the simultaneous confidence band (:I:\/Lﬁ) around the empirical
CDF.

The null hypothesis: the distribution of service time - HIGH priority is
PH-distribution of order 4, is accepted for v = 0.05,0.025, 0.01, 0.005, 0.001,
according to K-S test, and rejected for v = 0.25,0.15,0.1. According to A-
D test, the null hypothesis is accepted for v = 0.025,0.01,0.005,0.001 and
rejected for v = 0.25,0.15,0.1,0.05.

Figure 8.15 shows fitted density, distribution, survival and hazard PH-
functions together with empirical functions of selected PH-model of order 5,
according to the confidence interval and goodness-of-fit tests, to Low-priority
customers.

There are estimated parameters of selected PH-model of order 5 fitted to
Low priority - Service time, December:

e The Probability of Starting in the state [1,..,5]:

g=[0 009 0 091 0]

e The Transition Probability Matrix:

0 0 007 093 0
005 0 0 028 0

P=|068 0 0 024 009
o 0 0 0 1
009 091 0 0 0

e A length of time spent in state [1,..,5] in seconds and in minutes, re-
spectively:

m=/169 26 591 35 35] or [28 04 99 06 06 |

e The Absorption Probability Vector:

Par=[0 066 0 0 0]

Figure 8.16 (p. 63) shows fitted density, distribution, survival and hazard
PH-functions together with empirical functions of selected PH-model of order
4, according to the confidence interval and goodness-of-fit tests, to High-
priority customers.

There are estimated parameters of selected PH-model of order 4 fitted to
High priority - Service time, December:
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Figure 8.15: Low priority - Service time, December. PH-type fit of order
k = 5 of general structure (dashed curve) with empirical functions (solid
curve).
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The fitted PH—distribution has mean = 204 and standard—deviation = 273, CV = 1.34.

e The Probability of Starting in the state [1,..,4]:
q=[0 00 1]

e The Transition Probability Matrix:

0 0.02 098 0
0.01 0O 0 0.99
0 0.03 0 0.44
0.96 0 0 0

P=
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Figure 8.16: High priority - Service time, December. PH-type fit of order
k = 4 of general structure (dashed curve) with empirical functions (solid
curve).
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The fitted PH—distribution has mean = 213 and standard—deviation = 237, CV = 1.11.

e A length of time spent in state [1,..,4] in seconds and in minutes, re-
spectively:

m=136 354 36 20] or [06 59 0.6 048]

e The Absorption Probability Vector:

Pr=[0 0 053 0.04]
Figure 8.17 (p. 64) shows the PH-structures of order k = 3,4,5 derived
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by fitting PH-distributions of general structure to service time - December,
by priorities.

Figure 8.17: Service time - December, by priorities. PH-type structures of
order k = 3,4,5.
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8.1.3 Service time — December, by types

Figure 8.18 presents histograms of service time —December, by four major
service types - PS, NE, IN, NW.
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Figure 8.18: Distribution of service time, by four major service types. Su-
perimposed on a histogram is the kernel density estimator with a Gaussian

kernel of width=30.

Figure 8.19 compares the service time distribution of the four major ser-
vice types: IN, NE, NW and PS, by estimating their densities, survival, haz-
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ard and distribution functions with non-parametric methods (section 4.1).
According to figure 8.19, there is a stochastic ordering between the four ma-

Figure 8.19: Service time - December, by types. Empirical results.
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jor service types.

Figure 8.20 (p. 67) compares the fitted PH-distributions of general struc-
ture for k = 2,3,4,5,6 of the density and survival functions, by types. In
Figure 8.20 a), in the plot of densities of PS service type the fitted PH-
distribution of order k = 2, 3,5, 6 is presented with kernel density estimator
of width = 30, since the fitted PH-distribution of order 4 and 5 are coincide.
The fitted PH-distribution of order 6 is almost coincide with the kernel den-
sity estimator. In the plot of survival functions, fitted survival functions of
order k = 3,4,5,6 are coincide with empirical one, according to the graph of
the presented scale.

In Figure 8.20 b) and c), in the plot of densities of NE and IN service
types the fitted PH-distributions of order k = 2, 3, 4 are presented with kernel
density estimator of width=60. The fitted PH-distribution of order 3 and 4
are almost coincide. In the plot of survival functions, fitted survival functions
of order 3 and 4 are coincide with empirical one, according to the graph of
the presented scale.

In Figure 8.20 d), in the plot of densities of NW service type the fitted PH-
distributions of order k = 2, 3,4 are presented with kernel density estimator
of width=30. The fitted PH-distribution of order 3 and 4 are almost coincide.
In the plot of survival functions, fitted survival functions of order 3 and 4 are
coincide with empirical one, according to the graph of the presented scale.

Tables 8.1.3 - 8.1.3 (p. 68 - 69) present the fitted PH-distribution mean
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Figure 8.20: Service time - December, by types. Phase-type fits of general
structure of order k. In the density plots, the solid line is the kernel density

estimator, given as a comparison to the fitted densities.

In the plots of

survival functions, the solid line is the empirical survival function.
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(Mean), standard-deviation (SD), coefficient of variation (CV) and log-likelihood
function (Log-L) for the fitted general structure of order k = 2,3,4,5,6 to
the service time - December, by types:

Table 8.7: Service time - PS, December. Statistics.
I | k=2] k=3| k=4| k=5| k=0

Mean 182 182 182 182 182
SD 159 190 190 195 192
CV 0.87 1.04 1.04 1.07 1.05
Log-L || -146640 | -146093 | -145902 | -145857 | -145785

Table 8.8: Service time - NE, December. Statistics.
H | k=2] k=3] k|

Mean 285 285 285

SD 361 341 342

CV 1.27 1.19 1.20

Log-L || -24715 | -24544 | -24542

Table 8.9: Service time - IN, December. Statistics.
H | k=2] k3] k4|

Mean 398 398 398

SD 484 470 480

CV 1.22 1.18 1.21

Log-L || -21723 | -21628 | -21625

Tables 8.11 - 8.14 (p. 69 - 70) presents the results of applying EDF tests —
the D* and A? statistics associated with the K-S and A-D tests, respectively.

According to the outcome of goodness-of-fit tests, the selected PH-model
for PS service type is of order 6 (from Table 8.11, bold signed). This is also
the PH-model that fits into a simultaneous confidence band (:I:Ln) around
the empirical cumulative distribution function. However, the PH-model of
order 5 and 4 almost fits into a simultaneous confidence band (jzl—\/‘%’)
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Table 8.10: Service time - NW, December. Statistics.
H | k=2] k=3] k|

Mean 128 128 128
SD 178 166 206
CV 1.39 1.29 1.60
Log-L || -15858 | -15730 | -15713

Table 8.11: Service time - PS, December. EDF tests.

| PS-23811 | k=2 [ k=3 | k=4 | k=5 | k=6 |

D~ 8.390 | 4.668 [2.582 [ 2.391 | 1.077
A? 129.472 [ 29.937 | 9.303 | 6.509 | 1.661
| D | 0054 [0.030 |0.017]0.015 [ 0.007 |

Table 8.12: Service time - NE, December. EDF tests.

INE-3725 ] k=2 | k=3 | k=4 |

D* 4.994 | 0.732 | 0.682
A® 43.690 | 0.545 | 0.352
| D ] 0.082 0012 ]0.011 |

Table 8.13: Service time - IN, December. EDF tests.

[IN-3117 | k=2 | k=3 | k=4 |

D 2.997 ] 0.598 | 0.424
A? 15.464 | 0.428 | 0.246
| D ] 0.054 | 0.011 [ 0.008 |

For NE, IN, NW service type, the selected PH-model is of order 3, ac-
cording to the EDF tests and the simultaneous confidence band i\/iﬁ (con-

sequently, i%) around the empirical CDF.
The null ﬁ;pothesis: the distribution of service time - PS type is PH-
distribution of order 6, accepted for v = 0.15, 0.1, 0.05,0.025, 0.01, 0.005, 0.001,
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Table 8.14: Service time - NW, December. EDF tests.

INW-2723 | k=2 [ k=3 | k=4 |

D* 4.562 | 1.010 | 0.937
AZ 33.678 | 1.294 | 0.826
| D [ 0.087 [0.019 |0.018 ]

according to K-S test, and rejected for v = 0.25. According to A-D test, the
null hypothesis is accepted for v = 0.1,0.05,0.025,0.01, 0.005,0.001 and re-
jected for v = 0.25,0.15. For NE service type, the null hypothesis: the
distribution of service time is PH-distribution of order 3, accepted for any
significance level v, according to K-S test and A-D test. The same conclu-
sion derived for IN service type. For NW service type, the null hypothesis:
the distribution of service time is PH-distribution of order 3, accepted for
v = 0.15,0.1,0.05,0.025,0.01,0.005,0.001, according to K-S test, and re-
jected for v = 0.25. According to A-D test, the null hypothesis is accepted
for any significance level ~.

Figure 8.21 shows fitted density, distribution, survival and hazard PH-
functions together with empirical functions of selected PH-model of order 6,
according to the goodness-of-fit tests, to PS service type. There are esti-
mated parameters of selected PH-model of order 6 fitted to Service time -
PS, December:

e The Probability of Starting in the state [1,..,6]:

q=[0 100 0 0]

e The Transition Probability Matrix:

[0 0 0 0.01 0.99 |
01 O 0.86 0 0
091 0O 0 0.02 0.07

0
0
0
0.15 0.32 0.11 O 0.37 0.04
0
0.

awl
I

0 048 0 0.03 0
0 0 0 0.01 099 0

e A length of time spent in state [1,..,6] in seconds and in minutes, re-
spectively:

m=1[15 17 14 269 20 20] or [02 03 02 45 03 0.3 ]

70



Figure 8.21: Service time - PS, December. PH-type fit of order £k = 6 of
general structure (dashed curve) with empirical functions (solid curve).

Survival function Distribution function

1 ; 1
— - fitted PH

osl —— empirical osl
0.6f 0.6f
04f 04f
0.2f 0.2f

0 : : : : 0 : : : :

0 200 400 600 800 0 200 400 600 800
Time
X107 Hazard rate

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

The fitted PH—distribution has mean = 182 and standard—deviation = 192, CV = 1.05.

e The Absorption Probability Vector:

pr=[0 004 0 001 049 0]

Figure 8.22 (p. 72) shows fitted density, distribution, survival and hazard
PH-functions together with empirical functions of selected PH-model of or-
der 3, according to the goodness-of-fit tests, to NE service type. There are
estimated parameters of selected PH-model of order 3 fitted to Service time
- NE, December:
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Figure 8.22: Service time - NE, December. PH-type fit of order £ = 3 of
general structure (dashed curve) with empirical functions (solid curve).

Survival function Distribution function

1 ; 1
— — fitted PH

osl —— empirical osl
0.6 0.6
0.4} 0.4}
0.2+ 0.2+

0 : : 0 : : :

0 500 1000 1500 0 500 1000 1500
Time Time
X107 Hazard rate

0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

The fitted PH—distribution has mean = 285 and standard—deviation = 341, CV = 1.19.

e The Probability of Starting in the state [1,..,3]:

=091 0 0.09 ]

e The Transition Probability Matrix:

A 0 0.98 0.02
P=1024 0 0.04
0.08 0.7 0

e A length of time spent in state [1,..,3] in seconds and in minutes, re-
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spectively:

m=/[109 48 546 | or [ 1.8 0.8 6.1 |

e The Absorption Probability Vector:

Pa=[0 072 022 ]

Figure 8.23 shows fitted density, distribution, survival and hazard PH-
functions together with empirical functions of selected PH-model of order
3, according to the goodness-of-fit tests, to IN service type. There are esti-
mated parameters of selected PH-model of order 3 fitted to Service time -
IN, December:

e The Probability of Starting in the state [1,..,3]:
a=1[0 0 1]

e The Transition Probability Matrix:

[0 016 001
P=1|004 0 06
0.66 0.34 0

e A length of time spent in state [1,..,3] in seconds and in minutes, re-
spectively:

m=/[121 369 37] or [2 6.1 06 |

e The Absorption Probability Vector:

pr=[083 036 0]

Figure 8.24 (p. 75) shows fitted density, distribution, survival and hazard
PH-functions together with empirical functions of selected PH-model of order
3, according to the goodness-of-fit tests, to NW service type. There are
estimated parameters of selected PH-model of order 3 fitted to Service time
- NW, December:

e The Probability of Starting in the state [1,..,3]:

q=1[003 0 097 ]
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Figure 8.23: Service time - IN, December. PH-type fit of order k£ = 3 of
general structure (dashed curve) with empirical functions (solid curve).
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The fitted PH—-distribution has mean = 398 and standard—deviation = 470, CV = 1.18.

e The Transition Probability Matrix:

A 0 0.86 0.14
P=1 003 0 0.35
0.01 0.99 0

e A length of time spent in state [1,..,3] in seconds and in minutes, re-
spectively:

m=1[308 41 22] or [51 0.7 04 ]
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Figure 8.24: Service time - NW, December. PH-type fit of order £ = 3 of
general structure (dashed curve) with empirical functions (solid curve).
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The fitted PH-distribution has mean = 128 and standard—deviation = 166, CV = 1.29.

e The Absorption Probability Vector:

Figure 8.25 a) shows the PH-structures of order k = 2,3, 4, 5,6 derived by
fitting PH-distributions of general structure to service time - PS, December.
Figure 8.25 b) compares the PH-structures of order k = 2, 3,4 for the four
main service types.
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Figure 8.25: Service time - December, by types. PH-type structures of order
k=23,4,5,6.
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8.2 Fitting PH-distribution to customer pa-
tience (waiting time > 0)

Let us consider December positive waiting times for customers of regular type
- PS, and for the same type, by LOW and HIGH priorities. Their histograms

are given in Figure 8.26.

Figure 8.26: Distribution of positive waiting time.
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Figure 8.27 shows the smooth S-PLUS estimators of the hazard super-
imposed on the raw hazard rates, estimated with non-parametric methods
(section 4.2), for service type PS. There are three smoothed hazard estima-
tors that show peaks around 15 and 60 seconds, and smooth the raw hazard
rates up to time 200, 300, 400 in order to distinguish clearly this interesting
pattern at small times. These local peaks in the hazard rates of time willing
to wait, manifest systematic tendency to abandon, while constant hazard
rates indicates that the tendency to abandon remains the same.

Figure 8.27: Hazard rate for Patience - December.
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There are also occasional peaks at other multiples of 60. This suggestes
that some systematic phenomenon is lurking in the background during wait-
ing [20]. And indeed, upon joining the queue, and about every minute or
so thereafter, customers are exposed to an automatic message, which causes
customers to abandon.

In Figure 8.28, the regular service customers are separated, according
to priorities. The empirical hazard and survival functions of High and Low
priorities for customers of type PS are presented. The hazard curves are
derived by smoothing their raw rates up to time 200. There is stochastic
ordering between overall PS, PS for High and Low priorities. The hazard
and survival functions are placed in upside down order, because they are
related according to the formula H(t) = —log, S(t). High priority customers
tend to be more patient then Low priority customers. According to the
hazard rates, the probability of failure in small interval [t, ¢ 4+ At], given that
the customer has waited up to time ¢ till now, is greater for customers with
Low priority. Also, according to the survival functions, the probability not
to hang up up to time t is greater for customers with High priority.

Figure 8.29 (p. 82) presents fitted PH-distributions of a general Coxian
structures of order 20, 25, 30 for service type PS. The general Coxian struc-
ture is constructed as a sum of exponentials that can reach the absorbing
state from all transient states and the Markov process is allowed to start in
any transient state.

Table 8.15 presents the fitted PH-distribution mean (Mean), standard-
deviation (SD), coefficient of variation (CV) and log-likelihood function (Log-
L) of the fitted general Coxian structure of order k = 20, 25, 30 to the Patience
- PS, December:

Table 8.15: Patience - PS, December. Statistics.
[ | k=20 k=25] k=30 |
Mean 762 1118 928
SD 662 1323 952
CV 0.87 1.18 1.03
Log-L || -25788 | -25719 | -25679

There is a censored version of EDF tests, according to [10]. However, as
we have seen in section 8.1, in most cases the PH-model selected by EDF tests
was the model selected by simultaneous confidence interval. Therefore, the
simultaneous confidence band around the empirical cumulative distribution
function is the sufficient criterion for model selection, implemented herein.
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Figure 8.28: Patience - December - PS, PS for High and Low priorities.
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Figure 8.29: Phase-type fits of a general Coxian structure of order 20, 25, 30
to Patience - PS, December.
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The fitted PH-models of general Coxian structure of order k£ = 20, 25, 30

all fit into a simultaneous confidence band (i\/iﬁ) around empirical CDF in

time interval [10,500]. According to the hazard rates (Fig. 8.29), the most
appropriate PH-model that fits patience is the PH-distribution of general
Coxian structure of order k£ = 30.

The number of phases for estimation of patience is very large. In general,
it is hard to induce rapid changes of the hazard rate, and it requires very high
k-dimensions and a lot of "fast” states. This is especially so if the changes
take place in the small time-interval, such as in plot of hazard rates, the two
peaks at 15 and 60 seconds, while the overall time interval of patience is
between 1 and 1048 seconds. Thus, the distribution of patience requires an
approximation by PH-distributions of high order.

Figure 8.30 presents the derived structure of the fitted PH-distribution of
general Coxian structure of order 30. The time from state 1 to state 4, until

10.01

Figure 8.30: Patience - PS, December. The derived structure by fitting the
general Coxian one of order k = 30.

first time of customer abandoning, is 15 seconds. The time to next aban-
donment happens from state 9, and the overall time till state 9 is about 68
seconds. The third time to abandonment happens at states 18 and 19, when
the waiting time till state 19 is 180 seconds. The fourth time to abandonment
happens at state 29, preceding the last state, with 834 seconds from state 1
to state 29. The last state, with the larger spending time - 705 seconds, is
the state from which the underlying Markov process jumps to the absorption
state with probability 1. Indeed, the derived PH-model describes the under-
lying process of waiting time in the queue and improves our understanding
of the hazard rate, given in Figure 8.27 above.

Figure 8.31 presents the hazard rates of fitted general Coxian structure of
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order 30 to the patience of PS type, PS - High and Low priorities. The pattern

Figure 8.31: Patience - PS, by priorities, December. There are hazard rates
of fitted general Coxian structure of order k£ = 30.
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of stochastic ordering presented at Figure 8.31 can be seen more obviously
by fitting Coxian structure of order 30 to the customers of PS type, PS -
High and Low priorities than General Coxian structure of the same order.
Figure 8.32 presents the derived structures of the fitted PH-distribution of
Coxian structure of order 30, for customers of PS type, PS - High and Low
priorities.

It emerges that from third phase there is abandonment of customers of
High and Low priorities with probability 0.07 and 0.11, after 18 and 15
seconds, correspondingly, and from phase number 9, with probability 0.14
and 0.18, after 73 and 117 seconds, correspondingly. Customers of PS type
abandon from second phase, after 20 seconds, with probability 0.1 and from
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Figure 8.32: Patience - PS, December. The derived structures by fitting the
Coxian one of order k = 30, by priorities.
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phase number 8, after 74 seconds with probability 0.15. So the probability
of abandonment happens in stochastic ordering. For example, after 15 -
20 seconds the customers of Low priority abandon with higher probability,
0.11, then there are the customers of Low and High priority together, with
probability of abandonment 0.1, and thereafter the customers of High priority
only, with probability of abandonment 0.07. According to the graphs of
hazard rates, the fits of Coxian structure of order 30 are not very good as
fits of General Coxian structure of the same order. Therefore, for Patience
data the fit of General Coxian structure of order 30 is selected.
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Chapter 9

Comparison between
Log-normal and PH-type
distributions

The service times are Log-normal distributed, according to Mandelbaum
et al. [20]. Therefore, it is of interest to compare Phase-type with Log-
normal distribution by minimizing of the distance of their density functions
or Laplace transforms. Let us define this precisely.

9.1 Objective

The goal is

min / T rly) — fun(y))dy = (9.1)

q?R

[ 1 —ﬂny—WOQ})Q
= min -exp{ Ry} -r — e _— dy,
aR /0 (q Ry} oyV22m Xp{ 202 Y

for any specific order k of PH-distribution.

In general, there is no analytical way to derive such (g, R), the parameters
of PH-distribution, which minimize the distance between the two distribu-
tions above. However, for any specific values of parameters of Log-normal
distribution, (u,0), and for any specific order k of PH-distribution, we can
derive numerically the optimal parameters of PH-distribution, (q,R), which
minimize the integrand of quadratic difference of two densities: PH-type and
Log-normal distributions. For this purpose, we use two methods of optimiza-
tion, the fmincon function for constrained nonlinear minimization in Matlab

86



and the approximation of a theoretical density by a phase-type density, using
EMpht-program (section 6.4).

Method of moments is implemented to compare Log-normal distribution
with PH-distribution of specific order, k.

9.2 Method of Moments

The rth moment of Log-normal distribution [9] with parameters (u, o) is:

1
pr = EY") =exp {Tu + 57"202} : (9.2)

Consequently, the first moment, the variance and the coefficient of variation
are:

E(Y) = % (9.3)
Var(Y) = e+ (602 — 1> (9.4)
CV(Y) = Ve —1. (9.5)

The first and second moments of PH-distribution with parameters (q,R),
according to formula (5.5) (section 5.2) are:

m = —qR7'1

py = 2qR7*1.
By comparing first moment and coefficient of variation of Log-normal and
Phase-type distributions:

2

o= In(m) - (9.8)
2 — In (Z_) (9.9)

Next, we introduce some examples of PH-distributions of specified struc-
ture are compared with Log-normal distribution.

9.2.1 Hyperexponential structure of order £

The density, first two moments and the square of the coefficient of variation
of Hyperexponential distribution with k& phases, exponentially distributed
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with parameters A\;, i = 1,..., k, presented in figure 5.2 (p. 24), are:

k k
) = D ahe™, y>0, > g=1 (9.10)
i=1 i=1

EY) = z— (9.11)
i=1 "
k
4q;
E(Y?) = 2Zﬁ (9.12)
i=1 "7
(9.13)
k
E(Y") = k!Z%
=1 "1
k 4
2>
PV
CVAY) = ——=— —1>1 (9.14)

The coefficient of variation of Hyperexponential distribution is greater than
one. That is, for \; > 0,> ¢ =1,i=1,...,k,

k 0 k 0 2
Z? > < AT-) (9.15)
=1 =1

must holds. This is follows from the following. Let X be random variable

defined by
1 di, i:]-v"'aka
P(x = )\_z) N { 0, otherwise.

Then, the inequality (9.15) is implied by the relation E(X?) > (E(X))?.
By comparing first moment and coefficient of variation of Log-normal and
Phase-type distributions:

k 2
Z q; o

=t T (9.17)




9.2.2 Generalized Erlang structure of order &

There is Generalized Erlang distribution with k& phases, exponentially dis-
tributed with parameters \;, i =1,...,k:

The first two moments and the square of the coefficient of variation are:

E(Y) = §:§; (9.18)
(E:i) (9.19)

CV3Y) = ———— <1 (9.20)

The coefficient of variation of Generalized Erlang distribution is smaller than
one.

Then, by comparing first moment and coefficient of variation of Log-
normal and Phase-type distributions:

b 1 o?
p = In Z—)—— (9.21)
<i1 Ai 2
1
_2

—=L (9.22)

[

9.2.3 Log-normal Model for Call-Center Service-Times

Let Y be a random variable, denoting service time such that ¥ ~ Log-
normal(, 0%). Then, X = In(Y) is normally distributed with mean p and
variance o2. The parameters of Log-normal distribution, estimated according
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to maximum likelihood estimation method, are as follows:

N =1
- =t 9.23
fi - (9.23)
Z(lnyi - ﬂ)Q
52 = = — (9.24)

The estimators of the expectation, the standard deviation and coefficient of
variation of service time are computed according to formulas (9.4) - (9.5)
with estimated p and o above.

Overall Service time - December is approximately Log-normal(y = 4.8, 0 =
1.03), see Figure 9.1 (p. 91).

Figure 9.2 (p. 92) shows an approximation of Log-normal distribution
with © = 4.8 and ¢ = 1.03 by general structure of order & = 3. This
Log-normal distribution has an expectation about 207 seconds, standard-
deviation about 284, and consequently, coefficient of variation of about 1.37.
In EMpht-program the distribution is truncated at 2000. As truncation point
gets larger, the better is the phase-type fit at the tail.

Figure 9.3 (p. 92) presents the derived fitted phase-type structures of
order £ = 3, by different truncation points. By truncation the distribution
at point larger than 2000, we derive that the holding time at third phase
(with the larger time in Figure 9.3) is larger, and the absorption probability
is larger too. Consequently, the fit is better, because it coincides with the
hazard rate of Log-normal distribution in the tail too. There is a similarity
between these structures and the structure derived by fitting PH-distribution
of the same order to the data - Service times, December (see Fig. 8.5 a), p. 46).
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Figure 9.1: In the top plot, histogram of service time versus Log-normal

density with parameters 4 = 4.8 and o = 1.03. In the bottom plot, histogram
of In(service time) versus Normal density.
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Figure 9.2: Fitted PH-distribution of order & = 3 (dashed line) together with
Log-normal distribution with parameters y = 4.8 and ¢ = 1.03, E(LN) =
207, SD(LN) = 284, CV(LN) = 1.37 (solid line).
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The fitted PH—distribution has mean = 198 and standard—deviation = 230, CV = 1.16.

Figure 9.3: Fitted PH-structure of order k£ = 3 for Log-normal distribution

with parameters 4 = 4.8 and 0 = 1.03 .

Truncation point = 2000
Log-likelihood = -6.205290

Fitted mean = 198

Fitted standard-deviation = 230
Fitted coefficient of variation = 1.16
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9.3 Optimization methods

9.3.1 Constrained optimization, using Matlab

Using Matlab, the optimal parameters of PH-distribution of order k, (q,R),
which minimize the distance between Log-normal and Phase-type densities,

are obtained by:
1 —(hﬂy—u)Q})2
expy —————— dy, 9.25
— e { L b (925

100
min/ (q -exp{Ry} - r —
0

q,R

for known p and o.

109 1 —any—uﬁ})Q
Distance = -exp{ Ry} -r — expy ———— dy,
/0 (q p{Ry} ogvan P { 57 y

for known (u,0) and optimal (g, R).

9.3.2 Minimizing the information divergence, using EM-
pht

Using the EMpht-program, an approximation of Log-normal distribution by
a PH-distribution is done by minimizing the information divergence (the
Kullback-Leibler information) (see section 6.4), that is:

Uy\l/% exp { _(lnzygz— 1)? }) dy. (9.27)

max /0100 log (q - exp{Ry} - ) - (

q7R

for known g and o.

9.3.3 Comparison of the two optimization methods

Table 9.1 presents the results of optimization methods above for three cases:
Log-normal(yx = 1,0 = 0.5), Log-normal(y = 1,0 = 1) and Log-normal(u =
0,0 =1).

The last row in each table above, (k = 5*), presents the results of con-
strained optimization in Matlab. There are obtained by using the derived
EMpht-results for £ = 5 as an initial point to Matlab.

It seems that the EMpht-program gives better results than Matlab. Be-
sides, the optimization, using Matlab, is very time-consuming.
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Table 9.1: Comparison between two optimization methods.

p=1, Distance CV(LN)=0.53 E(LIN)=3.08 SD(LN)=1.63
o = 0.5 | Matlab | EMpht | Matlab | EMpht | Matlab | EMpht | Matlab | EMpht
k=2 0.0321 0.0335 0.71 0.71 3.32 3.08 2.35 2.18
k=3 0.0098 0.0099 0.58 0.58 3.04 3.08 1.76 1.78
k=14 0.0023 0.0028 0.51 0.54 2.94 3.08 1.49 1.65
k=5 0.0022 0.0006 0.51 0.53 2.95 3.08 1.51 1.63
k = 5" 0.0004 0.53 3.02 1.59
pn=1, Distance CV(LN)=1.31 E(LN)=4.48 SD(LN)=5.87
o =1 | Matlab | EMpht || Matlab | EMpht | Matlab | EMpht | Matlab | EMpht
k= 0.0009 0.0173 0.88 1.29 3.57 4.46 3.15 5.74
k=3 0.0009 0.0006 0.89 1.22 3.58 4.46 3.15 5.46
k= 0.0013 0.0004 0.91 1.26 3.67 4.46 3.32 5.62
k = 0.0007 0.0004 0.91 1.26 3.69 4.46 3.37 5.64
k=5"| 0.0004 1.20 4.35 5.23
pn =0, Distance CV(LN)=1.31 E(LN)=1.65 SD(LN)=2.16
o= Matlab | EMpht | Matlab | EMpht | Matlab | EMpht | Matlab | EMpht
k= 0.0437 0.0469 1.00 1.31 1.63 1.65 1.63 2.16
k=3 0.0437 0.0019 1.00 1.24 1.63 1.65 1.63 2.04
k= 0.0011 0.0013 1.07 1.29 1.53 1.65 1.64 2.12
k= 0.0011 0.0013 1.05 1.31 1.52 1.65 1.58 2.15
k=5 0.0011 1.16 1.58 1.83
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Conclusions

In this research we have estimated the distribution of service time and pa-
tience using the empirical call-center data of one of Israel’s banks. The main
steps in this research were:

e Phase-type distributions of different order and structure were
used to fit empirical data as well as other theoretical distributions.

e The parameters of Phase-type distributions were computed via
the EM-algorithm, using the EMpht-program.

e The empirical survival, density and hazard functions were plot-
ted versus the fitted functions to examine visually the qualitative
differences.

e The simultaneous confidence interval for empirical CDF was
used as a heuristic stopping rule for adding phases of the fitted
PH-distribution.

e We used the Kolmogorov-Smirnov and Anderson-Darling goodness-
of-fit tests to evaluate quantitative aspects of the produced fits.

e We have compared Phase-type with Log-normal distributions
using the method of moments.

e The optimal parameters of the PH-distribution were numeri-
cally found for the specific parameters of Log-normal distribution
and for the given order of PH-distribution by two methods. We
succeeded to approximate the Log-normal distribution by Phase-
type distribution of order k£ = 3.

PH-distributions of order k£ = 2, 3,4, 5,6 were used to fit the service dura-
tions of call-center data, for different priorities and service-types. According
to statistic D, which is more robust to the size of the sample than statistics
D* and A2, the general structure of order k& = 3 already provides a reasonable
fit to the overall service time, for December (see Table 8.2, p.50). Moreover,
the fitted Coxian structure of the same order has the same log-likelihood func-
tion and, therefore, its fitted density, survival and hazard functions coincide
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with the fitted corresponding functions of the general phase-type structure.
In view of the fact that PH-distributions have non-unique representation,
it is difficult to give a physical interpretation to the phases. According to
Figure 8.9, in every structure of specific order, there exists the phase with
a longer length time, which plausibly corresponds to the customers with a
longer service time. Figures 8.10, 8.16 demonstrate histograms of service
time - December, by priorities and four main service types. We marked the
peaks that imply a higher percentage of customers that depart from the ser-
vice at corresponding times. From Figures 8.11, 8.17 we note the stochastic
ordering between the priorities and the service types.

The PH-model that provides a perfect fit to the patience is the PH-model of
order k = 30 of general Coxian structure. As can be seen from Figure 8.25,
which shows the hazard rates, there are two peaks around 15 and 60 sec-
onds. These peaks take place within a small time-interval, while the overall
time-interval is [1,1048]. Therefore, it requires very high k-dimensional fit
of PH-distribution. Figure 8.29 presents the hazard rates of the fitted PH-
model of order 30 of general Coxian structure, for HIGH and LOW priorities.
The pattern of stochastic ordering can be noted once again. It follows that
HIGH priority customers are more patient. The derived Coxian structures
of order 30 in Figure 8.30 demonstrate it too.

Table 9.1 presents several measures of proximity of PH-distribution to Log-
normal one. Namely, for specific parametric values of Log-normal distribu-
tion, (u,0), and for any given order k of PH-distribution, we have derived the
optimal parameters of PH-distribution, (g,R). Then we have calculated the
distance, the mean, the standard deviation and the coefficient of variation of
PH-distribution with optimal parameters as above. We have compared the
performances of two optimization methods: the minimization of the integral
of quadratic difference of corresponding densities via constrained nonlinear
minimization in Matlab and the minimization of information divergence, us-
ing EMpht-program. The results obtained by EMpht-program are better
than that of Matlab.

Figure 8.32 (in the top plot) shows histogram of overall service time for De-
cember versus Log-normal density with parameters p = 4.8 and ¢ = 1.03
that are derived by maximum likelihood estimation. In the bottom plot,
the histogram of In(service time) versus Normal density is presented. Using
EMpht-program, we succeed to approximate this Log-normal distribution by
the Phase-type distribution of order k = 3, see Figure 9.1. As can be seen
from Figure 9.2, the larger the upper truncation point is, which is specified
together with parameters of the theoretical density to be fitted, the better
the PH-distribution fits the theoretical one.
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The analysis of the data from the call center of ” Anonymous Bank” con-
tributes to understanding of the underlying processes describing the service
and the behavior of customers by modelling their patience. The results of
our analysis can be used to optimize the call center efficiency as well as the
customer-service quality.

Possible directions of future research:

e [t is important to develop advanced models for patience distri-
bution that explain the two sharp peaks of the hazard rate. For
example, one could consider a mixture of PH-distribution with a
small number of phases and two distributions with a small vari-
ance that is "responsible” for the peaks.

e [t is of interest to analyze the data from other call centers in
order to compare its functionals and appropriate mathematical
models to our findings and models, originated in the ”Empirical
Analysis of a Call Center” by Mandelbaum et al. [20] and herein.

e As discovered in this research, the PH-distribution of order
k = 3 already provides a reasonable fit to the service time. It
is recommended to investigate the physical interpretation of the
phases of service, which requires consultation with the managers
at 7 Anonymous Bank”, or perhaps even a field study.

97



Bibliography

1]

[10]

[11]

0.0. Aalen. Modelling heterogeneity in survival analysis by the com-
pound poisson distribution. The Annals of Applied Probability, 2:951 —
972, 1992.

0.0. Aalen. On phase-type distributions in survival analysis. Scandi-
navian Journal of Statistics, 22:447 — 463, 1995.

0.0. Aalen and H.K. Gjessing. Understanding the shape of the hazard
rate: A process point of view. Statistical Science, 16:1 — 22, 2001.

S. Asmussen. Applied Probability and Queues. John Wiley & Sons, 1987.

S. Asmussen, O. Nerman, and M. Olsson. Fitting phase-type distribu-
tions via the EM algorithm. Scandinavian Journal of Statistics, 23:419
— 441, 1996.

G.R. Bitran and S. Dasu. Analysis of the ¥ Ph;/Ph/1 queue. Operations
Research, 42:158 — 174, 1994.

E. Chlebus. Empirical validation of call holding time distribution in
cellular communications systems. 1997.

D.R. Cox and D. Oakes. Analysis of Survival Data. Chapman and Hall,
1984.

E.L. Crow and K. Shimizu. Lognormal Distributions. Marcel Dekker,
1988.

R.B. D’Agostino and M.A. Stephens. Goodness-of-fit techniques. Marcel
Dekker, 19.

O. Haggstrom, S. Asmussen, and O. Nerman. EMPHT — a program
for fitting phase-type distributions. Technical report, Department of
Mathematics, Chalmers University of Technology, Goteborg, 1992.

98



[12]

[13]
[14]

[15]
[16]

[17]

[18]

[19]
[20]

[21]

22]

S. Kang and R.F. Serfozo. Parallel-processing times: Extreme values of
phase-type and mixed random variables.

D.G. Kleinbaum. Survival Analysis. Springer, 1996.

E.T. Lee. Statistical Methods for Survival Data Analysis. John Wiley &
Sons, 2rd edition, 1992.

E.L. Lehmann. Theory of point estimation. New Jork: Wiley, 1983.

Call Center Magazine. http://www.callcentermagazine.com, WEB
site.

A. Mandelbaum. Service Engineering of Stochastic Networks. Back-
ground, with a focus on Tele-Services. Technion, Israel Institute of
Technology.

A. Mandelbaum. Call Centers. Research Bibliography with Abstracts.
Technion, Israel Institute of Technology, 2rd edition, September 2001.

A. Mandelbaum. Hazard rate functions. Technical report, April 2001.

A. Mandelbaum, A. Sakov, and S. Zeltyn. Empirical analysis of a call
center. Technical report, Technion, Israel Institute of Technology, 2000.

R. Nelson. Probability, Stochastic processes, and Queueing theory. New-
Jork, Springer, 1995.

M.F. Neuts. Matriz-Geometric Solutions in Stochastic Models: An Al-
gorithmic Approach. The Johns Hopkins University Press, Baltimore,
1981.

C.A. O’Cinneide. On non-uniqueness of representations of phase-type
distributions. Commun.Statist.-Stochastic Models, 5:247 — 259, 1989.

C.A. O’Cinneide. Characterization of phase-type distributions.
Commun.Statist.-Stochastic Models, 6:1 — 57, 1990.

M. Olsson. Estimation of phase-type distributions from censored data.
Scandinavian Journal of Statistics, 23:443 — 460, 1996.

M. Olsson. The EMpht-programme. Technical report, Department of
Mathematics,Chalmers University of Technology, and Goteborg Univer-
sity, 1998.

99



[27] V.K. Rohatgi. An Introduction to Probability Theory and Mathematical
Statistics. John Willey & Sons, 1976.

[28] B. Silverman. Density estimation. Chapman and Hall, 1986.

[29] Call Center Statistics. http://www.callcenternews.com/resources/statistics.shtml,
WEB site.

[30] M.A. Tanner. Tools for Statistical Inference. Springer, 3rd edition, 1996.

[31] W. Venables and B. Ripley. Modern applied statistics with S-plus.
Springer, 3rd edition, 1999.

[32] E. Zohar, A. Mandelbaum, and N. Shimkin. Adaptive behavor of impa-
tient customers in tele-queues: Theory and empirical support. 2000.

100



